-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtools.py
213 lines (162 loc) · 6.96 KB
/
tools.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import contextlib
import numpy as np
import pint
import scipy as sp
import scipy.stats
from uncertainties import unumpy, ufloat, UFloat
def linregress(x, y):
r = sp.stats.linregress(x.m, y.m)
return (
ufloat(r.slope, r.stderr) * (y.units / x.units),
ufloat(r.intercept, r.intercept_stderr) * y.units
)
def curve_fit(fit_fn, x, y, p0=None):
params, pcov = sp.optimize.curve_fit(fit_fn, x, y, p0)
param_errors = np.sqrt(np.diag(pcov))
return tuple(ufloat(p, e) for p, e in zip(params, param_errors))
def pint_curve_fit(fit_fn, x, y, param_units, p0=None):
#TODO: Abweichung mittels sigma-Parameter berücksichtigen
if p0:
assert len(param_units) == len(p0)
for p0_single, pu in zip(p0, param_units):
if p0_single.units != pu.units:
raise Exception(f"Wrong unit in p0 – got '{p0_single.units}' instead of '{pu.units}'")
p0 = tuple(p0_s.m for p0_s in p0)
u_params = curve_fit(fit_fn, x.m, y.m, p0)
pint_params = tuple(p * u for p, u in zip(u_params, param_units))
try:
pint_params_nominal = tuple(p.n * u for p, u in zip(u_params, param_units))
test_val = fit_fn(x, *pint_params_nominal)
except:
raise Exception("Could not test fit_fn")
if test_val.units != y.units:
raise Exception(f"Wrong param_units – fit_fn(x[0], *fit_params_nominal) returns '{test_val.units}' instead of '{y.units}'")
return pint_params
def pint_polyfit(x, y, deg):
params, covariance_matrix = np.polyfit(x.m, y.m, deg=deg, cov=True)
errors = np.sqrt(np.diag(covariance_matrix))
return [ufloat(param, error) * y.units / x.units**(deg-i) for i, (param, error) in enumerate(zip(params, errors))]
def pintify(list):
assert len(list) > 0
units = list[0].units
assert all(e.units == units for e in list)
return [e.m for e in list] * units
def uarray(nominal_values, std_devs):
# assert len(nominal_values) == len(std_devs)
units = nominal_values.units
return unumpy.uarray(nominal_values.to(units).m, std_devs.to(units).m) * units
def nominal_values(list):
assert isinstance(list, pint.Quantity)
units = list.units
return [e.m.n for e in list] * units
def std_devs(list):
assert isinstance(list, pint.Quantity)
units = list.units
return [e.m.s for e in list] * units
def nominal_value(v):
units = v.units
return v.m.n * units
def linspace(start, end, num=50):
return np.linspace(start.m, end.to(start.units).m, num=num) * start.units
def ufloat_from_list(vals):
if isinstance(vals, pint.Quantity):
return ufloat(np.mean(vals.m), sp.stats.sem(vals.m)) * vals.units
else:
return ufloat(np.mean(vals), sp.stats.sem(vals))
def fmt_abs_err(o, r, precise=False, show_uncertainty=True):
o_abs_err = o - r
if isinstance(o_abs_err, UFloat) and not show_uncertainty:
o_abs_err = o_abs_err.n
return f'{o_abs_err:.2f}'
def fmt_rel_err_percent(o, r, precise=False, show_uncertainty=True):
o_rel_err = ((o - r)/r).to('dimensionless').m
if isinstance(o_rel_err, UFloat) and not show_uncertainty:
o_rel_err = o_rel_err.n
return f'{o_rel_err:.2%}'
def fmt_err(o, r, precise=False):
