diff --git a/_preview/21/.buildinfo b/_preview/21/.buildinfo deleted file mode 100644 index cd91e7a..0000000 --- a/_preview/21/.buildinfo +++ /dev/null @@ -1,4 +0,0 @@ -# Sphinx build info version 1 -# This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. -config: 6444c9983e11097ac6d540d8de67f4e0 -tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/_preview/21/README.html b/_preview/21/README.html deleted file mode 100644 index bd418ec..0000000 --- a/_preview/21/README.html +++ /dev/null @@ -1,641 +0,0 @@ - - - - - - - - Advanced Visualization Cookbook — Advanced Visualization Cookbook - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - -
-
- - - - - -
-
-
- -
- - thumbnail -
-

Advanced Visualization Cookbook

-

nightly-build -Binder -DOI

-

This Project Pythia Cookbook covers advanced visualization techniques building upon and combining various Python packages.

-
-

Motivation

-

The possibilities of data visualization in Python are almost endless. Already using matplotlib the workhorse behind many visualization packages, the user has a lot of customization options available to them. cartopy, metpy, seaborn, geocat-viz, and datashader are all also great packages that can offer unique additions to your Python visualization toolbox.

-

This Cookbook will house various visualization workflow examples that use different visualization packages, highlight the differences in functionality between the packages, any noteable syntax distinctions, and demonstrate combining tools to achieve a specific outcome.

-
-
-

Authors

-

Julia Kent, John Clyne

-
-

Contributors

- - - -
-
-
-

Structure

-

This cookbook is broken up into a few sections - a “Basics of Geoscience Visualization” intro that compares different visualization packages and plot elements, and then example workflows of advanced visualization applications that are further subdivided.

-
-

Basics of Geoscience Visualization

-

Here we introduce the basics of geoscience visualization, the elements of a plot, different types of plots, and some unique considerations when dealing with model and measured data. Here we also share a comparison of different visualization packages available to the Scientific Python programmer.

-
-
-

Specialty Plots

-

There are some plot types that are unique to atmospheric science such as Taylor Diagrams or Skew-T plots. Here we will use metpy and geocat-viz to demonstrate these specialty plots.

-
-
-

Visualization of Structured Grids

-

In this section we will demonstrate how to visualize data that is on a structured grid. Here we will have workflows that utilize packages such as cartopy and geocat-viz.

-
-
-

Visualization of Unstructured Grids

-

There are lots of compelling reasons to use unstructured data. In this section we will go over these points and demonstrate how to visualizate unstructured grids using uxarray.

-
-
-

Interactive Visualization

-

Some plots allow users to iteract with them by toggling certain constants or changing the viewing angle. Here we use datashader to iteract with some plots.

-
-
-

3D Visualization

-

A lot of geoscience data is 3-dimensional. Here we discuss tools such as vapor that are designed for multidimensional data visualization.

-
-
-

Animation

-

Animated plots are great tools for science communication and outreach. We will demonstrate how to make your plots come to life. In this book, we use “animated plots” to refer to stable animations, such as the creation of gifs or videos.

-
-
-
-

Running the Notebooks

-

You can either run the notebook using Binder or on your local machine.

-
-

Running on Binder

-

The simplest way to interact with a Jupyter Notebook is through -Binder, which enables the execution of a -Jupyter Book in the cloud. The details of how this works are not -important for now. All you need to know is how to launch a Pythia -Cookbooks chapter via Binder. Simply navigate your mouse to -the top right corner of the book chapter you are viewing and click -on the rocket ship icon, (see figure below), and be sure to select -“launch Binder”. After a moment you should be presented with a -notebook that you can interact with. I.e. you’ll be able to execute -and even change the example programs. You’ll see that the code cells -have no output at first, until you execute them by pressing -Shift+Enter. Complete details on how to interact with -a live Jupyter notebook are described in Getting Started with -Jupyter.

-
-
-

Running on Your Own Machine

-

If you are interested in running this material locally on your com

-
    -
  1. Clone the https://github.com/ProjectPythia/advanced-viz-cookbook repository:

    -
     git clone https://github.com/ProjectPythia/advanced-viz-cookbook.git
    -
    -
    -
  2. -
  3. Move into the advanced-viz-cookbook directory

    -
    cd advanced-viz-cookbook
    -
    -
    -
  4. -
  5. Create and activate your conda environment from the environment.yml file

    -
    conda env create -f environment.yml
    -conda activate advanced-viz-cookbook
    -
    -
    -
  6. -
  7. Move into the notebooks directory and start up Jupyterlab

