-
Notifications
You must be signed in to change notification settings - Fork 816
/
Copy pathmujoco_model.py
69 lines (54 loc) · 2.1 KB
/
mujoco_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import parl
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
'''
Model of DDPG: defines an Actor/policy network given obs as input,
& a Critic/value network given obs and action as input.
'''
class MujocoModel(parl.Model):
def __init__(self, obs_dim, action_dim):
super(MujocoModel, self).__init__()
self.actor_model = Actor(obs_dim, action_dim)
self.critic_model = Critic(obs_dim, action_dim)
def policy(self, obs):
return self.actor_model(obs)
def value(self, obs, action):
return self.critic_model(obs, action)
def get_actor_params(self):
return self.actor_model.parameters()
def get_critic_params(self):
return self.critic_model.parameters()
class Actor(parl.Model):
def __init__(self, obs_dim, action_dim):
super(Actor, self).__init__()
self.l1 = nn.Linear(obs_dim, 400)
self.l2 = nn.Linear(400, 300)
self.l3 = nn.Linear(300, action_dim)
def forward(self, obs):
a = F.relu(self.l1(obs))
a = F.relu(self.l2(a))
return paddle.tanh(self.l3(a))
class Critic(parl.Model):
def __init__(self, obs_dim, action_dim):
super(Critic, self).__init__()
self.l1 = nn.Linear(obs_dim, 400)
self.l2 = nn.Linear(400 + action_dim, 300)
self.l3 = nn.Linear(300, 1)
def forward(self, obs, action):
q = F.relu(self.l1(obs))
q = F.relu(self.l2(paddle.concat([q, action], 1)))
return self.l3(q)