-
Notifications
You must be signed in to change notification settings - Fork 188
/
Copy pathvisualize.py
executable file
·198 lines (183 loc) · 6.05 KB
/
visualize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
#!/usr/bin/env python3
# This file is covered by the LICENSE file in the root of this project.
import argparse
import os
import yaml
from auxiliary.laserscan import LaserScan, SemLaserScan
from auxiliary.laserscanvis import LaserScanVis
if __name__ == '__main__':
parser = argparse.ArgumentParser("./visualize.py")
parser.add_argument(
'--dataset', '-d',
type=str,
required=True,
help='Dataset to visualize. No Default',
)
parser.add_argument(
'--config', '-c',
type=str,
required=False,
default="config/semantic-kitti.yaml",
help='Dataset config file. Defaults to %(default)s',
)
parser.add_argument(
'--sequence', '-s',
type=str,
default="00",
required=False,
help='Sequence to visualize. Defaults to %(default)s',
)
parser.add_argument(
'--predictions', '-p',
type=str,
default=None,
required=False,
help='Alternate location for labels, to use predictions folder. '
'Must point to directory containing the predictions in the proper format '
' (see readme)'
'Defaults to %(default)s',
)
parser.add_argument(
'--ignore_semantics', '-i',
dest='ignore_semantics',
default=False,
action='store_true',
help='Ignore semantics. Visualizes uncolored pointclouds.'
'Defaults to %(default)s',
)
parser.add_argument(
'--do_instances', '-o',
dest='do_instances',
default=False,
required=False,
action='store_true',
help='Visualize instances too. Defaults to %(default)s',
)
parser.add_argument(
'--ignore_images', '-r',
dest='ignore_images',
default=False,
required=False,
action='store_true',
help='Visualize range image projections too. Defaults to %(default)s',
)
parser.add_argument(
'--link', '-l',
dest='link',
default=False,
required=False,
action='store_true',
help='Link viewpoint changes across windows. Defaults to %(default)s',
)
parser.add_argument(
'--offset',
type=int,
default=0,
required=False,
help='Sequence to start. Defaults to %(default)s',
)
parser.add_argument(
'--ignore_safety',
dest='ignore_safety',
default=False,
required=False,
action='store_true',
help='Normally you want the number of labels and ptcls to be the same,'
', but if you are not done inferring this is not the case, so this disables'
' that safety.'
'Defaults to %(default)s',
)
parser.add_argument(
'--color_learning_map',
dest='color_learning_map',
default=False,
required=False,
action='store_true',
help='Apply learning map to color map: visualize only classes that were trained on',
)
FLAGS, unparsed = parser.parse_known_args()
# print summary of what we will do
print("*" * 80)
print("INTERFACE:")
print("Dataset", FLAGS.dataset)
print("Config", FLAGS.config)
print("Sequence", FLAGS.sequence)
print("Predictions", FLAGS.predictions)
print("ignore_semantics", FLAGS.ignore_semantics)
print("do_instances", FLAGS.do_instances)
print("ignore_images", FLAGS.ignore_images)
print("link", FLAGS.link)
print("ignore_safety", FLAGS.ignore_safety)
print("color_learning_map", FLAGS.color_learning_map)
print("offset", FLAGS.offset)
print("*" * 80)
# open config file
try:
print("Opening config file %s" % FLAGS.config)
CFG = yaml.safe_load(open(FLAGS.config, 'r'))
except Exception as e:
print(e)
print("Error opening yaml file.")
quit()
# fix sequence name
FLAGS.sequence = '{0:02d}'.format(int(FLAGS.sequence))
# does sequence folder exist?
scan_paths = os.path.join(FLAGS.dataset, "sequences",
FLAGS.sequence, "velodyne")
if os.path.isdir(scan_paths):
print(f"Sequence folder {scan_paths} exists! Using sequence from {scan_paths}")
else:
print(f"Sequence folder {scan_paths} doesn't exist! Exiting...")
quit()
# populate the pointclouds
scan_names = [os.path.join(dp, f) for dp, dn, fn in os.walk(
os.path.expanduser(scan_paths)) for f in fn]
scan_names.sort()
# does sequence folder exist?
if not FLAGS.ignore_semantics:
if FLAGS.predictions is not None:
label_paths = os.path.join(FLAGS.predictions, "sequences",
FLAGS.sequence, "predictions")
else:
label_paths = os.path.join(FLAGS.dataset, "sequences",
FLAGS.sequence, "labels")
if os.path.isdir(label_paths):
print(f"Labels folder {label_paths} exists! Using labels from {label_paths}")
else:
print(f"Labels folder {label_paths} doesn't exist! Exiting...")
quit()
# populate the pointclouds
label_names = [os.path.join(dp, f) for dp, dn, fn in os.walk(
os.path.expanduser(label_paths)) for f in fn]
label_names.sort()
# check that there are same amount of labels and scans
if not FLAGS.ignore_safety:
assert(len(label_names) == len(scan_names))
# create a scan
if FLAGS.ignore_semantics:
scan = LaserScan(project=True) # project all opened scans to spheric proj
else:
color_dict = CFG["color_map"]
if FLAGS.color_learning_map:
learning_map_inv = CFG["learning_map_inv"]
learning_map = CFG["learning_map"]
color_dict = {key:color_dict[learning_map_inv[learning_map[key]]] for key, value in color_dict.items()}
scan = SemLaserScan(color_dict, project=True)
# create a visualizer
semantics = not FLAGS.ignore_semantics
instances = FLAGS.do_instances
images = not FLAGS.ignore_images
if not semantics:
label_names = None
vis = LaserScanVis(scan=scan,
scan_names=scan_names,
label_names=label_names,
offset=FLAGS.offset,
semantics=semantics, instances=instances and semantics, images=images, link=FLAGS.link)
# print instructions
print("To navigate:")
print("\tb: back (previous scan)")
print("\tn: next (next scan)")
print("\tq: quit (exit program)")
# run the visualizer
vis.run()