This repository has been archived by the owner on Feb 7, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathcfChIP-seek
executable file
·842 lines (747 loc) · 34.1 KB
/
cfChIP-seek
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
#!/usr/bin/env python3
# -*- coding: UTF-8 -*-
"""
ABOUT: This is the main entry for the pipeline.
REQUIRES:
- python>=3.6
- snakemake (recommended>=6.0.0)
- singularity (recommended==latest)
DISCLAIMER:
PUBLIC DOMAIN NOTICE
NIAID Collaborative Bioinformatics Resource (NCBR)
National Institute of Allergy and Infectious Diseases (NIAID)
This software/database is a "United States Government Work" under
the terms of the United States Copyright Act. It was written as
part of the author's official duties as a United States Government
employee and thus cannot be copyrighted. This software is freely
available to the public for use.
Although all reasonable efforts have been taken to ensure the
accuracy and reliability of the software and data, NCBR do not and
cannot warrant the performance or results that may be obtained by
using this software or data. NCBR and NIH disclaim all warranties,
express or implied, including warranties of performance,
merchantability or fitness for any particular purpose.
Please cite the author and NIH resources like the "Biowulf Cluster"
in any work or product based on this material.
USAGE:
$ cfChIP-seek <command> [OPTIONS]
EXAMPLE:
$ cfChIP-seek run --input *.R?.fastq.gz --output output/
"""
# Python standard library
from __future__ import print_function
import sys, os, subprocess, re, json, textwrap
# 3rd party imports from pypi
import argparse # potential python3 3rd party package, added in python/3.5
# Local imports
from src import version
from src.run import init, setup, bind, dryrun, runner
from src.files import peakcalls, contrasts
from src.shells import bash
from src.utils import (
Colors,
err,
exists,
fatal,
hashed,
permissions,
check_cache,
require
)
# Pipeline Metadata
__version__ = version
__authors__ = 'Skyler Kuhn'
__email__ = '[email protected]'
__home__ = os.path.dirname(os.path.abspath(__file__))
_name = os.path.basename(sys.argv[0])
_description = 'An awesome cell-free ChIP-seq pipeline'
def unlock(sub_args):
"""Unlocks a previous runs output directory. If snakemake fails ungracefully,
it maybe required to unlock the working directory before proceeding again.
This is rare but it does occasionally happen. Maybe worth add a --force
option to delete the '.snakemake/' directory in the future.
@param sub_args <parser.parse_args() object>:
Parsed arguments for unlock sub-command
"""
print("Unlocking the pipeline's output directory...")
outdir = sub_args.output
try:
unlock_output = subprocess.check_output([
'snakemake', '--unlock',
'--cores', '1',
'--configfile=config.json'
], cwd = outdir,
stderr=subprocess.STDOUT)
except subprocess.CalledProcessError as e:
# Unlocking process returned a non-zero exit code
sys.exit("{}\n{}".format(e, e.output))
print("Successfully unlocked the pipeline's working directory!")
def run(sub_args):
"""Initialize, setup, and run the pipeline.
Calls initialize() to create output directory and copy over pipeline resources,
setup() to create the pipeline config file, dryrun() to ensure their are no issues
before running the pipeline, and finally run() to execute the Snakemake workflow.
@param sub_args <parser.parse_args() object>:
Parsed arguments for run sub-command
"""
# Step 0. Check for required dependencies
# The pipelines has only two requirements:
# snakemake and singularity
require(['snakemake', 'singularity'], ['snakemake', 'singularity'])
c = Colors()
# Step 1. Initialize working directory,
# copy over required resources to run
# the pipeline
git_repo = __home__
input_files = init(
repo_path = git_repo,
output_path = sub_args.output,
links = sub_args.input
)
# Step 2. Setup pipeline for execution,
# dynamically create config.json config
# file from user inputs and base config
# templates
config = setup(sub_args,
ifiles = input_files,
repo_path = git_repo,
output_path = sub_args.output
)
# Step 3. Resolve docker/singularity bind
# paths from the config file.
bindpaths = bind(
sub_args,
config = config
)
