Skip to content

Latest commit

 

History

History
635 lines (563 loc) · 31.9 KB

README.md

File metadata and controls

635 lines (563 loc) · 31.9 KB

machine-learning

Machine Learning - AI - Tensorflow - Keras - NVidia - Google

Batch Size variations among GPUs (shorter time per iteration is better) Screenshot 2024-12-01 at 13 07 48

Screenshot 2024-12-03 at 11 39 44

Tensorflow on Apple Silicon - Metal

20240627: Google Gemma 2 - 27B 120G model

Environments

RTX-4090 Suprim Dual

michael@13900b MINGW64 /c/wse_github/obrienlabsdev/machine-learning/environments/windows (main)
$ docker build -t ml-tensorflow .
michael@13900b MINGW64 /c/wse_github/obrienlabsdev/machine-learning/environments/windows (main)
$ docker run --rm --gpus all ml-tensorflow

2023-11-25 04:06:47.732831: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1886] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 21286 MB memory:  -> device: 0, name: NVIDIA GeForce RTX 4090, pci bus id: 0000:01:00.0, compute capability: 8.9
2023-11-25 04:06:47.733361: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:880] could not open file to read NUMA node: /sys/bus/pci/devices/0000:02:00.0/numa_node
Your kernel may have been built without NUMA support.
2023-11-25 04:06:47.733383: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1886] Created device /job:localhost/replica:0/task:0/device:GPU:1 with 21286 MB memory:  -> device: 1, name: NVIDIA GeForce RTX 4090, pci bus id: 0000:02:00.0, compute capability: 8.9
Downloading data from https://www.cs.toronto.edu/~kriz/cifar-100-python.tar.gz
169001437/169001437 [==============================] - 8s 0us/step
Epoch 1/40
2023-11-25 04:07:16.813872: I tensorflow/compiler/xla/stream_executor/cuda/cuda_dnn.cc:442] Loaded cuDNN version 8600
2023-11-25 04:07:17.564042: I tensorflow/compiler/xla/stream_executor/cuda/cuda_dnn.cc:442] Loaded cuDNN version 8600
2023-11-25 04:07:19.761064: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x7f15381ed280 initialized for platform CUDA (this does not guarantee that XLA will be used). Devices:
2023-11-25 04:07:19.761096: I tensorflow/compiler/xla/service/service.cc:176]   StreamExecutor device (0): NVIDIA GeForce RTX 4090, Compute Capability 8.9
2023-11-25 04:07:19.761099: I tensorflow/compiler/xla/service/service.cc:176]   StreamExecutor device (1): NVIDIA GeForce RTX 4090, Compute Capability 8.9
2023-11-25 04:07:19.764829: I tensorflow/compiler/mlir/tensorflow/utils/dump_mlir_util.cc:269] disabling MLIR crash reproducer, set env var `MLIR_CRASH_REPRODUCER_DIRECTORY` to enable.
2023-11-25 04:07:19.821529: I ./tensorflow/compiler/jit/device_compiler.h:186] Compiled cluster using XLA!  This line is logged at most once for the lifetime of the process.
196/196 [==============================] - 37s 53ms/step - loss: 4.3691 - accuracy: 0.0853
Epoch 2/40
196/196 [==============================] - 9s 48ms/step - loss: 3.8850 - accuracy: 0.1505


50% load, 9%
4.02
parallel_model.fit(x_train, y_train, epochs=40, batch_size=512)#7168)
Epoch 39/40
98/98 [==============================] - 5s 54ms/step - loss: 0.2330 - accuracy: 0.9400
Epoch 40/40
98/98 [==============================] - 5s 53ms/step - loss: 0.1610 - accuracy: 0.9656

60% load,15% ram
2.35
parallel_model.fit(x_train, y_train, epochs=40, batch_size=1024)#7168)
Epoch 39/40
49/49 [==============================] - 3s 57ms/step - loss: 0.2216 - accuracy: 0.9517
Epoch 40/40
49/49 [==============================] - 3s 58ms/step - loss: 0.1297 - accuracy: 0.9752

70% load, 30% ram
1.55 time
parallel_model.fit(x_train, y_train, epochs=40, batch_size=2048)#7168)#7168)
Epoch 39/40
25/25 [==============================] - 2s 68ms/step - loss: 0.1953 - accuracy: 0.9420
Epoch 40/40
25/25 [==============================] - 2s 67ms/step - loss: 0.1396 - accuracy: 0.9647