    -
    cd notebooks/
    -jupyter lab
    -
    -
    -
  8. -
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- - - - -
- - -
-
-
- -
-
- - - - - - \ No newline at end of file diff --git a/_preview/21/_images/02644250fa161020899ff583f563b322750147346d694bd5ff31ba7178cc1171.png b/_preview/21/_images/02644250fa161020899ff583f563b322750147346d694bd5ff31ba7178cc1171.png deleted file mode 100644 index 853baed..0000000 Binary files a/_preview/21/_images/02644250fa161020899ff583f563b322750147346d694bd5ff31ba7178cc1171.png and /dev/null differ diff --git a/_preview/21/_images/06ea4b431cbb8620d94d462fdb281865df97af499506d091ded3ab839bc978bc.png b/_preview/21/_images/06ea4b431cbb8620d94d462fdb281865df97af499506d091ded3ab839bc978bc.png deleted file mode 100644 index 930e53c..0000000 Binary files a/_preview/21/_images/06ea4b431cbb8620d94d462fdb281865df97af499506d091ded3ab839bc978bc.png and /dev/null differ diff --git a/_preview/21/_images/0b0a78930c416817bd0f84619dd4d0d624f65427fb8550d280e3644eddb118fd.png b/_preview/21/_images/0b0a78930c416817bd0f84619dd4d0d624f65427fb8550d280e3644eddb118fd.png deleted file mode 100644 index 468b397..0000000 Binary files a/_preview/21/_images/0b0a78930c416817bd0f84619dd4d0d624f65427fb8550d280e3644eddb118fd.png and /dev/null differ diff --git a/_preview/21/_images/0ccb04ef518fc4756b7d46ffaa1a95ec3b849e9a686f4a56079d46e719a803f2.png b/_preview/21/_images/0ccb04ef518fc4756b7d46ffaa1a95ec3b849e9a686f4a56079d46e719a803f2.png deleted file mode 100644 index 04c663c..0000000 Binary files a/_preview/21/_images/0ccb04ef518fc4756b7d46ffaa1a95ec3b849e9a686f4a56079d46e719a803f2.png and /dev/null differ diff --git a/_preview/21/_images/1a2a12da79065dd531ea089264276d2fe4dd4a0fc20e9f1a46d0dc431ac911c8.png b/_preview/21/_images/1a2a12da79065dd531ea089264276d2fe4dd4a0fc20e9f1a46d0dc431ac911c8.png deleted file mode 100644 index 683e991..0000000 Binary files a/_preview/21/_images/1a2a12da79065dd531ea089264276d2fe4dd4a0fc20e9f1a46d0dc431ac911c8.png and /dev/null differ diff --git a/_preview/21/_images/2891b192d7943dacdc88fa21a2d346977d47742b1b4d76d7ce5ef7f565ebcfeb.png b/_preview/21/_images/2891b192d7943dacdc88fa21a2d346977d47742b1b4d76d7ce5ef7f565ebcfeb.png deleted file mode 100644 index 1901358..0000000 Binary files a/_preview/21/_images/2891b192d7943dacdc88fa21a2d346977d47742b1b4d76d7ce5ef7f565ebcfeb.png and /dev/null differ diff --git a/_preview/21/_images/2bb3df9d8f98e1c6df0f7cd73491e1251ffe9e4eadbfd4669bce0b5c59594324.png b/_preview/21/_images/2bb3df9d8f98e1c6df0f7cd73491e1251ffe9e4eadbfd4669bce0b5c59594324.png deleted file mode 100644 index 4dfce9e..0000000 Binary files a/_preview/21/_images/2bb3df9d8f98e1c6df0f7cd73491e1251ffe9e4eadbfd4669bce0b5c59594324.png and /dev/null differ diff --git a/_preview/21/_images/381c1b8a6482cc8a4e21b20740cd36430ae64eb7fa28418dbb399cd3f2b40b44.png b/_preview/21/_images/381c1b8a6482cc8a4e21b20740cd36430ae64eb7fa28418dbb399cd3f2b40b44.png deleted file mode 100644 index 02676fe..0000000 Binary files a/_preview/21/_images/381c1b8a6482cc8a4e21b20740cd36430ae64eb7fa28418dbb399cd3f2b40b44.png and /dev/null differ diff --git a/_preview/21/_images/42f87756563b2a14cc19c2615d3043d403b1a62e7f45a0c96a0d5342c0181681.png b/_preview/21/_images/42f87756563b2a14cc19c2615d3043d403b1a62e7f45a0c96a0d5342c0181681.png deleted file mode 100644 index 493676a..0000000 Binary files a/_preview/21/_images/42f87756563b2a14cc19c2615d3043d403b1a62e7f45a0c96a0d5342c0181681.png and /dev/null differ diff --git a/_preview/21/_images/4599f415b04d1af5f7b2d190421e92233f4bb462bd5fd0e6457cb98106afa2cb.png b/_preview/21/_images/4599f415b04d1af5f7b2d190421e92233f4bb462bd5fd0e6457cb98106afa2cb.png deleted file mode 100644 index d1e5365..0000000 Binary files a/_preview/21/_images/4599f415b04d1af5f7b2d190421e92233f4bb462bd5fd0e6457cb98106afa2cb.png and /dev/null differ diff --git a/_preview/21/_images/46c23052e74dfa8b2dfd2728d82aa1f8f9565b32dc6d39fd6fc30fd46b6d5fb7.png b/_preview/21/_images/46c23052e74dfa8b2dfd2728d82aa1f8f9565b32dc6d39fd6fc30fd46b6d5fb7.png deleted file mode 100644 index 8756387..0000000 Binary files a/_preview/21/_images/46c23052e74dfa8b2dfd2728d82aa1f8f9565b32dc6d39fd6fc30fd46b6d5fb7.png and /dev/null differ diff --git a/_preview/21/_images/4fee7c3e0c03a974153f769cc16eea9f3c061f7cb1965363e839abc2803f499d.png b/_preview/21/_images/4fee7c3e0c03a974153f769cc16eea9f3c061f7cb1965363e839abc2803f499d.png deleted file mode 100644 index ba2a34f..0000000 Binary files a/_preview/21/_images/4fee7c3e0c03a974153f769cc16eea9f3c061f7cb1965363e839abc2803f499d.png and /dev/null differ diff --git a/_preview/21/_images/59e89e678ce1fb5f128791887bd0093e1ca528d21bebfe1a65f3e1c2132d3d26.png b/_preview/21/_images/59e89e678ce1fb5f128791887bd0093e1ca528d21bebfe1a65f3e1c2132d3d26.png deleted file mode 100644 index dcb96a7..0000000 Binary files a/_preview/21/_images/59e89e678ce1fb5f128791887bd0093e1ca528d21bebfe1a65f3e1c2132d3d26.png and /dev/null differ diff --git a/_preview/21/_images/6c099ce251ddad2e78a37d77977212e5ecc008069bc0894f5575d9f12d5c13a1.png b/_preview/21/_images/6c099ce251ddad2e78a37d77977212e5ecc008069bc0894f5575d9f12d5c13a1.png deleted file mode 100644 index 47ce92e..0000000 Binary files a/_preview/21/_images/6c099ce251ddad2e78a37d77977212e5ecc008069bc0894f5575d9f12d5c13a1.png and /dev/null differ diff --git a/_preview/21/_images/6f2bb0037d03edaa75059ac8c2c36dab9870d53dd42cdd540891d468ea1b0e37.png b/_preview/21/_images/6f2bb0037d03edaa75059ac8c2c36dab9870d53dd42cdd540891d468ea1b0e37.png deleted file mode 100644 index e1b4ee9..0000000 Binary files a/_preview/21/_images/6f2bb0037d03edaa75059ac8c2c36dab9870d53dd42cdd540891d468ea1b0e37.png and /dev/null differ diff --git a/_preview/21/_images/72e49b6ea417f0b974401d0908dd153d5c181c2a65fb5acc523fee90352e3c2a.png b/_preview/21/_images/72e49b6ea417f0b974401d0908dd153d5c181c2a65fb5acc523fee90352e3c2a.png deleted file mode 100644 index 99895a4..0000000 Binary files a/_preview/21/_images/72e49b6ea417f0b974401d0908dd153d5c181c2a65fb5acc523fee90352e3c2a.png and /dev/null differ diff --git a/_preview/21/_images/735794c51ad88bfd2928f35f08230fef70ac649d161831ab6fcd351d6606e184.png b/_preview/21/_images/735794c51ad88bfd2928f35f08230fef70ac649d161831ab6fcd351d6606e184.png deleted file mode 100644 index 95593b4..0000000 Binary files a/_preview/21/_images/735794c51ad88bfd2928f35f08230fef70ac649d161831ab6fcd351d6606e184.png and /dev/null differ diff --git a/_preview/21/_images/82616574d6cf2730b30b2ec643a15a13477116aacda8131d15a7a1ed8bfade59.png b/_preview/21/_images/82616574d6cf2730b30b2ec643a15a13477116aacda8131d15a7a1ed8bfade59.png deleted file mode 100644 index f3cd8f8..0000000 Binary files a/_preview/21/_images/82616574d6cf2730b30b2ec643a15a13477116aacda8131d15a7a1ed8bfade59.png and /dev/null differ diff --git a/_preview/21/_images/8584cd1e4096ee795add995f6fc4f740ce1f2e2a2739ed8a4273c934afc4a490.png b/_preview/21/_images/8584cd1e4096ee795add995f6fc4f740ce1f2e2a2739ed8a4273c934afc4a490.png deleted file mode 100644 index b816364..0000000 Binary files a/_preview/21/_images/8584cd1e4096ee795add995f6fc4f740ce1f2e2a2739ed8a4273c934afc4a490.png and /dev/null differ diff --git a/_preview/21/_images/86c3a5f65e42549211a4de1e65558fa5c226666783b2ade1e29573a6a2ac3107.png b/_preview/21/_images/86c3a5f65e42549211a4de1e65558fa5c226666783b2ade1e29573a6a2ac3107.png deleted file mode 100644 index 99c04c2..0000000 Binary files a/_preview/21/_images/86c3a5f65e42549211a4de1e65558fa5c226666783b2ade1e29573a6a2ac3107.png and /dev/null differ diff --git a/_preview/21/_images/8f75a2cfe44648efbd4ab8de68816be34f387e77f339b13a7f13517cbf1d9f51.png b/_preview/21/_images/8f75a2cfe44648efbd4ab8de68816be34f387e77f339b13a7f13517cbf1d9f51.png deleted file mode 100644 index 68a209c..0000000 Binary files a/_preview/21/_images/8f75a2cfe44648efbd4ab8de68816be34f387e77f339b13a7f13517cbf1d9f51.png and /dev/null differ diff --git a/_preview/21/_images/NCAR-contemp-logo-blue.svg b/_preview/21/_images/NCAR-contemp-logo-blue.svg deleted file mode 100644 index 3bcda63..0000000 --- a/_preview/21/_images/NCAR-contemp-logo-blue.svg +++ /dev/null @@ -1 +0,0 @@ -NCAR-contemp-logo-blue.a diff --git a/_preview/21/_images/ProjectPythia_Logo_Final-01-Blue.svg b/_preview/21/_images/ProjectPythia_Logo_Final-01-Blue.svg deleted file mode 100644 index 961efc2..0000000 --- a/_preview/21/_images/ProjectPythia_Logo_Final-01-Blue.svg +++ /dev/null @@ -1 +0,0 @@ - diff --git a/_preview/21/_images/UAlbany-A2-logo-purple-gold.svg b/_preview/21/_images/UAlbany-A2-logo-purple-gold.svg deleted file mode 100644 index 4fdfe3a..0000000 --- a/_preview/21/_images/UAlbany-A2-logo-purple-gold.svg +++ /dev/null @@ -1,1125 +0,0 @@ - - - - - - image/svg+xml - - - - - - - - - - - diff --git a/_preview/21/_images/Unidata_logo_horizontal_1200x300.svg b/_preview/21/_images/Unidata_logo_horizontal_1200x300.svg deleted file mode 100644 index 0d9fd70..0000000 --- a/_preview/21/_images/Unidata_logo_horizontal_1200x300.svg +++ /dev/null @@ -1,891 +0,0 @@ - - - - - - image/svg+xml - - - - - - - - - - diff --git a/_preview/21/_images/a7eecef98bb9b2c4ad67a81d660748391e9950bf54f125417d9d805bc6d34cd8.png b/_preview/21/_images/a7eecef98bb9b2c4ad67a81d660748391e9950bf54f125417d9d805bc6d34cd8.png deleted file mode 100644 index efd75f8..0000000 Binary files a/_preview/21/_images/a7eecef98bb9b2c4ad67a81d660748391e9950bf54f125417d9d805bc6d34cd8.png and /dev/null differ diff --git a/_preview/21/_images/aa441aeeac93c776fb392a3a328fbf8eaeb562aa2efa5ea7ecb81ab2ed5ea5f6.png b/_preview/21/_images/aa441aeeac93c776fb392a3a328fbf8eaeb562aa2efa5ea7ecb81ab2ed5ea5f6.png deleted file mode 100644 index b0cfb32..0000000 Binary files a/_preview/21/_images/aa441aeeac93c776fb392a3a328fbf8eaeb562aa2efa5ea7ecb81ab2ed5ea5f6.png and /dev/null differ diff --git a/_preview/21/_images/aff8248aaf9a3c9d9f7141986022d58ba3c1e3a414d0fe3dee9cc3bceee2cd49.png b/_preview/21/_images/aff8248aaf9a3c9d9f7141986022d58ba3c1e3a414d0fe3dee9cc3bceee2cd49.png deleted file mode 100644 index 5cbf78c..0000000 Binary files a/_preview/21/_images/aff8248aaf9a3c9d9f7141986022d58ba3c1e3a414d0fe3dee9cc3bceee2cd49.png and /dev/null differ diff --git a/_preview/21/_images/bc560ea12d56e0c15ca7e650513440ed72235cc49c197dac5d546afdc57266ed.png b/_preview/21/_images/bc560ea12d56e0c15ca7e650513440ed72235cc49c197dac5d546afdc57266ed.png deleted file mode 100644 index 3394566..0000000 Binary files a/_preview/21/_images/bc560ea12d56e0c15ca7e650513440ed72235cc49c197dac5d546afdc57266ed.png and /dev/null differ diff --git a/_preview/21/_images/bokeh.jpeg b/_preview/21/_images/bokeh.jpeg deleted file mode 100644 index 4ff30f6..0000000 Binary files a/_preview/21/_images/bokeh.jpeg and /dev/null differ diff --git a/_preview/21/_images/cartopy.jpeg b/_preview/21/_images/cartopy.jpeg deleted file mode 100644 index c6b7190..0000000 Binary files a/_preview/21/_images/cartopy.jpeg and /dev/null differ diff --git a/_preview/21/_images/dd751eea551d1370a833f4790ce19a686c211266543edc67acfbf08a24b68b25.png b/_preview/21/_images/dd751eea551d1370a833f4790ce19a686c211266543edc67acfbf08a24b68b25.png deleted file mode 100644 index 4957844..0000000 Binary files a/_preview/21/_images/dd751eea551d1370a833f4790ce19a686c211266543edc67acfbf08a24b68b25.png and /dev/null differ diff --git a/_preview/21/_images/e5a381d3131348ac48520f82ca1a50faa1f06c9acdf6678993eeb4231148a6dc.png b/_preview/21/_images/e5a381d3131348ac48520f82ca1a50faa1f06c9acdf6678993eeb4231148a6dc.png deleted file mode 100644 index 0fed0ec..0000000 Binary files a/_preview/21/_images/e5a381d3131348ac48520f82ca1a50faa1f06c9acdf6678993eeb4231148a6dc.png and /dev/null differ diff --git a/_preview/21/_images/ee122c5994503c201179414476e36609df4498f95f2198a4909d2073ad977477.png b/_preview/21/_images/ee122c5994503c201179414476e36609df4498f95f2198a4909d2073ad977477.png deleted file mode 100644 index 2cb9f67..0000000 Binary files a/_preview/21/_images/ee122c5994503c201179414476e36609df4498f95f2198a4909d2073ad977477.png and /dev/null differ diff --git a/_preview/21/_images/faaa976c367e60f084d74f10e12fa025f0f913a6e3450eb2a1505137f89a215d.png b/_preview/21/_images/faaa976c367e60f084d74f10e12fa025f0f913a6e3450eb2a1505137f89a215d.png deleted file mode 100644 index e45daaf..0000000 Binary files a/_preview/21/_images/faaa976c367e60f084d74f10e12fa025f0f913a6e3450eb2a1505137f89a215d.png and /dev/null differ diff --git a/_preview/21/_images/geocat.png b/_preview/21/_images/geocat.png deleted file mode 100644 index 80e4a60..0000000 Binary files a/_preview/21/_images/geocat.png and /dev/null differ diff --git a/_preview/21/_images/hvplot.svg b/_preview/21/_images/hvplot.svg deleted file mode 100644 index b299544..0000000 --- a/_preview/21/_images/hvplot.svg +++ /dev/null @@ -1,233 +0,0 @@ - - - -image/svg+xml \ No newline at end of file diff --git a/_preview/21/_images/hvplot_diagram.svg b/_preview/21/_images/hvplot_diagram.svg deleted file mode 100644 index 8336d6d..0000000 --- a/_preview/21/_images/hvplot_diagram.svg +++ /dev/null @@ -1,1115 +0,0 @@ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - image/svg+xml - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Data libraries - - - - - - - .plot() API - IntermediateRepresentation - Plotting output - - - - - - diff --git a/_preview/21/_images/matplotlib.svg b/_preview/21/_images/matplotlib.svg deleted file mode 100644 index f2d289c..0000000 --- a/_preview/21/_images/matplotlib.svg +++ /dev/null @@ -1,552 +0,0 @@ - - - - - - - - image/svg+xml - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - diff --git a/_preview/21/_images/metpy.png b/_preview/21/_images/metpy.png deleted file mode 100644 index 3c8c1af..0000000 Binary files a/_preview/21/_images/metpy.png and /dev/null differ diff --git a/_preview/21/_images/plotly.png b/_preview/21/_images/plotly.png deleted file mode 100644 index 75986d6..0000000 Binary files a/_preview/21/_images/plotly.png and /dev/null differ diff --git a/_preview/21/_images/same_stats.png b/_preview/21/_images/same_stats.png deleted file mode 100644 index d953d49..0000000 Binary files a/_preview/21/_images/same_stats.png and /dev/null differ diff --git a/_preview/21/_images/seaborn.svg b/_preview/21/_images/seaborn.svg deleted file mode 100644 index 57f1f71..0000000 --- a/_preview/21/_images/seaborn.svg +++ /dev/null @@ -1,5216 +0,0 @@ - - - - - - - - - 2020-09-07T14:13:58.676334 - image/svg+xml - - - Matplotlib v3.3.1, https://matplotlib.org/ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - diff --git a/_preview/21/_images/thumbnail.png b/_preview/21/_images/thumbnail.png deleted file mode 100644 index 8d49fc2..0000000 Binary files a/_preview/21/_images/thumbnail.png and /dev/null differ diff --git a/_preview/21/_images/uxarray.png b/_preview/21/_images/uxarray.png deleted file mode 100644 index 37f2ca5..0000000 Binary files a/_preview/21/_images/uxarray.png and /dev/null differ diff --git a/_preview/21/_images/vapor.png b/_preview/21/_images/vapor.png deleted file mode 100644 index dbdbbb2..0000000 Binary files a/_preview/21/_images/vapor.png and /dev/null differ diff --git a/_preview/21/_sources/README.md b/_preview/21/_sources/README.md deleted file mode 100644 index 5a635ff..0000000 --- a/_preview/21/_sources/README.md +++ /dev/null @@ -1,103 +0,0 @@ -thumbnail - -# Advanced Visualization Cookbook - -[![nightly-build](https://github.com/ProjectPythia/advanced-viz-cookbook-template/actions/workflows/nightly-build.yaml/badge.svg)](https://github.com/ProjectPythia/advanced-viz-cookbook/actions/workflows/nightly-build.yaml) -[![Binder](https://binder.projectpythia.org/badge_logo.svg)](https://binder.projectpythia.org/v2/gh/ProjectPythia/advanced-viz-cookbook/main?labpath=notebooks) -[![DOI](https://zenodo.org/badge/671205314.svg)](https://zenodo.org/badge/latestdoi/671205314) - -This Project Pythia Cookbook covers advanced visualization techniques building upon and combining various Python packages. - -## Motivation - -The possibilities of data visualization in Python are almost endless. Already using `matplotlib` the workhorse behind many visualization packages, the user has a lot of customization options available to them. `cartopy`, `metpy`, `seaborn`, `geocat-viz`, and `datashader` are all also great packages that can offer unique additions to your Python visualization toolbox. - -This Cookbook will house various visualization workflow examples that use different visualization packages, highlight the differences in functionality between the packages, any noteable syntax distinctions, and demonstrate combining tools to achieve a specific outcome. - -## Authors - -[Julia Kent](@jukent), [John Clyne](@clyne) - -### Contributors - - - - - -## Structure - -This cookbook is broken up into a few sections - a "Basics of Geoscience Visualization" intro that compares different visualization packages and plot elements, and then example workflows of advanced visualization applications that are further subdivided. - -### Basics of Geoscience Visualization - -Here we introduce the basics of geoscience visualization, the elements of a plot, different types of plots, and some unique considerations when dealing with model and measured data. Here we also share a comparison of different visualization packages available to the Scientific Python programmer. - -### Specialty Plots - -There are some plot types that are unique to atmospheric science such as Taylor Diagrams or Skew-T plots. Here we will use [`metpy`](https://unidata.github.io/MetPy/latest/index.html) and [`geocat-viz`](https://geocat-viz.readthedocs.io/en/latest/) to demonstrate these specialty plots. - -### Visualization of Structured Grids - -In this section we will demonstrate how to visualize data that is on a structured grid. Here we will have workflows that utilize packages such as [`cartopy`](https://scitools.org.uk/cartopy/docs/latest/) and [`geocat-viz`](https://geocat-viz.readthedocs.io/en/latest/). - -### Visualization of Unstructured Grids - -There are lots of compelling reasons to use unstructured data. In this section we will go over these points and demonstrate how to visualizate unstructured grids using [`uxarray`](https://uxarray.readthedocs.io/en/latest/). - -### Interactive Visualization - -Some plots allow users to iteract with them by toggling certain constants or changing the viewing angle. Here we use [`datashader`](ttps://datashader.org/) to iteract with some plots. - -### 3D Visualization - -A lot of geoscience data is 3-dimensional. Here we discuss tools such as [`vapor`](https://www.vapor.ucar.edu/) that are designed for multidimensional data visualization. - -### Animation - -Animated plots are great tools for science communication and outreach. We will demonstrate how to make your plots come to life. In this book, we use "animated plots" to refer to stable animations, such as the creation of gifs or videos. - -## Running the Notebooks - -You can either run the notebook using [Binder](https://binder.projectpythia.org/) or on your local machine. - -### Running on Binder - -The simplest way to interact with a Jupyter Notebook is through -[Binder](https://binder.projectpythia.org/), which enables the execution of a -[Jupyter Book](https://jupyterbook.org) in the cloud. The details of how this works are not -important for now. All you need to know is how to launch a Pythia -Cookbooks chapter via Binder. Simply navigate your mouse to -the top right corner of the book chapter you are viewing and click -on the rocket ship icon, (see figure below), and be sure to select -“launch Binder”. After a moment you should be presented with a -notebook that you can interact with. I.e. you’ll be able to execute -and even change the example programs. You’ll see that the code cells -have no output at first, until you execute them by pressing -{kbd}`Shift`\+{kbd}`Enter`. Complete details on how to interact with -a live Jupyter notebook are described in [Getting Started with -Jupyter](https://foundations.projectpythia.org/foundations/getting-started-jupyter.html). - -### Running on Your Own Machine - -If you are interested in running this material locally on your com - -1. Clone the `https://github.com/ProjectPythia/advanced-viz-cookbook` repository: - - ```bash - git clone https://github.com/ProjectPythia/advanced-viz-cookbook.git - ``` - -1. Move into the `advanced-viz-cookbook` directory - ```bash - cd advanced-viz-cookbook - ``` -1. Create and activate your conda environment from the `environment.yml` file - ```bash - conda env create -f environment.yml - conda activate advanced-viz-cookbook - ``` -1. Move into the `notebooks` directory and start up Jupyterlab - ```bash - cd notebooks/ - jupyter lab - ``` diff --git a/_preview/21/_sources/notebooks/animation.ipynb b/_preview/21/_sources/notebooks/animation.ipynb deleted file mode 100644 index bdedf9d..0000000 --- a/_preview/21/_sources/notebooks/animation.ipynb +++ /dev/null @@ -1,173412 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Animation" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": false, - "jupyter": { - "outputs_hidden": false - } - }, - "source": [ - "time stamp at 1:19" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Overview\n", - "\n", - "Summary text here\n", - "\n", - "1. \n", - "NCL_animate_1\n", - "\n", - "Please note:\n", - " - Executing this script will not display a gif, but you have the option to uncomment a line at the bottom that will save a gif in the same directory as this script.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Prerequisites\n", - "\n", - "| Concepts | Importance | Notes |\n", - "| --- | --- | --- |\n", - "| [Matplotlib](https://foundations.projectpythia.org/core/matplotlib.html) | Necessary | |\n", - "| [Cartopy](https://foundations.projectpythia.org/core/cartopy.html) | Useful | Not necessary for animations in general, but useful for the examples in this notebook |\n", - "\n", - "- **Time to learn**: X minutes" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "---" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Animation Fundamentals with matplotlib\n", - "First, let's go over some of the basics of how animation works with matplotlib.\n", - "\n", - "There are two different methods of animating with matplotlib:\n", - "1. Function animation iteratively modifies data on a pre-existing frame to produce an animation\n", - "2. Artist animations pulls from a list of artists to draw in each frame to produce an animation\n" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "collapsed": false, - "jupyter": { - "outputs_hidden": false - } - }, - "outputs": [], - "source": [ - "import cartopy.crs as ccrs\n", - "import matplotlib.animation as animation\n", - "import numpy as np\n", - "import xarray as xr\n", - "from matplotlib import pyplot as plt\n", - "import os\n", - "from PIL import Image\n", - "\n", - "import geocat.datafiles as gdf\n", - "import geocat.viz as gv" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Artist Animation\n", - "Before we get into those steps, let's get some stuff to animate\n", - "\n", - "### Get the images into a list\n", - "First, we need to ge the images from the directory into a list. We know the only files in this directory are the images we want to plot, so let's get get a list of all the files from that path using `os.listdir()`." - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [], - "source": [ - "plt.rcParams[\"animation.html\"] = \"jshtml\"\n", - "dpi = 100\n", - "im_dir = \"./images/goes16_hr/\"\n", - "im_paths = sorted([p for p in os.listdir(im_dir) if p.endswith(\".jpg\")])\n" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbMAAAEOCAYAAAADufksAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAEE0lEQVR4nO3VQQ0AIBDAMMC/50MED7KkVbDf9szMAoCw8zsAAF6ZGQB5ZgZAnpkBkGdmAOSZGQB5ZgZAnpkBkGdmAOSZGQB5ZgZAnpkBkGdmAOSZGQB5ZgZAnpkBkGdmAOSZGQB5ZgZAnpkBkGdmAOSZGQB5ZgZAnpkBkGdmAOSZGQB5ZgZAnpkBkGdmAOSZGQB5ZgZAnpkBkGdmAOSZGQB5ZgZAnpkBkGdmAOSZGQB5ZgZAnpkBkGdmAOSZGQB5ZgZAnpkBkGdmAOSZGQB5ZgZAnpkBkGdmAOSZGQB5ZgZAnpkBkGdmAOSZGQB5ZgZAnpkBkGdmAOSZGQB5ZgZAnpkBkGdmAOSZGQB5ZgZAnpkBkGdmAOSZGQB5ZgZAnpkBkGdmAOSZGQB5ZgZAnpkBkGdmAOSZGQB5ZgZAnpkBkGdmAOSZGQB5ZgZAnpkBkGdmAOSZGQB5ZgZAnpkBkGdmAOSZGQB5ZgZAnpkBkGdmAOSZGQB5ZgZAnpkBkGdmAOSZGQB5ZgZAnpkBkGdmAOSZGQB5ZgZAnpkBkGdmAOSZGQB5ZgZAnpkBkGdmAOSZGQB5ZgZAnpkBkGdmAOSZGQB5ZgZAnpkBkGdmAOSZGQB5ZgZAnpkBkGdmAOSZGQB5ZgZAnpkBkGdmAOSZGQB5ZgZAnpkBkGdmAOSZGQB5ZgZAnpkBkGdmAOSZGQB5ZgZAnpkBkGdmAOSZGQB5ZgZAnpkBkGdmAOSZGQB5ZgZAnpkBkGdmAOSZGQB5ZgZAnpkBkGdmAOSZGQB5ZgZAnpkBkGdmAOSZGQB5ZgZAnpkBkGdmAOSZGQB5ZgZAnpkBkGdmAOSZGQB5ZgZAnpkBkGdmAOSZGQB5ZgZAnpkBkGdmAOSZGQB5ZgZAnpkBkGdmAOSZGQB5ZgZAnpkBkGdmAOSZGQB5ZgZAnpkBkGdmAOSZGQB5ZgZAnpkBkGdmAOSZGQB5ZgZAnpkBkGdmAOSZGQB5ZgZAnpkBkGdmAOSZGQB5ZgZAnpkBkGdmAOSZGQB5ZgZAnpkBkGdmAOSZGQB5ZgZAnpkBkGdmAOSZGQB5ZgZAnpkBkGdmAOSZGQB5ZgZAnpkBkGdmAOSZGQB5ZgZAnpkBkGdmAOSZGQB5ZgZAnpkBkGdmAOSZGQB5ZgZAnpkBkGdmAOSZGQB5ZgZAnpkBkGdmAOSZGQB5ZgZAnpkBkGdmAOSZGQB5ZgZAnpkBkGdmAOSZGQB5ZgZAnpkBkGdmAOSZGQB5ZgZAnpkBkGdmAOSZGQB5ZgZAnpkBkGdmAOSZGQB5ZgZAnpkBkGdmAOSZGQB5ZgZAnpkBkGdmAOSZGQB5ZgZAnpkBkGdmAOSZGQB5ZgZAnpkBkGdmAOSZGQB5ZgZAnpkBkGdmAOSZGQB5ZgZAnpkBkGdmAORdCQ4GGMqeXyEAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "fig = plt.figure(figsize=tuple(t/dpi for t in Image.open(im_dir + im_paths[0]).size), dpi=dpi)\n", - "ax = fig.add_axes([0, 0, 1, 1]) # span the whole figure\n", - "ax.set_axis_off()" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [], - "source": [ - "ims = [[ax.imshow(Image.open(im_dir + im_path), animated=True)] for im_path in im_paths]" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
\n", - " \n", - "
\n", - " \n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
\n", - "
\n", - "
\n", - "\n", - "\n", - "\n" - ], - "text/plain": [ - "" - ] - }, - "execution_count": 15, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "ani = animation.ArtistAnimation(fig, ims, interval=80, blit=True, repeat_delay=1000)\n", - "ani" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Function animation\n", - "Say we have some images that we want to visualize as an animation. For example, the images in the `notebooks/images/goes16` directory of this repository. We can use the `FuncAnimation` class from matplotlib to create an animation from these images.\n", - "\n", - "The steps for function animation in matplotlib are generally:\n", - "1. Set up all the artists that will be used in the animation and the initial frame of the animation\n", - "2. Create a function that updates the data in the plot to create each frame of the animation\n", - "3. Create a `FuncAnimation` object with the the previously created elements\n", - "4. Save and/or display the animation\n" - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "metadata": {}, - "outputs": [], - "source": [ - "ds = xr.open_dataset(gdf.get(\"netcdf_files/meccatemp.cdf\"))\n", - "tas = ds.t" - ] - }, - { - "cell_type": "code", - "execution_count": 92, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwYAAAKYCAYAAADJ3e9TAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3xb1dmAn3u1t/e2E2fvTSCEDUmAsAsEaIECBUophdJF+WihLYUCHbSFMlpWoey9IewRRvaeThzvbWtv3e8PRY5sS7Y8Yyfn4acfsXTHuZrnOe/7niMpiqIgEAgEAoFAIBAIDmnkA90AgUAgEAgEAoFAcOARYiAQCAQCgUAgEAiEGAgEAoFAIBAIBAIhBgKBQCAQCAQCgQAhBgKBQCAQCAQCgQAhBgKBQCAQCAQCgQAhBgKBQCAQCAQCgQAhBgKBQCAQCAQCgQAhBgKBQCAQCAQCgQAhBgLBkLJixQpuu+022traujx23HHHcdxxxw15m4aKe++9l3POOYfS0lIkSRqQa3388ceRJIny8vJ+H2sw2L17N+eccw5paWmYzWYWLVrEmjVrEm777LPPMmvWLPR6PQUFBdxwww24XK5D/lwCgUAgGDqEGAgEQ8iKFSv43e9+l1AM/vWvf/Gvf/1r6Bs1RDz44IPs3buXE044gezs7APdnEGnsbGRo48+mh07dvDoo4/y/PPP4/P5OO6449i+fXuHbf/3v/9x4YUXcthhh/HOO+9w66238vjjj3POOecc0ucSCAQCwRCjCASCIeOee+5RAGXPnj0HuilDTjgcbv/31KlTlWOPPbbfx3zssceG7fP5i1/8QtFoNEp5eXn7fXa7XcnKylLOP//89vtCoZCSn5+vLF68uMP+//vf/xRAefvttw/ZcwkEAoFgaBERA4FgiLjtttv4xS9+AdCeTiNJEp988gnQNZWovLwcSZK45557uOuuuxg9ejQGg4HjjjuOHTt2EAwGuemmmygoKMBms3H22WfT0NDQ5bzPPfccCxYswGQyYTabWbJkCWvXrh2KS+6ALPfv6+brr79m4cKF7Skpv/71rwkGg122e+6551i8eDH5+fkYDAYmT57MTTfdhNvtbt/mySefRJIkvvrqqy77//73v0ej0VBTUwPA2rVrOe2008jJyUGn01FQUMDSpUupqqrqtr2vvPIKJ5xwAqNGjWq/z2q1cs455/DGG28QCoXar6u2tpbLLrusw/7nnXceZrOZV155pcfn5mA9l0AgEAiGFiEGAsEQ8YMf/IDrrrsOgJdffpmvvvqKr776ijlz5nS73/3338+XX37J/fffz3/+8x+2bdvG6aefzhVXXEFjYyOPPvood999Nx988AE/+MEPOux7xx13cOGFFzJlyhSef/55nnzySZxOJ0cffTRbtmzpsc2hUCilm6IofX9iUmDLli2ceOKJtLW18fjjj/Pggw+ydu1abr/99i7b7ty5k1NPPZVHHnmEd999lxtuuIHnn3+e008/vX2bZcuWkZeXx/3339/leh966CHOPvtsCgoKcLvdLFq0iPr6eu6//36WL1/OvffeS0lJCU6nM2l7vV4vZWVlzJgxo8tjM2bMwOv1snv3bgA2bdrUfn88Go2GSZMmtT8eo3N9xsFyLoFAIBAceNQHugECwaFCUVERJSUlAMyePZvRo0entF9aWhqvvvpq+4h7U1MTN9xwA5MmTeK1115r327btm3ce++9OBwOrFYrlZWV3Hrrrfz4xz/mH//4R/t2ixYtYvz48fzud7/jueeeS3re8vJySktLU2rjxx9/PKiF07///e9RFIWPPvqI3NxcAJYuXcq0adO6bHvLLbe0/1tRFBYuXMjkyZM59thj2bBhAzNmzECr1XL11Vdz55138te//pWcnBwgKmw1NTX8+Mc/BqLPaXNzM4888ghnnnlm+3HPP//8btvb2tqKoihkZGR0eSx2X3Nzc4f/J9u2c2G1SqVCpVIddOcSCAQCwYFHiIFAMMw59dRTO6ThTJ48GYh2jOOJ3V9RUcG0adN47733CIVCXHLJJe3pHQB6vZ5jjz2Wjz/+uNvzFhQUsHLlypTaOHHixJS26ysff/wxJ554YrsUQLTTumzZMn73u9912Hb37t3ccsstfPTRRzQ0NHSIZmzdurV9BPuaa67hzjvv5N///jf/93//B8B9993H9OnTOeaYYwAYN24c6enp/OpXv6K2tpZjjjmGKVOmpNxuSZJSfizZtp3vj38tD6ZzCQQCgeDAI8RAIBjmdB5x1Wq13d7v8/kAqK+vB+Cwww5LeNyecv61Wi2zZs1KqY3xo8qDQXNzM3l5eV3u73yfy+Xi6KOPRq/Xc/vttzNhwgSMRiOVlZWcc845eL3e9m1zc3NZtmwZDz30EDfddBObN2/m888/56GHHmrfxmaz8emnn/LHP/6Rm2++mdbWVvLz87nyyiu55ZZb0Gg0Cdubnp6OJEnto+bxtLS0APtfv8zMzPZrjBef2LaJRtwPhXMJBAKBYOgRYiAQHKRkZWUB8OKLL3YoFE2V4ZRKlJmZSV1dXZf7O9/30UcfUVNTwyeffMKxxx7bfn+i6WEBrr/+ep588klee+013n33XdLS0vjud7/bYZvp06fz7LPPoigKGzZs4PHHH+f3v/89BoOBm266KeFxDQYD48aNY+PGjV0e27hxIwaDgTFjxrQfP3Z/fDQiFAqxbds2LrzwwoTnONjPJRAIBIKhR4iBQDCE6HQ6gA4j14PFkiVLUKvVlJWV8Z3vfKfX+w+nVKLjjz+e119/nfr6+vbR53A43KVGIpaeEnueY8RHAeKZO3cuRx55JHfddRebNm3iqquuwmQyJdxWkiRmzpzJ3/72Nx5//PGkC3rFOPvss7n33nuprKykuLgYAKfTycsvv8wZZ5yBWh39+j388MPJz8/n8ccfZ9myZe37v/jii7hcrpTm/D9YzyUQCASCIebAzZQqEBx6fPzxxwqgXH311cqKFSuUlStXKg6HQ1EURTn22GM7zO2/Z88eBVDuueeehMd44YUXOtwfm9N/5cqV7ffdcccdilqtVq6++mrllVdeUT755BPlueeeU372s58pv/3tbwfvQhOwcuVK5YUXXlBeeOEFpbi4WJkyZUr73/Fz4idi48aNisFgUKZMmaI8++yzyuuvv64sWbJEKS4u7rCOQVNTk5Kenq7MnDlTefnll5U33nhDueCCC5Tx48crgPLYY491OfZzzz2nAIokScqOHTs6PPbGG28op5xyivLQQw8py5cvV95//33lhz/8oQIoDz/8cLdtbmhoUPLz85Xp06crr7zyivL2228rxxxzjGKxWJStW7d22PbJJ59UAOWqq65SPv74Y+Xhhx9W0tLSlEWLFnU5rkqlUk444YSD7lwCgUAgOPAIMRAIhphf//rXSkFBgSLLsgIoH3/8saIogyMGiqIor776qnL88ccrVqtV0el0yqhRo5Rzzz1X+eCDDwbl+pJx6aWXKkDCW6IOe2e+/PJL5YgjjlB0Op2Sl5en/OIXv1AefvjhLgucrVixQlmwYIFiNBqV7Oxs5Qc/+IGyZs2apOfx+/2KTqdTTj755C6Pbdu2TbnwwguVsWPHKgaDQbHZbMr8+fOVxx9/PKVr3rVrl3LWWWcpVqtVMRqNyoknnqisXr064bZPP/20MmPGDEWr1Sp5eXnKT37yE8XpdHbZDki4ONxIP5dAIBAIDjySogzyBOQCgUAwjHnjjTc444wzeOuttzj11FMPdHMEAoFAIDhgCDEQCASHJFu2bGHv3r1cf/31mEwm1qxZI6bQFAgEAsEhjVj5WCAQHJL86Ec/4owzziA9PZ1nnnlGSIFAIBAIDnlExEAgEAgEAoFAIBCIiIFAIBAIBAKBQCAQYiAQCAQCgUAgEAgQC5wJBIJDCEVR8Pv9QHQRNFFXIBAIBALBfoQYCASCYY2iKHi9XpxOJ06nE4fD0eH/8f+22+20tbRhb3Ngb2ujub4Zp8uJ2+vG6/Pi8XuIKBEAZEnGoNFjNJowGUxYzBaycjOxpaVhTbOSlpGGzWbDYrFgtVqxWCwd/h1/n8FgEJIhEAgEnfD5fAQCgQNybq1Wi16vPyDnHsmI4mOBQDAk+P1+du7cybZt22hsbGzv0DscjmhnvrUNuz36d0tjCx6vB7fPjS/ga+/MqyQVWlmLRtahkTSoIxo0kgaNpEUraaOPxf2tab9p9j0W/TdAUAkSVAIEIoH2fweVALIcvS+gBAhEggSUAP64fweV6P8DSoCwEgaikqHX6jHpTRiNRswmM1m5WdhsVsxmC5m5mVit1naZyM7OZtKkSYwfPx6dTnfAXhOBQCAYLHw+H6WledTV2Q/I+a1WK/n5+ciyzLXXXsu11157QNox0hBiIBAIBpS2tja2bt3Ktm3b2LJ5CxvWbWDb1m1U1VahUWvIMWZjlI3gA62kQStp0cna9n9r5WinPhjZ38n3h7SoJQ0qqWuQsy0YGtLrS9Psb0NYCRHaJxU69T5piEQFQy3vkwslCJKfCH58kQBhxY895KUuYCeohMlPy2bqtKnMmD+HqdOmMmnSJCZPnkxaWtqQXpdAIBAMJA6HA5vNRnnl37FaDUN8bi+ji6/HbrdjtVqH9NwjHSEGAoGg1yiKQlVVVbsAbN64iY3rN7Fj5w6a25qxGaxYI1YyVOlkqNPJVKeTocnAIpvbU27swcTHdiS5P5EA2CO+gbqkQcEmdwxjx6TCqgGrWkFROfBEmrCHm6j126nxt1EXsOMIe0kzWJg4fgIz581m6szpTJ48mUmTJlFUVCTSlgQCwbAnJgYt9oexWo1DfG4PGbarhBj0ASEGAoEgKYFAgF27drFt2za2bt3KpvWb2LRxE2V7yvAH/FhVVjJUaWSoM8jUpJOpziBDnY5+X4e4t51/6D4CkEgE2uQDE6ZOlbSIrcPf8bIQH32wRjOcKDZF8IZ9eJQm6gNttIWaqQlEhaEx4ESn1jCmeDTTZs5gxrxZTJ48mcmTJzN27Fi0Wu2QXJNAIBD0hBCDkYkQA4FAgMPhaO/8b926lQ1ro+k/e6v2IiOToU4nXZVOliba8c9QZ5CutuEOqbvt5PdEbyUA+icCdqmxz/v2FZuS3eHv3ooCgE0DVm2EYCREgBbqA63Yw83U+NuoCdipD9gJE2F0UQnjS8cy84h57cIwadIk8cMoEAiGHCEGIxMhBgLBIUQoFGLVqlWsXr2aTes3sn7lWnaU7aLZ2YJJZSBTnU6aKiOa+rNPAJSIBWdo4FJX+poSNBCRgcEWA1do//HN6uyE2/RXFGz7/m/VRuLOFaQ15MQdicpCc7CFKr+dmqATe8BLjjWdiePGMX3+PKZMm8rcuXOZN28earWYmE4gEAwOQgxGJkIMBIKDGEVR2LFjBx988AFvv/E2H3/4EVIERulzyNWmY1NlYCSTDE06gbChffQ/vvMe3zntD52FINX6gIFKFRosKYiXgUQkE4R4upOFRKLQWRKgoyhYNSFsmuiLKclOqn12msNNVHgdVPvtbHG1EZZljl24kFPOOZtFixYxfvx4UbsgEAgGDCEGIxMhBgLBQUZDQwMffvgh7779Lu+88TatjlZKdAWMNRSRpxpFjiYbx74IgCPY86w+icQgPs0ldpxE9FUGYPBrB/orCj0JQWdSEQRITRI6CwIkl4TodvtFwaoNEFEUmsK1bHRX821rExscLWTZ0lh82mksPuVkTjzxRHJyclK+NoFAIOiMEIORiRADgWCE4/F4+Pzzz3n//fd5/YXXKassI1uTxShtMaP1JZilAtSSul0Cuuucd55FJ0ZnOYjvkMZLQX9EAIZHIXFvhaG3ggADF0Xoriah/f4EkhDdZr8o6DUuNjmb2Oiq5tu2Zna5HEwuLeXks89i8ZIlHHXUURiNQ/vDLhAIRjZCDEYmQgwEghFGOBxm7dq1LF++nFeff43V61dhlI3tIpAmFxEMG9s76faIr73D3TmfPRnJBCEVepKB4dD57wt9jTB0Jw7dCUJnMYC+Fy6335+CJAAochtbvVV829rEt61NtIaCLDh8PieffjonnXQSs2fPRqVSJW27QCAQCDEYmQgxEAhGALt3726vE/jggw8J+oOUaAvJ1ZRgk0owyzbsoXB7p7w3ne9UZaG39FcA4ts1XGVisIuZeysHkFwQoPuahP3bdJQEq9ZDtd/FJncVK1ubWe1oQa3RcMJJJ7Jk6VIWLVpEaWlp7y5MIBAc9AgxGJkIMRAIhiEtLS189NFHvPv2u7z52ls0tjSQo86jUFtCulyCFMlAluQeRSBRxzVRZ3M4MBCCcjAKRH/lALoXBEhdEmw6L2ElQmWwLhpNaGtmk6OVovx8Fp98MotOPpkTTjiBjIyM1C5OIBActAgxGJkIMRAIhgF+v58VK1bw3nvv8dJTL1FWXUaGOoN8dTHpqhKy1QW4Q11FYKBGrA+ELAxWpGKwGG7SYQvv/7ELKG40UhCDZEUnGUnXapLulyzNCJKnGkW3DcZtt18UZI2TdW0tfNPaxCp7C3vcDmZPncaipaeyeMkSjjzySHQ6XV8uUSAQjGCEGIxMhBgIBAeASCTCxo0bWb58Oa89/xrfrP4GLVpG6YrJUZdglYrxh3WDJgLdMViSMNJEYKAYDKHwhJuoD6zDSPQHT5JUaNATxoNfcUfvQyFPU8J47UzMqq7PfW+iCNHte5YEs95Lk9/HyrYmvm1tZpXbjisQ4KgFR7BkX33C9OnTkWW5z9cuEAhGBkIMRiZCDASCIaSsrIxHH3mUB//xAC6Pi9H6Qgo1JWSqinH4rTgUPzC0IpCM/gjCoSoBg01LuJw9ga/QyxZKNQvZG/wWCRmNpEdChU5SAdGpaCUkdLJMuiqbUt2ULsfqLAYxehKE6L49SwKASeeh3OPi29YmvmltZp2jGZvFwuVX/5DLr/wBY8aM6c3lCwSCEYQQg5GJEAOBYJDxeDy89NJL/PMv/2T1+tVMMIxmsmEq6XIJW9zRDlRvRWCwpsiMpzdiMFJEoD+zLfWGZDMz7Q58gUXOI1s9rtfHjCghJFzsDq5GL1kYo5nDKt8bHG44B42UOFWnu8XpkolBjM6CAN1HEaL7JJcEs95LMBLhm9ZG3qirYkVrIwsOm8+V1/6Ic845R0yHKhAcZAgxGJkIMRAIBgFFUVi5ciX/fujfPPnfpzBhZIZxCkWaSezyRDqkl3SWgb50+ntDX+bQ70xfRaA3HXNFUXBEGtkdXMN47XwUFLwRBxpJj0bSIaNCKxlRSz30cIcJiqKwyvcG6ap83JFWstWjscpZmKQ0JGl/as3OwLf4FCfjNPMxyBa8ESeb/R+jkjSY5Ux8ipOg4kcj6chXTyBTLkq4YnFQ8WNSR4goEQyyCZXUfUFyd6QiCdFjJhaFmCTA/pSjloCfd+ureaO+msZQgIu+912uuOoqDjvsMLECs0BwECDEYGQixEAgGEAaGxt56qmn+Msdf6O+qY5x+gkUqafiDJmwqxxA4qjAYMtAIno7h36M3kpBvAxElDCuSCuuSDNOpRl3pJV0uYBMVRE+xYVPceFVXPgiToL4MUvp5KrHUhncjFrSYpGzCCo+XJEWasM7GKeZz1jtvF61B7ofSe8tn7leB6KpO7KkwipnkK7KJl2dg1EyI0kSiqKw0bci2plXzcITsdMWqccRbsSjtBFL/3FH2vAobVjkLMZo5lCkzcejONkb2MEcwzF87XmPbHUhpdrJSaMEMT5xvYJJtiKjwhtxscB0Cipp/9oDvRGDzgxkNEFRFPYGa3mjtooPmmopLijgqhuu53vf+x7Z2cNzBi2BQNAzQgxGJkIMBIJ+EgqFeO+99/jn3+5n+UfvY5QshJQgOtLINx4BdJ8i1Fsp8AYTb2/Q9K4TlUwMkkmBokQwhjXIkgo1ug6j3F2O0SkysCPwNY5ww75R73TMciYWOROjZKMhvAdnpBm9ZEEvmTHIZvSSGbWk7XJcZ6SZvcH1hJQgozUzSVPlJW3DQHb+44koERQiSEjUBMvZ7P+Gw41LSFNlElJCOMIttIYbaA034o24ovsQIU9dwkT97KTHDSkhPnK9SEQJk6bKQi1pkZBwR+yoJS06yUCYEPONJyXcP76jrygK/2n6J0ebT2Sifgp7A7vZG9jDLN2JvR6NH8qUI284xOct1bzbtJetrmaWnnIKV/7oGhYvXoxaPTivp0AgGByEGIxMhBgIBH1k586dPPKfR3jogX/jdXnRS0ZUGNBKNpw0UahbgCypBkwKkglBPKnKQW+koNL3JWpFhYwKjWREIUxI8QMKESJM0i5GkqSEaUIRJYJXcVAb2kFNaAfz9Wehl80dtkmlA68oCut8nxNQ/EzWzcOqSk/pOnvColaoD9XSFmpljG5ce1pSUAmy1beRiBJBliQkZFxhJ86IAxkJGRVhQhRqShinn4heNvS7Lf6In1XuryjRlVKsHYUv4uUT53LSVRmkqzPJUGWSps5ALXX/fCmKwjbfZsr829FIGhaYj8WqsrHFuwF3xMVE7ZH9bmuMRNLQm9mNott3lQQAl9LIe43lvN9ciazXcvnVV3H5D65g/Pjx/W+4QCAYdIQYjEyEGAgEvcDtdvPiiy/y93v+wfot69FjQi8ZyFaNwygX0iI10BTcRqHucGRJPSBSkIoQxNOTHPQ2UhAONNMWqWaM5qguo82NoZ00hXdjldMxyelI+/6LEKI1XEuEMEbJhklOwyinky7nIe9LZ+nNiL6iKHzkeomFplPRy8l/YMJKCAkZOUE0w6oBe7iNrd6NyMj4FT/OsINcTR4WlY0K/x4iRDuxEhIT9FMwyAYUFCJKBJPKjEW2RiVoAMoa7MHuH3eFnXzl+gyTysxMw1xMqqhQWdUKbWE71YFafF2KnBWqA7XkaLKZrOuaq7/K/RUq1IzRzOvwWFtwf2e9r5GWvkhCdL/u6xLCSoT1zlo+bCljtbOa+XPncuWPruHcc8/FZDL1qa0CgWDwEWIwMhFiIBD0gKIofP311zz80L955ulnUIfVqFBRrJlIjmoqXiXawWqV2qj0fUGh/ghUkiapFKQiBL2Vgc4kk4NUpcAZqqYttAeNokVGRiuZKNEc1t6pb99P1qMoCh7FjjfiQNn3n4xMmiovYTpQXzueDaFqyvwbCSoBjLIFmyoTs2wloPhB8uCJeKgLVpOtyWWaYSYaSYtO0rW3OayE+NDxLlMNMzHK0aLlIv3A/GAk6vDG4wj0fd7+2kAd37pWE1bCACgopKnTKNTmY0wgSZnqdEyq/R3meAFRFIX13tXYQ61M0R2FLi7SES8HPZHKazgY0QRHyMdnLXv4sLWMprCXCy68gCt/eDWHH364KFgWCIYZMTGoqrkZq3VoZoTbf24fRQV3MGHCBFQqFddeey3XXnvtkLZhpCLEQCBIQn19PU8++SQP3v8gVZVV5KjyCUQC5KpKyVPNaF9zAKLTjXrCTbjDdWRrp/VZCvorBNB3KQgpfrzhZlzhWmTUjFcv7CICHfbr5dSf/c35j3U0FUXBHXHREmrCGXGgk/QYZCMG2YhNlcYO31b2+HdSHaykVDeOI83HUubbwd7AbqYb5jBKV9qnEf+eOv+xTq0jOHi58IqiJOwA9yQenaMTDcE6Vrq/okQzhRLNBCRJYqX7C4KKH51kQi+ZkSUbRjm9y+vcl9dxoCVBURTKfU1849jGF/a9FBQXcdWPfsjFF19Mbm5ur9snEAgGnuEgBiJi0HuEGAgEcYRCId555x3u/9v9fPDpB2Sr8zBLZhwhF7maErLkyXg7fWLaZDsRJUS1/2vytHPwqNwJj92dFAyEEED3aUTJxEAXUtMQ2IhaMmBQZWJUZZFLcbfnGQop6M+sOb6IlzL/DmoD1agkFWN04xlnyMcedtAaasUb8THXPCv1tqSQApMqgykO0L0kxAtCRAnzrWsN9aFKjJKZCBFmGhbiibhoDTfSGm5IWujcH3pacRk6Pt+Jnud4SfBHQqxxlvN52052+ho4efESrrrmak455RRRsCwQHECEGIxMhBgIBMD27dt55D+P8PD9D6GEoECVhycSJKKoGK2diEEpihYSd8rpbpPtOEM1tAZ3kamdSEiduFM2HKUgEHYQCTrxR5zk6mahky3tj3U3JelgSkF/ZCARa9zf0hquA0Ara8lQp+MOewCFRWknJG5DipGBA0FvpSKRJHSOHkSUCAElgFpSo5bU2DTgCDv52P4ZYSVMriaHEl0RRdpCJElq39/RQ41ET6QSRYCeJWH/vkEaA04+b9vBCkcZ6FRcfvWVXPGDK5g4cWL/GisQCHqNEIORiRADwSFLKBTi6aef5t67/sbGrRsp1RUhK1qcYS/Z6tGM0k7EH94/V3xnKQgobnYGv0Qrm8jUTO52BqJkYnCgpEBRFAKBBoIRFxHCgIJZVUC6ZswBkYK+CEEq6UBPNDzNsdajGKUrRpIkApEALza/Rr42F0/EiyyFKNblM9ZQRI4ms8c89b5IQfzodgx7cOAMaCAiEMlSlMJKhNpAIzu9e6nw1XKkdRbjDCXYtGEcQXW7eNiD/ROF3qYa9fQ6RJQIOzzVrHZtYZ2rkhmTp/KTX97IRRddJKIIAsEQIcRgZCLEQHDIEQ6Hefrpp/nVjb+kraUNg6ylJeRof/ws2zJ0UjRPOb4gMyYGihKhPryNtnAV6brJ6OT9Xzq9XbxssIqMoecVjmO1BRElTGtwF5IkYVblYwhrsKgS52n3Rgz6WqDa5Zz96EM7wy42ebZQ6a8iT5tLQ7CRIl0WVrWJWeZJyMjs9dVQ5qukLtDM4vQFFOhyErSzd0KQSAa6wxHy8lnbDmr9HiwqA9kaG1kaG9laGyZV739QeysL/6t/kwgKR9nmUKovTLiNL+JntWsNe7x1jDakMdqQxXzrGFSSjD2oaT+nIyD3K6rQkyT0RhAA3GEfWzzb+KB1K7o0E7ff8ycuuugiVKrk9TMCgaD/CDEYmQgxEBwyRCIRnn/+eX72kxtpbGpEhYqAEmyfSadUN5ojzSdhlI04gl1nabFHfDjCtVSH1pOhGo1Wk9dhlHWoowV9lYL2YuOIl9bQHjyhRrSyiZDiwyTZaAnvZa7+wvYFzBRFoS68mbDiIqQECRNEIUKuagyF6skJR5p7koLBFoLORJQIPqkJk2xgjWsrJbo8Sg1FHbZxhT080/A2V+R9B3nfNQ22EMR4pWE1Nf42TsyYgl7WUB9wUB+wUx9wYA8FURQFq9pInjaDfG06ubp0rCpjwmlZ40lFEIKREC80vsc52YtY3roCGYmT0hegk/fPKBV7HmyaIL/Y+RxNQRfpagOlRgu/Hb8As1qD3R+d4cgR0LZHRHqKKsQ+Y8neL6lKQiqvU1iJsMq5gw/dG7BmpfOHO2/n/PPPR5b7PmOUQCBIjhCDkYkQA8FBTyQS4ZVXXuEX1/+cmpoa/Ep0fvRx+hKmmsYy2TgGo8rQZaQzXgw8ETtbAivQYKRIMwu1pKNNtnc4z1BFC/oTJbBGsvBFWmgN7kYhglY20xLcgUHORK9KJxL2YJHzKNTMACCihKgMrcEiWShQT0QlaVChBhTKgqsJKF6m6I7pcI7+SsFACUGyWoGmYCtvNn/KBTmnoJd1HR57s/lTZpsnMdmcmfJ5+ioD8ThCXra6a9jpaaAp6ERCQkFBI6mYYSlmprmYsBKhxt9Gtb+Vcq8DZ9iLwv6vb7WkwqIyoJM1RJTo4nMRRcEX2f+4Zl8dgUZSE0Ghyl9HWIlwuGU6442jACjzVvKZfTXHpx3GDEtuh2u0agO0Bb08W7+Sb9tqKTQY+c3EGUzPir7mLm9UDly+6P/tfgOOQFQwuosq9CQI0L0k9CaKEFbCfOvYzofujWTmZfPHu+7g7LPPFoIgEAwwQgxGJkIMBActiqLw+uuv88uf/YLdu3cTUsLkqDM40jaLudZiLOp9I5xJRjXbgiFCSoDdwdV4Inby1LMxyPvz73sSg4GemrQ/QmCJZOAMV+MIVaCTbaSpx6CVTbjD9XjCTdjIwiCnYZDSUEtaIkqYhvB2WsJ7yVFNZKx2SvuxFEWhOVxJeXAdo7WzyVJFZzAaSiHoqUC4Jyr9dXzatopl2SeTGecGm1zlPFn/ITeVLCNdY066/0DIQCq4w342uqpY76zEE/FTqEsnT2sjT2cjT2vDotLjCEU73oFICHfYiy8SRJZkVEhIkoQKGWdITUgJEdx3C0WinecCXU6HyABAS9DO/xpe5/SsIzg6PRpViS02ZtN5ATDrvQQiYVY7q3i3rgGAk/NyODYnC60sdxCEVCMJnSN0gx1FCEXCfO3YykfujRSUFPLHu+7k9NNPF+shCAQDhBCDkYkQA8FBh6IovPPOO9z0i1+xY9sO/JEAZ2UdyeHWieTp948Kdu6kdM6L3u