-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_processing_functions.py
335 lines (269 loc) · 9.98 KB
/
data_processing_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
import polars as pl
import numpy as np
from datetime import datetime
from settings import (
TRANSACTIONS_FILE_PATH,
TRANSACTION_DATE,
TRANSACTION_MONTH,
TRANSACTION_YEAR,
DEPARTEMENT,
CITY_UNIQUE_ID,
SURFACE,
AVERAGE_PRICE_PER_SQUARE_METER,
CLASSIFICATION_TARGET,
REGRESSION_TARGET,
PRICE_PER_SQUARE_METER,
NB_TRANSACTIONS_PER_MONTH,
REGION,
)
import seaborn as sns
# ---------------- Loading and basic processing functions -------------
def load_transactions(file_path: str = TRANSACTIONS_FILE_PATH) -> pl.DataFrame:
arrays = dict(np.load(file_path))
data = {
k: (
[s.decode("utf-8") for s in v.tobytes().split(b"\x00")]
if v.dtype == np.uint8
else v
)
for k, v in arrays.items()
}
transactions = pl.DataFrame(data)
return transactions
def create_prix_au_m2_column(
transactions: pl.DataFrame, price_col: str, square_meter_col: str
) -> pl.DataFrame:
transactions = transactions.with_columns(
(pl.col(price_col) / pl.col(square_meter_col)).alias(PRICE_PER_SQUARE_METER)
)
return transactions
def process_transactions(
transactions: pl.DataFrame, lower_bound_date: datetime = datetime(2018, 1, 1)
) -> pl.DataFrame:
filtered_transactions = transactions.filter(
transactions[TRANSACTION_DATE] >= lower_bound_date
)
filtered_transactions = filtered_transactions.filter(
pl.col("surface_terrains_nature") == "{}",
pl.col("surface_terrains_sols") == "{}",
pl.col("surface_terrains_agricoles") == "{}",
pl.col("surface_locaux_industriels") == "{}",
pl.col("surface_dependances") == "{}",
)
filtered_transactions = filtered_transactions.drop(
[
"surface_terrains_nature",
"surface_terrains_sols",
"surface_terrains_agricoles",
"surface_locaux_industriels",
"surface_dependances",
]
)
filtered_transactions = filtered_transactions.with_columns(
pl.col(TRANSACTION_DATE).dt.month().alias(TRANSACTION_MONTH)
)
filtered_transactions = filtered_transactions.with_columns(
pl.col(TRANSACTION_DATE).dt.year().alias(TRANSACTION_YEAR)
)
filtered_transactions = create_prix_au_m2_column(
filtered_transactions, REGRESSION_TARGET, SURFACE
)
return filtered_transactions
def load_and_process_transactions(
file_path: str = "transactions.npz",
lower_bound_date: datetime = datetime(2018, 1, 1),
) -> pl.DataFrame:
transactions = load_transactions(file_path=file_path)
transactions = process_transactions(
transactions=transactions, lower_bound_date=lower_bound_date
)
return transactions
def get_info_per_month_cities_enough_transactions(
filtered_transactions: pl.DataFrame,
grouping_cols=[
"departement",
"ville",
"id_ville",
TRANSACTION_YEAR,
TRANSACTION_MONTH,
],
threshold_nb_transactions=4,
verbose=False,
):
average_per_month_per_city = filtered_transactions.group_by(grouping_cols).agg(
pl.col(PRICE_PER_SQUARE_METER).mean().name.suffix("_moyen"),
pl.col(PRICE_PER_SQUARE_METER).count().alias(NB_TRANSACTIONS_PER_MONTH),
)
average_per_month_per_city_enough_transactions = average_per_month_per_city.filter(
pl.col(NB_TRANSACTIONS_PER_MONTH) > threshold_nb_transactions
)
if verbose:
average_per_month_per_city.select(
pl.col(PRICE_PER_SQUARE_METER + "_moyen"),
pl.col(NB_TRANSACTIONS_PER_MONTH),
).describe()
# These are the cities that at least have 5 transactions per month
cities_enough_transactions = (
average_per_month_per_city_enough_transactions.group_by(CITY_UNIQUE_ID).agg(
pl.col(NB_TRANSACTIONS_PER_MONTH).min().name.suffix("_nombre_min")
)
)
100 * len(cities_enough_transactions) / len(average_per_month_per_city)
else:
pass
return average_per_month_per_city_enough_transactions, average_per_month_per_city
def load_annual_macro_eco_context_data(
taux_endettement_file_path: str,
actifs_financiers_file_path: str,
):
taux_endettement = pl.read_csv(taux_endettement_file_path)
actifs_financiers = pl.read_csv(actifs_financiers_file_path)
contexte_macro_eco_annuel = taux_endettement.join(
actifs_financiers, on="date"
) # Le 2eme jeu de données remonte jusqu'aux années 90, on n'en n'a pas besoin
return contexte_macro_eco_annuel
def load_regions_data(regions_file_path: str, departments_to_keep: list):
departements_regions = pl.read_csv(regions_file_path)
departements_regions = departements_regions.filter(
pl.col("code_departement").is_in(departments_to_keep)
).with_columns(
pl.col("code_departement").cast(pl.Int32).alias("departement"),
