forked from PaccMann/paccmann_chemistry
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_vae.py
282 lines (256 loc) · 10.3 KB
/
train_vae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
#!/usr/bin/env python3
"""Train TeacherVAE molecule generator."""
import argparse
import json
import logging
import os
import sys
from time import time
from paccmann_chemistry.utils import (
collate_fn, get_device, disable_rdkit_logging
)
from paccmann_chemistry.models.vae import (
StackGRUDecoder, StackGRUEncoder, TeacherVAE
)
from paccmann_chemistry.models.training import train_vae
from paccmann_chemistry.utils.hyperparams import SEARCH_FACTORY
from pytoda.datasets import SMILESDataset
from pytoda.smiles.smiles_language import SMILESLanguage
from torch.utils.tensorboard import SummaryWriter
import torch
# setup logging
logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
logger = logging.getLogger('training_vae')
# yapf: disable
parser = argparse.ArgumentParser(description='Chemistry VAE training script.')
parser.add_argument(
'train_smiles_filepath', type=str,
help='Path to the train data file (.smi).'
)
parser.add_argument(
'test_smiles_filepath', type=str,
help='Path to the test data file (.smi).'
)
parser.add_argument(
'smiles_language_filepath', type=str,
help='Path to SMILES language object.'
)
parser.add_argument(
'model_path', type=str,
help='Directory where the model will be stored.'
)
parser.add_argument(
'params_filepath', type=str,
help='Path to the parameter file.'
)
parser.add_argument(
'training_name', type=str,
help='Name for the training.'
)
# yapf: enable
def main(parser_namespace):
try:
device = get_device()
disable_rdkit_logging()
# read the params json
params = dict()
with open(parser_namespace.params_filepath) as f:
params.update(json.load(f))
# get params
train_smiles_filepath = parser_namespace.train_smiles_filepath
test_smiles_filepath = parser_namespace.test_smiles_filepath
smiles_language_filepath = (
parser_namespace.smiles_language_filepath
if parser_namespace.smiles_language_filepath.lower() != 'none' else
None
)
model_path = parser_namespace.model_path
training_name = parser_namespace.training_name
writer = SummaryWriter(f'logs/{training_name}')
logger.info(f'Model with name {training_name} starts.')
model_dir = os.path.join(model_path, training_name)
log_path = os.path.join(model_dir, 'logs')
val_dir = os.path.join(log_path, 'val_logs')
os.makedirs(os.path.join(model_dir, 'weights'), exist_ok=True)
os.makedirs(os.path.join(model_dir, 'results'), exist_ok=True)
os.makedirs(log_path, exist_ok=True)
os.makedirs(val_dir, exist_ok=True)
# Load SMILES language
smiles_language = None
if smiles_language_filepath is not None:
smiles_language = SMILESLanguage.load(smiles_language_filepath)
logger.info(f'Smiles filepath: {train_smiles_filepath}')
# create SMILES eager dataset
smiles_train_data = SMILESDataset(
train_smiles_filepath,
smiles_language=smiles_language,
padding=False,
selfies=params.get('selfies', False),
add_start_and_stop=params.get('add_start_stop_token', True),
augment=params.get('augment_smiles', False),
canonical=params.get('canonical', False),
kekulize=params.get('kekulize', False),
all_bonds_explicit=params.get('all_bonds_explicit', False),
all_hs_explicit=params.get('all_hs_explicit', False),
remove_bonddir=params.get('remove_bonddir', False),
remove_chirality=params.get('remove_chirality', False),
backend='lazy',
device=device,
)
smiles_test_data = SMILESDataset(
test_smiles_filepath,
smiles_language=smiles_language,
padding=False,
selfies=params.get('selfies', False),
add_start_and_stop=params.get('add_start_stop_token', True),
augment=params.get('augment_smiles', False),
canonical=params.get('canonical', False),
kekulize=params.get('kekulize', False),
all_bonds_explicit=params.get('all_bonds_explicit', False),
all_hs_explicit=params.get('all_hs_explicit', False),
remove_bonddir=params.get('remove_bonddir', False),
remove_chirality=params.get('remove_chirality', False),
backend='lazy',
device=device,
)
if smiles_language_filepath is None:
smiles_language = smiles_train_data.smiles_language
smiles_language.save(
os.path.join(model_path, f'{training_name}.lang')