config['bindpaths'] = bindpaths
# Add peakcall.tsv and contrasts.tsv file
# information, peakcall.tsv file defines
# relationships between ChIP samples and
# their inputs AND it defines its group.
# The contrast.tsv file defines comparsions
# to be made with groups of samples.
# Add peakcall information to config.json
chip2input, groups, blocks = peakcalls(sub_args.peakcall)
# Check if optional Block column, if blocking
# information exists, then each row must have
# a value, error out if missing values (i.e. None)
if len(blocks.values()) != list(blocks.values()).count(None) and None in blocks.values():
missing_blocks = [k for k,v in blocks.items() if v is None]
# Missing fields in blocks column
err(
'{}{}Error: peakcall file contains missing Block information for these samples: {}'.format(
c.bg_red,
c.white,
c.end
)
)
fatal(
'\t └── {}'.format(
missing_blocks
)
)
# Adding peakcall information to projects
chips_samples = list(chip2input.keys())
input_samples = chip2input
config['project']['peaks'] = {}
config['project']['peaks']['chips'] = chips_samples
config['project']['peaks']['inputs'] = input_samples
config['project']['groups'] = groups
config['project']['blocks'] = blocks
# Running some basic vaildation, checking
# that samples defined in the peakcall
# file have a corresponding FastQ file,
# this will prevent/catch dryrun errors
# before they happen.
peakcall_samples = list(set(chips_samples + list(input_samples.values())))
peakcall_samples = [s for s in peakcall_samples if s.strip()]
missing_inputs = []
for s in peakcall_samples:
if s not in config['samples']:
# Collect all missing input fastq files
# that are listed in the peakcall file
missing_inputs.append(s)
if missing_inputs:
# Report missing FastQ files that
# were not provided and display a
# helpful message to fix problem
err(
'{}{}Error: peakcall file contains the following samples with missing FastQ files! {}'.format(
c.bg_red,
c.white,
c.end
)
)
fatal(
'\t └── {}'.format(
missing_inputs
)
)
# Add contrast information to config.json
if sub_args.contrasts:
user_defined_groups = list(groups.keys())
comparsions = contrasts(sub_args.contrasts, user_defined_groups)
config['project']['contrast'] = comparsions
# Step 4. Save config to output directory
with open(os.path.join(sub_args.output, 'config.json'), 'w') as fh:
json.dump(config, fh, indent = 4, sort_keys = True)
# Optional Step: Dry-run pipeline
if sub_args.dry_run:
# Dryrun pipeline
dryrun_output = dryrun(outdir = sub_args.output) # python3 returns byte-string representation
print("\nDry-running {} pipeline:\n{}".format(_name, dryrun_output.decode("utf-8")))
sys.exit(0)
# Step 5. Orchestrate pipeline execution,
# run pipeline in locally on a compute node
# for debugging purposes or submit the master
# job to the job scheduler, SLURM, and create
# logging file
if not exists(os.path.join(sub_args.output, 'logfiles')):
# Create directory for logfiles
os.makedirs(os.path.join(sub_args.output, 'logfiles'))
if sub_args.mode == 'local':
log = os.path.join(sub_args.output, 'logfiles', 'snakemake.log')
else:
log = os.path.join(sub_args.output, 'logfiles', 'master.log')
logfh = open(log, 'w')
mjob = runner(mode = sub_args.mode,
outdir = sub_args.output,
# additional_bind_paths = all_bind_paths,
alt_cache = sub_args.singularity_cache,
threads = int(sub_args.threads),
jobname = sub_args.job_name,
submission_script=os.path.join(__home__, 'src', 'run.sh'),
logger = logfh,
additional_bind_paths = ",".join(bindpaths),
tmp_dir = sub_args.tmp_dir,
)
# Step 6. Wait for subprocess to complete,
# this is blocking and not asynchronous
if not sub_args.silent:
print("\nRunning {} pipeline in '{}' mode...".format(_name, sub_args.mode))
mjob.wait()
logfh.close()
# Step 7. Relay information about submission
# of the master job or the exit code of the
# pipeline that ran in local mode
if sub_args.mode == 'local':
if int(mjob.returncode) == 0:
print('{} pipeline has successfully completed'.format(_name))
else:
fatal('{} pipeline failed. Please see {} for more information.'.format(_name,
os.path.join(sub_args.output, 'logfiles', 'snakemake.log')))
elif sub_args.mode == 'slurm':
jobid = open(os.path.join(sub_args.output, 'logfiles', 'mjobid.log')).read().strip()
if not sub_args.silent:
if int(mjob.returncode) == 0:
print('Successfully submitted master job: ', end="")
else:
fatal('Error occurred when submitting the master job.')
print(jobid)
def cache(sub_args):
"""Caches remote resources or reference files stored on DockerHub and S3.