pl.col("code_region").cast(pl.Int32).alias("region"),
)
return departements_regions
# ----------------- Datasets to be joined ----------------------------
# Tous ces datasets incluent des infos macro-economiques qui serviront en tant que features
def load_foyers_fiscaux(
filepath: str,
permietre_de_villes: pl.DataFrame,
cols_to_keep: list = [
"date",
"departement",
"id_ville",
"ville",
"n_foyers_fiscaux",
"revenu_fiscal_moyen",
"montant_impot_moyen",
],
) -> pl.DataFrame:
foyers_fiscaux = pl.read_csv(filepath, infer_schema_length=None)
foyers_fiscaux = foyers_fiscaux.filter(
pl.col(DEPARTEMENT).is_in(
[str(e) for e in permietre_de_villes[DEPARTEMENT].unique()]
)
).with_columns([pl.col(e).cast(pl.Int32) for e in ["departement", "id_ville"]])
foyers_fiscaux = foyers_fiscaux.join(
permietre_de_villes, how="inner", on=permietre_de_villes.columns
)
foyers_fiscaux = foyers_fiscaux.select(cols_to_keep)
return foyers_fiscaux
def load_monthly_macro_eco_context_data(
taux_interet_path: str = TRANSACTIONS_FILE_PATH,
nouveaux_emprunts_path: str = TRANSACTIONS_FILE_PATH,
references_loyers_path: str = TRANSACTIONS_FILE_PATH,
):
taux_interet = pl.read_csv(taux_interet_path, try_parse_dates=True)
nouveaux_emprunts = pl.read_csv(nouveaux_emprunts_path, try_parse_dates=True)
contexte_macro_eco_mensuel = taux_interet.join(nouveaux_emprunts, on="date")
indices_reference_loyers = pl.read_csv(references_loyers_path, try_parse_dates=True)
indices_reference_loyers = indices_reference_loyers.with_columns(
pl.col("date").dt.year().alias("annee"), pl.col("date").dt.month().alias("mois")
)
contexte_macro_eco_mensuel = contexte_macro_eco_mensuel.with_columns(
pl.col("date").dt.year().alias("annee"), pl.col("date").dt.month().alias("mois")
)
# Foward Fill car la donnée est trimestrielle et non mensuelle
contexte_macro_eco_mensuel = (
(
contexte_macro_eco_mensuel.join(
indices_reference_loyers, on=["annee", "mois"], how="left"
)
.sort(["annee", "mois"])
.with_columns(pl.col("mois").forward_fill(), pl.col("IRL").forward_fill())
)
.drop("date_right")
.rename({"taux": "taux_interet", "IRL": "indice_reference_loyers"})
)
return contexte_macro_eco_mensuel
def add_economical_context_features(
transactions: pl.DataFrame,
contexte_macro_eco_annuel: pl.DataFrame,
contexte_macro_eco_mensuel: pl.DataFrame,
) -> pl.DataFrame:
transactions_merged = transactions.join(
contexte_macro_eco_annuel,
left_on=TRANSACTION_YEAR,
right_on="date",
how="left",
)
transactions_merged = transactions_merged.join(
contexte_macro_eco_mensuel,
left_on=[TRANSACTION_YEAR, TRANSACTION_MONTH],
right_on=["annee", "mois"],
how="left",
)
return transactions_merged
def remove_departments_with_few_transactions(
transactions: pl.DataFrame, threshold_percentile: float = 0.25, verbose: bool = True
) -> pl.DataFrame:
transactions_per_department = (
transactions.select(DEPARTEMENT).to_series().value_counts()
)
if verbose:
print(transactions_per_department.describe())
sns.displot(transactions_per_department)
else:
pass
threshold = (
transactions_per_department.quantile(threshold_percentile)
.select("count")
.to_series()
.to_list()[0]
)
departments_to_keep = (
transactions_per_department.filter(pl.col("count") > threshold)
.select(DEPARTEMENT)
.to_series()
.to_list()
)
transactions_filtered = transactions.filter(
pl.col(DEPARTEMENT).is_in(departments_to_keep)
)
return transactions_filtered, departments_to_keep
def remove_regions_with_few_transactions(
filtered_transactions: pl.DataFrame,
nb_regions_to_keep: int = 5,
):
regions_avec_plus_de_transactions = (
filtered_transactions.select(REGION)
.to_series()
.value_counts()
.sort(by="count", descending=True)
.head(nb_regions_to_keep)
.select(REGION)
.to_series()
.to_list()
)
filtered_transactions = filtered_transactions.filter(
pl.col(REGION).is_in(regions_avec_plus_de_transactions)
)
return filtered_transactions
# ----------------- Classification Target Calculation ----------------------------
def add_classification_target_to_transactions(
filtered_transactions: pl.DataFrame,
target_col_name: str = CLASSIFICATION_TARGET,
percentage_below_mean: float = 0.1,
) -> pl.DataFrame:
filtered_transactions = filtered_transactions.with_columns(
pl.when(
pl.col(PRICE_PER_SQUARE_METER)
< (
pl.col(AVERAGE_PRICE_PER_SQUARE_METER)
- (percentage_below_mean * pl.col(AVERAGE_PRICE_PER_SQUARE_METER))
)
)
.then(1)
.otherwise(0)
.alias(target_col_name)
)
return filtered_transactions