7dTkVwM6WaWWjkjnnn/Y0WQO/EoK9SYAqbaQ3twRtuxqouxKouQZb2d7gSFRq3hPdSG9pMjmoCYzVTkCSZiBLGHmmgNVxLc7iKDFUBRZop6CTjkAhBf0Wgy/E0Iba7K/m4bQNnZR9JU8DOaucudLKaxRlzydBYEu43VEKQiJASoT5gp85vp27f/51hHwoKVpWBNHUGudo0dLKGlY4d+CNBbGoT6RozaWozrYEQb7R8wlzzFNLUVtLUFmxqC1pJTX2gmbDkZoKxiDxNOo/WvcWZWbOZl54Rve44IYhhNuz/d2sgwLu1DXzW2Ey+Qc8ZBXnMTLPi9hm7jR4kE/LOpCoJfRGEYCTECvsWPnZvYvTY0dxx9584+eSThSAIBP1EiMHIRIiB4KBBURQ++OADbvr5L9m8aTM5mjS+m3cYE4zRWoDYqCfsH73snNoQ65w0B3ys9b3NHP1pyJKccJrSeHobLYgnmSB0JwOQfLYhhTChiJtgoBWFCGmaUoxydoeOTrKZhxRFwRVpoi68jky5iDBBHJFGQMIm55CuyidNzkOWVCNOCBJ1EOv8LXzStoEiXTZTTSWkD0Mh6AlFUXCGfdT57dQG2mgMBJljGYdNZaIt5KI15KIt5KYl6MQbhnmWqdhDLtrCTtpCTgKRAKMNaRhVevb49lLntzPelMbR6aOZYtsfTYhJQbwQJGKPy80bNXVssDuYm57GCRmjKTQYE0YPekotSkYqotDbNKNAJMgX9s184trEhEkTuePuOznppJOEIAgEfUSIwchEiIHgoOCTTz7hF9fdwMYtmynVZ/PjksPJ10c7ebHRTkht1LI+WMkG77eM0c4lUxVNpYgXg4GUghjeYGOfRCCiBPGHWvGHW4goITTokNGgkU3Y1KPQyqYu+3SWAnekhdZwBe5IEyEC+BU7UzXHo0gRdJIJq5zVYQXkkSQE/V1zYDgLQU/0ZkrU+OtMlDYEPQtBZyKKwurWNt6oqaPe58eqMmCQDNjkNE7MHEcwbOo2ateTHMRI9H5MJAjRa+s5iuCPBPnMvolPnRuZMmkyd937Z4477riU2iIQCPYjxGBkIsRAMKL58ssv+fmPf8KaDeuZbsrjh8VHUGrZP8IX69R0Tmfo3CFp9Puxh9tY614Hio5x2vmoJW2vIwXx9EUQOpNIBoIRD/5QM4GwHS1GzKo8TOpc1FLXL97u1iQIKl72BL9CjR6jnEZQacOveMhXTyBXNQaV1LHDNVyEYCgWGBsJQmDVBtolt6/7J6KntKG+0ODz835dA5OMuZQ7w7xeX8ZMSwkLLNPQyKqkkp6qHMQT/z6NvSf7Mt2pLxzga8c63m/bzGHz5/PHu+9k4cKFvW6PQHCoIsRgZCJWehGMSL755htu/unP+Grlt8y35vL0rFNJ0+gSjm7GCiE74wiq2eKs5VPH12gwo8ZCoXomFjkrKgRK8ihBKsR36lOVhJ6KiCMBO4FwC2ma0RjVs9qnFIXuJSARNtlIWPEiSWEURcdozSzMckaX7Q4lIYCRIwXx/x8I4iNrfY0SJKLM5eYnazZwWekoHty7maPSC7hsdCkvVVXjC4c4N2963Nax95rc4e+2YKhd0ntaSyNeJtqCHd+/Ns3+1aCt2kh7KlOi95ZepeW49PmclDmF93ZsYtGxJ7Dw6KO4/U93cPjhh/fiGRAIBIKRgxADwYhi9erV3PKzn/HZl1/ynfxRvDr/OGwaLRDBbGgBwGRyA+B2d0yjqXTaOoxMfuPYTLm/gimaU1FL0d6rPeLrNm0onu6iBZ2JdfgTCUIqaw4AtAV344+4yNcdhiRJURHoJt6XymJkM3WL0UnGDqlCMQ41IThUGYwIQTxjzSZmptkYZzbx4NyZvFvXQIW/melpFo5LK8agctEYkLCq0+L2UrNfDvb9HdR3+Xy2X0M37/W2YKhfghCKmDkx/QgWZ0zlnY0bOf6YYzn2mGP54113MmfOnN48FQKBQDDsEalEghHB+vXrufX/bua9995jWVEBy/InUmLb36mMyUA89U1ZVNszOhQ6OgIylR7Y4luJM+xjguYIJElK2NkYKCnoDfEiEE8w0IAz0kCp5siExZC9WZE4RiorEyeiv0KQav3AgRCCgYgWxNLUhiLy0NeIQaLoAAysEMTjCAa5Ye1GJlst7PLY0ckyBklHltrMBruDAr2ZWl+ASETFGEM2x6Qd1m1qUaLPayISfS7SNOo+pxjZNEEcIS/vtG7i47ZtLD5pEbf/6Q5mzJiRUnsEgkMJkUo0MhFiIBjWbN68mVv/72beevsdLijJ4NLicWTrdQlFIEZ3QgCwxv0tbZFadJIJvxJklOZw1NL+XO2e0oYGUgqSiUAsLUhRItSGNuNV2hijOQpJklKSgL50+lNZjbg7RrIQQP878vHFvgcqHaknURgKIUj22SxzevGEIkxLMyJJEm2BENuaJIrV2ahlGZfPQJNXyy273uP/Rp+V0qxFqQpCPLHPTyJBSFUOANqCHt5p28inrdtZunQpf7jjj0yZMiXhPgLBoYgQg5GJWOpRMCzZvn07F553HvNmz8a4ZRUfnTSVW2eNZnRmKGnHo74pizVlE9jamEel20Slx8DmNi2b26JS0BYMsc6zmj3BtRgkG5mqSeSoJrAj8CHuSDPQt1qC3mJTsttv8aRFbO03AG+kjW2B5aglLbN1J5GmMiSVgjSNusOtM1ZNz7ce263p/pYMqzaScsqQkIL+4QhoExYk23TeDilD8TUEfZECk8md9JaMsRYD09NN7RGvNK2aIwpUpJn87e3KMgSYay3k+YYvCCot7e8JqzbS/j6zavaLr03W9zpaFktHaguGqPCEcASjEQl7MCogsSiFI6huF5MO++97rdM0Ri7MPpw7Sr+DfcVO5syczQXnLWP79u29ao9AIDiwPPDAA8yYMQOr1YrVamXBggW888477Y+//PLLLFmyhKysLCRJYt26dV2OUVdXx8UXX0xeXh4mk4k5c+bw4osvdnve0aNHI0lSl9u111470JfYK0SNgWBYUVZWxu9+8xuef/EFzhmVzfITp1Jk0nW7j9ttYntdYYcIQaVbTrhgUoZciFU/tsOMO+Pl49kUeIsi3UI0JC5UjifZKH9fsIWtOCK1+BUXTTQhSTLeSBuuSCNG2cQs3Yno5cQr8Pa3BgB6t9pwXxgJNQTDQQr8kSD/qvoItaRiojGPIn0GOknNKEMm6gT1H93ROWowEFGC7jr8/UXROnhs5242trpRSTLBsIwrFOGR2o+xqMwclzaJAm0JEHueuxYmx+SgNxGE9m2D+i41CLFzxOoPOr9H7UFN+2udoTHxvewjONk2lbc+2cSMadM5/7zzue0Pv2Ps2LG9eSoEAsEBoKioiD/96U+MGzcOgCeeeIIzzzyTtWvXMnXqVNxuNwsXLuS8887jyiuvTHiMiy++GLvdzuuvv05WVhZPP/00y5YtY9WqVcyePTvhPitXriQcDrf/vWnTJhYtWsR555038BfZC0QqkWBY4HQ6+fUvf8l/HvkPp5dkc924HErM3Y8Eut0m6lozOhQVJxMCSN5pcITrqI5sJl83b0CupTviZw6yh6upCW3CLGdjkjPQSyoiShijbMMm5yJLHQN6qaQHDYUMDMQaAwdaBmIMBykAcIX93F/5Ids8tQAcYR1LTaCNScY8Lsw7IuXjxEvBQKUNDaYUAPxm7R6OyrGx0FaE22dEURS+bvLwbmM5ZW4ngYiCWaVnsnEMkwxT0Eoaan1e7EEFs8qS8PM+WClGnd+3iV7zhoCDN9s28nXLTi6/7HLu+dtfsFgSL5wnEBzMjORUooyMDO655x6uuOKK9vvKy8spLS1l7dq1zJo1q8P2ZrOZBx54gIsvvrj9vszMTO6+++4Ox+iOG264gTfffJOdO3ce0IUVRcRAcMB59913ueryyyiSQrx1/BTGWnoetS+rKm4Xgt1OCXswgi8c7UinKgQAIcVPVWgtE7Qnoo6kXmfQGxJNIxpRQlSH1jNPvxSNlDwikmqtwGAJwUCuPAzDRwhg4KRgIFKHzCodvxp9Knu9TbzQsJKvHWWMN+SyNGtmSvuPRCEAcAXD1HgCLCnMADztP4YLsk1Mt8zDHQrydHU5e7wtaOQgrza/h6Io6GUz7lAQo8rAVP18gmFj+2elPxEEm6zf9/3R+XMnJ4wexEcOYuRorVyes5B5hhLue/RRXnr5ZZ565n8sWbKk18+PQCDoHw6Ho8PfOp0OnS75b244HOaFF17A7XazYMGClM9z1FFH8dxzz7F06VLS0tJ4/vnn8fv9KS+OGAgEeOqpp7jxxhsP+GrrQgwEB4zm5mZ+et11vPrKy9w0uYALSrORe/hAVDdm8HaVn29ad7HX68AfiYCixq/4kBU9HsXO4fpzkCVVt52CgOKhJVxOc7icEs28DsXH0Ps1AVIl1mHZG9xIoXpCQik4kDIw0CIAw0sGYHjPPDTKkMXPSk5mt7cRlSRjVXcvycmEAIa/FAC8VtnEWSVZHc7rdpv2t9dn4MpR49nY5ufxmlUsypjOaP0YIFoDsN2zh23uNcw2HrXvPhIKAqQmCR3lAOJ/Iu1Bed/nqePUponkwKoNcFRmLlNNl/Dfui85Y+npnHvuufzzX/eRkdF1rRCB4GBGcpQhKX1fjLFP53RGvxuLi4s73H/rrbdy2223ddl+48aNLFiwAJ/Ph9ls5pVXXunVZALPPfccy5YtIzMzE7VajdFo5JVXXkk5nfDVV1+lra2N73//+ymfc7AQYiAYchRF4aWXXuJHV13FDLOG946fTL6x+zqCbyr0PLu3iS3OKvI1pWSpppCuS0MlqWkLhogoYbYHVpCpKk4qBf6Ii5bIXuzhatSSjgzVKCZpF3dZ4Xeg6Vwc2Ryupi1cxwzdSUDvZhBKdeagVIVgMEQAhp8MxBguqUPdIUkSY405PW43UqME8bxb3cIjCyd2aUMHOQCmpxn4le44/r73S2Za9v/QZ6jT0KlqsGmixcNWDe2pRfGCAKQcRYhfSK0tGCJNo8ax79jRmZE61jhYNaGkopiuD3H96MM5yzuBO15+nTFvvMF/nniMc889N7UnSCAQ9IvKysoOqUTJogUTJ05k3bp1tLW18dJLL3HppZfy6aefpiwHt9xyC62trXzwwQdkZWXx6quvct555/H5558zffr0Hvd/5JFHOOWUUygoKEjtwgYRIQaCIaW2tpYfXXUln3/8Eb+dWsDpRZlJw2aOYIiXy1y8U2XHJKcxQT+dLFMezpAECrSFQsD+DmhLuBqbKgdF6drZrQquxR1pJkc9gVztCchDLAMxqoNbaQiXc5R5CRqp5977QIsAHFoycP2OB3q1/eNTf5D0scGQgr5EHlKNEvSWoZYCgMk2E5ta3czJ3J+D33lhwhg5hiBBJdzx+rUKdcE6vDRi02TjDnswqrWoJfWACEKy6EGUrulFseiBI6Dt0M5RhnQemHwWT9Ss4eILv8sTjz7Gw4/8h/z8/G7bIBAI+kdspqGe0Gq17cXH8+bNY+XKlfz973/noYce6nHfsrIy7rvvPjZt2sTUqVMBmDlzJp9//jn3338/Dz74YLf77927lw8++ICXX345hSsafIQYCIYERVF47LHH+Nn1P+HYbAvvHT+ZTF3X3mxEUfiq0cFLe5uod2qZbpzAEtvx1Hm1tHXT55ElFQsM51EZ2sxq35uM1x6BTRUddbVHfKSrSvArLtJVJf2+lt5Oj5imUaMoCmu9n6GRtBxrXtqlsBh6t47AcBCB9uMPIyHorQh05vub/9Ph75goxEtBor/7S+fjJROFzjMO2f2GDnLg8hk6yIHLa+gxanAghCDGJWNz+dP6WibOzOvymMsbTaNy+aL/t/sNWFU67EEvNo0BqzbAWAx8P/8I3m1eT0OgDYNsxhMO4Q0HWWg5HpsqrV+CEJOD+P06/mwmjh4kkgNZlrmsaB6nZk/kzk8/ZfyYsfzj/vu47LLLDnhOsUAg6IiiKPj9/pS29XiiiyTJcsffdZVKRSTS8+/vY489Rk5ODkuXLu19QwcBIQaCQWfPnj1c+f1L2bJuLX+eUciJ+eldtnEFw7y4t5HlNa1MM+WxUHcial06VW4tdd796QHdIUsqRmlmkK+ewFb/Z1gj2ZRqZu+b67yQ1vBOWkJb0UoGVJKGbNWoQUkjSpQaVBsqRyvpmGaIzjDT28XEhAgkp78y0B3xovD3CdcM2nk6kyw60bmzCf2TgwMlBbGowN7WEK2B1KMlpcYMdntbma0x0Bxws9a5k3SNkVMyJ5GtteANG3AE1Tzb8Db5WhOaTv4dX4MAqRUqx6cWxfaJpRftp2P0IJkcAOTqLNw74TTeaNjCdT/8EU88+hiPP/lfSktLU34eBALBwHHzzTdzyimnUFxcjNPp5Nlnn+WTTz7h3XffBaClpYWKigpqamoA2tcqycvLIy8vj0mTJjFu3Diuvvpq/vznP5OZmcmrr77K8uXLefPNN9vPc+KJJ3L22Wfz4x//uP2+SCTCY489xqWXXopaPTy65MOjFYKDknA4zD//+U9u+fVNnFmUyV+Pm4i1U6e50u3jibJ6yhxeFmWO5YaCo6jxWNpXK44RnzvcE1pJzwzdInYGv6Y2tJN89XgAJmqPpCVcQ0jxszPwNVmGvkUPeruqcEhqZldgDYutp6PtYUnB4VAs3H7sYSYAnRlMIejufAMpCIkW0AK6nfkmUWeztwy1EMSnB0UUBVDY4/bwi/WbePqI/dMEx6IEyZhmzuOpmjW4wn4+bN7F4qwJNAZcNAbqqfc78YSjs283BO1k6lVAhGTreCYrVO5OELqLHsQXJ/ckBwCn50zhmPRS/rT+UyZPmsRdd93Fj6+7DpWqd+tWCASC/lFfX8/FF19MbW0tNpuNGTNm8O6777Jo0SIAXn/9dS677LL27S+44AJgfyGzRqPh7bff5qabbuL000/H5XIxbtw4nnjiCU499dT2/crKymhqaupw7g8++ICKigouv/zyIbjS1BDrGAgGhS1btnDFJRdTt3sXd04v5Ijsjjl+a1tcPLqzFo0sc37BaLS+ye0LlAEdxMC+r0/UWQw6T0vamYgSZo3/bdRoibB/EZGwEmK0ZibZ6lEJ9+ttxz+eWCQgooQpD+xmh28rZtnCVMNM0tUdZyMZDtOHth93mEtAZ4ZaCjrTXzlIJgTx9DRnfncLmUHXeoPOUYPBloNktQJ/276LDXYHv5w0np1tYR7Zu5Pvl4xjUU7iorv4VCKAcm8r39orOStnKlq5aydaURTqfRLBSPT8sec6fqDBHvdUdve9kkwS4tMJY98X8WsfdF73IPbaJRO6D5t38t/6dUyYNImnnn2ayZMnJ9xOIBhJxNYxqN62DKtlaGclcjgDFE56rs/rGBzKCDEQDCiBQIC7/nQnd95+O9+fkMZ140ZjUO//8d7Q6uKBbTXkG3V8r2gsijdafGf3G3AEol8cscXKgA5y4AiCK9zGFv8qvBEXQUXBJKVjkTMJKF4kSaJU03GFwYgSARQk5C55vH0RgJ5SgEJKkPWeNdQFaxilG0OeOh8vzRhlA/naXAxyz2s0dDjfAIrASOv8J+NAS0GMvshBKkIQT09yUObbgy8SYpIph3SNoVdTlg6WGCQTAoAdThcP7qzi+rFT+HvZFloCfiZZbJyeV8wo4/4VvmMyEE9MDHpD58GG/ff3LAk9CULnWqN4QYhfGK07OYh/vTyhIH/Y9Q3rnI3c8tvf8Oubb0ajGeSlyQWCQUSIwchEiIFgwFi1ahWXX/w9wi11/GV+FpN0WR0ef7uqmWf2NHDtpELWNYT4usnBzWMWopLklMSg0l/OOs865hqOw6xKozUQxK204og0sTuwmrHaee1pQ/EM5LoA3WHTgC/i48Xm1xivH0tloAqrykqJrojPHSs4wXYsY/Ud84gP5gXEBoPhIgXxpCoIvZWCGInkQFEUnqn/BgWF8SYrW10NtAQ9fLdoPHNtue3bHqioQTI5uGb1em6bOgmTkpbw8URCEKMvYgB0+F5pv2+AJCHRRASdBaGn6EFnmVvZVsdd5avJKyrkqeeeZe7cuSlcpUAw/BBiMDIRNQaCfuP1evntLbdw/33/5Lppmfz4sCK0Khnw4HUa27c7IT+d1yubebOymVp3hEytkU/advJVUytn58zBImXhDPso8zZiVRnRSVmYNEG2uRrY5NlFSAlylOm09rULJEnCLGWwK/AtE7ULyFaP7lEC+tP5TyX1Ry/rOd56NAElyDzzbGRkvnJ/zjFpc5htGUU057l/HOyd/2QMRylIlb5KQWzfzq/5elclGknFebmHYdUGOClzPP5IiLv2fEK21kCJIfpDGCtEVhSFlmCAazesZmaajavGjsY8iIVusbUIOjPVauHlqhp+OFaL22fs8rhZ7+1WDvpCz/UYiWYZ6mabYPezknUtTu6+MLlz8fhhaXk8Pf1kbi/7hgXz5/OT667jD3feicEwsM+LQCAQJEJEDAT94tNPP+WKSy8mLejkL4dlMym9449mvBjE8ITCnP3RNqaYM5ifnsUzlRXMMpewzlmDTWVhjXMvU0yj8IUVAkqQHHUBpbpR6MhGkqQOI3kRJcIKz9sUacYxWjupTx3/vuT6JyLR6P8nbSuRkTkmrXejfodq578zsdHVztOIDje6ixr0RwpidH4/VPnLeaVxNROMeZyfO7+987vRWUe5v4bvFU6m3u8hXaMjrHJwwcpPOSw9i++XjCMou3hkz17OLy7k7LHJ034GgkRy8FBZORpZ4vLSUd0WG/dXELqLMMSiCND3SEJPNU4QjR70VHuQLHIA0ejB3bu/xZKRwZPPP8cxxxzT4zkFguGCiBiMTETEQNAnHA4Hv/zZjTz15JP8akYmV0wuQiWnNhe3Ua3i5YXzo8fx6Pn3njLyDTKn55xIlSeMSpIp1ZcwwVhEKFZAGJDbf5xjP7TusIvPnO8xVjeRCfrxqDqdfjA7/Kmw3VOON+LjlIyjux5zkDv+PS2YNdDz8MP+TtVAXdtgrSw8VAyEEMQfK/55LdKNxqreQoEuLfp4QMsX9g2scVQz11rIn8q+JawotAV9XFI4hTunzuU/5Tt4qHw7GlWEdI0GTyiM220a8hmKrh47mitXruWSUcWYDd6kctDf6EGijjbsWw9hX2fcEdC2v8/sQU37c+wIqts/946A3P5dEltdOUrHdRESEX2sY0Sic/SguzYflpbHM7NO4+49X3HS8cdz2WWXcc9f/yo6OgKBYNAQEQNBr3nrrbe4+orLGaML8efDshmVZCQgUbQgRmwk0eU1dJl1pHNOcKJZRQA8YS8fOT7ltPST+3Qdgz3DzxO1y/lO9lGY1QObAjAYHebBEIX+EH+Nwz1aECMWNRhIIehMvBwEIkFeaPyIXK0VR8jLZlc1RfoMMrVazs6dRoHOikpl5z+Vm3CHg4w3pjE1zUCRwUSj38vCPEOHgvyhrDd4sbKGb5pbuGLMKCZZLYMaOeiO+KhCX6MIqUYQEkUPUq07ACjzVfN/W9eisph49L//7TANokAwHBERg5GJiBgIUqapqYnrf3wtb77+GrfNzuLC8TlJV+zsTgqgYw5ybGTQpvO2j+bFRvJio3jxI3gxrOgI2X2YNWHkIVw5NJUR8Vp/CxGUPknBgRgpjx81FfSNwRSC+HPE3n9aWcOFOYvY6a2hlqgUfDdvAdlaS3sHMxy2cVnBQsJSK3u8drbZHbxb10Bj0ElLcBQzbemMskXHhmKfx4EWhET1BucWFzA/M40nyyup9/lZVlLIDGNhwu+Twag7iBHrgMdHEbqnu3qEjgundSZR9CDRT3CiugOAsfpCXj88jTt3buL8c87hjDPP5B/3309WVlaXYwgEAkFfEWIg6BFFUXjuuee47pofMi9DzWenl5JnHJgOZCyVIBU56Iw95CaID7XKhVnVu45DfCduoNN6qnxNvN70FZfkndR+30hJixkOgjBSnqvhgCzJTDQWUaLLJsQa7t77NlcUHMMkotMAxzq7KiWdcfp05tqinU1POMjyxr181bKd5oAfWZIYY7Rw3aQiiOvED5QkxI4TLwglRiP/N2UirYEAz1VU8/ieCu6ZegRqqWsBcGx2pcEWBEguCV2/h/alzmn3RxJi0YP4hdPiSVSYHDtWfGpRMjnwBExcP+pwrhzdyl8+W8GkMWO4/9//5vzzz086SCMQCAS9QYiBoFtqamr44Q+u4KvPP+WPc7M4Y7Stxx+gnqIFMWIjid3JQSIUReEr+y5W2HdxZcFRFOrVQO9y6gdCBhJ1YHd7G3mnZTXXlRyPWbW/XTs8dax07CGiKJyaNYNMjbnLvsOJoRYEIQP9I08vs6mmGpvaQIT92aGdV92Npc64FRcZWgNLc+ajlmU8Ugt37djE25V2luQWtk9rOtBRhESCkK7V8sNxpdy7o4zaUBPFmpyk+w9m9CBGfBQB9stVbLACktUjRGsRYmuuQGJB6CoH0Dl6EL/adaK0ohydnj9NmMGX9r386NJLefLf/+bh//6XgoLEi8QJBAJBqogaA0FSvvjiC75z5ukclanm9rnZZOhT88hUxSBGfCchlmvcue4gRmvQyyPVKyk1pHNWzlRUCUYXY8TnDEPfOrm96bDu8NTxZuN6flh0PEZVx3PfVf42l+QfiT8S4p3mDZycOZ1SQ3av23MgGWhJ6M1zO9zrDP5Qet2gHNcRkLum0CVZ9MwZ8vHvmk+Zby0lS2MhXaugk1XIkkxTwE1DwEVDwEVzqA0JiSnmTL5uq0ErqzCqNByXUcRhaXlkGDsK+WCufRD/2d9sd/DArnLunjkFo1rd77oDRVF4sW4n6x2NFOvNLMoezRijrU/t7Pw9lKgeIb4WqqfV2uOnVY6vO4CutQdWbSChHMSiKPZggPsr17Cixccr777LUUcd1YcrFAgGHlFjMDIREQNBQh584AF+9tMb+O3sLC6dmJFymLq3UgAdRxETRQ/i+V/dOgIRL3u8AVSqYmwaXftjfV0ACfo3Ym3W+HmjcQtlnhZ+NeYoDCqAjp2rLK2OiRYjjpAPb6OXjGEeMUjEQEQRRGQgNToX2sfobiVki1rPj4tOZJ17O3XBeir8IfyRMCElumZIqUnL3PR8crXjMKmjr+HZeePQat3oVbHVybtG6WId9MGIIsQfYypWList4afrNnH3jKnY4j7OnSUhldSihyo2YFVr+d2EBVR6nTxSuYmjMwpZlDWq12k3naMIJo2PSp+dDFXu/pH9fWmPoE6YXgQdIwixfzv2zXRkD0blILpfz7MWxdaosGm0/Lr0cN6y7GLx8cfzt3/+k6t/+MNeXZ9AIBDEEBEDQQcCgQDX/egaXn7uGf59VD4L8no3z3lfxKAz8TMWJWOny8Ffdm7jksIpzLBGR94TiUHnqEFfSZbWVOOz81T1GmbYCliSOSFhh0NRFH6z631Oy57Mu03b+X7hPEYb0ge0ncnaN1DXn4xUJGGgZGC4Rg0GKlqQVAbiIgbdiUF0267vg2TTdnZeFbnL44buH49nIKMIq2oj/GX7Ln4/bRIFnRb1SvadkEgQNjgaebluJ7eMOwK1LBNWFJ6p2cper5NrR80iLW5QoTd4wyH+uOsb1OgwqjRcWjAXvUqTcDa1+JXbO0cP4olffyU+chB9LNRh1qLOr2f867jVW8ON67dw7oUXct9DD6HVDu0orUAQj4gYjEyEGAjaqa+v5ztnno6jfAePHZ1Hkbl3H+SBkIIYiaY4hI4dA2coyH27yggrCjeUzgG6D/n3hlRmKPmiZQ8PV3/DT0uOYratqNttnSE/H7eUMd9WTJ7O0qc29ZfBlIQuI5uDFBkYbnLQHylIJgKd6Y8YdNeJ7HB/LyQgnsGa4nSvy8dv11SxMCuDC0qKUHUS7lQF4YuWar5qq+XG0rntx9jpbuXhio2clTuWhRmFvW5bIBLm/7Z/wa3jF7Dd3cqTVTu4pGAuY42ZQPRz1pv0ohg9yUH0/sSpRfGva63Pw81bV5MxaRIvvf46ubm5vb5GgWAgEGIwMhFiIABg1apVnHXaUuZbI/zl8FyM6tQ6LfEMpBjE6CwInTsELp+Bm7d/wR0To3m1PUUNPGE/EUXBrO64QnNqUxXSXhj976pv+aptL38ct4R8/cj60hnsKMJgM1zkoLdSkKoIdGagxKCzFKQiA0O9+Fk8EUXhufJG3qqw8/OJ4xhv6Zp+l4ogfNRUwbuN5VxQMJE5tmgnORAJ89+qLbSG/FxTMgOzunefiU3OJpY37eWnpXOxB/38efcqzi+YSIm2GOgoB9BVEAZaDjq/tiqti1u37WJ9IMhrb73N3Lm9W3ldIBgIhBiMTIQYCPjf//7H1T+4ghunZfCjqZl9nvbuQInBI5UbmWrO4oj06BSNiaIGiqKw0rGH/9V9zY+Kjuew9MyUzt95ZC4QCXHDlk9BUbh36nFo5Y5lOv2pcxhqhloQ4jut/T33gZaD3khBX4UgRl/FoKdowWAWFQ8k9d4Af9xQwWiznstKxqOVuz6fiQQhXg5coQDP1Gyjxufm0qIpjN5XhLzF2cxjVZtYlj+ReWl5vWrXfeXrmGvLYUF6Ac5QgN/v/Io7Jx6NWpax+w09LtSYTBB6Iwew/3U26728VlvBbFsmUzJlFEXhsfJKHtxbyb8feZSLLrqoV9cnEPSXmBjUf3UUVvPQlrQ6XCFyF3zBhAkTUKlUXHvttVx77bVD2oaRihCDQ5hwOMyvfvFz/vPQgzxwZB4nFPU/xWWg5SAVMfCFQ9yy40tun7AQvUrdpXNe7bPzdO06srRGdribuHPCKe2PRRSF1Y4qivQ28nXRUYVkOdn2oJ9fb/+CSaZ0frIvdak3DDdpGCwxSDX60t/z24Mart/xQL+O0Vv6mjrUHznoblaiQ0EMYrxb3cKTZfXcMKWIKYaunfhUogd1fjfP1mynwe/BpNYwx5rDcZnFPFa1CXc4xA+Kp5Gu0Sc8TmcCkTB/2Pk1ywomMs2SxYN713NqTiklhuj3SKpyEL2/47H7KgfvtWzjnp2buH/ODI7NiS589nljMzdt2c4PfngNd91zD6r2QnOBYHAZDmIgIga9R4jBIUprayvLzlzK3s1rePy4UYyx9q0QLxGDWWuQSAwAvmypYbenjYuLpgDRH+VdniZeb9iCTlZzds40cnVmXqzbSFPQxURTDgrwecseMnVqGgNe/jHl+KTRktpQPfeWbeEnYyZTqOndyGJ3HChZGOyi7KFoR3yqxmALwmAXGHdHqtOVRrftuxjA8JcDRyDEnzZVYlTL/GJqMSFf18GMVOsPnKEAHzVXsqqtjutL59AS9EVnLkov5PySvJRWU3eHQty8ZTU/HjOZjY5W1JLEGfkl7eeLfb6T1R1AYjmwdqrpt8X9nWg6U9j/em/3VXHt+q+5ZcoELiiJ1j6Vuz1cv2kbY2fN5tmXXiI9vePkBwLBYCDEYGQixOAQZPPmzZyx+AQm6Fz8c8FoLNqBH0EaKDnoSQwg+gP8UMUGZlqyOCK9gG2uFh6v3EGu1szpOVPI1nY8RmPARX2wnlX2Ona625hlzabEYGVRVkkHMYh1pJY31PBeQzW3TJxJmqbnjmxvFmA6EGIwmAXZfaWvbUo0K9JAScJgrk3QGzqLAfRNDg4GMYjxfk00enDbrNGMtRgSTlaQqiDs9Tq4r3wd5+SNY35aPstbtvFpUz3nF47mqMycHlMr24IBbtmyhpsnzOCeXZv42bipFBlMHc4Vix50lgNIXpjcHzmoDdVz8erPuWrMKH4yYWy0LaEQv966k70KvLH8A6ZMmdLtdQkE/UWIwchEiMEhxmuvvcbFF13I1VN13DilKKVRsb4ykFOXxkj0Y/9to4e3GvdwZfF0XqrbQWPAyw9LZiJF0tq36Tx6WuF1cP/e9fxm3BGY983p3rnjFFYU/rV7GxEUrh0zCXU3i6kloztJGO7RgsEUgUQMpBwkIpkwDJYA9EQyQXCGXax3bySkhCnSFTDVXIBO7vjc9KXWINXi45EiB3XeAP+3Zg+LCtJZNjobSZJS+r5ofyzusxmIhPlP5UbCisKNE8YTiig8V72H9fYWTsjOZ5zJSqnJTI45cdVwhdvDn7bt5ObJE7ht8zb+MXsGRrUKl9eQVA6g5+hBf+SgMdzAhas+w6pR85spEzklP5eIovBw+Xb+W9nGf59+mjPPPDPp8yMQ9BchBiMTIQaHCJFIhN//7jb+es9d3Hd8GktyBn8Ku6ESg++u/AKLWotVreXk7FLmp1BE2Br08c/yddw9fWaXxxRFoczt5OHyHRyfnccpuUVdOlHddTg6bNdLMRjsTnuy4w+1BCRjsOWgy/mCg/tjFYgEWefaRlvISZgwYSVCWAkTVsIYVHoWmI5GjhPOan8NK1zfsMA8H52soylcxQ7vXr6bc1oHie8sBtB7OehuVqKRIgdhReHhHbWsa3Fx07QSSi36XkUPoONndJ27nBer9/KbSTPI1OpxhoKsbG1ij9vFbo+TAAFydTrOLS5gmq1jZ+O16lrqfD7mpafz1N5K7pk5FbUsd1jNvTd1B8lIVQ7Mei8Nfi+/376GQCTCNJuVn08aR7rFy+uVTfxq7V5u+vXN/ObWW5ETFHQLBP1FiMHIRIjBIYDT6eTii5ax/qvPeGpJGlOztPgdQ7Pybn/kINUfeHswQCBgwqDq+YvHrPeiKAp37tjIybmFzEnbPzvRLpeDh8t38FlzPWa1iv8ePpcJCaZITKVN7Y8lEYNk0YJUOsb96cQ7AtphIwHJ6Isc9EUMBlMKvGE/3zo3ssdXzVzLFHI1magkGZWkQi2pUCGz1bMbR9jNcWmHtXcKd3rL8Ck+FqZNbj/W1471qCUV8yzTgMRSAInXjugprehgkAOIrnvwp00VjLMY+NHEAgxqVZ8Ewaz3ssft5J6dm7hh3BQmmG1dtqvwuHircTc7nW4W52VzfE42/9y9jRZ/iG0OD++cOJ3P6u18Wt/GDVOKSFMyOPajL/lR6SSOso3DFTAOqRx4wyFu37mGXJ2OcreHuw4rId+oZdzL32LQqFm0eDFPPfMsFsuBWV9FcPAixGBkIsTgIKesrIwzT11CVrCJR0+ykWFQDZkUwNCIQTJinfJYJyisKCxvqOGd+ioWZuZwfmFp+7aftZXzy/WbmWK1MNVqocRk5LLSktTOM0BiMNhSMJIYCjkYLDFY79rOetd2DrfOYIJhVNIc9e2ePWzx7GaMvgi1pKJUX0SlvxZn2N0uAQARJcJTDW9yduaJWNSmPosBHNxyAPBBTSuP7qrj++NyWZSfjseT+Luup+8RezDA77et54z8Yo7NShyB1GhdvF/fyLu19VwzOYfDszt2PlY02Hmtspk6b4C9zgAZGgMqSeIwaxELbZMx7FstOZkc7G9L4jb2Rg584TC/2b6SswrzeaWmgmsmFnDNVzt5bOFErl25G2tePm+/v5yxY8d2+7wIBL1BiMHIRIjBQczy5ctZdu45XDhew+8W2FDL0pBKQYy+ykEqqx/3hgf2bMOoUrOssJQsc8cO04Y2O0aVinEWM3/csp2LSoooNSc+f2/aM5BicKhIQYzBloPBEIN1jgq2e3eyJO1E0rqZ6Gu7p5y1rq2cZF3EV+4vAGgJ2snTZiFLMovSF3TYvj7QzLstX3B5wYmYVF2n00y20nSi98zBLge+cIQHt9ew3e7hV9NLyJYSr1nS0/dIMBLhr7s2k6c3cHHx2KT1WPHPXaLnKhiJoABBr4WwovBWpZ2XqquZYs7ghPRpELF2W3eQKj3JgTMU5NZtq7hmcg5P7a5nq93DSflp/GpaCd/9cjPbnWFefuNNTjrppF6dVyBIhhCDkYlILDwIURSFv/zlz5x1+lLuOFzPHxemHTApADBYPAN6PLPBm/DWHV821+NTfFw7sbCLFADMSLMxzmJGURQqfU6mDWIJRl+Kjg81KYBBngVpAKXAEZDbbzaVlaASRJbkDvfH31bay3i56UNagi4+cCxHURTmmCfzvdzTCSthtnl2dznHeJONyaYCvnFsIxjpvvC4J+LffzFxdXkNSTvKyQR9uKJXydwwpYibppdw18YKHirfjqxzdNmup+8NjSzzy/HTsGm0/GTDN3zQUEMkwTha/HPX+bkyWDxYbT60sozJ5EYlSZxRksZ9M+cyzZLFn8s/Qpad2DTB9tcx1rlPNBtVdzgCcvv72h7U7E9X8kcLoC1qDbdPPozHdjRxenEmFW4/3nAErUrmzaVjOaPYyNKTl/DXP/8ZMV4oEBy6iIjBQYbX6+XKy7/PR++8wZNL0pmbFx22PFBS0N6uAY4a9IZvm1t5bE8F986ehi7B4j6xUb5AJMJv1pYzL9PCqdmjUz5+qtMixuhODBKNkh+KUhBjsKIGAy0GAKtdayn3VzDRMJ5pxsRTQbrCbh5veIocTTaX5C1FK3dt615fDaP0BUDHeoIHqt9ELakIKWHOyzmGLM2+Bfl6ES2AxAv4pVKUPNIiBxAdJPmgto3H9qUXLbQVJ9yup+iBLxzm5Zq9rGhp4JyCURyXlXidg56iBxD9Tvvztl1UuoNUed2cmFnKiekzktYdxNNTFKGnRdDMei/BSIR7ytbSHPLwZYODP80p5fszor8Pj25t5o9r6jnrO+fy70cfw2AYXosyCkYWImIwMhFicBBRVVXF2aedgtxSwROLbeSZ9n8QD7QYwOAufJaM5XUNvFNbz+3Tp2BUq3AGQ3zRVsVYi57ZmfuL7eyBEDeuLOOcghKO27diaKr0RgxSiRbEd4YPZSmI0Vs56EkMBjqFKNZZe7XlTc5MX9rjvPe+iB+bVukyBWki4sWg1t9Cnjad1pCL5xs+Y6FtCkelFyXerxdSEONglQOIphfdt62aGk+An4+fjE3T9T2SSoqiNxzi5ZoKvm5p5OyCkh4FofPzFfve+qKxmWcqqvj1+DmYVWp8AVO3Mxb1RLwwpCIHiqLwtaOCn67bBMBjx5dwyqhoofUXtS6u+qSC0RMn89pb71BUlPg9JhD0hBCDkYkQg4OEL7/8ku+ceTpLCuHuo2zo1Pt/rIaDFMDAikEyOgvDD1et46GFY/is3s5bVc0EIwrzsyzscvq4Y060+Hhbo8xtm7Zx48SxTLX1/gskFTHobfrQSJg9aCgZSDk40GIAqaWJJCsyBggpYd5rWYEEnJd7GGqpYySsL2IAB9ciaIlY2+zkns1VXDepgBmmgoTbpC4Ie/mqpRGTWo1FrcGgUlPn8xKIhMnRGfjVlNGkaZO/Dz9uaOSVikZ+PXEGFrWmx5WS+4JVE9qfotRJDiBaQC3rXdy8Zg+XTLFyfGF0sGRbq5eLPqwgpDXxyhtvcuSRR/a5DYJDFyEGIxMhBgcBDz/0ED+9/if8boGFK6ZbOnRMhosUxBgKOYjnptW7afIHOSbXxtKiTDJ1GhRF4TufbGFJTj7Zeh0vVFbzh2mTyTd0LeqMR1EU7tm2i72eaM1Epk7L76dNTroac4wDtZDZwcRIEIPPHSvI1mQxyTChx336Kwaxzt4aRzkftW7le3lHkqez7Tv2wEhB+/0HmRy4Q2H+uKECs1rFNaUT0SaYw783ExyEIhGcoSCecJhcnR61LLPJ0cpDe3ZwWl4R54xK7yKLseOvt7fwcPkOlhWO5pisvG4XQ4vR2/dvZznovKaF2eDFq2rjN2v3cNFkK4uLo52o3YFmLnm7gWqvzN//eR9XXnllr84rEAgxGJkIMRjBBAIBrr/uWl54+imeWJzGwqKOP2bDTQpg6MUgEW63CXswyIY2B2UuN+cWF2BWd/+lZTK5eXqHg2Z/gMvHjAKi0Yh/zZ2Jxxe9poiiUO5x4fBpsag1pGn0+ILD7zUYqQyUHLQFZGoDjdhDLlSSCn8kwBbPLiRkDLIOraxBLakxyDqyNemMMRR3GZGPp9JXxwr7Zkp0RaxzbyRLk8E80xwyNRkJt++vFEDHuoKmgJMXG1ZhVGk5PWsWo0xdr7snKYDkYgAHnxwAvF/Twn/L6vn5+EmMT7BeSU+RwO6eL4gKw9NVu9nsaOPXU8eQJiV+P/gjYR4t30mt38tlJePIVuUAJEwtSkYyWYh/HyWTA184zHFfvMsdc0pZ0WDnrHFmThttQ2d1sb0lwFXvNlDlVbHse5dw7z/+iVbbt0UIBYceQgxGJkIMRigej4czl55C/fa1PLXERom16w/HcBQDGFw5aPEHeXhHLT+dUoROtX8ksL9FzG1SCzet3s19s+ag3jfC+EZNHW9UNSJLEnpZhT0QYZTBik5W4QoH2elyckH+LKaYclJKLxF0z0CIwTf2bXzt2EWxLo8MtRVH2I1ZZWC6aQIyMr6IH78SIKSEcYe91Aea2eHdyyzzRGaZJ3U4ljfsw68EWO3YjUVlJqSEqQ5UUxOooznUAsBVuZdhVXVcOGqgxSBGubeJN5rWUag3cnbuNGzq/RGwvkYLOmxzEMpBoy/Ab9aWMz/Lwvn5YxN+TnuKCMaT6Hms9Lr5R9lWFmbmcFZ+8rVRyj0unqnajSMY5IzsiUyzZOFIsBhaKjiC6m5Xx+4sB7/Zspbt7laum5zPW7UNnD8unQtnRTtyO1sD/Hh5E66wjoKps3jtrXcwGg/8AI9g+CPEYGQixGAE4vF4OOPUk/HsWc/zp6Zj1nYNhQ9XKYgxGHLwTnULD26vYUOrm/Wnz8WqVScVAk8oxG63h6lWS4+d9hqvl1u3bOauuaVksH9O9FiHIRSJ0OTRYFbvnx4QwBXy83LDJvZ4WphhyWdJ1gSMKjHa1h96IwexjlRz0MG3ju2MMxTwSetWzstejCylPlNzRFF4vP5Vzkk/GwmJHb5dbPJsQStF21IbrOOCrHO7CEBICaFC1eX9NVhiED12gK2uBl5p2ESe1sJ0Sx6TTDkUmZKfMxUpgIOvIDmGoij8e2cd1R4/Px83JWExcW9nHosnVuz7h+3rOadgFNOs6d1u3+T38UJ1OZvsTual5XGYZQIqpeMKzH1Z6bvzeyZeDk765kVKTUbmZhl5cW8TAH85spDL50Xf4+sa/Px1ZRsNPi3mcdN5/e13hRwIekSIwchEiMEIIxUpgENTDP6xtYoxZgMvVzTx6MKJ3UrBz9Zvpsigp8Lj5TtFBSzKzU4oCGUuN3/csp0/TJtMoTFu/ve4jkJP9QRhJcIr9ZvQqzQszpyAVu6YltK5syuKjpPTGzFQFIUtLgevNX3F8ekzebr+I87JWsw4Q2orWsdoCdpZ3rqCYyzH827bBxRpC5hrnoVaiv7QNQdbyFB3zSNPxmCLAUSvvcLXxhZXA9vcDbSFnfy0dC6jDF1/IPsaLYhnpMsBwPPlDaxudnHzhKntUcHO9CZ60BlnKMDtZV/yu0mzyNJ1X88EEFIifNPSyJu19UiKlh8WH4E7mHi/nkShu1WxbTovNT4X9+z5hkfmT+fSlavI0mnY2OZi20VT0FldANy3xo5WhpfLFMzjpgk5EPSIEIORiRCDEcTBIgUxBlIO6rwBblxZhkWj4vzR2RxhTTzFnjcc5mfrNnFF6SjmZqThCYV5am8lmx1OfjVpHAVx83Yvr2vg5apafj9tEtn6/cvY9kYKYjQG3LzZuJWmgBt3OMDhthIW2qYn3V7IQWJSEYOVjj2saNtFWImQocng2LTpZGgsVPmbMEs5vYoWtIUcvNr0EQstR/Gp/UtOsB1DlibxSrqpMlCFx4mP3fV94wsHuWfvh9w16WhUCa5diMF+3qxs5v2aVu6ZN4aQz5Jwm1SjB7Hvg/g0rtpQPQ+X72C00cz3isdg06Qmui9U1FHnC3NObvQ7o6fPQWdRSBQt6PC4zss6ewMvNWzljzMmUJoZff/FFqfUWV2EIwrnvFrHf0/N4YI3GzGNnyfkQNAtQgxGJkP7Sgn6TKpSMJIwWDwDIgcRReE3a/fwnVFZbGh1t0tB5x/wtmCAP2zbxEXF45loyMS17/f6ooLJVKS5+N3GrZxbOIoFGTm8WlPBTreTOybPR6PI7dvGSNYJSEa21sRlhfNwBLSscuzBE+6+4y+mK+0bDQEHn7fu4NriE/GFO74mRbosHMHUPzd1gSbeafmcJekL0ZGBgoJFNTKkOx6NrEInqxJKQSr0JAUHE6cVZ2JQy/zk213ce9hYDGpVl8hj7Pno/P1i1ns7fC/EhCD+uyFfl8s906ysam3i1q3rmGlLZ1lRKUZV9z/F5xbncvPmjezyNDHOmNX+3ZBMEHorj3a/gVm2HIotEr9ct4nrJ47mqCI1XqcRg8WD32FGZ3Vx0mgjH1Z4eeGMHM57fRVnnHqykAOB4CBj5PcuDwEORikYSMpdPuq9Qd6pbuE7+aOBrj/aq1ub+L8ta7hy9ATmpnUd8c3RGTg6M5fPm+sp97hY0dLAz8dNRZNoKsNOUYJUFy1zBLT4I0E+b9vBBGNeyvsIukdRFHyRIBElgj8SIkdrRSf3f8xjr68GfyTA520bkZEwqYzs9JUNQIuHFpUkk6ay8pvtX/Kb7V9y644VPFa5CXvQf6CbNiw5MT+dS8fm8uNvdhGIRJJGQxIJU6LoS3zEwO434PIZmJeexd+mH8ZYk5VfblrFc1V78EfCSdskSRI3TZzE07WrqPLZ2++3agPtt4EgU87mrqlzeaSsmpfLotcdP3hz5QwL/9viosET5oUzcnDvjMqBZ98UzgKBYOQjUomGOb2VgpGSRhTPQEQNqj1+tjTCkVkZXaQgEAnz040r+fO0eRgSjMx91FjLyzV7OSE7nwUZ2dy+dTM/HzOPbF337epJCDp36l1hP3+veJ+lWTOZZeldnruIHkTp/JxGV3DdzfvNm1BJEqdnzeKT1u1cWXgswUjXGpPezgH/VvNnTNBNocy/B7NsYoZpWo/7pJIq1OMxBjCVqH2/fR3UsBJho6OJF+p2MNaYxrn5EygwJ++UphIxOFhSieJ5s6qZnQ4vP52yPy0xWd1SqrUHdr+hyzoCEUVheUMNr9dVckpuIafmFiUsgAZo8Hu5e/t2SvW5nJU7NWnbkw0opPL+ANDr3NyzcxNT0vRcNSWjQ0pRlTPEjz9o5KmluQCc93qDSCsSJCSWStT0znispuRTPg/Kud1hsk7ZyYQJE1CpVFx77bVce+21Q9qGkYoYeh7GHCqRAoPF0/7D01fSlIwuUuDyRUfnPqyzc4StmHDQ0n5f/E0dMTHLks90YzG/37qZS4um9ksKko30e8J+JpnyWees6PuFHuLEd2wUReHZ+m/Y6KrkysJjubzgGLa4a5hoymOPt7Hf52oJ2rGHnKgkFc3BFqYbk3fEhpK+zEgTj0qSmWXL4fYJC5llzeaPu77hy+b6AWrdwcNpRZnsdfnY0Opqv28gowcxcZAliSW5hfx9+nxcoRC/2ryael9iGcvRGbhn+kyqA400BpLLWKJIQm8GF3x+EzeNn069W+H2NXV4HNG2+h1miixqfnFYGj/9uAmTRhKRA8GwZuXKlWzZskVIQS84OHuaBwEej4czFh/fKykYidGCgSA2ipesKPjbtjrm2XKT7j/Dks1nLdX8bc9qfj5mLlMs+1ONYqlCnW+diclAd6k/OVorp2fNosLXjAjU9Z83m9aTrjFxVeFxFOjSyNPa2OtrJkNl4p3mDfh6qOPoDl/Ez2vNH3FqxtF84viC421HD+laFAO9OjN0lVlJkphjy+W4jCLea6hhm9NORLwvO3DrzFHctbESf3h/FMhkcicUBLPB20UQzHpvytPBqmWZC4pKuW7MJO7csZG366ravydixzYbvKxwVLDWUU91oCal46aSapRonQtJkriqdCIFBj0//HIPFY1RIfU7zCwsMjA/T89d37Rh1spCDgSCgwiRSjQMaZeCinU8vzQ/5UjBSBeDvqQU9SQFdr+Bza56VtmruLRwbtLjrLRXMs2ch0HVu9HY3tYA3FvxPofbxrLANrZX+4FIJ4rhCGjZ6KpirXMvF+cd2aHD7g0HeKb+G0KRME1BL1o5+npGlAgmlZ4pxskpTVe60b2TYCRImpzPRs9mjrcdk3L7BiKVCAY3nSieUCTCZlcz61xV7HQ5yNLpODozl2OzonUwqRYfH4zpRADLa1pZ1ezk19O7vm/6mlqUTBZiz3UoEuGxPRVsc7r4w7TJGNX70zD+un0Xi3JzGK3Nwe03plTj1BOJ3hfxbawONXLPtp08eOQY8jID7VOY/t9nzUzL1nLhZAuuQESkFQk6MBxSicSsRL1HRAyGGR6PhzOWntxrKTgUSUUKAAp0Vmr9jm6PdZitOGUpSCU6kAwJqU9ScLDR4HfhjyTu+IaVnjvW29y1nJA+ucsovkGl5fKCo8nQZGJWRV9/q8rIbMs4HKHURzL3eKso1RfhDLtoCbVS5a8+aKM8allmpjWba8dM4t4Z8zklp5AXqsvbH082PeehwqKCdFr9IVY3O7s81l30oMt9+6IHiaSgc7RBLctcOXY0RQY9jUpz+3lMJjfnjrXxeHlFdB+9t8dVrftK/HdpoTqbGyeM49dr9uBxGNoHoX5/VAbLy718WuntGDlYfIKIHAgEIxTR6xxGtEtB2Te9loKRHi3oLZ2loNrr4Yv6rj/cAG81bqUh4Oazlt397tz1d5agQl06LzWs6lM7hvMMRTZdah2Uap+dP+3+mGfq1vGviq+6PL7L08ylG5/nf7VrCXYzS0tICXe7HsFofS7NQQfLco5lSeZcfJEAp2UdnlK0IKyEaQ05SNdYKdWP4jjr0VQEqniu+SXaQvYe9x/p/GP3VualZfFtaxPuUPcLrcWTbPR8JBCrc0pW63TLjBL+srmKnY7Ej/eUWvSPsi38Ydt6HtqznXfqq2gLBjpsl+yYiipAqNN3xWSbkYnpGt6raxh0OYhnis3CDEsmN64qo6lVh99hRiVL3HdSFv9cY2dDg3+/HOzZIORAIBihCDEYJsRLwasXWXsdKYiFdg9mIorCljY3/9zUxK83bOG6VVv42caV3LDhWx4v38tLdTvZ6W7tst+yvJncNOY4dnqaeap2bZ/OPVBTh56bO49KXwtBJXmnt6d29Hb7/kQ4uiMmAzadlwa/hzfqy/i6raLbPPWdnibc4QAaScUuTzMtwY4dh9cbtvCXiUsZrU/n7xVfEkoSPZhpKeH95k3s8TYmFIh0jYWQEqEu0EKa2swxadNJUxX0eE0r7Ot4sv4N5lr2FxpnajI40nI4Ew3jaQ619HiMgaK7OoPuCpC7e527SzuJjRD/avx0io0mytwOfrV5FU1+XwqtHVnEi0BnGUh0n1Wr5u/zx/G7dXvZ0pY4Zaq76MFRmbnU+jwcnRmtdfrLzs38csvXvFC3nXK3J+lxLh2by92bKvm0rq1De38+L42XayppCwQHVQ7iowYur4GLRxdzdt4orl6xg+1tPvwOM0aNzL+XZPPbL1vY1RrsKAei5kAgGHGIGoNhQGcp0HoTr7jZEyM9atBdjcE2u4ffritnhiWdIzIzKNFmY1Cp0EgykiTh8hn4+541HJGez2iDlUyNAbUsY/cb2O1p4dHqlRTqrGRrTZybN6NX7RroDvXfK5bzk+KThrSYFQa+RqE5XMtnLdVsc7WQqTUw3VRCQ8DFBmcdzpCf7xfOZYo5F184yHvNO1jnqEEjqyjWpXFK9kQyNcYOz4GiKDxdt44MtZFTsifyTVsFX9sr+EnJQiIoKIBaknEEtCiKwset23ipYRU3lixhrDGnQ9vaAmr+W/cBjUE7Pyo8HaNKl7CjrSgKdYEm6oJNVPnrUSFzSsb+QmNHICroO71lrPNs4NS0xZhU3Y+MD1SNAQxdnUGMzmkuG+wtvNtQzS/HTz8oag36MvtZ/PdSiz/IT77dxU8mFzI/K3necqLoyfK6Bj6obePOWeORJYlAJMLKllY+bmhir9vD9Ew9R2ZbmZtpwazZn4/tC0e4Y0sZ2QY1P5uZg0qOvjfXNHp4bJODWydHV0N2eQ3tHfne1h2k+p6IvQea/H5+v3Uz506wcM6YNHRWF7WuEFe/38gDi7IptKhxBSKc/3YrxtKZoubgEEXUGIxMxMrHB5iYFHj3ru2XFEA0ajDS5eCNymY+r7dz19zS9s5ZnTfA79fv5S8zZpKh1SbNec7Tmfi2rY7narZzdt54js4oZL2zhpfqNnHj6KPJ0AyPH6ZoF3doGSgpcIcCfN62h2/tlYwxmjg+s5hLCqcgS1J7Z8SmNrDFVc8kU7Sz/nlbOZ5wkN+MPQlZkvhb+eeUeZrJSuvYeXq6bh2ftJTx89HHAnB4Wgmft5XjjQR5r2kHqx3VTDblsDTzMGRJpi3k4Zqi47tIAUC1vxl32Eea2owz7MGo0iW8HlfYw1stn+GPBFiWczIZ6rQOshJSQnzm+BIJmXMyzkAlDe2P24Fmq9PObFvXBQG7w+02DTs56M90yPErtGfoNPzr8PHcu7Wah3fUcvGYXI7JtXWR/Nj1xwvCorwcWgJB/rajjJ9NHIdWllmYlcnCrExUeie7nV6+bnTwXHkjnlCYcRYD87MtHJubxj1HFvL8rlZ+8VU1f10YXVdhTraRV01trHHVMMdcsH9FZl90rYSBKEqOHS8mBy6vAbPBS5ZOx0MLJvC3LVVsa63jtuNM5JvV/P2ELH60vJFHT8kh06Di+VPTOf/t9WKFZIFgBCFSiQ4g8VLwyvl6zNqhHUEeTnidRnY7vbxa0YRNq+LTejuKovBpXRs3fLuLWyZN6VYKAJYVTOS60bM5M3ccb9SX8cutn7HGUcOvxxzfLykY6JH20fostrhTm2pwOLG8eSd37vkYi0rHr0uP59rRs5hiycQZiM6MoigKH7eUsclVx9XFh7cv0jTTnM8mVx0PVn7NH3d/RLrGwDxbUZfjX5g3i5+NOobXG7awyl4FQCgSRi9r2OCs5XfjFqGRZdY49wKw29vIFFPX9KBybxMvNX5BpsaKRlKRq01Pek0WtYnDLNOYYZ5Alia9w8JSe3zVvNz8OqN0xRxvO3rYScFgphMBfNhYy9v1VRyRkR19bAQWIQ/EGimdj2PVqvntzFHcM3cMG1rdXPLFNl6taCIY6Rop6ixIy0oKMahUPLGnov1xk8nN1V/t4L9l9ZxalMm/jhjPYwsnckFpDnXeAJes2MyNX1YxO8tAvTfUoT7pV7NzeWB7DZIuOrlCLK0Iuo8C9IfY+8DvNfOLacUYFD1/+Cz63JSmabjjmEyufr+RUETBrJV5/tR0PHvWi7QigWCEIFKJDhCJpCBgH5jR/pEYNfA6jfzo653cPL2E58obKDTqeK+6hRkZZi4oGINVE+0EJeucJFplNKxEcAUGriByoFKKHCEvT9R+yXXFJw3I8XpioMTmW3slW1z1nJg5DrNKS5XPzl5vG9V+B5kaA1vcDUwyZfOd3OmoOhUGV3hbsaj1pKn1PaZQ+SMh7tz9MVcUHcYT1av5+ehj+FflV9w4+hgaAi4erVrHj4pO4LXGtUww5jI5Tg7qAw7+VfkJOlnLmdkLKNJltT+WLGc/GAnxVMObXJx7OmpJhTvs5f3WFWgkNfNNR6KXE0cbkjGQqURw4NKJanwePmmsY4OjlUAkzESzje+PzSNTl9rn4EBHDQZCCJIRn17kC0d4aW8jb1e1cFJ+OueXZmNSd5XIWPRAURRu37KDI/L0nFUSfX9ut3u47ptdFJl0nF6cydkl+9+3V3y9mTK7n0BEwROK8NGZ4yk07X8NPql28s5uL7fNGt1hUoZU04pSFYhEKUUQfZ3/VbaHsAK3HBNND3x8k4NwBK6YEU3hcAUiLHimjjFTZ/HO8o9E5OAQQaQSjUyEGBwAkkUKDmUxaG3Tc/bHm5loNZChU7PV7uG+w8ejD6V12banOcLjGahweoyBkoO/VrzHT4oXoe5mZp2BIFUpSCX1IKxE+KiljFq/A2fIT5Hexih9OgV6K3V+J/5ICBmJuQmiAb2lIeDihboNAHy/YB7/rPiSs3Kn8lrDFhalz2ScMZfWoJun675GliQmGPMIKmHWOytxhPycnb2Q8cbCDsfsrpj3uYZ3WJR+JBkaGw/XvMDSzGMo1OW21xj0hoEWAxh4OehNnQFAWFHYYG/hgT3buXRMIUvyuqZvdeZAicFgCkFn4gUhrCi8V93Cc+WNzEg3cenYPLL0HaM6sTSrsKJw1Yod/H72aAqNUfF8ZGctrYEQnlCEUERhTqaZpoibc0pt/HZlLf84qpgbv6zk8FwTl0/O6nDcm79o5PAsC4sLM3otB30RA9gvB7HX+YmKvexxBPjLomgn7NzX6nj0lBzS9dEOYas3zOTHKjni8MN5+/0PhRwcAggxGJkIMRhiBlsKYow0OfA6jVS5/fjCEd6samasxcAJGYmnluyNGMDwlIOv7WV81rqd4zMmc5i1dABalZhUxCDWMejL8xRRFD5o3smXbeXMshRQ4WvjqLTRXeTAHvLRFHAz1ti7fPUYbzVu5au2CowqDRMMRRybPhHdvsXL7CEv5d4mdLKafF0adb4Qy1vXMNFYzHzrxPZjJCs+/sa5AUfIzeKMIwF4vO41Lsk9HVcfVx8eajGA5HIwEEXIDX4vP924kny9AYtaQ5HexPWTU5O/oZSDoRSCzsQLgqIofN3o4ImyerJ0Gi4fn8cYS9fP1se1bZQ5vfxgQn77fXdsqODIHCtpWjXfNDrIsUZ4ckcLUzL0fH9iJtMy9PxtQwP1nhC3H16ARpb4otbF39e2EFYU/nfMZIBeyUFvUo56koN3G2t4v7aF+xdlsb4hwEs7XNxz3H6JqXWFmP3fKo44/Ajefv8DIQcHOUIMRiaixmAIGSopGKkUmXRUuH3UewOcVpTRq32TrSQ6XDnCNpbrSxaz0rFn0M7RkxTErz3QFynY42nhjt0fEVYUfjv2JM7OncaPihfwTtN2yr3RaWMVReGZ2nXcX7GC5+s2sMVV36UNqbA0ezIaSWaCMZu2kIfXG9ftP4bawExLMZNM+bzfvInnGz4nS2PjG8c2It0slqYoCi80vk9EUTgpfUH7/dNN4/hv/ets9Wzvdv+hpLtoR7f7DYDEZmv1FBmMKAo4gkE2O1v5yaotPFS2h88am/CFk0+9O5LXNugN8VIiSRILcmw8uGAC3x2by8M7arlqxQ7er24hFNk/Drcw18oXDR3XxTipII0tbW5mZZi5YV4aF03IoMYdZEGuiT+squNPa+spMmlZ0+jht9/W8OqeNh7b1szjiwrbpSCenmoOBqoOIfY6n5xdwHfH5LDs9XrK2oJ8XOHlwXX7rzHfrOaVM3P5+puvWbr4JFFzIBAMQ8SsREOEKDTumSq3n8d31fPvIycM+VSevcGqDQxIhyushNEMUkFrKlIQw+43sNXVwIv1GznMVsQCWwk2TXJR8IaDPFu3HlfIz7UlR5Iet61GVnFtyQIer17NT0cfTa3fiT3k4+YxJ3BfxYr2bePP31MaU0RRqPE7uHHU0Wx011Prb+Ao2/iE2zrDPi7LX8w2TyWft21ivWs3sy3jEm5bG2gkTW3hSNusDvfPtUxlhmkiX9q38krLm8hIKCjoZB1G2UCxrohx+jFJ29sTsfSk3kYWHEF10siBPajpNqWot8TPRCNJEndOmYu0798A3nCIXS4nZe5GnthTydKCXM4szEc1jD+3g01MDuKjB5NtRv40dwz2QIgX9zby/S+2cUSOlQytmvdrWhnbKZIwPc3E/dtqOKzJyTGW6HfDinMmcM1nlVwzNRODRkWdO8gDx5Ywxqql2RfiqR0tQNdZkeKlzKz3DshsRfHvC9g/SxHsT5M6Kt/M/JyxPFNRR5M3wq8/ayEcgWvn2ABYUGjg34uzuPL9r1m6ZBFvvbdcRA4EgmGEEIMhoDspGKxowUiculTZ9194gLPbOo+KDXRqUV/RSCp8kYHrzMXorRQAvNG4hR8WH0GZp5nHalbhC4c4PWcKU825Xfav9LVR63dw85gTEh4/XWPEu++6dnqamGrOxRny4wkHmWTVAL0bpXynaRtbXQ34IiEyNEa+m3d00toMGYkIEQ6zTmC8oQBnOPG57CEXH7R+3Z4+1BmNrGaOaSZzTDNpC9n50vk1YSWMVWUhXZXWbXtTrUvoqyD0FkdAm/A9Yfcbuh0xjqWgmPXeDrM1ARhUaqbb0pluS2dZSSEvVdVw9ap1XDyqmGNzOua/D8fpSweTRIJg06q5Ynw+l43L44sGO85gmIcWTECn6vheMahV/OuI8fxy7Q7qwlbOH5eOSaPi4WNL+PHnlZw9Jo2zxqS1b59t0HDN1Gzu39TIL2fLCdeCMRu80Q58JzkYqGhBvBzErttg8XBpaQHnTTRR6Qhx7LM1pOllvjslOh336ePM3O1T+OVnXwk5EAiGGSKVaJARkYLUKTbpOa0okyfK6nveuB/Er9gbf+sNAzHTj0ZWE1LChFNMV7EHNe23vrSr83XGpGCPpwWbWk+21sQRaSXcMOporh91FM/UrsMZ8nc5zgRTNpNNOfxp98e81biVWr+jyzYRRSEYCbPT08R4YxZrXTtpCtr5b9UWmgIdn+vmgJe1rh2UeZp5vHoVt+1azp92f8x31j2JPxLii9Zyfjb6GG4ZeyJTzDm81bQeb7jjda507OHBqo9pDHjRy9FoTprGTLE+O0HbIjzb8DanZh5Nlib5VKYAnzq+5HPHCo4wH8YZGacy1zybTE3v0tx6ojcFzn1dDbk/dK7fqfd5KXM72wXe7zdxQUkR/5g9nX/s3J1w5evBTik6kPUFyUg0VaosSRyTm8bSoswuUhDDpFbx7+NK2OsMcMXHe9ne5kOvlnng2BJWNni44P09PLi5EWcgjDcUYXOLl+WVDsKRjs97wlWY+zmVaU8pm7HXOSYoxoCNGTk6fjzbyh1ftfJxxf79L5lm4ab5aXz+5QqRViQQDCNExGAQiUQiXHzh+Xj2ruHV8w1dpEDUFnTEHQrzemUz/zg8cerHYJPox7Kv0YVYJ62n9I4xhhx2exvJ0aQ+k89AFJra/Qbagl5eadhMvd/JD4rmd3jcoNJwScEc/lL+GeflzegSOTg7dxq+cJBNrnrebNxKrd9Joc7K0emlTDBlsyRrArfv/hB3OMCNY6aRbywmU2vAEw7yn8qN3DR2//ker9pMod7MBp+TY9LH8P3CDNzhAHft+QStpKJIb2O9s5aZlnyOTR/Ds75tPFH7JS1BN+flHkaJPpOPWrZyTdHxKErPRWayJJOutvJey5c4wm6uKViWdFs1KiwqCxnq7gWivzgCcsqRg+5SipIfv29RgxjxKSSOUJBbt66lzu9lli2DUqOF6bZ0bPoQR2Smd4kuHOrEL5CW7PGuSPxidi4VzgB3r63HpJH5+axcbjssn0A4wodVTi7/eC8KcEqJFYNaZkOLl0m6xAIWixr0h+6kIFFKUSxyAPCrw9P5strHbV+2sLCwAK0q+h65fq6NF3a4+PTLr7jo/HN5+fU3kWUxXikQHEjEJ3AQ+cPvf8eaFR/z3DkHJlKgs7qG/Jx9wR2M8GRZPVet2MF1kwvJ1EU71b1NPzDrve23gaK7TlMqUYP4Uf5Et1L9KFbaU1/sbCDyyN2hIE/WrOHByq9ZYCvhpjHHk6Xt2qGYYMrmZ6OP4Zu2Cv5a/hnecMdz61UavJEgTQEPKkkmqERw7IswHGYr5p7JC/n5mNlIkoRVreXI9AK2u1o5K3e/+NX63PgiYS4omMRPxkxhjDE6Gm9SadHLakJKhEsL5rLOWcMfdn/I8uadLM2ayQ+LjufHxSfybvNGmgJOjCot7rAfi7prhCMR5+eczDTTeNLV3YvEQusRZGoyeKvtPYJJ0r48YS+7feWsca9nhfMbPrZ/xjbvDoJKbzvvcp+mR42nL1EDu9/QfusOly86w814s5X/zjuaa0onEYhEmGnLoC0Q4N2aFi4oKeKxPRVc/u2aLvsfKoXIiYhFDxLduqPEouW+Y4pZNi6dn3xRyZ1r6tjS6mNJiZVnF5Vyx+EFXDE5i9dPHcvsLGOX43UXNegNvd0n/rX2O8yYtTJ/PSGLDY0B7luzvxhZkiSWn1eARSvxxtvv8off/67XbRMI+ssDDzzAjBkzsFqtWK1WFixYwDvvvNP+uKIo3HbbbRQUFGAwGDjuuOPYvHlzwmMpisIpp5yCJEm8+uqr3Z7X6XRyww03MGrUKAwGA0ceeSQrV64cyEvrEyJiMEi89tpr/PnuO/ngYjOZxq4/9iJaEOWjKif3b2rkgpJ8Hl04MWl4vbck+iHrbkrTgcamCabUSTOpDPgiKa410M/FrCKKwht1tXzSspuzc6dyccGcHs9pUeu4vOgw3mjYwjZ3A7Ot+9cGqPU7+KB5J78ZexJqSUZRFFzhAHXBasKKQpHKwkTz/rSbV+t2EVQiTIq778W6HZhVGj5uruTo9ML2/OfmgAejSoNGVqGRVXy/cB5hJcK9e79gtrUQHekEIiG0sposrYXZlhI+ad1Grd+OTjYySp+DI+SmJeTCG/ZjUGmZaJjIOEMJYSXMOy2fY1WZOS97SY/PwXTjFGwqCy+3vMHh5rkYZAPVgVpqgrX4IwEMsp48TS7p6jQMGj0aSUNloJrXW97CrDIx2TCJYm1hygX1qUQP+hI1SIWYHPRUe2DWezmvcDQzbem8XVfNDeOmMN+bxe82buK0wixMajXBSARNp9Hfwag3GI5pRAPNnGwjT580mpUNHt6pcPDH1XUcV2jhikmpT//b16hBqlLQudYA9tcb+B1mZuXA06flctGb9Vw42Uy+Odr9MGpkPrqgkHn/reKPt9/O7DlzOeOMM3rdToGgrxQVFfGnP/2JceOig1ZPPPEEZ555JmvXrmXq1Kncfffd/PWvf+Xxxx9nwoQJ3H777SxatIjt27djsVg6HOvee+9N+bv+Bz/4AZs2beLJJ5+koKCAp556ipNOOoktW7ZQWFjY8wEGCbGOwSCwZcsWFsyfxwOnaDhrcuJVU4dKDIZzAfLNX9egVUn8YlYusi9xO5ONMvY3LN7hWCkIQ7LR1O5mJ0pFDDa79tIWcrEwbWq32/VXCla3unm2dj0zLfmckj2p1wurrXFUU+93cUr2/nUBWoIe3mjYyl5fK2pJRi2Hsap15OmMqCSZKp8TZyjaNkWBieZ0Limc0uFLs97vptLr5F971/Pg9JPQyirsfgNPVK9mrrWQaZa8Du1Y76xll6eJRelz2eiq4iv7Li4vOKbD9ez1+KkONJOuNpOmNmNU6XCEPKxx7mKTq4qAEuTEtMMpNfScvhU/gh+IBPjGtQqAQm0BZikPnazvso8t7mVvC7WxybMNZ9jPkeZjezyfrdNbpidBSCYHfUk3S3icFNY6uG79N5yaV8h79TX8csI0CvRGHty7kbOL8hlr7vr5FWLQfxRF4bVyO09ub+G8semcNtqKWROdxShR2lL892jsuzOV770+RRc6rYoM+18jndXF9R828t/NLqqvGYVRs//zdeEbdby7x4tJr2PlmrVMntx1+lXByGIkr2OQkZHBPffcw+WXX05BQQE33HADv/rVrwDw+/3k5uZy1113cfXVV7fvs379ek477TRWrlxJfn4+r7zyCmeddVbC43u9XiwWC6+99hpLly5tv3/WrFmcdtpp3H777b1u80AhIgYDTGtrK2cuXcI1c1VJpWAoGc6zE1W4Apw6ykqVO0CxrBywKUpjP359iSj0d+rSukALJfruV5HtqxQANHg1PFz5DVpZxY9LjiStm2lIu0MrqQgqHeerz9AYubRwbrSN3XQgFUXBEw5hUncVpVydiV3uNpZkj0YrR384mkK1tIW8TDHnstJeyYq2vbQGvfx27EnIgGqfBEw3F+GLBHm67isuyV/Yfsw0jZk0zf73fGxa2OPSZzDHPIeIovQpD14raznaun8WI3uSlyX+fok0phuOYLn9LVpDLaSruy9ctgc7ykFvag86Hifx9KXJag2SHqebCELs83Jidj4VHjd/nj6vXdCKdenscrkTikF/ogahiMLv1pdjVqv4+bTiQ3Z6VEmSOKs0jZOLrbyyp40rP6ngvLHpnDMmrceahhixWYoGk0T1BudPMvPfzS4m/qeC8qtHoZKjr+FvjsxAUVp4v9zLaUsWsWr9RtLTB7e2R3Dw43B0nBxDp9Oh0yXvm4XDYV544QXcbjcLFixgz5491NXVsXjx4g7HOPbYY1mxYkW7GHg8Hi688ELuu+8+8vLykh2+nVAoRDgcRq/vOLhkMBj44osvenOJA44QgwEkHA6z7NyzmWBo45Zjuo4kCjpy71FFvF/p4Kx3dvP68dMpMqUuUrFRqYGMHHT3Q9nf+b+TUaDLYoNrD56wn0p/I60hJypJhVZSc1LGbNLUyaUulQ6eJxwkpES4rnhhj9vG4wz52elpYoe7iVq/g5aAh0VZXdcOSKVwVZKkhFIQo9bvxh0OUud3IyPx78qN/LDoaJ6pXYcsSVxcMIdPWspY56yhwtvGOGNmu5AdZi2lwtfM3yreI1tjZaIpjzytjW/s1ez21iJLMipk1JIKXySARlZzSvoJGFVD+/k8wnw0q91fo6Aw0ziPDHXyFJDeyMFgpRR1aVM3RconZUzsMrI81mTh8+Z6liT5feyLHPjDEW5cWcbJhRn4wxF+/PVO7po3huEx+fCBQa+WuXB8BuePTefKTyoYY9UyK6urFMSvaxCfUjTQC0N2TiXqjN9hZnpW9L3sCipc+0ETDy6Ozhw2JVPL3Dwds3K0/G11DRecezZvv/8hKtXQjjQLBh65tRnZP7QlrbIn+j4rLi7ucP+tt97Kbbfd1mX7jRs3smDBAnw+H2azmVdeeYUpU6awYsUKAHJzO07AkZuby969e9v//ulPf8qRRx7JmWeemVL7LBYLCxYs4A9/+AOTJ08mNzeXZ555hm+++Ybx4xOv0zNUCDEYQG765S+o3LKKjy/Ri5k5UkACHt/Wwsw0c6+kIJ7BEITekixqkEqdwWRTMQ2BVnyRALMtY8lQWwgToSno4KWGL/hpyQkoCoSUMCElgkGlbT9nKqRrDLjCARSl+4iMLxxkRdtetrgbqPU5CBHBIGuIoKCRVBjUGnZ6mjkmI7qw10DNgQ5wbv4E3m8s54XaHSgKnJU7loZQLZ5IgCuLDgdgpqWAVfYqXGE/C7QlHfb/Ts48IopCQ8DBdk8dX7btZKxhNCekz2qPLsSo8jXxYtP7XJB9Clp5cKb3TIRFZeU462IcYTsrXJ8y0zCXfG3yHNJY1CEmCN2teZBMDgYqatB+vB6iB/GdzGKDiQqPO2HeeV+pcvvJ0Kk5vTgqVWOtBq7+ZhszM/VMStczOV3PhDQ9RvWhN6eGSpa4bkY2J79ZxsZlkzgQMeJkr3PnqIHOb+X8iSZuPiKdp7a4eGSDgytmRFM9bpibxhXvNnDuBCMvffY5v/7VL7n7z38ZyssQHGRUVlZ2SCVKFi2YOHEi69ato62tjZdeeolLL72UTz/9tP3xzr+f8b+pr7/+Oh999BFr167tVduefPJJLr/8cgoLC1GpVMyZM4eLLrqINWu6Tt4wlAgxGCCefvpp/vPQ/XxyqQmrbnj9MA3XdKK9zgC+cIQlo/o/L/xACcJQhNc7c2z6jK7tUBmYZy3i75XLkZDQyCpkJLyRADIyJ2SOYmH66H0dYhd5OkuCI0fJ11moDTgp0HXNs7QHvbzdtJ2dniYmmXJwhnyUGNKYbS2kQGclV2tGI6uwB73cVvYeJs0U1IMwneDi7NEszh7d/neNz0W1r4zmgIdMrZEtrnrSNQbq9s1A1BlZksjT2cjT2fZdV+JOf5E+izmW0Wz3ljPdNPSjMlaVjROtp/CR4x1AIV/bfZ1Df1OLBloOIHn0IH5BNJ0sE9iXepZMDnobNRht0VPj2d/m2RlmXlxSSrkzwNZWH+9XOvnNt7XceXgB0zIPvThCiy/M0lFWJElKmE6ULGowEPQkf53l4AcT8rn72zruOymLHy1vQqdyckyxnhKrhgcWZ3PpWw0sGa3nwX/dx+y587jwwgsHrK2CQ4vYTEM9odVq24uP582bx8qVK/n73//eXldQV1dHfn5++/YNDQ3tUYSPPvqIsrIy0tLSOhzzO9/5DkcffTSffPJJwnOOHTuWTz/9FLfbjcPhID8/n2XLllFaWtqHKx04hBgMAKtXr/5/9s47PIo6/+Ov2d43vTcIBELvXQRB7P1OTz17+yn2u/Psvffz9Ox6Z8Hz7B3BAoiAItJbgEB6b5st2Tq/P0L6brKbugnzep598mR3yndmZ2c+7++nceXll/LO6VpGRofnKQ1HcVDh8KCSCUSqeu+c9aUHoa/CifzuS+lmfuQo5keO6vDZb/W7cPo8VLlsvFL4K1VuOw+NPA61zP95jFbqKHNa2wgDURR5t2QzRU4Lx0RlYvO6qHTZuDJlJtHtSpfus1Xy5KFVHBOTyo9VBZiVKmZEJLbfTRvq3E4qXQ6SNQY08tC/3ySNgctTZvCf4t+we90YFCquT5uHWaHhqUNrWBQ9gjkR6djcoYcEJamj2WXLAwbGXasUlCwyncD3lm8QgaRW4sBy2IY3tRID/sQBtPUedBZSFEgc9ISuvAc6tZ3W/baaQ1d64D1oyidoXe1IIRMYYVYzwqzmlAwzF2RFceuGIv59TPqA5SwNFKkGJTJBIErdv6E3wX6nrcXBhGjQ58lYV9zAs8fE8No2C9d9V8nTx8SQGaHkH4tiuO67Cl46JoIrLr2EUaNGMWVK11XUJCR6C1EUcTqdDBs2jISEBFauXMnkyZMBcLlcrF69msceewyAW2+9lcsvv7zN+uPHj+eZZ57hlFNO6XJfer0evV5PTU0N3377LY8//njvH1AIhKcVO4goLy/njFNO5NY5SpaMCC4JdaBKlfZUHFQ3ePilzMbMeD1Rmp5fOjqFjPlJBpYdLOe45N7tJhsOIUbdpatk459r8/CKPn6pK+DCpCksK9nit9ssgFf08buliGOjRzb3IRCAD8q2E6vSM0ofy5cVu/lD/HjGGzsa+2a1gzifl6vSJ9BkZv23eC/jjbFo5QqsHhdKmRy1TI79cJ5ArFLHLXt+Yoo5jkP2OuZHpXBCXMcZEFEU8UHABNKxZhU3a+bj8nmRCwIyQWBmRBqTTcmsqMrhgQPfM9U4ginGdIyKtgKhKYzLK3px+7xoDnsZatz1rKjaxIkxM/zt0s/59vW4twC0GPwtKJmuPYH1tuXYPCLxylS/yzcJhPahRdDRexCqOOiJ16B5uwG8B3anDpGO12R3Q4u+LKxiS7WVQruTigY3STr/4QCJeiVjo7R8V1jPsamhVyIZzGRFaBhhUvFDUT2LU/wfe297DXoi9P46NoUr1+by6nFx/N8kE2dk6fm/FRW8vCSWZKOC00bqqRLt/H2OgtNPPoHftmwnLq7zQg0SEt3h9ttv54QTTiA1NZX6+nr++9//smrVKpYvX44gCNx44408/PDDjBw5kpEjR/Lwww+j0+k477zzAEhISPCbcJyWltZm9n/RokWcccYZXHvttQB8++23iKLIqFGj2L9/P3/7298YNWoUl1xySf8ceAAkYdADXC4Xfzj9ZGbF2rlp9uBINu6JOLjp50Kmx+n57FAdFpeXc0dGcVK6qdv5FEclGRihjuJxWwF/XLWLx6cOZ5ix7Xls/SDrDt15+A1EEnLz9oOoQHTrsAUoBBmCIOAVfbhEL1q5/9AZm9dFjErPq4W/AjSbatn6OGZHpHPHvuU8NerkDt6G1sZemtZEmrbF0ChqsLLFUs4eazW/1payOCadJbHp/H3PT0wyxZJrryNSqeaqtAmUOW08dmBjB2GQ77Dwav52rF43fxs+jSRNx2uyuMHK24VbsXicZGgjGaaNZIIxEbVMwcmx2SyOGsGa6lLeKV2H0+dBOCxdZIfPi0dsTDyWCQJOnxuFIEctU3F89DRS1DGAB4u7e7fAQBWJ2tNRELSgEJTM1p/ABvu3ePGQpOwonizurr0HwYoDv+PrJXEAHb0HXq+8Q+5BdxBFkVdzSnhqWia3jU/rshLR0nExXPRDHguTjShkQ8tr0Lpppb/7uN0rkqJvFMHBVCdqb9iHcq/siShw1OswG+1cNSqBu9dWIgIvLYnl6YUxXL2ygv+cGEeiQcGOOgd/P0rHttI6/nD6yXy3ai0qVferwElI+KOsrIwLLriAkpISzGYzEyZMYPny5Rx77LEA3HLLLTgcDq655hpqamqYOXMmK1as6NDDoCsOHDhAZWVl8/91dXXcdtttFBYWEhUVxVlnncVDDz2EUtl/+W/+kPoY9ID/u/JyNnzzX777sxadMvgHULg0NwtVIHx+qI6NZTYemJnU2K04p4o1xVbkgoBCJnDRqCgWJAf3QxFFkW8L6nlndx1yQWB+fASnpkY31+JuTW90TA1VHHSWZ+BPGAQqWRpqJ9pQ68/vs1Xym6WQcxMn4RV97LNVkqmLRikLLpzg64o9eEUfp8SNadx/EEnF2y0V/LtwF+clj2aMIZrHDmxkVmQiSkHGopg0fqjMZ1nxHv46fBqvFWznpmFTSW5l+H9Wup+t9ZVclTYeEPhXXqPHwyX6GKGL4Iq08XxXmcfa6mLOiptCnEpPfkMtB+zV/FKXz6yINBZFjUApk3c47z7Rh0hjSdPW594renH5PGjlbWeagxEG/jwGwQiDzkRBa7yil1/tK0lWDidNleV3mdbioH2vA+iYlBxKf4OeCoM22z98/VS6HLyYt5W7Rs4C2la/aW9QBpNncNnPe3llTlYHURCoh8Ejv5dyYpqZiTED7zGsdXpZXVzPacMierSd9p3s/d2/l+VUo5YLnJXZWOYzkDDo7y7Ugb5jrdGO2mTlvp+rmZmk4fhhOjaXOXloQw2IcLDeycqLIzGpBRa942DOiefy4suv9uvYJbpPUx+D6mVRmPw0eu3Tfdt9RJ1X3e0+BkcykjDoJi+/9BJ33nIjP12sJy0itJjOcBEGTYQiEB7eVIpB2VgiL1bbYlQ1eHz8+ftD/OeYdBxeEavLS6pB1VyjujWbK+08taWcyTFaLkxL8ysGWuPvIeb0emnw+dDK5SgFoct44u64zAOJg74SBt1pSvVx2Q58okiNx862+lK0MgUPjTw+KGHQOKvu46WCDSC4OSluGFPN8V2u15rChno+LtlPldvBLcOno1cocft8XLJ1OSlaI3eMmIlR0fbcPLz/F67PmIyh3fsbaorZXl/J7MgkPi7dzx0jZmJ1tTVsvKKPd4o34xG9XJbSGA7U+tz7Dh+TSqYI+tx3JQ5CFQbBCoLW+EQfvztWoxa0jNXMQNaumpKp3aGEszgAeKFgFX9KGsVwXUTze4HEQXuj0SeKvH+oApNSTpJOTbJWxcs5JZw3LI5MU8ffnj9x8MTmMo5LMzEhDJKQv823cPsvxTw+O5lFKY0TJ0U2F4csLuYmdn3vbS8ImvB337a5vVy9poC3FmU0vzfQ4qAr4ac12vm6tJSXtlr49o9Jze+X2jzc9EMVSZE+/nmSkfxaL0f928ZDT/yDK1s1lZIIXyRhMDiRQom6wdq1a7n5puv5+GxdyKIgHAklvOjvk+P59GAt924soc7l5azhEZyYbkKjkHHD+Dgu/iGPBJ0Sk0pOfr0LH6CVCzi8IjLA7RNJM6p4ek4ycToljnr/588nipQ3uBEAR4MCQYA6t4d1ldVsrK6hwuki12oj22TE5vUwOSKC28f4n22F3q/CESxdlSztaVKoQpDRIHqYbU6nsKGOm9KPCkoUNHjd3LZvOcN0BlQyGQqZgp+rixlriA4pWXhjbSmjDVH8UlvS3KtAKZORoNbxYNbc5gpGFU47bxft5sS4YSRpDBQ7bWQdFgaiKPJZ2QF2Wqu4edhUHty/gdszZyIXhA6hW2VOKwcd1fw1Yz4Abp+XX+pyOeiooNRVR5nLwlzzCE6OnYRZ6abaJWe3LZ/chhJOjp5JXkM56+p2oZNriFIaiVYYGaFLwuXtuiFUMHRHFADIBBnTdAs55NrNJscqpuuO6XT59iFFEHxYUV/lGzSx2VKEUW4kWp4IhB5u8nFeJfnWBkaYtKwtq6PY7qTY4cLm9Xa98mF8QLjUhltfZuPF+ak8s62cJL2S7EgNL+6o5GC9i+3VDq4aExNwYiOQKGj6rP19W6+UE6dVkGtxMtw08A02g606tbNEwOL0tSkBmaBXsOzkOCqExgZVaRFy3jlDw5k3XsfYceOYOze03iwSEhLBIQmDECkoKOCs00/hoYVqjkofOrGOTQ+grgSCXNbopj4rMxKr28tHB2r583eHOD7NxKWjozkqaXiHdeweX3NtcY9PDCru9+ldhRTanOgVclxuBSIiOrmCYXodESolgiBwWnIC22otlDudXJmZ3o2j7py+Kl0aihjoylg79XAI0C17v2ayKYkD9ipWVu1DBK5ImUGMyv+sYJG7iMUxyZyXnN3lGFrP9LY/H5stFcSqtMyPaqmsU+VyEKPWtSlr+n5JDtMi4lldVcAHpfsYrY+Cw0Mrdtr4rjKff45dSLnLgVmh9tsQrdpt5+XCDdyQPg+DQk2dp4Hn89cxVpfG/MhRxKlMPJP/LYuixlDltrKmJoc9tnKy9WnoZBp+sexhv6OYE6Jn4BN91LjrqXBbeL14OSdELSRG2f0uq90VBO3JUGVT4Nrnd/vtvQZ+xzHA4sDp8/Bp+U5uG7awe+t7fXycX8l/5o1qrjzUHURRJBzSC34rt1FsczM9Tsdz81K5anU+Lx+dRk6tk/eXZPDizkpu+rmIR2cloWnXf6EzUdAZf86K4qkt5fzzqBRkAUqXQs/ztzoj1OZ1f50UhyDAVSsqePCoaOJ0jZMbgiCQYm6Z6DgqXcWDC7ycddop/LZlGykpnZf7lZCQCB1JGISAw+HgjBOO4aQR9VwxdWi2ag/Fe2BQyrlodDR/zorivO8Ocf7IKDSKlqex1ycilwltGg4FIwr2Wxwcsjbw/MyWcpL7KmW8npvPL9U1XDwsjfHmRtfgn9ICbSV86K5XIBQj7Zq02RQ21FLstHBV6kwcPg/P5q3lvhHHtmny1RQDnoqRL8tzefbg75wUN4wRuogOs5b+kkab3rM2aHF4PfxeV8ZlqeOYH9XSrOu3ujKmm9tWaFAIAia5iqvSJ3JJ6jhUrbwayRoD0yLi+a4yH6VMxiRTbJt1nT4Pu63lfFq+k6tSZxGl1GHzuHjq0BouTZ5OlLwx/Onn2n1MNabjReTVotWcETuFhREzmpO0Xy76CoNci9vnIVEdRZwqglHAeEMG75WtYqphAqN0HROAe6syUfAEZ9H68xpAz8RBTyhsqOPNot/4Q/x4NAGS4btCJjQevcPjQ6nq/jn3ih0bEg0EkWoF9S4vTq9IrFbBQzOTuP6nAvTKxuIB14yL5YfCei79MY/XFqY33yu7KwoAJsXoOCrRyd/XF/PY7KROxUFfEKwoaB0CJggCf50Uzy5HFbevqUIQ4OUlscgEAVedAZW55XxcOU3D1ooGzjjlBNas+xWtduDDxSQkhhJSjkGQiKLIhef/if3rP+LrcyNRK7r/0Am3HAN/hJqY/OzWcrZWOTgq0UCMVsFnB2uxuX0oZQLzkwwsSjHya5mdzw7WopAJLEoxMidBT4IQgVImw+Xzsd/iYHednQ/zKnhyWibJh0sSfllQxf8O1nD9yOFkm0KrAtCe3khCDiXHIFR6M9b7w9JtZBviGWuID5hUfMBWyw9VBey31xKj0rIkJp2JptigKsl4fD621bjI0rcVyQ/t/4Vr0ydhVraEMtg8bu7dt46HRs1rIwqa8IoiN+z8gSUxGcSqtcyObIw1XlVVwOeleUw2JTMrIo04VeN1+U7x74w3JjLRmNh87tfV7seHSGFDNZOMaYzWJ7YJ49prL2SbNZdyVx2XJx2PulXnY4/Py0tF33JGzCKMio6zqO2Fgb8cg97yGvxk/ZyjDKf6/SyYXIPmZYPIOejNfIOHcn/g//z0wWh97TVdV50lIG+srOez/EoenDKM3HoHy3LL2Vxt5aIR8ZyaGtNhv/5yDB74rYSzR0QyKmLgq8V9V2jh6zwLT81JRhAEVhZYWFNs5YGZLfH0a4qtfHCghufmpaAxhzbbHuhe/d99NfxWYePx2cnIBCFoYdATL0LT92jzeNHJZX7FmdZo56u8Oj7OrUUpE7hnWiKJ+pYLWW2y8spWCwX1HlKNco7L0DEyzdlmG06PyAnvNTBy9om89e5/w0IESnREyjEYnEgegyB56qkn+fHrj1h3kxK1V7oJtefGiXFY3V7Wltgod7h5YnYyURoFDo+Pn0qsvLSjkkkxWt44pjHk54eiet7bV8P+6kq8YmN4UaZRQ7ZZzxNTG0WBTxR5elchdo+Pf04e3ycdd8OB3k78bGKaOYUNdTnMiW57U9xeX8l7RXtQyGREKNREqzScmziKJI2Bd0q2Ue6p4oykrkOzFDIZU6I1QEvIldvnw+ZxtxEFAHqFklPiMnm/eC8XpIzpsK1adwNxaj12nxuDorF78ea6ctZUF3Fn5qI2Xo9Kl40ip4U/J7VteDTJmMYz+d8SodAxWt+xJ8MoXQrr6nYxwzSKt0q/QydTU+91YPM2YJBrcIpurF67X2HQHrOyozgwKXtHHMgFBYWu/ZjlMWx2rEErMzBKPRmTvKOXMpDXAILzHPRmSJEMoYMoCERn/Qymxxj5NL+Si9fuIV6r4vzhcdw6Po3TftjBosRI9Iquc2iqGrxEqcPj8bY4xcSeGiev7qriyrExHJtq6tBjYX6SgR3VDt7MLebqyWZ8oohAz7wefxoZiYjY7DkI1msQaMY/GMGwp85OvdvLEzsLSNWpuWlMCsk6VfNx+DRWPj1o4YtDdTwyM4kCq5vr1hbwr6NSidM1XshOi4ErJoh8ecCOwyNy3feVPH2SljFxLd+nWiHw7ukqjvr3Fzz99FP85S9/DeaUSEhIBEF43DnDnBUrVnDPHbey8holMd6ezVgDqMzWsPcadKffgUEp5/i0tg88rULGklQTS1o9CGudXmxuHyekmUgdHklEgM7HRXYn3xXXcM3oJL+fQ6Mn5528QmweD39ITSZGHf55H30lBFpjVjuYoNLwYZmVg/Y6hunMzZ9trivnwpQxjNRHUutuoNLlYGN9Pp+UW5gRGcOywoPUud1cnD4i6P01zQSvrSpjitl/E6KjopL5YV8BxQ3WDn0LvijP5dS44fxWV0aho76xCVtJDjemL2wjCgDeL93KOQkTOmxfJ1eRrI5kSfS4gOMcp89AJgicEj0TjVzF+rrd2L1OSl01TDGMIV4VHfQx+6NpRr8nAmGq9hjy3XvJb8hhinY+HrzscW7CLToZphrLKG3brr7hIg4a+0V4UMsUQZW97Yx7JqXT4PVhUjbeGzZV1TMjxoheIUcURSoa3GgUsubPmxBFkeX5FnJqG4jRhE9hiKXjYrjx5yI+PVjL6QHKll49NobrNxzkpwIHL2+1YHP7mJui5exRetKCSTDxw7kjoxCpbhYHPcGfYGgvFt7cX8qK4hriNUqmpcXw0t5iDlobuGdmHOlGFTf9VMjcBD3Pzk3BqJITp1PyyMwkrl5TwNNzU0g3Nt6/XfVGThnReI0fk6bl4i/LWXFp22dvolHOf89Uc8IdtzNhwsTmmvMSEhI9Qwol6oL9+/czY+oknjzJxZ9GRPTadsNdGDTRk07J/iiwurjp50LOGh5BhcPDjgoPDV4fL80a6Xd2zOn18W5uGT+X2vGKIiqZjAsyUpkSGYFXFHl0dw6JGg3ZJiP/2n+Qe8aOYoSx8zGHEk7UPpQoUHOzrkKJ+kMMQMc+BDXuBh7a/wv3jZzTnND76IFfuSZ9EiaFqk3IUJ3bxe76OjyiD4NCySRz6N2o79+zhQsSJxKr9j8zucVSzm5rNecmjW5+z+Xzcsfen3ls1DxeLdjBPlsN0SotSzMmIXrNbdZ3+7w8cWg1tw9vqdrT2blvXxHqh5otpKnj0MnVrKndjlGu5aSYmXhFH6tqcthp289R5qlkatt1Ig6QY9BVP4PeCi9q8Nkp8eSR59qDQ7SQrRlPtnYcSqHx2DsLKYLuhRWFcs2a1Q6+KDuAUaFiQXRqwOWCLVnannPX7EKvkOMTG3MQdAoZ8RoVd05MR2u04/GJfJlXx3v7apiXoOfS7Gj0XZRB7m88PpHbNhQzKkLN5WM6hkSpTVZsbh+nfVzKyZk6rpti5ueiBj7Ya6XM7uWEYTpOH6lnc5mTgnoPZ482oD2ck9DVfXrZvmq2VDh4dHYSTmvflSl9dlchJqWc9w9VkGNxsP7EyVRj4fuievLrXcxK0PPnrI73lSKbixvWFnL/9EQmZ3SsPnXuF2U8f5qGRGPH7/SdrQ38/Ucvv23eRmZmZp8cl0T3kEKJBieSMOiE+vp6Zk2bxOKEPJ44XYWnpveM5CNRGNQ4PVz2Yz7Pzk0h7fDMkKNex+2/H2Tp6KTmnIJA2Gx6qpwu3jyYT0lDAwAL4mI4Jakx0fXO7bu5MWs4MerOtxOsMAg2vwA6Gqf9JQSg66ZkO+sr+aR0P7ePmIlMELhj71r+MXFqn4zlxm2/csvw2ZgU/o11l8/L33av4eZhU3H4PPxQlU+e3cKZCSPZUFtCqtZIpi6Cd4t288f4KWTp2yYiV7nsfFi2jatSGxtndSXI2guDzyrWc8BRQromjlnm0SSrGw20pl4GTp+Lb6t/xqjQc7R5enNX7+4KgyZ6IhD2O7dT4j5EhiYNURTx4sUreshUj8KsiGherj/Fgb9rrs7t5B+HfufukbMDjqG7wmBPnZ1otZIYtQJBEPCJIpevy+H5mSP4pKSI5QUWjk8zce6IKPTK8A05FEWRJ7aU4/KK3DE1vnkypHWyscXpQ68U2vSAcXh8LM+189l+GylGBeNiVPxvj5UZiRoum2DC5GkroGucHiLbhVK9k1NNmd3NNZkdE+x7i3q3h6s37OO1OaP4tqia2bEm0uO67sStNlmpcni5emUF52cbmZusIVrbkqOwu8rF3RvKuWWejrlpKkRRxPBgJQduiibBIOOUdy0UCYls3Lwt5G60En2HJAwGJ5IwCIDP5+Os007GcmAVX1wqgqV3bzaDRRhA74mD57dXkBWhbhNWVF2j5rJ1Obw5dxRqedc3jibX9f56K1aPl0mRLQ/Eq3/byovTJgY1lmDEQajCIJzEQHu+rTjEzvoq7sjO5u7dm2nwepkcEcWfU3t3hm17XQ2fFJVw8/DAwiPfYeHj0v0Y5EqOiUklRW3k6YObmGKOZ0lsY25DrdvJQ/s2ccfwY9p4knIPdz8+N3ESEJq3AMDqcaCWKVHK2hpN7Zuc/V6/i72OQ5wdezxyQdZpVaJgxUHjfoJfFhpDk/Y37EEERmpGd7l8f4iDzq69+/et58ZhUwMKw/ZJ7U3iINTylgBXrsvB6fNx/mgTJ6Wbg6p4Fi78Z08VmysdPDEnGUNE6McOjSJjTWEDr22zEKOVc+mIBLIiNKwtsXLr+mLOGRHBteNjm38/oihy4fd5PD03GUM7IdGbvLGvBJVMxp8z4wN2pm6iffUlt1fkoQ017KlykVvn4X+nxpNx+KK2qy1c+JGFz84zIwgC+gcqALDdFYvb62P083XMnH8sH3/2JbIhmo822JCEweBEEgYBuPeeu3nrpSf4+TqI1gu96i2AwSUMoHfEwZt7qvihsL65+ZAgQH2DwJVZiSxIiAhqG50lwF29aSsvTh0YYdAf9DRu+6e6fSwvK2JmZCwnxCfzr4N7OT4+makRjXH17ZNBu9sQ7pE9ezgqKplJJv+5Bu15v3gvkUpNsyiAxvP8Yel2humimGpqKYW62VJMidPCibGNRnKowiAQ/roff1ezgTG64QgIrKvbhVamYa5xVoeQt1CEQcv+An/WPpzc4q1jq30TRxk7Nj1zi27W1H/HMcbjEQShS2EAXYuDrioVdXYd/lhVgM3r5uS4ln4mnVW4CsVr0B67x4tWLkNn6tnvYqBYnm/h33uqSI8UOG6YjuOGaZs9VKGyq8rFa9ss5FWL+ER445h0lu2rZmulg8dnJzeHHK0urmdbpYPrJsT1WflSt8/H4zsKcHpFHpgT06E/QxNdlWTdU+Xi0V9qkMsEzh1t4Jh0LS/vrqDeKXL70Tp2lXuZ+UoN318cwaxUJdtK3Rz3jpWb/3Yb99x3f18cmkSISMJgcCLJaj988sknPPXEo3x4odgnomAw0pO62k1cMjqatxdn8O7iDN5alM5bizJYNj87aFEAnRsPQ/ViNqsdPRIFBo0Dg8bBCfEpPDRmCialkg+L87hpxBj+k78fg9bht0JMoKoxXXH9iEzeKdpNtauhy2VFUWRTXRmLYjo2pJgVkca2+uI27zl9HtbWHuLfRb+xsa6gW+MLlmGaZD6qXMkW2x4m6yegFBRssm3usFwwxnh7TMqWl7//W2OUmXD47Fi99R0+2+3YjsPn4JDrABCcSGnv/WgvikIRVO2ZFZHIxtpSoOW66yt0CvmgLlN5fJqJT/4Qy03TzOyucnHBV+UU1Hu47rsKXt1qwe0Nfs5uTLSKpxfG8MbCdN48prEfwuXZMZw5PILbf2n5Dc2I07O5svE76Wo2v7soZTLumJDOkmEarlydj8Pj67BM6+dJg8fXfKybSp1c9W05l35TToxWzr9PjOfho6LYVuHi7M/LOGe8hhSzjPM+sJBglDEnVcFfv23c1oQEJTcdDY8+8iCffvppnxybhMSRwFC1pbrNzp07ueiC83j9HIFxSX13elo3bDkS6ckDvTthB4ONJjHQG4KgzXsKJcfHJ7Onvg4ZAiZV599DINHQGXqFkuvSJ/Nk7m+4fR2Ngtbk2GoYoY9A7ud6SFKbKGqwtHlvVkQa16bOYae1DI+3d2rU+/MWAAzXpHBN0rmcEHUUMcpoZhimUe2pZZd9D73paO2q4IwgCEzTz2KTbUOb952+BgpdeSwxncRux47mMQ2kOKh1O0nQKvtUEAwVmozjdLOSm6dHcPecSK7/roIf8hz8UtLAPT9XNy9rd/v47+569la7Or32zFH2Zu8AwMJkI16fyO6aRpGuVchweH3N29Aa7X0mEI5NNXF5dgx//u4Q7+ZU83VeHbesK2J5vgVfq2N4frOFGW8XsirfwSMbarhvXhTXTTFz2fJyHB4f8XoFN0+P4KGjorjkEwvj4xXcNl/PVZ/X8+BiA5tLPPxzQ+Mx/G1aBNNSBC4494/s3LmzT45LQmKoIwmDVjQ0NPCH00/m2rk+Tp8QXhUtwoHe8Br0Fn0tDgYijKg3xUBnhlm1y0Wtx0GRp4JKp4vlJWUUOxydGhyhioN0nYljY9NZVry7zfuiKGLztFiuKyvzOTambc+EpvMsEwQUggyXr6VKidPn4dm8n7ghfR5jDcn0JYIgtCmVKggCi8xHU+ut46Pqz/mq5lt22ndj89q65TUIhShFDApByXrrGgpd+dh9dlbVr2CqfhYqmZp4ZQLF7sKQttmVOAgVg8ZBobuMLENwbvvueqRa01dGbV+iNln93ktHRal4/9QE/jDawNbyxtCtl7bUUWbzcNHX5dS7RN7aUc/Zn5exdGUFdc6O1Xuatt+aWybH8+SWMq5alc/q4npS9CqK7W3VY5NA6O3zOT/JwLJjM1DIBErtHv5vXAz765yc9Wkp/91dz/d5dixOH4sztDy8oYZXj48lQa/gywM2FDKBjSUtjc3GD3Ox7A8m/rHewQ+5LtLMMvJrG8/Bd7mN50sQBN7/QyQxOg9/OGUJDQ1dey0lJCTaIvUxaMUD99+LzlPOncdKeikQ3elv0J9UOV1ED4JeBk30NG+gia5maGvdLt4tyCXXUUOsWs2lw9MZZzJy37jRbK+18GpuHqUOJzIB0nU6Rhr1jDQaUMlklDU4KWtwUu50opHJiFdGMMkchVnZ8TzXul0YFI23lUJHfZuuyB6fj+fztrDHWs3dI2cRr9ZR4LC06bHQnuG6aHIdVYzWN+YrqGUK0rWR1HkaMHXyNfckHKYz5IKcOcaZANi8dvKc+ayyrEUpKJiqOxqF0He31DmGo6nxVlHoymeXYxuTdTOIUzZW5EpVZVDgOkSyqrFUaGe9DVrTvs9BMNQ5tX67GQPkWC0cHZPQ6fq9IQgGK11NrqjkAvfNjeL0EXqyopS8u8vKDd9XcvusSCbHt1Rb+73MyUVfl/OvY2NJMnS85lrfp1MMKl5fmE6Fw8NNPxcyLVbH2hIb54zw/wNqEgc9yUFoLTDUchnnjGi5D1w7PpartWo+228jt9bDMLOCeSkaRka2jKfG6eOxo6MZEdn2Io7UyvjPmUbe3NzAjhwPt8zT8dBiPb8Xt+TJRGhkPHumkqv/V8KDD9zPgw893O3jkOglaq3g7OewP0fjRNf06dORy+UsXbqUpUuX9u8YBilS8vFhtmzZwpxZM1hzrYwJyS3CoC/zCwZbAnITvSkMepoA1zoZeV+9lUd253DzqBGMM3c+a9lVYm1fewx6QxAEG65h0Dqoc7m5YfN2rhieztzYwE28vKJIvs3OPquNnHorLp8Ps1JJhl5HnEaN0+vloM3Ol0WVXDNsNGNNEc3riqLIGb/8yCiDCadXhk6u4LbMGQiCwCF7Ha8WbOe42Ayy9VE8lruR2zJn8FTuJq7NmNTc8Kz9Of655hB1nobmZGMAh9fNM4c2oBBkTDSmMdGQik7e1sjpaeJxh2U6qUoEkNtwiN9tW5hrWIJO1jdJnZ1h81r5xbaWY0zHN78XrBejtTBonYjcOgm5s8pEra/DW3b8xoNjJqOS+fe4diUKQvUEDiaPQW97XHNr3Sz9roL3T0nApO54ffq7T2+vcvDvPVVUO71ckBXFMSldV9vrzj061GpE7dlV5eK+n6t556R4lHKh09BbURT5rdjD9OS2F/wFn1fx9S7YsPF3Jk4MriiFRO/SnHz8LxUmbf8KA4tDJOoal5R83A0kYQB4PB5mTBnP8Ym53Ht82weaJAw6Ek7CANqKgzq3m+t/38aLUyeiUwQ2+LojDJr30U2B0F/egebl2hlhDV4v9+zYw2iTkVOS4jvt9yCKIivKKng/v5BYtRqLx4MMEIHLh6czwqDn9q37mBUZy6mJqc3VVG7e/itPjZuOzdn4vfpEkUcO/IpaJufcpNEkHxYAh+x1vF6wg6UZk3jm4O88lDUXhUzW5tzm2Cp4r2QLN6TPI0LZ9pxbXCrqPQ1ssebzuyUPk0LDwshsMrSNfQmCEQZWj4MGrwaVrOtluxIGABXuSlbVbeBY00n9mhQriiI/1C9nvHZyswehiVCrFAUSBo3LBa5MZNA4eOXgXryiyNXDO5ZVDcZL0J3wwMEiDEIRBS6vyFmflmJQNV5zPlHkorFGTsxsW5GtzObhmpWVvH9qfMBSrf7u1Veuyufvk+N4+Pcyzh0ZyeKU4IymYO/VPRUFTXyx38baogYePioKdYQ15IpN1Q4fi9+qQp+QzS+btqHo5Hkg0TdIwmBwIv1SgCeffAJHVR63XdC/IUQqs3VQioPeDCfSGu09Fgd6va1ZHJiVSubHxrDTUs/0qMgu1uwenRn4/kRDf3sHAqGRy3l0whi+Kinjmb0HqHK5iNOomRoZwWiTkRqXC71cwfgIE5VOF+/lFfLytImo5S1i2erxcP3v2/jX1Ik8NzWb1/eXcv22XzgzKZ0UrQ6f2CgeDBoH1obG8otKQcYJsRnNogAgQ2cmUqnBJ4rMjEhgXU0xEw0jmz8vcVp44tAa7htxbAdR0IRRoeGoiCyOisii1FnHN5XbKHHVkq1PJkYZR5I6miiF0a9B4fZ5eKv0O0QUnB17HGpZz8PPYpUxjNSmsd2xmQm6KT3eXrDsbNhGvCKxgyjoCn8hRBa3olkc1LmVfkuX+mNDdQU2r4ebRozt8FlfiYLBQHe8BN8etHPKCD1XTmw0ZtxekfO/KmNklLJNuM2da6u5b15Up/0b/N2rzxwewQ9FVv41P5WlawpQCAILkrv2HLQ2+Puq1GlrThmhZ1uFi+M+KCHWJPLOWSa0yuCNyyitjOlpMtYd2stTTz3J3/9+ax+OVkJi6HDEC4OcnBweuO9evrkS1Aop4Xgg6A1x0JrxZhPb6yzdFgadeQu6ore8AhC8GIDg47YFQeDkpAROPtwtuqzByaaaWr4uLiNGrWJdZTUvTptIrEaNSibrYFQbFAoWxsXya3UN82NjODdlOKcnpvFRcR5flhZwX/akDutckz6Je/et44rU8Vi9biaZYpELMuZGJbGuppjjYjN4Ive3NsIgXmXkmtRZvFeyBQGBs+LHka4N/H0mqBubHiWqI9htK6beewiFIEeODJ1MTaTSSKzKTK3HRpXbgkf0sjByIh6flnfKviRCYWSqcSwZmqRgT7lfJurG83HVN1R5KohWxHa9Qi9Q4ipkoem4Nu915ikINaegK2weN28XHODJcdPavB/sNSmJgnbrKQRs7pbvSCkXePaYGK5ZWcGyk+PRHe7sXO/0BUxAbj+O1uJgXamVc0dGoZbL+Me8VK79qSAoYdCaQHkInXkLimwujEo5wfwqRFFEBG6fFcGdxyr4Kc/NZZ9a+M+ZJpTy4MXBZeNN+MR67r/nTs4440yysrKCXldC4kjliBYGPp+Pyy46n0tnCszK6Ogt6I/+BZLXoHdo7TUYazbyfkHRAI+o+/SGdyBY4jVqTkyM58TEeAA2VDWWSCy0O3D6vOTZ7Iwwtv2ep0dF8E1JGfNjG8N2tHIFf07NDNhF2aBQclXaBFZXFaKUyfii7AB/Gz4dl89HYYMVo0KFXq6k3GUlTtW4L5kgMNmUzGRTMlssxayvzSddG4koitS7/YdA1Xrs3JB6LIIgUONSUOSsZI+9gAOOYuaax2LzORijTydGaWquNmRxK7gs8UzsXgcfVKzAFL2AKGX3u8IKgsDxkQv4sOoLTos4u19CiszyCCzeOqIU0QEFQW+LgSZEUeSZg5u4MiMLrbzlcSKJgu7nEyxO1/LC73VcO9ncbAQnGRTcNC2Ca7+r5J+LY9ArZbx+QhyXL6/A7YUFaZ1PZjTdr0VRZG+tk9ERjb8hvVKGyyfi8Ynd6hwdbKJygdXFDWsLEYCbZxo4Jt3/8qIo8uk+G7uq3HyfZ0evlDE+SeDW+TqOzlDx4U4n504Ivkzx9GQF96+SceE0H5df/GdWrd0gdUWWkOiCI/oX8uKLL1J4YAf3HT94m+QMFXozVlivUGDzeNrUyg53gikz2rxsN3oLBIteoeDWbTv5575cbsvO6iAKAEYaDWyoquHlA4f4srSgy14FAJm6CI6NTefcpNH8MTGLW/as4dfaUq5Jb0wKtHtAhv/fYamrnhG6aHJsFSzd/Sk17sDGpCAI1LmVyASBVE0sx0ZN4ZSYWXxauY44ZQTxqog2oqAJnVzL6THH8HnVjzh9rkCb7xK36GG15SdGakb3uSgwKxtfCaoIPNT6FQUmla9PREFTyNz/SnIYZ4xhojkq5G0MRVEQqBRpKMgEgZMz9Xx+oO35OTpVy4VjjZz7RRk/FzrQK2W8cUIs/95h4fY1VazKd+D0dH7Pc3pFDEpZm2tzQpSGHdU9u590Vuq03O7mylX5PDYribcWZbDikIObf6yk3tXxurS6RV7YbEGnFPjqD4k8eoKGM8eoufxTCwdqvLy00UFDF8fYGkEQOGe8hky9hry9v/Pyyy93+xglJI4UjlhhkJ+fz21//ysvnOnDoB5YYTBYm531dpWN3hQHI40GcurD+7x2Rwz0danHCzNSuWp4Bo9NHMtok//wArkg8PyUCcyKjqTB6+WRnO2dirAfqwq4dc9PfFGWy10564hX63lmzAJuHjYFlUxOrr0WnVxFjErvd/19tkpERP5Xuo1r0+bwUfmmDst4RV/A5MRkdQznxM1nWdmPnR67WWEkQ5PMNltOp8sFwuq18ln1l4zRZjPH1LtVUJpEQOtXExGKCKo9Nc3/N4mBvvIStGZrfQWnxmeGHH7XG6Ig3BKPe/N+ePZoAx/ndDxHC9K0vHNSPB/m2Ljrpyo0coE3T4jjgrFGtlU4Ofmjkk7H5xVB0e53MifBwLrSvhNpMVoFJpWcEWY1eqWMR4+O5syRei75upzzvyzjllVV3PlTFbevqeKy5eWcNlLPTdMi0CpkjNVFMidNySfnmlmQoWRrqYe/rwjtPJ87Xs0XOS6eO1PG3/9yA/n5+X10pBISQ4MjMpRIFEX+7/KLOWsCLB4l5RWEEz3JN2gdTqSXy3EFMZM9EPRF7kBv0VWZ1yZiNWpiNWoy1Ql8VpLP87m7uT5zTJtlmhKQV1cVcF/WHLRyBYWOeh478CuXp45nlKFxlvmtgv2clzgp4L4OOWqo8zRwc8ZReLwGNLJC9tnLGKmLb16mym0lShE4tC1GZUYp6/x2V+WuZYNlK3+MPQ6f6EMmhDZvcrAhD7fowYv3cLO47k04hNIszaTykSYzsc+5u1eEQOuqRO2xuFQdypbGKLVUuxuIUQUvDIaap6AvGj+a1TIMSoGieg/JxrbXrUkt45ljYnh6Yy3v7bZy3hgj2dEqsqNV7KpyU9vgJULT+FxbccjO7CQNxsMVjhQGK0p12+94apyON/dU9foxNCETBGbF6/kqz8LJGY1hevNStMxL0eLxiRTVe2hyAqQaFaj85BAIgsCJWWoeWqznru9tzE5V8qfxwYUUKWQC6/LdJP2i5oxxHq665Dy+/u6nfq0cJiExmDgiPQbvvPMOm39bx6MnBV6mP/ILWjNYvQbhyn6rjREG/zPQXRHsLH53t93lMv3kHegpTSVfT0tMw6BQcuO2X/n7zt/4646N3LHrd944mM+O+kq8otgcf56iNXJhylhWVxfyU3URG2tLUcnkxKv9eyd8okiyxsRfMuY39ypYFJXNurr9bZb7uXYfk4ypnY7XI3aeqBmtjOCyhLMocJbydtkXfFm1mlJXZVDnAmC8fiynR51MpbuKD6o+YZdjG24xcFUff16ArpKG278ADHIdVe5a9tgPNnevNik93Xq1p6uyr8kaA8UNR+69qy+7wZ892sD/9gbe/g1TzXy8z0ZBfcv3lmFScLCu8f+1hQ6uWF7BgdqWa7CmwYtcENqMW6dozDPw+vou9PLqsTG8uaeqOam6wePjvd31yAVINyvJjGh8+RMFrblmhpazxqq57NN6dlcEFrHteep4Aya1wMNHR7Dltw28++67PToeCYmhzBEnDMrKyrjxumt47jSRSJ00Y9BT+uLB2BshAnavt9M+BsHQmwIhmG0NBjEQiEvTR/L4uKk8NGYKT4ydxp2jJjBCF8GmujKOjx3WZtmNtaUcsNeRY6tmbVUlf4yfEHC7MkHg5oz5aOUtBupOWxHjDSnN/9u8Tg42VDJWnxxwOzuteSSrY5r/D9TULFYVydHmaVwQfyozjRNYb9nCV1VraPA5uzwHAFqZhpnGaZwVfRoRCjXf1X3Nmvpv2O7YQJF7D6JQ26UAgMAiwB9mlZdrUk6g2lPG1zXfdzrr39tMNMXybcWhDu8H6hMyVLwFvZFL0BULUrWsKXAQqNWQXCbw2NHR/H1VVXMo31GpGu5bV82rWy08vbGWG6eZqW1ovHaKrR5O+biU87MNzccAUOv0EqGWs72HeQadoVHIuGpsDK/tbywKoZIL/GuzhUu+KcfiDN7TJQgCz59kZGycnBPfrg16vT+OVbO/2kukVsY/zpRzwzVXUF5eHuphSEgcERxxwuD6pVexINPLaRPCL4RI8hq00F1xoNfbcPl8KHux8kRPBcJQFAT+DD+VTI5CaExs1MoVTDHHc1HKWOZGtS0B+nNNMZFKNZeljuemzHHEqUPzzm23FjJe3yIMVlTt5Liocc2Jx+1xeJ2sqt3G8VHTOnzWnl8s2/hP2ef8u+xTnKKLM2IWM0afyefVX5Pj2N/l+k3IBTnZulH8KfY0jotYxEjNcAQEfqz7iX2OAwHXCyY3wN8sv1qm5PjoaTT4XDi8jSLGrHQH3YegO9Q5tYw2RBGv1vsVB0OVvhYETchlApPi1Ly/xxpQHGRGKFmQpuX1bfUAzE3WsuzkeAwqgeePjWVKvJqNpQ1AY2WjSXEqRkS2/EYe3Z7P0Z/mMCpCQ7K+5708OmNxipHfyhqvTZkg8PeZEbi8cMFXZeyqCj7hX60Q+PNEDeU2kWp71+VaAd7Z2sAPuW68PpGTU80cPczNdVdd0q3jkJAY6hxRwuDTTz9l5bff8OxpXbtMFZGSkR4sffWg7K44OGSzk6Hr/QY8oQqEYL0EQ5FAyaiFjnocXg/Xpk/q1nblcitqGShljcK+xm3jYEMFY/SN4sOfIdzgc6GXq1F1kWNQ7a6jwFnKBfGn8KfYE/i+ZgNV7lqGaZK5JPFkDjj34iD0WUaVTEW8Ko5s3ShOjTqRXOchfrduaf68M69AMOE+TZiVbiYYEihy5bc5D00Cof2rtzg/OZu11UUctNV3utxg9xb0h5egPbfMjKDQ6uVPX5SxqdS/1+ryCUa+yW05tzqljHOzjSQZFMxP0bC+qAGHp/HaunaKmRc21zUve8fsSK6abGRLpR1vH1dxkwkCsVo5+2oaRcCJw3U4vSL3zYvi9jVV5NUFf02enKVGp4T3dwQnKGanKrliqgb54ZKsTy6KYOWKb/nss89CPxAJiSHOESMMamtrueaqy3jyFJF4Y/iGEEleg56zv97KSGP38guCoSuDP5RKQ4ORQGEiweBF5O6RszAoWmYnQ2kKp5er8CIiyOpRK+y8XvwT58XPapNI2N74jVQaMSn05DpaKrb4M7T3O/IZqx+BXJChk2sYrRtGtbvRiJILck6Mms/Kmg1Bh/j4Qy7IWWI+BlHWwDrrGgzKjjOewYoAf4b+OEMyv9fnBZxh7mob3REMckFgacYk3jyUF/K6g4GBEARNaBUy/jo9gn8ujmXZ7nqu+racfEvb70gmCKgVMr+VwQRB4E/ZRt7b3Th+u1ukrlXojkImcNO0CG6fZ+Sm9Yf44EBNUNdOd7lhqpl/bKprHvcTC6J5YF0NTy6I4YYfKoMOKxoeJWdOmpINhW7W5Xd9zU5MUJBX17LtBIOMRxfruPqKS6mtre3WsUhIDFWOGGHwl5uuZ1ysg/OnhV8IUXsGozgIJ69BqcdCkjb4JjjdxZ8AGOg+BOFAZ6Ur07UmRhtCr3nfmhNjRvFN5V5eKfiFM+NHk2UMvL8mY/e4qKmsqtnmd5kmI7zQWUqKKr7NZ65WycNGhZ4ohYliZ1uvQbBCoelzs1pkYcQM4pRR/KfsU5aVfcW7ZV/ycvEHqOQdr/dQjPcRBg3DdAZeK/ker1CHSeXy++qMzvZlcfkPN0lQ67H67Dh9jUKnr6/v/ipVOlCCoD1xOjlPLYzhpmkRXPddJXurXe0+l1EeIKzmjJF6Pttnw+UVeWh9DY8viO6wzJhoFe+fmsDWujqe3NJ3sfdZUSqcXpFDh70DwyOU3DDVzN9WVXLGSD3XfVcRdBJ0rE7GPQv0PLzGxve5nV/TcplAiknWJmH5/Alqxka6+OvNN3b7eCQkhiJHhDD4/vvv+eB//+WFM3yDpkSZJA5aCNUIyDbr2GvpfCy9abiE2o9gMNMTb0FnhOI1mGRM4ndLIcO0UUwyNYYQdWX0mhRu9IrOb3eZulhqvCWYlB5q3BZ22w+Spc1os8wIbRr7HQWdbsdf4rA/wTDFOIbz407mT3EncnXK8YzRJ1PptjR/HswMvj+D/8z48fwhfjz/zP+ZNdW5fmeAQxEKwTI7Ko711RW9sq1wIFxEQWtGR6t44dhY7vypuo2HIMWooKjevzBQygWOH6Zj+UE7Zo0MeYBnYKXDy95qNxdP8d9ZvLe4foqZ539vCWean6rlpSWxfJ/nYHuli49zrF02agOYm6Zke5mH/51j5vVNDn4p7Py3snSGlhd+abnPCILAc8epeH/Z23z//ffdPyAJiSHGkBcGNpuNKy65gAeOh/So0A5XyjMYnMyINfJbTW2Xy/W3kT7YRUEwhNroqjsIgsA9mcdyUuxov5/7M3Z32YpJUJk7Nbaz9Wl8VfUrrxZ/w7c1q/hzwvwOvQ+2WPcy0ZDVOwcCxKgFIlSNBl2M0kTVYWHgb4yhzPxPiNDw2OjZWHy1PFewCq9Qg1ntaH51te3uMMpgIreLPIPeoD+8BeEoCppIMSo4bpiuOeEYINmgoMgaOPTsgrFG3tpZz8JULT/md/z+axu8XL2ygqcXxpBiVPTp8R+q8zCsXVmueL2C/5wYx5dnJXKwzsPsdwu5fU0VB2sDG/spZjmlVh86pcCLpxi590cb5bbAHrvRsQrqXSK51S0CKj1CzgMnyrnyoj9hsw3uHBgJid5iyAuDO++4lUR1HVfNCf8QovZIXoMWQjEGTEoFRrWP5SVlXS7bH8b6UAkd6itvQROheA20cmWX3j+TyoVO2cBH5b+xw1bEkuhxLfvyIxBilCZuTj2TK5JO4MrkE4lSGtvE+zvESnQKGWaF/54LgfCJYnOloDbja5dDYFboafDVtRlXMMZ6a4O/teGvkMk4PzmbPyeP5smDv7XxHARax99+gxUK+Q4bGTr/FaYGU+JxOIuCJi4db2TFIXtzD4N9NW46i8AxqGQsSNWyutCBRtHxd/NDvoM/jjK0qVjUV7kV/9lZzwVjO/6GBEEgyaDgsgkmRkWpODfbwM0/VrK30r/g8fpE5IctGKNaINEg48u9nZcVvvNoHfevanstXj7WTLyqhrvuvL17ByQhMcQY0sJgw4YNvPLyy7z0By8y2eAIIWqPJA5aCEUcPDJlOOurqvlvfmGXy/al0T4UBEG4k2OrwOHtOLNY6qznkdwfGak3cmPGTDSyjqVM2wuEzroj/1izhWMiJgZdKajWY2FF9TreKvuMZeVfkWNvTM4NtE6hq5BMbVzz/4EM8s4M+tY0hbdNiFIzKyqSn+r2dxr2FoxQ6IyDNmtAYdBb9FduQbgjEwQent9Yzefen6vRKwVOG9F5JbZrp5j536kJHJ3aUeBXOXwk6P1PnvXm/XxDcQNjY1SY1IFNj2itHI9PZFSUipePi+PGb6wcqukYJmVUC+RUNb6/tdRDlFbGpVM6n7wYGa0gRi9jfUHLb14mCLx0toKX/vU8v/zySzePTEJi6DBkhYHT6eSyi87jtkUwKm5wH+ZgFAcDjUImcO/Y0RTaG3jnUOcx4X3FUBIFwXgLeiOMKBSvAYBX9PHvok08evBHDtirsHlc7Kgv5eOy7bxW+CtXpcxkXmRjg7XOjNuu4vlrPVYafC4S1P4Tp/2JhQ2WbaSo47ko/jQujD+VPY49bLcHSIBWuMh1VDBcG9s81uaxhSgE/Bn+Zydn8HVZIRa3O6jlW++3zTg7EQeFDhup2r6rBtYfDAZvQRMjI1UclaIh2aDgrzMie5Q/V93gJUoT2KveW+fl24N2zhzZ9TWiVwqsPGQnTifn+YUJXP1lPSXtcijmpqnweEWWbWvg7h9sXDszuPvPbUfpeGSNrU2S8wiViVsXybj0wvNwOoNrZighMVQZ3BZzJzz04AOonGXctKBnIURSnkH3CAevgcFg5y+jMtlntbKqvLLzZXvZiB9KoiCc2WQpYk5EOn/NOJrllXt5pfAX9turyNTFcNvwhX6bp3UalhNAIOy05TPFODKkscWptESpFJhVXqLVcF78MdS66/msYn2bxFGz0s1+RzmZ2jgEQeggCvzR3qjvtHyu1kGE3sm1WWm8VrCzObSt/TUaaFuBBEnr9wwaBw0+L0qZrM+u/b72FgwmUdDElRPNXDHR1OPtRGnkfJVra3Nd+kSRH/MdrCtqILfWjUzf8/yRRIOCiiCakr28JI5fS53c+EMl8To5/zzRwGWf1lNpb5tD8NgSA5/vcXLdTB0ZkcE966N1Ms4co+Zfv7a9Tv9yjAKlLY+HH3ow+AOSkBiCCGJfFi0eILZt28asGdNYtVTGpJSeax9PTd+6x4PFVRce4wgFp6VvxuyoD66Bmc2m5928AvRyBaenJHa5fE/j6IeiIOgvb0Fr6pxdb8/t8/JQ7g/8JWM+RkXgSipmtSPg9gKV32wex+FOystKf+TkmJmYFME3zttmPUipq5olUVPbvL+hbg977YX8Me4oEjWN96e3S9axKGoMo40t229veAdDV9ff8/tyUcpkXJWZ0eb9QN+xv++16Vy2H9+beftw+XzcnJ3aZva6N/ILjvSE4/7gje0W1hY28I9FMeRbPNz7czUzEtWo5AKlNi/7a9xEa+WcOFzHvMhY9MrQn62rq8vJt3i4fEJwYubrAzY+2GvjjT9qyanycvt3Vj7+kxmlvGehwaIo8sf3LTy+xMDwqBZBsd1mYeELPn7ZuInx48f3aB8SYLFYMJvNVDyswaTp33BuS4NI7O0NZGVlIZfLWbp0KUuXLu3XMQxWhpww8Hg8zJ4+iWNi9vHAib2XcCyJg+7TF+IgWGFQWKPklq07eXnaJGRBuNp7IgyGoiiA8BUGbxf/jkmuxuJ1MjsijRG6mC5DkborEP5Z8B0XJc5FFIOfnfWKPj6v3IBCkHNS9HRkQoshVeYq4KuqrSSrI1kUNYY3i9dy/8hjmj8PVhSEes2JosgL+w+ilAlclTmsw+ehCIQ24zg8xncKDlDvs/HXUSOaxcFgEAZHuihoYl1RA3evrWZYhIL750aRaGibc1Ni9fB1rp0f8h3IvApun5rAcFPw5U3zPNW8vbOeB47q2EshECsO2VmWU8MbZ5g49wML/zvb1GNhAJBX6+XqL+p56ywTMbrG36Yi0sodX7pZXZPNul9/R6HovFu6ROeEgzCoq6vDZOq5V+1IYsiFEj3zzNNYynK549ghd2iAlG/QRLCGwgv7D3LNiOFBiYKeMFRFwUDRlYG/y1pGvcdJna+OiWYTbxZtwKTq+poItN3OwotcPg9j9cl8VrE5pG7BckHGGbFziFOZ+XfJSmzehsYxKN1k6RO4Ke04JhnTeKdkPbMjkv2OsUMDvVZhQN255gRB4NqRw/GJ8MDOvVg9bZOgA2032D4df07NJFmr5cm9+0MeWyAkUdB/zEnW8O0fE3n1uLgOogAaQ4Eum2Di3ZPjefQYM39bV0ReffDlbdNMCrZXuvx2aQ7Ekgwdl07RcuFHFsbFybtsZhYs6RFyHlti4JJPLM0dlz01Bu5coqCuZCfPPvtMr+xHQmKwMaQ8Bvv372fi+LF8dQXMGTb0vAWtGWyeg4EIKdpcKvLvg/k8PGFMUNvqjrdgqAuCgfAWNOFvdt+sduDwergr52fuHTmbB/Zt4LHs+Tx+YCMKQUamPoLT4jND3n6eo4YD9iocPjd1LhGHz02V20qDz41SkJOkjiRbn8hofdfhaG32cTgUKb+hnOVVv5GuNXNc9DjMrUKSAuUUtDbEg7nOQp2ZX19ex7M7S7lkWDpHxfqfwQ3Wg9B+rLds3cnfRo0gVqPuscdAEgbhS2G9h2tWVvD0rHRSDZ173aDxXL+9s56caldIXgOV2cqqgy4eXG3D5YU1l0X2ZNhtWHPIxWd7nDx1fGMJVUWklZ9zvZz8qpetO/YwYsSIXtvXkYbkMRicDBlh4PP5OGb+HMbIt/Ls6b17AYajMABJHEDnwuCmDflcnZlBsi44wzVUYSCJgsPL9UNTs9Z8UJJDvFpHmsbI1xUHuSZ9EpvrylHJZKyuLiRGpeWPCVkYtQ1djrPOqUUURe478B3Hx4xCK1eglSnRyBSoiUQr79rYCYUceykrqnYSpdTzx7hpRGtakilDEQW91RfA4fHyzK4ialxubszMJkLVsaQrdC0Q2o93dXkluTY7144L3vjzhyQKwp98i5ulKyt5bk4GSXr/108TTef7yV9rUMoFbpgaEdQ+mjzlB2u8VDt8TE3quJ93tzawOFNFvCH0aIHLPrXw17k6smMbvSSKSCs3fulkt3sGP6xe16OKT0cykjAYnAyZeJtly5aRu3crDxw/0COR6E86MxxqXC6StJqgtiOJghasDm3YigK7182vtSXMi0zml9pSZkY0zuBPNscx1hjD1WkT0Su9PJT7M1WutsIgUMWdQ858xhjimBWRxkRjEln6WNK0kcT3waFl6RK4NnURY/XJvFi0kobD/ReCEQV6va351VtoFXJun5DG+cPj+fv2rfxYk4+/uaJQQ4zmxkSxrrLK77bCBUkU9A5pJiXPLYrhhvWHqJbVBrXOX6ZHUNPg49ENNSFdI8Mi5X5FAcCKAy6yn+veNXfPAj0PtGt89sBiFQd2buTdd98NeXsSEoOZISEMPB4P9955K3cv9mLsZ1U6kAy2fIOBeBD3xUzPUBcFQS/bz6LA4nFx/74NXJwyFpkgsMdazVhD44x0k4Fq1DZwTsowrsjI4t7dW/msJL9DPHN7Q/abikOcnpDid58mlYuDzjw21B3oVSP3qOh4Towdzf/KtnWr+lBvMynKwBvzRpFb7+C2nVtBbfG7XFe5DU2fKWQysowGdtV1f8ZfamY2eBgWoeTphTFctaKCOkVdl/d6QRC4d24UBpWM29ZU93j/O8s9rC9w4/TC1zmh5yCkRchJj5Cz4XDjM0+NAaNG4J7TBe67+1Y8Hv9NDCUkhiJDQhi89dZbCM5qzpvae3kFEn1Df4kDt8+HPEhREIoxLImCw8v2syiodjXwwL4NXJY6jrHGGACcopcYvduvMZ2pN/LMhOkIcid/2bme/da2hm7rdQob6nGLvg71+kVRpM7tYFt9Cb/V7+Ofhcsp9xQ3N0rrqhNwIJrWm2JKxuq1st9W63e59t6CvkYlk3F9dgoXZMZz3S/7EdSWgPsNJvn55KQEPsnvvH9IIKQQosHHiEglTyyI5orl5VTavUGd42unmPH4RLZX9Kyp2Pe5Ls6foEGrgCd/tuPxhS7ir5+l5bkNba+7c7MViLZS3n777R6NT0JiMDHoa3G5XC4euOcO7jnGg0I+6A/niEBtsvZZMnITZQ43CZrgwoiOdMJREKyrKeagva75/82Wcq7LmEy61oRB46DW7SJaHXgioMloPS89hZnRkbyff5DbY7PaHGuTOLh75CyePvg7syISsHndFDqs1LgbmzCZFRoS1SauSpmJXJDxfulWvq3M4U8Jk4hW6QKKg67KnzZxVdoEHsvdyMOj5mFulxMxUMyIMSGKcN0v+/nnzBFtxIHN1rZrbWtx0P46mpog8Ox+O15RDFqkgyQKBjOjolQ8PD+ay78t580T4og8fK47u99fNsHEq9ssPL0w+LKn7Rkbp2BbqYePzjWzt9LL3T/YeHhxaM+YKK2MCltLzo+nxoAi0spdpwnce8/t/PnPf0ap7DyHQkJiKDDoPQZvvvkmap+Fc6Ycmd6CwRZO1F/8UFrDWLOxy+WOdG9BuIkCr+jjpbytbK+vZIo5rvl154hZjI1UNhvzX5UWMMHUtjJJ0yy2Sm3joV17KW9onIWMVasosDv4uqSMfFd5h31mmmU8kDWHKKWWKaZ4rsmYxGPZs3ksezZL0+ZwZvw4olV6IpRarkqdxUmxo3ml8BfeL9nanCPQniaPwv6Gg/iEOr9eBrPaQZRKw1FRyXxedqDDsTTRH96C9syMNXFlViLX/bIfh6elU21nOQ7tfx+CIDA71sSGCv9hSf6QwocGP2NjVNw7N4pbV1c1v6c2WQMKsuxoFUX1nuaSof7oqtDGvDQla/PdHJ2h4sppWgxKgb8sr2dHWfAhQCsPuDhrbMfJpLNHKVC7K3jzzTeD3paExGBmUAsDp9PJg/fdyV2L3MhlR05uwVCgL2ftiu1Ofiyp5ZSkhD7bx1AglATj/vIUPJ27iSx9JFelTSDbEN38SjG2GA1v5e+n0uXk9MS05veajNIGr5e/bd1JolbD8/tzGz9TKBhtMuD2+fjX/oNstRV22G+UzsXR0SmMMUZjUnQ+25+hjeLWYQsYrovikYM/8rulKOCyDT4P1+3+jBfy15HnqPG7zImxw9jUyTYGipmxJq7ISuSK9Tn80s641+tt+FR1fFpYwhN79rGv3v/v+bTUGD4vqPL7WXuk7sZDh0lxanRKGVvLgwsROnu0gf/t7f53o1YIGJQC1Y7G+8Rt83WcOUbNLSuslFoDCw6AKnvj5zlVXsbFtZ1g9NQYkMsE7j5d4MH77sTp7FnIk4TEYGBQC4PXXnsNs9zOWROPTG/BYKcvHtKiKHL/1jz+MnJ0l03NetLleLATjlWHXD4vFo+LY2JaGfztqt58XpLPG3n7ybfbuG7bL6ytKmsWBXVuN3/ZsoNz05K5dFg6MgTeOJhHWYOTG7IyOS05kRuyhnPPjj24fR2NBX+5CoEaogmCwHRzKkdFDqPGHdiTNCcinduHH8MOaynvlWzh0dxGIdE6IVomCChaTWyEk2dqVqyJZ6aPYFVpLZf+vJfVpbX8WFLLjb/u5y8bc9FqnPxhuJmPSg5x7aZtfF9WgffwsflEkc3VVgpsnRtTWqNdEgVDkFtmRPD4r7VBLXtKpp6Vh3p2DSzKVPHD4eZngiAwN03F08cbuPqLetxe/zkH20o9TH+5ho93OTlU42VYpH9b4o/TZZiEal5//fUejVFCYjAwaIPyHQ4HD91/N8+e6EEmO7KFgcpsHXQ9DZro7XyDTwuqmBCpZ5hB3/XCIRBOxlpPGcimZZ2xx1pNtiGq+X9/hvqJCSmcmJCCQpBRLVbxzqFCjhONfFNSxkeFJdyYlcn4iMaa1XeMyWJdZTX/2n+QCqeTDL2OAruDt2ZOIVLr7BVhWO9xUu6yMTsiDV2AngfZhjjuylzMywUb+EP8BHLsFXxduYNZEYlMNscyLjKwh2IgwojaE6tR8vfxadS6PLx9oAy1XMZt49OI17aMe1zkMCwuD/87VMGVGwuZHGlme301C+IjeHPuqIDb7q/QIUkU9D+JBgURahkHat1kRnQem6+SCz3uTp8RIWNzSdvQodGxCi6apOG272w8eVzH58xLGx189WczL2908PleJ48u6biMp8aAAiv3nO7jxvvv4pJLLkGrPXInlSSGPoNWGLz00kvEaxs4bfygdnpI0Lvi4OvCKp6dMQIkj28HwtFLcNBex6+1pVS7G9htreLq9IlA4LKdCqHx927QOtCJWnZb6rlh83bGmU28NG0iSlnL/UApk3F0XAxHx8Xg9vnYW29ljMnYqQFi0Dg6HL9Z7fDbhRngjPhxbK8v5bGDqzgxZjQzI9L8LpekNvGXjPk8l/czx0aP5IKU4fxuKeP7ynz+XVRDubOh+bjClQiVguuykwN+blIpuDwrkUtGJvBrhYWrI0diUgZ+xEj5BEMbl1ekyOphmLnvzQyfKPLO1gbGx3fc1+nZatbmufk538XctLYivMTqIztWwTMnGFgyQoW2k6GePkXGQ1/U8fLLL3PjjTf28hFISIQPg1IY2Gw2Hn3oPl483YMg9K23IFy7Hks00r7z8fhIA3vq7IzWdN7p8EgLIwpHL8GmujI+Kt3HnxJHEaXScGHyGPQKZZe1/JuMZ5kgcEJiPPNiokjTt1wHbp+PQrsDjVyOVi5Hr5CjlMkYZzZ12E5vXAfjjQmM0sfyddVmHj64h7mRSRwTnYqhXa6CWQ0Pj57FS/lbKSwq46KUscyMSMSgcfjtkRAO3oLuIBcEZseZO12mP0WB5C0YGD7dZ+PUEfoeewKCocou4vbBtTP9/57/MlfL31fY2ggDt1dEcXhogiBwYlbgqkhNXoN7T/fxfw/dx5VXXolOpwu4vITEYGZQCoMXXniBNFM9J40JriTgkcBgDieC3vMaTIkysKXayuikXhjUYcJ5FjcYujJ+ByJs6PvKfNbXFHPPyNmoW4UCdiYK/H0P56W3bUzm9vn429adxGvUeEURh8dLjdvNv6ZODHpsgbwGXXFRylhcPi8/1xTzeO5v6OVKjotNZ6IxtrnRnlIm47qMyayoOMT9+9Zz/5jxgAJBEAb9dRYskig4MvjfHitvnRQX0jq5tW6GdxF25I8Km48UkyxgQ8tEoxytEvZXeRgR3Wj2KOUCrhD7HZw8SUbK5xZeeOEF/va3v4U8TgmJwcCgEwb19fU8/vA9/OcyeZ90tZUYOIIVB2tLrMxJ0OO0+s8jkCElHTcRjqLgw5Icihqs3DZiZpv69qGKgvb4RJG7d+zhlKQEFsXH4hNF/nVwD2PVweWbuHxe1lVXMNpgxoD/8+IVfZQ67SRr/F+nKpmchdGpLIxOpdRp49uKQ7xXtAe9QkmyxkCKxkiyxsCMiESMChXvFeZyeUZWh+0MVm9BV0jhQ0cGB2rdpJsV6JTBh/o+sSCaG76v5MPT4kN+tjs8Imp55+ssnaHj8bV2njjOgMsLagUh9dcA8NXKufcMH5c8+gBXX301BsPgnYyTkAjEoBMGzz33D0bGuFicLHkL2jPYvQbQtTh4c08VL++s5KGZScwxdzT4yhtcxGp6rwnNYJ7FDUdR8EnpPiweF9dnTG7z8O+pKAAocTRg93pZFB+LoLZw+6Zcjoo3c3ZGHLZWdnal08lHhSXMiY5ifETjedpvtfDsgV3MiYpjfXU5pQ0O4pQmJpvjGK41E6fWUely8M9Dm9HLlWjlCi5JGUeUKnATvQS1notSxgLg8HoocVopdFjZZqngm/KDWH0Oqt1OLs/IGtTXWTAMhCCQvAUDx5cHbBw3LLRQmxSjgllJalYVNLAwreO9yVVnCNi3Z1ycgsd+6vwam5CgYHy8gsX/rsXuFpmVquSSycE3wWxqeHb8eBmZkTaee+4f3H77HUGvLyExWBhUmbt1dXU89cSj3Hem5C0YygR6oO+qdvBLmY3lJ4/g3zvruGfLIcodLQ2j7B4vH+dVMlYXH3DbR4K3wOrQdnqc/dmXoDVb6srZa63hkpSxQYmCpoZlwZKk1VDncnPHzq1cvi6H84fHc3ZG21AGURR5cFcOWUY9/9h3gHp3YxWTL0oLuHZ4NuelDue2rAn8Y8JM/piYRb3HxZfluTyy/1feKNjBDcOmcOfIWZwan8kTuRtZXnHIb35Ae7RyBcN1EcyPTuG85Gz+ljmdp8ZP580p8zosO9S8BZIoOLL49qCdzWVOFqaGfo+5aJyJf28PviFeE2qFgCiC09P5b/G6WTr+fpSO1043cVKWmpNHBTfB2HrCzVcr574z5Dz5+CNYLKGPVSL8eOSRR5g+fTpGo5G4uDhOP/109u7d22aZsrIyLr74YpKSktDpdBx//PHs27evzTKvvPIKCxYswGQyIQgCtbW1vbLv/mZQCYNnnnmacfEOjk44ssuTHomIosjjm8u5a1oCEWo5L80eSaHNya9V9c2f37X5ENeMTiJOEziJbKgzEF6CQBV7WlPmtLGseA83DJsStCgIFYPBzv8WZnH/5Axemj2SWbEdE9D3W22YlQoWxsWilMmQH47tT9XqqXa1LWWVFSHnpLjh/F/6RO7Jms2dI2eRcDgsaaQ+kgdHzaPK5eCx3I1YPf47IPsdZ7veDEMZSRQcWWwuc/LurnpeXhKHsovQHn/E6eQYVDIO1gb/e2piRoqSX4u6Xu8PYzXMTlVy5hh1pxOMrjpD86uJpmIki8YIjI138MwzT4c8TonwY/Xq1SxdupQNGzawcuVKPB4PS5YswXbY1SyKIqeffjq5ubl89tlnbN68mfT0dBYvXty8DIDdbuf444/n9ttv77V9DwSDJpSopqaGZ556gk+WSt6CzhgK4UT+qGzwYlDKSNarqK/TcuvvuZyYEsXJKdEAVDS48SEyUR846zhUb0G4hHc0zSDbbJ3HyoerKHD6vDydu4mbhk1FK2+55fSWKGg9wy4Igt8SmXq9DZtNzzC9jkJ7A79V1xCvVqNTNE4ypGr1HLRbmRPCfuWCwPnJ2eysr+Tefeu4Mm0CWfrIgMsHc7xDxVsg5RIcmTzzWy2PL4hGrej+M3rpFDMP/1LDq8eFlri8u8LDUem9E0ba1TO0MddA5KynnuD6628gMjLw715iYGnv1VGr1ajVbScPly9f3ub/N998k7i4ODZt2sT8+fPZt28fGzZsYMeOHYwd2xge+q9//Yu4uDjee+89Lr/8coDmMrarVq0Kenxd7XsgGDQegyefeJxpwwSOHj1ohizRTfzlGNg9PiLVclxeH3/57QALEiI4Kz22+XNBAI1saF4bNps+7ERBnVMblCgQRZF/HPyds5NGkahpOQZ/RnKooUN6vS1kQ1ohk3FD1nDezy/inLSWmvxjohTkOzrONAczsz/WGMM9I2fzav42nD5vh/WPNA/BQIoCyVswcGwuc5KgV5Cg79l845hoFckGBd8eDP46cnvF5ryBntDeQ9D+M2jxGiwYLWNKSgNPPfVEj/Z5JOCp1eOpMfTvq7bxeZOamorZbG5+PfLII12Ot66uDoCoqMaGm05nozdZo2nJSZHL5ahUKtauXdur56r9vgeCQeExqKys5Ll/PMPXN/rw1gyKIQ8oQ9FrkGtxEq1RcOUPxZyVFsvipLYzNDJBwOkOfG0M5dyC/hQFwYiB1qyuLiRJY2CquSXvo6dGck9n1SdEmHliUts6+/EaNWUNDd3eplGh4vT4ETyy/1fStEbkcjce0YdPFDkvZTjxGv/nbah4C8LBQyCJgoGjzunj/nXV/HNxbNcLB8EtMyL40xdlzE3WYFB1PeFTavWRaOzZxFCoz0xvjYx7z5Bz8rPPcNNNfyE6OrpH+5foGwoKCjCZWsJK23sL2iOKIjfffDPz5s1j3LhxAIwePZr09HRuu+02Xn75ZfR6PU8//TSlpaWUlJT02lj97XsgGBRTrE88/hhzs2TMGTkohivRAwJVJPriUB1bylz8Mb2jKIDGC9kXRBJosIRLGFFXhLMo8Ph8fFWey9mJLeU4exI+1B0PQfv1A9FVN+RgmBOZxNWZmZyQGMuJ8cmckZjOML2RDTUVIY91MCGJgiObCruXS74u447ZkaQYe2fiTqeUccNUMw+srwkqub/Q4iPZ1P3cw2BFQXuvwdyRMmYPc/HE4492e98SfYvJZGrz6koYXHvttWzbto333nuv+T2lUslHH31ETk4OUVFR6HQ6Vq1axQknnIBc3ns5r/72PRCEvaVdVlbGC8//k3tO8Qz0UAYVgcq6DUZEUaTE5qbB62NhQoTfZRx2PV78P0CGqregvyoPdRU2FKj51/LKQxwTnYbqcAOz7oqCngqCYDGoGsuKhrze4VAho7aBTL2RkQYTw/RG0nR6JpmjyLP7CVHqJGzKJ4rcuimXOld43/MGOmyoCUkUDCy3/1TF/UdFMy0h+NKfwbAoXcdws4I/fl7GxpJGb14gA76wzktyJx6D1onE7cOFeuJdb/IaPP/PZykvL+/2diTCg+uuu47PP/+cH3/8kZSUts0zp06dypYtW6itraWkpITly5dTVVXFsGHD+nzf/U3YC4PHHn2YhWPkzBguw1vTv8NtmhWQ6B8CeQsqG7xEKDTIZULAxPOPioqZG9M7rtzB4i3oa4LNI/CHy+dldVUBS2LTgZ6Jgv4iQ6/joM2/kek3JyKI3IEUjY4iR1vj2d8xtz7OH0pqafD6uGVTLt5e9IL1FuEiCEASBeGAWSXDpOqbgiBXTTLz0rGxPPpLLfmWwBWHSqw+kkyh2Qed5ROEwozhMhaMlfHYIw/0eFsSA4Moilx77bV8/PHH/PDDD50a+2azmdjYWPbt28dvv/3Gaaed1m/77i/CWhgUFxfz0ksvcs8poZcukxg6XoMSuxu7x8tIo38jdV+ljE3VtZyc2LF/wZHoLegNuisImthiqWBmRCJyQdYtUdBXXoLOtjknOopN9cWdrh9qMrFCJsMt+hrXDTK5etnBcu6flMGSpEie2lkQ1H76i3ARBCCJgnAhw6wk39J33q0YnZyrJ5n4dF/g326FzUeszr8509v5du3Dibw1Mu45SeTFF1/s1Xhzif5j6dKlvPPOOyxbtgyj0UhpaSmlpaU4HC336w8++IBVq1Y1lyw99thjOf3001myZEnzMqWlpWzZsoX9+/cDsH37drZs2UJ1dXXzMosWLeL5558Pad/9TVgLg0cefoDjxiuYnB7WwwxrBos46KzbsdWqZluNjXGR/ivzPLX3AH8ZNUIqY3uYnoQQ9cRL0Jrf68qYZo4PWRT0V9iQPyZFmtlSWxfw8+4mTSdotFT6qgJ+3vp4KxpcRKoUmFQKzkqPxeHx8VVh4HX7i3DyEoAkCnoLldna42dEuklBXh8KA4CjU7WsKQhcHKDCJhKr72gn9FcRjikZMpZMkvPIw5LXYDDy4osvUldXx4IFC0hMTGx+vf/++83LlJSUcMEFFzB69Giuv/56Lrjggg65AC+99BKTJ0/miiuuAGD+/PlMnjyZzz//vHmZAwcOUFlZGdK++5uwLfFTWFjIa6+9xvo7BKD/w4gkwofJUQaemZ5JtlnX4bNfi71EqpQMN3QUDZK3IHRa5wv0RCAcclgYG+m/dGBXoTQDhVwQiFWrsAo1GMTeqUtu0Do4MTmKlaXlXJGZ0eXyv1dZmRrdYszcPiGN/1u/j2SdmklRUmgjSKKgN2gvBnpSyS7dpOCLA30rGpVygawoJT8XOVho7vh5tcNHlLb/JoZcdQZUZiueGgOKyMZzec+5Oubc8gq3/P32AY8RlwiNYBLcr7/+eq6//vpOl7n33nu59957O13m0KFDIe+7vwlba/vBB+7llMkKxqeG7RAHDYPFa+APR32jGJgZa8Kk6qhjh+l1FDu6X2ZSIjBmtSNgYnHrZdpT5XIQp1H69eCEqyho4ujYGFaVV3a9YBe0DhuaFhnBppraDsv48478Xm1lSrSx+X+lTMYzMzJ5amcBe+vCZ8Z+oJBEQc8J9Dzo7nMi3awgr5P4/97i7zMjeeyXWhzujoaUTwS5rO39pj9LdntrZEwwOzh5mpyHHryv3/YrIdEXhKXVfejQIf797/9w9ynerheWOGKx2fToFAri1GoO2doaTUPVW9AVfdHduEkgdCUSmthpL2RGZEyH98MlqbszIbKtzkKarqNnKhTaH6dCJiNeo6bI3nXPgn0WByNNbb9Dk1LBszNGcN/WPPKtR64IlkRBz+nK+O+OODCr5WgVAhd/XcbPhX33GzerZVw9ycyDK8Mj57B9rgHA3efq+Pebb5CXlzdQw5KQ6DFhKQweuP9uzpquIDspLIc3KBmMXoMmb0FXnJmSyCeFnSeNhkI4i4qBHltrkeBPKBg0DipdTjZUV7C1rrrZTdpZTkG4cNBqo9jRwJyYqG6JmM6SixfHx7GyrKLTHAqn14dcaAxpak+0WsmT04Zz6+8HKXO4Qh7bYEcSBT0jlFyC7jwr/rEolicWxPDqNkufioMThuvYUu7s0LNGoG0fm4Fq8DnG4OCMWUoeuP+eAdm/hERvEHaW94EDB3j33fe46+QWb4GUXyDRHputJafA4vZgcbckvw208Xykc2FaJpekj2BDdQXXbfuFz8pz/C4XTqJAFEWeyTnATVmZ3Vq/KyExKzqSHytL+aqwitx6h98ypGvK6hgfIMEeIEmn5qHJw7h54wFqnOExa9ofSKKgZ3TH0O/OOrE6Oc8vjuWJjZ2XFu0pRpWMhtq2hn+kVqDG0fibGghR4KkxNNspd52j45133uXAgQP9Pg4Jid4g7CzuB+69iz/NlDMyYWCHNhR7GAxGr0FXbKut4738Qm7NHjnQQ+lz+rPLcXdoXbUnXWfgqmGjeGPmBNZWVHey1sDQXpSsqqgky2ggRddyDoP1GgSznFIm474x43B4fLybW84V63KweVomP9aU1fK/Q+VcPjKx0+0MM2q4c2I6N/x6AKt76IdaSqKg+/S04lB31jWoZPzjmBiu/74Sq8vX4fPOqs8Fi0wAj6+tsI43yCiu77i/vsafCMlKlnPOXDkP3HdXv49HQqI3CCthUFpayrL//o/bTgq/LG2J8KHJW1DpdPHcvlwemzgWdS+2JZcInUClPGWC4Dc0Jpy8BU6vl7cPFXDZ8PQ+3U+GXscJsRncNTGd/xuVyPW/7Mfh8bKiqJr3Dpbz/MyR6BRdX8fZZh03jEnmpo37cfn63xiSCH96axKoO9tJNyu5dWYkly8vx+5ue32qTVacFkOPBMLEODU/FzW0McpnpihZX+AesBCiNtTUc/vZOpb993+UlpYO9GgkJEImrITBW2+9xVHZakbEtxgSUhhR7zKUvAbflZXzp7QUDIqwrbrba4RzeFRXvQpkAmHZwbeJBp8PnwhWd/dqsYf63dhsembEmLhsZAIXrN3D10XVPDdjBGp58Pe6qdFGzs6I47ZNBzvEWw8VJG9B9wiHe/ysJA3XTTFz7hdl/F7m9LtMdwXCudkG3tvdeIxN3YvnpStZmzcw4XWtk5Cb7JURiXLmjdXxzjvvDMiYJCR6QthY3aIo8uarL3DJ7CMvsU4ieFrnFvxcWc3cmKgBHE34MFBhRME0MNMrFFg9LUZ3OHkLAMxKJfeOG82t23ZR5Wy5/4Ri8HdHHMyJM/PY1OE8NT0TpSz0W/GxSZFMjzHyyPb8kNcNdyRREDq90aws0Ha7w9wULW+eEMfjv9Twa0ngalqhioMEvQKPT6TK0RJKp3OaqLWFjTkDwCULRd549YWwrFMvIdEZYfNLWr9+PaWlpZw+NWyGNGQJhxml9gRrCDTNjta53KhkMrR+QojCpSxmbxGu3oJguxqblArq3OGdLJuh13H7mCz+vm0nta7ujbU74iDTqPUbahUsfxoWh0mp4NWckm5vI9yQREHo9PU9vbvbj9LKeeW4OB7ZUNOckOzv+w3Ve3D2KAP/29N2O0pZ/zU4a08Hr0FNPWfMUlNcXMyGDRsGbFwSEt0hbKzw1197iXNnglY1cD9uifBmZXENp/y0gSqni1UVlSyI61grX6J/CFYUAKRotRTZw7/+fqZBzy2jR/K3rTtweruX2Gt1aEMSCK09YN3l2tFJFNicfJLf88ZsEoOP/pro6e5+TGoZTy6M4e61XRchCFYcHJuh47u8tveacJuZ16oFzj1KxeuvvTzQQ5GQCImwEAZWq5X/vf8/Lp7X9oct5Rf0HX3ldu5NtMaWpmVeUeSN/SX8Y+ZwHt6dwyGbnSilss/2HS6z9MGMo7/DiEIRBQDpei159sbvMtzCiNqTZTRwWnIiHxT0rC9GqOKgJwJBEATumZTOB4cqur2NcEHyFoRGf9/Du7u/zAglmRFKvj3YeB/o7HsOxnuws8rFmOiW+79PFP12Wh9oLl4k5/3338dmC+/7noREa8LC8v7www/JjFcwJT08fthDsVRpIMJdHDSxs9bGlCgjE6MMjDUZiVWreO1gHnZP9xJGu2KohSMNJOk6HYdsdtw+HwW2BjZUWFhRXI3TG54VdU5IjOe70moc3p5dW90JLWr9CgW5IKANIXk5HJFEQWgM1L27u/u9eXoEL2yu61CpKBCdiYP3dlv5U7ax+f9wcha0DieamqlgeIKSDz/8cKCHJSERNGHxJHn95X9y8eyGsFT8RwKDwXuwtqyOeXEmAC4alsaq8ir+lJrC0zn+m8hIhn3vYtA4ml9+P+/kfCdpNeTUW/nLlh28tq+UbTU2iuwuLv15L5/kV4ZdVR25IPCH5Aw+KDrU4bNQvTM98Ty1Fwo99SxISPQW3Xle6JUybpxq5v51NUGv48970ODxsb/GzdgYVfN7cpkw4JXP/JVKFQSBixf4eP2V5wdgRBIS3WPAhUFOTg6/btrKebOlOvQDTTiLgwiVgu21jW5ouSBw86hMPi0qwesT+bmyaoBHN3D0ZRhRV2KgebkuRJhSJuONGVN4/ahM7puUwZVZiVwyIoE35o6i1uXhwrV7+KGkJqxihI+OjmdTbRU2T8dE5P4UB/7wJxZ8okh5g4svCqpwD8LeBpK3IDTC4V7dnTEck67D7vaxq8oV0nfeWiAs223lj6M6CuQ4nZxye/g1/TvvaDW/bNxMTo7/DvASEuHGgAuDN15/jVOnqIg2tPUWSPkFA0O4eg/OHRZHjsXOmrJaAEabjFwzYhh5djsv7z80ZBs99afno7UQ6EoMNK/Tg/Gp5TIuGZHAS7Oy2F5j44r1OZTY/dc8728EQWBGZAx7rRa/nw+0OGiPw27gjWnTKLfKuGD1fv6xvYJaV9+E2fU2kigIjXC8P4fCmVkGvs/r3n3DUafns302zsrqODs/LkbFzsrwKHfeOpwoxiTjlJk63nzz9YEe1oDR1G+iv18A06dPZ8yYMbzwwgsDfBYGDwNqfXs8Ht7692tcMndwPMCOJMLt4SMIAg9OHsYLe1qSQsdHmDgpKQGzUkGutWNy15EQThSsAd/Z+qEIgTbrhnB+O0s6Nijl3DAmhTsnpPO333LZWFkf8lj6gkSNjpKGlmNsLwbCTRzoFAr+lJbCq9MnkWU0cNOGPB7fUjZkRbPEwNOd58TMJDU/FTb+rkIVhaIIGkGJUt4x7DjNqGB/zcCWRQ7UefmSYwTe+vfrePooJ04iMBs3bmTXrl0sXbp0oIcyaBhQYbB8+XLkYgOLx0q5BeFIf3sPunpI2DxeErWqNkam3eNluEHPQZu9kzUHN70pcLrjFegvMgwaXpqdxVsHSvk4r28r7HQWq99kwCdqtJQ0dH5dhZs4AJAJAvNjY/jnlPGMMBq4aM1+tlb37HfsqNf10ujaInkLQiPcJmwg9DFpFTImxqr5OCf0Y5HLBHxix8Rkj0/knV1Wjs0Ij2py7Tl2ohLBa+fbb78d6KFISHSJYiB3/sar/+LCWW7kMim/IJxRma0BZ0L6E6VMwO5pO/tZ7XKRZTRwwI/HABqN6nApPdoTOjsOg8YR0EDtK+O/r7wxBqWcf8wYwTUb9pEdoSfb3DcGaTA0BNnLwNqgDek8Wx3afvFmCYLAcQlxzIiK4Ik9+xGoItUkQ6+QH37JSNKpmRljHJDCD5IoOHK5ZUYE53xeyqwkDUkma0jNzRSCgNsnwuF1BH0916ys4E/ZBjLMfVfCOlQaqxtakVOPPNLIBcdref3lZznppJMGemgSEp0yYB6D8vJyvvpmBRfP6zgEKb8g/Bio3IPWvQxMSgVmlZwCW0uzrHqPhwlmEzst4RF+MlC09wT0pUcgVKM21N4FssNhYw9uzcPu6X4yodZob3P9hMpnJQWcnJAa1LLh6DloIlKl4uEJY1g6chgLopKZEm0gVa9GLZexvsLChWv38GVhVVglf0t0JBy9BU2EOjalXODRo6O5dmUFJVYPBVYXtgBlTCscbkrtLSFCk2K0bCxvuae89KuTRelaTh0RHhW7AoYTzRH5avkPVFQM/n4jEkObAbPA3377beaM0jA8LrzCiI6kHgbdYaAfTn/MiOXDvJYOr/VuDxEqFQa5nFqX//jSoZJrEA7H0V9jiNEouS47mSvW5fBubhkNIfY86IkgAKhyOXGLPhI0jQZ8MIZ/OIsDgCStltEmIzNiTCxIiOCklGhuGpPCy7Oz2Fxl5eN+7JwseQtCY6Dvu8EQ6hizolQ8OD+a676r5Jb1RSxdU4Cr3e/8oMXJ/60u4PqfClld3Dj5c2yqke8KWyaCfiqxclJCfM8PIEhC8W60JjNRzuyxGt5+++1eHpGERO8yIMJAFEXeeOV5LpkdHhVIJEJjIB9SESpFGyMxQ69jt6WeuTHRR3TZ0v6gv4XJrFgTb84bhU4h54p1e3l2V2FQAqEnoqDJWP9f0UFODdJb0Gb9boiD/hYI7fMrdAo5t41P47P8Kkodgau69FaegSQKJJoYE63iw9MT+PisWM4dGclf1xW16Wty49pCnj8qlf8sSufTg3Xcsr6IX8vtlNjcXLMmn3s3lmBUylDLZUF1TB4ImqoTAVx0kpnXX31B8s5JhDUDIgx+/fVXCouKOGOqFDI0WBkocXDI2kCqTt0cnnJGSiIfFRYzLzaanzoRBqEYteEwMx+IgRpbd/cbahhRe1QyGWekxfDWvNGMjdBz+bq9HKxvCLh8Tz0FAMvLirC43cyIjOnW+t3pLTHQ4kAhE7hrYhr3bTkkGS1hxmDwFjTRk7Eel2ZiYoyW13e33MdNKjmJeiVahYxn5qZweXY0MkArl3HZ6BjOHRnJgzOT2mwnHMRBoHCiP0xwUZCfx8aNG/t5RBISwTMglvnrr73Mn2YK6NQdw4ik/AKJzpgYaWBlSU1zl8sEjaa5oVOty93j7pfhLAr6C4PW0eE10AiCwLFJkTwxdTj3bT3EFwVVONt5D3pDFKyrKufnqnL+OnJcc0Jutwz9QSAO2jPSpGNSlIGndhWyoqiaNWW1Hc5xT5G8BUOf7ooDtcnKJaOjWVVspcTmZle1g8qGtuU9syI0XDQ6mgMWJ1PjdIyK0BCt6VhDJRzEAXQMTdapBc5ZZOD1114eoBFJSHSNIPbz9JDNZiMxPoYVN3uZPjz8Eo+lHIPQ6O1qRf5u6O1DGN47WE6Dx8fZSZkA/De/kHiNml11jSFFkyLNAbcfsLJPGBi/odAbRmRfHnNPPQWd4fb5eCWnhB21NlzextuXQuklQiVnpFnN6EgN2ZEakvVKBEHwGwLjr1zp5po6Xt5fwMNjpqBqVSmtJ92l+7o/RE9p/z15RZHlRdVY3V6qXR42VtbzxLThRKtbqr10V4BJoiB0BpO3oDXdfS44LQZ21zTw3LZyim1uXjo6jUR9x0pDd/9azOnDIpgS23l4W19cc06LIajtNn13isjGv/JIH0Qa+aVUzwl/K6ektBKdbuCqrvUHFosFs9lM3lXpmNT9a9tZnD7SX86jrq4Ok8nUr/se7PR7udKPPvqI9Bg504ZJTXckgkNrtLcx7s7JiOWKdTnMjXCQrNNS5GhgelQkMSo1XxSXdioM2jPYBEF3GUhjs7dRymQsHZ3c/L/WaEcURaqdXvbVOdld08DLuyq5IjuG49K6fiDUudy8nVfAzloH942e3EYU9JRQS5n2Nzabvs33JRcETkqJbv5/QYKdpRv28e95o9HIJW9ufzJYRQH0rMR1o6hXEaVR+BUFAJdnx/DY5rIuhUHTRFNvCoSebmtatoaUGJGPPvqICy64oJdGJSHRe/T7nf6NV57n4tkNA1I3W6L36e2HVzA33a01NmweLw/t2otPFMm3O0jTaRlrNrKtrq7TdVsbyP1hLOv1tj4xlDsb+0CFAvXVsQaDIAhEaxTMitdzyehopsXqSApgVDRR43LxbM4Bbt2+i6mRETw+dip6xYC2dgEGPqSoNdlmHaenxfB1Yc8S+yVvQWgMZlHQRHeOoek6uWVyHH+dFBdwuTSjChGRYtvAdjruDvKaKi4+0cQbr70w0EORkPBLvwqD/fv3s/7X3zl/ttTQTKL7PL2zgKuykqj3ubj+923EqFQoZTK211mYGxPd5fr9ZSy3NpL7wmj2JwAGygMyUIIAGkPNWr8Aci0uhpvUAdd582A+d2zfzZzoKP41ZQKzY6L6ZLIinL0FTXTWBRrglNRoviysbv4/1OpEkigIjaEgCnqKSi4jUt25SD9nRCQfHqjppxH1EoerE523xMS6Db9x4MCBAR6QhERH+lUYvPHGa5w8WUWsyf8DeKDzC6AlHlAiePrzQWZxeYhUKVmYGMFJKVHMjI7irrGjAPi+rIJFcbH9NpbOCGQoD+Ssel8QjsfjqNdhbRCQNRgC5hdEqZRkGvTMiI5EEISwmqWHgSljGgi9Qk6yTkWOpefJ3RKdM9REQU+8Bl0xL8HA2hLboKmi1dq+iYtUcOKcCN5447UBHJGEhH/6zRL3er38541XuXjO4HP9SYQPm6utTIhsnOG8dEQC2+ssbK6pQxRFdlnqyTYNjuTxcDSoQ2Uwj/+05ERkwCeFxX22j97wFjQJhL4WCV15Dc4dFsd7ueUhb1fyFkj0lTiQywQmxmjZXBmeXrmuciwuPkHLf958Da+3+93dJST6gn4TBitWrACPnSXjBt4rINH79PVMV1MllG+La1iUGAk0xpWfm5bCusoqdtTVM9poDIvclVAM5sEoEAbjmJtobQDfkJXJd2UV5NZ2fs2ESzhQXwuEzsTBmAg9B60NIXWglkRBaAw1b0FPCeb6OTszgvf3dx1ONJDlSztUOqypR1ZdyZLpenweOytXrhyYgUlIBKDfrPQ3Xv0XF8z2oJAPvOEmMThx+XwU2pwMM2qa39tlsTAhwsy7+QWcm5bcydr9Q3cN5sFibA+GMUJjdR2Pr/MQA5kgcGx8HFvrqjtdLtwYiDAjp9eHyyc29wnprS7IEo2CYKiLgp70NuiMkREa8q0uGjyDr8qhQiHw5yU63njtxYEeioREG/pFGFRUVPD5l99wybzB4S2Q8gy6R2893AI9DNaW1XFUfNtSpLus1cRp1Hh9Ism68IjJ7gnhKhDCdVyBSDOoybO17ZDsb0Z8UqSZ7ZbeT2DsDy9DX4QZBfIa/GtvMX8eHodeEXzhiHBpMhXODHVB0Jq+OtZjko38VDI4z+PFJ5r47IuvqaysHOihSEg00y+W+rvvvsvMkRpGxEveAonu82VhNSenRLV5r87l4eviUs5NTxmgUbXQm4ZzOBni4TKOUMg0ajlQ32KcBzJ4o4UoChxdH1+4hBMFoi+9CLtqbRyod5Bl0vLX3w6wdMO+PtnPkcaRJAp6QldegxS9kop2HZIHA7LqSkamqpg+Ts+777470MORkGimz4WBKIq88crzXDLb2de7kggD+uphV+FwY/N4SdS1lKCsaHCzx2KnyNHA5Ijgm5r1BX1lPA+kQAgncRIqI4xa9lm6NuYFQUAlk9HQiwmAAykiekMgtBZRDV4fD23L57rRydy15RA3ZCc35xl0FU4k5RgE5kgVBX0RUmRUyal3DY5QIn+VFy86I4HXXn5m0FRXkhj69Lkw+O233ziUl89Z0zvfVTiUKm2NFE4UXry0s5KrJ0S2e1fkr2NTeXzi2LBIOu5LumOkN63T3ddgZkKknl8rG2uGB/IWNBnQY4wR7KnvvDHeYKOnYUY2mx6Hx8vtvx/kwsx4HtyWx/2TMkjVa5DMl55xpIqCJnpbHBiVcurdg7eyzx+mixzKK2LTpk0DPRQJCQD6vM3nf99bxplTZegD9xqSGGKozNYuS7WFQo3Tw55aJ3dN0+Oob3k/VqPirPRYbLaBFQX9aUQPdoO9v1DLZWQateyqtZGu7LwU5zhTJNssNUyKiOp0ucFKkzgIpfndr1U1vHroAJePTKDU4eKs9FhGmnRY3B4MQeQZSN6CjhzpgqA3UJusHXJXVHIBdxeFBgYaT42h7WRjTT1EGgEw6GSccWw07723jGnTpg3QCPsWV70ep7N/G9u6XI1icfr06cjlcpYuXcrSpUv7dQyDlT6fpv/u2y84ftzgVfMSA8/ru6u4PDtwR+OBNJYlQz18+UN6DO/tr/X7WeuZ9DFGM7vr/S/XmmBChMI5FyEYD0K928N9O/ewsqycZyZO4pjESNaU1bH4cIngAxYHI0yN22gqIdweSRR0RBIFbenJ+Wh/RiUMUAAA5fVJREFUfTm9PlSy8PQYdzVBJqtuTDo+dl4036/8uj+GdMSxceNGdu3aJYmCEOhTYVBWVsaOPbkszA6vMKFgkcKJuk9vPQitbi+/ldtZkCRVOJEIjXRlHAdtdly+zuOPtXIFjiOoyVAggZBTb+XGzds5OTGBO8aMwqBQYPd48YlgUDbO9h2obyDTqAkoCiQ6IokC//SWOHB5xbAVBsGycGYE23fmUFZWNtBDkZDoW2Hw/fffM2mYnhjj4P7RSvQvrV3F/9lbzYWjosIyh0DyFoQnNpu+Oa9gYVwMq8rblgJsbxSXNjiIUR95sY6tz4Moijybc4DHJo5halQE0Hh9/1ZVz8xYY/NyebYGMgya9ptqRvIWtEUSBZ3TG+LA5RNRybs2ZcKlfK6/fMqYSBUTRkfzww8/DMCIJCTa0qfCYOXyr1g0qqHrBcMYyWvQfXr6ULS4vKwusnJ8mqmXRtR7SKIgPGmfaHxCYjzv5xd16hFYXVnKgpiEHu87nMOIuuL78komRpg7CKQSu4uUVpXACmxORsYNjgowA8mR0LSst+jpeRKgufHeYEVeU8oxM7WsWCGFE0kMPH0mDERRZOXKb1k8NvxmeiX6j57c9O/bWMLNk+KQhaG3QCK8aO0laI1ZqeSKzHRu2bqTBq/XbwjNrzWVTI+MCWo/g9n4D4Tb52NZXgEXZaQ2v9ckfCucbmI1yub3691e/ra+iPNWHuSKVfmsKLA0fyZ5CxqRBEHo9KRS0ehIDbuqB/cEJMCi2ZF8t3KFVLZUYsDpM2Gwd+9eqqprmTtSMuokgqfJ3ftdoQWDUsas+M4ryjQhVQY6MgkkCFozKzqK89NT+NthcdCaapcTvUKBWtazihmDUTA0VSlallfImSlJaOSN56D19V3ucBOnUTX/v6POytRYHcuOHcaFWVFsr2rchtpkpczmYdmuen4vc2J3H5leBUkUdJ/unrukuAaqneHf4MxT0y6Uqaa+zb+zJ5upqKwmJyenH0clIdGRPhMGK1euZF62Bo2ya2EQbj0M2iOFE/WMUG/4tU4vL+2s5NYpwYd3dGUc9haSKAgPghEErWkSB3ft3twsDkRR5LOSfOZHx/fVMMMau8fD50UlrKuq5sRE/+egwulq9hioDTbmJxm4YkxjhbDNlXY8IuRanPhEkVtWVeEVYcVBO9esrOCkD0uotB85Sd2SKOg53T2HEXqRBvXg7kWi1ciZOzWGlStXDvRQJI5w+swi/2755yzKGvzuPYn+596NJdw6OR6tou3l2VWnVYmhT6iCoDXjdMmcnZzB3bs3U+Swc+fuzYjAgtjQ8gsGo3egCY/oY0N1Bfft2cItW3fhFUWenjSuOVyvvfB1eUXUhxM7ZYLA80elNi/7x8xIMowq3sot5ZzPy5iVpOGCsUZunRXJv0+MZ2GahjxL+M/k9hQpn6B36c65nByn5vcy16AMZ2sqWQqwcIaO71Z8NYCjkZDoowZnbrebH1ev5a6/hbcnQKL/CLbp2coCC5FqOdPi+scDEAqSt2Dg6C2P0PTIGETgqf07WDo8m0y9sct1umKghYLN46HAYSPPbqXQYcfu9eAWfbh9vpa/Ph9uUcTp8zItIoabR6eTqG1bXaiz69tfedJEvZJzRkSiNin9rAExOjnldi9F9Y3iINnY5/00+xVJDPQdoTbJPDlTx0MbaliYpm0WB+FShcgf3hoZ8siO4XaLZkfyxOtr8Hg8KBRD6/ciMXjokyvv119/Ra0QmZg6dPILFJHWjjGCEr1KeYWWl3bm8c7ijIEeSgckUTBw9IYoaJ10PCMyhhlBJhuHG26fj931tWyqrWJ3fR1eUUQnV5Cm05Oq1TMrKhaDQoFSJkMpyFr9FVAIsubZ/mC6IDclQXbWs6CzGdpYrZxP91l5aYsXk1rG2ycNnZAtSRT0PaGIgwyzEoUgcKDWTWbE4dA3P12Swxl5TSkTR8ejVDTaUHPmzBnoIUkcofSJMFi5ciXHZMuQyY7MBDSJjgRzg7//txL+7ieEaKCRRIFEewwaB9aGRrHR9Lfp/b6i2GHn7t2bmRMdx5SIaM5PHY7qcNK0VxT5srSAz0vziVdriVNrSFBrSdBoSdbouuwD4u8ar/d4MSoDJ2V3FbYxIlKJQSXjv4tiePSXWtYUOJif2nnn5XBHEgT9Syji4NopZv61uY6nFraI/sHgPWiNTCawYGYkK1eulISBxIDRJxbYd8s/Y3G2uy82LTFE+SbXjl4pY0aQVYgkJEIhmBny3sDaoG1+9Tav5+3j9lETuDR9JJPMUc2iAMDqcfNIznayjRHMiIxBJ1eQY7Xw38KDXL/tV94tyKXa5QSCPxfryi1MTvAfJhQMo6JUPLUwBq1Cxk1TzTy1sRaHZ3BOFkl5BANHsOd9bIyKvDoPTk/Hcp+DSSAsWJTKym8/HuhhSBzB9LowsFgs/LJpG4vHhtesb28gVSfqHl3N+GwsaeDNLXZu76QK0UAlHkveAonu0lok9FQoHLDVIwgwPEBOhFmp4vu5S6h0NvB63j5MCiVnp2Tw15HjeGbCdDJ0ep7av5N7dm/u0AzK3zXuFUXeOVDGBVnRfvcXapJnhEbOdVPM3L6mOqT1BhpJEIQHwX4Hxw3T8e0h/6FvapN1wJOTuypZCnDM/ER+2biD+vqOn0lI9Ae9br2vXr2aYfEa0qKDyy8I91KlEn3L7ioXj2yo4V/zU9F0M4Sor0qVSqJAojfpiUh4I28fl6aP7HQZvULJ5RlZ3Dt6Epvrqrlt5+/cvP1XHtq7jYN2K3Oi4siz29hl6drg+KqwiuOH6dEre+/+vDhDR7RWxvt7wt/QlgRB+BHM93Fmlp5Pcgb3fXu4rob0FAOrV68e6KFIHKH0ulW+4ttvWDx66Jaok7wGvUe+xc3fV1fx8nFxGFU9azAlIdHf9CSfIFiR4BNF3s4/QJJGR5KmrddMFEXy7VY+K8lnv7WlA7FZqeKKjCyeGDeNp8fP4IbMMWQbzChlAs9OGcM4U9eVmF4/UMy5IyP9fhbsrOvmMidP/lpDeateBrfNjOS93eE7EyoJgvCmq+8mWtv4HBls/TNalywFWDg/gRUrlg/QaCSOdHpdGHy/4isWZQ/OOFKJ3idQGJEoilz/fSXPL47B5DH3aB/SzL5EMPRXnkGoBBIJZQ0O/rbjN0xKJdcMGwVAlauBT0vyuWf3Zm7avpEPivPQyxUsKzzIE/t2UOt2ddh+hFLF1MgYlsQlk6LTtklEDvTbuWJMNBf/kMfmyrZhGaGEYjzxay1JBgX//L2l8ZRcJoRdcQGQBMFgoqvv6spJJu7+ubq5qtZgQl5TCsCCoxL5/jtJGEgMDL16hy4sLCQnt4AF2eF345cIL/bXusmOVpEWoAZ6ONBf3ZQlBi+9XYWoSSB8UVTJwznbuCFzDKclpiEIAptqKrln9xZMCiU3jRjLsxNm8JcRY1kcl8TdoydyfFwy9+7ewjdlhT0ag9Zo5w/DI0jQKunKtnJ7RdYXN7Ct3Em1w9tsjO2qcpFgkPOHUQYO1nYsRBEuRpskCAYvgb632UkahpsVvL0zvL/XzsKoj56bwN6cgxQVFfXjiI5cHnnkEaZPn47RaCQuLo7TTz+dvXv3tllGEAS/ryeeeAKAQ4cOBVzmgw8+CHocgiBw44039vYhhkSvliv9/vvvmTZCT4RuaFckknoa9Jy1hQ3MS9Z0vSAD2/HYZtNLHgmJfmVdTTFbLRXcN2I+CpmMeofIV1W72VNfxxPjpqGV+79tjzdHsjA2wa/XAELzmHyUW8swk4opsS2/vSZvgeuwGPgkx0ZhvYeZSWpcXiiyethV6eKayWZ+LnKwdLIZlVzA7WsrAlQycHlBPcD9myRBMPgJVM705ukRXPhVOZPjVYyPVQ/AyHpGhFnFlEmJfP/991x44YUDPZwhz+rVq1m6dCnTp0/H4/Fwxx13sGTJEnbt2oVe3zhBWFJS0madb775hssuu4yzzjoLgNTU1A7LvPLKKzz++OOccMIJXY5h48aNvPLKK0yYMKGXjqr79OqteeXyL1mU5ejtzUoMUjqrRrSuuIHHj/Zf8aQ76PW2Ppvhl8TB0MGgdbRpdhZueHw+PindxwNZc1HIZDR4PTx3aDMZOhP3jJ7YaT+CKlcDP1SU8PT4GUHty9813dTMbHOlg5PTzXh8Ijm1DWypcrDDYiHf4kElF5gar+aGqWaGRbR4/ERR5I+flzE5XsUXB2xkRakA0MgF7G4fusOJzBqFgN3jQ60YmLwiSRAMLfyJA5kg8OwxMVy6vJx3TorHpB58UQwL5kaxcsXXkjDoB5Yvbxu29eabbxIXF8emTZuYP38+AAkJbasmfvbZZyxcuJDhw4cDIJfLOyzzySefcM4552AwdD6RbLVaOf/883n11Vd58MEHe3o4PabXLHhRFPnuu5W8d/ng+wF2B8lr0H08PpEah49IjXxQ1JUGSRxIBKZ1s7Oe8k3FQY6JTkMjV1DqtPF07ibOSRrFVHM8NmfnoUv/OLCba4dnI++imVkw3DIpnstW5aFXyMiK0DAtVeCGkWZSjYqA4uTrXDvjYlS8tdPKJeNaEpyPH67jwq/LUcoERFEkwaDA0IvVjoJFEgRDF3/iIEYn57ZZkdy2pooXjo0doJEFQU09RLYtCKCoLuCY+YlcsvQ7RFHsskGhRGAsFkub/9VqNWp1516kurrGvKioqCi/n5eVlfHVV1/xn//8J+A2Nm3axJYtW3jhhRe6HOPSpUs56aSTWLx48dASBjt27MBqszEr88gQBhLd56McG8cPH7jwoO4iiQOJvsTudbOmupBHRx/F73VlvFe8l5uHTSVR07UnbEN1BfFqLSMNJr+fBxNG1OQtADCr5Xx4XONMWNBViMqdFNZ7mBinZmFai1A6N9vIudlGvD4Rp1ds9hz0F5IgODJo+p5bC4TZSRqe/a12gEbUM2ZMjcFSX8/OnTsZN27cQA+nRzisWhTK/o0kcbgbq2Ompqa2ef+ee+7h3nvvDbieKIrcfPPNzJs3L+B5/89//oPRaOTMM88MuJ3XX3+d7OzsLjtY//e//+X3339n48aNnS7Xn/TaN7Vy5Urmj1ajUgzdUqUSPcfrE1m2q573T43v9W33ZThRE623L4kEid7kg5IczkrIYr+tlk/LDvBA1hw07fIJrA1av14DhSCglgVvcPfFtXvnbP+za03IZQI6Wf/OfEqi4MijvfcgQi2jtsFLhGZwlcRWqeTMm5XEypUrB70wGEgKCgowmVomTLryFlx77bVs27aNtWvXBlzmjTfe4Pzzz0ej8Z8n6XA4WLZsGXfddVeXY7vhhhtYsWJFwG0NBL02dfPd8s9ZPLqhtzY3KJB6GgQmUH7BZ/ttnDBcF3Qzs4FMPO4Km00vVS4ahPRF2dKeVieqcjnYZ6tlmjme1wt2cPOwqR1EQWdMjYhmS101Hl/vlooe6E6x3UWqNnRk0/q7TzcrybOE/4RlUy+DppKlAAuPimblyq8HakhDApPJ1ObVmTC47rrr+Pzzz/nxxx9JSUnxu8xPP/3E3r17ufzyywNu58MPP8Rut3eZH7Jp0ybKy8uZOnUqCoUChULB6tWree6551AoFHi9A9OPo1eEgdPpZPXa9SwaI4URSQTG4xN5a2c9F47tusHSYEISCH3LkeCZebtoNxckZ/NhaQ5LYtOJUAZ+ePnLZxAEgaOi4/mpqqzDZ8GGEa0tsfLloZaeA4NZFEhINF0HGSYFh+rCXxj4Y+FRiaxZsxaXy3+lMYneQRRFrr32Wj7++GN++OEHhg0bFnDZ119/nalTpzJx4sROlzn11FOJje08t2XRokVs376dLVu2NL+mTZvG+eefz5YtW5DLB8bL1SuW/Pr16zHrZIxNPvISZCSvQfA8+ksN548xNscY90Xi8UAakU0CQRIJRybd9Rrk2uto8HrQK5TstlazKDqtW9s5MSGFb8q6rnse6Dfy/v4aPjhQ0619hwOSl0CiPSqzlXSTgjzL4CyhPmZ0BAaDivXr1w/0UIY0S5cu5Z133mHZsmUYjUZKS0spLS3F4Wh7T7dYLHzwwQedegv279/PmjVrAi6zaNEinn/+eQCMRiPjxo1r89Lr9URHRw9o+FivCIOVK1ewKJtuZc7LI6UuyUMNf2FEq/IdVNp9/HHU4KhC1FMkgSARDB6fj5fytnJ52nheytvG1emdlyRtwp/XwKhQYlaqyLc3Gv7LCnLZU1/XYTl/uLw+qho8qOQyap3eQectkASBRCAyklwUWQcmJKOnCILAwnnxrFy5cqCHMqR58cUXqaurY8GCBSQmJja/3n///TbL/fe//0UURc4999yA23rjjTdITk5myZIlfj8/cOAAlZWVvTr+3kYQe6EF5cyp47h6yl4umNs9t0dnHQAHA1LZ0ra0Fwbldi9XflvOspPj21QkCcZj0J0cg3A1yI+EkJi+oi++077oZxBq2dK3CneRojHg9Hmxed38ITEr6HX9eShyrHV8UpzPRWkjuHfPFlRyH89OHo9J2dJvoP11qDXa+aGwnr21DcRqFXh8cNHU8O1I3hpJEEh0xa5yD+9tb+CBRYZOe+v0Bf6uz9ZRBm0mRiON+KJiAPBGJuCJaqym8+7/DvDGe3Z++WVz3w62D7BYLJjNZradOhVjP1clqnd7mPD5Jurq6tokH0t0TY8t8pqaGn7bsvOIzi+Qwok655ENNTwwL6rfyhSGqwEueRGGPqGEE+2z1VDQUM8kUxyrqgs5I2FkSPvyJ0KyDGbqPW6+LC1gSVwSN2Zlctu2XXxTUsbG6ho2VdfySk4JV6/PYemGfc3rfZ1fx4npZo5LNfFtgYW7fqqiwh7es6ySKJAIhmqHj2hd47NnMF0ziuoCoDHPYNOmbdTW1g7sgCSOGHpsqf34449kpyhJiuyd/II9ZT4WPOfE5+uxI0MiTBCBaO3gKhXXl0i5CBIun5dX8rdzctxwnjz4G1emju+VxmQAl6WPpNBhZ01lGS6fj2tGDMMjiuyoq2eHrZxxETqmRhuZH28GGksIF1ndpBtVGFVylp0ezYmZes74tJRdVeGX9CjlEkiEgscH8lY/rWCvnabrLJhXX5KUqCNrRAw//vhjn+5HQqKJHguDFd9+zaIJvWf07S0XWX/Ih3uQpR5IXoNG/LlqozQyqhsG2RfaT0gCYeDoi7KlEJzXYFnxHgob6llTXchlKePI1Ed0a1/+vAbD9EbkgsA56fGsq6zmn/tyWVdZTZxaxbnD4ojXqvihtJYz02NQG2x8fqiOGfGN12BTboHHKzI6SsnoqPAJKZIEgUR3MKkF6p1tJxp729jvrWvTX8lSgAXzolmxYnmPty8hEQw9Dvr6afX3PHSWEuidmaVYA1w6U45aceRVOBqqRGnk1Dj6NyyhP5qd9SZSV+Uji8XRaZybNBq1rG88adcMH80HJTnsqa9namQEs6IjKfXUcu/WMlSy/2fvvKOcqNo4/MxMyvbO0ntbOkhHVJAqioAFsWBBBHXB3j4Vu2LvvYGgYAVEVJCiCApIlbr03suyfTdl5vsj7rJ9k2zKJLnPOTlKdjJzk0zufX/3bRJXNEjihW272ZdpoVNSOLe1TioSBXvPWnl9zVm+vKwmsoe8GNVFCAKBu8SYJTItvolAKH6fejKf4aLeNXnm5cUeO59AUBnVEgZWq5Uduw/QrmEsnhIGvRor9Goswk6CiZ3pFi5tot9GZQKBr6kX7t1eHg1jVR6IbYaqaaxLP8uvJw5xOLeAeLOBU/lWzpLLba2SaBrr6JdQKAoyC1TuWXKK9wbUINJHOUGVIQSBoLpEm2Uy830fmuzJe7dNShw7di7DarViNOrHiycITqolDHbv3o1RgQaGHMD9nSUlXg34ykTgCCcK5QpF5e2Q5NlUjmTbaRzn+mSm567H3kB4DYKHqLA8lysUeezaxUKkZEniovomLqrfGKuqctZio0GNks2eCkVBRoGdOxee4vGe8dSL9m0FkfIQokDgCcoLJQo06teNxGCQ2bNnDy1btvT3cARBTrWs8W3bttGyjoIs68PdLNAf8/fkMrhxWQPfG83NihNIYUTFCdRxByreyjPwFaXzGUq/n+JC0yjL5YoCTdOYtSObG38+wYTzYulaO8x7A3YCkUsg8CR/H7TSMimwoxAURaZ500S2bdvm76EIQoBqCYO0tDRaeqHb8b+HVQpsga3wBQ7m7MxhRHNh7LqCEAfBQVRYXtHDW+cv8e//RIGqaezPyeXPswfZnpFb9Pfw6NwSx5tjstmXYeXGX06wJ8PGd8Nq0bOO/0SBEAQCT6NpGu+uyuPO7v7x3lWXwpKlAC2aRZOWlubH0QhChWr5i7dt+ZeU+gbAc4mlmqbR7bUCvrjeyKjO/ndnu0qohhNVlGiVb9dI8HGpUmFYBx+BlkxeGm+JA4ADuTlszDlCWmY2xwsKkIFwo8qG9Gy+vKAVUFYUyJFZvLEmgzXHCni2dwJN3Aj18xRCDAi8xbL9VjrWMpAQHvihyi2bhbNt6yZ/D0MQAlTL8k7buokh/RQ8KQyOZzn+mxApwpOCAb1UNQk0RL5BWbwlDqLC87zSBdmbbMw4wx+njrErJ4sm0WZ6JyXSN7kGyWYTJ7UzPLZ+L99e1Jr6kWFlRMGGnFNMXpzODa2juadzLJKffqNCEAi8TdopOz3rB0eyboumsSz8c7O/hyEIAdwWBpqmkbZzDyk3edb1XOO/jedmNQLXoAxVr0F5aJqGpmk+Mz4CeVe5NEIclEWIAwev7trC/c3a8L82jUr8tg7YTvLcv/t5o2tTaoabSogCVdN4Y9shjufYmHpJMnFh/om7FoJA4CtsqoYSoM4CJf0Y9vhaRf9u2TyWtLS1Pl1PBaGJ2z+ZI0eOkJNbQPM6nl1cFFliyQQTjRMC+8YXDc8cRJtln9WQFoQG3hJLgZSIfH29JmzLPV7CQNhRcJwXNu7nne7NqBluKnF8nk1l4rJD1I5UeKtfDZ+LAl91iRUIimMv1fU4EChsclaapo2jyc7O4+jRoz4ekSDUcFsYbNu2jca1Iwkzef5X91uayvxtgd8pN1TEQWWNXJLCFU77qLlZMHkLCgnG9+QJIiNzvCIQAkEcpGVl8POJfQysmVz03MacI7y77TDv92hOgtkROlHoLTiRa2XMkv3c0D6MW9rF+HSsQgwIfEV5621ShMzx7MC3JQDCww00apggKhMJvI7boUTbtm2jZT3P7ToV72VwNFPj/jlWLmkd2CXGBFArUuFwls2vyY3ewBNhJ84aoYEYUlQ8hMWb/Si8EVqk17CiqPA8Fh8/yaxDR3ijYztiTY7fVGRkDp/9e4w3ujUl2uiY0gs//zybysTlh3jp4lhaJpgqPLenEWJA4CuKC4LSYbxtkg18vyXfH8PyCi2axrBt2zb69evn76EIgphqCIMtpNS2AJ43+O7ro5BvDY7wk1DPN+hVJ4xF+/O4oL5rhpYempt52zjMzgsPSnFQOtk1PDpXiINqEBWeh01V+Wj3AY7m5fNmp3YY5ZLO3pTYCA5kF9A23lD0+WuaxmOrjjCxa6TPRIEQBAJfUp6XoPA5W3oULZMUdpz2jcfaF7RoFs62bVv8PQyXyc2NRDb4tspkrs3Rs6Vr164oikJqaiqpqak+HUOg4vY3lbZ5Pde2986O/qoDGmsOBocwgNAWB51qmnnpn7MlnvNGczNPGIb+MARdEQd6p7QgKP03IQ5cvz7AprOZvLVzN5fVrsW4Jg1L5BUUisX28ZFsTM+ha4Nzf5u+4wyNEzX6NfS+yBaCQOBLnAnTNcRnYwBsii2g12DDmYPYEuoD0KJZDLN+2ejnEQUWq1evJibGtyGUgY77wmDHTlIu9XDi8X/hRIfSNTLzg0cYhDLLDuXTvobvQhjcRS+7w5WhV69BZYKg9HFCHDh3TYAsq413du4hz27nlQ5tiDed+x2Vvg/ax0fx7s59gMP4WXcyl79OnuXzS5LxJkIQCHyJO3l7MWaJjDyN2FKvdVUolHdtX4uNls1j2Z62zqfXFIQebgmDjIwMjh5PJ6VugqfHA8CRzOATBYG8Y1EVptjsChOQ/zmaz9Cm3k2gra4x6G9REKghRc4KgtKvEeKg4usA5NrszDhwkH9On2Vsk4Z0S4wvOqai775RDSu71xZw0+J9aIAVK1OGJHutj4gQBAJf424xj7a1JTYfVTm/ScmNzNLnq2h9ruy6xcOWqqK889jTZZR455OjWzSN5cjRk2RkZBAbG+v06wQCV3BLGKSlpZGcEE5CtHcKBN/TxxDQfQwqIpjFQUXkWDUijPr9Lv0tCgoJJHHgjiAo/XohDkqeG8Cuaczcf4g/Tp7i2gb1uLXxubChyr5vx/chMeeSpgCYY7xntAtBIPA11a3uF2WWyCrw7nWKv7b0Gu/J6oSJCWZqJEWxfft2unXr5rHzCgTFccuyd1Qk8k54iBKv0ryGzL19gquKTSHBWsK0IoMh16oSYfReh5nqGIB6EQWBRHVFQfHzeOpc5aH3UqZR4XlFj0J+OXqcs1YrH3XpSL+aNVwQBefwligQZUcF/sAT6+WOkyotk323OWWIzy7x8DQtmsWLkqUCr+KWxbZ161Za1bF5eixFpH5n4UB6cNQeDiXKMxxybRqRBv15DPQoClwZk6/7G3jLkA81cVBaDBRiU1XmHDrKbU0aohQTBBW9h/K+D2+IAiEIBP7Ak0b1gXSNBvH6W4PcpUVTM1u3bvX3MARBjFvCYPvW9bSs4+mhODh4WuPTFXa2HA2+PINCgtVrUB4Oj4F3JmV3jWM9igJ38IU48PbOfuE1vIVexEFFgqCQX4+dYECtGpgVxWVBAJ4XBUIQCPyBN3bZVQ0UOQCEQXqWU4e1aBZL2rZ/vTwYQSjjdihRSn3vlCq9c5qNZ69UOBaECcjFCVZxUNqYKLCD2cWe9N6MPw8WUVCIt8SBLwRB6et5C3+Kg6oEATj6Dfx4+Cg3tIh1KWyoEE+KAiEIQpvSYTDOPDx5bW9glMFqD2x7wnDmYNH/t2weS5oIJRJ4EZeTjwsKCtiz/yit6nk+Iz63QCPMCL1byKzYKUKJggWpVGUUc0x2tXsZuGMQB5soAO8Yvb4UBKWv6y1R6OuEZFe8ChvOZtKlRjhmpfx9msq+D0+IAiEEQgtPG+Cuns+bybnl0SRJZtcpjVY1A8Br4AQtm8eye+8hLBYLJpP+S4ELAg+XhcGuXbswG2XqJXo+ofTvXRpdGkvYVTB4xyGhK4K1SlFl5Uv9RTCKAk/jL0FQegyBKg7cCTGKjMzBlJdLZE7ZCU8IAkF10KtX2tfjSkmW2H5co1VNn17WIyjpx7DH1yrxXL06kZhNCrt27aJ169Z+GpkgmHHZuk9LSyOlQQSyF2L2vlhu58bzFY6ka9SJk1yq7xuo6HXyri6FRoeqaWhaWTdudQwbV407IQoqx9dhQ1URiGFFroqC4nkENcwmTuVbi/5W2fdhjsmutigQ4ULBgy9CfAKdXk1kFqTZ/T0MjyHLEi2axJGWlubvoQiCFJeFwbZt22hZxzvxeqv3aLw23873q1UaJAaH288ZgnkSrxdt4GCW9ypYVYUQBZWjJ0FQnEATB65cu/T1a4Yb2Z3lEBZhUTnlCmmovpdACILARRj/7tMyWeZktsbpHP3lGbi7+dmikUmULBV4DZdDibZt3kBKHe+o729SDWjAjqMaXRs7hIESr2JP914dfIH3MMVmk5JgIu2MlQYxZftSuJNr4Iq3QA+iIDv/vzCTMM/VwC+kugauXkVBIYEWVuTMNcsjwqDQqZaZZWePYT+j8eXOdN6/oD6xZkd4kScEgSCwEEa/Z7mpm4Gv1ti56yK3erp6nOpEQxjOHCSlkZFtWzZ6cEQCwTlcDyXatpmUet5JAOjQQKZjA5mR3RWMOqx9702CdSFonWhk22mLS6/xhMHqbVGQnR/u1EOv6F0UFBIMnoPKyo+C4z1ObFeDj7acIjHMwJoTObyx8QRQPVEgPASBg/AEeJeLmsn8s18focmeCJFu0TiCtLTNHhiNQFAWl+Szqqqk7dxLyljvlZMsj1DxGgRjMnK7xla+3Gqt+kAPUh1R4E9j3pOddSsjUERBIYHsOXC2/GiEQeaR82oy/0AmzWLNRBtlt0WBEAP6Rxj/viUmTCKrwL+hRJ7MmUxpEkHajs2oqoosB79tJPAtLgmDQ4cOkV9gpVntECgZ5CcqWzACUTQkRcicyfdd4pezokDPu/neJNBEQSHeFgfF8YRQqMobUfg9aJrG+lN5nMyzcSzXyuYz+ZxfK4rxXcNcup4QA/pGCAH/ExMmkZGnERvu+2gET4gCw5mD2BLqA9CsYQR5eQUcPnyY+vXrV/vcAkFxXBIG27Zto2ndSMxe6mRbGaHiNaiMQBUNkqFiYeCJngaF6FkUZOeHeyXPwBUCVRQUUjh+bzbAg5JGvTsiwRlRkFFg5/s96cw/kMl5NSJoEGUiMczAlIsbEp/g2vckRIH+EEJAf+RbNYw+3tP0dGXFwkZnZpNM4wZxbNu2TQgDgcdxSRikpaXRsm45v6z4aKfbeQu8Q0ULkb8Fg6ZpaOint0GweApcjY/3pSjwpNgrD296D0rjqjehou9ld2Yeq05lsj03k4PZFqKMCkMbxTJjQGOM/5V+doQOOf89CUGgH4QQ0D8WO0SYPLupWWj4l7dp6e1y6y0bhZOWlsbAgQO9eh2B/rjvvvtcfs3jjz9OQkKCU8e6JAy2btlESm0LULbCjC8QXgPX8beXYcdpO80TXd+mqcj4q05MeLCIAlfxtSgo/l9vCQRfioPiVCYUyhMFR3ILeH3rITacySY+TMaiqiSGGbivQzKt4s+FC7maTyBEgX8RQiDwqKCxuGvnqMDYLy4QfNV/qWVjha1bRQJyKPLmm2/Ss2dPpztfL1++nAkTJnhHGKRt2cCNnUV+QbBQfHHzlkjYfNxGSpLjnvGn10CIAu9TnnHrTe+Br0KLKqMyz83HO47ywfYjtE00c0XTGLrXjMSmanyx/QyvrD/O5xc3BIQoCBSEGAhNXDH0fdmUtWXjCGYu/Ndn1xPoi9mzZ5OcnOzUsdHR0S6d2yVhsHfffppc6l9hILwG3sFbIuHiJiau/z6TK1qbiQsT31swUpVhG0yhRc6y7HgGQ+slcEfHaA7lWPlu91ne2niCbsmRPNGlFo1jzIBrokAIAv8gBEFo4Uvjvjo0qRfO3r37/T0MgR+YMmUKsbGxTh//0UcfUbNmTaePd0kYZGblEhdZgevCh3kGQhx4F0+KhPhwmSf7RnLdd5nc2yuCi5LKHuNtwzHYcDa/wBfeAmcN21ASB4uOpHPbih0MrO/YpakVbuTKpnE81DEZSToX4yxEgb4RgiC4qKChuH6EQLxru7ox0QqZWf7r4u4KOXlhYPBtCHqOzVEmvWvXriiKQmpqKqmpqT4dg7e46aabXDr+uuuuc+l4p4WBpmlk5eQRHW526QKCwKZwcayOQOhez8j3o2J56vcclmw/w9PnOxfn5ipR4Xm66HYcKrgaAhMq4mDuwdP0rRPFFxc3LCEEiuPsZycEge8RgiA4Ka4LdCMGqkFMpIGs7Fw0TatwnhHA6tWriYmJ8fcwvMbBgweRJIl69eoB8M8//zBjxgxat27NuHHj3Dqn09vueXl5qKpGtB9qAJdHMPywA4nqduWMMEq8PDCK4wX5HMm2OfWaina8fdWxVlAx7jbfMsdkV6ubb1WER+f6vSzrJ/3roMhSuYu1K+9fiALfIroOBzfx4RJncvzb5KxCXPQWAERFKtjtKvn5+V4YkCBQuO666/j9998BOHbsGAMGDOCff/7h0Ucf5ZlnnnHrnE4Lg8zMTADdCAMQ4sBfVGcBva59GC+tSqfAptMJOkjwpnHsCcPem+IAzgmEqh7euKZV1TBUIAqcRYgC3yEEQWjQvIbErlPBs+7ERDkCPgptM0FosnnzZrp16wbAt99+S9u2bfn777+ZMWMGU6dOdeucTocSZWVlYTIqlTc380M/A5Fv4D/cyUXo18RIerqZkXOP8VrfJJrF+ybusLC5WKBXJ/Knt8TTxrwecku8IaD2ZRbQKKZkLpbwEugPIQZCi2Y1JLafUOnZ0d8jKYUb3gJwNDkzGhWysrJcSiwVBBdWqxWz2RHiv2jRIi6//HIAUlJSOHr0qFvndMljEBPpn/4FVSE8B/7H2VAjSZIY1jySq1pGsf2Mpeh5b+8gF+Lv7sO+wBvGrre+H199777kr2M5tEtwvUeBEAW+QXgIQpOLmyt8u96OVlEWcgASE2UWHoMQp02bNnz44YcsW7aMhQsXMnjwYACOHDlCYmKiW+d0WhhkZWURHeFSESOfIsSBfqhq4TXFZiMB289YfTeoYkSF5YWEQPAU3jbevZ134E1Wn8jBrp4zNE7mWZl/IJNhjeMA5z47U2y2EAU+QAiC0CYpSqJdbZl1+3UkDNz0FhQSFWkkK8u3URoCffHSSy/x0Ucf0adPH6699lo6dOgAwNy5c4tCjFzFJWEQE+HE4dW80auDEAf6orJF+PrWUZwtUPl0Y+W7Ha4mIEeFO2/w+1ogBGIYky8N9kAUB1+knWH80gPkWO0APLn6KJO61CIyLsdpUSDwLkIQCAppVA9OZOpIGFSTmCghDEKdPn36cOrUKU6dOsXnn39e9Py4ceP48MMP3TqnS6FEUTpKPK4IIQ4CA0mSePr8eH7ZneN3126geBCcyS/wZBiRPwx1vYuDfJtKWvq5KiBXNIkjx6py/aL9PLPmKPWjTJzXyO7UuYQo8C5CEAhKkxAJ6c6kacVHl//wJB44X1SkQYQSCdA0jbVr1/LRRx8VCUWTyUREhHvlu10LJQqr+jg9IMRBYCBJEh2Szaw/4cg18LdR6G1xEAjiA/wf2uPv+6AyfjuUxdubThT9+8I6URSoGo91rslvB7J4pHfVE7EIHfIuQhAIKiIqDDLLm4adFQDeEAjVIDpCFh6DEGf//v20a9eOYcOGkZqaysmTJwF4+eWXeeCBB9w6p2vJx+GB44IT4iAwuLxZJHN36acvgbe8B74QBZ7wFujFKNfLOErz28FMjuee68NhkCUeO68Wr6w/wZ831CLMUPmUKgSB9xCCQFAV+05Cw6RST7pj6FdXIHhIXESHW4XHIMS5++676dKlC+np6YSHnwtXHjFiBIsXL3brnC56DJxzketFUQtxoH86JpvYfNJS6TH+aFjlSYHgzHlcyY3wFnozxv3tuSiP0/k2zIpUFP5mjsmmVzOVxCgNtYp9EyEKPEvxSmhCEAiqQolXSTuqklLbg+XN/WzrREcqwmMQ4ixfvpzHH38ck6lkieyGDRty+PBht87pksfAaWGgI4Q40CeFRpIkSVSxyepXqisQPCUKvN2/QG8GeHH0NLbzkiI4lGMlw5BRYlzhBomz+eXPNSJ0yDMIISCoLs1qSmw57GGbwFXvgQfFRHSUyDEIdVRVxW4va5sfOnSI6Gj37jXnhUHGGV11PXYFIQ70i6ZpSOV0iXUGT1QmchZ3xIEvRUF1vCqeMry9aQD7WxysO5nL6syTDGqhkGOz8ebaDNT/vAaHsmyk56vUiVLKvE4IAvcRQkDgaYadpzB3nZfsAT/kH0RHKmRmnPHpNQX6YsCAAbz55ptF/5YkiezsbJ588kmGDBni1jmdbkyQnZlOTJwLW7t+6IJcGaJDsj45W6ASZz73veihG25FuNI92ZfhQ+6KAk8a28UNYFNsNpYMz3+H/rg3Cj+jeKuFh5eeZfWxAjokm2ibZGL8byd5p18Sz69I5/Fe8SUErhAEriOMf4G3KNwcbJQkcShdw65qKLLkHUO+8Jzl2T8evp6iSGRlnvXoOQWBxRtvvEHfvn1p3bo1+fn5XHfddezcuZOkpCRmzpzp1jmdFgaZGWeJrh2YHoNChDjQHxa7hlkJrPuqKoHgyURjb4UQedJLUNHz3hIHgFcFQnmfTUqiiTkjarFofx4vrzrLyJZRZBSoPL/yLEYZWieei+8UosA5hBAQ+IMeTWX+SNPo19rL605pgeCkKFATSmdHV8yrn+6nZ8/aro5MEETUqVOHDRs2MHPmTNatW4eqqtx6661cf/31JZKRXcFpYZCVlUlMRGAZcOUhxIG+sGsgO/F1hEfnkpflXk1eb1GeQHBWFPgzhMjboqD4370hDsDz3gNnPhNJkhjQKIJ5u3M4k28n7bSFHelWPhhQo+gYIQoqRggBgR649SKFST/YeGO+nYdGWbmwjdG7F/RieFFegcaZMyKUKNQJDw9nzJgxjBkzxiPnc6EqUTZRYYEvDEDkHOgJm6rhDYeBL6v8FIoBIQrcP84dqvteCqseuXqe+DCFk3kqi/fn0SLeSOM4o0gwLgeRIyDQA6XX+7rxEp+PNfLNY/G89EMuG/bYKnil/undOZacHN9X7Qs2Jk+eTNeuXYmOjiY5OZnhw4ezffv2Msdt27aNyy+/nNjYWKKjo+nRowcHDhwo+vv48eNp2rQp4eHh1KhRg2HDhpGWllbl9Q8fPswNN9xAYmIiERERdOzYkbVr1zo9/unTp9O7d2/q1KnD/v37AUeI0Y8//uj0OYrjfPJxVrbrycc6KVtaHkIc6ANVA6VU8rErhlplBnRUeJ7PBIInRYG38LUoKH68XpKS3RUDxUkIk/ltby5Hcuw81NckBMF/CCEgCCQiwySm3xvNpK/000fHVWolmSjIL/D3MAKepUuXkpqaysqVK1m4cCE2m42BAweSk3Pu3ti9eze9e/cmJSWFP/74g3///ZdJkyYRFnau82/nzp2ZMmUK27ZtY8GCBWiaxsCBA8utGlRIeno6559/PkajkV9//ZWtW7fy2muvERcX59TYP/jgA+677z4uueQS0tPTi64VHx9fIinZFZwPJcrOJSbCyy43H1MoDkRokf9QNZC97IgqNMaz89yLt/P0OKrCG94Cf4mC0q/1R1Kyp5OskxNs5Fo13rk0iiYJZSsRBTvC6BcECwnRMkZFIt+iEWbyf0SEK/kF8F/ysfAYVJv58+eX+PeUKVNITk5m7dq1XHjhhQA89thjDBkyhJdffrnouCZNmpR43bhx44r+v1GjRjz33HN06NCBffv20bRp03Kv/dJLL1G/fn2mTJlS4rXO8s477/DJJ58wfPhwXnzxxaLnu3Tp4t3Ox5qmkZWTF7DlSqtCiVeLHgLfEmOSybI497lXt9GZP3frQ10UFD+HN3bYy/MCeLJBWvFxN4iVmbe9gJZJwS8KSnsBhCgQBBLOrOldmhtYud3qg9F4jsIGi9m5NrKy84r+LShLZmZmiUdBQdUeloyMDAASEhIAR6+An3/+mRYtWjBo0CCSk5Pp3r07c+bMqfAcOTk5TJkyhcaNG1O/fv0Kj5s7dy5dunTh6quvJjk5mU6dOvHJJ584/f727t1Lp06dyjxvNptLeDxcwSlhkJ+fj82mupd8rONwovIQIsF3mGKziQ+TOVNBYyiApUeyyLN57rvwZXhR8Ws6gzcqEOlJFHjzfIV4IlSoNKXH2qexiY8vj+bl5cGzU1eeABAiQBC0FLNLRvcx8+7P+X4cjOuMvGsz388/gS2vAJvN7pSx60+y88P98gCoX78+sbGxRY/JkydXOlZN07jvvvvo3bs3bdu2BeDEiRNkZ2fz4osvMnjwYH777TdGjBjBFVdcwdKlS0u8/v333ycqKoqoqCjmz5/PwoULy3QlLs6ePXv44IMPaN68OQsWLOD222/nrrvuYtq0aU59to0bN2bDhg1lnv/1119p3bq1U+cojVOhRIUtt4PVY1ARxcWBCDfyDoosYVfL3+3YfDqPl9Ydp21COC/3qlvhOSIjc8jJiXTpur4KL/K0KHDFW+DvpmBVUWhwe6tyUXWpTLzUiVGoHaVwJNNOnZjA8RwIY18gKEn9GgrN6sj8nWalV0pghEvnW1SmzTmK4T+zJCsrq0Ssu+AcBw8eJCYmpujfZrO50uMnTJjAxo0bWb58edFzquqwBYcNG8a9994LQMeOHfn777/58MMPueiii4qOvf766xkwYABHjx7l1VdfZeTIkfz1118Vfj+qqtKlSxdeeOEFADp16sSWLVv44IMPuPHGG6t8fw8++CCpqank5+ejaRr//PMPM2fOZPLkyXz66adVvr48nBIGmZmZmIwKZqObwkBnzc7cobQHQQgF72KOyeb5hSeZ1r8Rn209xdS004xqFu/x63hTIHjaM1HdUCp38XZyrR4FgjPv+bw6BjYet+lSGAgBIAh1XPH63zM0gns/zS4hDNSEJOQzp7wxtGpx/JSFWkkmLFaN/fvzMBokMjMzqVGjRtUvDkFiYmJKCIPKmDhxInPnzuXPP/+kXr16Rc8nJSVhMBjK7MC3atWqhIAAijwTzZs3p0ePHsTHxzN79myuvfbacq9Zu3btcs/7ww8/ODXmW265BZvNxkMPPURubi7XXXcddevW5a233mLUqFFOnaM0Tlm3WVlZRAdZ4nF1ESFHnqOi6EijLJEUZuCBjjXJstgZtXAv63NOeGUMng4xcuVcoRRCpJdrVTYGZ8fRIlFhx+mKq034GhECJBC4R614GaNB4uDJkr9nNSHJ5YRgd3H2Ouu2ZtG5bQz9e8Wzams+0RFKUVSHwD00TWPChAnMmjWLJUuW0Lhx4xJ/N5lMdO3atUwJ0x07dtCwYcMqz11ZqNf555/v1nkBbDYbX3zxBUOHDmX//v2cOHGCY8eOcfDgQW699dYqX18RTguDmEinCxiVT4DlGriCEAnVw6xIFNhKygO7qiHj8FApssTE9sl82b8Rr204QaalbN1pTxnXvs5B0HMIkT8MdX/2A3D1ui2TFLaf8q8wEGJAIPAMtw0M4+Pfys818JU4cIa1mzPp0i6aqwYnM+HKeKIjFDIzM/09rIAmNTWVL7/8khkzZhAdHc2xY8c4duwYeXnnbIEHH3yQb775hk8++YRdu3bx7rvv8tNPP3HnnXcCjlyByZMns3btWg4cOMCKFSsYOXIk4eHhDBkypOg8/fr149133y3697333svKlSt54YUX2LVrFzNmzODjjz8mNTW1ynEbDAbuuOOOIuGRlJREcnJytT8Pp4RBZmYm0eEidMYZiosEIRScIylC4VReSQPrdL5KnLlkiEaUUeF/59XkmY37vT6mQoHgjkgIhrwCf+/e+9pT4c71akXJHMv27W9cJAcLBN6hd2sD/+ywYbGW78P2pfegMjbtyKFdiyjCwxRev7sm0RGS8BhUkw8++ICMjAz69OlD7dq1ix7ffPNN0TEjRozgww8/5OWXX6Zdu3Z8+umn/PDDD/Tu3RuAsLAwli1bxpAhQ2jWrBkjR44kMjKSv//+u4Sxvnv3bk6dOhei1rVrV2bPns3MmTNp27Ytzz77LG+++SbXX3+9U2Pv3r0769ev99An4cDp5OMoTyQeB0GugatUJA5EjsI5aoQ7hEHd6HO3478nCuhUt+w91yU5kmnbz7A7K4+m0b7pS+BKHoKoQOQ5fJF7UJ33Kkm+KcYgBIBA4BrubMpJksTF7Y2s2G7jorYVh077O/fAalUxm2SU9GMAREfIQhhUE2fLvY4ZM4YxY8aU+7c6derwyy+/VHmOffv2lXnusssu47LLLnNqDKW58847uf/++zl06BCdO3cmMrJkIZb27du7fE6nk49j/NsbKuiobOIKNdFQI0LheG5Jj8G/Jwq4oH75N92JPBuNospm+Bca265WKHKWqgSCN0KQnPUWBJsoKI43BIIn3ueZPJV8m4amaR4XCUIMCAS+p3drI0s3WysVBnAutMjXAiEz20Z0qbDumAhJhBKFMNdccw0Ad911V9FzkiQVrUuVdV2uCKc9BtHhHmqgEYJeA1eparcj2IRDnSiFI9kl8wY2nbRwZ6dYKGVrZxTYiTcrKJUYYsV3470hEkoLBFcFgTdCiDyBHkVBcTzVOdlT7/PxRTk82SfSY6JAiAGBwL90aWbg9TnOz+ee8h5UFKJkj69V4t/bdufQqmlEieeihMcgpNm7d6/Hz+m0MIgJE/HyeiGYhIMpNpt6UUbWH7eUeD7XphFukLCUOt6sSNhd0KjeFAnueAj0GkKkd1FQSHW9B556n0v2WIgwSXSrV71qbUIMCASepTq5fWajhMWmYbdrOCv3fRlatGNvLi0alxQGEWHCYxDKOFO9yFWcEga5ublEmDxYfUN4DbxKoIUp1Y02cLiUx6B5vJEd6VZaJmRTkHnOCDQrEgV2lfDoXPKyIkqfqlK8HWrk7PWdwZfegkARBcVx1XvgyfeYY9F45a9cvrsm1uXXCiEgEOibNg0MbD1op40O2wJs35vLqEtrlnju6NE8auYGTxd2gWvMnTu33OclSSIsLIxmzZqVKb9aFU4Jg4iICNIt+mviI3AdPYqGhDCZE7l2dp+10jTOsQN7Uf1w/jiQR8uEkq3EPRG24e1Qo8qu5wzB1N3YmzjrPfCUKNh20sa0DflsOm7j8YsiiDI5dy8KMSAQBA41YiXOZHsodNrD7DqQR9MGJXPcGtQ0ExHh2iaZIHgYPnx4UU5BcYrnGfTu3Zs5c+YQH+9ck1inLMHo6Ggy8/W30yzwLKVLrfqq5KokSbx1cRL3LTlFtsVxvQvrh7Fwf/mhOqoH5+zIyJyih6dx57y+FgWB6C0oTUXlRj3VE+HrTfkMn3GWj9fkMbKtmZ+uj+X8BqZKXyNKigoEgYlRkbC6Eq/qQywWlfAwpagiEUBmnux0Z19B8LFw4UK6du3KwoULycjIICMjg4ULF9KtWzfmzZvHn3/+yenTp3nggQecPqdTHoPo6Giy8jxcmk+EEwUMvii5WjfawP1d45i8Mp3nL0wk3CDTLM7IppMFtDCX3BE2yBL5Ns8LFk+FGrkjMnydaAzBIQqKUzy8yFPv7eM1eexNtzPz6ljCjZXPgUIECASBj8kAeQXOC4Pq5hc42xvBZlNR5LJzUFa+RHR08DaQFVTO3Xffzccff0yvXr2KnuvXrx9hYWGMGzeOLVu28Oabb1ZYZrU8nLLsYmJiyPRdM1hBgOBpb8KF9cPZfsZKrtVx3pvbRjNlc1nx2D4xnE1n8rxmTLvrRXDXQ+Dq+zDHZFfbW+Apw1lvDbc82Tl53vYC1h2x8UL/SCEKBIIQoX9HEz+uKl32wveUrkh04GgBDeqWLdOdmYfwGIQwu3fvLvf7j4mJYc+ePQA0b968RFO1qnA6lCg7zwuutXihcgOdqsSBqwbTiBaR/LjLYVynJJo4lGXDElay4kKXGhGsPuGbHXZnREIgCQLwrChw5rlAQ9U0lu6zMG1DPm9fGlVpXoteBJFAIPAMzWorpGdrnMn0YMEVD7Bjby4tGpXMJZDPnCI7TxMegxCmc+fOPPjgg5w8ebLouZMnT/LQQw/RtWtXAHbu3Em9evWcPqfTHoOsPFGuVFA+nvQcjGgeyawd54zsK5pH8tOukkZ3pxrhrD/lexdWaQHgK0EAgdXALFCN5T1n7Fz9dQYjv8lk3nYLnw6PxqRULgoEAkHw0aOlga17C/w9jBLs2JdL84Zlm2tm5tiFMAhhPvvsM/bu3Uu9evVo1qwZzZs3p169euzbt49PP/0UgOzsbCZNmuT0OZ3OMcjMsVV9oDuIXIOgQIlXK8w5MMRnY0t3rrRkhFGmcayRLacstEkycWH9cCavTOfKYmI3yqiQY3Xs5hQ3sl0tX+ou7iYq+1MQgGdFgTNGceExzn73/mTdESuTluTw8eXR1I2pugKbEAUCQfASGSaRk6+vzdBd+/MYMbBsDdWsPJsIJQphWrZsybZt21iwYAE7duxA0zRSUlIYMGAAsuywyYYPH+7SOZ1PPs61ujxgQWjhrjgoXZO+XQ0TW087hEGdKAPp+Sr7syw0jHZUgrGrGoZykrD8IRKcwd+CAHwvCkofr2dxsP+snad+z+Grq2KIC6vciSoEgUAQ/ESaJXKciJLwVeIxwJETBdRNNpeoSKRpGlk5VuExCHEkSWLw4MH06dMHs9lc7bLuTocSWax2CqxeKuElcg2ChsrCipw1qn7bl8ugYrGU59U0ky6fyzNQAUsV5eQKQ3bcDd3xBP7MI/AW7hrGeg4v+mZTPvf1ihCiQCAQAI6S2J7omeNJNA3kUhtiBVaw2lThMQhhVFXl2WefpW7dukRFRbF3714AJk2axGeffebWOZ1OPgbI8kYCsiDocFUc/LbLwmE1A03TmLIpk8RwhRjzuVuzdpTCZxvPCQOjLNEkxsy29Hynx+RLkaA3QaCnsqR6EwgLdhWwdL+VCxoaKzxGb2MWCATeJTNXIzbKf72bSlckslpVlFL5TvKZU0U2mfAYhC7PPfccU6dO5eWXX8ZkOtdfp127dkU5Bq7iVChRWFgYBoNMZq5GkreEqcg1CCpcCSt6fmkOyZEymQVZDGkYzet9E0scf22raObuKmloX9s8nq93nuHpbnVcHpu3Qo7cFR3e9BD4M4TImXP5K8Qoz6oxabEjV+T7a2LLrQ8OwksgEAQSniqEkZGrERupn6auh48XULemuczzmbkaBoOC2Vz2b3oi0xKGzV55U0hPk2t35Ip17doVRVFITU0lNTXVp2PwBdOmTePjjz+mX79+3H777UXPt2/fnrS0NLfO6ZQwkCSJ6Mhw4TEQuISz4mBEazMtExXOb2gkxixjyajahdsuMZwX1h4jx2on0lh1smhFlDbm3REKehQEoC9PQUX4QyD8e8zG/xZmc3fPcAY1K39BFYJAIAhi0rMqDWHOzFWJjnR/XXEGV/ILdu7Po2mD8BL5BeCI4oiJCtdd2JOeWL16dVCHWh0+fJhmzZqVeV5VVaxW93KDnZbE0VERZOZ6WRiIXIOgw5mwomvbhTFzU0FR+FBFBm1pQ/raFgnM2JnuoZE6cCXkqDqlRwNNFHjbUPZVuM4H/+TxyvIcpl4RU64oEGFDAkFg4smy2UfTVRKrqE5W3cRjV1i7OZNuDco2XcvM04iO0k+hDYHvadOmDcuWLSvz/HfffUenTp3cOqdTHgOAmOgosvJOu3URlxAhRUFHVZ6DmkShaXA0y07taMdkXLpSkSLB2Xw7cTHZFGQ6nr+0QQzXLNzLTS0TMCmed/tW5k3QQ6WhYMSbHoTJf+ZgV2H6lTFldtiEGBAIAhdPioKz2Sq5BVDDng5nXNvZ9xb/bs/m3ssTyjyflacRE63fim8C7/Pkk08yevRoDh8+jKqqzJo1i+3btzNt2jTmzZvn1jmd9xhER5GdL0KJBO5Rlefg4QsiGD83i4xitaOL73qPaRfNBxscCciFBrYiSwxrFMc7m05iV71/b1YngdmXoiDQvAUVXdNT19U0jWf/yEECHu8TKUSBQBBEeFIUACzbauVousq78/LQNA35zCmPewcqExulE481TSM/M4+IYlXTCseTlasRLYRBSDN06FC++eYbfvnlFyRJ4oknnmDbtm389NNPDBgwwK1zuiAMYrwfSlSICCkKSiqbwNvWNPBEn0hunp1FtuXcfVZo5PZtEM7aY+c6URaG49zS2UjNODvXLtzHhlP+KUtaGb4uPxoIeQWu4AmB8MnafBQJHrkw0uPnFggEwcXQbmYWPhNDZp7GO/POVb7zZehQcWb9sJPOrcLK/VtWnkZ0dPDGzwucY9CgQSxdupTs7Gxyc3NZvnw5AwcOdPt8TguDmNg4kXws8BqG+Gy61DUyrnMY76wsa+BLkkSkUSLXWlJcKLLEre1jeGNAHN/uP6GbcB1/9CPwhijQi+HsrhG/45SNRbstPHLhuTAwIQgEguDA096CQqLDZf53VTgr0qz8s+NcAmeh98BXImHX/lxmLMzgsRvL9zBk5anExMb5ZCyC0MHpHIOomHgyc33YIlzkGgQlVeUbDGoeyUvLc1l7xMbXI2MwyFJRvsH59cL5aXcu16SUdZ3GmWXybQ7hWtogL8xJ8AX+EibBLAqK40oOgtWu8cCCbD4YGo0sSbp8PwKBwD28JQoKkSSJ9++I4uY3s/jx8VivXqsiPpu2kyduqYHBUH7Vocw8jaiYeB+PSuBv4uPjna5EdebMGZfP73zycWwCWek+9hgIcRCUVCYOTAk5TL8yhj/2WXlzRR4PnO/Y6TXFZnNTm2iunnuM4c0iMZeaKMMMEnm28u9PXwgFvXgqQoXSvTDK47N1+YxsG0bdGEWIAoFA4DLxXmhy5mwy8/q/97L/uI1OLSruUZCVpxFTq2xSsiC4efPNN4v+//Tp0zz33HMMGjSInj17ArBixQoWLFjApEmT3Dq/88IgJoaj+d6t6ysIHSoTB40b5VEvJpLrv88k7aSNlBqO2zQ6MYfrW0fz+aZM7uhUcgcnzFA2zKgiPC0U/C0KQsVbUJqqvAd/H7Dy0Q0ShjCbL4clEAi8jLe9BcXRAFXVkCtogugN5DNHefzjk3z9TN0yO8PFw5iy8gzUDeIa/YLyuemmm4r+/8orr+SZZ55hwoQJRc/dddddvPvuuyxatIh7773X5fO7kHwcTZY/hIFIRA5aKpvcjQk5vDIoiocXZpeoOHR9N40FB7Ow2Et6B2RJwqRIHMh0vaFHYT6Aqwa+P/IIShNsycbuUF7OgCE+m2zVSnSYaPwjEAQTvhQFAD1aGlmyyb1GUe6yeE0uF3SMIC66cpsrq0AmOlrYSKHMggULGDx4cJnnBw0axKJFi9w6p/PJxzExZOb5aZEV4iBoqWySb9gwjytbh/HWyryi52RJokGsQp45C1NsdgnD+NEe8Ty/onoNz4qLhIqMfj0IAvCeKAgEb0F5FAoEQ3w2p3M0EiKEKBAIBOXggk1x08VmvlhcUPWBHkJJP8bn884ydmhcmb+VTnrOzJOCuquvoGoSExOZPXt2mefnzJlDYmKiW+d0OpTI4TFw6xoCQaVUFlZ0Sx8r13yisu2kjVb/hRRFmiDXWrakaQpRRJtkVh/Np2vt8su7uYoeBEB56MlTkG/VWJCmMn+rnbP5GjY72DVIiJDo3lCmV2OZVjWlEq54TdPIsYCm4ZVd/UNnNerHC2EgEAQTvvYWANRNVMi3aJzKVEmKqV7OgTP5Bacz7NhVqJlQtXmWlYfwGIQ4Tz/9NLfeeit//PFHUY7BypUrmT9/Pp9++qlb53QpxyDbn+VKRSJyUFOROJAkibEXwh97rUXCINwglRAGhZhis5k0wMTob9N5b0AN6kc7fXsHFK6KgjN5Kkv2WNh6wk7aKRv5NkcnaQCbBnWiZR65IIL6se4l6d71g5U6sRKPDTJSIwoMMsgSnMiGlftUpq+2s+24iixB8XDZSJNEVoFGixoyD/UzkBTlOUO+ZbLE9hO+NyIEAoF38IcoKGTc4DCuezWLF26MoEszo1ev9c2iTK7pV9bYL69EanaeJjwGIc7NN99Mq1atePvtt5k1axaaptG6dWv++usvunfv7tY5XfIY+LRcqSDkqEgc2FUwRxcA4YDDoCxPGADUiJT5cHgEd8w7xufDo0lU/VNmzhu44yVYvMfCq3/lcl37MIammHgwKYJwY0kDfOMxG4/8lk3tGIUhHe3kWSDH4tjR79VYpk3tynfJbu6u8PMWlXpxJc9bMxqGtVMY1q7yONllu+3cMsPCiPYKY3p4RsyFGSUKbA7PhLNl3QQCgaA8BnQ00bCGwsSPs2laS2H3MTsNa8g0qKHwyFXhGBTPzTG/rMjmhxfqOnVsZq5deAwEdO/ena+++spj53Mt+TjXz9U9RK5B0FPerpBVBaN8LvY93CiRY6nYe9UoXqFnPSPbT9nL5CEEKq6+h3ybxiMLs/kprYDvr4lldIcwOtU2lhEFAO1rGfjq6lhG9bCz86RGep6GUYHasRIPzbWy/lDlGwKNEmTSq9EV/YKmCnNvM7Fir8qCbfYSf9M0jT932bn2iwLGzrSQdtz5zYm6sRKHzoqmjAJBoONPb0EhLeoqPH1dBCN6mljwdCxPjIogNlLio/nOxVg7E0a046CFRrWNmE0lTbOKGqplCWEQkmRmZrp0fFaWa9E2riUf5/g2M79chDgIekovAjtPqDRIcBi0hvhsUhpa2XrSXt5LAcizavxz2MpFjc65fAsFQiCKBFfHvPWEjSu/zuCCBkbeHBJNpMm53awejRRSLzBwc3cDV3cycFkbhS9Hm3hsnpWNhytemA+ma2W8Ba4iSRJvX2nk7T9t7DihYlc1Zv9rZ+jHFhbtUHnzChMP9TPw2DxrGfFQERc2lVm8w/8GhUAgcB89iIJCerQ0MqCjCYB6SQrjB4Ux9x8L+0/Yycmv/ibEb6uyGdLL+fLZmTkWEUoUgsTHx3PixAmnj69bty579uxx+niXQoksVjsFVg1zObuOAoEnKR5W9NdeldQLzt2qFzaV+WpNLrf/F1pUmi//zef69mEVhpAUGtqWDN91RHYHVwTByRyVX3YUMH+nhXCjxGfDY6jlQnOeinIL4iMkpo82cf00C/8bYKBbA5nw/4TGlqMqf+xSubSNzNLdKhPyNWKqkUgcbpL4+BoT47+xYLHBpW0VZt5kKkpOrhkt8dWNJkZ8ZqFVLYkG8ZW/vyFtFMbOtHBz9+DMNREIBP7FZJS4e2g4L/2Qx66jdu6+PJxLu5jcPt/S9bncPCSuxHMVeQsKrBpWmyo8BiGIpml8+umnREU5Z8NYra5t6ruUfAyOTnt+FwYiETkkUOJVMo9JGGRHzHghMWESOQUgxWahyFKZBlfHs1XaN6t6ci5ueOtFJLgiBlRNY+r6fH7eYSHaJHFpCxMfDYsmxuxa5YyqEo4TIyW+HG3inT9tfPiXjTwrFNigSaLEBU1kxn9jBQ3O5FZPGADUjZOYN95cYW5AmFHi3auM3PmtlVm3mjAZKr5eTJiELMHZPI24cLGZIRAEGnryFlTEkC4mhnQxYbFq3PyWwy5xRxxYrBpWm0ZUhHPzd+Z/4ZvCYxB6NGjQgE8++cTp42vVqoXR6HzSvNPCIDw8HFmWyMrTSNLDfSjEQUiwNt1O61plJ8o2tWW2HdNoW0cq0wF3RGszLy/LpWtdA7KTiae+8iJ4KpTpWLbKXT9nMbCZia+uiiGsEgPZEyRFSTw9pPyJ5aqOjuRiTybgVZYw3DRJ5rZeBv73k5XXRlS+AF/WRuHnLXau7yK8BgJBIBEIoqA4JqPElLujueSpDPp3MJbYQHUmv2DpekdTs+JU5C0AxyatosiEhXmmNLcgcNi3b59Xz+/01qIkSURHhpPlz5KlgpCjVzOJTSdVVu8vuUh0byizqtRzhc2t2iQb6N/MxD2/ZKNqrt2v1clDKJ7HUNHDEyzbb2HM7Eye6hvJ2M7h1RIFnmhmZlAkj4oCZxjWTsGoSMz+t/J8g8vaKsze6FxOgkAgEFQHs1Fi0HkmVqS5no/50/IshvZ2PiwoM1cjOrLikFmBwF1cijmIiY7gbI6OhIFIRA56zEaJL24z8ORCC/vPnBMCKTUl0iqoU2+Iz+aWPjbOq2Pg/vnZaC6KAyg/WdkXRn9VnMpVeXFZLt+PiqV1cmjvgj97qYGP/rZV+v3GhUs0jJdYsVeIA4EgUPCqt8DLdkP/DiYWb3RNGGiaxq5DFlrUP+cBrcxbAJCRqxETHenWGH1NlsVEpo8fWRbHZ9m1a1dat27Ne++95+dPIXBwSRg0btSQPcfEAivwLbEREu/fZOTuuVaIddx/xzI16sZWvlMy9mI7bZMNPLEkp1rX11M1o8cX5fDMxZFEeCDPxxPeAn9iVBw5Dkt2Vm5EPDLAyOSFlQsIgUCgDwIthKg0HRsrrEizYbM7P9+s31FAp5auhQTtOWancaOGrg4v5Fi9ejVbt24lNTXV30MJGFwSBiltOpJ2SGfCQHgNQoKmyRJXdJZ57Vc7SrzKvjyVxglV377j+9vZnVXA2fzAXmwAsgpUsgpUOtepXufNwpCrYODWngamrKx8TqoRJdGrsczczYF/DwgEAn2jKBI39jUz4cNscvI1siMS+HzeWXYetFT4mk/nnuWqPq4lb6YdspPStmM1RysQlMUlYdC6TTvSjrpfistrCHEQEtx8gcz6/Rrr96u0qSfx4T9Wnl9gJbeSZmfgSI6dvTcz4I3hnaftbocPFYqBQP8MSmM2gN0JT8BdFxn4fKWfGzQKBIJKCXRvQSE3XhzGFb3MXPNyJmNeOEqBReOJT09y24tHeeCd47w+8zTHTtvIzVf5YFY6dlUr4TGoKowIIO2oidat23nzbQgCgAMHDpTrDdc0jQMHDrh1TpesjJSUFN47bAeqt2MpELiDJEm8fYOB0R9b+eU+IwseMPLR7yqf/2tlQteKBevQNgrXTLVwWy9DmQpGgcSO03aaJyouvSbYhEBpFm63Myil6s8kwiShuFbFVSAQ+JBgEQWFDOxkYmAnU1FFojuuiOfgcSsWm8bOgxbuf+c4mTkq1w6I4d37a7l8/u2H7dyVkuLpYQsCjMaNG3P06FGSk5NLPH/mzBkaN26M3e56lI9LwqBVq1bsPpxDgdXs/14GpRHlS0OCGjESl3aQ+WqFyujzFcZeJDPkdSsT+9uRZamoKVpxwk0S9eMlNh5WaV/X8XdDfHbAiYNdp+1c2rJqj12wi4Hi/LpVZfJQ5zYqVJFiIBAIfEjpMqX1azrmqqZ1TQzuUf7644y3IN+isedIDq1atar+IAUBTUU9f7Kzs90uZeuSMKhXrx5hZiO7jtpp00CHFVGEOAgJxvdVuPR1K1d2kYkwS/RJkVm0VWNgW6lEx+TiPD7IyK0zLPx4mwnjf6U1A817cDpPpUYFzW9CSQwU50S2Rq0Y5zYpEiMkDp3VqBens00NgSDECTZvgbfZddROeJiJevXq+XsoAj9x3333AY5IikmTJhERca4Hht1uZ9WqVXTs2NGtc7vkXJdlmZTmjfWXgCwIKUwGiQn9Fd5Y4LgPx1yo8MXyyu/J2jESN3ZVeGVx2TjzQIm9z7FoRJhKGrWBMnZv0TBeYs9p54yKa85T+HqtyDMQCPSET0WBTvMR5TOnih7OkHbITkrzxqKHQQizfv161q9fj6ZpbNq0qejf69evJy0tjQ4dOjB16lS3zu3ytn9Kq7akHTro1sV8gvAahASXd5L55A+HkVcrVsJmhxOZGskxFXsNrjlPYfR0K/8eVulQt+zf9e5BMCoSuRaN5DqhKwRKc0UHhW/W2fnfgKr3OC5uLvPmHzbuv7h816tAIBD4EmeFQGnSDtlJad3Ww6MRBBK///47ALfccgtvvfUWMTGuVbWqDJfT8Vq17UjaEdcSIH2OTncFBJ5DkiSMCqj/BY6P7Cbzw5pzO0/l7UJJksTrI4w8PNeRAFYRntqFL14JyBOPIR1VfjkoRG9x+rWQWb5HJcOJjuwGRaJtbZmNR0SygUCgB4LZW1A6v6A4rngHyiPtiEKrNh3dfr0geJgyZYpHRQG4IwxatWL7EbHbJvA/dePhcDqcytL4brVKqzpV35fJ0RLjehl4YWHVISXVNeQ9TZ0Y58NmQgVJkrjrQgNvLXUuROj6LgpfrXE+FPJMjoZdZC0LBB4n1PIKXA0XqoztRySReCzwGq6HEqWkkHYgF1U1Iss6FggipCjoaV9f5t4ZNrILNJ4cbqBns5I6t6KQois6KMxYa+N4lkbNaB3fw8XQNI3Ji6y8e5UO+4j4mYEpMu8vt3EqWyMpqvLvs30diUeOqthVDaXU/JVr0dh4ROXQWQ2zQSLcCNdMtVAvTuLDkUZ6Nta5p1QgEJSPH6MIPCEEiqOqGmkHc0kRpUoFXsJlj0GzZs0osKocCoSdSxFSFNTc1kfmxZEGfrnPWEYUVMXdFxl4x8ldZj3w81aV8+rJ1IkNDCHjSyRJ4oGLDbyypOrvU5IkkqMkcko1If11q53urxfw+06VfCucyNJIO67RtYGESYFnFtgY/7WF41nCeyAQVJdgDiEqxFPegdIcPKVisao0a9bM4+cWCMANYWA2m2nSsDbbRGUigZ+RJIlmNaVKPVcVLUC9m8hsPKJy1onYdH9jtWu886eNe/vosESwTrigqcK+0yoH0qs2OHIsGpGlHC8GBW7toTCivUKYEQ6kayzbbSc5SubH28zY7HBVJ4UJ31nKP6lAIBD4gG2H7DRtVAeTSXiPBd7BrV6grVq1Iu1ggAgD4TUIeSpKRL69t4GP/tK/12DaP3auPU8h0iy8BZXx+CAjL/xW9fepapQJIzqvnsySHSqfr7STZ4UR7RW+uMHEtNEm6sRKtKsjUWCD5jVE+2SBoDqEgrfAm6QdstOqVWt/D0MQxLi1yrVs3YntRzw9FC8ShJODoPpc0krmj10quRZ9ew1+3GRn1Hkivr0q2tWRsauw9ZjrhkdipMTccWZeHmZkdFcDHevJhBXr7q5qsPGwSqd6QpwJBO4SagnH3mD7YWjZuqO/hyEIYtwSBq1bt2bbERHWIAgcKvIajOmuMGWVfr1fu06q1I2TShipgop5bJCB5xZ43gtUM1pi5jo7HesJj4FAEBAE6YbgtqMGWrcWHgOB93A7lGj7oQCLtQ3SSULgPOWJgys6KMzbYkfT9Ok1+Hqdnes6C2+BszRKkDmvnsSE7y1kF5T9TgtsGu4UU3ukv4FnLjHSNFEINIHAHUQIkWfYfrBAlCoVeBW3hEFKSgonzuRxJivA3IJBPFkI3EORJTrWldlwWJ/C4J/9Kuc3FrvUrvBAPyNXdlC48jNLUQO8Qn7eotK/petCS5IkRnRQ9F2iWSDQKSKEyDOczlQ5mZ5Py5Yt/T2UoGLy5Ml07dqV6OhokpOTGT58ONu3b6/w+PHjxyNJEm+++WaJ53fv3s2IESOoUaMGMTExjBw5kuPHj1d67aysLO655x4aNmxIeHg4vXr1YvXq1Z54W27jlsURGxtL7ZrxpB3WbwiGQFAe5S1QIzspfLNOf/eyqmrIMsIYdYO+zRV6NZb550DJ7/ubdTZGdhQeGIHAV/hcFATxBmDaYTt1aiYQGxvr76EEFUuXLiU1NZWVK1eycOFCbDYbAwcOJCcnp8yxc+bMYdWqVdSpU6fE8zk5OQwcOBBJkliyZAl//fUXFouFoUOHoqoV/wbGjh3LwoULmT59Ops2bWLgwIH079+fw4cPe/x9OovbW5EpLZoHTmWi4gTxpCFwj451JdJO6G9Ha89pjSYidMVthrVTeHupnZ0nVTRNY+U+O2aDREJk1Z/pn7vsvPCblXUH9XdfCASC0CTtkJ2Uls39PYygY/78+dx88820adOGDh06MGXKFA4cOMDatWtLHHf48GEmTJjAV199hdFoLPG3v/76i3379jF16lTatWtHu3btmDJlCqtXr2bJkiXlXjcvL48ffviBl19+mQsvvJBmzZrx1FNP0bhxYz744AOvvd+qcF8YtO0UuB4DIQ5CmtI7WJIkuRV37m22HNVoW1uEEblLh7oSN3ZTePdPG0M+svDdejsvXm6s+oXAcwtsXNBU5tF51jLhSAKBwDmEt8CzpB2yk9K2o7+HEVBkZmaWeBQUFFT5moyMDAASEhKKnlNVldGjR/Pggw/Spk2bMq8pKChAkiTMZnPRc2FhYciyzPLly8u9js1mw263ExYWVuL58PDwCl/jC9wuLdSqVRvmrxMNNgSBiRKvYk8/Z3Rb7Y5GYkZFPwph81GVASki7MVdJElicCuFwa1c+wyPZWrUjZO4oKnChU1V/tilcnEL8T0IBK4gRIHnSTtqYkj/tv4ehstkWo1YVOc2ZTxFvt2xoVO/fv0Szz/55JM89dRTFb5O0zTuu+8+evfuTdu25z7rl156CYPBwF133VXu63r06EFkZCQPP/wwL7zwApqm8fDDD6OqKkePHi33NdHR0fTs2ZNnn32WVq1aUbNmTWbOnMmqVato3tx/niG3tyMdlYkC1GMAITGJCJznklYKP27S1/289bhG61oSSrxa9BB4n1+32rmktWNqvLm7QdflbAUCPSLmKu+w/bBdVCRykYMHD5KRkVH0+N///lfp8RMmTGDjxo3MnDmz6Lm1a9fy1ltvMXXqVCSp/M3DGjVq8N133/HTTz8RFRVFbGwsGRkZnHfeeShKxRtL06dPR9M06tati9ls5u233+a6666r9DXeplrCYO/RHPJ13hyqUoQ4CGmKL143dFX4co3/DcDiIiBH1YitpZX7d4H3qBEtMXujncx8jTqxjkXgSEYAz3MCgQ/xy/wUAmt5XoHG3iPZQhi4SExMTIlH8VCf0kycOJG5c+fy+++/U69evaLnly1bxokTJ2jQoAEGgwGDwcD+/fu5//77adSoUdFxAwcOZPfu3Zw4cYJTp04xffp0Dh8+TOPGjSu8ZtOmTVm6dCnZ2dkcPHiQf/75B6vVWulrvI3bwqBOnTpERpjZecT/xpRAUF1iwiT80cqguBAovqAey9BIiKz8dQLvcFkbhbsvMjByioUCm8bwdgq/pYl5TiAQ+I+dR+1ERYZRu3Ztfw8l6NA0jQkTJjBr1iyWLFlSxigfPXo0GzduZMOGDUWPOnXq8OCDD7JgwYIy50tKSiIuLo4lS5Zw4sQJLr/88irHEBkZSe3atUlPT2fBggUMGzbMY+/PVdzOMZAkiZTmTUg7dJB2jQK4C3J8NKRn+XsUAj9RmGtwKlvD6GXPnSvG/LwNKkM7Va7bS+dJCDxHj0YKIztpfL/BTo0oieNiihAIqkR4C7xH2iE7rVo0rTCUReA+qampzJgxgx9//JHo6GiOHTsGOErzh4eHk5iYSGJiYonXGI1GatWqVaKnxJQpU2jVqhU1atRgxYoV3H333dx7770ljunXrx8jRoxgwoQJACxYsABN02jZsiW7du3iwQcfpGXLltxyyy0+eOflUy2rIqV1u8CtTFScEJlYBOVzDDvXT7Pw1GDPJUeV9gS4umAu2arSv03VP08RWuQ9Rp2nMHOtHbMBCuwilEggqAwxD3mXtEN2Ulq38/cwgpIPPviAjIwM+vTpQ+3atYse33zzjUvn2b59O8OHD6dVq1Y888wzPPbYY7z66qsljtm9ezenTp0q+ndGRgapqamkpKRw44030rt3b3777bcy5VB9SbW2+lu16cC/C3711FgEAr9wJF2jdxOZtnXc18meXhSTYyROZ0NchPPXF94DzxJhkujaQObZ+Tbu6RvAXlGBwMv4TRSE0KZe2hEDnS7p4O9hBCWaG3HE+/btK/Pciy++yIsvvujS60aOHMnIkSNdvr43qdZql5KSwrdTPDUUPyNCikKSl362sXirSr/WzhvVvlgEW9WR2HZEpWmy8/FNQhx4nicGO6ZI4b4XCMpHeAp8w/YjcG1Kir+HIQgBqmVFtGrViu0Hc4OnAVAI7T4IHESY4J6BCg9faih3gatuSJC7tK0nsXaf678rEVrkWSRJEqJAINAjIbRe2+0a2w/miopEAp9QLY9B06ZNsdpUDpxUaVRTNAASBB4Xpch8tUJlyH8eWr0Y1T2bSjw9R8Vm1zC40XQtmL0HmqaRkQ9HMzQOZ2jsPKkxb4sdkwIaEGOWqBMrkRgJJoOESQGzAbrUl2lfNzg/E4HAH4gQIt9w4JSKza7SpEkTfw9FEAJUSxgYjUZaNG3Apv2ng0cYiJCikKJtXYl1+1TsqoYi62dnWJYlLu0g89N6lRFd3PttBZs42H5C5as1dv7Zr1Ir2mH814mVaJAg8cMYE2FGx/eXme8QDOm5GhYbFNgg3wbTVtvYNk9jaFuFUecpxIXr5/sWCAINvWyihAKb99to0bSBXxNSBaFDtTPqLrioH79v+pqh3TwxHJ0gxEHIIMsSQzrI/LhO5Qo3DXBvcVNvhTum2twWBnBu8Q5kgbB8j523l9pIipS4qZuBpy8xIEkSmfkaC9NUIk2w/YRGYiQkRTp6UsSElTX6h7VTKLBpzNuscttMCwkREq8MN5Z7rEAgqBi/ioIQ8xYALNmkcmGfAf4ehiBEqLa1MHDQEBZvDlyjo0JCcPIJVW67SOHjP+xuVSbwJnERErkWz5wrUHf3Xlti5YcNdt65ysT7I010byQjSRL/7Fe5+nML6Xka245pzNlo5+G5VhL/l89feyouoWw2SFzZUeG7MWZu6aFw3RcW0nMd37umaZzM1li5z862Y4H5eQkE3iZQ55JAZvEmmYGDLvH3MAQhQrU9Bn379iXtQA5Hzhiok6CvHddqIzwHIUFUmETPZjILt2gMbBu8u8eB5j3Yd0blr70qP4wxFSUA21WN15bY2HJM4+ubTcRHOJ7Pt2q0nVzAnNtMnN/EuXmoRyOFZy+VGPZJAQmREhKQFCnRNEki7bhGo0SJRwcYMBmC954QCAKKENywO3zazvaDOfTt29ffQxGECNUWBvHx8XTu0IrF/+5ndN8gEwYgxEGIcNcAhZHvWUmOMdCxgX4M5wgT5BRoRJo9Z5zqPffAZtf4fJWdWf/aefcqI5oG47+xcCpHIzsfruui8GA/Q4lqQWFGiemjjTyzwMa8zXaaJMk0SXQY+Y0TJMJN5X9+nerJLL3LXG7loVn/2hnxmYW3rjDSrIZ+Py+BwFcIb4HvWfyvlS4dWxMXF+fvoQhCBI907ek/+HIWr3yH0cEqaIU4CHriIyW+vtPI6I+sPHKZgQtb6sMQbFlb4p89Gn1beXbXWq/ioMCm0eP1AlomS3w8ysjOkxrvLrPRqZ7MHb0rn656Nlb4eZzMwbMau09p7DmtsWKvyr4zGnlWjXCjxOShBhomlHzfFZUjvaKDQpcGEhO+s3J9F4VrzhNNzgShi99FQQh6CwAWb5LoP/hyfw9DEEJImgcCq//44w+uu3oIBz6JCO6a30IcBD05BRo3fmzjpvNlLj/P/x6wM9kaoz6wMu9eo9dCWtwRCOm5DsN7zym1yAg/ma1RM1qiQbxEwwTHf1UNzuTA2TyNy9spJEZW/R62n1BZsE1l6zGVVrVkOtaVuKCJjFzNqlG7T6lM/N5Kj0Yyl7ZR6FRXcuqcNrvGswtsnMjSeHW40aPeG4EgEBCiwD9omkb9sbl8/cOvXHTRRf4ejstkZmYSGxvLi03GEKaYfHrtfLuFR/Z8TkZGBjExMT69dqDjEWFQUFBAQnwMf78YQduGQb6rJsRBUFJoHCvxKhabxrgpNvqkyNx8gZ/EQbGF8NvlBew8YuexARUn1VaXqsSBza6xcr/Kz1tU/j2skhzlCNNpkiT9F7IjkxQJJ7LhQLrG/jMq+9M1DDIkREgYFZi+2s7XN5v8WgXIrmqsPuB4H+sOqTSIk7i4hYxdhZM5UDsGrupY/hy2ZIedlxbbeGmokY719OdtEQg8jd8FQSEhKgw27bPR+9E8zqRnYjL51rD2BEIYBCYeseLNZjMXXdCTxf+uCX5hIMKKgo7iRrE9XUYBPr8Vxk2x0SBR4uLWPjYCSy2CV59v4pqXs0jLiSAlMs8rl6wstMhq1xj+qYXzG8uMOk/hhcsMFXoGa8VArRiJbg3LnutIhsaq/SoDWvrPE6PIEj0aKfRo5BjDvjMqS3epmBVoVVPi7aU2+jYv37NxcQuF9nVk7vrBSteGEndfaKi2F0Mg0CO6EQQQsqIAYPFGKxdd0CsgRYEgcPGYxdN/0OUs2uz/0AufEMITVaigZSi8dImJF3+2YbP7uIxpKeEpSRKvjonkoak5Xr33lHi1XIPg7aU2RndReHSgkQ51ZbfDBU/nQL1YfRnSjRJkbupmYFRnA/1bKtzWy8AX/9gqPD4pSuKrG41EmiQGvm9hxKcFXPV5AR/+ZePQWX2VuxUIXKWiOUDgHxZtUug/aKi/hyEIMTwmDAYMGMCfm/KwWENkcRTiICioLIQmLlxiZFsDH/7uh4WylDhoUEOhfpLCnu2ZXr90acPg770qV3eqnui32TXWHVKpF6cvYVCaIa1l5m9VOZtX8TwmSRLjehlYNMHM7LFmvrjeRO0YiXFfW/hlq/fCvQQCb6FbQRDC66zFqvHnplwGDBCNzQS+xWPCoG3btkRFRbJyR8W7bUFHCE9awYAzSbc3dVPYslfj9o9tnM72g+egUCCkZ9G/qY1FW3yzeBc3ElTNEYLjLnZVY9w3Vsb1MhCt8y7DiizxwlAj10yxsP2E6lTTu0izxLB2Cl0ayPy+085Hf9n4dIWNWf/asdhCZKNEEJDoVhCEIsXne2DFdhsxMdG0adPGj4PyDJk2A5lWHz9sjrD2rl270rp1a9577z0/fwqBg8cSAiRJon+//iza8AsXtjF66rT6R+QcBCTOVuKRZYl3rzKxcp+d696xcXUvmTEXVL9Cjkv8d3/1bS1z+1Qb43zUL0SJV8nM04iuRhUeVdW481srA1vKXNEhMEINuzSQ+ew6E0//auVUjsOwt6twe28DQ1pX/B5u6a6w86SGXQW7BofPagz9xMJVHRRu6qaIRmkC3RAQYiBUN97SsyA+mkX/Wunf/9LgrvToA1avXi2Sj13Eo1mVAwZfxuItQZ58XB6hOoEFKO6U5+zRSOGncSbyMyUufdnGrxvtPs89iIuQUGRIO+q7RT3tqEZKQ/df/8oSG90byYzqHFjzQr04iU+uNTF7rCNc6OubTfy9R+XG6ZYKvQiNE2UGpihc0lrhsjYK4883MG+cCbMBhn5iYe5mEWYk8C8B4yEItTW1nM3FxZsNDBh0mR8GIwh1PLpa9+/fn1tvzeZsdhxxUSFWzk94DgKC6jT1UmSJO3obuLKDwvTVNt7+zUrrujIvX6NUK9TGFZ6/ysD9M218P0HyyU7S7LUql3Zw7zPLt2os3aXy8/jAr6gRZoB8m0ab2q597kZFYnRXBavdUZXJFTRNY85GlX+PqGTma+RaHJ2wR7RXOL+xj71WgoAmIMRAIUIUkH4ok7XbrfTr188PAxKEOh4VBnXr1qVF0/r8sfkMw3uYPXnqwECIA13jqU6/ydES919s5H6MfPy3jXcX2bl7oG92xBslSbSrJ/H+YpVxfWSMXgxPSc/R2HxIY/LVMuB6p+Rv1tu55jwl4F3hBTaN8V9b6dvCUcEIHKLnaKbG6RyIMkNSpER8BNhUOJiusT9dY+dJjb/2OBKZW9eSeXJwyXtkxwlHw7XI/6bKQkdEXLhE3ViJY1kakSa4pbuBmHCIMkmcztX4YYOdFxbaiAuH9FyYdoOJ5OjA/owF3iGgBAGEniiogD+2qbRs1oC6dev6eyiCEMTj1ky/gUNYvHEaw3t4+swBghAHIcVtPRWumWqnbT2Vfj7qd/C/yxQ+Xaoy5HUrF7eWGXuhQo0YzxqGmqbx0s92Uvu7nxcwe6Odd68KfG/BlZ9Z2HVKIyNfY85GRziQ2eDo11AjUiLbAqdzNM7kaigS1I+XaJgg0yRR4q0rjCSU0xNBVTVunWHhucuMJbo6a5rG2TyHdyHHAp3qSRiVc69PjpZ4fJCMpjn+nnZc49F5VkZ3Vdh1UiMpypEILQhtAk4QQGiKggpshcXbZPoNvNTHgxEIHHhcGAwceAn3p0739GkDCyEOdIenvAWlkSSJL643MfZrK0ePwA39vS8OzEaJ1P4Kd1ws89sWjTun2YiLgPsvUUipXf3rL9qi8tqvNi5uLTOo7TmjtLImaOXx5GAjj8+zMvWGwBYH715tJMbs8Ah40vtxWy8DczbaeeMPG3VjJd672oQkOa4TH1H5dSRJIsoMXRpI9Dgss/agSqMEmRlrbFzeVkbTEKFGIUhACgIQoqAUi9IMvHHvJT4cjEBwDklzph6fC2RlZZGQEMf292NpmBziO1dCHOgCb4mCEtdQNe6bbaV+vMT9fQ0YEnybmLzjmErqNBtfjjdS04UmYnkWjT0nNbYf1dh2RGPVHo129SQeuEQhvpydbnD+8/xhg52TORq3nx9Yicf+4IrPCph1a/XCLy02jZFTLUhATgH0aylzbx9DldWQrHaNg2c10nPBKEO4CZomSkJYBBABKwggNEUBVGgf7DulkfI/G2fOnCU6OrA/m8zMTGJjY3m0wTjCZN9uEOWrFl448DEZGRmiKpGLeHzFjo6Opnvn9iz+dxdjBoS4MBCeA7/jC1EAjsTkN68w8spiG3f9YOXly41E1fSdOGhRS+aN6wyMn2rjh4kGTmTCvwc1Nh1USTuqUWB1HKcBFpvjARBmhEY1JFrVlri4tczEARIx4ZUbhM56Dr5eZ+OTawPbW+ArrHbYdVKlWQ3371eTQWLOWIe40DSNb9fbGfqJhTdGGGldq+R5txxVmfSLFU0Dg+yowpQUKWFV4WS2RoENPrrG6LOkeoF7BLQgACEKymHxFpUeXToEvCgQBC5e2crrP3gYi35/nTGiYZ8QB37EV6KgEEmSeKi/kV+32hn+mYVnLjHSvZHss8W7bT2Za7ppDHnNSoNEifb1Jbo2kbmpt0S4EQqjYIyKIxypOhS+p4o+48NnNaLMEnFViAyBgw9Hmhj7tYXHBxo4v0n1N1QkSeKqjgoz19kpz7Z//GcrH11TftLyyWyNa6ZYKLA5qiAJ9EXAi4FChCgol0VpRvoPHuajwQgEZfGKMBgwYADvvfEcqmoS7mg4NwEKgeAzfC0KinNJa4UejWQenmvlx00STww2EJnsG+/BtT0Vru3pO09dce9BToHGqRyN+nESM9fauLZziHsMi6GqWqVzYd04iZk3mej2WgEL7pBonFj+/atpjkpISVGOc/29186cjSpmA+w6pZJT4PAK9W+pcCRD46oOCik1y56rdoxEgU0jzwKbj2rsOKmy97TG3tMau09pvHOVkQiTmLv1RNAIAghdUVAFqqqxZKvKPa+JXVWB//CKMOjWrRsFNpl/99np1ETEFxchvAc+wZ+ioJD4CImPR5mYu9nOsE8tPH+pkS4NfOc98CWF7+mVGXY++dvG8PYKe05r3NtX/PYLufJzS4l/mxRIjJSINEOEUSLCBMv3qDw7xFChKFh3UOWJX6yk52q8MtzItmMaszbaeXW4EZsdmiQaiDRLWGwav213iIUbupb/HZzfROaG6VZqRkPb2jKtakoMbqXQOFEiwcNJ1oLqEXRzRiiLgirW/w0HNKyqQrdu3Xw0IIGgLF5ZuY1GI337XMSiDX8LYVAaIQ68TlVhLr7k8raOZlSTfrby4iKNG7oYuPx8vNp/wF+MHSizZIdETJhE94ZSQMenF9g0fktT2XhY5Xi2wwtSL06iTqyjx0ATF5Jz860aVjvMG38uubjApnEqG/KsGnlWyLXAgJYKB9M1fkuz066OTK3ocwa6za7xv3lWvhptIrNA470/bZzfRGHmTSZiwkqOw2SQuKxN5d6a67sYuL6LmJv1TNAJAhCioAoWbVHpe9EFGAzitynwH167+/oPvpy5n/3Jg1d46woBjBAHPsHV8preIjFS4v2RJtJzNb5aY+eyV+wMbqVw9+XBVfmlYZJEdBS8NFpGPRvYYUSvLrahajAwRaFmDBw6q3EkQ2PdIZU5GzW2Hde4tI3C6K5KlXkUJgU61JW58rMCHu5vJNwIb/xh40SWhsngaGymalAzWqJbQ5m8szDrXyuHMzT6tZC5p4+Rr9baubqjQlKURFKUxGsjRPB/MBKUYqAQIQqqZPGOMIbfNtTLgxEIKsdrwmDAgAE89ICVfItGmIhVLYsQBz5BL+IAHOFFEy40kHqBwsd/27n6TRsfjDWQ7OHmZP5i7T6V1nVkJEnS1efuDvvTNZrXkDivvqPBWKOEkn+32TXmbVEZ8amFr240UaeSErGyLPH8ZUaOZmq8vMiKVYXHBhpomlT556NpGpd8aGFcL40Za+z8NE6IgWAlqAUBhLYocJI8i8bytHzeGyDyCwT+xWsrd8uWLUlMSOCvbVZvXSLwEZOlT9DboitJEuPPNzBpkJHr3rWxcJVvex54ixkrVK7reW5KUeJV3X32zvLRNUbqx0kM/djC4h127Oq572jNAZXPV9nZeVIlOQqe/tW5Oa52jMQbV5h49ypTlaIAHPfJuF4G+r5TwMhOSpX9CASBReHvI1B/I04T6uuckxuAf+3UqJEYR4sWLbw8IIGgcrzmMZAkiQEDBrFowyz6dRA7XRUiPAc+QY872O3qyMwaY+KBOVYWbZd4sJ+BpLqBKxI61JfYfEijS+OSz+vxs68KSZIY1dnAoFYK7/5p4+2lNiJMYJQl4iLgklYK7WpLXNpGobYXPT5XdFAY1k4ut+SoIPAIehFQGiEKnD500VaN/gMHi8R/gd/xaobLgMGX8toTc715ieBAlDP1CXo0UCPNEh9cY2LBNjtjZlhokihxz+UKjZICb3H4c7vK48PKn1L0lBDuCvEREpMGGwHIzNc4k6vRKMG37yGQk7gFDoQgEFTF4u1hPHjDpf4ehkDgXWHQr18/Ro/O4dQBC0kNREvqKhHeA6+jVwN1UCuFQa0U1h5UmTTThtkAT49SqBtfsVGYna+x87iGQQaTwZH8G1bNxmXV4WQWxEdUfowexZmzxIRJZSoACQQVEXJioBAhChy4sJafytL4d28O/fr18+KABALn8KowqFmzJm1TmvD7tv1cHZ0lJgxnEN4Dn6BXA7VzfZmpN5jYeFjljk+tdG8pcd9ghfD/EvgPndGYt0Fl0RYVDWhTV8KugsUGGw+qDGwrM66PQrQfOg7bVYg0V32cXsWZQOAJQlYQgFjjC3Fx/V6yVaVdq6YkJyd7aUACgfN4vVhu/0FDmb/mA67uhuPHIiYO5xDeA6+jV3EA0L6uzKxbTczdpHLVGzaMYY7nE6Pgsg4yU8Yayhj/qqoxd73KyPes9Gwmc88ghRgfCYQz2Rox4WBQnL+enj9/gcAVQloMFCLWdrdZsEWh38DL/D0MgQAASdM0r2Y7rl69mn59zufQ6xKRZklMHu4gBIJPCAQj1RkDRNM05m9SeX2+nXdGG0ip7f33df9MG31SJIZ2cq9/QSB89gJBaYQg+A+xrp/DxfU6O1+j3n0av//5N126dPHSoPxDZmYmsbGxTKw1HrPshDvZgxSoBbxz7CNatGiBoiikpqaSmprq0zEEKl73GHTp0oVGDRvww+r93NhbEV4DdxDeA58QCCEuhWOrzCCRJIlL2it0bCBz2+c2br9Y47KO3mk49vdOlefm2ujZTHZbFIDwHggCByEGSiHW83O4sU7/sEalSeNGdO7c2QsDEqxevZqYGJHj6gpeX4klSWLMuAlMWVFMLQoj13Xio8UE7CMCob64M0Z07TiJHyYamLFC5bfNnn8vuQUaT8yyMfMOI5MqqEbkCnr/zAWhSyDMCX5BrEnVZsoKM2PGTRBlSgW6wSdbdDfccAOrduaz81ixSVWIA/cQE7FP0bNBYE+XqxQIZqPEZ7caeOs3G/8e8Ox72HNSw2qHnzaoPPKtjaNnNQ6d0Zg8z8br823sPKZyMrP8SMU1e1Xe/s3Gyt1qUfMwq83xej1+1oLQQ8+/fV0g1qKSuGHT7Dim8s/OfK6//novDEggcA+v5xgUcvUVQ2lqnc/zV5YKNxCTi3sIYeU39BryUpkBcypLY9T7VqbeZqRegud2po5laLw4z86QDjIfLrGTU6Dx8KUGsvI1ft6gUmCDk1kajWtImP8rpbrzmEZyDFzVVWblbo3Ve1RMBgmrXSM5WuJElka/1jL9Wsu0jfZ6tKNAUIQQAU4i1u2yuLEmP/q9nb3mS/j2h+Ds96SHHIOMjAwRSuQiPhMGv/76K2NHX8Gel9SSlUvEBFM9hEDwK3oRCc4YNLtPaNzxhZXvUo3ERvjOba1pGofOgMXuqJzUKEnCaKj4+habxpJtGj+utSNJ8PxAk+gfIPAaQgy4gFivy8eNddhm12j8sMznX85m8ODBXhiU/xHCIDDxmVUzcOBAJGNk2VhnYdhWDzFR+xV/hxu4cu2myRLPXmHg5k9sWG0+2Q8AHHlG9RMlmiZLNK8lVyoKAEwGicHtZD642cioHgojpxewu8Dmo9EKQgF//24DErHWeJQFm1VkYyQDBgzw91AEghL4TBgoisKNt4xl6t/Gsn8U4qB6iMRkXeBrQ8Oda3VvKnPzBTJ3TrPhI2dhtbiwpcwXtxl57Hs798wrYM9pYcgJ3EOIATcR60vluGm/TP3byE1jbkNRvFMxTiBwF5/GQYwZM5Z56y3lJyQKcVB9xOStC7xtgFT33MPOU+jcSGbidFtR4q+eqRMv8d0EI2MvUpgw28LWbOE9EFRN8d+hEANuIARB1bhpt5zI1Ph5vYUxY8Z6eEACQfXxqTBo1qwZPbudx1cr7OUfIMRB9RGTua7wtGHiqfPcfrFCz2YyN31so8Cqf3EA0KGBzBfjjNzwkQ05roI5RBDSCCHgIcQa4lW+WmGnV/fONG3a1N9DEQjK4PPMyTHjJjDlb3NAhDEENGJi1x3VNVg8bexc30vhup4yV7xjZduRwDCkth3RuLqbLGp+C4oQYsCDiI0l53FzI1PTNKb87ehdIBDoEZ8LgyuvvJIDp1XW7K1AGAivgecQk7wucdWQ8abRM6SDwrujjbw4z07qNCvzNthJO6rq1otwMlOjbpxDFAhDMHQRYsDDiLXCZ6ze6+jXcuWVV/p7KAJBufhcGERGRjLq2muZ8lclO35CHHgWMeHrlqoMHF8YPo1rSHwxzshtfRQOnYHPlqpc96GNYW9a+WmDHVVHeQh9Wsn8vk0Yg6GIEANeQqwPrlMNG2XKcplR115LRESEBwckEHgOv3QPunXseAb2+5JXR0KEuQKBkJ4lJixPUvhZCtGlWwoNHnu67Bfjp2MDmY4Nzv07PUfj06V23llo5a3rDbSq4/+eDcu2qzRIOjdnKPGqbnpJCDyPEAFeRKyvPie3QOPrVRqLXhzv76EIBBXiF2HQrVs36tWty+y1h7i+VyWluoQ48DxCIOgevRhD8ZESDw4xcOP5Gjd/YqV3C5muTWQ6N5JIjPJ9jP/JTIdQmXtPOSWPBUGBXu79oEasqdWjGmvnrLUqDerXp2vXrh4ckEDgWfyy1SZJkiMJeYUTnfCEAesdREypwElqxkrMudvIRSky246oTJxuY/RHVvad8m2I0U8bVG65QCnTIE0Yk4FJ6XKi4nv0AWLOrx7VtEcKk45F8QSBnvGLxwBg9OjRPPq/h9l9QqFpsviR+A3hQRA4gdko0buFRO8Wjr2EbUdUHv7GRlQYXN1NoVMDiRrRcOAMjHrPynmNJJ4YbqBWrOd+24u2qLx/k9+mLIGbCINfBwhB4Hd2n9BYsSOf70aP9vdQBIJK8dsqm5yczKWXDOSL5Qt55ooqOv+JkCLvU/zzFSJBUAWt6sh8kypz4LTGD2vszFqtcSILcgo0Ph9rYM1ejSd+sPHxGM+F/eQUQFxE+UJD5BroAyECdIZYNz1HNdfFqctVLhsyiBo1anhoQAKBd/DrSjrmtjuZttLoXPdVYaz6DhFmJHCSBokS9w4y8PEYI3PuNrLwIRNnc+HpOTZmrNRv2VNB9RGhQDpGzOG6wq5qTFthYMxtd/p7KIJymDx5Ml27diU6Oprk5GSGDx/O9u3bSxzz1FNPkZKSQmRkJPHx8fTv359Vq1aVOdeKFSu4+OKLiYyMJC4ujj59+pCXl1fhtf/880+GDh1KnTp1kCSJOXPmePrtuYxfhcHgwYOxS2Es2uKk8SDEgW8Ri4vADdrUlWhVR2b6OANmo+dCiexV2J3CMPUO5QkA8VnrGDFne55q2h4Lt2hoSgSDBg3y0IAEnmTp0qWkpqaycuVKFi5ciM1mY+DAgeTk5BQd06JFC9599102bdrE8uXLadSoEQMHDuTkyZNFx6xYsYLBgwczcOBA/vnnH1avXs2ECROQ5YpN7ZycHDp06MC7777r1ffoCpLm5xbEjzz8ELuXvsvXt7uw0IiJzz8IYSZwkux8jRs+sjGhv0L/Np7Zfxj1vpUpYw2Em6ovNgIl7OhIhsacjXYSI6Fvc4XkaO/mY/nK4Nc0jVV7NDYe0LikvUz9RJFnVm3Euug9qrn2XfOhTPO+E5k8+SUPDSgwyMzMJDY2lom1xmOWnSg240EK1ALeOfYRBw8eJCYmpuh5s9mM2Vz5WE6ePElycjJLly7lwgsvLPeYwve2aNEi+vXrB0CPHj0YMGAAzz77rFtjliSJ2bNnM3z4cLde7yn8vjqOuXUsc9dZOJUlQg50j/AgCJwkKkxi5h0GPltq5+Pf7Xhi/yE6DLLzPTA4Kt4F19Ou+MlsjVtmWKgbK2FXYfSXFv49XHZMu06q9Hg9n8NnS37Gzr5HX75fTdOY8qedIa9Z+XGdyp6TGst2CO9DtRDzsneppig4laXx0zoLY8aM9dCAAo9MK2T4+JFpdVy7fv36xMbGFj0mT55c5XgzMjIASEhIKPfvFouFjz/+mNjYWDp06ADAiRMnWLVqFcnJyfTq1YuaNWty0UUXsXz5cs98iD7E7yU+WrRoQbfOHZi58l8mDnByOCIZ2b+ISkYCJwg3SXx1u4HJ8+ykTrPx7mgDsuzezvDOYypbj2gYqqhT4GmcNZY95YEovF5GrsZNn1p5Y7SBdvUlQKJxQ/h8pZV3255L6N51XGPCHCvPjTTw2G8Wpo/XV4+Ho2c11u9XWb9fY8MBjRGdZb75x86cu42EGSV+WG0n1+LvUQYwYh3UPTNW2OnepSPNmzf391BCkvI8BpWhaRr33XcfvXv3pm3btiX+Nm/ePEaNGkVubi61a9dm4cKFJCUlAbBnzx7AkYvw6quv0rFjR6ZNm0a/fv3YvHlzQH3/fhcGALeOn8gbT09gQn+r8/V9hTjwP0IgCKpAliUeu9zAW7/Z+OxPldv6uGfZf/anyjs3GIiP1GfIiSd329ftU3n4WxvPX2WgXf1zguO9RXYmjyw5Zf++zdHbYVA7mUVbVH7brDKwrX8cwSczNVbtUflnj8bmQxoWG8RHwqrdKjHhEs9dZaBTA1iyVSLsv9wTRa46d0RQDmLt8w3VXNs0TWPKijDuf2qihwYkcJWYmJgSwqAqJkyYwMaNG8vd6e/bty8bNmzg1KlTfPLJJ4wcObLIS6Cqjols/Pjx3HLLLQB06tSJxYsX8/nnnzvlqdALfg8lArjqqqvYc8LGuv0uhhsIg1QfCFe2oAom9FeYvdbO5kPuWYGbD2l0bKBPUeAp8q0aD39r452Fdr663Ui3Juem5wKrRq4FGiWV/AyGnyfz03rHZ/rkcIVnf7Qx7E0rw9+yMuxNK/1fsrBqt3cs78PpGm//ZuOGD61c+rqFB762sf8UDO0oM/MOA09foXDgtMazVxr450kjg9vJfPi7So9mMlabxoJNKtP+UokJ98rwghMx1wYUa/dp7D1h46qrrvL3UAROMHHiRObOncvvv/9OvXr1yvw9MjKSZs2a0aNHDz777DMMBgOfffYZALVr1wagdevWJV7TqlUrDhw44P3BexBdeAyioqIYec1Ipi7/hs6NXHyx8BzoB+FBEFSAIktMvc3IjR9beXSogQtburYnEeyNQtfuU3nkWxt3DVQY2tExLauqxoe/qyzZqmJT4ebeJT+zncdUPlmqkpHn2FCJCpP481FjCa/rmWyNB7628eM6lSeHKx6tEvX+YjtNaki8fYNCQlTZ8zZNhjAjtK8vIcsSf+9Umf6XnQtbysxZq9KnlcQrowyiwWVViPXNP3hgHZv6l8w1o64hMjLSAwMSeAtN05g4cSKzZ8/mjz/+oHHjxk6/rqCgAIBGjRpRp06dMmVOd+zYwSWXXOLxMXsTXQgDgFvH3s6lg77h5ZGa61VHhDjQF6JZmqAckmMkvp9g5OZPbJzO0hjRxbmwoux8jewCjZwCiA6y3WWrTWPyPDs7jmnMvMNIUrGqQ5IEv/yrcu9ghX6t5aLj565X+fJvlRrRcFsfhZdGKsVeU3LuTIiS+HyskTlr7Qx908q8e42YDGXn18w8R5WgFTsd+QCJUfDUCAP1Esqfi9fuU1mxS+XugcZyRQE4mtFNG2fk+g+tJMdIZOdr1E+QOHBaIyZconlNiYaJLn9koYNY0wKaPIvGzFXw67O3+3sogipITU1lxowZ/Pjjj0RHR3Ps2DEAYmNjCQ8PJycnh+eff57LL7+c2rVrc/r0ad5//30OHTrE1VdfDTjm3gcffJAnn3ySDh060LFjR7744gvS0tL4/vvvi67Vr18/RowYwYQJEwDIzs5m165dRX/fu3cvGzZsICEhgQYNGvjwUziHboRBz549qVWrFnPWHuHanm7EIQtxoE+EF0FQjMJqReOn2jibC7dcWPVv/ak5dh4daiA6PLB3lu2qxsUvWkvkSeRZNG7urTBpmFLGqJckR/L2Ve9aaZxkZOpyOyt3q1zeSWHKbYYKu0CXx/DOCit3a/y+TSPMqHHwjOOx76Tjv7HhEt2bSgxqJ/PIZRLbj2pMmG6jWxOJWy9UUOTCMcEnf9jZdEjjuwlGEisQBYXUjJX46V4jdtXx3ReSnqMx7S87l7xmpU+KzENDFIzlCJaQQ6xh+sAD69XstSp1atelR48eHhiQwJt88MEHAPTp06fE81OmTOHmm29GURTS0tL44osvOHXqFImJiXTt2pVly5bRpk2bouPvuece8vPzuffeezlz5gwdOnRg4cKFNG3atOiY3bt3c+rUqaJ/r1mzhr59+xb9+7777gPgpptuYurUqV54t1Xj9z4GxXnllVeYP/0pfrvP7v5JxMSqb4RAEOAwDLs+ZWHRw6YycfOleWaOjb6tZS5ooYuUKKdRVY3X5ttZvsMxxaoaXNVV5qberm18/LTezvr9GlsOa3x9p8H5Ag2l+Hunyrf/qNRPgPoJEvUTJRomStSOK+tpAIeb/Md1Kj//q6JpULhQXNRSZvT5stvjKI6qajw1x875zWUGtQus79ejiHVLX3hgnRrwmsKQm57mgQce8MCAApPCWv83JY7H5OM+Bha1gC9Of0RGRoZLyccCHXkMAEaPHs1jj/6PXccVmtV0c9ERngN9I8KMBMD0v+w0TJIwOzEDjb1I4caPrcy6y0hMgHgNsvM1xk2x0SdFZs7dZb0BrmA0SCREQYFNq9Z5ejWX6dXceeNbkiSGd1YY3tl7NWJlWeKa7jKf/6Mw6MKoig8M1rlCrFX6wwP32q7jGsvTCpg5erQHBiQQ+BZdbdHUqlWL60aNZPLP1Vz807OCdyEJJkSFjZDlroGOBOQ/tlVdMadOvERqP4VP/qiGJ9GH7DulccU7Vu7opzCub/VEAcDpLA2zweFxCAoKf/f/PVq3iWHrAcd3e+Ksyoo0Kza7VulrAnruCPTxC6rkhZ9lrhs1kpo1a/p7KAKBy+hKGABMeupZvl5lZ+cxD5TYE+IgMBALZUiyYpfKVV2dm4KGnSezYLNKboH+reNXfrHxxnUGj4Q+Hc/QmLrcznU9ZTQNjqTr//2XwAljXpIkGtaQGfJ0Bg9NzWHBegtDn83k7o+zWbLRgtVWyXuuSDDocS7R67gE5/CAzbDjmMo3q2w88fRzHhiQQOB7dBVKBNC0aVOuv/5anp33HdPGemARFKFFgYUINQoZwoyS0wmnsiwxsb/Cg984Oih7Ir7dW+w/Ba3reCb+/vapDpERaZZ4/VpHSNXHtxhposcSn9WYZ9+/IwpJKpnrsO2gjR9XWXhtTh7JsTKPXh1B8zouhDVVNB5fzyti/Qkpnv1J4YYbRtKkSRN/D0UgcAvdeQwAJj3xDD+strHtiIca8wgDMzDR8+6foNrYVUcsbiEf/W7n140VhwsN7aTQtp7MPV/Z0FHNhBLkFGhEmMtP5nWVGStVejWXaFvPMU03ryXzv6EGpi73c0iVF3boZVkq85m1qm/gkasi+PmJWCZdE8G9n2bz9Z8F1boO4BsPg5i7Ag8P2AlbD6vMXmtj0hPPeGBAAoF/0KUwaNSoETfffBPP/ORBh4bIOwhsxCIbdLx9g4Gn59gY8ZaV/ac0MvM0npptZ+aKig3fOy5WSKkjc+cXtspDTPzEmr0anRt5Zjf/ghYyK3eXfI8rd6n0b+PDaVsnITpNainMeSyGTftt3PF+NnneCCnzhGAQ81RI88xPBm6++WYaNmzo76EIBG6jS2EA8Pikp/hpvZVNBz3kNShEiIPARuzEBQ2Na0hMH2/k9esMjP3cym+bVT66xcDMVZXnEtxxsUK/NjKjPrCRlacvcZB2VKN1Xc8Ig4ZJEq3qSCW8KCt2afRq5qUwIp2IgIowKBLPj46kczMDUxfn++7CVX0WOv28BC7gAbtg40GVeRusPPb4kx4YkEDgP3SXY1BIvXr1GDv2Np7+aSrf3+kFcSAm8cBH5CMEBY1rSLx8jYEosyNc5truGte8b6NZssSDQxTqxJc1hK/qqlAnTuLBb2w8PcJAzVjXjeWf/7Xz/mI74UaJMCOMPl9hYNuyIS3OcvSsxvr9Kk2TPVfe8+EhCle8Y6VxDYkVOx0diQ2KB4VBAM6DPVoamPFnQVE4mbvf19lslVyLRr4F8q2O/xZYNUwGCbORov+ajRI14ySk0s0aA/CzE3iPp+cauO22m6lXr56/hyIQVAtdNTgrzdGjR2napCFLH4bzGnnBuSEm9uBEiISg4J89Kq/8YqdlbYmnRygoclkDcNsRlYnTbXw+1kiDROcMxJOZGu8ttnMsQ+Ot6w3IEizepvHsjzaSoyU0HKVBB7WVuaqrXKXoOJvr6FkQaYKB/73Gk118f9pgZ/EWjZ7NJAa0kUmoottwlQT4vJeZq9LroQya1JLJyYf7h4czpIvJqdceOGnnm2UFLP7XSlKMTEyEQxSaTY7/mgwSVrtDKFhtYLVpZOdrHDmjMqZ/GCN6mFA8KcwE/scD68XafSp9XoLde/ZTu3ZtDwwqOBANzgITXQsDgPvuvZudyz5lzgQvJtwF+EIpqAQhEgKemSvs/LBG5es7DeXulu85ofHQNza+n2is8BwnMjWmLLOzbLtGfCRc0VlmeOeKu/fmWTR+26zywRI79w02MLBt+RsTh9M1bvnUynNXGujWRLeRmUE7x+Xkazz/XS57j9l58aZIGlbgrckr0Lj+tSzioyRGXmCmX3ujS56X7DyNzxfl89M/Fq7sZeKmi8MINwuBEPB4aH0Y9o5My4vG8drrb3rkfMGCEAaBie6FwYkTJ2jSqAELH1C9u/AG6cIp+A8hEAKah7+1cUNPmXb1y84BFpvGZW9YCTdKnMnRaJwk8eHNBkwGOJwOU5fbWbtPY0J/hb4p50qkWmwaz821s/2oRla+Rt9WMndcrBAVds7gy7NopE6z0ShJ4pHLFEzFPAFbDqvc9aWNj242ut+p3duEyLyWdsjG41/m0qq+woCOJk6cVTn+3+NkhkbaYRsTLw3nil7VM06sNo3v/ypgyuICHhsZwUVtKxajggDAA+vCqt0qA1+X2bP3AMnJyR4YVPAghEFgonthAPDwQw/y78L3+PluD+calCZEFlEBQigEGOc/Z2HevUbiIys3wDVN4/dtGi//YiPCJFEnDoZ0kLmkfVnvwHNzbdSOlbi2h0yYEeaud3gIRnVXuOVCpcQ5v/tH5ZOldoZ2lIk0O8JNflxnZ+ptRrfyG7xKAM9jakJSuc/LZ0459fr56yxs3m8jOVYmOU6mZpxMzTiJGjGeDe/KzFUZ+VIWz94QwbF0laHdfGv0CKqJB+f/IW/KdBqUyosvveKxcwYLQhgEJgEhDE6dOkXjhvX45R6VXs297K4P4EVVUA2EUNA1T822kVMADw1RqBFTPQOvwKrx/hI76/ZpTBtXslmapmnc8JGNhy9VaF/KO5GZp7Fyt0q+Bax2GNROLuFd8DsBNndVJAKcxVmx4C1mryjg3302Dp1Subybicu7C3EQEHhwrv9rp8plbyns3X+IxMREj503WBDCIDAJCGEA8Nij/2PlvLf57T4fNfcJsEVW4GGEUNAd8zepTPnTjskAl7SXWbJVxWyEOnESt1xQfvWi4mw/qjJlmcqavSq3XqhwTXcZuZyE5qNnNcZ8aiUp2lFOVdcEyDxVXRFQGf4WCPkWjcuezWTu4zFEiLwD/eKFOX3Aawq9ht3Nc8+94PFzBwNCGAQmASMM0tPTadSgLrNTbVyU4uMGPwKBEAq64eBpjavetfLMFQba1pPYflRj6jI7Z/Mg3AgvXWOgUVJZA23Ym1YmDVNoX18qkStQHqnTrHRtLHPzBZ4rPeoxdD4neVMEVIY/BcLUxflIwE39wvw2BkEleGH+/iNN5cr3jezdf4j4+HiPnz8YKBQGV8SOxyj5VhhYtQJmZXxEixYtUBSF1NRUUlNTfTqGQEW3fQxKEx8fz733P8hT373KkpY2t2tXu4yoWS2Ast+/EAp+o36ixPLHjBgURw37uvESF7d2bBakHVV54gcb0/7b6c/M04gJd8wVfVpJzF6r0rlR1cb+nhMar1yjsypDOpyD/CUCyqP4WHwtEkb2NnP1S5lCGOgNL83Tmqbx1Fwj997/oBAFOmf16tXCY+AiOlv5Kufee+9j82GJJdv84OQQhqCgODruEBsKGA3lNyJLqe2o83/nF1bun2mj72Rr0d/uHWQgKgye/bHqcMTR5ytM/9vLxQ6cQUf3mJqQVOahV3w9vgizRLNaChv32Xx2TUElpGd5dc1evFVjyxGJe++9z2vXEAj8RUAJg9jYWO5/8BGenGvELxFQXp5sBAGMEAq64fVrFR4cYuDSDjLdm0rsOHbOwO/VTGbqcjubD1Vu9F/dVeabVXa2HvaDONDBfRRIIqAyfDn22waF8cmCfJ9cS1AJXl6jNU3jyblGHnjof2InWhCUBEwoUSF33XU3b77+Mgs2Wxnczk+JXiK8SFAVIvTIb8iyROMa0LiGhKrBi/PsdGygsuOYhtUOf08yUauKEqNGg8RXtxu5faqNMRdqDDvPB7kGfhYCwYwvwozaNjSw74SdnHyNSD1Vq/IShZ+pv5O/i/DRHDt/k8ruUwp33XW3T64nEPiagBMG0dHRPPjw4zz1ydMMauvDXIPySM8S4kDgHEIo+IU+KRKZeTIx4RL92kDrOuWHIJVH7TiJWXcZGPuZ9b9KSF4QB0IM+BxvGrTX9DbzzbICxgwI7lyD4vdO6fvIL0LBR/Oppmk8/ZOJhx6ZRFRUlE+uKRD4moCpSlScnJwcmjSsy0c35DC0o06qhgiBIKguQizokgKrxtXv2XhyuELnRh6IvvTzXBGqgqAyPGXM5hVo9JuUQY8WBvKtcHM/M91a6LzkrYu4ev94VSj4eM78ab2d22dEsWf/YSIiInx67UBED1WJRLlS1wmoHINCIiMjeeSxJ3l6rsk/uQblIfIPBNWldJ6CEJu6wGyU+OI2A49+V83EUh18p0IUlI+nchHCzRKz/hfDhMvC6dvOyN9pwZWM7M5n5LVcFR+vt6qq8dRPJv73+FNCFAiCmoAUBgC33347J3LDmLNWB5VDiiPEgcCTlCcWhGDwOfGREskxEmeyXdyI0Ml3FsgJxL7EE59TrXiZJrUUGteSyczVycaVExRYNSxW74+32vehnzbh5qxTOZkbxvjx431+bYHAlwRcjkEh4eHhPDrpGZ5+5SGGnWcrt4Op3xDJyQJvU9G9JYSp1+jWROKfvVrVRQ909rsPJEFgj69V5jkl/ZjPx+GJZGWDLJGVp39hkJmr8t7P+fy+yUpshITF5hizBsRFytRNlBnZ20yHLmW/m+Jk5dr5dnEWPduF07pRxWEjbocW+XFuU1VHbsFjTzxLWFhw548IBAErDADGjh3Li88/xferzzKyu05yDYojBILA1wjB4DW6N5X5daPK4HbFHK06/20HgigoTwxU9Hd/iAR3UFWNp7/O5bkb9Btykpmr8s68fJZtsXLnkDAeuSq8RGK+pmlk5mrsPa4y5S+Jvd8d5JbL4risVxSKcu647FyVD2an8/vaHK4dGMtjH57k3lEJXNjRg+/dz/PXd6tVMm2R3HrrrX4dh0DgCwJaGJjNZh5/8jmeee4+ruxqQ9GT16A4onqRwN8IwVBtjmdo5EgmiI/091CqRO+CoCox4MzrfCES3N3dfm1OHkM6m2jTQH9LbEaOytvz8vl7m5XUS8N59Orwcit1SZJEbKRE+y7JvNEFzmbZmfpLBkPuP0j3NuGkZ9k5eMKKpsItl8Vx/7UJyLJEvRoG1m3P94ww0MH8ZFc1npln5PEnn8Ns9m0CrUDgDwKyKlFxLBYLLZs15OnBp7i+lw69BqURAkEQCOhgQfY7xX6r6dkqV07O5NenYjEbdboB8R96FAXuCgFn8JZAcFcU/LPDyls/5fHlfdEul9O22zVOZmocS1c5nqGSm6+Rb9HIt1Lqvxr9O5i4oE3FFY/sdo3dx1S2HrSx5YCdrQdtZOVpmA0St/QP45LOxirHV969ZLNprNuRT61EA3WTDCW8BwDHz9h4/OOTfPJI7TKvdfkz1cE89OXfdp5eUIPtu/ZjNAZXhSlvI6oSBSb6285wEZPJxKSnnufZSRO4prsdg6LvRVuEFwkCAmfuTx0s2h6jivcbGyERZpKEKHABb4qBiq7jCZFQnfKambkqj07P5buHS4qCnHyNv7ZZ+WOzlY17bUSHS8x80GGsfPVHPjP/LECRQZElasRK1IyTSY6ViQ533HcJUWA2yYQZIcwkYTJIvDk3j/V7bEy8LKzoWnuO2Xn+21xOZqrIkkSTWjJtGhi4uL2RCZeGERvpfL2Riu4lg0GiW+vwCl+XHK9wMt0D1Zh0ML/Y7BrPzjMy6fnnhSgQhAwBLwwAbrzxRl549gm+WnGcm3oHgNcAhEAQBD6u3Ls6WORL4OLvTpYlasXJHD5tp26i/uYYvQgCX4mBqq7vrkCobs39937Op0NjBZNBYvG/FpZutrJ+jw2zUaJXioGrepl59roIrnzR8XtYstHCL2stzH08xuUCGl/cE8X9n+Uwa4WFET1MfDQ/n1/XWXj91iia1fbfPSpJEkiOPAtdFQVxgy//VpHCajB69Gh/D0Ug8BlBIQwMBgNPPfsij953G1d0VokOD6DJSAgEQSjgTxHhod/WJZ1NzF9n5dYB+hIG/hYF/hYD5WGPr+WSOPBUE64HRoTz4fx8bng9i54pBi7rauKJURHlerLTDtl4ZVYeP/zPdVEADgNc1SAqXOKKyVkM6GhkzqPunas01b2n6icbOXjCRsNa53bZXfqMdbCRkJWn8fQcjRfeehGDIShMJYHAKQI+x6AQVVXp16cXbcI28NZ1/h5NNRACQSBwntIGhBd/P2ezVW5/P5uvH9JPvKq/RIEexUBx/CEKXKHvY2dRZIkv74umVrx77YQ0TaPVnek0r6PwxljPeQk8cU+998MZmtUzMah7VNFzgSYMJk63kpbfkcXL17icKyJwIHIMApOgkcGyLPPJ51/SoX0bru6i0btFgPZuEx4EgcB5fPg72XtCpV6SPuYVXwsCvQuBQlwNIfKHKACQJYk3x0a6LQoKefq6SK7qZSqTAOwunrqvzmarRJj18Vtxh2U7VKb9LbNh0zdCFAhCjsD95ZZDs2bNeOrpZxk/zUC+Dzo4ehU/dXcUCATlM31JPjde7P/mRr4SBfb4WkWPQMBVL4G/RAHAomdjaNuwevtykiRxzQVm3YkCgBWb8ujV7lyCciB5C/IsGuOn2Hnq2Rdo1qyZX8ciEPiDoBIGAPfeex/RyU14dm6AC4NChEAQCHTBmt02TmSofh2Dt0VBoIkBcAgCvYcOlUZvu9CevK/2HbVQt0bZMqaBwrM/2olNbso999zr76EIBH4h6ISBwWDg8y9m8vYiWL/fv4u4RxECQSDwKz8+FsOsvy08OCXH59dWE5K8KgoCTQwUEkheAr3i6ftq7rJsLr8gMENh1+1TeWexxudfzRIJx4KQJSjv/Hbt2vHAAw9x2xevs+JRO0ZDYO5clIvIQRAI/EKEWWL/STuv3OLbzse+8BIEGoGSSxCKLFmbw7hhcUX/DpQwIqtN47Ypdh586FHatm3rt3EEIxlWOwbJA70tXMCm2QHo2rUriqKQmppKamqqT8cQqASlMAB47PFJ/PDdDF5bcJBHLtVXeUGPkJ4lxIFA4CM0TWPCh9mkDgmndX3fTZve9hIEIoEWNqRnPH1/nTxrIzpSISwAE49f/dWOLbwRjz72uL+HIvAgq1evFlWJXCRohYHZbOazqTPo1/dChp+nklI78CaqKhHeA4HAJ7z/Sz4t6ioM6WLyyfWEl6AswkvgWbxxj81bns1l5wdeidK0oyovzNP4/c8ZmM2+LaspEOiNILSWz9GjRw/GjR/PuGkGVDVIkpHLQ+QfCAReY+V2K8u3WnlgRHjVB3sAkUtQFpFL4Fm8cY9pmsbspVlc0sONUDs/rl+qqnHb53Zuv3MC3bt399s4BAK9ENTCAOC551/kaG4cH/4eRInIFSEEgkDgEfItGmmHbPy8xsLjX+by4Z1RPqkk4+8uxnojECsOhSrfLsmiR9twYiJdDN3185r1wRKV45ZaPPvcC34dh0CgF4I2lKiQyMhIPvl8OsOHXsKlHTQaJgVRInJFiBAjgcBtthywMf69bHq1MtI4WebTCVHERnp3D8VXgqC4ke1Jz4GrYT6eRggC/5KeZefzn87y0yv1i54LhO9k3ymNx2ZJ/DhvOpGRvi0qIBDolaAXBgD9+vVj5KhR3PHl9/x8t113NaS9RvGdGCESBIIqySvQuOeTHL5/JKbaXWmdxV9eAn8b854iEAzQYOfxj07yxJgkTEYX11Y/egs0TeOOqTauGXUDF198sd/GIRDojaAPJSrktdffZtPRcL78OwRCisqjMMxIhBoJBBVyKlOleR3FZ6JA4D4il0AfLFiVjUGB89tHuPZCP69F0/9S2XIqnldff8uv4xAI9EZIeAwA4uLi+ODjz7ll9EgGttWoGRsiXoPyEJ4EgaBcasXLHD/r282DioxbkW9QMUIQuI8n76tDJ6y8+c0ZZk2uV+L5Kr8fP4uCYxka938jM/Wrz4mLi/PrWAQCvREywgBg2LBhDBh4CXfNWMA3dwRxlSJXECJBIADghteyyMhVubi9b0qSVkVlxlUoiwYhCvSBzaZx5yvHeOveWoS70rdAB17ru6bbGDj4ci6//HJ/D0Ug0B0hJQwA3n7vI1qnNGP2mnxGdAnCxmfVQYgEQQhTN1Fm9MVmBnXShzCojFD0MghBoC+e/Owk1w2KpUV9F34vOhAFs9bY+WNXBNt++cjfQxEIdEnICYOaNWvy5tvvM/Ge2+jTSiM+MoRDiipDiARBiLD/hJ1XZ+dx/KxKwxqB3dwoWL0MQhToi/krs8nIVhnVv2xH2Qq/Kx2IgvQcjYlfKbz17gckJyf7ezgCgS6RNE0LuZgaTdO4dHA/ahWs4JObQ+7tVw8hEgRBgM2usWyrlZlLC8jO13hgRATnNQ25fZIi9CoahCDwPNX9rg+dsDJ28lFmv1ivTAiRnkUBwK0fSZyM6cW8+YtCpzqhH8nMzCQ2NpZ+EWMxSL71xNo0C4tzPyUjI4OYmLICVlAxIbkSSpLEh59MpW3rlozsqjKgjahA4jTCkyAIcCZ/l8uyrVZ6tzbywIgIWtQVIYXCAA8NqisKCvMK3r6vbF6B3kXBb5tVZm1S2LJtqhAFAkElhKxF3KBBAya/9Cp3TFfIzhdeA7cQJVAFAci63Ta+fySGR68WokAgcIWK8gr0Lgqy8zXumKbw0iuvU79+/apfIBCEMCErDADuuOMO6jdtxxOz/T2SIECIBEGAkBAtse+E3d/DEAgCisVrcsrNK9C7KAB47GuJhs3bM378eH8PRSDQPSEZSlSILMt8OuVLOnVsx9VdVXo2C2md5DlEuJFAp/ydZqXACq3q+dBTUJ6BJH4XggDCYtV4+cvT/PCCk/0KdCQK/t6pMmWVxPp/pyPLYo0XCKoi5H8lLVq0YNITTzFuip0Cqwgp8jjCkyDQCRk5Kk98lctbt0X6Jsa4svu++O/C2YdA4Cfe++EMNw6JJSrinMkQCKIg36px21QDTzz1NC1atPD3cAQ6ZfLkyXTt2pXo6GiSk5MZPnw427dvL/q71Wrl4Ycfpl27dkRGRlKnTh1uvPFGjhw5UnTMmTNnmDhxIi1btiQiIoIGDRpw1113kZGRUem1P/jgA9q3b09MTAwxMTH07NmTX3/91Wvv1RlCXhgAPPDAg4THN+L5uSK8wKsIw0fgR57/Lo9J10QQG+nlac9b97M7YkL8rgT/4W7i8fEzNpaszeW6AedCiAJBFAA89x1EJjXm/vsf8PdQBDpm6dKlpKamsnLlShYuXIjNZmPgwIHk5OQAkJuby7p165g0aRLr1q1j1qxZ7Nixo0SDvCNHjnDkyBFeffVVNm3axNSpU5k/fz633nprpdeuV68eL774ImvWrGHNmjVcfPHFDBs2jC1btnj1PVdGSJYrLY8NGzbQq3tnlj+m0KGB0Eu6RIRfCNzEZte47JlMfn0qxnveAp0ZRR5H/P4CGneFwe0vH+W2y+PonBIOBI4oWLcZLnpXZcWq1XTo0MHfwwlJArVc6cmTJ0lOTmbp0qVceOGF5R6zevVqunXrxv79+2nQoEG5x3z33XfccMMN5OTkYDA4H7mfkJDAK6+8UqWo8BYhnWNQnI4dO3Lv/Q9y25RX+PtxCYMiypnpjqoWHmG4CCrg59UW+nUwekcU6Mwg8hri9xdyrE3LAwg4UVBwSmL89zL33X+fEAUhTmZmZol/m81mzObKG1kWhv8kJCRUeowkScTFxVV6TExMjNOiwG63891335GTk0PPnj2deo03EB6DYuTn59OpXSuuSDnIM1cKzRR0CMMl5Eg7ZOOBz3OokyDzwo2RJMV40BuoM2NIF4jfmG5x1WNQYFEZ9vAhpk8Mo2ZcJb8bnf0O7OkyT/5q58d9dVm/aVuVRqDAexR6DLqE3eAXj8Ga/C/LPP/kk0/y1FNPVfg6TdMYNmwY6enpLFu2rNxj8vPz6d27NykpKXz5ZdlrAJw+fZrzzjuP0aNH89xzz1U61k2bNtGzZ0/y8/OJiopixowZDBkypNLXeBNh/RYjLCyM7+fMo2f3LnRqaGNEF1HjPKgovYAJIyboycrT6NzMwNPXRXrupDozhHRF4WcjflsBSXGPwP8+yWbiIGNAiQKA2f/aee9vmRWrfhKiQMDBgwdLhBJVdU9MmDCBjRs3snz58nL/brVaGTVqFKqq8v7775d7TGZmJpdeeimtW7fmySefrHKMLVu2ZMOGDZw9e5YffviBm266iaVLl9K6desqX+sNhDAoRZs2bZj25UxGXzeSZjVV2tUX+QZBiyirGvR0bGzg+W/zPHMyHRpBukUIhICgotCgWX8XoCgwtFslRpQOfw8btsDYbzW+nPk1bdq08fdwBDqgsNqPM0ycOJG5c+fy559/Uq9evTJ/t1qtjBw5kr1797JkyZJyz5uVlcXgwYOJiopi9uzZGI3GKq9rMplo1qwZAF26dGH16tW89dZbfPTRR06N29MIq7cchg8fzv0PPsIV7yqczhaRViGBqOISlBgNEpqmYbVV43cs7gv3EZ+dbpDPnCrzKI89x+x88ls+k0dX4mXT4Xd64pDE1dNkHnjofwwbNszfwxEEEJqmMWHCBGbNmsWSJUto3LhxmWMKRcHOnTtZtGgRiYmJZY7JzMxk4MCBmEwm5s6dS1hYmNvjKSgocOu1nkAIgwp44smn6NCtL6PeU7DZhTgIKUS5x6CiVrzMjiNulCIW37/nEJ9jQFBg1Uj9MJv374jCZKwgUV+H32XBKYnrvpLo2KMvk56oOnRDIChOamoqX375JTNmzCA6Oppjx45x7Ngx8vIc3mabzcZVV13FmjVr+Oqrr7Db7UXHWCwWwOEpKCxx+tlnn5GZmVl0jN1+bv3p168f7777btG/H330UZYtW8a+ffvYtGkTjz32GH/88QfXX3+9bz+EYohQogqQZZlpM76hZ9dOPPTlIV6/yd8jEvgNEXIUsPyyxkJGjkbr+ufyhf7dayPPotGjZQUuXh0aPkGBCC/SNbuO2rn9/WweuSqcxjUryK/T4W/Dni7zyDyVk1pd5n75tehuLHCZDz74AIA+ffqUeH7KlCncfPPNHDp0iLlz5wKOCpbF+f333+nTpw9r165l1apVAEVhQYXs3buXRo0aAbB7925OnTrnrTt+/DijR4/m6NGjxMbG0r59e+bPn8+AAQM8+A5dQ1QlqoLdu3fTtXMHXh1i4aaBYsIRFEMYOLpn73E7D07JoXV9hYevjGDTfhtPz8zFaocfH4shMqycXVEdGj9Bifj96Iob38hi0jURNK8TWKJg+mobD/5iYvXaf2natKm/hyQohh6qErnTxyDUEZZuFTRt2pRvvpvNxNmwcoO/RyPQFSLkSPc0rqnw3cPRdGthZNjzmTz3TS7fPBTNdRea+eS3/LIvEN+j7xC/G92wcZ+NcBMBJQoAVu9XuWs2fPv9HCEKBAIPIUKJnGDAgAE8/ezzXDP5Cf6Oh7oNhZNFUA4i5EiXSJLEZV1NDOpkRJLgWLrKjD8L+Op+739H9nTP7b0o8arHzqUr0rPE78XPTP4ulxdvqiDZWKei4NB+iZHT4Zn/t3fncTaW/x/HX2edfcYMxk7CGAaFkUIoQrJFQhJSKVNR32+pfm3fFpVKm7IlS4hspZJdopJ9Z4ahCGObMftyzrnv3x8aZsYs58zZz3yej8c8ysyZc+5zn7mv+3rfn+u67rcm0LVrV3dvjhA+Q4KBlf7zn/+yd9cOBs/7kdWPKQRWlXAgSiEhweMY9BpSMhQe/jSDqWOCr1+f3UM7QPkcFTI8MmDI/AO3ycxRMVugXmSRaoEHHw9ZFzQM/lpDlx59ePbZ/7h7c4TwKTKUyEoajYbpM2djCq7PuOVgTi5hxQYhipLhRh7hTLKFByel8+7wIBrWcP7NCx1ZLXAkS4q2xC+3K+k4kWPIaXYfN9O6YYFrhB6+n83JGsYuB3NIA6Z9OQuNRs7FQjiSVAxsEBAQwLIVPxPbsjk3/Z7F4+31nnn1TXguufuyy5ktKlN+zmHVrjzeeSiIFjc4v9nziE52OeRvt9vbtdI6pqX9TI4nm20/aia2usmjw0A+S4qWqb+ZWXk0iB27fyYgIMDdmySEz/HOs5cb1alTh6Xf/ciLP8Gvxyxe2wEQHkKuhDrVtgQTvd5II9BPww8vh5YcChy4/32hTfCYCoKtii4IIMdX6VLS2Xkom9j63nHVfdMxCy+thKXf/VjsnWmFEPaTikE5dOjQgUkff8qQ58fx+9MK9dC6/wqb8H4yL8Ghvtuay+Lfcpn3nxCqhLqmk+uVnelSFHw/Xt/GSaXhmgL74nIWVAr0/GBwPBEemKfho08+pX379u7eHCF8lgSDcho9+nF279zB/V8vYOMTKoEpEg6EA8lkTLtk56p89mMOP70air/RNZ0eXwsFRXnMMCNnKKui4CvHYZH3eSlDpXKwm7bFBunnNAycq+G+wUN57LHR7t4cIXyab5/JnOzTyV8QUrMZoxdrUFXV5zsGwg1kKES5fLQimzE9/a0LBQ7YtxXp2PfaYUb28ObjsJRt/zNRofUNnl0tMCdreGyxhrDazfnks8/dvTlC+LwK1ro7ltFoZMl3P/LH2RA+3GgBKlYHQbiYt3ZM3GDjPhN3NDe4ezN8WoVt67zlGLSivZj3u8KANs5foau8LClaPtxoYevZEBYv/wGj0bV3zxWiIqqgLbvjREZGsnzFSias17DqsIQD4QISEMr0xtBAxs/OLPuBUi2wS0V+7x7Lyvbhr4sqBh3UCvfMioElRcvPhyxMWK/hux9+JjIy0t2bJESFIK26A7Ru3ZrpX85i+DeQcP7K+Fs5YQqn8+bhDU52W7SB0CANP+/Mc+rryHFeQfeBJx5zNrYFX6y3MKaLZ1YLLClaEs4rDP8GZsycTatWrdy9SUJUGBWwRXeOBx54gEdGx3HfXC1pOVfuilwhT5jCPSQgXOfNoUF8sDyb1EznTJaV47uC85TjrRzHfkaOysHTCm0beN7fsCVFS2q2yn1ztTz2xJMMGTLE3ZskRIXiea2CF3v3vfe5ocktjFioQVEkHAg3kIBwlZ8eIoI1HDltKf4BduwnOa4Lq7D7w133TbDzdb7+XWFYO8+rFlhStCiKyoiFGuo3bcs770509yYJUeHIcqUOpNPp+Gbxcm5p1YI31pzn9R5XGl6LLGUqXE2WO+Wp6Zn0aWukbZRjJyFX2E5wGaSdK8IZS6A6IHAoisrynRZ+esZzJucXPKb+t1rhaEY1/ty0DJ3O88KLsF2qNg2dxrV/bxbVBECbNm3Q6XTExcURFxfn0m3wVhIMHCw8PJzvf1rNbW1jaVHDQv+bJBwIN6qgN01TVZVKwRoWbs7FqNfQ/zYjBr1nTrL0JdLO2cCaTn7+MevACsSq/Qp3NtF6zPFQMBQs3WPhiz90bN22mvDwcDdulfAV27dvJzQ01N2b4VXk0pcTNG3alLnzvuHRb1X2n7l2kqyQ638Lz1GBhhlpNBomDAti0XOhJKcr9PxfGp//lI3FcmWIX3n3gxy/ZZN95EBOOGZn/KLwWGfPuBJf8G9l32mFxxarfD1/IU2aNHHjVglRsUkL7iR9+/blv8+/yMC5Wi5lqoV+JidO4VYVKCAEB2h4omcAq/935Q7Ivd5MY+8Js7s3y+dJG+eZlu2wEFVDQ0Sw+6sFBf9GLmaoDJyr4bnxL9GnTx83bpUQQqOqqlr2w0R5KIrCwP59SDq4gR9GqQT7FW6MpeQuPEIFGmKUlKLw/LTL1IrQ8EofHYF+1neQpLNrG2nfPMuOEwpvrbCwOE7v1mFERY+jjFyV3jM11GjWhW+Xfo9WK8eZr0hLSyMsLIxGgX3cMsfgaNYKUlNTZSiRjeQIdCKtVsvXC74lsHZr+nylISP3+sqBdDaE21Wg+yFUD9cyd7SB26M0PDDVjCuui5hTgq368jXStnkORVF5aYmZWY94Xijo85WGwNqtmTt/kYQCITyAHIVOFhgYyPc/rSagVvHhAOQEKjxIBQkIPW/S0baBhmU7rLuqXd5j1JYOvy8GCGnbPMPKfQpdmmoJD/K8UBBQqzXf/7SawMBAN22ZEKIgabVdQMKB8Dq+GhAKvKdnuuuYssFCdp53jab0tgAhbZv7uXvCsYQCIbyHtNguYm04kJOo8Ci+GhAAf4OG53rqeXCamctZjg8H7u6ce1KAkHbNfXb9pVC/qsZt1QIJBUJ4F2mtXciacAByEhUeyBcCQjHb3725lvH36LjvMxNHk4ofVlSe49HdocAWnlZhEI716VoLT9/l+mpBcRe6JBQI4fmkB+pitoQDCQjC4/jgROVbbtQy5zEDT35txmT2rmFFjuTscCDtmest3W4hLABujHRttaC4z1pCgRDeQVpqN7A2HICcTIUH86GAUCtcw8MddUxcaSn0fV+vFhQl4cB3bE5Q+GarwgeD9S59XQkFQng3aaXdRMKB8BneEBCs2L77b9Gy/x+Vg6cr9vr7rggH0qY51+EzCm+vMDP7UdcuTyqhQAjvJ62zG9kaDuRkKjyaNwSEUmg0GiYN0fPcQjMWRa1w1YKCXPE+pE1zjjMpKk99bWbOowaC/V0TCkr6LCUUCOF9pFV2M1vCAUj1QHgBTwsINmxLzXAN99+i45M1lrIf7ONcuWKRtGuOkZatMvJLE18M11MtzHWhoDgSCoTwTtIaewAJB8IneVpAsNLwDlq2HFQ5esG2IUW+Ui0oyJXvKT8gSPtWPnlmleHTzbx+r56o6q7ZhxIKhPA90gJ7iPKEAzmBCq/gZSsZaTQaPuhn4L/fmVCUirtKUT53BJ6CIUHaOeu8/YOFB27TcltD5++v0j4XCQVCeDdpcT2IreEApHogvIyrA0I5XsuSoqVehJa7m+qYvNm6IUW+WC0oyN3vT4JC6ZJSVfaeVLmvjWtCQUkkFAjh/aSF9TASDkSF4AUVhNHtdPz5t8K2vyv2KkX5POlGaBIUCpuwwsxLvXVoNM6bV1DWvpZQIIRvkBbVA5U3HMgJUngdDw4IGo2GzwcaeOUnE8mZMqQon6eEg4IqclCIP6twKfPKjfqcwZp9KqFACN9RsVpQL1KecABSPRBeyhnzEMr5XLrwaxWCSgEa3ultYMzivFLnG+jDM9CHZ5Tr9byRJ1UPilNRQsLP+yw8Pc/MuwOdcxMza/afhAIhfItvt5pezp5w4OsnROHDPKCKoAtXrn61qqPljkY6Jm00l/l7+QGhooQETw4H+XyxPbQoKq8sNfPjHoXvxxmoU9mxQ4is3WcSCoTwPRpVVaVG7uGysrLoe093sk/vZMXDKsF+tp0ECl4BFcIrhYfY9ngHBwtVVRnxhYWRbXXc3kBn0+96Q+fZXt4UhLy9PczMVRk61czANlqGtrPtb9Ea1oYoCQWiLGlpaYSFhVEtqB1ajXOqWiVRVDPnMn8nKioKnU5HXFwccXFxLt0GbyXBwEtIOBDiX2WFBCdVGzJyVO791MT8xw1UtpS/Q+bLQUECgvONnmVi4C06usY4tgpiS1VFQoGwhicEg9TUVEJDQ1362t7Ot+qrPqy8w4ry+WI5XVRQbhpqFOyv4aMH9Iz80kR2gKXcHcuCw428qSNtDW8KPd7YJs7dYiEyVCOhQAjhNN7VKlZw9oYDkMnJwocUN2HZyYGhWW0tL/TSM2yamRyTWmguQnn5Wkjw9InJRXl6QDBbVBZvs3DPpDwOnFZ5rZ/jhg/Z+t4lFAjh+2QokReyd1hRPm8tpfu6gidq+Yw80+r9CrM2W/j6MT0GfeHjz5GdTG/qYBfkzSHHU465zFyVqRssrNqv0LeVjuHttYQEOGaScXn+RjNyVXpPNxFQuzUrVm2UUCDKJEOJvJMEAy+VlZVFv149OJ+4g8UPKdSLKH9nxFNOhKL0E7Z8Tp5l+Q4L3+9WmDlKj05bfIfN0VeiPT0oeHMgKMpdx5uiqMz/Q2HOFgtjuujo20pb4t9XeZTnb/KvZIWBX5mJbNCa7yUUCCtJMPBOnls/FaUKDAzkx1XraHf3g7T7FH49Zin3c3lyGb0iKetzqChrs3uLe2N1dGmq5flFJR97jhhqVJAnzk/wtO1xlKI3TXPFsfdrvELPSSZSMlVW/sdA/1idw0JBebd/0zEL7T8206HPKFau3yKhQAgf59oIJxzKaDTyxdTp3NyqNX3HPsWEnmYeb69Do7H9RJJ/wpCr0t5Bhht5Bo0Ggvyse2zBz8lRHcyCnXFXVhN8LQTYwhnH3rFzKq8uM1M9TMOCxw1EBDv+vgS2UlWVKVss/N9KhU8mT+WRRx5x6DYJITyTBAMf8Nhjo4mJacaAfr3YezaHT+5V8dOX78QiAcE97OkoFv1d+excJ88MIf62/17Rz8gRQaFoZ93RQaEih4GSWFK0dh1vuSaV17+zcOKCyhv9dURVd99qQ4W2y6zy1BITq44GsHbDatq1a+fQ7RJCeC4Zk+Aj2rdvz47d+9mf3ZBu0zScTbNv6ogMV/FeMuTIdUbermX/KZWtifaFsYJDjpwx7Midz2ENb1vJqKDyHmtHkxT6fmLitgYaFo4xOCwU2Hv8n01TuetzE4dMTdmx77CEAiEqGOk5+JDatWvz6+/baNS2D+0+he1/29fBkM6lazhzH7tyfHRFpNFo+GyYnpeXmNn5l+MqNc4KCc56vKN4e0Cw1vzfLTz7jYUZIw30aeWY5UcdcYxv+1uh3UcmGncYyK+/b6N27doO2TYhhPeQnoKPCQgIYM68b/jP/71Ft2kKX2832/2c0ql0HlfvVwkJjhcWqGHOYwbmbLZw/+cmdpz4tzNf1h2areSqKoK7JhEXFwS8NSCUdWzt/Evh3k9MHL+gsvxpPXUq2z+XwFHH89xtZrpPMfHf1yYy++sF+PuXY4ycEMLryXKlPmzt2rUMGngvD95s5t1eGvQ6+09CMn7dsTypgy6frf3+SVaZ+JOZM5fhoe5BdK+fi5/BsRNJwbP+buxhbeffG+c3FDyeEs+rvPGdmSA/eLmPnprh9v1NOPReGRaV8StMLNgXwKIly+natavDnltUbLJcqXeSYODjEhMT6XtPdyK1Z5j/gErlIMd0UqQTaT9P7tzJ52ufc6kq326zsHq/Su0IGHyrjo5RGrQOXI8ePPtvqCzlqQh4W0BIzVb534Y8LqTDq/10RNew7/Ny9Od9KVPlgTkmLurr892Pq2jQoIFDn19UbBIMvJMEgwogPT2d4Q8OZs/WjSx5SKFZTcedXKQDWX7e0qmTz9g+x86pLPzTwuZ4hRZ1tAy5VUvLeppyLStcEm/5W8pn7zAhbwgIvx238MYqM6/00NOptedUCPLtP6Nw3ywzrdr3YM78hQQHe9/QLeHZJBh4JwkGFYSiKLz5xv/44N23+HKwnntvcsyEt3zSebSNt3Xk8snnXH6qqrLnpMo3WxX2nlToEKWl501abq6rcehNrDydo+YOeGo4MFtU3l5j5tRllQ/7GQgL0JTruHHmZ7lsr4VHF5p57sVXePmVV9FqPf/vRngfCQbeSYJBBfP9998zbMhA4tqrvNZD7/ChDSCdR2t4QweuJPL52k9RVLYcVVlzQGHP3yrB/tCxsZY7mmiIruGYaoIn/o05IhR4aiAASLyoMHapiQdjdQxufa0jZMsx48zPTVFUXl9lZsofBr5esJA+ffo47bWEkGDgnTzvzCGcqm/fvvyxfTdL4iO47ysTaTmOz4Wy6k3pvH3fyOdrP61WQ8fGWt4aoOfHZw1MG6GnTmWYsUmh10cmRswwMXuzhZOXyn98OnI1I0/griVUrbVgh5lnlpmYPNBQKBRYy9nHVWq2yoCvTCw9Vp0/tu2QUCDEv9555x3atGlDSEgIkZGR9OvXj/j4+EKPUVWV119/nZo1axIQEEDnzp05ePBgocckJSUxbNgwqlevTlBQEK1atWLJkiVlvv7p06d58MEHqVy5MoGBgdx8883s3LnToe/RFnJ2r4BiYmLYtvcIedU7cPsnJhLOO6fzIB3I6/nS/vCl9+JuYYEaet+sY9IQPT89a2TiID2BRpjwg5k7380jx+T9AaG81QJPDwSKovJ/P5o4mKSybJSRGyKsPy5ctXxwwnmF2z/TYa5xO9t27aNp06ZOfT0hvMmmTZuIi4tj69atrF27FrPZTLdu3cjMzLz6mIkTJzJp0iQmT57M9u3bqV69OnfddRfp6elXHzNs2DDi4+NZsWIF+/fvp3///gwaNIjdu3eX+NopKSm0b98eg8HAzz//zKFDh/jwww+pVKmSM99yqWQoUQVmsVh44fnn+HLqJ8wdqqd7E8fOOyjKEzon7uarnWn5bJ1n4k9mVGBEBx3VwrxzLoKnr0BUdPusfe0ck8rji0zc3kDLqNtKrxIUPEZcuf9/2m5g5Pc5PPp4HO9OfB+dzrntvBD5vHUo0YULF4iMjGTTpk107NgRVVWpWbMm48aNY/z48QDk5uZSrVo13nvvPUaPHg1AcHAwU6ZMYdiwYVefq3LlykycOJFRo0YV+1ovvPACv/32G5s3by7nO3U83+ylCKvodDre/3ASk6fPZcg8DR+sN+HMnFiRb67l6+/b19+fOz3ZVUfdCA0vfGum54d5vLzUzJYExa5j1VOqCMVxZYXAnhupXcxQuX9WHg/E6soMBeD69s+UHMR7P+kY9l0uX8yYxfsfTpJQICqctLS0Ql+5ubll/k5qaioAERERAJw4cYKkpCS6det29TF+fn506tSJ33///er3OnTowKJFi0hOTkZRFBYuXEhubi6dO3cu8bVWrFhBbGwsAwcOJDIykpYtWzJjxoxyvlvHcG2EEx5p6NChREdH06/X3ew9k8y0QQYCjY6flFxQ/snRUzsnjlLROsuWFK3Pf6auFuinYchtOobcpkNRVHb+pfLRags5Jh1dY+w7Tl11FTu/o19aJ9ydFQJbtyPxosKYb02839dAi1qed4ynnQ/iiZU5/HkhkE2bV9K6dWt3b5KowDLNF9FoXBtKVdUCQJ06dQp9/7XXXuP1118v5fdUnn32WTp06ECzZs2AK3MHAKpVq1bosdWqVePvv/+++u9FixYxaNAgKleujF6vJzAwkOXLl5d6f5Djx48zZcoUnn32WV566SW2bdvG008/jZ+fHw899JBN79lRJBgIAFq3bs2OPfu5r18vOk8+zOIRZurZMFa2vHw1IFS0QFCQr36mnkCr1dDmRg0PdYD4sypdYxz33K4ICcUFBFfPH7A3FOSaVcYsNvHlEAN1wj3rODenBHPysoVBy7MJq9OUHWt/JDIy0t2bJYTbnDp1qtBQIj8/v1If/+STT7Jv3z62bNly3c+Krhanqmqh77388sukpKSwbt06qlSpwnfffcfAgQPZvHkzzZs3L/b1FEUhNjaWCRMmANCyZUsOHjzIlClT3BYMPKtVE25VrVo11m/6jVvvHky7T+DXYxaXvbYvDTPyhffgCLIfnKdRNQ2J55037C9/qJGzwl3+cCFXVwkcUbGYsMbM4+30HhUK8t/b5r/zuH12Ju16DmHdL1skFIgKLzQ0tNBXacHgqaeeYsWKFWzcuJHatWtf/X716tWBa5WDfOfPn79aRUhMTGTy5Ml89dVXdOnShZtuuonXXnuN2NhYPv/88xJfs0aNGtctBtCkSRNOnjxp83t1FM9p2YRHMBqNTJ3+JW9N/Ji+X6l8sVbn1HkHxfHWgOCt2+1Msk+co15l+Ouia45LZ4cEZ7NnHkFRGbkqu/9RHH6DyPLKf2+qqjJtezb9v83i7fc/Ycq0GRiNRndvnhBeQVVVnnzySZYtW8aGDRuoX79+oZ/Xr1+f6tWrs3bt2qvfy8vLY9OmTbRr1w6ArKwsgOtuFqjT6VCUktvO9u3bX7c0akJCAvXq1bPrPdlDztiiWKMff5zVazfwzjY9D83VczHD9YtXeUun0lu2051kHzmWXqfB4oZ+ujcGBGsqAdZWC86lq9Ry0MpQ9soPOxezFB7+IYf3thtYs24jj/27QooQwjpxcXHMmzePBQsWEBISQlJSEklJSWRnZwNXhhCNGzeOCRMmsHz5cg4cOMCIESMIDAzkgQceACA6OpqGDRsyevRotm3bRmJiIh9++CFr166lX79+V1+rS5cuTJ48+eq/n3nmGbZu3cqECRM4duwYCxYsYPr06cTFxbl0HxQkZ2pRog4dOrB730FyarXn5g9g4Ra9y6sH4LmdSk/dLk8m+8txHHBz5HLztipCaUOXrA0FqqrywgoTT3Vy79S8glWCJQdziJ2RSU6t9uzad4D27du7dduE8EZTpkwhNTWVzp07U6NGjatfixYtuvqY559/nnHjxjFmzBhiY2M5ffo0a9asISQkBACDwcDKlSupWrUqvXv3pkWLFsydO5c5c+bQs2fPq8+TmJjIxYsXr/67TZs2LF++nG+++YZmzZrx5ptv8vHHHzN06FDX7YAi5D4GokyqqvLtt9/y1JjR3FLdwifdjNSpm+3uzQLcN8FVOrj285ZOpafq94mJ78YabP/F8JBr/5+SXvLjbORtx4Q5JdimOQ5TtpgxK/BUR/cEg4LDoc6kWRi3No9tSTomT5nOwIEDr5sYKYS75d/HINgvyi2rEmXkJpTrPgYVnXe15MItNBoNgwYN4lD8McJb9KT19Ay+3KDDlBzk7k0rNGnZli97X0vYT/ali4WHFA4FBb9X9Pvl4I1VBGvtOqWwLt5CXAfXzy0oOEdCVVVm7comdkYG4S16cjghkfvvv19CgRDCYWS5UmG1KlWq8PU3i1i5ciWjR41g8ZFsJvcIoH64zuVLDtpLOqSeQ5Y3dTJrO/0OrCTkf5a+cJztO63w8k8m5j9kRKt1XQe86ITp48kWnlydx/HMQBYsXlRoeIIQQjiK97fawuV69uzJwfhjRN85mLZfpvPZn9nkXnJ/9UB4N6kgWC8zV8VY2mUdeysBDqokeFsVoSBVVZnxu5lXVpr4epiR8EDXhIKiqyhZFJVPt2Zz68x0mnYZwoEjRyUUCCGcRuYYCLv8+uuvPDLiQSopKXzRw0DTSL3XVQ+EZ/LGzqSrLNxqITMXRnUqMrTFAUOCSuXAOQnguRWFv5MVnl1uolNDHXG369C5oFJQ3JKqB8+bGbPKRKo2nC9nz6Njx45O3w4hHEXmGHgnz2yVhdfo2LEjew/G0/m+x+g4O4N3NmeTdTHIYeuGi4pLKgglW75ToX9sgX3joHkCZXLgnAQoXFEo+uUuS/dYeGqJiXf7GHi6k97poaC4+yzkWVQm/JpNp9kZ3DlwNHsPxksoEEK4hMwxEHYLCAhg4gcfcv/gIYwaPpTls08z5W4DrblyspMKgrCHzEEoLDlDRQXCa9t2FUyJqFLs97XJF4v9fpmKhgMHVxNK+7ydERhVVWXiejNnUlWWjTKi1zkvEJR24WTHaRNjVpnQV6rN5t/m07p1a6dthxBCFCWX44TDxMbGsmPPAQY//jzd52Xy4vpsskyqQ+88KiouqSBcsfyIkf4drZ/To0RUKTEUFPx5aY+xSsFqgoMrC0WVVmkoT4DMNauMXmQi0Kjh4/4Gp4WC0trCLJPKi+uz6TE/k8GPj2f7nv0SCoQQLidzDIRTHD58mFHDh3Lur3g+72Gg4w3Gqz+TCoJwhApXQfi3k93v7TTm/yeEIP/SO692d/T/Ve6KQlkcXGEoyJYAeSlT5eEFeTzaTk+vGOeMgy7rwsimv/KIW2Wi+g2NmTlnPk2aNHHKdgjhSjLHwDvJUCLhFE2aNGHzH9uZPHkyA18az/1NLbx1hx9h/tqrJ0kJCMIeBTt/PhsSilxxP5usEBqoKTEUOCoMlPWcDgkLpVUTnBgaCko4r/DUEhMT+xq4qZbjq1FlBYLUHIWXN+by7SETb78zkbi4OHQ6198rQQgh8knFQDjdiRMnePThhzi8dyefdDPQM8qv0M8lIAhH8ZmAUEKn+cPvsmhcS0+vNsbrfuaMUGALp1UWCrIyMFhTMfj1mIV315n5coiRmmGOHTpkzdDJlQm5PL3aREzLWGZ8NZcbbrjBodsghLtJxcA7ScVAOF39+vVZu+FXZs+ezaNjn+Kuwzm839VI1aArJ2+pIAhH8foqQilX0VVVZfUuE2N7B1z3M2tDgSW8OrqUpHJvXmkcPrnZSUwWlUkbzRw8q7J4pJEgP8eFAmsCwYVMhf+uy2PdCYWPPv2C4cOHy52LhRAeQ2byCZfQaDSMHDmSQ/FHMde7ndYzMli0P4eCBSuZpCwcKX+ystdMWi5jou6vB820a6K/bmKsLaEg/79Fv5yp4ORmh010LkVpn/WuUwq9p+dRL1zDnAcNDgkF+e1WWW2Xqqos2p9D6xkZKDd05FD8UUaMGCGhQAjhUaRiIFyqRo0aLFvxE0uXLiVu9CMsjs/hk25GaoVeKzNKBUE4Q9EOo7dVFGaty+GNoYGFvmdrKLDl586qLOQruO3Oripk56m8udpMUrrK18OMVA12TCCw1j+pFsauMbH7go5ps+YzYMAAu19fCCGcwQsuowlfNGDAAA4lJBLZujexMzKYuTMbpch0F2uvxAlRHkUrCp5cXUhOV8jIUalb9VqAdlQoKO33XFlZsIqNy5+qqsr3+yz0+zKP9jdq+eoB+0OBLW2SoqrM3JlNmy8zqBbbi0MJiRIKhBAeTSYfC7dbvXo1jz08nBsCMvmkm4GoKiUXsqSKIDyRQ6oPpXR6P/0hm3pVtfS99crEfWtCgas68o6qLFhdNShjAnJ+sNvzj8Lrq0y0radlXCc9AUb7A4Et4i+aeXplJidN4Uz/ag7du3e36/WF8Db5k4912gg0GtdecFFVBYuSTFRUFDqdjri4OOLi4ly6Dd5KgoHwCOnp6bz0wvPMmPEl9zUL4IV2Bm6MKHkVAwkIwpPZHBTKuBLe641Ulr8UikGv8ahQUJLyhAVHBQNzsoaPN5nZ84/KO70Ndq84ZGsgOJ5s4d3NWSw5lMejox5mwvuTCAlxzo3ehPBknhAMZFUi23lezVxUSCEhIXz2+RQOHj6CPqYXsdPTiFuZzcnLlmIfL0OMhCdz5HCk05csRIZpMeit6+C6OxTkb4OtQ5AcMSHZbFEZu8yE2QKzh5Y/FJRnGOPJyxbGrMwmdnoa+pjeHIo/ymdTZ0goEEJ4FQkGwqM0aNCA2V8vYN+Bg+Q16EHLaWmMW5XN6bTSA4KEBOGrvv8zj75tr9y3oKzOc2mdcHNEHcwRdRy6bdZyRTi4lKEy+AsznRroeK6LoVyr/ZSnLTmdZmHsqmxunpqGuWEP9h04yOwF33LjjTfa/PpCCOFuEgyER4qKimL+osXs3L2Xy7XvpMWUNP67Jpuz6cUHBJAqgvBNa3abuKulsdyhoGggcFdAcFglo8iwK4uiMnWDhaFTTTzfycCAm22/kVJ52o6z6Rb+uyabFlPSSKvThV179jJv4WKioqJsfn0hhPAUEgyER2vatCnfLvueP7fvJCmyI82npPHCumzOZ5Y8hlsCgvAEVg8nKmV+waU0hQAj+NeoWvLrlGPFIH3yKZse7yjWbKctVYPfjyr0/NCEXgcrRvrRuo71p7TyVhvPZyq8sCaD5p9fJimyI39u38mipd/RtGlTm55HCCE8kQQD4RVatGjBshU/seX3PzkeeivNvkjjlQ3ZXMqSgCB8U1auyqjPMnhqaA27nqdgCNAnn3JbKMhndzhISSfPrPJ/S8zM2mxh4RgDI1sY0GmtGzpU3nbhYpbCK+szaDY5hePBbdiydTvLVvxEixYtbH4uIYTwVBIMhFdp1aoVP65ay/pfNnPAvzUxX6Tzxi/ZpGSXHRAkJAhvkZWrMuT9NMb18efWZgGlPtaaFYA8IRAUVN5hRWpyGr/GK/T52ESrehpmPGwgNM+6oUPlbQNSshX+tzGTZpMvc9BwMxs2/8GP6zbRqlUrm59LCCE8nQQD4ZXatm3L6nW/8PPaDWynBTFfpPPOr1mk5pS+TKSEBOFK5VmdKD8UPNM3gM7NjVYt4+nsuxQ7Q2nhoOh7NltUFm/J5Z5JJtYcUJjzqIEBbXRW7d/yHu+pOQpvb8qk6eTL7NC25Of1m1j1y+/ccsstNj+XEEJ4C7mPgfAJv/zyC6+++DwH9u9jbFs9T7QJINiGGxrJfRGEs1h1T4MC8wymrcomwKjhoTv9Cz3E2Xc6dpSCE5vLqlKUFGi0yRdRVZXzqSrfbsllxZ959G2hMqKDlmD/K8d1aaHAnuCfnqswZVs2n/6ZS8xNrXjr3ffp1KlTuZ9PiIpK7mPgnSQYCJ+hqirr16/nlRf+y9EjB3nmVj9Gtwkg0GD7soUSFIQj2RIOpq/OplZlHffEGot9mCff4Ky41Y5KCgdFQ4GqquyKz2HJyvMcOmVGo4GqoVq6tzLSPzoXve7acVxSKLAnEGSZVKZtz+ajrbk0jG7GW+++T5cuXcq17KkQQoKBt5JgIHyOqqqsWrWKV557mlN//8V/2/kxqnUA/lbeIKooCQnCEawNB7PX51ApSEO/W/1KfJinhYPSlj/NDwZLVp1n3e/J3NU+gpxLyWzclcXFy5ZCHf4m1Szc38GPljfqrnXIi7nTcdFgYE8gyDapzNyVzYdbFerWb8Cb775P9+7dJRAIYScJBt5JgoHwWaqq8sMPP/DKc2O5cPYfnmvvz4iW/viVMyDkk6AgysOaYJBjUrlvqsqkUcFE1Sp9Uq2nhANrQsG5i3m06reNAd0jiT+RRUxtePzecJrccC38FDuXopRQYO88oVyzyuzdOby/VSGyVl3efGcivXr1kkAghINIMPBOEgyEz1MUhe+++45XXxpPatJfjO/gz7Cb/DHo7O8ASEgQtigtHKiqysgvzQy+VUePjmFWPZ8ta/47KySUFAwKDiFSVZVTSbmcOpvDmcTzTPrmEg90C2PcoAjAulDgqECQZ1GZtzeH935XCYuswRsT3qNfv35otbIWhxCOJMHAO0lLKHyeVqulf//+7DsUzwfT5vH5kSrcPCWVuXtyMCv25eKCqxzJSkeiLKVOmLVAcib0aK4t9kp5caxZsSifLiWp0JcjWHsHZY1GQ90a/nSsn0Ptqnr+OmsiJd1CcpqlzFBgSdGSezzU7mPMrKjM+kPl5mnZfH6kCh9Mmcm+Q/H0799fQoEQQvxLWkNRYWi1WgYNGsSB+GO8+elXfLgvjJbTcvhiW1apN0qzhQQFUV6Gcg5xsyUcFOTokFBQaasRtW8RwJTnq7N5TxYBfkXec0o6pKRjSdEWCgT2SEoK4LNNFlpOy+Hjo/689fFUDsQfY9CgQRIIhBCiCBlKJCoss9nMN998w7TJn7Bj917uaaTjoZv9ubO+9XdRtZcMRaqYShpS1OdjE9+P1V8b515gGdOy2DKsqCB7hhjZugrRqXMmXplxgYgQHa8+XIUIU8qVH/5bIXDUcCGLorLmgI558XmsPJZGm1Y3M/rJsQwZMgS9Xm/XcwshrCNDibyTBAMhgISEBL6a+SVzZ81EZ85laIzKsJv9qR9u3V1VnUnCg28qGg4upqsM+sLEmueKBFMnhwNXBANT0hkmLUxm++Ec3h6kp1k9vcPDAEDCST/mH87km6N5KHo/Hho5iodHPUJUVJTdzy2EsI0EA+8kwUCIAsxmM6tWrWLmtCn8tGo1t9XW8dBNfvRr4kdAOe6H4CoSHtyrYKfW2s+iYDAwW1Tum2zmjf46WtQp5gRqZThwZTCwJhTkJZ1hxZYMZq64zJi7dNx7mxHN5Sv7x1GBIMuksnSXhvlHTWw9lc49PbozavQT9OjRQ6oDQriRBAPvJMFAiBKcO3eOefPmMXPKZM6cPct90RqGt/SnVQ29Vy1pKKHBcazpxNqyv/PDwXMLzcTW1zCobQkVKi8IBvmhIM+ksGHNcZZuTCP5UjZ3tzIyvJWJQD+Nw8KAqqr8edTIvCPZLE3IpFbNmox64kmGDRtGZGSkXc8thHAMCQbeSYKBEGVQVZU///yTmTOmsWjhIuqGGXiouYVBzfypGuS9kxclMJTOns6rtftWW8nCez9ZyMiFtwaUcnXbimDgjjkG+XLzFH7beIIlG9M4e9FM1xi4r52R2rqsK6/hoEBw5mwA38ZnMP+omVNpJgYNHsQjjz3OLbfc4lVhXYiKQIKBd5JgIIQNMjMzWbp0KV9OmcyfO3bRo0EoQxsbubu5xWUTlp2tIgUGZ60cZc0+NFtU/rMyjxuqavhPD13pHVsPCga6lCQyshS2Hsxmy74s9iTkoNVqaN9A4b72ftQ3OjYMmBWVVft1zI/PY1ViGre2ac2ox+MYMGAAQUFBdj23EMJ58oMB6ABXnx9VwEJUVBQ6nY64uDji4uJcvA3eSYKBEOV09OhRZn01kzlffQl52Qxu5MfQJkFE18t196Y5hTcHBncsHVva/srMVRn1TR79b9Ix5E4rrqQ5ORiUtmSpqqqcuWhmd0IOW/Zmc+hELgH+Wm6N8ef2mwJpWTnjylKrDp5MfOTv/InEuWiMAQx/+BEeHvUIDRs2tOt5hRCu4QnBQCoGtpNgIISdzGYza9asYea0Kfz48yra1ArmwUZ6ejcMIsigxRjmvR1qa5UVGiriPR1K2icXMlRGzM9jfBc9HRvqSr0b8lVODAbF+XVPFrN+ukxKmgU1L49aEVpa1NfTMcZA0zo6tPnVsSI3IrP3c87MU1myC+YfNbP9dAa97u7BI4+PoVu3buh07l8hTAhhPQkG3kmCgRAOdOHCBebPn8+XUyZz8uQp+kcFMbSxP7HV/dBoNBUiJIhrioaDv5MVHltoYtK9BmJqXLmy7u5gUPQGaaqqMnZGJnc0N3DvbX7X/0KRMAD2Bb/cy0HsSMplfnwOyxIyqVu3Do888SRDhw6latWq5X5eIYR7STDwThIMhHACVVXZsWMHM2dM45sFC6gZbGBoIz2DooOpGnjlyqeEBN9XMBgcSlJ4ZpmJaYMN3BBxbfiQo4IBFB8ObL0z8rgZGdSI0PJ8/4Br8x6KCQNQvkCQl3rld85nWfj2SAbzj5k5k25iyAMPMOrR0cTGxspEYiF8gAQD7yTBQAgny8rKYtmyZcyc+jm//bmdbg1CeTDKyJ11AzDqrjWWEhR8jz48g4nrTOw/q5KSpfLVA0YiQ64/QToyHJSHqqoc+NvC4t9y2XTAxKbnCw/bcVQYyLOobDiZzbyEPNYkptG+bRseeeJJ7r33XgIDA+17E0IIjyLBwDtJMBDChY4fP86sr75izszpJKdcpkPdYDpV19C5bgDREYbrrpRKWPB+fb+9xKIRRoL9Sj4xWhUMwO5wYLGo5JohO1fl8D8WtiWY2HHMTGqqicbVtQy8RcutDTQolwsHA1vDQH4QUFWVI8kmfjmZzS9JKr+dzCAivBLDRz3GyIcf5sYbb7Tr/QghPJcEA+8kwUAIN1AUhQMHDrB27VrWrvyBX3/7gzB/PZ1qG+lcU0+nOgHUCC5+XXsJC96l18JLrHqimLH6RTirarBubx4zVueQkaPip9fgbwR/g4ZGEWZuuVFL7A0awgI1dlUF8oMAwNkMM5tOZfPLGQub/sklNcdMx/a30e2ePnTt2pXmzZvLUCEhKgAJBt5JgoEQHiA3N5c//viDNatXs3blD+w6cIjG1ULpXF1Dp9p+tK/lT7Cx5GUtJSx4rvFrMrj7ZgtdG5e+qo4zqgaqqtJ+fCrvDQ/CmJ3FmgMKUzZYaFZbw8+P+Bd6bHnDQEaewm+nc/jln1w2JanEn0ujdfMYuvbsRbdu3bntttvw8ys7GAkhfIsEA+8kwUAID5ScnMzGjRtZs2ol61ev4u8zSdxSJ4zO1VU61wmgZTU/9GXcUE3CgntdzlF4b3MWx5MtvHWvhibVyr5fgUPDQUo6ZovKY7PMLNupkJEDQUZ4vL2eu6K13NFIZ1MYyA8CZkVl17ncK1WBJA3bTqVSr2Z1uvboyV3de3DnnXcSHh5u9fMKIXyTBAPvJMFACC9w4sQJ1q1bx5qVP7JhwwYsZhMd6gTSuYaWznUCaFBJX+bwDAkKrpNnURn8bRpP3RrAHfWNVt8czupgAMWHg39XD0rPVpm12cLagyoRRg19m+voEqUl2E9jcxhQVZXEy2Y2nsxmU5LCllNZ6AwG7rzjTrr17EXXrl2pX7++9dsthKgQJBh4JwkGQngZRVHYvXv31fkJv23dRmSIH51qGehcy0Cn2gFUCbT+ZlASGBzvmZ/T6XyDkb5Nrg2hcUo4KMaRswpPzrLweDs9PWO0+OmtDwP5VYGLWRY2/ZPNL6dNbDpt5nx6Du1vveXqPIGWLVui1Vpxx2YhRIUlwcA7STAQwstlZWWxZcsW1q5ZzdqVP7I//ijNaoTRqTrcUcefW2v6EaAvXydOQoPtPtuaRXquSlzbAObuySHAoCHUT8OA20z46W07OVoTEjJzVY6dU0k4rmF9goWULPign4FIpezhRvlBINus8MfVeQJw4GwqLZpE0bXHPXTr3oMOHToQEBBg07YLISo2CQbeSYKBED7mwoULrF+/nrWrf2bd6lWcu3iJW+uG0amayh11A2hR1YjWzlVhJDAUb/KfWZxKVXiybQCP/5DOo60D+CE+l/OZCosHheFfJBhYW0Uo6Hy6yi/HLGxIUDidqhLqr6FBFQ0Nq2i4OSyYppHFr2YF14KAoqrsu5B3ZXjQOQ1bT6ZSrUplunbvwV3d76ZLly5y12EhhF0kGHgnCQZC+DBVVTl69Oi/8xN+YOMvm9ArJlpF+tE4Qk+jcD1REUYahxuICLB++FFpfCU0FFyC0xrZfmkMXZJGgF6DQQdvdglm1q5sLCq82SWozMnixSkYHE5cUnhjlZmDSQr9muu4ubYWVYW1+3W8cWcQgYbrnz8vNZhL2RYSUkwkJOdxNMVMQoaOnWeysGi0dO7UkW49e3PXXXfRsGFDWUZUCOEwEgy8kwQDISoQs9nMjh072LVrF4cOHuDI/r0ciY/n9PlLVA4JoHGVABoFK0RV0tIo3EDjCAO1Q/R2VxgcxZ7QYWtH3xYn00w8te4iQQYtGr0ZALMK9zX1Y+hN/mX8tnV2nDaxNjGP+IsWtpw0cTb9yjCjTjcY+O6BUM6kqRw8aSAh2cTRNIWENC0Jl7K5lJ5NrcjKRDduTHTzm2ga04xWrVoRGxuLXl9ydUEIIewhwcA7STAQQpCWlkZ8fDyHDx++8rVvN0eOHCbx79MYdBoaVQ2mUZiWqBCFRuEGoiKMNKikx7+ccxd8RWquhS3/5DB9bxqfda1C3VDD1Z85qnKSmGxhZUIuv580kWlSCTZqiAjQgMlIqkXP0TSVYxcyMFlUGtSrRXR0E5q0aEmTJk1o0qQJ0dHRhITYd8dkIYSwlQQD7yTBQAhRory8PBITEzly5MiVwHBgH4cP7CM+8QRZObncUDmYRuEGGgVbiAo3EBVhICrcQLi/Y4YleaJL2Rbe/TOFP87kcuhiHpX8tdwXFcxNkUaGNrWvA34p28LhS3nsTMple1IuiZdNGLQa/P39uJADJ5MzCPT3o3GD+jRp1uLK178BoEGDBhgMhrJfRAghXECCgXeSYCCEsJmqqpw+fZrDhw9z5MgRDh04wJEDezkSn0DSpRSqhgYQVTmARiEKUWHaK4EhwkitYJ3HDEsqr6RMMy9uSuaPMzlERRhoXsVI86pGbqnhz42VrO+YK6rK8ctmtp/NYcHhDP44k0ONMH/ScxVSs/OoVrkSTRpHXbn63zTm6tX/WrVqyVwAIYTH86Zg8Ouvv/L++++zc+dOzp49y/Lly+nXr9/Vn587d47x48ezZs0aLl++TMeOHfnss89o1KjR9a+sqvTs2ZNVq1Zd9zxFmc1mXn/9debPn09SUhI1atRgxIgRvPzyy25bEloGmAohbKbRaKhduza1a9fmrrvuKvSzy5cvc+TIkSuB4dBBft+3h6/2HOH4qX/w12loGO5HZICWYKOGUH89wTqFEKOWYOOV74UYtQQbtIQYtYQU+bety306w+jVFxgUHcz07lVRVEjPU8gwKaTnKfx+OqfQvzPyVDLyrvz/8XSFk+kWMk0qWSaVyzkmzBaVOjUiadrkVp4dEkvTmBiio6OJjo6mUqVK7n6rQghRIWRmZnLTTTcxcuRIBgwYUOhnqqrSr18/DAYD33//PaGhoUyaNImuXbty6NAhgoKCCj3+448/tvrizXvvvcfUqVOZM2cOMTEx7Nixg5EjRxIWFsbYsWMd9v5sIRUDIYRL5ObmcuzYMY4cOcKFCxdIT08nLS2NtLQ00i8nk5Z6mfTUVNLSUklPTycjI5O0zCzSM7MxWywAGHRaQgKMhPgZCPbT/RsaNIQYVIJ1KiE6y78B40qoyA8UwUYNoQUCBlzr0Kf924G/1qG/0pnPyFNIt+jIsGhIN2nIMF15zMnkTHLNCqqqYrJcmQCs1+kICQogNCiQ4OBgQkKCCQ0NIyQsjNCwSoRUiiA0NJTQ0FBCQkKoWrUq0dHRNGzYED8/vxL3mRBCeCtvqhgUpNFoCl3pT0hIoHHjxhw4cICYmBgALBYLkZGRvPfeezzyyCNXf3fv3r306tWL7du3U6NGjTIrBr169aJatWrMnDnz6vcGDBhAYGAgX3/9tU3b7ShSMRBCuISfnx8xMTFXG1ZrqapKTk4O6enpV8NEwf8W/P/U1FQupqZwIvUyaZcvk34pjbS0dNIzMsjITCctMwuT+d+Qoddd6cgHBRISHExoaAghIaGEVq1ESFglQsLCqR8WRkhIyNUOfcH/L/g9f39/Gd4jhBAlcs816LS0tEL/9vPzs/liTG5uLgD+/tdWmNPpdBiNRrZs2XI1GGRlZTFkyBAmT55M9erVrXruDh06MHXqVBISEoiKimLv3r1s2bKFjz/+2KZtdCQJBkIIj6bRaAgICCAgIIDIyEi7ny+/kZcr9UII4TxGo5Hq1auTlJTkltcPDg6mTp06hb732muv8frrr9v0PNHR0dSrV48XX3yRadOmERQUxKRJk0hKSuLs2bNXH/fMM8/Qrl07+vbta/Vzjx8/ntTUVKKjo9HpdFgsFt5++22GDBli0zY6kgQDIUSFIoFACCGcz9/fnxMnTpCXl+eW11dV9bpKbnnaf4PBwNKlSxk1ahQRERHodDq6du3K3XffffUxK1asYMOGDezevdum5160aBHz5s1jwYIFxMTEsGfPHsaNG0fNmjUZPny4zdvqCBIMhBBCCCGEw/n7+xcaguOtWrduzZ49e0hNTSUvL4+qVavStm1bYmNjAdiwYQOJiYnXLRoxYMAAbr/9dn755Zdin/e5557jhRdeYPDgwQA0b96cv//+m3feeUeCgRBCCCGEEJ7qymRqOHr0KDt27ODNN98E4IUXXig0CRmudPI/+ugjevfuXeLzZWVlXbcsqU6nQ1EUB2+59SQYCCGEEEKICisjI4Njx45d/feJEyfYs2cPERER1K1bl8WLF1O1alXq1q3L/v37GTt2LP369aNbt24AVK9evdgJx3Xr1qV+/fpX/92lSxfuvfdennzySQB69+7N22+/Td26dYmJiWH37t1MmjSJhx9+2MnvuGQSDIQQQgghRIW1Y8cO7rjjjqv/fvbZZwEYPnw4s2fP5uzZszz77LOcO3eOGjVq8NBDD/HKK6/Y/DqJiYlcvHjx6r8/++wzXnnlFcaMGcP58+epWbMmo0eP5tVXX7X/TZWT3MdACCGEEEIIgXvutyyEEEIIIYTwKBIMhBBCCCGEEBIMhBBCCCGEEBIMhBBCCCGEEEgwEEIIIYQQQiDBQAghhBBCCIEEAyGEEEIIIQQSDIQQQgghhBBIMBBCCCGEEEIgwUAIIYQQQgiBBAMhhBBCCCEE8P9u55ZGDWi5IAAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Set up Axes with Cartopy Projection\n", - "fig = plt.figure(figsize=(10, 8))\n", - "ax = plt.axes(projection=ccrs.Orthographic(-80, 35))\n", - "ax.coastlines(linewidths=0.5)\n", - "\n", - "vmin = tas.min()\n", - "vmax = tas.max()\n", - "levels = 30\n", - "\n", - "# create initial plot that we will update\n", - "tas[0, :, :].plot.contourf(ax=ax, transform=ccrs.PlateCarree(), vmin=vmin, vmax=vmax, levels=levels, cmap=\"inferno\")\n", - "\n", - "# create function to update plot\n", - "def animate(i):\n", - " # Calculate the new center longitude for each frame\n", - " center_longitude = -80 + (i * 12) % 360 # Rotate by 12 degrees per frame\n", - "\n", - " # Update the projection with the new center longitude\n", - " ax.projection = ccrs.Orthographic(center_longitude, 35)\n", - "\n", - " # Clear the previous plot\n", - " ax.clear()\n", - " ax.coastlines(linewidths=0.5)\n", - "\n", - " # Plot the new frame\n", - " tas[i, :, :].plot.contourf(ax=ax, transform=ccrs.PlateCarree(), vmin=vmin, vmax=vmax, levels=levels, cmap=\"inferno\", add_colorbar=False)\n", - "\n", - "# create animation\n", - "ani = animation.FuncAnimation(fig, animate, frames=30, interval=200)" - ] - }, - { - "cell_type": "code", - "execution_count": 93, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
\n", - " \n", - "
\n", - " \n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
\n", - "
\n", - "
\n", - "\n", - "\n", - "\n" - ], - "text/plain": [ - "" - ] - }, - "execution_count": 93, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "ani" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Summary\n", - "\n", - "### What's next?\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Resources and references\n", - "\n", - "- [Matplotlib animation documentation](https://matplotlib.org/stable/api/animation_api.html)" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.6" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/_preview/21/_sources/notebooks/comparison.ipynb b/_preview/21/_sources/notebooks/comparison.ipynb deleted file mode 100644 index b8827a1..0000000 --- a/_preview/21/_sources/notebooks/comparison.ipynb +++ /dev/null @@ -1,469 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Comparison of Visualization Packages" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Overview\n", - "There are nearly endless possibilities when it comes to data visualization in Python. Some of these choices can be overwhelming. This chapter aims to lay out and distinguish different Python visualization libraries so that you are more equipped to make the right choice for your data visualization needs. This Cookbook is not a comprehensive tutorial on these packages, but we can offere enough information and links to documentation or relevant tutorials to help get you started.\n", - "\n", - "1. Matplotlib\n", - "1. Cartopy\n", - "1. GeoCAT-viz\n", - "1. MetPy\n", - "1. Vapor\n", - "1. Plotly\n", - "1. Seaborn\n", - "1. Bokeh\n", - "1. UXarray\n", - "1. hvPlot\n", - "\n", - "
\n", - "

