forked from jstephenj14/machine_learning_examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbest_fit_line.py
58 lines (49 loc) · 1.07 KB
/
best_fit_line.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
from pulp import *
### remove variable b because it is unconstrained
### it's just a linear combination of the others
### you can get the result:
# status: Optimal
# values:
# a: 20000.0
# b: -10000.0
# c: 0.0
# z: 10000.0
### or any other multiple thereof
### ax + by - c = 0
### is the same as y = (-a/b)x + (c/b)
prob = LpProblem("best_fit_line", LpMinimize)
z = LpVariable('z',0)
a = LpVariable('a',0)
# b = LpVariable('b')
c = LpVariable('c',0)
# objective function
prob += z
points = [
(1,3),
(2,5),
(3,7),
(5,11),
(7,14),
(8,15),
(10,19),
]
prob += (a != 0)
for x,y in points:
prob += (a*x - y - c <= z)
prob += (a*x - y - c >= -z)
status = prob.solve(GLPK(msg = 0))
print "status:", LpStatus[status]
print "values:"
print "\ta:", value(a)
# print "\tb:", value(b)
print "\tc:", value(c)
print "\tz:", value(z)
# extra part to plot everything
import numpy as np
import matplotlib.pyplot as plt
data = np.array(points)
plt.scatter(data[:,0], data[:,1])
x = np.linspace(0, 11, 100)
y = value(a)*x - value(c)
plt.plot(x, y)
plt.show()