-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfine_tuning_script.txt
70 lines (56 loc) · 1.92 KB
/
fine_tuning_script.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
FineTune Vicuna Commands
#Rent GPUs with setting of pytorch:latest, ssh connection
#Allocate 80 GB of disk space
ssh -p YOUR_PORT_NUMBER root@YOUR_IP
pip3 install fschat
git clone https://github.com/lm-sys/FastChat.git
cd FastChat
pip3 install --upgrade pip
pip3 install -e .
pip install einops
cd ..
git clone https://github.com/HazyResearch/flash-attention.git
cd flash-attention
conda install -c conda-forge cudatoolkit-dev
sudo apt install g++
python setup.py install
cd ..
pip install protobuf==3.20.3 --upgrade
#ctrl b, then press d
scp -P YOUR_PORT_NUMBER /YOUR_DATA_PATH root@YOUR_IP:FastChat/data/dummy_conversation.json
ssh -p YOUR_PORT_NUMBER root@YOUR_IP
cd FastChat
torchrun --nproc_per_node=YOUR_NUMBER_OF_GPUS --master_port=20001 fastchat/train/train_mem.py \
--model_name_or_path yahma/llama-7b-hf \
--data_path data/dummy_conversation.json \
--bf16 True \
--output_dir output_vicuna \
--num_train_epochs 3 \
--per_device_train_batch_size 2 \
--per_device_eval_batch_size 2 \
--gradient_accumulation_steps 16 \
--evaluation_strategy "no" \
--save_strategy "steps" \
--save_steps 1200 \
--save_total_limit 10 \
--learning_rate 2e-5 \
--weight_decay 0. \
--warmup_ratio 0.03 \
--lr_scheduler_type "cosine" \
--logging_steps 1 \
--fsdp "full_shard auto_wrap" \
--fsdp_transformer_layer_cls_to_wrap 'LlamaDecoderLayer' \
--tf32 True \
--model_max_length 2048 \
--gradient_checkpointing True \
--lazy_preprocess True
#AFTER TRAINING IS DONE
apt-get install zip
zip -r YOUR_MODEL_NAME.zip output_vicuna/
scp -P YOUR_PORT_NUMBER root@YOUR_IP:FastChat/YOUR_MODEL_NAME /YOUR_MODEL_OUTPUT_PATH
#input prompting
You are {user}, employee at a fast-growing startup. Below is an input conversation that takes place in the company's internal Slack. Write a response that appropriately continues the conversation.
### Input:
{question}
### Response:
{response}