1.40
75% load, 40% ram
parallel_model.fit(x_train, y_train, epochs=40, batch_size=4096)#7168)#7168)
Epoch 39/40
13/13 [==============================] - 1s 104ms/step - loss: 0.1160 - accuracy: 0.9671
Epoch 40/40
13/13 [==============================] - 1s 104ms/step - loss: 0.1239 - accuracy: 0.9651

1.45
80% load, 50% ram
parallel_model.fit(x_train, y_train, epochs=40, batch_size=5120)#7168)#7168)
Epoch 39/40
7/7 [==============================] - 1s 175ms/step - loss: 0.2035 - accuracy: 0.9356
Epoch 40/40
7/7 [==============================] - 1s 171ms/step - loss: 0.1847 - accuracy: 0.9429


85% load, 50% ram
parallel_model.fit(x_train, y_train, epochs=40, batch_size=7168)#7168)
Epoch 40/40
7/7 [==============================] - 1s 173ms/step - loss: 0.1083 - accuracy: 0.9699


RTX-A4500 - Dual

Quadro RTX-5000 - TU104

2023-10-04 00:07:23.774558: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1886] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 14045 MB memory:  -> device: 0, name: Quadro RTX 5000, pci bus id: 0000:01:00.0, compute capability: 7.5
Epoch 1/40
2023-10-04 00:07:36.487253: I tensorflow/compiler/xla/stream_executor/cuda/cuda_dnn.cc:442] Loaded cuDNN version 8600
2023-10-04 00:07:38.967127: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x32e96c70 initialized for platform CUDA (this does not guarantee that XLA will be used). Devices:
2023-10-04 00:07:38.967167: I tensorflow/compiler/xla/service/service.cc:176]   StreamExecutor device (0): Quadro RTX 5000, Compute Capability 7.5

RTX-3500 ADA in Lenovo P1 Gen 6 - 2023

use "google/gemma-2b"

Google Cloud - Dual L4 GPU VM

TensforFlow / Keras test ML training run

Run a standard concurrent saturation TensorFlow/Keras ML job from U of Toronto to check batch size optimums under 30 epochs to get close to 1.0 fitness - 25 avoids overfit



base) michael@l4-4-2:~$ git clone https://github.com/ObrienlabsDev/machine-learning.git
(base) michael@l4-4-2:~/machine-learning$ vi environments/windows/src/tflow.py 
import tensorflow as tf
strategy = tf.distribute.MirroredStrategy(devices=["/gpu:0", "/gpu:1"])
cifar = tf.keras.datasets.cifar100
(x_train, y_train), (x_test, y_test) = cifar.load_data()

with strategy.scope():
# https://www.tensorflow.org/api_docs/python/tf/keras/applications/resnet50/ResNet50
# https://keras.io/api/models/model/
  parallel_model = tf.keras.applications.ResNet50(
    include_top=True,
    weights=None,
    input_shape=(32, 32, 3),
    classes=100,)
  loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False)
# https://keras.io/api/models/model_training_apis/
  parallel_model.compile(optimizer="adam", loss=loss_fn, metrics=["accuracy"])
parallel_model.fit(x_train, y_train, epochs=30, batch_size=2048)#5120)#7168)#7168)

(base) michael@l4-4-2:~/machine-learning$ cat environments/windows/Dockerfile 
FROM tensorflow/tensorflow:latest-gpu
WORKDIR /src
COPY /src/tflow.py .
CMD ["python", "tflow.py"]

base) michael@l4-4-2:~/machine-learning$ ./build.sh 
Sending build context to Docker daemon  6.656kB
Step 1/4 : FROM tensorflow/tensorflow:latest-gpu
latest-gpu: Pulling from tensorflow/tensorflow

successfully tagged ml-tensorflow-win:latest
2023-11-30 20:29:26.443809: I tensorflow/core/util/port.cc:113] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
2023-11-30 20:29:26.497571: E external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:9261] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered
2023-11-30 20:29:26.497614: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:607] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered
2023-11-30 20:29:26.499104: E external/local_xla/xla/stream_executor/cuda/cuda_blas.cc:1515] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered
2023-11-30 20:29:26.506731: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
2023-11-30 20:29:31.435829: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1929] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 20795 MB memory:  -> device: 0, name: NVIDIA L4, pci bus id: 0000:00:03.0, compute capability: 8.9
2023-11-30 20:29:31.437782: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1929] Created device /job:localhost/replica:0/task:0/device:GPU:1 with 20795 MB memory:  -> device: 1, name: NVIDIA L4, pci bus id: 0000:00:04.0, compute capability: 8.9
Downloading data from https://www.cs.toronto.edu/~kriz/cifar-100-python.tar.gz
169001437/169001437 [==============================] - 3s 0us/step
Epoch 1/30

023-11-30 20:30:19.985861: I external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:454] Loaded cuDNN version 8906
2023-11-30 20:30:20.001134: I external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:454] Loaded cuDNN version 8906
2023-11-30 20:30:29.957119: I external/local_xla/xla/service/service.cc:168] XLA service 0x7f9c6bf3a4f0 initialized for platform CUDA (this does not guarantee that XLA will be used). Devices:
2023-11-30 20:30:29.957184: I external/local_xla/xla/service/service.cc:176]   StreamExecutor device (0): NVIDIA L4, Compute Capability 8.9
2023-11-30 20:30:29.957192: I external/local_xla/xla/service/service.cc:176]   StreamExecutor device (1): NVIDIA L4, Compute Capability 8.9
2023-11-30 20:30:29.965061: I tensorflow/compiler/mlir/tensorflow/utils/dump_mlir_util.cc:269] disabling MLIR crash reproducer, set env var `MLIR_CRASH_REPRODUCER_DIRECTORY` to enable.
WARNING: All log messages before absl::InitializeLog() is called are written to STDERR
I0000 00:00:1701376230.063893      80 device_compiler.h:186] Compiled cluster using XLA!  This line is logged at most once for the lifetime of the process.

25/25 [==============================] - 71s 317ms/step - loss: 4.9465 - accuracy: 0.0418
Epoch 2/30
25/25 [==============================] - 4s 142ms/step - loss: 3.8430 - accuracy: 0.1214
Epoch 3/30
25/25 [==============================] - 4s 142ms/step - loss: 3.3694 - accuracy: 0.1967
Epoch 4/30
25/25 [==============================] - 4s 143ms/step - loss: 3.0832 - accuracy: 0.2544
Epoch 5/30
25/25 [==============================] - 4s 143ms/step - loss: 2.7049 - accuracy: 0.3326
Epoch 6/30
25/25 [==============================] - 4s 143ms/step - loss: 2.3329 - accuracy: 0.4119
Epoch 7/30
25/25 [==============================] - 4s 143ms/step - loss: 1.9781 - accuracy: 0.4824
Epoch 8/30
25/25 [==============================] - 4s 143ms/step - loss: 1.9177 - accuracy: 0.4948
Epoch 9/30
25/25 [==============================] - 4s 142ms/step - loss: 1.4980 - accuracy: 0.5937
Epoch 10/30
25/25 [==============================] - 4s 144ms/step - loss: 1.3247 - accuracy: 0.6322
Epoch 11/30
25/25 [==============================] - 4s 142ms/step - loss: 1.0408 - accuracy: 0.7063
Epoch 12/30
25/25 [==============================] - 4s 142ms/step - loss: 0.9150 - accuracy: 0.7439
Epoch 13/30
25/25 [==============================] - 4s 143ms/step - loss: 0.8210 - accuracy: 0.7648
Epoch 14/30
25/25 [==============================] - 4s 142ms/step - loss: 0.5581 - accuracy: 0.8424
Epoch 15/30
25/25 [==============================] - 4s 141ms/step - loss: 0.4635 - accuracy: 0.8709
Epoch 16/30
25/25 [==============================] - 4s 142ms/step - loss: 0.4771 - accuracy: 0.8610
Epoch 17/30
25/25 [==============================] - 4s 142ms/step - loss: 0.9404 - accuracy: 0.7228
Epoch 18/30
25/25 [==============================] - 4s 143ms/step - loss: 0.5478 - accuracy: 0.8385
Epoch 19/30
25/25 [==============================] - 4s 143ms/step - loss: 0.4107 - accuracy: 0.8867
Epoch 20/30
25/25 [==============================] - 4s 143ms/step - loss: 0.2424 - accuracy: 0.9345
Epoch 21/30
25/25 [==============================] - 4s 146ms/step - loss: 0.1677 - accuracy: 0.9587
Epoch 22/30
25/25 [==============================] - 4s 142ms/step - loss: 0.1419 - accuracy: 0.9659
Epoch 23/30
25/25 [==============================] - 4s 141ms/step - loss: 0.1861 - accuracy: 0.9510
Epoch 24/30
25/25 [==============================] - 4s 141ms/step - loss: 0.2771 - accuracy: 0.9264
Epoch 25/30
25/25 [==============================] - 4s 142ms/step - loss: 0.2663 - accuracy: 0.9326
Epoch 26/30
25/25 [==============================] - 4s 141ms/step - loss: 0.1710 - accuracy: 0.9600
Epoch 27/30
25/25 [==============================] - 4s 141ms/step - loss: 0.4977 - accuracy: 0.8626
Epoch 28/30
25/25 [==============================] - 4s 141ms/step - loss: 0.6559 - accuracy: 0.8100
Epoch 29/30
25/25 [==============================] - 4s 143ms/step - loss: 0.3074 - accuracy: 0.9105
Epoch 30/30
25/25 [==============================] - 4s 143ms/step - loss: 0.1834 - accuracy: 0.9515
(base) michael@l4-4-2:~/machine-learning$ 
Screenshot 2023-11-30 at 15 31 16