)
else:
smiles_language_filename = os.path.basename(smiles_language_filepath)
smiles_language.save(
os.path.join(model_dir, smiles_language_filename)
)
params.update(
{
'vocab_size': smiles_language.number_of_tokens,
'pad_index': smiles_language.padding_index
}
)
vocab_dict = smiles_language.index_to_token
params.update(
{
'start_index':
list(vocab_dict.keys())
[list(vocab_dict.values()).index('<START>')],
'end_index':
list(vocab_dict.keys())
[list(vocab_dict.values()).index('<STOP>')]
}
)
if params.get('embedding', 'learned') == 'one_hot':
params.update({'embedding_size': params['vocab_size']})
with open(os.path.join(model_dir, 'model_params.json'), 'w') as fp:
json.dump(params, fp)
# create DataLoaders
train_data_loader = torch.utils.data.DataLoader(
smiles_train_data,
batch_size=params.get('batch_size', 64),
collate_fn=collate_fn,
drop_last=True,
shuffle=True,
pin_memory=params.get('pin_memory', True),
num_workers=params.get('num_workers', 8)
)
test_data_loader = torch.utils.data.DataLoader(
smiles_test_data,
batch_size=params.get('batch_size', 64),
collate_fn=collate_fn,
drop_last=True,
shuffle=True,
pin_memory=params.get('pin_memory', True),
num_workers=params.get('num_workers', 8)
)
# initialize encoder and decoder
gru_encoder = StackGRUEncoder(params).to(device)
gru_decoder = StackGRUDecoder(params).to(device)
gru_vae = TeacherVAE(gru_encoder, gru_decoder).to(device)
# TODO I haven't managed to get this to work. I will leave it here
# if somewant (or future me) wants to give it a look and get the
# tensorboard graph to work
# if writer and False:
# gru_vae.set_batch_mode('padded')
# dummy_input = torch.ones(smiles_train_data[0].shape)
# dummy_input = dummy_input.unsqueeze(0).to(device)
# writer.add_graph(gru_vae, (dummy_input, dummy_input, dummy_input))
# gru_vae.set_batch_mode(params.get('batch_mode'))
logger.info('\n****MODEL SUMMARY***\n')
for name, parameter in gru_vae.named_parameters():
logger.info(f'Param {name}, shape:\t{parameter.shape}')
total_params = sum(p.numel() for p in gru_vae.parameters())
logger.info(f'Total # params: {total_params}')
loss_tracker = {
'test_loss_a': 10e4,
'test_rec_a': 10e4,
'test_kld_a': 10e4,
'ep_loss': 0,
'ep_rec': 0,
'ep_kld': 0
}
# train for n_epoch epochs
logger.info(
'Model creation and data processing done, Training starts.'
)
decoder_search = SEARCH_FACTORY[
params.get('decoder_search', 'sampling')
](
temperature=params.get('temperature', 1.),
beam_width=params.get('beam_width', 3),
top_tokens=params.get('top_tokens', 5)
) # yapf: disable
if writer:
pparams = params.copy()
pparams['training_file'] = train_smiles_filepath
pparams['test_file'] = test_smiles_filepath
pparams['language_file'] = smiles_language_filepath
pparams['model_path'] = model_path
pparams = {
k: v if v is not None else 'N.A.'
for k, v in params.items()
}
pparams['training_name'] = training_name
from pprint import pprint
pprint(pparams)
writer.add_hparams(hparam_dict=pparams, metric_dict={})
for epoch in range(params['epochs'] + 1):
t = time()
loss_tracker = train_vae(
epoch,
gru_vae,
train_data_loader,
test_data_loader,
smiles_language,
model_dir,
search=decoder_search,
optimizer=params.get('optimizer', 'adadelta'),
lr=params['learning_rate'],
kl_growth=params['kl_growth'],
input_keep=params['input_keep'],
test_input_keep=params['test_input_keep'],
generate_len=params['generate_len'],
log_interval=params['log_interval'],
save_interval=params['save_interval'],
eval_interval=params['eval_interval'],
loss_tracker=loss_tracker,
logger=logger,
# writer=writer,
batch_mode=params.get('batch_mode')
)
logger.info(f'Epoch {epoch}, took {time() - t:.1f}.')
logger.info(
'OVERALL: \t Best loss = {0:.4f} in Ep {1}, '
'best Rec = {2:.4f} in Ep {3}, '
'best KLD = {4:.4f} in Ep {5}'.format(
loss_tracker['test_loss_a'], loss_tracker['ep_loss'],
loss_tracker['test_rec_a'], loss_tracker['ep_rec'],
loss_tracker['test_kld_a'], loss_tracker['ep_kld']
)
)
logger.info('Training done, shutting down.')
except Exception:
logger.exception('Exception occurred while running train_vae.py.')
if __name__ == '__main__':
args = parser.parse_args()
main(parser_namespace=args)