-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtorch_NN.py
88 lines (71 loc) · 3.02 KB
/
torch_NN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
# Imports
import torch
import torch.nn as nn
import torch.optim as optim # Package used to implement various optimization algorithms.
import torch.nn.functional as F # Contains various Nonlinear activation, convolutional functions etc.
from torch.utils.data import DataLoader, Dataset # dataset management
import torchvision.datasets as datasets # Provides many built-in datasets as well as utility to create your own dataset.
import torchvision.transforms as transforms
# Create fully connected network
class NN(nn.Module):
def __init__(self, input_size, num_classes):
super(NN, self).__init__()
self.fc1 = nn.Linear(input_size, 50) # applies linear transformation on incoming data: y=x.AT+b
self.fc2 = nn.Linear(50, num_classes)
def forward(self, x):
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
device = torch.device('cuda' if torch.cuda.is_available else 'cpu')
# Hyperparameters
input_size = 784
num_classes = 10
learning_rate = 0.001
batch_size = 64
num_epochs = 1
#Load data
train_dataset = datasets.MNIST(root='dataset/',train=True, transform=transforms.ToTensor(), download=True)
train_loader = DataLoader(dataset= train_dataset, batch_size=batch_size, shuffle=True)
test_dataset = datasets.MNIST(
root='dataset/', train=False, transform=transforms.ToTensor(), download=True)
test_loader = DataLoader(dataset=test_dataset,
batch_size=batch_size, shuffle=True)
# Initialize Network
model = NN(input_size=input_size, num_classes=num_classes)
# Loss and Optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
# Train Network
for epoch in range(num_epochs):
for (data, targets) in train_loader:
data = data # The data from which we need to predict thing
targets = targets # The target value
# Getting to correct shape eg. flattening the layer.
data = data.reshape(data.shape[0], -1)
# forward part
scores = model(data) # Prediction of the model
loss = criterion(scores, targets) # Loss, that is cross entropy loss which is calculated given two args: 'predicted value' &'target value'
# Backward part
optimizer.zero_grad() # Setting the optimized GD to zero
loss.backward()
# Gradient descent or adam step
optimizer.step()
# Checking the model accuracy:
def check_accuracy(loader, model):
if loader.dataset.train:
print('Checking accuracy on training data')
else:
print('Checking accuracy on test data')
num_correct = 0
num_samples = 0
model.eval()
with torch.no_grad():
for x, y in loader:
x = x.reshape(x.shape[0], -1)
scores = model(x)
_, predictions = scores.max(1)
num_correct += (predictions==y).sum()
num_samples += predictions.size(0)
print(f'Got {num_correct} / {num_samples} with accuracy {float(num_correct)/float(num_samples)*100:.2f}')
check_accuracy(train_loader, model)
check_accuracy(test_loader, model)