GPU: Dual RTX-A4500 Ampere without NVLink in Z790H 64G i9-14900K

Power:

Temp:

  • liquid temp
  • CPU temp
  • RAM temp outside
  • Board power cap outside

Code

Results

GPU: Dual RTX-A4500 Ampere with NVLink in Z790H 64G i9-14900K

CPU: Z790H 64G i9-14900K

Power:

Temp:

  • PSU power in-internal: 350W-470W peak
  • liquid temp = 38
  • CPU temp = 71-76
  • RAM temp outside
  • RAM temp software: 61C
  • Board power cap outside
  • CPU wsl2 96-99% image

Code

strategy = tf.distribute.OneDeviceStrategy("/cpu:0")
parallel_model.fit(x_train, y_train, epochs=25, batch_size=256)

Results

196/196 [==============================] - 61s 285ms/step - loss: 4.3420 - accuracy: 0.0941
Epoch 2/25
196/196 [==============================] - 55s 281ms/step - loss: 3.6117 - accuracy: 0.1755
Epoch 3/25
2023-12-08 21:15:54.565643: E external/local_xla/xla/stream_executor/stream_executor_internal.h:177] SetPriority unimplemented for this stream.
196/196 [==============================] - 55s 281ms/step - loss: 3.3433 - accuracy: 0.2257
Epoch 4/25
196/196 [==============================] - 55s 281ms/step - loss: 3.3183 - accuracy: 0.2407
Epoch 5/25
196/196 [==============================] - 56s 283ms/step - loss: 2.8984 - accuracy: 0.2995
Epoch 6/25
196/196 [==============================] - 57s 291ms/step - loss: 2.7675 - accuracy: 0.3311
Epoch 7/25
196/196 [==============================] - 56s 286ms/step - loss: 3.0207 - accuracy: 0.3210
Epoch 8/25
196/196 [==============================] - 56s 288ms/step - loss: 3.9374 - accuracy: 0.1562
Epoch 9/25
196/196 [==============================] - 57s 289ms/step - loss: 3.5116 - accuracy: 0.1987
Epoch 10/25
196/196 [==============================] - 57s 290ms/step - loss: 3.0358 - accuracy: 0.2711
Epoch 11/25
196/196 [==============================] - 57s 292ms/step - loss: 2.8239 - accuracy: 0.3067
Epoch 12/25
196/196 [==============================] - 57s 291ms/step - loss: 2.6456 - accuracy: 0.3391
Epoch 13/25
196/196 [==============================] - 55s 281ms/step - loss: 2.5414 - accuracy: 0.3609
Epoch 14/25
196/196 [==============================] - 54s 278ms/step - loss: 2.3249 - accuracy: 0.4089
Epoch 15/25
196/196 [==============================] - 55s 279ms/step - loss: 2.1558 - accuracy: 0.4413
Epoch 16/25
196/196 [==============================] - 54s 277ms/step - loss: 2.0078 - accuracy: 0.4763
Epoch 17/25
196/196 [==============================] - 54s 276ms/step - loss: 1.8048 - accuracy: 0.5175
Epoch 18/25
196/196 [==============================] - 56s 288ms/step - loss: 1.6319 - accuracy: 0.5605
Epoch 19/25
196/196 [==============================] - 55s 283ms/step - loss: 1.4296 - accuracy: 0.6122
Epoch 20/25
196/196 [==============================] - 55s 278ms/step - loss: 1.2125 - accuracy: 0.6641
Epoch 21/25
196/196 [==============================] - 54s 277ms/step - loss: 1.0231 - accuracy: 0.7140
Epoch 22/25
196/196 [==============================] - 54s 278ms/step - loss: 0.9759 - accuracy: 0.7312
Epoch 23/25
196/196 [==============================] - 54s 278ms/step - loss: 1.1977 - accuracy: 0.6877
Epoch 24/25
196/196 [==============================] - 54s 278ms/step - loss: 1.1991 - accuracy: 0.6801
Epoch 25/25
196/196 [==============================] - 55s 279ms/step - loss: 0.6931 - accuracy: 0.8060


run 2
14900c dual 4500
560 cpu batch 256 84-93% wsl 51c ram 100 cpu 14G ram 36%
150-200 idle
315-700w  dual gpu batch 3072



