-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgrid_search_hyperparamters.py
94 lines (76 loc) · 4.58 KB
/
grid_search_hyperparamters.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
from comet_ml import experiment
from data_loader.uts_classification_data_loader import UtsClassificationDataLoader
from models.uts_classification_model import UtsClassificationModel
from trainers.uts_classification_trainer import UtsClassificationTrainer
from evaluater.uts_classification_evaluater import UtsClassificationEvaluater
from utils.config import process_config_UtsClassification
from utils.dirs import create_dirs
from utils.utils import get_args
from keras import backend as K
# from utils.uts_classification.utils import plot_trainingsize_metric
import pandas as pd
import numpy as np
import os
import time
import matplotlib.pyplot as plt
from utils.config import get_config_from_json
def process_config_UtsClassification_grid_search_hyperparamters(json_file,model_name, learning_rate):
config, _ = get_config_from_json(json_file)
config.model.name = model_name
config.model.learning_rate = learning_rate
config.callbacks.tensorboard_log_dir = os.path.join("experiments",time.strftime("%Y-%m-%d/", time.localtime()),
config.exp.name, config.dataset.name,
config.model.name, "tensorboard_logs",
"lr=%s,epoch=%s,batch=%s" % (
config.model.learning_rate, config.trainer.num_epochs,
config.trainer.batch_size)
)
config.callbacks.checkpoint_dir = os.path.join("experiments", time.strftime("%Y-%m-%d/", time.localtime()),
config.exp.name, config.dataset.name,
config.model.name, "%s-%s-%s" % (
config.model.learning_rate, config.trainer.num_epochs,
config.trainer.batch_size),
"checkpoints/")
config.log_dir = os.path.join("experiments", time.strftime("%Y-%m-%d/", time.localtime()),
config.exp.name, config.dataset.name,
config.model.name, "%s-%s-%s" % (
config.model.learning_rate, config.trainer.num_epochs,
config.trainer.batch_size),
"training_logs/")
config.result_dir = os.path.join("experiments", time.strftime("%Y-%m-%d/", time.localtime()),
config.exp.name, config.dataset.name,
config.model.name, "%s-%s-%s" % (
config.model.learning_rate, config.trainer.num_epochs,
config.trainer.batch_size),
"result/")
return config
def main():
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
for model_name in ['fcn','resnet_v2','cnn']:
for learning_rate in [0.001, 0.0005, 0.0001]:
args = get_args()
config = process_config_UtsClassification_grid_search_hyperparamters(args.config, model_name, learning_rate)
# except:
# print("missing or invalid arguments")
# exit(0)
# create the experiments dirs
create_dirs([config.callbacks.tensorboard_log_dir, config.callbacks.checkpoint_dir,
config.log_dir, config.result_dir])
print('Create the data generator.')
data_loader = UtsClassificationDataLoader(config)
print('Create the model.')
model = UtsClassificationModel(config, data_loader.get_inputshape(), data_loader.get_nbclasses())
print('Create the trainer')
trainer = UtsClassificationTrainer(model.model, data_loader.get_train_data(), config)
print('Start training the model.')
trainer.train()
print('Create the evaluater.')
evaluater = UtsClassificationEvaluater(trainer.best_model, data_loader.get_test_data(),
data_loader.get_nbclasses(),
config)
print('Start evaluating the model.')
evaluater.evluate()
print('done')
K.clear_session()
if __name__ == '__main__':
main()