-
Notifications
You must be signed in to change notification settings - Fork 188
/
Copy pathremap_semantic_labels.py
executable file
·129 lines (115 loc) · 4.03 KB
/
remap_semantic_labels.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
#!/usr/bin/env python3
# This file is covered by the LICENSE file in the root of this project.
import argparse
import os
import yaml
import numpy as np
# possible splits
splits = ["train", "valid", "test"]
if __name__ == '__main__':
parser = argparse.ArgumentParser("./remap_semantic_labels.py")
parser.add_argument(
'--dataset', '-d',
type=str,
required=False,
default=None,
help='Dataset dir. WARNING: This file remaps the labels in place, so the original labels will be lost. Cannot be used together with -predictions- flag.'
)
parser.add_argument(
'--predictions', '-p',
type=str,
required=False,
default=None,
help='Prediction dir. WARNING: This file remaps the predictions in place, so the original predictions will be lost. Cannot be used together with -dataset- flag.'
)
parser.add_argument(
'--split', '-s',
type=str,
required=False,
default="valid",
help='Split to evaluate on. One of ' +
str(splits) + '. Defaults to %(default)s',
)
parser.add_argument(
'--datacfg', '-dc',
type=str,
required=False,
default="config/semantic-kitti.yaml",
help='Dataset config file. Defaults to %(default)s',
)
parser.add_argument(
'--inverse',
dest='inverse',
default=False,
action='store_true',
help='Map from xentropy to original, instead of original to xentropy. '
'Defaults to %(default)s',
)
FLAGS, unparsed = parser.parse_known_args()
# print summary of what we will do
print("*" * 80)
print("INTERFACE:")
print("Data: ", FLAGS.dataset)
print("Predictions: ", FLAGS.predictions)
print("Split: ", FLAGS.split)
print("Config: ", FLAGS.datacfg)
print("Inverse: ", FLAGS.inverse)
print("*" * 80)
# only predictions or dataset can be handled at once and one MUST be given (xor)
assert((FLAGS.dataset is not None) != (FLAGS.predictions is not None))
# check name
root_directory = ""
label_directory = ""
if(FLAGS.dataset is not None):
root_directory = FLAGS.dataset
label_directory = "labels"
elif(FLAGS.predictions is not None):
root_directory = FLAGS.predictions
label_directory = "predictions"
else:
print("I don't even know how I got here")
quit()
# assert split
assert(FLAGS.split in splits)
print("Opening data config file %s" % FLAGS.datacfg)
DATA = yaml.safe_load(open(FLAGS.datacfg, 'r'))
# get number of interest classes, and the label mappings
if FLAGS.inverse:
print("Mapping xentropy to original labels")
remapdict = DATA["learning_map_inv"]
else:
remapdict = DATA["learning_map"]
nr_classes = len(remapdict)
# make lookup table for mapping
maxkey = max(remapdict.keys())
# +100 hack making lut bigger just in case there are unknown labels
remap_lut = np.zeros((maxkey + 100), dtype=np.int32)
remap_lut[list(remapdict.keys())] = list(remapdict.values())
# print(remap_lut)
# get wanted set
sequences = []
sequences.extend(DATA["split"][FLAGS.split])
# get label paths
label_names = []
for sequence in sequences:
sequence = '{0:02d}'.format(int(sequence))
label_paths = os.path.join(root_directory, "sequences",
sequence, label_directory)
# populate the label names
seq_label_names = [os.path.join(dp, f) for dp, dn, fn in os.walk(
os.path.expanduser(label_paths)) for f in fn if ".label" in f]
seq_label_names.sort()
label_names.extend(seq_label_names)
# print(label_names)
# open each file, get the tensor, and remap only the lower half (semantics)
for label_file in label_names:
# open label
print(label_file)
label = np.fromfile(label_file, dtype=np.uint32)
label = label.reshape((-1))
upper_half = label >> 16 # get upper half for instances
lower_half = label & 0xFFFF # get lower half for semantics
lower_half = remap_lut[lower_half] # do the remapping of semantics
label = (upper_half << 16) + lower_half # reconstruct full label
label = label.astype(np.uint32)
label.tofile(label_file)