Note

\n", - " The plotting libraries mentioned here are either ones used extensively by the authors of this Cookbook OR ones that we get asked about a lot when giving plotting tutorials. This does not cover every library that can be used for plotting in the Python scientific ecosystem, but should cover the more popular packages you might come across.\n", - "\n", - "Missing a plotting library that you use and want others to know more about? [Let us know!]()\n", - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Prerequisites\n", - "\n", - "| Concepts | Importance | Notes |\n", - "| --- | --- | --- |\n", - "| [Matplotlib](https://foundations.projectpythia.org/core/matplotlib.html) | Necessary | |\n", - "| [Cartopy](https://foundations.projectpythia.org/core/cartopy.html) | Necessary | |\n", - "\n", - "- **Time to learn**: 50 minutes" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "---" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Matplotlib\n", - "\n", - "\"Matplotlib\n", - "\n", - "Matplotlib is the workhorse of Python visualization needs. It is a comprehensive plotting library that has the capacity to make static, animated, or interactive visualizations. It is hard to imagine plotting in Python without first getting comfortable with Matplotlib. Be sure to check out the [Matplotlib documentation](https://matplotlib.org/) as well as the [Pythia foundations chapter on Matplotlib](https://foundations.projectpythia.org/core/matplotlib.html) for guidance.\n", - "\n", - "Matplotlib's syntax should feel familiar to anyone who has plotted data in Matlab.\n", - "\n", - "Here is a [simple plotting example from Matplotlib](https://matplotlib.org/stable/gallery/lines_bars_and_markers/simple_plot.html):" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "import matplotlib.pyplot as plt\n", - "import numpy as np\n", - "\n", - "# Data for plotting\n", - "t = np.arange(0.0, 2.0, 0.01)\n", - "s = 1 + np.sin(2 * np.pi * t)\n", - "\n", - "fig, ax = plt.subplots()\n", - "ax.plot(t, s)\n", - "\n", - "ax.set(xlabel='time (s)', ylabel='voltage (mV)',\n", - " title='About as simple as it gets, folks')\n", - "ax.grid()\n", - "\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Cartopy\n", - "\n", - "\"Cartopy\n", - "\n", - "Cartopy is a Python package for plotting data on the globe. It is the go-to package for plotting maps, dealing with different projections, and adding surface features to your plot. Cartopy is buit on top of [PROJ](https://proj.org/en/9.2/), NumPy and [Shapely](https://shapely.readthedocs.io/en/stable/manual.html), and Matplotlib. To learn more about what Cartopy can do, check out the [Cartopy documentation](https://scitools.org.uk/cartopy/docs/latest/) and the [Pythia foundations Cartopy chapter](https://foundations.projectpythia.org/core/cartopy.html).\n", - "\n", - "You may have heard about [Basemap](https://matplotlib.org/basemap/index.html), another geoscience plotting library, which was deprecated in favor of Cartopy.\n", - "\n", - "Here is a [simple plotting example from Cartopy](https://scitools.org.uk/cartopy/docs/v0.15/matplotlib/intro.html):" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "import cartopy.crs as ccrs\n", - "\n", - "ax = plt.axes(projection=ccrs.PlateCarree())\n", - "ax.coastlines()\n", - "\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## GeoCAT-Viz\n", - "\n", - "\"GeoCAT\n", - "\n", - "The GeoCAT team at the National Center for Atmospheric Research (NCAR) aims to help scientists transitioning from [NCL](https://www.ncl.ucar.edu/) to Python. Out of this team come two different visualization aids: the [GeoCAT-examples Visualization Gallery](https://geocat-examples.readthedocs.io/en/latest/) which contains tons of different plotting examples that you can use as a starting place for your figures, and the [GeoCAT-Viz package (documentation)](https://geocat-viz.readthedocs.io/en/latest/) which contains many convenience functions that formerly existed in NCL or for making Python plots look publication-ready." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## MetPy\n", - "\n", - "\"Metpy\n", - "\n", - "Metpy is a collection of tools for data reading, analysis, and visualization with weather data. Matplotlib offers some useful functionality for unique plots such as Skew-T diagrams, as well as declaritive plotting functionality. Check out the [MetPy documentation](https://unidata.github.io/MetPy/latest/index.html).\n", - "\n", - "Here is a simple Skew-T plot from their [Getting Started documentation](https://unidata.github.io/MetPy/latest/userguide/startingguide.html):" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "import metpy.calc as mpcalc\n", - "from metpy.plots import SkewT\n", - "from metpy.units import units\n", - "\n", - "fig = plt.figure(figsize=(9, 9))\n", - "skew = SkewT(fig)\n", - "\n", - "# Create arrays of pressure, temperature, dewpoint, and wind components\n", - "p = [902, 897, 893, 889, 883, 874, 866, 857, 849, 841, 833, 824, 812, 796, 776, 751,\n", - " 727, 704, 680, 656, 629, 597, 565, 533, 501, 468, 435, 401, 366, 331, 295, 258,\n", - " 220, 182, 144, 106] * units.hPa\n", - "t = [-3, -3.7, -4.1, -4.5, -5.1, -5.8, -6.5, -7.2, -7.9, -8.6, -8.9, -7.6, -6, -5.1,\n", - " -5.2, -5.6, -5.4, -4.9, -5.2, -6.3, -8.4, -11.5, -14.9, -18.4, -21.9, -25.4,\n", - " -28, -32, -37, -43, -49, -54, -56, -57, -58, -60] * units.degC\n", - "td = [-22, -22.1, -22.2, -22.3, -22.4, -22.5, -22.6, -22.7, -22.8, -22.9, -22.4,\n", - " -21.6, -21.6, -21.9, -23.6, -27.1, -31, -38, -44, -46, -43, -37, -34, -36,\n", - " -42, -46, -49, -48, -47, -49, -55, -63, -72, -88, -93, -92] * units.degC\n", - "\n", - "# Calculate parcel profile\n", - "prof = mpcalc.parcel_profile(p, t[0], td[0]).to('degC')\n", - "u = np.linspace(-10, 10, len(p)) * units.knots\n", - "v = np.linspace(-20, 20, len(p)) * units.knots\n", - "\n", - "skew.plot(p, t, 'r')\n", - "skew.plot(p, td, 'g')\n", - "skew.plot(p, prof, 'k') # Plot parcel profile\n", - "skew.plot_barbs(p[::5], u[::5], v[::5])\n", - "\n", - "skew.ax.set_xlim(-50, 15)\n", - "skew.ax.set_ylim(1000, 100)\n", - "\n", - "# Add the relevant special lines\n", - "skew.plot_dry_adiabats()\n", - "skew.plot_moist_adiabats()\n", - "skew.plot_mixing_lines()\n", - "\n", - "plt.show();" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## VAPOR\n", - "\n", - "\"VAPOR\n", - "\n", - "VAPOR stands for the Visualization and Analysis Platform for Ocean, Atmosphere, and Solar Researchers and is another project from NCAR. VAPOR provides an interactive 3D visualization environment. Learn more at the [VAPOR documentation](https://www.vapor.ucar.edu/) and the [VAPOR Pythia Cookbook](https://projectpythia.org/vapor-python-cookbook/README.html). VAPORrequires a GPU-enabled environment to run." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Plotly\n", - "\n", - "\"Plotly\n", - "\n", - "Plotly is another choice for interactive plotting. Plotly has functionality in several languags. Here is the [Plotly Python documentation](https://plotly.com/python/).\n", - "\n", - "Here is an example using their \"Express\" functionality:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "import plotly.express as px\n", - "\n", - "fig = px.scatter(x=[0, 1, 2, 3, 4], y=[0, 1, 4, 9, 16])\n", - "fig.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Seaborn\n", - "\n", - "\"Seaborn\n", - "\n", - "Seaborn is a high level interactive interface for creating statistical visualizations built on matplotlib. Check out the [Seaborn documentation](https://seaborn.pydata.org/).\n", - "\n", - "Here is their [heatmap example](https://seaborn.pydata.org/examples/spreadsheet_heatmap.html):" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "import seaborn as sns\n", - "sns.set_theme()\n", - "\n", - "# Load the example flights dataset and convert to long-form\n", - "flights_long = sns.load_dataset(\"flights\")\n", - "flights = flights_long.pivot(index=\"month\", columns=\"year\", values=\"passengers\")\n", - "\n", - "# Draw a heatmap with the numeric values in each cell\n", - "f, ax = plt.subplots(figsize=(9, 6))\n", - "sns.heatmap(flights, annot=True, fmt=\"d\", linewidths=.5, ax=ax)\n", - "\n", - "plt.show();" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Bokeh\n", - "\n", - "\"Bokeh\n", - "\n", - "Bokeh is a Javascript-powered tool for creating interactive visualizations in modern web browsers. Check out the [Bokeh documentation](https://bokeh.org/).\n", - "\n", - "Here is [scatter plot example](https://docs.bokeh.org/en/latest/docs/examples/basic/scatters/color_scatter.html):" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from bokeh.plotting import figure, show\n", - "\n", - "N = 4000\n", - "x = np.random.random(size=N) * 100\n", - "y = np.random.random(size=N) * 100\n", - "radii = np.random.random(size=N) * 1.5\n", - "colors = np.array([(r, g, 150) for r, g in zip(50+2*x, 30+2*y)], dtype=\"uint8\")\n", - "\n", - "TOOLS=\"hover,crosshair,pan,wheel_zoom,zoom_in,zoom_out,box_zoom,undo,redo,reset,tap,save,box_select,poly_select,lasso_select,examine,help\"\n", - "\n", - "p = figure(tools=TOOLS)\n", - "\n", - "p.scatter(x, y, radius=radii,\n", - " fill_color=colors, fill_alpha=0.6,\n", - " line_color=None)\n", - "\n", - "show(p)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## UXarray\n", - "\n", - "\"UXarray\n", - "\n", - "UXarray specializes in unstructured grids, built around [UGRID conventions](https://ugrid-conventions.github.io/ugrid-conventions/) and Xarray syntax. See the [UXarray documentation](https://uxarray.readthedocs.io/en/latest/)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## hvPlot\n", - "\n", - "\"Datashader\n", - "\n", - "hvPlot wraps both [Datashader](https://datashader.org/), a graphics pipeline, and [Holoviews](https://holoviews.org/), a tool for bundling data and metadata for intuitive interactive plotting, at a higher level. All 3 tools are by [Holoviz](https://holoviz.org/). Reference the [hvPlot documentation](https://hvplot.holoviz.org/).\n", - "\n", - "Here is a simple example from their [user guide](https://hvplot.holoviz.org/user_guide/Introduction.html):" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "import pandas as pd\n", - "import hvplot.pandas\n", - "\n", - "pd.options.plotting.backend = 'holoviews'\n", - "\n", - "index = pd.date_range('1/1/2000', periods=1000)\n", - "df = pd.DataFrame(np.random.randn(1000, 4), index=index, columns=list('ABCD')).cumsum()\n", - "\n", - "df.plot()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This useful diagram from [hvPlot's documentation](https://hvplot.holoviz.org/index.html) details how different high-level tools for data visualization interact.\n", - "\n", - "\"Datashader" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "---" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Summary\n", - "\n", - "Each Python plotting library offers a slightly different niche in the data visualization world. Some are better for creating publication figures (matplotlib, cartopy, metpy, geocat-viz, uxarray) while others offer interactive functionality that is great for websites, demonstrations, and other forms of engagement (holoviews, seaborn, plotly, bokeh, and vapor). Hopefully the mini examples on this page allow you to play around and see which user interfaces you like best for your visualization needs.\n", - "\n", - "\n", - "### What's next?\n", - "\n", - "Next up let's discuss elements of [good data visualization](good-viz)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Resources and references\n", - "\n", - "- [Matplotlib documentation](https://matplotlib.org/)\n", - "- [Cartopy documentation](https://scitools.org.uk/cartopy/docs/latest/)\n", - "- [GeoCat-examples Visualization Gallery](https://geocat-examples.readthedocs.io/en/latest/)\n", - "- [GeoCAT-Viz documentation](https://geocat-viz.readthedocs.io/en/latest/)\n", - "- [MetPy documentation](https://unidata.github.io/MetPy/latest/index.html)\n", - "- [Vapor documentation](https://www.vapor.ucar.edu/)\n", - "- [Plotly Python documentation](https://plotly.com/python/)\n", - "- [Seaborn documentation](https://seaborn.pydata.org/)\n", - "- [Bokeh documentation](https://bokeh.org/)\n", - "- [UXarray documentation](https://uxarray.readthedocs.io/en/latest/)\n", - "- [hvPlot documentation](https://hvplot.holoviz.org/index.html)\n", - "- [Holoviews documentation](https://holoviews.org/)\n", - "- [Datashader documentation](https://datashader.org/)" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.12" - }, - "nbdime-conflicts": { - "local_diff": [ - { - "diff": [ - { - "diff": [ - { - "key": 0, - "op": "addrange", - "valuelist": [ - "Python 3" - ] - }, - { - "key": 0, - "length": 1, - "op": "removerange" - } - ], - "key": "display_name", - "op": "patch" - } - ], - "key": "kernelspec", - "op": "patch" - } - ], - "remote_diff": [ - { - "diff": [ - { - "diff": [ - { - "key": 0, - "op": "addrange", - "valuelist": [ - "Python3" - ] - }, - { - "key": 0, - "length": 1, - "op": "removerange" - } - ], - "key": "display_name", - "op": "patch" - } - ], - "key": "kernelspec", - "op": "patch" - } - ] - }, - "toc-autonumbering": false - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/_preview/21/_sources/notebooks/good-viz.ipynb b/_preview/21/_sources/notebooks/good-viz.ipynb deleted file mode 100644 index c7ce441..0000000 --- a/_preview/21/_sources/notebooks/good-viz.ipynb +++ /dev/null @@ -1,325 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# What Makes for Good Data Visualization?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Overview\n", - "What Makes a Good Visualization? We want graphics to be eye catching and informative. In this chapter we'll discuss different aspects that can affect the quality of your figures and specific considerations relevant to the geosciences.\n", - "\n", - "1. The Importance of Data Visualization\n", - "1. Publication Ready Figures\n", - "1. The Problem with Rainbow Colormaps\n", - "1. Misleading Visualizations" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Prerequisites\n", - "\n", - "| Concepts | Importance | Notes |\n", - "| --- | --- | --- |\n", - "| [Matplotlib](https://foundations.projectpythia.org/core/matplotlib.html) | Necessary | |\n", - "| [Cartopy](https://foundations.projectpythia.org/core/cartopy.html) | Necessary | |\n", - "\n", - "- **Time to learn**: 3 hours\n", - "---" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "import matplotlib as mpl\n", - "import matplotlib.pyplot as plt\n", - "import numpy as np\n", - "import geocat.viz as gv" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## The Importance of Data Visualization\n", - "\n", - "It is important to use pictures to show data because we can visually detect patterns that could be lost in statistical analysis. All scientific disciplines use data visualizations to communicate concepts. \n", - "\n", - "Here we have a figure from [Autodesk](https://www.research.autodesk.com/publications/same-stats-different-graphs/) that shows a \"Datasaurus\" and 12 other datasets that share the same statistical information (mean, standard deviation, etc). We can see immediately that visually are telling very different stories: be it a dinosaur, a star, an oval, concentric ovals, or a series of lines (perhaps weather fronts).\n", - "\n", - "\"Same" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Publication Ready Figures\n", - "\n", - "For your figure to be publication rady, you probably want to change some of Matplotlib's default plotting settings: selecting fontsizes for your titles and labels, changing figure sizes, or subplot/colormap layout.\n", - "\n", - "To demonstrate this, let's look at an example:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# fake data\n", - "x = [0, 1, 2, 3, 4, 5]\n", - "y = [0, 3, 6, 9, 12, 15]\n", - " \n", - "# plot\n", - "plt.plot(x, y)\n", - "\n", - "# annotate\n", - "plt.title('Title')\n", - "plt.xlabel('X Label')\n", - "plt.ylabel('Y Label')\n", - "\n", - "plt.show();" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now let's show some customization options:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# fake data\n", - "x = [0, 1, 2, 3, 4, 5]\n", - "y = [0, 3, 6, 9, 12, 15]\n", - " \n", - "# plot\n", - "plt.plot(x, y, '--', color='red')\n", - "\n", - "# annotate\n", - "plt.title('Title', fontsize=20)\n", - "plt.xlabel('X Label', fontsize=16)\n", - "plt.ylabel('Y Label', fontsize=16)\n", - "\n", - "plt.show();" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Matplotlib Global Parameters\n", - "\n", - "Matplotlib has defaults for fontsizes and all sorts of attributes of a plot. Instead of setting your fontsize in every script, it is possible to set global parameters to change the default values of these attributes.\n", - "\n", - "You can veiw the globoal parameters options and their current settings with:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "mpl.rcParams.keys" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "To change any given parameter you would use the following command (replacing your parameter and value, of course):" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "```\n", - "mpl.rcParams['font.family'] = 'Arial'\n", - "```" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Using GeoCAT-Viz\n", - "\n", - "The GeoCAT-Viz package also has many utility functions for making your plots looks publication ready in fewer lines of code. The defaults of GeoCAT-viz keword-arguments are set to resemble the style of NCL." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# fake data\n", - "x = [0, 1, 2, 3, 4, 5]\n", - "y = [0, 3, 6, 9, 12, 15]\n", - " \n", - "# plot\n", - "plt.plot(x, y)\n", - "\n", - "# annotate\n", - "plt.title('Title')\n", - "plt.xlabel('X Label')\n", - "plt.ylabel('Y Label')\n", - "\n", - "gv.set_titles_and_labels(plt.gca())\n", - "\n", - "plt.show();" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## The Problem with Rainbow Colormaps\n", - "\n", - "Rainbow colormaps are visually beautiful, but are falling out of favor because\n", - "1. They are not colorblind friendly and\n", - "2. They do not print out in grayscale in a meaningful way.\n", - "\n", - "Both of these issues can be addressed by bing careful about you colormaps lightness-values.\n", - "\n", - "Some colormaps options are perceptually uniform (the same lightness value), sequentially ordered (goes from lighter to darker), or diverging (lightest or darkest at a set point and uniformly changes lightness going out). A rainbow colormap however is lighter or darker in arbitrary places and it affects how we interpret data (especially if it was printed out in grayscale).\n", - "\n", - "For example, from [Matplotlib's Choosing a Colormap documentation](https://matplotlib.org/stable/tutorials/colors/colormaps.html) here are some \"good\" colormaps:\n", - "\n", - "\"Matplotlib\n", - "\n", - "And here are miscellaneous colormaps:\n", - "\n", - "\"Matplotlib\n", - "\n", - "Looking at the colors in grayscale helps to understand why we might prefer a sequentially ordered colormap. Some grayscale values are duplicated and the reader will not know if it is a high or low value.\n", - "\n", - "Another consideration that can help those who are visually impaired is to make sure your figure comments are substantial. Use words to paint the picture of what is displayed, not just the conclusions you want the reader to get." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Misleading Visualizations\n", - "\n", - "The scales or colors we choose to use for data visualization affect how people interpret figures. You should strive to make your visualizations as accurate and as informative as possible. Here are some examples that demonstrate just how different a figure can look based on these choices you make. Do not intentionally mislead your audience!\n", - "\n", - "Perhaps the most common data visualization manipulation is to change the Y-scale. If a plot does not begin at 0, small changes in magnitude can be exhaggerated. Similarly a logarithmic scale will amplify changes. This is not always disingenuous, sometimes these changes are what you want to highlight, the pattern you want to draw attention to. Just make sure it is appropriate for your use case and documented. Alternatively, extending the Y-axis too large has the opposite affect and smooths out the differences in data." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "x = [1, 2, 3, 4, 5]\n", - "y = [1101, 1011, 1111, 1070, 1050]\n", - "\n", - "\n", - "fig, (ax1, ax2, ax3, ax4) = plt.subplots(4)\n", - "fig.tight_layout()\n", - "\n", - "ax1.bar(x,y)\n", - "ax1.set_title(\"Default Y-Scale Starts at 0\")\n", - "\n", - "ax2.bar(x,y)\n", - "ax2.set_ylim(1000)\n", - "ax2.set_title(\"Y-Scale Starts at 1000\")\n", - "\n", - "ax3.bar(x,y)\n", - "ax3.set_yscale(\"log\")\n", - "ax3.set_title(\"Y-Scale is Logarithmic\");\n", - "\n", - "ax4.bar(x,y)\n", - "ax4.set_ylim(0, 2000)\n", - "ax4.set_title(\"Y-Scale is Extended\");" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Other examples of data visualization manipulation include improper scaling, cherry picking a small non-representative subset of the data to display, displaying pie charts at a slant (pie charts are hard to interpet accurately as is), and unusing unexpected colormaps." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "---" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Summary\n", - "It is important to have accurate, engaging, and representative data visualization to accumpany your research, both for data exploration as part of the scientific process, for communication of results, and education/outreach efforts. Visually we pick up on patterns that statistics alone may not convey. However, an over reliance on data visualization can make science less accessible to those with vision disabilities. It is important to be cognicent of the patterns our minds pick up, be it based on color or y-axis scaling, so that we can avoid misleading our audience and more accurately convey the narrative inherent to the data.\n", - "\n", - "### What's next?\n", - "\n", - "[Plot Elements](plot-elements)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Resources and references\n", - "\n", - "- [Autodesk](https://www.research.autodesk.com/publications/same-stats-different-graphs/)\n", - "- [Matplotlib's Choosing a Colormap documentation](https://matplotlib.org/stable/tutorials/colors/colormaps.html)\n", - "- [GeoCAT-examples Gallery](https://geocat-examples.readthedocs.io/en/latest/)\n", - "- [NWSC Script](https://docs.google.com/document/d/1PxJBbYJsI5nmR9pDQmcRM0ZghRPSI_xlzGVhw3AEUms/edit)\n", - "- [Beyond Visuals: Examining the Experiences of Geoscience\n", - "Professionals With Vision Disabilities in Accessing Data Visualizations](https://arxiv.org/pdf/2207.13220.pdf)\n", - "- [Same Stats Different Graphs: Generating Datasets with Varied Appearance and\n", - "Identical Statistics through Simulated Annealing](https://www.research.autodesk.com/app/uploads/2023/03/same-stats-different-graphs.pdf_rec2hRjLLGgM7Cn2T.pdf)\n", - "- Alberto Cairo's How Charts Lie: Getting Smarter about Visual Information\n", - "- [Misleading Data Visualization – What to Avoid](https://blog.coupler.io/misleading-data-visualization-examples/#:~:text=A%20very%20common%20misleading%20data,truncated%20graph%20might%20distort%20data.)" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "advanced-viz-cookbook", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.12" - }, - "orig_nbformat": 4 - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/_preview/21/_sources/notebooks/how-to-cite.md b/_preview/21/_sources/notebooks/how-to-cite.md deleted file mode 100644 index e2ca57e..0000000 --- a/_preview/21/_sources/notebooks/how-to-cite.md +++ /dev/null @@ -1,7 +0,0 @@ -# How to Cite This Cookbook - -The material in this Project Pythia Cookbook is licensed for free and open consumption and reuse. All code is served under [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0), while all non-code content is licensed under [Creative Commons BY 4.0 (CC BY 4.0)](https://creativecommons.org/licenses/by/4.0/). Effectively, this means you are free to share and adapt this material so long as you give appropriate credit to the Cookbook authors and the Project Pythia community. - -The source code for the book is [released on GitHub](https://github.com/ProjectPythia/advanced-viz-cookbook) and archived on Zenodo. This DOI will always resolve to the latest release of the book source: - -[![DOI](https://zenodo.org/badge/671205314.svg)](https://zenodo.org/badge/latestdoi/671205314) diff --git a/_preview/21/_sources/notebooks/mpas-datashader.ipynb b/_preview/21/_sources/notebooks/mpas-datashader.ipynb deleted file mode 100644 index d0b4613..0000000 --- a/_preview/21/_sources/notebooks/mpas-datashader.ipynb +++ /dev/null @@ -1,452 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "tags": [] - }, - "source": [ - "# MPAS with Datashader and Geoviews" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Overview\n", - "\n", - "This example of interactively plotting unstructured grid MPAS data with Datashader and Geoviews demonstrates making use of the MPAS file's connectivity information to render data on the native grid, and also\n", - "avoid costly Delaunay triangulation that is required if the MPAS connectivity information is not used, rendering data that is sampled on both the 'primal' and 'dual' MPAS mesh, using geoviews/holoviews for interactive plotting in a Jupyter Notebook. The plotting is interactive in the sense that you can pan and zoom the data. Doing so will reveal greater and greater data fidelity, and sing Datashader to perform background rendering in place of Matplotlib. Unlike Matplotlib, Datashaderwas designed for performance with large data sets.\n", - "\n", - "1. Utility Functions\n", - "2. Loading Data\n", - "3. Using MPAS's cell connectivity array to plot primal mesh data\n", - "4. Synthesizing triangles from points using Delaunay triangulation\n", - "5. Using MPAS's cell connectivity array to plot dual mesh data" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Prerequisites\n", - "\n", - "| Concepts | Importance | Notes |\n", - "| --- | --- | --- |\n", - "| []() | Necessary | |\n", - "\n", - "- **Time to learn**: X minutes" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "---" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "import cartopy.crs as ccrs\n", - "import numpy as np\n", - "import pandas as pd\n", - "\n", - "import math as math\n", - "\n", - "import geocat.datafiles as gdf # Only for reading-in datasets\n", - "\n", - "from xarray import open_mfdataset\n", - "\n", - "from numba import jit\n", - "\n", - "import dask.dataframe as dd\n", - "\n", - "import holoviews as hv\n", - "from holoviews import opts\n", - "\n", - "from holoviews.operation.datashader import rasterize as hds_rasterize \n", - "#import geoviews.feature as gf # only needed for coastlines\n", - "\n", - "hv.extension(\"bokeh\",\"matplotlib\")\n", - "\n", - "opts.defaults(\n", - " opts.Image(frame_width=600, data_aspect=1),\n", - " opts.RGB(frame_width=600, data_aspect=1))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Utility functions\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "# This funtion splits a global mesh along longitude\n", - "#\n", - "# Examine the X coordinates of each triangle in 'tris'. Return an array of 'tris' where only those triangles\n", - "# with legs whose length is less than 't' are returned. \n", - "# \n", - "def unzipMesh(x,tris,t):\n", - " return tris[(np.abs((x[tris[:,0]])-(x[tris[:,1]])) < t) & (np.abs((x[tris[:,0]])-(x[tris[:,2]])) < t)]" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "# Compute the signed area of a triangle\n", - "#\n", - "def triArea(x,y,tris):\n", - " return ((x[tris[:,1]]-x[tris[:,0]]) * (y[tris[:,2]]-y[tris[:,0]])) - ((x[tris[:,2]]-x[tris[:,0]]) * (y[tris[:,1]]-y[tris[:,0]]))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "# Reorder triangles as necessary so they all have counter clockwise winding order. CCW is what Datashader and MPL\n", - "# require.\n", - "#\n", - "def orderCCW(x,y,tris):\n", - " tris[triArea(x,y,tris)<0.0,:] = tris[triArea(x,y,tris)<0.0,::-1]\n", - " return(tris)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "# Create a Holoviews Triangle Mesh suitable for rendering with Datashader\n", - "#\n", - "# This function returns a Holoviews TriMesh that is created from a list of coordinates, 'x' and 'y',\n", - "# an array of triangle indices that addressess the coordinates in 'x' and 'y', and a data variable 'var'. The\n", - "# data variable's values will annotate the triangle vertices\n", - "#\n", - "\n", - "def createHVTriMesh(x,y,triangle_indices, var,n_workers=1):\n", - " # Declare verts array\n", - " verts = np.column_stack([x, y, var])\n", - "\n", - "\n", - " # Convert to pandas\n", - " verts_df = pd.DataFrame(verts, columns=['x', 'y', 'z'])\n", - " tris_df = pd.DataFrame(triangle_indices, columns=['v0', 'v1', 'v2'])\n", - "\n", - " # Convert to dask\n", - " verts_ddf = dd.from_pandas(verts_df, npartitions=n_workers)\n", - " tris_ddf = dd.from_pandas(tris_df, npartitions=n_workers)\n", - "\n", - " # Declare HoloViews element\n", - " tri_nodes = hv.Nodes(verts_ddf, ['x', 'y', 'index'], ['z'])\n", - " trimesh = hv.TriMesh((tris_ddf, tri_nodes))\n", - " return(trimesh)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "# Triangulate MPAS primary mesh:\n", - "#\n", - "# Triangulate each polygon in a heterogenous mesh of n-gons by connecting\n", - "# each internal polygon vertex to the first vertex. Uses the MPAS\n", - "# auxilliary variables verticesOnCell, and nEdgesOnCell.\n", - "#\n", - "# The function is decorated with Numba's just-in-time compiler so that it is translated into\n", - "# optimized machine code for better peformance\n", - "#\n", - "\n", - "@jit(nopython=True)\n", - "def triangulatePoly(verticesOnCell, nEdgesOnCell):\n", - "\n", - " # Calculate the number of triangles. nEdgesOnCell gives the number of vertices for each cell (polygon)\n", - " # The number of triangles per polygon is the number of vertices minus 2.\n", - " #\n", - " nTriangles = np.sum(nEdgesOnCell - 2)\n", - "\n", - " triangles = np.ones((nTriangles, 3), dtype=np.int64)\n", - " nCells = verticesOnCell.shape[0]\n", - " triIndex = 0\n", - " for j in range(nCells):\n", - " for i in range(nEdgesOnCell[j]-2):\n", - " triangles[triIndex][0] = verticesOnCell[j][0]\n", - " triangles[triIndex][1] = verticesOnCell[j][i+1]\n", - " triangles[triIndex][2] = verticesOnCell[j][i+2]\n", - " triIndex += 1\n", - "\n", - " return triangles" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Load data and coordinates\n", - "\n", - "The global data sets used in this example are from the same experiment, but run at several resolutions from\n", - "30km to 3.75km. Due to their size, the higher resolution data sets are only distributed with two variables\n", - "in them:\n", - "+ relhum_200hPa: Relative humidity vertically interpolated to 200 hPa\n", - "+ vorticity_200hPa: Relative vorticity vertically interpolated to 200 hPa\n", - "\n", - "The dyamond_1 data set is available in several resolutions, ranging from 30 km to 3.75 km.\n", - "\n", - "Currently, the 30-km resolution dataset used in this example is available at geocat-datafiles.\n", - "However, the other resolutions of these data are stored on Glade because of their size.\n", - "\n", - "The relhum_200hPa is computed on the MPAS 'primal' mesh, while the vorticity_200hPa is computed on the MPAS\n", - "'dual' mesh. Note that data may also be sampled on the edges of the primal mesh. This example does not\n", - "include/cover edge-centered data.\n", - "\n", - "These data are courtesy of NCAR's Falko Judt, and were produced as part of the DYAMOND initiative: \n", - " http://dx.doi.org/10.1186/s40645-019-0304-z.\n" - ] - }, - { - "cell_type": "raw", - "metadata": { - "tags": [] - }, - "source": [ - "# Load data\n", - "\n", - "datafiles = (gdf.get(\"netcdf_files/MPAS/FalkoJudt/dyamond_1/30km/diag.2016-08-20_00.00.00_subset.nc\"),\n", - " gdf.get(\"netcdf_files/MPAS/FalkoJudt/dyamond_1/30km/x1.655362.grid_subset.nc\") )\n", - "\n", - "primalVarName = 'relhum_200hPa'\n", - "dualVarName = 'vorticity_200hPa'\n", - "central_longitude = 0.0\n", - "\n", - "ds = open_mfdataset(datafiles, decode_times=False)\n", - "primalVar = ds[primalVarName].isel(Time=0).values\n", - "dualVar = ds[dualVarName].isel(Time=0).values\n", - "\n", - "# Fetch lat and lon coordinates for the primal and dual mesh.\n", - "lonCell = ds['lonCell'].values * 180.0 / math.pi\n", - "latCell = ds['latCell'].values * 180.0 / math.pi\n", - "lonCell = ((lonCell - 180.0) % 360.0) - 180.0\n", - "\n", - "lonVertex = ds['lonVertex'].values * 180.0 / math.pi\n", - "latVertex = ds['latVertex'].values * 180.0 / math.pi\n", - "lonVertex = ((lonVertex - 180.0) % 360.0) - 180.0" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "tags": [] - }, - "source": [ - "## Using MPAS's cell connectivity array to plot primal mesh data\n", - "\n", - "In this example we use the MPAS `cellsOnVertex` auxilliary variable, which defines mesh connectivity for the MPAS grid.\n", - "Specifically, this variable tells us the cell IDs for each cell that contains each vertex.\n", - "\n", - "The benefits of this are twofold: 1. We're using the actual mesh description from the MPAS output file; and 2. \n", - "For large grid this is *much* faster than synthesizing the connectivity information as is done\n", - "in the next example\n" - ] - }, - { - "cell_type": "raw", - "metadata": { - "tags": [] - }, - "source": [ - "# Get triangle indices for each vertex in the MPAS file. Note, indexing in MPAS starts from 1, not zero :-(\n", - "#\n", - "tris = ds.cellsOnVertex.values - 1\n", - "\n", - "# The MPAS connectivity array unforunately does not seem to guarantee consistent clockwise winding order, which\n", - "# is required by Datashader (and Matplotlib)\n", - "#\n", - "tris = orderCCW(lonCell,latCell,tris)\n", - "\n", - "# Lastly, we need to \"unzip\" the mesh along a constant line of longitude so that when we project to PCS coordinates\n", - "# cells don't wrap around from east to west. The function below does the job, but it assumes that the \n", - "# central_longitude from the map projection is 0.0. I.e. it will cut the mesh where longitude \n", - "# wraps around from -180.0 to 180.0. We'll need to generalize this\n", - "#\n", - "tris = unzipMesh(lonCell,tris,90.0)\n", - "\n", - "\n", - "# Project verts from geographic to PCS coordinates\n", - "#\n", - "projection = ccrs.Robinson(central_longitude=central_longitude)\n", - "xPCS, yPCS, _ = projection.transform_points(ccrs.PlateCarree(), lonCell, latCell).T\n", - "\n", - "\n", - "trimesh = createHVTriMesh(xPCS,yPCS,tris, primalVar,n_workers=n_workers)" - ] - }, - { - "cell_type": "raw", - "metadata": { - "tags": [] - }, - "source": [ - "# Use precompute so it caches the data internally\n", - "rasterized = hds_rasterize(trimesh, aggregator='mean', precompute=True)\n", - "rasterized.opts(tools=['hover'], colorbar=True, cmap='coolwarm') * gf.coastline(projection=projection)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Synthesizing triangles from points using Delaunay triangulation\n", - "\n", - "In this second example we do not use the triangle connectivity information stored in the MPAS file. Instead we\n", - "use Delaunay triangulation to artifically create a triangle mesh. The benefit of this approach is that we do not\n", - "need the MPAS cellsOnVertex variable if it is not available. Also, since the triangulation algorithm is run on the \n", - "coordinates after they are projected to meters we do not have to worry about wraparound. The downside is that for\n", - "high-resolution data Delaunay triangulation is prohibitively expensive. The highest resolution data set included\n", - "in this notebook (3.75km) will not triangulate in a reasonable amount of time, if at all \n" - ] - }, - { - "cell_type": "raw", - "metadata": {}, - "source": [ - "# Use Delaunay triangulation to generate the triangle connectivity. Note, it's important that the coordinate \n", - "# arrays already be in PCS coordinates (not lat-lon) for the triangulation to perform optimally\n", - "#\n", - "\n", - "from matplotlib.tri import Triangulation\n", - "\n", - "tris = Triangulation(xPCS,yPCS).triangles\n", - "\n", - "trimesh = createHVTriMesh(xPCS,yPCS,tris, primalVar,n_workers=n_workers)" - ] - }, - { - "cell_type": "raw", - "metadata": {}, - "source": [ - "# Use precompute so it caches the data internally\n", - "rasterized = hds_rasterize(trimesh, aggregator='mean', precompute=True)\n", - "rasterized.opts(tools=['hover'], colorbar=True, cmap='coolwarm') * gf.coastline(projection=projection)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Using MPAS's cell connectivity array to plot dual mesh data\n", - "\n", - "In this example we use the MPAS `verticesOnCell` and `nEdgesOnCell` auxilliary variables, which defines mesh connectivity for the\n", - "MPAS dual grid.\n", - "\n", - "As with the first example using the MPAS primal grid, data on the dual grid could be plotted by first\n", - "triangulating them with, for example, Delaunay triangulation. But using grid's native connectivity information \n", - "is faster.\n" - ] - }, - { - "cell_type": "raw", - "metadata": {}, - "source": [ - "verticesOnCell = ds.verticesOnCell.values - 1\n", - "nEdgesOnCell = ds.nEdgesOnCell.values\n", - "\n", - "# For the dual mesh the data are located on triangle centers, which correspond to cell (polygon) vertices. Here\n", - "# we decompose each cell into triangles\n", - "#\n", - "tris = triangulatePoly(verticesOnCell, nEdgesOnCell)\n", - "\n", - "tris = unzipMesh(lonVertex,tris,90.0)\n", - "\n", - "# Project verts from geographic to PCS coordinates\n", - "#\n", - "projection = ccrs.Robinson(central_longitude=central_longitude)\n", - "xPCS, yPCS, _ = projection.transform_points(ccrs.PlateCarree(), lonVertex, latVertex).T\n", - "\n", - "trimesh = createHVTriMesh(xPCS,yPCS,tris, dualVar,n_workers=n_workers)" - ] - }, - { - "cell_type": "raw", - "metadata": {}, - "source": [ - "rasterized = hds_rasterize(trimesh, aggregator='mean', precompute=True)\n", - "rasterized.opts(tools=['hover'], colorbar=True, cmap='coolwarm') * gf.coastline(projection=projection)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Summary\n", - "\n", - "### What's next?\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Resources and references\n", - "\n", - "- []()" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.12" - }, - "widgets": { - "application/vnd.jupyter.widget-state+json": { - "state": {}, - "version_major": 2, - "version_minor": 0 - } - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/_preview/21/_sources/notebooks/notebook-template.ipynb b/_preview/21/_sources/notebooks/notebook-template.ipynb deleted file mode 100644 index dad9f26..0000000 --- a/_preview/21/_sources/notebooks/notebook-template.ipynb +++ /dev/null @@ -1,358 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's start here! If you can directly link to an image relevant to your notebook, such as [canonical logos](https://github.com/numpy/numpy/blob/main/doc/source/_static/numpylogo.svg), do so here at the top of your notebook. You can do this with Markdown syntax,\n", - "\n", - "> `![](http://link.com/to/image.png \"image alt text\")`\n", - "\n", - "or edit this cell to see raw HTML `img` demonstration. This is preferred if you need to shrink your embedded image. **Either way be sure to include `alt` text for any embedded images to make your content more accessible.**\n", - "\n", - "\"Project" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Project Pythia Notebook Template\n", - "\n", - "Next, title your notebook appropriately with a top-level Markdown header, `#`. Do not use this level header anywhere else in the notebook. Our book build process will use this title in the navbar, table of contents, etc. Keep it short, keep it descriptive. Follow this with a `---` cell to visually distinguish the transition to the prerequisites section." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "---" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Overview\n", - "If you have an introductory paragraph, lead with it here! Keep it short and tied to your material, then be sure to continue into the required list of topics below,\n", - "\n", - "1. This is a numbered list of the specific topics\n", - "1. These should map approximately to your main sections of content\n", - "1. Or each second-level, `##`, header in your notebook\n", - "1. Keep the size and scope of your notebook in check\n", - "1. And be sure to let the reader know up front the important concepts they'll be leaving with" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Prerequisites\n", - "This section was inspired by [this template](https://github.com/alan-turing-institute/the-turing-way/blob/master/book/templates/chapter-template/chapter-landing-page.md) of the wonderful [The Turing Way](https://the-turing-way.netlify.app) Jupyter Book.\n", - "\n", - "Following your overview, tell your reader what concepts, packages, or other background information they'll **need** before learning your material. Tie this explicitly with links to other pages here in Foundations or to relevant external resources. Remove this body text, then populate the Markdown table, denoted in this cell with `|` vertical brackets, below, and fill out the information following. In this table, lay out prerequisite concepts by explicitly linking to other Foundations material or external resources, or describe generally helpful concepts.\n", - "\n", - "Label the importance of each concept explicitly as **helpful/necessary**.\n", - "\n", - "| Concepts | Importance | Notes |\n", - "| --- | --- | --- |\n", - "| [Intro to Cartopy](https://foundations.projectpythia.org/core/cartopy/cartopy.html) | Necessary | |\n", - "| [Understanding of NetCDF](https://foundations.projectpythia.org/core/data-formats/netcdf-cf.html) | Helpful | Familiarity with metadata structure |\n", - "| Project management | Helpful | |\n", - "\n", - "- **Time to learn**: estimate in minutes. For a rough idea, use 5 mins per subsection, 10 if longer; add these up for a total. Safer to round up and overestimate.\n", - "- **System requirements**:\n", - " - Populate with any system, version, or non-Python software requirements if necessary\n", - " - Otherwise use the concepts table above and the Imports section below to describe required packages as necessary\n", - " - If no extra requirements, remove the **System requirements** point altogether" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "---" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Imports\n", - "Begin your body of content with another `---` divider before continuing into this section, then remove this body text and populate the following code cell with all necessary Python imports **up-front**:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "import sys" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Your first content section" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This is where you begin your first section of material, loosely tied to your objectives stated up front. Tie together your notebook as a narrative, with interspersed Markdown text, images, and more as necessary," - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# as well as any and all of your code cells\n", - "print(\"Hello world!\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### A content subsection\n", - "Divide and conquer your objectives with Markdown subsections, which will populate the helpful navbar in Jupyter Lab and here on the Jupyter Book!" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# some subsection code\n", - "new = \"helpful information\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Another content subsection\n", - "Keep up the good work! A note, *try to avoid using code comments as narrative*, and instead let them only exist as brief clarifications where necessary." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Your second content section\n", - "Here we can move on to our second objective, and we can demonstrate" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Subsection to the second section\n", - "\n", - "#### a quick demonstration\n", - "\n", - "##### of further and further\n", - "\n", - "###### header levels" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "as well $m = a * t / h$ text! Similarly, you have access to other $\\LaTeX$ equation [**functionality**](https://jupyter-notebook.readthedocs.io/en/stable/examples/Notebook/Typesetting%20Equations.html) via MathJax (demo below from link),\n", - "\n", - "\\begin{align}\n", - "\\dot{x} & = \\sigma(y-x) \\\\\n", - "\\dot{y} & = \\rho x - y - xz \\\\\n", - "\\dot{z} & = -\\beta z + xy\n", - "\\end{align}" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Check out [**any number of helpful Markdown resources**](https://www.markdownguide.org/basic-syntax/) for further customizing your notebooks and the [**Jupyter docs**](https://jupyter-notebook.readthedocs.io/en/stable/examples/Notebook/Working%20With%20Markdown%20Cells.html) for Jupyter-specific formatting information. Don't hesitate to ask questions if you have problems getting it to look *just right*." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Last Section\n", - "\n", - "If you're comfortable, and as we briefly used for our embedded logo up top, you can embed raw html into Jupyter Markdown cells (edit to see):" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "

Info

\n", - " Your relevant information here!\n", - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Feel free to copy this around and edit or play around with yourself. Some other `admonitions` you can put in:" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "

Success

\n", - " We got this done after all!\n", - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "

Warning

\n", - " Be careful!\n", - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "

Danger

\n", - " Scary stuff be here.\n", - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We also suggest checking out Jupyter Book's [brief demonstration](https://jupyterbook.org/content/metadata.html#jupyter-cell-tags) on adding cell tags to your cells in Jupyter Notebook, Lab, or manually. Using these cell tags can allow you to [customize](https://jupyterbook.org/interactive/hiding.html) how your code content is displayed and even [demonstrate errors](https://jupyterbook.org/content/execute.html#dealing-with-code-that-raises-errors) without altogether crashing our loyal army of machines!" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "---" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Summary\n", - "Add one final `---` marking the end of your body of content, and then conclude with a brief single paragraph summarizing at a high level the key pieces that were learned and how they tied to your objectives. Look to reiterate what the most important takeaways were.\n", - "\n", - "### What's next?\n", - "Let Jupyter book tie this to the next (sequential) piece of content that people could move on to down below and in the sidebar. However, if this page uniquely enables your reader to tackle other nonsequential concepts throughout this book, or even external content, link to it here!" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Resources and references\n", - "Finally, be rigorous in your citations and references as necessary. Give credit where credit is due. Also, feel free to link to relevant external material, further reading, documentation, etc. Then you're done! Give yourself a quick review, a high five, and send us a pull request. A few final notes:\n", - " - `Kernel > Restart Kernel and Run All Cells...` to confirm that your notebook will cleanly run from start to finish\n", - " - `Kernel > Restart Kernel and Clear All Outputs...` before committing your notebook, our machines will do the heavy lifting\n", - " - Take credit! Provide author contact information if you'd like; if so, consider adding information here at the bottom of your notebook\n", - " - Give credit! Attribute appropriate authorship for referenced code, information, images, etc.\n", - " - Only include what you're legally allowed: **no copyright infringement or plagiarism**\n", - " \n", - "Thank you for your contribution!" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.8" - }, - "nbdime-conflicts": { - "local_diff": [ - { - "diff": [ - { - "diff": [ - { - "key": 0, - "op": "addrange", - "valuelist": [ - "Python 3" - ] - }, - { - "key": 0, - "length": 1, - "op": "removerange" - } - ], - "key": "display_name", - "op": "patch" - } - ], - "key": "kernelspec", - "op": "patch" - } - ], - "remote_diff": [ - { - "diff": [ - { - "diff": [ - { - "key": 0, - "op": "addrange", - "valuelist": [ - "Python3" - ] - }, - { - "key": 0, - "length": 1, - "op": "removerange" - } - ], - "key": "display_name", - "op": "patch" - } - ], - "key": "kernelspec", - "op": "patch" - } - ] - }, - "toc-autonumbering": false - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/_preview/21/_sources/notebooks/plot-elements.ipynb b/_preview/21/_sources/notebooks/plot-elements.ipynb deleted file mode 100644 index 2febf5e..0000000 --- a/_preview/21/_sources/notebooks/plot-elements.ipynb +++ /dev/null @@ -1,308 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Plot Elements" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Prerequisites\n", - "\n", - "| Concepts | Importance | Notes |\n", - "| --- | --- | --- |\n", - "| [Matplotlib](https://foundations.projectpythia.org/core/matplotlib.html) | Necessary | |\n", - "| [Cartopy](https://foundations.projectpythia.org/core/cartopy.html) | Necessary | |\n", - "\n", - "- **Time to learn**: 40 minutes\n", - "---" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "import xarray as xr\n", - "import numpy as np\n", - "import matplotlib.pyplot as plt\n", - "import geocat.viz as gv" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Data\n", - "\n", - "The first piece of data visualization is the data!\n", - "\n", - "Let's generate some dummy data to work with:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "x = np.linspace(0, 20, 1000)\n", - "y1 = np.sin(x)\n", - "y2 = np.cos(x)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Figure\n", - "\n", - "The figure is the object that contains your entire visualization. Creating a figure tends to be the first step in plotting, even if it doesn't currently show anything:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "fig = plt.figure(figsize=(9.5, 8))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Axis\n", - "\n", - "We then add axes to our plot. You can add multiple axes to one plot in order to produce subplots, or just one. Axes will automatically inherit their limits from the data plotted, or can be manually set." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "fig = plt.figure(figsize=(9.5, 8))\n", - "ax = plt.axes()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Plot\n", - "\n", - "Adding the data to the figure can be done through several different plot types: line, contour, bar, histogram. Here we use two line plots:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "fig = plt.figure(figsize=(9.5, 8))\n", - "ax = plt.axes()\n", - "\n", - "ax.plot(x,y1)\n", - "ax.plot(x,y2);" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Titles and Labels\n", - "\n", - "Titles and labels are important for indicating what the figure is plotting. It is a good idea to include relevant units in your axis labels." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "fig = plt.figure(figsize=(9.5, 8))\n", - "ax = plt.axes()\n", - "\n", - "ax.plot(x,y1)\n", - "ax.plot(x,y2)\n", - "\n", - "ax.set_title(\"Dummy Data\")\n", - "ax.set_xlabel(\"X (radians)\");" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Legends\n", - "\n", - "If you're plotting multiple lines of data, it's a good idea to include a legend. Here is how you call or point to the legend:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "fig = plt.figure(figsize=(9.5, 8))\n", - "ax = plt.axes()\n", - "\n", - "ax.plot(x,y1,label='sine')\n", - "ax.plot(x,y2,label='cosine')\n", - "\n", - "ax.set_title(\"Dummy Data\")\n", - "ax.set_xlabel(\"X (radians)\")\n", - "\n", - "plt.legend(loc=\"upper left\");" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Colorbars\n", - "\n", - "While legends are more appropriate for line or bar plots, colorbars are most commonly used for contour plots and sometimes to apply a third level of dimension to a scatter plot.\n", - "\n", - "Let's shift our example to better demonstrate a colorbar by workign with a filled contour plot:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Generate dummy data\n", - "data = [[1, 4, 5, 6, 8.2],\n", - " [9, 8.4, 10, 10.6, 9.7],\n", - " [4.4, 5, 0, 6.6, 1.4],\n", - " [4.6, 5.2, 1.5, 7.6, 2.4]]\n", - "\n", - "# Convert data into type xarray.DataArray\n", - "data = xr.DataArray(data,\n", - " dims=[\"lat\", \"lon\"],\n", - " coords=dict(lat=np.arange(4), lon=np.arange(5)))\n", - "\n", - "data" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "fig = plt.figure(figsize=(9.5, 8))\n", - "ax = plt.axes()\n", - "\n", - "pcm = ax.contourf(data,cmap='viridis')\n", - "\n", - "ax.set_title(\"Dummy Data\")\n", - "ax.set_xlabel(\"Longitude (\\N{DEGREE SIGN})\")\n", - "ax.set_ylabel(\"Latitude (\\N{DEGREE SIGN})\")\n", - "\n", - "fig.colorbar(pcm,ax=ax);" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Annotations\n", - "\n", - "Additional annotations allow you to specify some text and a location to indicate almost anything. \n", - "\n", - "Here we use GeoCAT-viz to add annotations to the maxima in a contour plot:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "fig = plt.figure(figsize=(9.5, 8))\n", - "ax = plt.axes()\n", - "\n", - "pcm = ax.contourf(data,cmap='viridis')\n", - "\n", - "ax.set_title(\"Dummy Data\")\n", - "ax.set_xlabel(\"Longitude (\\N{DEGREE SIGN})\")\n", - "ax.set_ylabel(\"Latitude (\\N{DEGREE SIGN})\")\n", - "\n", - "fig.colorbar(pcm,ax=ax)\n", - "\n", - "# Find local maximum with GeoCAT-Viz find_local_extrema\n", - "lmax = gv.find_local_extrema(data, eType='High')[0]\n", - "\n", - "# Plot labels for local mins\n", - "max_value = data.data[lmax[1]][lmax[0]]\n", - "ax.text(lmax[0], lmax[1],'Maxima = '+str(max_value))\n", - "\n", - "# Show plot\n", - "plt.show();" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "---" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Summary\n", - "\n", - "There are several key elements to a Python plot and knowing what they are called is instrumental to begin your journey for further customization.\n", - "\n", - "### What's next?\n", - "\n", - "[Specialty Plots: Taylor Diagrams](taylor-diagrams)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Resources and references" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "advanced-viz-cookbook", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.12" - }, - "orig_nbformat": 4 - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/_preview/21/_sources/notebooks/skewt.ipynb b/_preview/21/_sources/notebooks/skewt.ipynb deleted file mode 100644 index 477affa..0000000 --- a/_preview/21/_sources/notebooks/skewt.ipynb +++ /dev/null @@ -1,684 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Skew T Diagrams" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Overview\n", - "\n", - "Summary text here\n", - "\n", - "1. " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Prerequisites\n", - "\n", - "| Concepts | Importance | Notes |\n", - "| --- | --- | --- |\n", - "| []() | Necessary | |\n", - "\n", - "- **Time to learn**: X minutes\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "---" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## What is a Skew-T plot?" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import matplotlib.pyplot as plt\n", - "import numpy as np\n", - "import pandas as pd\n", - "\n", - "from metpy.plots import SkewT\n", - "import metpy.calc as mpcalc\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "If you want to get your own sounding data, run the following code in a new cell using the date and station of your choice:\n", - "\n", - "```python\n", - "from datetime import datetime\n", - "from siphon.simplewebservice.wyoming import WyomingUpperAir\n", - "\n", - "date = datetime(2023, 11, 20, 12)\n", - "station = 'GJT'\n", - "df = WyomingUpperAir.request_data(date, station)\n", - "```" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We've already done this for you and saved the data in a file, `notebooks/data/gjt_sounding.csv` for you to use. We'll use that file's data for the rest of the notebook" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
pressureheighttemperaturedewpointdirectionspeedu_windv_windstationstation_numbertimelatitudelongitudeelevationpw
0853.014755.22.0305.03.02.457456-1.720729GJT724762023-11-20 12:00:0039.11-108.531475.09.12
1850.015087.21.2280.013.012.802501-2.257426GJT724762023-11-20 12:00:0039.11-108.531475.09.12
2848.015277.41.4287.013.012.431962-3.800832GJT724762023-11-20 12:00:0039.11-108.531475.09.12
3831.016936.4-2.6350.015.02.604723-14.772116GJT724762023-11-20 12:00:0039.11-108.531475.09.12
4820.018025.4-2.810.013.0-2.257426-12.802501GJT724762023-11-20 12:00:0039.11-108.531475.09.12
................................................
14713.428951-55.7-85.753.017.0-13.576804-10.230855GJT724762023-11-20 12:00:0039.11-108.531475.09.12
14813.029144-55.5-85.575.020.0-19.318517-5.176381GJT724762023-11-20 12:00:0039.11-108.531475.09.12
14912.729293-55.3-85.3NaNNaNNaNNaNGJT724762023-11-20 12:00:0039.11-108.531475.09.12
15012.129601-55.5-85.5NaNNaNNaNNaNGJT724762023-11-20 12:00:0039.11-108.531475.09.12
15112.029654-55.7-85.7NaNNaNNaNNaNGJT724762023-11-20 12:00:0039.11-108.531475.09.12
\n", - "