Local SIFs will be created from images defined in 'config/containers/images.json'.
@TODO: add option to cache other shared S3 resources (i.e. kraken db and fqscreen indices)
@param sub_args <parser.parse_args() object>:
Parsed arguments for unlock sub-command
"""
print(sub_args)
fatal('NotImplementedError... Comming Soon!')
def parsed_arguments(name, description):
"""Parses user-provided command-line arguments. Requires argparse and textwrap
package. argparse was added to standard lib in python 3.5 and textwrap was added
in python 3.5. To create custom help formatting for subparsers a docstring is
used create the help message for required options. argparse does not support named
subparser groups, which is normally what would be used to accomphish this reformatting.
As so, the help message for require options must be suppressed. If a new required arg
is added to a subparser, it must be added to the docstring and the usage statement
also must be updated.
@param name <str>:
Name of the pipeline or command-line tool
@param description <str>:
Short description of pipeline or command-line tool
"""
# Add styled name and description
c = Colors
styled_name = "{0}{1}{2}cfChIP-seek{3}".format(c.bold, c.bg_black, c.cyan, c.end)
description = "{0}{1}{2}".format(c.bold, description, c.end)
# Create a top-level parser
parser = argparse.ArgumentParser(description = '{}: {}'.format(styled_name, description))
# Adding Verison information
parser.add_argument('--version', action = 'version', version='%(prog)s {}'.format(__version__))
# Create sub-command parser
subparsers = parser.add_subparsers(help='List of available sub-commands')
# Sub-parser for the "run" sub-command
# Grouped sub-parser arguments are currently
# not supported: https://bugs.python.org/issue9341
# Here is a work around to create more useful help message for named
# options that are required! Please note: if a required arg is added the
# description below should be updated (i.e. update usage and add new option)
required_run_options = textwrap.dedent("""\
{0}: {1}
{3}{4}Synopsis:{5}
$ {2} run [--help] \\
[--dry-run] [--job-name JOB_NAME] [--mode {{slurm,local}}] \\
[--sif-cache SIF_CACHE] [--singularity-cache SINGULARITY_CACHE] \\
[--silent] [--threads THREADS] [--tmp-dir TMP_DIR] \\
[--contrasts CONTRASTS] \\
--input INPUT [INPUT ...] \\
--output OUTPUT \\
--peakcall PEAKCALL
Optional arguments are shown in square brackets above.
{3}{4}Description:{5}
To run the cell-free ChIP-sequencing pipeline with your raw data, please
provide a space seperated list of FastQ (globbing is supported), an output
directory to store results, and a peakcall file to pair ChIP and Input
samples & define groups of samples.
{3}{4}Required arguments:{5}
--input INPUT [INPUT ...]
Input FastQ file(s) to process. The pipeline does NOT
support single-end data. FastQ files for one or more
samples can be provided. Multiple input FastQ files
should be seperated by a space. Globbing for multiple
file is also supported.
Example: --input .tests/*.R?.fastq.gz
--output OUTPUT
Path to an output directory. This location is where
the pipeline will create all of its output files, also
known as the pipeline's working directory. If the user
provided working directory has not been initialized,
it will be created automatically.
Example: --output /data/$USER/output
--peakcall PEAKCALL
Peakcall file. This tab delimited file is used to pair
each ChIP sample to its Input sample AND to assign any
groups that are associated with said sample. Please note
that multiple groups can be assigned to a given sample.
Group information is used to setup comparsions within
groups of samples. This file consists of three columns
containing the names of each ChIP sample, the names of
each Input sample, and the names of any of its groups.
The header of this file needs to be ChIP for the chips
column, Input for the inputs column, and Group for the
groups column. The base name of each sample should be
listed in the ChIP and Input columns. The base name of
a given sample can be determined by removing its file
extension from the sample's R1 FastQ file, example:
WT_S4.R1.fastq.gz becomes WT_S4 in the peakcall file.
An optional column, called Block, can also be provided
to block duplicate correlations between repeated obser-
vations. Typically, blocks are biological replicates or
multiple samples from same indivdual.