2048 gpu
.113*25*25 = 71 sec for .93 accuracy (5% of CPU time = 21x faster or 10x faster per gpu
Epoch 22/25
25/25 [==============================] - 3s 111ms/step - loss: 0.2104 - accuracy: 0.9411
Epoch 23/25
25/25 [==============================] - 3s 114ms/step - loss: 0.2733 - accuracy: 0.9259
Epoch 24/25
25/25 [==============================] - 3s 113ms/step - loss: 0.3863 - accuracy: 0.8852
Epoch 25/25
25/25 [==============================] - 3s 113ms/step - loss: 0.2842 - accuracy: 0.9235



256 cpu
.297*196*25 = 1455 sec for .91 accuracy = 10x slower than 1 gpu
or this stream.
  1/196 [..............................] - ETA: 20:06 - loss: 6.9762 - accuracy: 0.00392023-12-10 00:56:34.991344: E external/local_xla/xla/stream_executor/stream_executor_internal.h:177] SetPriority unimplemented for this stream.
  3/196 [..............................] - ETA: 1:00 - loss: 6.9847 - accuracy: 0.00262023-12-10 00:56:35.610671: E external/local_xla/xla/stream_executor/stream_executor_internal.h:177] SetPriority unimplemented for this stream.
  7/196 [>.............................] - ETA: 58s - loss: 6.6585 - accuracy: 0.00892023-12-10 00:56:36.824655: E external/local_xla/xla/stream_executor/stream_executor_internal.h:177] SetPriority unimplemented for this stream.
 45/196 [=====>........................] - ETA: 45s - loss: 5.1467 - accuracy: 0.03082023-12-10 00:56:48.318008: E external/local_xla/xla/stream_executor/stream_executor_internal.h:177] SetPriority unimplemented for this stream.
148/196 [=====================>........] - ETA: 14s - loss: 4.4486 - accuracy: 0.07882023-12-10 00:57:19.211928: E external/local_xla/xla/stream_executor/stream_executor_internal.h:177] SetPriority unimplemented for this stream.
196/196 [==============================] - 65s 300ms/step - loss: 4.2915 - accuracy: 0.0933
Epoch 2/25
196/196 [==============================] - 58s 297ms/step - loss: 3.8266 - accuracy: 0.1585
Epoch 3/25
196/196 [==============================] - 58s 297ms/step - loss: 3.4660 - accuracy: 0.2013
Epoch 4/25
196/196 [==============================] - 58s 297ms/step - loss: 3.4054 - accuracy: 0.2327
Epoch 5/25
196/196 [==============================] - 58s 297ms/step - loss: 3.5802 - accuracy: 0.2298
Epoch 6/25
196/196 [==============================] - 58s 297ms/step - loss: 3.4940 - accuracy: 0.2211
Epoch 7/25
196/196 [==============================] - 58s 297ms/step - loss: 3.0766 - accuracy: 0.2664
Epoch 8/25
196/196 [==============================] - 58s 297ms/step - loss: 2.7800 - accuracy: 0.3180
Epoch 9/25
196/196 [==============================] - 58s 297ms/step - loss: 2.5303 - accuracy: 0.3673
Epoch 10/25
196/196 [==============================] - 58s 297ms/step - loss: 2.3552 - accuracy: 0.4081
Epoch 11/25
196/196 [==============================] - 58s 297ms/step - loss: 2.5569 - accuracy: 0.3798
Epoch 12/25
196/196 [==============================] - 58s 298ms/step - loss: 2.9079 - accuracy: 0.3195
Epoch 13/25
196/196 [==============================] - 58s 298ms/step - loss: 2.6752 - accuracy: 0.3728
Epoch 14/25
196/196 [==============================] - 58s 298ms/step - loss: 2.6649 - accuracy: 0.3469
Epoch 15/25
196/196 [==============================] - 59s 300ms/step - loss: 2.1321 - accuracy: 0.4490
Epoch 16/25
196/196 [==============================] - 59s 299ms/step - loss: 2.0236 - accuracy: 0.4809
Epoch 17/25
196/196 [==============================] - 58s 295ms/step - loss: 1.7347 - accuracy: 0.5369
Epoch 18/25
196/196 [==============================] - 58s 295ms/step - loss: 1.4486 - accuracy: 0.6083
Epoch 19/25
196/196 [==============================] - 58s 295ms/step - loss: 1.1899 - accuracy: 0.6774
Epoch 20/25
196/196 [==============================] - 58s 294ms/step - loss: 0.9406 - accuracy: 0.7405
Epoch 21/25
196/196 [==============================] - 58s 296ms/step - loss: 0.7380 - accuracy: 0.7938
Epoch 22/25
196/196 [==============================] - 58s 294ms/step - loss: 0.6913 - accuracy: 0.8110
Epoch 23/25
196/196 [==============================] - 57s 293ms/step - loss: 0.4984 - accuracy: 0.8693
Epoch 24/25
196/196 [==============================] - 58s 294ms/step - loss: 0.4505 - accuracy: 0.8840
Epoch 25/25
196/196 [==============================] - 58s 294ms/step - loss: 0.3783 - accuracy: 0.9050

