-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathllava_new_test.py
58 lines (48 loc) · 2.53 KB
/
llava_new_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import os
from datasets import load_dataset
from llava_arch_new import LlavaForConditionalGeneration
from transformers import Trainer, TrainingArguments, AutoTokenizer, AutoModel, DataCollatorForSeq2Seq, PreTrainedModel
from typing import List, Optional
from transformers.trainer import (
is_sagemaker_mp_enabled,
get_parameter_names,
has_length,
ALL_LAYERNORM_LAYERS,
logger,
)
import torch
from PIL import Image
import requests
from transformers import AutoProcessor
def checkpoint_test(checkpoint_path=None):
clip_model_path = os.path.join(checkpoint_path, "clip_model")
language_model_path = os.path.join(checkpoint_path, "language_model")
multi_model_projector_path = os.path.join(checkpoint_path, "multi_model_projector.pth")
# clip_model_path = "/root/autodl-tmp/jina-clip-v1"
# language_model_path = "/root/autodl-tmp/Meta-Llama-3.1-8B"
cache_dir = "/root/autodl-tmp/huggingface"
clip_tokenizer = AutoTokenizer.from_pretrained("/root/autodl-tmp/jina-clip-v1", cache_dir=cache_dir, use_fast=False)
llm_tokenizer = AutoTokenizer.from_pretrained("/root/autodl-tmp/Meta-Llama-3.1-8B", cache_dir=cache_dir, use_fast=False)
if llm_tokenizer.pad_token is None:
llm_tokenizer.pad_token = llm_tokenizer.eos_token
processor = AutoProcessor.from_pretrained("/root/autodl-tmp/jina-clip-v1", cache_dir=cache_dir, trust_remote_code=True)
# prompt = "Please tell me the content of the previous picture."
prompt = "Give three tips for staying healthy."
url = "https://www.ilankelman.org/stopsigns/australia.jpg"
image = Image.open(requests.get(url, stream=True).raw)
inputs = processor(images=image, text=prompt, return_tensors="pt", add_special_tokens=False)
model = LlavaForConditionalGeneration(
clip_model_path, language_model_path, multi_model_projector_path=multi_model_projector_path,
cache_dir=cache_dir, special_token_id=llm_tokenizer.bos_token_id,
clip_pad_token_id=clip_tokenizer.pad_token_id, llm_pad_token_id=llm_tokenizer.pad_token_id)
inputs["pixel_values"] = None
# Generate
generate_ids = model.image_text_generation(**inputs, max_new_tokens=100)
print(generate_ids)
print(llm_tokenizer.batch_decode(generate_ids, skip_special_tokens=True)[0])
pass
if __name__ == "__main__":
# model = AutoModel.from_pretrained("/root/autodl-tmp/jina-clip-v1", cache_dir="/root/autodl-tmp/huggingface", trust_remote_code=True)
# print(model)
checkpoint_test("/root/autodl-tmp/robot_script/checkpoint-32350")
pass