Contents of example peakcalls file:
ChIP Input Group Block
WT_S1 IN_S1 G1,G3 S1
WT_S2 IN_S2 G1,G3 S1
WT_S3 IN_S3 G1 S2
WT_S4 IN_S4 G2,G4 S2
WT_S5 IN_S5 G2,G4 S3
WT_S6 IN_S6 G2 S3
Example: --peakcall /data/$USER/peakcall.tsv
{3}{4}Analysis options:{5}
{6}@DifferentialBinding{5}
--contrasts CONTRASTS
Contrasts file. This tab delimited file is used to setup
comparisons within different groups of samples. Please
see the --peakcall option for more information about
how to define groups within a set of samples. This file
consists of two columns containing the names of each
group to compare. The names defined in this file must
also exist in the peakcall file.
Contents of example contrasts file:
G2 G1
G4 G1
G4 G3
Example: --contrasts /data/$USER/contrasts.tsv
{3}{4}Orchestration options:{5}
--mode {{slurm,local}}
Method of execution. Defines the mode of execution.
Vaild options for this mode include: local or slurm.
Additional modes of exection are coming soon, default:
slurm.
Here is a brief description of each mode:
• local: uses local method of execution. local runs
will run serially on compute instance. This is useful
for testing, debugging, or when a users does not have
access to a high performance computing environment.
If this option is not provided, it will default to a
slurm mode of execution.
• slurm: uses slurm execution backend. This method
will submit jobs to a cluster using sbatch. It is
recommended running the pipeline in this mode as it
will be significantly faster.
Example: --mode slurm
--job-name JOB_NAME
Overrides the name of the pipeline's master job. When
submitting the pipeline to a jobscheduler, this option
overrides the default name of the master job. This can
be useful for tracking the progress or status of a run,
default: pl:{2}.
Example: --job-name {2}_03-14.1592
--dry-run
Does not execute anything. Only displays what steps in
the pipeline remain or will be run.
Example: --dry-run
--silent
Silence standard output. This will reduces the amount
of information displayed to standard output when the
master job is submitted to the job scheduler. Only the
job id of the master job is returned.
Example: --silent
--singularity-cache SINGULARITY_CACHE
Overrides the $SINGULARITY_CACHEDIR variable. Images
from remote registries are cached locally on the file
system. By default, the singularity cache is set to:
'/path/to/output/directory/.singularity/'. Please note
that this cache cannot be shared across users.
Example: --singularity-cache /data/$USER
--sif-cache SIF_CACHE
Path where a local cache of SIFs are stored. This cache
can be shared across users if permissions are properly
setup. If a SIF does not exist in the SIF cache, the
image will be pulled from Dockerhub. {2} cache
sub command can be used to create a local SIF cache.
Please see {2} cache for more information.
Example: --sif-cache /data/$USER/sifs/
--tmp-dir TMP_DIR
Path on the file system for writing temporary output
files. By default, the temporary directory is set to
'/lscratch/$SLURM_JOBID' for backwards compatibility
with the NIH's Biowulf cluster; however, if you are
running the pipeline on another cluster, this option
will need to be specified. Ideally, this path should
point to a dedicated location on the filesystem for
writing tmp files. On many systems, this location is
set to somewhere in /scratch. If you need to inject a
variable into this string that should NOT be expanded,
please quote this options value in single quotes.
Example: --tmp-dir '/scratch/$USER/'
--threads THREADS
Max number of threads for local processes. It is
recommended setting this vaule to the maximum number
of CPUs available on the host machine, default: 2.
Example: --threads: 16
{3}{4}Misc Options:{5}
-h, --help Show usage information, help message, and exit.
Example: --help
""".format(styled_name, description, name, c.bold, c.url, c.end, c.italic))