GPU: Dual RTX-4090 Suprim Liquid X Ada without NVLink in Z790H 192G i9-13900K

Power:

Temp:

  • liquid temp
  • CPU temp
  • RAM temp outside
  • Board power cap outside

Code

Results

CPU: Z790H 192G i9-13900K

Power:

Temp:

  • liquid temp
  • CPU temp
  • RAM temp outside
  • Board power cap outside

Code

Results

Comparisons


cpu 64484 ms 13900k auto
cpu 54488 ms 14900k xmpIIt = 1.19
gpu 5066 ms rtx-4000 3072 (auto) 12.7
gpu 3770 ms single rtx-4500 4096 (xmpIIt) 1.34 14.45
gpu 2379 ms dual rtx-4500 4096 (xmpIIt) 2.13 1.58 22.9

xmp1 13900b

  1/196 [..............................] - ETA: 19:33 - loss: 6.2215 - accuracy: 0.00392023-12-17 16:47:57.141700: E external/local_xla/xla/stream_executor/stream_executor_internal.h:177] SetPriority unimplemented for this stream.
2023-12-17 16:47:57.187032: E external/local_xla/xla/stream_executor/stream_executor_internal.h:177] SetPriority unimplemented for this stream.
  2/196 [..............................] - ETA: 59s - loss: 6.4643 - accuracy: 0.0078  2023-12-17 16:47:57.439043: E external/local_xla/xla/stream_executor/stream_executor_internal.h:177] SetPriority unimplemented for this stream.
177/196 [==========================>...] - ETA: 5s - loss: 4.2576 - accuracy: 0.09162023-12-17 16:48:47.376423: E external/local_xla/xla/stream_executor/stream_executor_internal.h:177] SetPriority unimplemented for this stream.
196/196 [==============================] - 62s 285ms/step - loss: 4.2148 - accuracy: 0.0968
Epoch 2/25
 16/196 [=>............................] - ETA: 51s - loss: 3.7675 - accuracy: 0.15452023-12-17 16:48:57.384228: E external/local_xla/xla/stream_executor/stream_executor_internal.h:177] SetPriority unimplemented for this stream.
196/196 [==============================] - 56s 284ms/step - loss: 3.5792 - accuracy: 0.1858
Epoch 3/25
196/196 [==============================] - 56s 284ms/step - loss: 3.6221 - accuracy: 0.1762
Epoch 4/25
196/196 [==============================] - 56s 285ms/step - loss: 3.5754 - accuracy: 0.2086
Epoch 5/25
  2/196 [..............................] - ETA: 56s - loss: 4.0169 - accuracy: 0.1211(base)