return f'{fmt_rel_err_percent(o, r, precise)} | {fmt_abs_err(o, r, precise)}'
def fmt_compare_to_ref(o, r, name=None, unit=None):
my_o = o.to(unit) if unit else o
my_r = r.to(unit) if unit else r
my_name = f'{name}:\n' if name else ''
return my_name + (
f'- ist: {my_o:.2f}\n'
f'- soll: {my_r:.2f}\n'
f'- abs. Abweichung: {fmt_abs_err(my_o, my_r)}\n'
f'- rel. Abweichung: {fmt_rel_err_percent(o, r)}'
)
def pint_concat(*lists):
units = lists[0].units
out = []
for l in lists:
vals = l.to(units).m
out.extend(vals)
out *= units
return out
# return [*[l.to(units).m for l in lists]] * units
# Entfernt Wertepaare(/-tupel…), die NaNs enthalten
def remove_nans(*inputs):
# return tuple(zip(*[input_tuple for input_tuple in zip(*inputs) if not any(np.isnan(v) for v in input_tuple)]))
return (pintify(x) for x in zip(*[input_tuple for input_tuple in zip(*inputs) if not any(np.isnan(v) for v in input_tuple)]))
# Hilfreich, um z.B. eine Gerade zu plotten…
def bounds(vals):
return pintify([min(vals), max(vals)])
def errorbar(plt, x, y, **kwargs):
def get_n_s(vals):
"""trennt vals in nominal_values und std_devs und gibt sie ohne Einheit zurück"""
try:
return nominal_values(vals).m, std_devs(vals).m
except AttributeError: # scheinbar keine Unsicherheiten angegeben
return vals.m, None
x_n, x_s = get_n_s(x)
y_n, y_s = get_n_s(y)
return plt.errorbar(x_n, y_n, xerr=x_s, yerr=y_s, **kwargs)
@contextlib.contextmanager
def plot_context(plt, xunits, yunits, xname=None, yname=None):
"""Context-Manager zum einfacheren Plotten von einheitenbehafteten Daten."""
# Parse Einheiten. Das funktioniert auch, wenn sie bereits Instanzen von pint.Unit sind.
xunits = pint.Unit(xunits)
yunits = pint.Unit(yunits)
class MyPlotter:
"""Hilfsklasse, die einen Teil von `matplotlib.pyplot` nachahmt und ergänzt."""
def plot(self, *args, show_xerr=True, show_yerr=True, **kwargs):
x, y, *more_args = args
# Bringe x und y in die vorgegebene Einheit und entferne sie anschließend.
if isinstance(x, pint.Quantity):
x = x.to(xunits).m
if isinstance(y, pint.Quantity):
y = y.to(yunits).m
# Trenne x und y in nominal_values und std_devs auf.
def get_n_s(vals):
n, s = unumpy.nominal_values(vals), unumpy.std_devs(vals)
# Falls alle Unsicherheiten 0 sind, wird s auf None gesetzt.
if not s.any():
s = None
return n, s
x_n, x_s = get_n_s(x)
y_n, y_s = get_n_s(y)
# xerr und yerr können explizit deaktiviert werden.
if not show_xerr:
x_s = None
if not show_yerr:
y_s = None
#TODO Entwurf: Stelle Unsicherheit mit Farbfüllung statt Fehlerbalken dar.
if show_yerr == 'fill':
plt.fill_between(x_n, y_n - y_s, y_n + y_s, alpha=0.2)
y_s = None
# Plotte die Daten mit `errorbar`, falls Unsicherheiten angegeben wurden, sonst mit `plot`.
if (x_s is not None) or (y_s is not None):
return plt.errorbar(x_n, y_n, *more_args, xerr=x_s, yerr=y_s, **kwargs)
else:
return plt.plot(x_n, y_n, *more_args, **kwargs)
# automatische Labels
def fmt_label(name, units):
if units == pint.Unit('dimensionless'):
return f"${name}"
else:
return f"${name}" + r" \mathbin{/} " + f"{units:Lx}$"
if xname:
plt.xlabel(fmt_label(xname, xunits))
if yname:
plt.ylabel(fmt_label(yname, yunits))
yield MyPlotter()