# Display example usage in epilog
run_epilog = textwrap.dedent("""\
{2}{3}Example:{4}
# Step 1.) Grab an interactive node,
# do not run on head node!
srun -N 1 -n 1 --time=1:00:00 --mem=8gb --cpus-per-task=2 --pty bash
module purge
module load singularity snakemake
# Step 2A.) Dry-run the pipeline
./{0} run --input .tests/*.R?.fastq.gz \\
--output /data/$USER/output \\
--peakcall .tests/peakcall.tsv \\
--mode slurm \\
--dry-run
# Step 2B.) Run the {0} pipeline
# The slurm mode will submit jobs to
# the cluster. It is recommended running
# the pipeline in this mode.
./{0} run --input .tests/*.R?.fastq.gz \\
--output /data/$USER/output \\
--peakcall .tests/peakcall.tsv \\
--mode slurm
{2}{3}Version:{4}
{1}
""".format(name, __version__, c.bold, c.url, c.end))
# Supressing help message of required args to overcome no sub-parser named groups
subparser_run = subparsers.add_parser('run',
help = 'Run the {} pipeline with input files.'.format(name),
usage = argparse.SUPPRESS,
formatter_class=argparse.RawDescriptionHelpFormatter,
description = required_run_options,
epilog = run_epilog,
add_help=False
)
# Required Arguments
# Input FastQ files
subparser_run.add_argument(
'--input',
# Check if the file exists and if it is readable
type = lambda file: permissions(parser, file, os.R_OK),
required = True,
nargs = '+',
help = argparse.SUPPRESS
)
# Output Directory, i.e
# working directory
subparser_run.add_argument(
'--output',
type = lambda option: os.path.abspath(os.path.expanduser(option)),
required = True,
help = argparse.SUPPRESS
)
# Optional Arguments
# Add custom help message
subparser_run.add_argument(
'-h', '--help',
action='help',
help=argparse.SUPPRESS
)
# Peakcall file to match
# ChIP and Input samples
# and to define groups
subparser_run.add_argument(
'--peakcall',
# Check if the file exists and if it is readable
type = lambda file: permissions(parser, file, os.R_OK),
required = True,
help = argparse.SUPPRESS
)
# Analysis options
# Contrasts file for DBA
subparser_run.add_argument(
'--contrasts',
# Check if the file exists and if it is readable
type = lambda file: permissions(parser, file, os.R_OK),
required = False,
default = None,
help = argparse.SUPPRESS
)
# Orchestration Options
# Execution Method, run locally
# on a compute node or submit to
# a supported job scheduler, etc.
subparser_run.add_argument(
'--mode',
type = str,
required = False,
default = "slurm",
choices = ['slurm', 'local'],
help = argparse.SUPPRESS
)
# Name of master job
subparser_run.add_argument(
'--job-name',
type = str,
required = False,
default = 'pl:{}'.format(name),
help = argparse.SUPPRESS
)
# Dry-run
# Do not execute the workflow,
# prints what steps remain
subparser_run.add_argument(
'--dry-run',
action = 'store_true',
required = False,
default = False,
help = argparse.SUPPRESS
)
# Silent output mode
subparser_run.add_argument(
'--silent',
action = 'store_true',
required = False,
default = False,
help = argparse.SUPPRESS
)
# Singularity cache directory,
# default uses output directory
subparser_run.add_argument(
'--singularity-cache',
type = lambda option: check_cache(parser, os.path.abspath(os.path.expanduser(option))),
required = False,
help = argparse.SUPPRESS
)
# Local SIF cache directory,
# default pull from Dockerhub
subparser_run.add_argument(
'--sif-cache',
type = lambda option: os.path.abspath(os.path.expanduser(option)),
required = False,
help = argparse.SUPPRESS
)
# Base directory to write
# temporary/intermediate files
subparser_run.add_argument(
'--tmp-dir',
type = str,
required = False,
default = '/lscratch/$SLURM_JOBID/',
help = argparse.SUPPRESS
)
# Number of threads for the
# pipeline's main proceess
# This is only applicable for
# local rules or when running
# in local mode.
subparser_run.add_argument(
'--threads',
type = int,
required = False,
default = 2,
help = argparse.SUPPRESS
)
# Sub-parser for the "unlock" sub-command
# Grouped sub-parser arguments are currently
# not supported: https://bugs.python.org/issue9341
# Here is a work around to create more useful help message for named
# options that are required! Please note: if a required arg is added the
# description below should be updated (i.e. update usage and add new option)
required_unlock_options = textwrap.dedent("""\
{0}: {1}
{3}{4}Synopsis:{5}
$ {2} unlock [-h] --output OUTPUT
Optional arguments are shown in square brackets above.
{3}{4}Description:{5}
If the pipeline fails ungracefully, it maybe required to unlock
the working directory before proceeding again. Please verify that
the pipeline is not running before running this command. If the
pipeline is still running, the workflow manager will report the
working directory is locked. This is normal behavior. Do NOT run
this command if the pipeline is still running.
{3}{4}Required arguments:{5}
--output OUTPUT Path to a previous run's output directory
to unlock. This will remove a lock on the
working directory. Please verify that the
pipeline is not running before running
this command.
Example: --output /data/$USER/output
{3}{4}Misc Options:{5}
-h, --help Show usage information, help message,
and exit.
