-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathmeldataset.py
132 lines (106 loc) · 3.38 KB
/
meldataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# coding: utf-8
import os
import os.path as osp
import time
import random
import numpy as np
import random
import soundfile as sf
import librosa
import torch
from torch import nn
import torch.nn.functional as F
import torchaudio
from torch.utils.data import DataLoader
import math
import logging
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
from torch.utils.data.distributed import DistributedSampler
np.random.seed(114514)
random.seed(114514)
SPECT_PARAMS = {
"n_fft": 2048,
"win_length": 1200,
"hop_length": 300,
}
MEL_PARAMS = {
"n_mels": 80,
}
to_mel = torchaudio.transforms.MelSpectrogram(
n_mels=MEL_PARAMS['n_mels'], **SPECT_PARAMS)
mean, std = -4, 4
def preprocess(wave):
# wave = wave.unsqueeze(0)
wave_tensor = torch.from_numpy(wave).float() if isinstance(wave, np.ndarray) else wave
mel_tensor = to_mel(wave_tensor)
mel_tensor = (torch.log(1e-5 + mel_tensor.unsqueeze(0)) - mean) / std
return mel_tensor
class PseudoDataset(torch.utils.data.Dataset):
def __init__(self,
sr=24000,
range=(1, 30), # length of the audio duration in seconds
):
self.data_list = [] # read your list path here
self.sr = sr
self.duration_range = range
def __len__(self):
# return len(self.data_list)
return 100 # return a fixed number for testing
def __getitem__(self, idx):
# replace this with your own data loading
# wave, sr = librosa.load(self.data_list[idx], sr=self.sr)
wave = np.random.randn(self.sr * random.randint(*self.duration_range))
wave = wave / np.max(np.abs(wave))
mel = preprocess(wave).squeeze(0)
wave = torch.from_numpy(wave).float()
return wave, mel
def collate(batch):
# batch[0] = wave, mel, text, f0, speakerid
batch_size = len(batch)
# sort by mel length
lengths = [b[1].shape[1] for b in batch]
batch_indexes = np.argsort(lengths)[::-1]
batch = [batch[bid] for bid in batch_indexes]
nmels = batch[0][1].size(0)
max_mel_length = max([b[1].shape[1] for b in batch])
max_wave_length = max([b[0].size(0) for b in batch])
mels = torch.zeros((batch_size, nmels, max_mel_length)).float() - 10
waves = torch.zeros((batch_size, max_wave_length)).float()
mel_lengths = torch.zeros(batch_size).long()
wave_lengths = torch.zeros(batch_size).long()
for bid, (wave, mel) in enumerate(batch):
mel_size = mel.size(1)
mels[bid, :, :mel_size] = mel
waves[bid, : wave.size(0)] = wave
mel_lengths[bid] = mel_size
wave_lengths[bid] = wave.size(0)
return waves, mels, wave_lengths, mel_lengths
def build_dataloader(
rank=0,
world_size=1,
batch_size=32,
num_workers=0,
prefetch_factor=16,
):
dataset = PseudoDataset() # replace this with your own dataset
collate_fn = collate
sampler = torch.utils.data.distributed.DistributedSampler(
dataset,
num_replicas=world_size,
rank=rank,
shuffle=True,
seed=114514,
)
data_loader = DataLoader(
dataset,
batch_size=batch_size,
sampler=sampler,
num_workers=num_workers,
drop_last=True,
collate_fn=collate_fn,
pin_memory=True,
prefetch_factor=prefetch_factor if num_workers > 0 else None,
# shuffle=True,
)
return data_loader