back to auto

  7/196 [>.............................] - ETA: 1:04 - loss: 6.3731 - accuracy: 0.01282023-12-17 17:10:04.059541: E external/local_xla/xla/stream_executor/stream_executor_internal.h:177] SetPriority unimplemented for this stream.
 16/196 [=>............................] - ETA: 1:00 - loss: 5.6742 - accuracy: 0.01812023-12-17 17:10:07.167167: E external/local_xla/xla/stream_executor/stream_executor_internal.h:177] SetPriority unimplemented for this stream.
196/196 [==============================] - 71s 333ms/step - loss: 4.2207 - accuracy: 0.0907
Epoch 2/25
196/196 [==============================] - 65s 330ms/step - loss: 3.8126 - accuracy: 0.1411
Epoch 3/25
 92/196 [=============>................] - ETA: 34s - loss: 3.8442 - accuracy: 0.18802023-12-17 17:12:42.006779: E external/local_xla/xla/stream_executor/stream_executor_internal.h:177] SetPriority unimplemented for this stream.
196/196 [==============================] - 64s 329ms/step - loss: 4.1021 - accuracy: 0.1498
Epoch 4/25
196/196 [==============================] - 65s 332ms/step - loss: 3.5662 - accuracy: 0.1792
Epoch 5/25
196/196 [==============================] - 66s 338ms/step - loss: 3.2549 - accuracy: 0.2290
Epoch 6/25
196/196 [==============================] - 65s 333ms/step - loss: 3.1233 - accuracy: 0.2542
Epoch 7/25
196/196 [==============================] - 65s 333ms/step - loss: 2.8770 - accuracy: 0.2963
Epoch 8/25
196/196 [==============================] - 65s 332ms/step - loss: 2.7122 - accuracy: 0.3323
Epoch 9/25
196/196 [==============================] - 65s 332ms/step - loss: 2.7316 - accuracy: 0.3258
Epoch 10/25
196/196 [==============================] - 65s 333ms/step - loss: 2.4714 - accuracy: 0.3781
Epoch 11/25
196/196 [==============================] - 66s 336ms/step - loss: 2.4632 - accuracy: 0.3895
Epoch 12/25
196/196 [==============================] - 65s 332ms/step - loss: 2.4943 - accuracy: 0.3731
Epoch 13/25
196/196 [==============================] - 65s 330ms/step - loss: 2.1627 - accuracy: 0.4440
Epoch 14/25
196/196 [==============================] - 65s 332ms/step - loss: 2.8412 - accuracy: 0.3587
Epoch 15/25
196/196 [==============================] - 64s 329ms/step - loss: 2.7271 - accuracy: 0.3317
Epoch 16/25
196/196 [==============================] - 65s 331ms/step - loss: 2.2484 - accuracy: 0.4295
Epoch 17/25
196/196 [==============================] - 65s 331ms/step - loss: 2.0061 - accuracy: 0.4812
Epoch 18/25
196/196 [==============================] - 65s 331ms/step - loss: 2.0881 - accuracy: 0.4815
Epoch 19/25
196/196 [==============================] - 65s 333ms/step - loss: 1.6362 - accuracy: 0.5683
Epoch 20/25
196/196 [==============================] - 65s 334ms/step - loss: 1.3457 - accuracy: 0.6347

gpu 4000 with 3072 25

TORY` to enable.
WARNING: All log messages before absl::InitializeLog() is called are written to STDERR
I0000 00:00:1702834440.315323      97 device_compiler.h:186] Compiled cluster using XLA!  This line is logged at most once for the lifetime of the process.
17/17 [==============================] - 45s 805ms/step - loss: 5.0761 - accuracy: 0.0332
Epoch 2/25
17/17 [==============================] - 5s 294ms/step - loss: 4.0471 - accuracy: 0.0870
Epoch 3/25
17/17 [==============================] - 5s 296ms/step - loss: 3.6452 - accuracy: 0.1473
Epoch 4/25
17/17 [==============================] - 5s 297ms/step - loss: 3.4603 - accuracy: 0.1816
Epoch 5/25
17/17 [==============================] - 5s 297ms/step - loss: 3.0679 - accuracy: 0.2515
Epoch 6/25
17/17 [==============================] - 5s 297ms/step - loss: 2.6895 - accuracy: 0.3285
Epoch 7/25
17/17 [==============================] - 5s 299ms/step - loss: 2.3169 - accuracy: 0.4071
Epoch 8/25
17/17 [==============================] - 5s 299ms/step - loss: 1.9836 - accuracy: 0.4794
Epoch 9/25
17/17 [==============================] - 5s 300ms/step - loss: 1.6977 - accuracy: 0.5458
Epoch 10/25
17/17 [==============================] - 5s 299ms/step - loss: 1.4570 - accuracy: 0.6020
Epoch 11/25
17/17 [==============================] - 5s 300ms/step - loss: 1.2364 - accuracy: 0.6573
Epoch 12/25
17/17 [==============================] - 5s 300ms/step - loss: 3.7002 - accuracy: 0.2081
Epoch 13/25
17/17 [==============================] - 5s 299ms/step - loss: 3.1458 - accuracy: 0.2441
Epoch 14/25
17/17 [==============================] - 5s 300ms/step - loss: 2.8122 - accuracy: 0.3136
Epoch 15/25
17/17 [==============================] - 5s 301ms/step - loss: 2.5327 - accuracy: 0.3639
Epoch 16/25
17/17 [==============================] - 5s 301ms/step - loss: 2.2787 - accuracy: 0.4216
Epoch 17/25
17/17 [==============================] - 5s 300ms/step - loss: 2.0286 - accuracy: 0.4742
Epoch 18/25
17/17 [==============================] - 5s 301ms/step - loss: 1.5872 - accuracy: 0.5715
Epoch 19/25
17/17 [==============================] - 5s 302ms/step - loss: 1.5890 - accuracy: 0.5795
Epoch 20/25
17/17 [==============================] - 5s 303ms/step - loss: 1.1264 - accuracy: 0.6885
Epoch 21/25
17/17 [==============================] - 5s 302ms/step - loss: 0.7854 - accuracy: 0.7837
Epoch 22/25
17/17 [==============================] - 5s 302ms/step - loss: 0.4942 - accuracy: 0.8641
Epoch 23/25
17/17 [==============================] - 5s 302ms/step - loss: 0.3534 - accuracy: 0.9091
Epoch 24/25
17/17 [==============================] - 5s 303ms/step - loss: 0.5549 - accuracy: 0.8422
Epoch 25/25
17/17 [==============================] - 5s 302ms/step - loss: 0.4353 - accuracy: 0.8797