Example: --help
""".format(styled_name, description, name, c.bold, c.url, c.end))
# Display example usage in epilog
unlock_epilog = textwrap.dedent("""\
{2}{3}Example:{4}
# Unlock output directory of pipeline
{0} unlock --output /data/$USER/output
{2}{3}Version:{4}
{1}
""".format(name, __version__, c.bold, c.url, c.end))
# Supressing help message of required args to overcome no sub-parser named groups
subparser_unlock = subparsers.add_parser(
'unlock',
help = 'Unlocks a previous runs output directory.',
usage = argparse.SUPPRESS,
formatter_class=argparse.RawDescriptionHelpFormatter,
description = required_unlock_options,
epilog = unlock_epilog,
add_help = False
)
# Required Arguments
# Output Directory (analysis working directory)
subparser_unlock.add_argument(
'--output',
type = str,
required = True,
help = argparse.SUPPRESS
)
# Add custom help message
subparser_unlock.add_argument(
'-h', '--help',
action='help',
help=argparse.SUPPRESS
)
# Sub-parser for the "cache" sub-command
# Grouped sub-parser arguments are
# not supported: https://bugs.python.org/issue9341
# Here is a work around to create more useful help message for named
# options that are required! Please note: if a required arg is added the
# description below should be updated (i.e. update usage and add new option)
required_cache_options = textwrap.dedent("""\
{0}: {1}
{3}{4}Synopsis:{5}
$ {2} cache [-h] [--dry-run] --sif-cache SIF_CACHE
Optional arguments are shown in square brackets above.
{3}{4}Description:{5}
Creates a local cache resources hosted on DockerHub or AWS S3.
These resources are normally pulled onto the filesystem when the
pipeline runs; however, due to network issues or DockerHub pull
rate limits, it may make sense to pull the resources once so a
shared cache can be created. It is worth noting that a singularity
cache cannot normally be shared across users. Singularity strictly
enforces that a cache is owned by the user. To get around this
issue, the cache subcommand can be used to create local SIFs on
the filesystem from images on DockerHub.
{3}{4}Required arguments:{5}
--sif-cache SIF_CACHE
Path where a local cache of SIFs will be
stored. Images defined in containers.json
will be pulled into the local filesystem.
The path provided to this option can be
passed to the --sif-cache option of the
run sub command. Please see {2}
run sub command for more information.
Example: --sif-cache /data/$USER/cache
{3}{4}Orchestration options:{5}
--dry-run Does not execute anything. Only displays
what remote resources would be pulled.
Example: --dry-run
{3}{4}Misc Options:{5}
-h, --help Show usage information, help message,
and exits.
Example: --help
""".format(styled_name, description, name, c.bold, c.url, c.end))
# Display example usage in epilog
cache_epilog = textwrap.dedent("""\
{2}{3}Example:{4}
# Cache remote resources of pipeline
{0} cache --sif-cache /data/$USER/cache
{2}{3}Version:{4}
{1}
""".format(name, __version__, c.bold, c.url, c.end))
# Supressing help message of required args to overcome no sub-parser named groups
subparser_cache = subparsers.add_parser(
'cache',
help = 'Cache remote resources locally.',
usage = argparse.SUPPRESS,
formatter_class=argparse.RawDescriptionHelpFormatter,
description = required_cache_options,
epilog = cache_epilog,
add_help = False
)
# Required Arguments
# Output Directory (analysis working directory)
subparser_cache.add_argument(
'--sif-cache',
type = lambda option: os.path.abspath(os.path.expanduser(option)),
required = True,
help = argparse.SUPPRESS
)
# Optional Arguments
# Dry-run cache command (do not pull any remote resources)
subparser_cache.add_argument(
'--dry-run',
action = 'store_true',
required = False,
default = False,
help=argparse.SUPPRESS
)
# Add custom help message
subparser_cache.add_argument(
'-h', '--help',
action='help',
help=argparse.SUPPRESS
)
# Define handlers for each sub-parser
subparser_run.set_defaults(func = run)
subparser_unlock.set_defaults(func = unlock)
subparser_cache.set_defaults(func = cache)
# Parse command-line args
args = parser.parse_args()
return args
def main():
# Sanity check for usage
if len(sys.argv) == 1:
# Nothing was provided
fatal('Invalid usage: {} [-h] [--version] ...'.format(_name))
# Collect args for sub-command
args = parsed_arguments(
name = _name,
description = _description
)
# Display version information
err('{} ({})'.format(_name, __version__))
# Mediator method to call sub-command's set handler function
args.func(args)
if __name__ == '__main__':
main()