13900a xmp II

2023-12-19 23:18:44.676359: E external/local_xla/xla/stream_executor/stream_executor_internal.h:177] SetPriority unimplemented for this stream.
  2/196 [..............................] - ETA: 59s - loss: 6.3865 - accuracy: 0.0156  2023-12-19 23:18:45.711966: E external/local_xla/xla/stream_executor/stream_executor_internal.h:177] SetPriority unimplemented for this stream.
  3/196 [..............................] - ETA: 57s - loss: 6.4258 - accuracy: 0.01692023-12-19 23:18:46.003668: E external/local_xla/xla/stream_executor/stream_executor_internal.h:177] SetPriority unimplemented for this stream.
196/196 [==============================] - 62s 288ms/step - loss: 4.2650 - accuracy: 0.0907
Epoch 2/25
 72/196 [==========>...................] - ETA: 35s - loss: 3.8604 - accuracy: 0.13662023-12-19 23:20:02.130417: E external/local_xla/xla/stream_executor/stream_executor_internal.h:177] SetPriority unimplemented for this stream.
196/196 [==============================] - 56s 284ms/step - loss: 3.7666 - accuracy: 0.1615
Epoch 3/25
196/196 [==============================] - 56s 284ms/step - loss: 4.1555 - accuracy: 0.1498
Epoch 4/25
196/196 [==============================] - 57s 289ms/step - loss: 3.9914 - accuracy: 0.1148
Epoch 5/25
196/196 [==============================] - 57s 290ms/step - loss: 3.5812 - accuracy: 0.1741
Epoch 6/25
196/196 [==============================] - 56s 288ms/step - loss: 3.2962 - accuracy: 0.2201
Epoch 7/25
196/196 [==============================] - 56s 286ms/step - loss: 3.2700 - accuracy: 0.2192


14900k cpu 25/256 XMPII tweaked

196/196 [==============================] - 55s 281ms/step - loss: 2.6452 - accuracy: 0.3374
Epoch 11/25
196/196 [==============================] - 55s 281ms/step - loss: 2.5039 - accuracy: 0.3669
Epoch 12/25
196/196 [==============================] - 55s 282ms/step - loss: 2.5024 - accuracy: 0.3760
Epoch 13/25
196/196 [==============================] - 55s 281ms/step - loss: 3.1161 - accuracy: 0.2521
Epoch 14/25
196/196 [==============================] - 55s 281ms/step - loss: 2.7955 - accuracy: 0.3084
Epoch 15/25
196/196 [==============================] - 55s 281ms/step - loss: 2.4491 - accuracy: 0.3803
Epoch 16/25
196/196 [==============================] - 55s 281ms/step - loss: 2.2764 - accuracy: 0.4173
Epoch 17/25
196/196 [==============================] - 55s 281ms/step - loss: 2.1312 - accuracy: 0.4485
Epoch 18/25
196/196 [==============================] - 55s 281ms/step - loss: 2.4015 - accuracy: 0.4171
Epoch 19/25
196/196 [==============================] - 55s 280ms/step - loss: 2.0316 - accuracy: 0.4703
Epoch 20/25
196/196 [==============================] - 55s 281ms/step - loss: 2.2626 - accuracy: 0.4459
Epoch 21/25
196/196 [==============================] - 55s 282ms/step - loss: 1.9385 - accuracy: 0.5121
Epoch 22/25
196/196 [==============================] - 55s 281ms/step - loss: 1.8072 - accuracy: 0.5183
Epoch 23/25
196/196 [==============================] - 55s 281ms/step - loss: 1.4713 - accuracy: 0.6073
Epoch 24/25
196/196 [==============================] - 55s 281ms/step - loss: 1.2006 - accuracy: 0.6702
Epoch 25/25
196/196 [==============================] - 55s 282ms/step - loss: 0.9450 - accuracy: 0.7366


4096 batch - 25 epoch

4090 single
139ms

4090 dual
108ms

A4500 single
491ms

A4500 dual NVlink
372ms

A6000
362ms