152 rows × 15 columns

\n", - "
" - ], - "text/plain": [ - " pressure height temperature dewpoint direction speed u_wind \\\n", - "0 853.0 1475 5.2 2.0 305.0 3.0 2.457456 \n", - "1 850.0 1508 7.2 1.2 280.0 13.0 12.802501 \n", - "2 848.0 1527 7.4 1.4 287.0 13.0 12.431962 \n", - "3 831.0 1693 6.4 -2.6 350.0 15.0 2.604723 \n", - "4 820.0 1802 5.4 -2.8 10.0 13.0 -2.257426 \n", - ".. ... ... ... ... ... ... ... \n", - "147 13.4 28951 -55.7 -85.7 53.0 17.0 -13.576804 \n", - "148 13.0 29144 -55.5 -85.5 75.0 20.0 -19.318517 \n", - "149 12.7 29293 -55.3 -85.3 NaN NaN NaN \n", - "150 12.1 29601 -55.5 -85.5 NaN NaN NaN \n", - "151 12.0 29654 -55.7 -85.7 NaN NaN NaN \n", - "\n", - " v_wind station station_number time latitude \\\n", - "0 -1.720729 GJT 72476 2023-11-20 12:00:00 39.11 \n", - "1 -2.257426 GJT 72476 2023-11-20 12:00:00 39.11 \n", - "2 -3.800832 GJT 72476 2023-11-20 12:00:00 39.11 \n", - "3 -14.772116 GJT 72476 2023-11-20 12:00:00 39.11 \n", - "4 -12.802501 GJT 72476 2023-11-20 12:00:00 39.11 \n", - ".. ... ... ... ... ... \n", - "147 -10.230855 GJT 72476 2023-11-20 12:00:00 39.11 \n", - "148 -5.176381 GJT 72476 2023-11-20 12:00:00 39.11 \n", - "149 NaN GJT 72476 2023-11-20 12:00:00 39.11 \n", - "150 NaN GJT 72476 2023-11-20 12:00:00 39.11 \n", - "151 NaN GJT 72476 2023-11-20 12:00:00 39.11 \n", - "\n", - " longitude elevation pw \n", - "0 -108.53 1475.0 9.12 \n", - "1 -108.53 1475.0 9.12 \n", - "2 -108.53 1475.0 9.12 \n", - "3 -108.53 1475.0 9.12 \n", - "4 -108.53 1475.0 9.12 \n", - ".. ... ... ... \n", - "147 -108.53 1475.0 9.12 \n", - "148 -108.53 1475.0 9.12 \n", - "149 -108.53 1475.0 9.12 \n", - "150 -108.53 1475.0 9.12 \n", - "151 -108.53 1475.0 9.12 \n", - "\n", - "[152 rows x 15 columns]" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df = pd.read_csv('data/gjt_sounding.csv')\n", - "df" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "p = df['pressure'].values\n", - "T = df['temperature'].values\n", - "Td = df['dewpoint'].values\n", - "u = df['u_wind'].values\n", - "v = df['v_wind'].values" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Elements of a Skew-T Plot\n", - "Let's start out by talking about the structural elements of a Skew-T plot.\n", - "\n", - "1. **Temperature Lines** are drawn at an angle up from the x-axis and are where the name \"Skew-T\" comes from.\n", - "2. **Pressure Lines** are horizontal from the y-axis, where pressure is plotted at a logarithmic scale.\n", - "3. **Dry Adiabats**: are lines of constant potential temperature.\n", - "4. **Moist Adiabats**: are lines of constant equivalent potential temperature.\n", - "5. **Mixing Ratio Lines**: represent lines of constant mixing ratio.\n", - "\n", - "On all those structural elements, Skew-T plots have two lines plotted on them, **air temperature** and **dew point**. In this notebook, we'll be plotting the air temperature in red and the dew point in blue.\n", - "\n", - "Additionally, Skew-T plots have **wind barbs**. These describe the wind speed and direction at different pressure levels and are plotted on the right side of the diagram.\n", - "\n", - ":::{tip}\n", - "For a more detailed description and a cool interactive diagram, visit [NOAA's Skew-T page](https://www.noaa.gov/jetstream/upperair/skew-t-log-p-diagrams).\n", - ":::" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Making a Skew-T plot in Python (with MetPy!)\n", - "So, all of that might seem a little abstract without a visual. We're going to use MetPy's SkewT module to make an actual Skew-T plot with the sounding data we downloaded earlier.\n", - "\n", - "From the [MetPy documentation](https://unidata.github.io/MetPy/latest/api/generated/metpy.plots.SkewT.html):\n", - "> \"This class simplifies the process of creating Skew-T log-P plots in using matplotlib. It handles requesting the appropriate skewed projection, and provides simplified wrappers to make it easy to plot data, add wind barbs, and add other lines to the plots (e.g. dry adiabats)\"\n", - "\n", - "### Just the basics\n", - "To start with, let's create a very minimal Skew-T plot with just the pressure and temperature lines under the sounding data." - ] - }, - { - "cell_type": "code", - "execution_count": 42, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 42, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0AAAAL3CAYAAACj2yU7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdebxU8x/H8dfctf2231btq5K0L5RKJFH2IrIlhFCR/BDRgkIJ2RVFKERR0Yb20l7a9727VXed8/vjNNOd7vr93lnOmfk8Hw+PO3Nm7sz35n0+dz73e873OAzDMBBCCCGEEEKIEBAW6AEIIYQQQgghhL9IAySEEEIIIYQIGdIACSGEEEIIIUKGNEBCCCGEEEKIkCENkBBCCCGEECJkSAMkhBBCCCGECBnSAAkhhBBCCCFChjRAQgghhBBCiJAhDZAQQgghhBAiZEgDJIQQQgghhA8dO3YMh8OR7X8dO3bE4XDQpUsXAA4dOuR+rHfv3lle67PPPsPhcPDTTz/5+8cIGg7DMIxAD0IIIYQQQohg5nQ6CQ8Pd9/v3r07v/zyi/t+enq6+/GkpCSKFy8OwKWXXsrGjRs9Xuvs2bMUKVLED6MOTjIDJIQQQgghhI+1b98egH79+gF4ND8AERER7N69G4BixYqRlpYGwKZNm3A4HDidTvdzpfkpGGmAhBBCCCGE8KG1a9fyzz//AOYhbE6nk2rVqrkfb9myJQA1a9bkgw8+AMyGyOl0EhsbC0B4eDjJycl+HnlwkkPghBBCCCGE8CGHwwHA9u3bqVOnDmfOnKFYsWI5Pr9u3bps3brV/X3XXnstv//+OwDHjx+nbNmyvh90EJMZICGEEEIIIXzkvvvuA+Cmm26iTp06AJQpUwaAL774gnPnzhEW5vmRfPv27YSFhbFv3z4AfvvtNwYNGgRAuXLl+O+///w0+uAkDZAQQgghhBA+sG/fPj7//HMAZs6cCcCsWbNISUkB4J577qFQoUJkZGTw7rvvur+vVKlSAFSrVo1PPvkEgPHjxzNp0iTAnCHau3evv36MoCOHwAkhhBBCCOEDrkPYli5dSrt27UhPTycyMhKAU6dOuRudtLQ0IiMjOXbsmPucn8wuu+wy1q1bh8PhYM6cOVx//fX8888/tG7d2n8/TBCRGSAhhBBCCCF86MSJEwA0b94cgBEjRribH4fDQVRUFADly5fHMAz69+/v8f3r168nLCyMgwcP0q1bNwzDkOanAKQBEkIIIYQQwgdch6n17NmTr776in///ReAF198EYDRo0cDUK9ePY/v+/DDD9mwYUOW16tSpQpTpkzx5ZBDghwCJ4QQQgghhI8sWLCALl26uO/v3r2b6tWrEx8fT8mSJQFITU11HxqXmWEYtGrVipUrV3psb9myJcuWLXMfYifUyAyQEEIIIYQQPtK5c2deeOEF933X9X9czc+3336bbfMD5uFxK1asyHLR1BUrVjBnzhzfDDgEyAyQEEIIIYQQPtahQwcWL15MlSpVGDt2LH369AHMWZ78SE5OpmjRojidTgB27dpFjRo1fDbeYCYzQEIIIYQQQvjYokWLADhw4IC7+UlISMj391+8XPbRo0e9P8gQITNAQgghhBBC+EHmZbDbt2/PkiVLAjyi0CQzQEIIIYQQQvhBRESEe2W4pUuXZrvSm/A9mQESQgghhBDCj/7++2/atWsHQFxcHDExMQEeUWiRGSAhhBBCCCH8qG3btu5zeUqWLOle2ED4h8wACSGEEEIIEQC9evVi1qxZFClShDNnzgR6OCFDZoCEEEIIIYQIgJkzZwJw9uxZ7rrrrgCPJnRIAySEEEIIIUSAZGRkAPD1118zefLkAI8mNEgDJIQQQgghhKZ//vmH06dPa39/WFgYJ0+eBODhhx9m5cqV3hqayIGcAySEEEIIIYQmh8NBs2bNWLVqVYFeZ82aNTRr1gyA48ePU7ZsWW8MT2RDZoCEEEIIIYTQsHPnTgCqV6/u3nbfffdx7Ngx5de64oor+PTTTwEoV66c+9A44X3SAAkhhBBCCKFh3rx5AFxzzTUArFq1is8//5w33nhD6/Xuu+8++vXrB5gXTRW+IQ2QEEIIIYQQGubPnw9caIB+++03AFq3bg2Yh7I5HA6SkpLy/ZqfffYZpUqVAqB79+7eHK44TxogIYQQQgghFI0cOZLvv/8egJo1awIXZoQ6deoEwKhRowCUzw9yLYrw66+/Mm7cOK+MV1wgiyAIIYQQQgihqEaNGuzZswcAwzDYv38/l1xyifs+QOPGjdm4cSPJyclER0crvX5CQgIxMTEALFq0iKuuusp7gw9x0gAJIYQQQgihyOFwuG8bhkHNmjXZvXu3+37m5+h+3N6yZQsNGzYE4NChQ1SsWLEgQxbnySFwQgghhBBCFJCr+XH53//+V+DXbNCgAd9++y0AlSpVIi0trcCvKWQGSAghhBBCCGWu2Z0WLVqwYsUK9/3w8HDS09OzzBAVxKBBg3jnnXe88lpCZoCEEEIIIYTQ1qVLF4/7rhXhXGJjYwv8Hm+//Ta1atUCoG3btgV+vVAnDZAQQgghhBCaLm54Lr5/cYOk67///gPgn3/+YcSIEV55zVAlDZAQQgghhBCaLp6Ryash0uVwODh79iwAL7/8Mv/++69XXjcUSQMkhBBCCCGEgpSUFPfti5e3btSokcd91wzQ4sWLcTgcpKamar9v4cKF2blzJwDp6enarxPqIgI9ACGEEEIIIexk+/btHvfPnDnjvp158QOAypUrAzB06FDAbJ6ioqK037tmzZqyEEIByQyQEEIIIYQQCjZv3uy+Xb58eZYsWeLxeGJiYpbvWb58OQDFixf37eBEnqQBEkIIIYQQQkHmBuj48eN069bN4/GtW7f6e0hCgTRAQgghhBBCKNiyZQsAe/bsYcWKFR6PORwO98VLhTXJhVCFEEIIIYRQ0LhxYzZu3EhGRgZhYWH06tWLWbNmUbRoUY/zgeDChUsdDgdFixYlKSkpEEMWmcgMkBBCCCGEEApch7j16dOHs2fPug+JS0xM5OTJkxQtWtT9XIfDQd++fQHvLYktCkZmgIQQQgghhFDwxRdf0K9fvyzbXR+ra9euzc6dO+nVqxczZ850Px4REcHZs2eJjIz011BFNmQGSAghhBBCCAX33nsvhmHw1VdfeWx3OBzcf//97mv1/PDDDzidTu6//37AvHZPVFQULVu2JD4+3u/jFiaZARJCCCGEECIX+/bto1OnTmzfvp2wsKzzB/v376dHjx78+++/Htv/+ecfWrdu7b4/adIkHnvsMff90qVLs27dOqpWreq7wYssZAZICCGEEEKIXHz88cfs3LmT+fPnA5CUlITD4WDp0qUAVK1alRUrVpCRkcFHH33k/r42bdrgcDh4/PHHSUtL49FHH8UwDH766ScATp06xSWXXILD4WDdunV+/7lClTRAQgghhBBC5OLKK68E4M8//wRwr/T26quvup8THR3N1VdfzYMPPohhGBw4cIDLL78cgIkTJxIVFUWRIkVYu3YtPXr0wDAMVq5c6f7+pk2b4nA4mDt3rp9+qtDl9QZo8eLF9OjRg0qVKuFwOJg1a5bH44Zh8PLLL1OpUiUKFy5Mx44d2bRpk8dzUlJSePzxxylbtixFixblxhtv5MCBA94eqhBCCCGEEHlq164dAH/88QcAsbGxAO4ZIZfFixe7b1euXJm1a9fidDp59913ATh37hxXXHEFDoeDZ599lqZNm2IYBrt376ZEiRIAdOvWDYfD4TGTJLzL6w3QmTNnaNKkCRMnTsz28bFjxzJu3DgmTpzIypUrqVChAtdccw2JiYnu5wwaNIiZM2cyffp0li5dSlJSEjfccAMZGRneHq4QQgghhBC5KlKkCECWi546nU5GjhyZ5Y/5mbkOgXM1OnXr1gXMz8QRERGUK1eOs2fPEh8fz+nTp2natCkA/fv3x+FwMGzYMOSUfe/y6SIIDoeDmTNn0rNnT8Cc/alUqRKDBg3i2WefBczZntjYWMaMGcPDDz9MfHw85cqVY8qUKdxxxx0AHDp0iKpVq/Lrr79y7bXX+mq4QgghhBBCZMvhcACeFzZ1adiwoftaQPn5aG0YBmPHjuW5557z2D5ixAheeOEF0tPTueuuu/juu+/cj912221MnTqVqKioAv8soc6v5wDt3r2bI0eO0LVrV/e26OhoOnTowN9//w3A6tWrSUtL83hOpUqVaNSokfs5QgghhBBCWEXLli3dDVF0dLS7GcqJ6xA4wzDYtm0bVapUAeCll14iPDycOnXqMGrUKJxOJ0OHDgVgxowZREdH07x5c1lCu4Ai/PlmR44cAS4cN+kSGxvL3r173c+JioqiVKlSWZ7j+v7spKSkkJKS4r7vdDo5deoUZcqU8ejQhRBCCCGEUBUeHk5GRgYJCQlZHmvXrh2ff/45AKmpqXzwwQeMHDkyX69boUIFNm3ahNPpZPTo0YwZM4Z9+/ZRp04dAF555RXi4uL49NNPefrpp1m9ejUlS5Zk/vz5XH311dkuyy1y59cGyOXihsQwjDyblLyeM2rUKEaMGOGV8QkhhBBCCJGdmJiYLNseeughj/sTJkxgwoQJXnm/F198kRdffDHL9i5durB//3737JHIP782QBUqVADMWZ6KFSu6tx87dsw9K1ShQgVSU1M5ffq0xyzQsWPHaNu2bY6vPWzYMJ5++mn3/fj4eC655BJ2795N8eLFlcZ55swZVq5cSaVKlahTp47MIOWDYRj8999/HDp0iBYtWlC0aNFAD8kWJGvqQi1rM2c6GDQonDNnHMTGGnz2WQYtW6qfuilZUxdqWfOWoM1aejphY8cS9u67ONLTMYoVw/m//+Hs1w/Cwwv00pI1Pf7O2jvvvMOrr77K5MmTufnmmylbtqz7sRMnTnjc37dvn3vhhIJIT0/n1Vdf5b333vPYPmLECF566SXlz7jiPMOHAGPmzJnu+06n06hQoYIxZswY97aUlBQjJibG+OCDDwzDMIy4uDgjMjLS+Oabb9zPOXTokBEWFmbMnTs33+8dHx9vAEZ8fLzSmBMTE425c+caGzduNJxOp9L3hiqn02ls3LjRmDt3rpGYmBjo4diGZE1dqGZtyxbDaNjQMMAw6tRR/37JmrpQzVpBBXXWhg41d0IwjBtvNIz9+73yspI1PYHI2ooVKwzA6N+/v2EY5udc13/Z3fe2VatWGdHR0R7vo/o5V5i8ftBgUlIS69atc1/Ndvfu3axbt459+/bhcDgYNGgQr7/+OjNnzmTjxo3069ePIkWK0KdPH8CcVnzggQd45plnWLBgAWvXruXuu++mcePGdOnSxdvDzTL2v/76iypVqtCwYcPg+auVDxmGwebNmzlw4ADt2rWjWLFigR6SLUjW1IVy1urXh9tvN2+fXz013yRr6kI5awUR1FlbtAjeeMO8/cknMGsWeOGwI8mankBlzbU8tetaQP7WrFkzkpOTSUlJYerUqQEZQ7Dw+iFwq1at4uqrr3bfdx2Wdu+99/L5558zdOhQzp07x6OPPsrp06dp1aoVv//+u8cU3vjx44mIiOD222/n3LlzdO7cmc8//5zwAk4x5yaoC7ePSOHWI1lTF+pZMwz45hvztqsRyg/JmrpQz5quoM5afDzcc4+5Iz7wANx/v1deVrKmJ5BZi4gwPzbv2LGDU6dOeTxm+PE6PVFRUfTo0cNv7xeMfHodoEBKSEggJiaG+Ph495V1cxLUhdtHpHDrkaypk6zBxo3QuDFERcGxY5DN+bdZSNbUSdb0BH3W+vaFqVOhZk1Ytw68cM6FZE2PFbLmes+lS5fSvn179/YjR464z3UH8/+x0+n02QptKp9zRVYhv26eFXYmu5HCrUeypk6yZvr2W/PrdddJ8+MrkjU9QZ+1b781m5+wMPOrND8BY7WsjRs3zuP+xdf9OXToEOHh4QEfp8heSDdAVtuZ7EAKtx7JmjrJmkn18DfJmjrJmp6gz9rBgzBggHn7+eehTZsCv6RkTY+VstazZ08AfvjhB4/tnTp18rj/9ddfu2/v3r3b5+MSakK2AbLSzmQXUrj1SNbUSdYuWL8etm+H6Gi48cbcnytZUydZ0xP0WXM6oV8/OH0amjeHbK7BokqypsdqWZs5cyYJCQk0atQo1+cNGTLEffuRRx7hr7/+wul0+np4Ip9CsgGy2s5kB1K49UjW1EnWPLlmf66/PvejbyRr6iRrekIiaxMmwPz5ULiweehbZGSBXk6ypseqWStevDjx8fHu+4ZhEJlLRn777Tfat2/vPiTO4XDQuHFjRo0axZ49e/wwYnGxkGuArLozWZkUbj2SNXWSNU+GceH8n9wOf5OsqZOs6QmJrG3aBM8+a95+6y2oV69ALydZ02P1rJ0+fdp9e8iQIaSlpbnvX7y+2OLFixkwYIDHYgUbN27k+eefp0aNGu6myOFw0L17d7766iuSkpLIyMjw/Q8SokJqFTir70xWJIVbj2RNnWQtqzVroFkz84/Qx45Bdv8kkjV1kjU9IZG11FRo1cpc7e3662H2bCjAzylZ02OHrJ04cYJy5cpl+5hhGB5jzu6jdlJSEj/++CNff/01v/76a67vVaJECfr06UOfPn1o164dYWFhsgpcAYVMA2SHnclqpHDrkaypk6xl79lnYexYuPVWmDEj6+OSNXWSNT0hk7XnnoMxY6BsWdiwATIta6xKsqbHTlk7evQorVq1Yu/evbk+T+Wj9p49e+jQoQP79u3L1/OlAdITEofA2Wlnsgop3Hoka+oka9kzDHAtMnTbbVkfl6ypk6zpCZmsLV5s/sUB4KOPpPkJALtlLTY2lj179tC1a9dcn/fff//l+zVffPFFd/PjdDoxDIOMjAyWLl3Ko48+SsmSJQsyZHFe0DdAdtuZrEAKtx7JmjrJWs62bIEdO8yLn3br5vmYZE2dZE1PyGQtPt684KlhwP33w/mljnVI1vTYOWu///47AOnp6Tz00ENZHq9bty4Oh4OxY8fmOhv04osvMmXKFABSU1NxOBwkJyczcuRI2rZty3vvvcfp06cxDMNjEQahLugboGXLltlyZwoUKdx67Fy4A0WylrtZs8yvnTt7rv4mWVMnWdMTUll7/HHYtw9q1oS339Z+GcmanmDJWnh4OJMnT87x8WeffZawsDDq16+f5bC5Dz/8kFdffRWAxMREIiMjycjIoHDhwrz00kvs2rXL4/lBegaL3wR9A1S5cmVb70z+JIVbT7AUbn+SrOXN1QBl/kO0ZE2dZE1PSGVtxgyYMgXCwsyvua03nwvJmh67Z+3o0aMAtGjRIstjhmEwbdq0LNu3bdtG9erVcTgcvPfee/z0008MOH/R3SNHjlCsWDEMwyAiIgKA7t27U6tWLY/X3bp1qy9+nJAR9A1Q/fr1bbczBYIUbj12L9yBIFnL28GDsHKlufiU6+KnkjV1kjU9IZW1gwfh4YfN288/D23bar2MZE1PMGTtvffeA+CZZ54BYN26dQDcdv7kzTvvvBPDMFi8eHG23z9w4EBuuukmAJYuXUpsbCwApUqVAszD52bPnu1+vitrBw8e9P4PE0KCvgGy487kb1K49QRD4fY3yVr+/PST+bV1a/M8bMmaOsmanpDKmtMJ990Hp09D8+bw4otaLyNZ0xMsWVu5ciVgNjpLly7lrbfeAi40RC5XXnmle+Ymp5+1ffv2OBwOatas6T7HZ9u2bQDs27cPh8PBDz/8wIEDB2jdurWvfqSQEPQNkMidFG49wVK4/Umyln+ZD3+TrKmTrOkJuaxNnAjz5pkX2po6FSIjlV9CsqYnmLI2e/ZsOnfuDJhNztSpUwFo1apVts+vV68eTqeTDRs25Piau3fvdr/eiRMnOHXqFNWqVQPMQ+QkawUnDVAIk8KtJ5gKt79I1vIvPh7+/NO83aXLGcmaIsmanpCra5s3mxfaAnjzTahXT/klJGt6gi1r4eHhzJ8/n0OHDnls79GjB06nM9vvSUxMpHHjxgBMmDAhx2W0lyxZQrly5ShTpgwA/fv3595775WseYE0QCFKCreeYCvc/iBZUzNnDqSlQd26To4fXypZUyBZ0xNydS01Fe66C5KTzTXmH3lE+SUka3qCOWsVK1b0WPRg9uzZhIeH8+GHH2Z5ruvCpS+99BIDBw7kt99+Y+LEiVmed9lll3ncnzx5MrfeeitxcXHe/wFCjDRAIUgKt55gLty+IllTN3Om+fXyy/dI1hRI1vSEXF3LyICnn4Z166BMGfjkE3O1EQWSNT2hkjXXogfDhw8HYMCAATgcDvfiCJm99NJLAMyaNYuBAwcC5qpyb7zxBgDr168HIDIyku7duwPw22+/UapUKWJiYnz9owQ1aYBCjBRuPaFSuL1JsqZu6VKYMcO8tsPNNxuStXySrOkJubp27Jg543N+1S4++ggqVlR6CcmanpDLGjBy5EiSk5Pdh7o1bdqUsmXLkpiYSP/+/QF44IEH+Pvvv+nVqxcA//33H+XLl2fw4MEUz7Qce1paGr/88gsA77//vp9/kuAkDVAIkcKtJxQLd0FJ1tQlJcE99zgxDAc9e57m9ttrStbyQbKmJ+Tq2tKl0LSpuehBkSLw5Zdw/kNnfknW9IRc1jKJjo5m/fr17Ny5E4CTJ09SokQJ0tLSAPjss89o164dACtWrKB27doANG/enMTERMLCwkhMTGTp0qXu13zk/CGbP//8sz9/lKAjDVCIkMKtJ5QLty7Jmp5HHklj9+4wKlZM5bPPSkrW8kGypiek6lp6OowYAR07wqFDUL8+rFgBffsqvYxkTU9IZS0XNWvWxDAMvvvuO8BsfDL75Zdf3BdSvfPOO1m9ejUAcXFxFCtWjHbt2mEYBtu3b3dfHLVHjx5+/AmCjzRAIUAKtx4p3Ooka3refz+ZqVMjCQsz+PrrSEqWlKzlRbKmJ6Tq2p49ZuPz8svmuT99+phXGL70UqWXkazpCams5dMtt9yC0+nkYdfFd89LT08H4Nlnn+Wbb74B4PTp0x6HwQHUqVOHtLQ0jh8/zrBhw/wz6CDlMAzDCPQgfCEhIYGYmBji4+Pdq22EIinceqRwq5Os6Vm27CwdOkSTmhrOyJEGw4dL1vIiWdMTUnXt66/N1d0SEqB4cZg0Ce6+W/llJGt6QiprmpKSkqhZsybHjx8HoEKFChw5cgQwr/UTGxtLRkYGERER9OvXL8uskXzOLRiZAQpiUrj1SOFWJ1nTc+hQErfeapCaGs511xkMGyZZy4tkTU/I1LX4ePPwtrvuMpufNm3g33+l+fGjkMlaARUrVoxjx45Rp04dAHfz8/DDDxMbG4thGO7D3SR73iczQEFKCrceKdzqJGt6EhOT6NEjkUWLKlKlisHatQ7Klg30qKxNsqYnZOra33+bjc+ePRAWBv/7H7zwApz/EKlCsqYnZLLmRcnJyRQuXDjL9qioKFJTU2ncuLF7OezMQv1zbkHJDFAQksKtRwq3OsmanqSkJJ57bh+LFlUkIsLg22+l+cmLZE1PSNQ110IHV11lNj/Vq8Pixea5P9L8+E1IZM3LDMNg586d7mWwu3fvzs033wxAamoqAHPnzg3Y+IKZNEBBRgq3Hinc6iRrepKSkvj00w1MnlwfgLFjHbRpE+BBWZxkTU9I1LU9e6BDhwsLHdx1l3mR0/NLC6uSrOkJiax5Weasffnll4C5GtzJkyc9nle5cmU6dOjgXihBeIc0QEFECrceKdzqJGt6kpKSmDt3OWPHNiM9PYxevWDQoECPytoka3pCoq599RU0aWIe+la8OEydav4XE6P1cpI1PSGRNS/LLmvz5s0DYNGiRYB58dO//voLgMWLFxMZGcmbb74ZsDEHG2mAgoQUbj1SuNVJ1vQkJSWxdOlfvPdeCw4ejKJmTfj0U5DI5Uyypifo61p8vLmowd13mwsdtG1rLnRw113aLylZ0xP0WfOBnLLWpUsX93Pmzp1LREQEbdu2xTAMxo4dC8CQIUNwOBwsW7YsIGMPJrIIQhCQwq1HCrc6yZoeV9bmz2/Cm29WIDra/KP1FVcEemTWJVnTE/R1bdMmuOGGCwsdvPgiDB+uda6Pi2RNT9BnzQfyytrhw4epVKmS+7mZpaen06lTJ5YsWQJAeHg4GRkZIfE51xdkBsjmpHDrkcKtTrKmJ3PWZs2KBWDsWGl+ciNZ0xMSdW3o0AsLHSxZAi+9JM1PAIRE1rzMlbVdu3aRlpaWbdYqVqxIp06dAHj99dc9HouIiGDx4sUcOHAAgIyMDN8POojJDJCNSeHWI4VbnWRNz8VZa9DAwbZtsGiRuWCVyEqypick6lpyMpQuDefOwfr10LhxgV5OsqYnJLLmZZmzdt1117m3Zcd18VMwV4KLjIzM9nnHjh0jNjY2qD/n+pLMANmUFG49UrjVSdb0ZJc11++ohITAjs2qJGt6QqauLVliNj+VK0OjRgV6KcmanpDJmhdlzpqrscmpqQHz0LZx48YBcOWVV+b4vEKFCnl3oCFGGiAbksKtRwq3Osmanpyy5mqA4uMDODiLkqzpCam65roeyrXXFmj1EMmanpDKmpdcnDXXQgd79+4FzBmehQsXZvm+p556CoDly5ezb98+v403lOgfOCsCQgq3Hinc6iRrenLLmmt1XpkB8iRZ0xNydc3VAJ0/hEiHZE1PyGXNCy7O2uLFiwGoWrUqFStWBCA6Otr93IstX76cVq1aUa1atRwPlxP6ZAbIRqRw65HCrU6ypievrMkhcFlJ1vSEXF3bvx82bzZXfsu0XLAKyZqekMuaF2SXte7duwOwfv16AFauXJnra7Rs2dJ9mNsvv/zi2wGHIGmAbEIKtx4p3Ooka3rykzU5BM6TZE1PSNa1334zv7ZqBaVKKX+7ZE1PSGatgLLL2uDBgwFo0aIFJUuWBMwGB2D//v2AeeFT1xLXLocOHQLghhtu8NPoQ4c0QDYghVuPFG51kjU9+c2azABdIFnTE7J1rQCHv0nW9IRs1gogp6y99dZbACxatAiA33//HYDY2FiqVKkCQFRUFFddtDxoqVKluOOOO4AL5wUJ75AGyOKkcOuRwq1OsqZHJWtyDpBJsqYnZOtaejrMn2/eVmyAJGt6QjZrBZBT1u655x4AKlSoQOHChQG49tprAdi8eTMAa9asyfF1p02bBsDbb7/N2bNnfTb+UCMNkIVJ4dYjhVudZE2PatZkBkiypiuk69ry5eZxo6VLQ7Nm+f42yZqekM6appyyZhgGU6ZMAWDr1q0ADBs2DIAmTZpQunRpAJqdz/WePXuyvLbD4eDzzz8HoFEBl38XF0gDZFFSuPVI4VYnWdOjk7VQPwdIsqYn5Oua6/C3rl0hPDxf3yJZ0xPyWdOQW9YeffRR9+2Y84cAjB49GsC9/PWff/4JmIe7VatWLdv3uPfeewHYvXu3u5ESBSMNkAVJ4dYjhVudZE2PbtZC+RA4yZoeqWtcWAAhn4e/Sdb0SNbU5ZY1p9PJBx98AMA///wDwMsvv+x+3LUYQqdOnQDYtm1bru+1adMmABo0aOCt4Yc0aYAsRgq3Hinc6iRregqStVA9BE6ypkfqGnD8OKxaZd7u2jXPp0vW9EjW1OWVtX79+rlvt27dGoARI0YAsGzZMgAmTJgAmIshlCtXLtf3a9iwIVWrVgVg6tSpXvkZQpk0QBYihVuPFG51kjU9Bc1aKB4CJ1nTI3XtvHnzwDCgSRM4f/HInEjW9EjW1OWVtczn/rzwwgvAhXN/AFq1agXAE088AcDPP/+cr/fdsmULAH379pWLoxaQNEAWIYVbjxRudZI1Pd7IWqgdAidZ0yN1LZN8Hv4mWdMjWVOXn6xlbk5q166N0+l0n/vzyiuvADBx4kT3c1q0aJGv9y5atCiPP/44AP3799f+GQQ4jCBtIRMSEoiJiSE+Pp4Srj+7WpQUbj1SuNVJ1vR4K2txcReu4ZicDNHR3huj1UjW9Ehdy8TphEqV4OhR+OMPuPrqbJ8mWdMjWVOX36ytWrXKo6mJjo4mJSUFMM8Ncjgc7n/vsWPHMmTIEKVxZP5/ZYfPuVYkM0ABJoVbjxRudZI1Pd7MWvHiF24H82FwkjU9Utcusnat2fwULQrt2mX7FMmaHsmaOpWsuZqfpUuXAribn8svvxyHw+E+Fwhg8ODBymP58ccflb9HeJIGKICkcOuRwq1OsqbH21kLD78wA3TypBcGaEGSNT1S17Ixc6b59brrICoqy8OSNT2SNXUqWct8sdJ27dqxY8cO9/37778fwzDcq8G1adNG69//xhtvZP369crfJy6QBihApHDrkcKtTrKmx1dZK1vW/Hr8uFdezlIka3qkruXA1QD16pXlIcmaHsmaOpWsJScn07JlSwCmTZsGQPny5d2PP/HEEx6Hq+V38YPs5HTNIJE/0gAFgBRuPVK41UnW9Pgya66VToOtAZKs6ZG6loPt22HzZoiIgO7dPR6SrOmRrKlTzVq3bt3c1+u58847AejduzcAkyZNAsz/Dy5lypTxxbBFPkgD5GdSuPVI4VYnWdPj66y5GqATJ7z6sgElWdMjdS0Xs2aZX6++Gs5fMBIka7oka+p0srZw4UL37SVLlrBv3z5++eUXAB555BF27tzpfvyZZ57x+phF/kkD5EdSuPVI4VYnWdPjj6wF2yFwkjU9UtfykM3hb5I1PZI1dd7I2lVXXeU+TO3uu+8GoGbNmu7H33rrLfe1goT/SQPkJ1K49UjhVidZ0+OvrAXTIXCSNT1S1/Jw6BAsW2bevukmQLKmS7KmTjdre/bsAaBTp07uw+BcPvroI+DCtXuiz18D4Z577pEmKECkAfIDKdx6pHCrk6zp8WfWXDNAdj8ETrKmR+paPriW+G3dGipVkqxpkqypK0jW3nnnHcA8tK1hw4bMnTvX/VjhwoU5d+6cuxHau3ev+3A4aYICIyLQAwh2Urj1SOFWJ1nT4++sBcMMkGRNj9S1fHKd/9Orl2RNk2RNXUGz9vbbbwNw3XXXAfDBBx8AUKJECRISEihSpAhgXsQ0NjbW43vvueceAPr27VuQH0EokBkgH5LCrUcKtzrJmp5AZM3uDZBkTY/UtXyKi4M//gDAuOkmyZoGyZo6b9a1sDDzo/Ws8418fHy8u8EBGDduHAB/nM+5a1lsmQnyL2mAfEQ+JOiRwq1OsqYnUFmz8yFwkjU9UtcU/PILpKdjNGzI5vR0yZoiyZo6b9S11NRUAIoXL57t482aNXPffuqpp/j444/p3LkzADt27JDD4QJADoHzAfmQoEcKtzrJmp5AZi3zDJBhgF1iLlnTI3VN0fnV3060by9ZUyRZU+etujZjxgzgwtLWJ0+eBOCyyy4D4Mknn/R4/kMPPQRAgwYNKFeuHOVcvxiQw+H8RWaAvEw+JOiRwq1OsqYn0Flz/Z5LSYFM18OzNMmankBnzXbOncOYMweAHY0bS9YUSNbUebOuvfXWW4B5rR+4cP7PM888w/Dhw93Pu/HGG93NEcCBAwcwDIMlS5YA5mIJIDNB/uAwDMMI9CB8ISEhgZiYGOLj493HV/qafEjQI4VbnWRNjxWyZhhQpAgkJ8OuXVCjht+HoESypscKWbMb48cfcfTsybly5cjYuZNiORxOJDxJ1tR5u665/s1dH6lLly7N6dOnSU5OplChQu7nLVq0iE2bNvHoo49m+zpHjhzhzJkz1KpVC4Avv/wyx5mgQHzODSYyA+Ql8iFBjxRudZI1PVbJmsNhn4UQJGt6rJI1OzEMg7jPPwcg/JZbpPnJJ8maOn/UtdOnTwPw2GOPeWy/8sorc2x+qlatSmxsLDVr1pRzgvxAGiAvkA8JeqRwq5Os6bFa1uzQAEnW9Fgta3ZgGAab16+n6PlVsaJuvz3AI7IHyZo6X9S1rVu3AnDDDTe438Plk08+8XjuK6+84nHftRIcwP79+5k+fTqANEF+IA1QAcmHBD1SuNVJ1vRYMWtWXwlOsqbHilmzOlfWzvz2G1EJCVCmDFx5ZaCHZXmSNXW+qmvjx48HcM/s/P777wBUq1YNgDfeeAOASpUq8fLLL3t8765duwDc1wXq3bs3AwcOBKQJ8jVpgApAPiTokcKtTrKmx6pZs/IMkGRNj1WzZmWZs3b5nj3mxh49IEIWqM2NZE2dL+ua6xyf66+/nieeeMK9IMLevXsB3O9VvXp1j+9r1aoVDz74IABHjx51b3/vvfeoVq0ahmFIE+RD0gBpkg8JeqRwq5Os6bFy1qzaAEnW9Fg5a1blkbW2bYn65RfzgZ49Azouq5OsqfN1XXvnnXeYOnUqABMmTGDevHkej//vf/8D4O+///bYXrt2bY/769atIzk5GYB9+/YRFhbG2bNnpQnyEWmANMiHBD1SuNVJ1vRYPWtWPAROsqbH6lmzoixZ++8/2LfPXB6xa9dAD8+yJGvq/FXX7rrrLpxOJ3fffXeWx07kUOi/+uor9+0qVapQqVIlChUqRMmSJd3XDypatCg7duyQJsgHpAFSJB8S9EjhVidZ02OHrFltBkiypscOWbOabLN2/uKnXHcdnL8OivAkWVPn77rmcDiYMmUKp0+fprjiKobbtm2jfPnyAMTFxbF//35ee+01AOrUqcPs2bOzNEGuBROEHmmAFMiHBD1SuNVJ1vTYJWtWaoAka3rskjUryTFrrgaoV6/ADc7CJGvqAlnXSpYsSUJCAitXrszX84cPH07btm09tq1Zs4bnn3/efThdjx49GD58uEcT9PDDD3t34CFGGqB8kg8JeqRwq5Os6bFT1ipUML8ePBjYcUjW9Ngpa1aRY9YOH4ZNm8wLZF1/fWAHaUGSNXVWqWvNmzfHMIwsS19frFKlSvz777/u++3bt+fYsWM0btyYLl26uBdTeP3117niiivcTVCpUqV8Ov5gJ0ut5INVdia7kcKtTrKmx25Zq1nT/HrgAKSkQHS0/8cgWdNjt6xZQa5ZW7zY/NqkCZQuHZgBWpRkTZ0V61pSUhIAZcqU4eTJkx6PTZs2jd69e3tsmzVrFmVdJ4oCl1xyCcnJyRQqVIi1a9ficDhITk5mz549xMTE+P4HCFIyA5QHK+5MdiCFW51kTY8ds1a+vHm+t2HA+T/u+ZVkTY8dsxZoeWZt0SLza4cO/h+chUnW1Fmxrp05c4axY8cCcOzYMRYuXOjx+MXNz6RJk9zNz6hRo9zbo6OjMQyDxo0bA+bS2wcOHPDhyIOfNEC5sOLOZAdSuNVJ1vTYNWsOB5y/Rh67d/v3vSVreuyatUDKM2u7dsGvv5q3r7rK/wO0KMmaOqvWtfr16wPw5ZdfEhYWRseOHXN9/g8//OC+PWzYMAD30tgA69evZ+jQoQBceumlXh5taJEGKAdW3ZmsTgq3OsmaHjtn7auvYMsW87Y/j2CQrOmxc9YCJdesxcXBkCHQoIE5BVqqFOTxwTBUSNbUWbmuuWZpTp8+zbRp09zbGzZsmO3z58+f7779zTffsGrVKgoXLsxtt93m3j5mzBhmzZrlmwGHEIdhGEagB+ELCQkJxMTEEB8fT4kSJZS+18o7k5VJ4VYnWdNj56z9/jt07w7p6TBoEIwbZ84I+ZpkTY+dsxYoOWYtPR0mT4aXXrpwEaxrroHx40H+mi1Z02D1unbq1CnKlCmT5/PCw8PJyMjw2HbmzBmKFi0KwMaNG7PM+BTkc66QGaAsrL4zWZUUbnWSNT12ztqqVXDzzebnwN694a23pPmxMjtnLVCyzZphwJw5cNll8NhjZvNTvz788gv89ps0P0jWdNihrpUuXZodO3bk+byLmx/A3fwAfP31114dl5AGyIMddiYrksKtTrKmx85Z++8/c5XfM2egSxf4/HMI80MFlqzpsXPWAiXbrG3caF7g9PrrzeM+y5SBiRNh/Xpzm/y7StY02KmuHT58OMu26zMt+Z650clJz549mTZtGm3atPHq2EKZHAJ3np12JiuRwq1OsqbHzlk7cgTatjUXPLjiCli4EBQvFK5FsqbHzlkLlCxZO3sWXnwRPvoInE6IjIQnnoAXXoCSJQM9XMuQrKmzW11z/T+98sorWbJkSZ7Pr1y5MgdzuUic62O7HAJXMDIDhP12JquQwq1OsqbHzllLSIBu3czmp1Ytc9EraX6sy85ZCxSPrDVrRrH33oPateHDD83m55ZbzNmfN9+U5icTyZo6O9e1iIj8XXrz4uancuXK7ttVqlTh3LlzXh1XqAr5BsjOO1MgSeFWJ1nTY+espaRAr16wbp157Z/ffoPYWN+/r2RNj52zFijurO3fT4ejRynWogU89xwkJkKzZuZ1fr77zuz+hZtkTZ1d65qrYfnzzz+zfbxDLtfA+vHHHz0aogMHDlCkSBGeeeYZ7w4yBIV0A2TXnSnQpHCrk6zpsXPWnE645x744w8oVsyc+fHHZ0DJmh47Zy1QXFlLnDePLi+/TKF774U9e6BSJfjiC1ixQq7vkw3Jmjo717VChQqxN4crXkdFRbHIdTHg8zKv9jZmzBgAihUrhmEYfPbZZwCMGzeOGH9eQyEIhew5QHbemQJJCrc6yZoeO2fNMMwlrt991zz14ZdfzNV+ff++kjUdds5aoBiGwX9z51Ji1CgquM5rKFIEhg6FwYMhHyd2hyLJmrpgqWs///wzN954o9b3pqenEx4eDpj/Hr179+abb74BkHOANIXkDFCw7Ez+JoVbnWRNj92zNmaM2fyA+YdwaX6sy+5ZCwTjxAlO3XsvtW+80Wx+HA64/37Yvt28xo80P9mSrKkLprrWo0cPXnvttVyfU7FiRQDGjh3rsX38+PHu2w6Hg+nTpxMfH+/9QYaQkGuAgmln8icp3Ooka3rsnrXPP4dhw8zb48aZ1/vxNcmaHrtnze+SkzHeeANnzZqUmTKFsPR0uPZa8yS3Tz6BTCdrC0+SNXXBWNeef/75HM/56dWrl3vJ7KFDhwLmoW4AQ4YM4c033/TPIENESDVAwbgz+YMUbnWSNT12z9qvv8KDD5q3hwyBp57y/XtK1vTYPWt+5XTCtGkY9evjGDqU8MREMho1Mlf1mDvXvMCpyJFkTV0w17WFCxdmu33mzJkAtG/fHoBWrVpx9dVXux+XJsi7QqYBCuadyZekcKuTrOmxe9aWL4fbboOMDOjbF0aP9v17Stb02D1rfrVoEbRqBX364Ni7l+QyZUh+/33C162Drl0DPTrLk6ypC4W6lpqa6nE/84IGS5cuBWDy5Mk0bdoUMM8fAmmCvCkkGqBQ2Jl8QQq3OsmaHrtnbds26N4dzp41L3r/yScQ5uPqKlnTY/es+c3WrXDTTdCxI6xaRUaRIvx3zz2kb95MoQED4PwJ2SJnkjV1oVLXIiMj3Ye7AVnO5/n+++9p0qQJALNnz+aGG27g6NGjgDRB3pK/qzLZWKjsTN4mhVudZE2P3bN26JB5GsTJk9CiBcyYYa785kuSNT12z5pfHDsGI0aYFzHNyMAID+f0Lbfwb69etLjhBslaPknW1IVaXatQoQJLly51H/KW2S233ALArFmz6N69O2AufnD48GEqVqzIkCFDSE5O9ut4g03QzwBt3bo1ZHYmb5HCrS7UCre32D1riYnQrRvs3Qt16pjLXfv6f71kTY/ds+ZzZ8/C669D7dowaZLZ/PTowY4ffmDl/fdL86NAsqYuVOtau3btePrpp3N8/PrrrwfMVeHKly/P0KFD3TNB//vf//wyxmAV9A3QwYMHQ2pnKigp3OpCtXAXlN2zlpEBffrA+vUQG2ueD16unG/fU7Kmx+5Z86mMDHOt9rp1Yfhws6tv3hzjzz/ZPGoUu6KjJWsKJGvqQr2uvfXWW1muD+Ra/CAqKoq33nqLZ5991v3c8uXLu5sgoS/oG6DWrVuH3M6kSwq3ulAv3LqCIWvDhsHs2VCoEPz0E9So4dv3k6zpCYas+cz8+dCsGfTrBwcPQrVq8NVXGMuWsblcOcmaIsmaOqlrprffftvj/g8//ECLFi0AGDx4MABHjx6l3Pm/shUpUoTvv//er2MMNkHfAIXqzqRKCrc6Kdx6giFrn30Gb7xx4XbLlr59P8manmDImk9s2GAeu3nNNfDvvxATA2PHwtatGL17s1kOHVcmWVMndc20d+9eatas6bGtVKlS9OvXz32/ZcuWlC9fHoARI0bw008/UVmuu1UgQd8AibxJ4VYnhVtPMGRtyRJ4+GHz9osvwp13+vb9JGt6giFrXnfokHmhqssvN6/fExEBTz4JO3fCkCEY0dGSNQ2SNXVS10wHDhygevXqAHz66aecPHnS/dhjjz3mvr1ixQoGDBhAnTp1ePnll/n++++pX7++v4cbVKQBCnFSuNVJ4dYTDFnbtQt69YK0NPOaPy+95Nv3k6zpCYaseVVSkhnWOnXMNdqdTrj1VtiyBd5+G8qUkaxpkqypk6yZDh06RNWqVQHzmj/33XcfpUuX9ljc4OeffyYlJQWADz/8kB07dgAwY8YMyVoBSQMUwqRwq5PCrScYspaQAD16mMtdN2sGn3/u22v9SNb0BEPWvCY9HSZPNld2e+UVc6W3Nm3gr7/M9dpr1wYka7oka+okaxe4DmGbNGkSDz30EABTpkzh1VdfdT+nR48ehIWFcemll7q3ff/994T5+kJzIcBhGIYR6EH4QkJCAjExMcTHx1OiRIlAD8dypHCrk8KtJxiylpFhNj9z5kClSrBiBfjy8GvJmp5gyJpXGAb8+isMHQqbN5vbatWCMWPg5psh07+LZE2PZE2dZM2TKzMpKSlERUUxbdo0+vTpA8CuXbvo2LEj+/bty/Z7V6xYQb169eRzbgFICxmCpHCrk8KtJ1iyNmSI2fwULgw//ijNjxUFS9YKbM0a6NIFbrjBbH5Kl4Z33jFv33KLND9eIFlTJ1nLasKECQB069aNGTNmuJufHTt2UKNGDfbu3evx/PT0dP755x/AXBQhp+ZI5I/MAIUYKdzqpHDrCZasffopPPCAefvbb81zf3xFsqYnWLJWIGlp8NBD5jV9AKKjzQUOhg2DkiWzPF2ypkeypk6ylrOL87Nt2zbq1q0LQIcOHVi8eLH7sTfeeIPBgwfz/fffc+utt7q3y+dcPTIDFEKkcKuTwq0nmLI2aZL59dprpfmxomDKWoFMnXqh+bnrLti2zTzkTZofr5GsqZOs5e6HH35w3968ebO7+enSpYu7+XnuuecAGDJkCEuWLGH27Nlce+21/h9skJEZoBAhhVudFG49wZa16dOhd2/z9pQpcPfd3n8PyZqeYMtagTz1lLmi2+OPw7vv5vg0yZoeyZo6yVr+uLJ08OBBKlWqRLdu3Zg7dy4AqampREZGZslbxYoVWblyJVWqVJHPuZpkBigESOFWJ4VbTzBm7c474fnnzdsPPgjLlnn39SVreoIxawWydav5tVGjHJ8iWdMjWVMnWcu/v//+G4AqVapw4403Zml+0tPTqVOnjsf37Nmzh+LFi/t9rMFEZoCCnBRudVK49QRz1pxOc/GsH3+E2FhYuRLOX76hQCRreoI5a9pq1oTdu2HhQujQIcvDkjU9kjV1kjV1F+fKtTJcRkYGERER2X5PfHy8fM4tAJkBCmJSuNVJ4dYT7FkLCzNPsbjsMjh6FG66Cc6cKdhrStb0BHvWtCQnw5495u169bI8LFnTI1lTJ1nTs2bNGvft5ORkoqKicDqdHs3Pb7/9RrVq1dz3Y2Ji/DrGYCMNUJCSwq1OCreeUMlasWLw009QrhysXQu33gpJSXqvJVnTEypZU7Zjh3ntn5gYc4oyE8maHsmaOsmanqSkJI4dO+a+v3z5cjIyMggPD3dvO3DgAF27dmXnzp2BGGJQkgYoCEnhVieFW0+oZa1aNfjhByhUCObOhY4dzRkhFZI1PaGWNSXbtplf69WT6/x4gWRNnWRNT+asHT58GDCXv84885OWlkbl8xefe+ihhwIyzmAkDVCQkcKtTgq3nlDNWvv28OefULYsrF594RpB+SFZ0xOqWcu3RYvMr5kOf5Os6ZGsqZOs6bk4axUqVKB69erux2NiYjAMg4iICJxOJ4ULF+azzz4L3ICDjDRAQUQKtzop3HpCPWutW8Mjj5i3CxXK3/dI1vSEetbytGwZvPeeefuOOwDJmi7JmjrJmp7ssjZp0iT2uM7lA+Li4gA4ceIE4eHhJCcne2Ty9ttvB+Dyyy/348iDhzRAQUIKtzop3Hoka6Y//jC/du2a93Mla3oka3k4exbuvddcpvDuu6F7d8maJsmaOsmanuyy1q9fPx577DEA2rVrB8C4ceP4+++/KVeunPt7XQs3X3nllXz77bcA7N69288/QXCQZbCDgBRudVK49UjWTPHxUKYMZGTArl1Qo0bOz5Ws6ZGs5YPr4qeVKsHGjRglS0rWNEjW1Eld05NT1lxfT506RfHixYmMjMzxNe655x6+/PJL9/1///2Xyy67zLcDD0IyA2RzUrjVSeHWI1m7YOFCs/mpU0eaH1+QrOXD4sXwzjvm7Y8/luZHk2RNndQ1PbllbfTo0QCMHTuWiIgIKlSokO1rjBgxwt38FC5cGIBevXr5eOTBSWaAbEwKtzop3Hoka54eewwmTYJHH71w+sXFJGt6JGv5kJRkXpRq92548EGMyZMlaxoka+qkrunJK2uGYRAWlvucxBNPPMG7776bZfuRI0eIvWj5e5E3mQGyKSnc6qRw65GsZfX77+bXnM7/kazpkazl05AhZvNzySUYb74pWdMgWVMndU1PfrLmcDiokcvhBI0aNcq2+YELM0FCjTRANiSFW50Ubj2Stax27zavOxkeDldfnfVxyZoeyVo+zZsHH3wAgPHpp2w+cECypkiypk7qmh6VrP3yyy85PrZx48Ys2zZt2gTAyZMn+e677wo+2BAjDZDNSOFWJ4Vbj2Qte/PmmV/btIGLj66VrOmRrOVTfDzcfz8AxqOPsrlCBcmaIsmaOqlrelSzNn78eI/7gwcPzvG5qampVKlSBYCaNWty2223EaRntPiMNEA2IoVbnRRuPZK1nOV0+JtkTY9kTcFTT8GBAxi1arGlXz/JmiLJmjqpa3p0spb5IqclS5bkzTffzPKc7ueXuo+MjKR3797u7TNmzJA8K5JFEGxCCrc6Kdx6JGs5y8iAsmUhLg7++ce8ICpI1nRJ1hTMng09emA4HOz+4gv+K19esqZAsqZO6poenaw1atTIfUhbTgoVKsS5c+dITEz0+FxbsWJFDh06VOBxhxqZAbIBKdzqpHDrkazlbtUqs/kpWRKaNze3Sdb0SNYUnDwJDz1k3rznHml+FEnW1Eld06ObtbyaH4Dk5GS++uqrLH/U37p1q9ZYQ500QBYnhVudFG49krW8uQ5/69wZIiIka7oka4oefxyOHCGlRg3W3nyzZE2BZE2d1DU9BcnaV199BUBMTEyWx+Li4li/fj0Ad999t3v7B+cXQxF6pAGyMCnc6qRw65Gs5U/m838ka3oka4q+/x6mTcMIC2PtoEG06dRJspZPkjV1Utf0FDRrffr0ASA+Pt5j+7lz5yhUqBCXXXaZx/aNGzd6nAMk1EkDZFFSuNVJ4dYjWcufhARYtsy83aWLZE2HZE3RsWMYAwYAsOv222l0//2StXySrKmT36F6vJW1du3aZdnWp08fChUqlGX7pZdeqvUe4gJpgCxICrc6Kdx6JGv5t3AhpKdD7doG585J1lRJ1hQZBsaAAThOnCCxRg1i33tPspZPkjV18jtUjzez9v3332fZNnPmTPftBg0auJe+nj17tvb7CJM0QBYjhVudFG49kjU1rsPfmjc/LVlTJFlTZ3z1FY6ZM3GGhxM+dSrFSpcO9JBsQbKmTn6H6vF21mJjY3N87IUXXmDz5s3uC6L26NGjQO8lpAGyFCnc6qRw65GsqZs3z7xiQL16eyRrCiRr6oyDB3E+9hgAacOGUaRt2wCPyB4ka+rkd6geX2Xthx9+yHb7q6++CpiLJFx55ZUAfPrpp155z1Al1wGyCCnc6qRw65Gsqdu926BmTQdhYU727z9LpUqStfyQrKkznE6SOnak+JIlZDRtSvjy5RAZGehhWZ5kTZ38DtXj66xl93pnzpyhSJEiAKSkpHicF2SXz7lWIzNAFiCFW50Ubj2SNXWGYTB1qnmRuZYtDWl+8kmyps4wDA689RbFlyzBiI4mfMoUaX7yQbKmTn6H6vFH1qpXr55l24MPPui+HR0dTd++fb3+vqFGGqAAk8KtTgq3HsmaOlfWjhwxlyYtVy48wCOyB8maOlfWik6ZAoDj2WdBVnrKk2RNnfwO1eOvrP37779Ztk2bNs3j/ueff84DDzzgk/cPFdIABZAUbnVSuPVI1tRlzlq3bjUAkAtu502yps6VtROrVlF6wwZwOCDTX3xF9iRr6uR3qB5/Zu3iw9nKlCkDwG+//ebeFhYWxrhx43w2hlAgDVCASOFWJ4Vbj2RN3cVZu+KKwgDs2gUpKQEenIVJ1tRlzlrrHTvMjZ06QdWqgR2YxUnW1MnvUD2ByNqcOXPct0+ePAnAdddd5/P3DSXSAAWAFG51Urj1SNbUZZe1ihWheHHIyICdOwM9QmuSrKnzyFrbtkRPn24+cM89gR2YxUnW1MnvUD2+yNrzzz+Pw+Hg7Nmz/PPPP9k+J6dmJzExscDvL0zSAPmZFG51Urj1SNbU5ZQ1hwPq1zefI4fBZSVZU5claxs2wI4dULQo3HxzoIdnWZI1dfI7VI8vspaSksKoUaMAKFq0KG1zWeL+zjvvdN8uWbIkAHfffXeBxyBM0gD5kRRudVK49UjW1OWVNWmAsidZU5dt1r780nzwlltA6ly2JGvq5HeoHl9l7ZprrgHg5vN/5GjVqlWOz/3kk0/ct+Pi4gD46aefvDIOIQ2Q30jhVieFW49kTV1+siYNUFaSNXXZZi05Gb75xnzCvfcGdoAWJVlTJ79D9fgqawkJCSxZsgS4cMHTa665BofDQUZGBufOnfN4vuu6Py5XXHEFALNmzfLKeEKdNEB+IIVbnRRuPZI1dfnNWoMG5tctW/w4OAuTrKnLMWs//wxxcebCBx07BnKIliRZUye/Q/X4MmvNmzcH4JJLLgFg3LhxjBw5EoCIiIgsDQ/An3/+6b69Zs0aAHr16uW1MYUyaYB8TAq3OinceiRr6lSylnkGyDD8NECLkqypyzVrX3xhfu3bF8Lk13JmkjV18jtUjy+zduzYMf777z8A9u3bB8Avv/wCQMfzf/S44447snxfxxz+IHLq1CmvjS1USaX1ISnc6qRw65GsqVPNWq1aEB4OSUlw6JCfBmlBkjV1uWbt6FGYO9e8Lau/eZCsqZPfoXp8nbXatWt73F++fDkLFiwAYOHChQBceuml2b7v/fff77596623Atk3S0KNNEA+IoVbnRRuPZI1dTpZi4oymyAI3fOAJGvq8sza11+b66u3agX16gVmkBYkWVMnv0P1+Dpru3fv9li+unbt2u6mxnXY2/Tp03nxxRcBcDgctGnTxv38SZMmuW9/9913AMyfP9+rYwxF0gD5gBRudVK49UjW1BUka6G8EIJkTV2+suZa/U1mf9wka+rkd6gef2StZs2aHvf//PNPNm3aBMDZs2cB+PJ8HWjUqBEA7du3dz8/Ojra4/t79uwJwLfffuv1sYYSaYC8TAq3OinceiRr6gqaNddCCKHWAEnW1OUra+vXw7p1EBkJma75Ecoka+rkd6gef2Rt/fr1HvdHjBjB5Zdf7rFt27Zt/PrrrwBs3LgRgDfeeMPjOZkvmOqaTXrooYe8PdyQIg2QF0nhVieFW49kTZ03suaaAQqlleAka+rynTXX7E+PHlC6tP8GaFGSNXXyO1SPv7LWpEkTj/v9+vXj5MmT7vudO3f2uOApeK785tK6dWv3bde5Q6JgpAHyEinc6qRw65GsqfNW1ooXN7/u3evFwVmYZE1dvrJ27hy88AK8+655Xw5/k6xpkN+hevyVNdc1f1yWLVtGtWrVPLZNmzaNtWvXuu+HhYXluPLbwIEDvT7GUCYNkBdI4VYnhVuPZE2dt7KWkmJ+ZgXo0sWLA7QoyZq6fGVt7lxo1Aheew3S0uDWW6F7d/8P1kIka+rkd6gef2btqquuct8uVapUlv9HH3/8cZYZohMnTuT4es8//7zH/ZkzZ3phlKFLGqACksKtTgq3HsmaOm9mbfRo89yf2Fh4/XUvDtKCJGvq8szaoUNwxx3QrRvs2gVVqsAPP8C330JERGAGbQGSNXXyO1SPP7PmdDo97m/bts29wIHLddddx+HDh93377vvPkqVKpXt6/30009UqlTJY1unTp28NNrQJA1QAUjhVieFW49kTZ03s7Z164Wm5513IIffUUFBsqYu16xlZMDEieYKGt9+a17o9KmnYPNm6NULQvjfV7KmTn6H6vF31sLCwrj77rvd98uXL+/x+LZt26hatarHtk8++STb17rlllu46aabABg7dqx7+2effQbA+PHjee2115g9e7ZXxh4qHIYRnNc0T0hIICYmhvj4eEqUKOH115fCrU4Ktx7JmjpvZs3phI4dYckSuP56mD07eD+zStbU5Zq1NWvg4Ydh1SrzfsuW8MEH0LRpYAZrIZI1dfI7VE8gs9a3b1+mTp3qsa1JkyZ888031HetqoM5w9OjRw+P5yUmJnp8fj18+DAVKlTIcfylSpXi1KlTXhx9cJMZIA1SuNVJ4dYjWVPn7ax9+qnZ/BQpAu+9J82PuCDHrCUkwJNPQosWZvMTEwOTJsHff0vzg2RNh/wO1RPorE2ZMsVjJghgxYoVHs0PkKX5Wbx4sbv5adKkCU6nkwoVKgDQNJsa0r17d4/V5UTepAFSFOidyY6kcOuRrKnzdtZOnoQhQ8zbr74K1asXfIxWJFlTl2PW5syBhg3NFd6cTvP6Plu3wiOPQHh4YAdtAZI1dfI7VI9VsjZlyhSPBqdbt24ej2c+DwjM1d46dOgAwAcffMC6detwOBykpKTgcDg8Vo0DKFeuHL/88ovsS4rkEDgFVtmZ7EQKtx7JmjpfZG34cPPcn8sug9Wrg/Ncdcmaumyzdu4cPPYYnD8un1q1zFmfrl0DO1gLkaypk9+heqyYtewOh+vRowc//fQTACkpKRQqVMj92M6dO6lZsyYA69aty3bmxyUyMpIFCxZgGIbH6nMiZzIDlE9W3JmsTgq3HsmaOl9l7ZtvzK/PPSfNjzDlmLVnnzWbH4cDBg2C9eul+clEsqZOfofqsWrWpkyZQu/evT22zZo1y327SJEiAJQpU4b09HR38/PKK69kaX4KFy7svv2///2P8PBwrrrqKvfMkcibNED5YNWdycqkcOuRrKnzZdYqVza/pqR47SUtQ7KmLsesrVljniAGMHMmjB9vnjQmAMmaDvkdqsfqWfv666/pkulCcvPnz3ff7nr+Dybffvst4eHhZGRkUKJECV566SX3cwYMGADAuXPn3NteffVVkpOTAeQ8IAXSAOXB6juTFUnh1iNZU+frrLVoYX5dudKrLxtwkjV1OWYtIwMGDLhwvs/55WqFSbKmTn6H6rFL1ubNm8cNN9wAwLXXXsv69esB+OKLLwDzHKH//vuPiIgIEhMTAahVqxZgnhMEMHLkSI/X7Ny5M4DHIXQid9IA5cIuO5OVSOHWI1lT54+sBWMDJFlTl2vWPvrIDEjx4jBuXOAGaUGSNXXyO1SP3bL2888/u5uWJk2asH//fve1glJTU6lbt677uUOHDmXnzp3u+7fddhsvvPCCx+stWLAAgPj4eLZs2eLr4QcFWQQhB3bbmaxACrceyZo6f2Vt1y7zXPaoKHNl4+hon7yN30jW1OWatWPHoF49iIszr5D7xBMBG6fVSNbUye9QPXbOWuvWrVm+fDkAp06d4tlnn+Wjjz5Sfp0GDRrQsmVL9yxSkH609yqZAcqGnXemQJHCrUeyps6fWatRA8qUgdRU85x2O5Osqcsza0OGmM1P06bw6KMBGaMVSdbUye9QPXbP2rJly2jYsCEApUuX5o033sjynMjIyFxfY/z48WzZssXd/CxZssT7Aw1C0gBdxO47UyBI4dYjWVPn76w5HNC8uXnbzofBSdbU5Zm1RYvgyy/NkLz/fnAuE6hBsqZOfofqCZasbdq0iUqVKgFQsmTJLI+npaVl+33NmjUD4KmnngKgdu3aAFxyySU+GGXwkQYok2DZmfxJCrceyZq6QGXN7ucBSdbU5Zm11NQLMz79+0OrVv4fpAVJ1tTJ71A9wZa1gwcPeixtnZdXX32V1atXe2zbsWMHYB5KJ/ImDdB5wbYz+YMUbj2SNXWBzFrLluZXOzZAkjV1+cra+PGweTOUKwejRvl/kBYkWVMnv0P1BGvWzp49m+dzOnbsCJjX/snOzp07ufzyy704quAlDRDBuzP5khRuPZI1dYHOmmsGaMsWSEry61sXiGRNXb6ytncvvPKKefuNN6BUKf8O0oIka+oCXdfsKtizlp6enuNjAwYMYOHChdk+9uSTT2IYhvviqSJvIb8KXLDvTL4ghVuPZE2dVbJWtSocOGCe9nHVVQEZghLJmrp8Z61nT/jxR7jySjMQIf5vK1lTZ5W6ZjehkrWLf66wsDCcTmeOz9+8eTPVqlXjkksuoXXr1syePdvXQwwKIT0DFCo7kzdJ4dYjWVNnpazZ6TwgyZq6fGft55/N5iciwlz4IMT/bSVr6qxU1+wklLOWW/MDsGLFCooWLcrJkyc5c+aMn0ZlfyHbAIXyzqRLCrceyZo6q2XN1QCtWBHQYeRJsqYu31k7exYef9y8/fTTcOml/hukBUnW1FmtrtlFqGWtlOJhtf369QNg0qRJ/Pnnnz4YUXAKyQYo1HYmb5DCrUeyps6KWbPDDJBkTZ1S1kaONM//qVoVXnzRf4O0IMmaOivWNTsIxax98skneT7n4hXjTp06xSOPPOKrIQWlkDsHKBR3poKSwq1HsqbOqlmLi7twrvvx41C2bECHk4VkTZ1S1rZsgSZNIC0NZs40zwMKUZI1dVata1YXqlkzDIOwsJznJypUqMCRI0fc9/M6111kL6RmgEJ1ZyoIKdx6JGvqrJy1kiWhTh3z9qpVAR1KFpI1dUpZMwzzmj9paXDDDXDTTf4bqMVI1tRZua5ZWShnLa+f1dX8LFiwAICnn37a52MKRiHTAIXyzqRLCrceyZo6O2TNiofBSdbUKWftq69g4UIoXBjefTdkFz6QrKmzQ12zIskajBw5Ms/ndO7cGYB69er5ejhBKSQaINmZ1Enh1iNZU2eXrFntgqiSNXXKWYuLg2eeMW+/8ALUqOHzMVqRZE2dXeqa1UjWTKVLl852e4UKFbJse/jhh309nKAUEegB+FpSUhIbNmwI+Z1JhRRuPVK41dkpa82amV///Tew4wDJmg6trL35Jhw7BvXrw+DBvh+kBUnW1NmprlmJZM3MTvPmzVmzZk22j2c+90cUTNDPAC1btiykdyZVUrj1SOFWZ7esuX7vHDsW2HFI1tQpZy01FSZMgHfeMe+PHAlRUb4fqMVI1tTZra5ZhWQNjh07RlhYmLv5uTSHpfa7d+/ucf/OO+/E4XAQpGua+UzQN0CVK1cO2Z1JlRRuPVK41dkpa2lpMGwY3H67ed81ExQIkjV1SllzOmHaNGjQAJ54ApKSoF27kFz1TbKmzk51zUoka6bY2FgAevTogWEYzJ8/H/BcFOH5559n9uzZJCYmMmzYMADmzJmT5Xkib0HfANWvX19CkQ9SuPVI4VZnp6zt3g1XXQWjR5uLgfXvD7//HpixSNbUKWVt3jxo3hz69IFdu6BCBfjwQ/jzTwgP99+gLUCyps5Odc1KJGsX3HPPPQD07dsXgCJFigB4zOxMnDgRwzCYMWMGo0aNAqBJkyY4nU4/j9b+Qu46QCIrKdx6pHCrs1PWvv0WHnoIEhIgJgY++ghuuy0wY5Gsqct31lavhmefhfNLylKihHn/ySehaFH/DdgiJGvq7FTXrESy5ikxMdH9eXXBggXuVd4uduutt/Ldd9+578vnXD1BPwMkcieFW48UbnV2ydqZM2bjc8cdZvPTtq258IE0P/aRr6zt2AF33mnO+ixYYJ7j89RTsHMnPP+8ND+StXyxS12zGslaVsWLF3ffdjU/zz//fJbnuZqff62wIo+NSQMUwqRw65HCrc4uWVu/3vw8/PHH5uVehg+HRYugWrXAjEeypi7PrB09CgMHmuf5fPON+T+6b1/Ytg3GjYOyZQMz8ACTrKmzS12zGslazoYPH+6+vWvXLl577bVsn5eRkUH16tX9NKrgJIfAhSgp3HqkcKuzQ9YMAyZNMi/5kpICFSvC1KnQqVPgxiRZU5dr1hIT4a23zKWtz5wxt3XrBqNGQZMmgRmwRUjW1NmhrlmRZC13TqeT8PPnHLo+noeHh2c5xycjI4OkpCT5nFsAMgMUgqRw65HCrc4OWTt1Cm6+2ZwUSEmB7t3NQ96k+bGXHLOWmgoTJ0KtWjBihNn8tGgBf/wBv/4qzY9kTZkd6poVSdbyFhYWRliY+dH86NGjFC1aNNsFDt5xLdEvtEkDFGKkcOuRwq3ODllbssT8/DtrFkRGwvjx8PPPUK5c4MYkWVOXbdacTpg+3TzU7fHH4fhxqFMHZsyA5cvh6qsDPeyAk6yps0NdsyLJWv7NnTsXgAoVKnD27Nlsn/P000/7c0hBSRqgECKFW48UbnVWz1pGhjkZ0LEjHDhgfi5etgwGDTJPCQkUyZq6bLM2f745y9O7t7mkdWwsvP8+bNoEt94a2P/JFiFZU2f1umZVkjU111xzjft2r169SExMzPZ5OW0X+SMNUIiQwq1HCrc6q2dt/37z8LaXXzYnCe6911wJ+YorAjsuyZq6LFnbvh26doVrroE1a6B4cRg50lzZbcAAc5pPSNY0WL2uWZVkTZ1hGFSpUgWAIUOGUKxYMR577LEszxs8eDAAycnJ7Nmzx59DDAqyCEIIkMKtRwq3Oqtn7ccf4f77zfN+ihWDDz6Au+4K9KgkazoyZ619xYoUHTXKPOQNzEbnscfM5awDeTyjBUnW1Fm9rlmVZE2dK2srV67kvvvu45JLLmH06NH06dMnX98r8k8aoCAnhVuPFG51Vs5acjIMGWKeCw/QrJn5Wbl27cCOCyRrOlxZO7pxI+3//JOoTz6B9HTz0La77oJXXoEaNQI9TMuRrKmzcl2zMsmauouzlvm6QHn57LPP6Nevn+8GF4S8fgjcqFGjaNGiBcWLF6d8+fL07NmTbdu2eTzHMAxefvllKlWqROHChenYsSObNm3yeE5KSgqPP/44ZcuWpWjRotx4440cOHDA28MNalK49UjhVmflrG3ZAq1aXWh+nnkG/v5bmh+7MgyDLevWEfH221zdvz9RH35oNj/XXWce9jZlijQ/2ZCsqbNyXbMyyZq67LLWrl079+MnTpygR48e2X7v4cOHpfnR4PUGaNGiRTz22GMsW7aMefPmkZ6eTteuXTnjuu4CMHbsWMaNG8fEiRNZuXIlFSpU4JprrvE4oWvQoEHMnDmT6dOns3TpUpKSkrjhhhvIyMjw9pCDkhRuPVK41Vk1a4YBn3xiXth0/XrzSKhffzUvAxMVFejRSdZ0GE4n+999l+rdu1Pv449xJCSYJ28tWABz5sDllwd6iJYkWVNn1bpmdZI1dTllzbUaHECZMmUYMWJEtt8fGRnJ1VdfzRtvvOGX8QYNw8eOHTtmAMaiRYsMwzAMp9NpVKhQwRg9erT7OcnJyUZMTIzxwQcfGIZhGHFxcUZkZKQxffp093MOHjxohIWFGXPnzs3X+8bHxxuAER8f78Wfxh6cTqexceNGY+7cuUZiYmKgh2MbiYmJxty5c42NGzcaTqcz0MOxBatmLS7OMO64wzDMNsgwunQxjEOHAj2qCyRr6pxr1hhJLVpc+J9asaJhfPaZYWRkBHpoliZZU2fVumZ1kjV1eWUNMABj5MiR7tu5/ReKn3l1+XwVuPj4eABKly4NwO7duzly5Ahdu3Z1Pyc6OpoOHTrw999/A7B69WrS0tI8nlOpUiUaNWrkfo7IniF/tdIif7VSZ9WsrVgBTZvCN99ARASMHg2//QYVKwZ6ZCbJmqKjRzEefBCaNaPoypUYhQrBCy/A9u3Qrx+EyWKmOZGsqbNqXbM6yZq6/GTtlVdeAeCFF14AzGsD5aRr164hfc67qghfvrhhGDz99NO0b9+eRo0aAXDkyBEAYmNjPZ4bGxvL3r173c+JioqiVKlSWZ7j+v6LpaSkkJKS4r6fkJAAQFpaGmlpad75gSzOMAy2bdvGwYMHad26NdHR0SHzsxfEmTNnWLZsGZUrV6ZOnTqkp6cHekiWZ9WsOZ3Qs2cEhw87KF7c4NdfM2jVyiAjw7z2T6BJ1hQ4nTg+/5zw557DERcHQOrNN+MYMwaqVTOfY4HMWZVkTZ1V65rVSdbU5SdrL730EqNGjXLfP3PmDH/99ZfH5IDLqlWraNasmc/HHUx82gANHDiQ9evXs3Tp0iyPXfzXAcMw8vyLQW7PGTVqVLbHR/7+++8UKVJEYdTBYdGiRYEegu3s2rWLXbt2BXoYtmO1rF166eUcPlyNxEQHL7xwmEce+ZdChSzQ/WQiWctdsYMHaTJpEmXPL44TV7Mm6/v353T9+ubFTC9aNEfkTLKmx2p1zQ4ka3ouzlpSUhJ33323+35YWBhOp5MJEybw3HPPZfn+uLg4YmJiGDduHMWKFaN///4+H3Mw8FkD9Pjjj/PTTz+xePFi9wWd4ML03ZEjR6iY6ZiUY8eOuWeFKlSoQGpqKqdPn/aYBTp27Bht27bN9v2GDRvG008/7b6fkJBA1apVQ2JK8OK/JBQtWjTQQ7KFzH+1qlevnkzZ54MdstatG4wbl8ELL4SxaFFVjh+vwpw56QE9BE6ylk+GQdibbxI2YgSO1FSchQqxvW9fKrz+Om1iYgI9OluQrKmzQ12zIsmauvxk7amnngKgSJEinDx5koULF9KtW7dsmx8wG88rMl3Ju1q1alx77bW++QGCibdPKnI6ncZjjz1mVKpUydi+fXu2j1eoUMEYM2aMe1tKSkq2iyB888037uccOnRIFkHIhpysqUdO1lRnt6x98smF8+UnTAjcOCRr+eR0GsYzz7j/pyW0b28s/PxzW2TNKiRr6uxW16xCsqYuv1nbtWuXARjNmzc3FixYkGWhg+bNm+e6EEJycrIffyr78vqFUB999FG+/vprfvzxR+rVq+feHhMTQ+HChQEYM2YMo0aN4rPPPqNOnTq8/vrrLFy4kG3btrkv/PTII48we/ZsPv/8c0qXLs3gwYM5efIkq1evJjw8PM9xhMKFUA05WVOLnKypzm5Z274dOnaEw4ehUSNYuBDKlPH/OCRr+WQY5pVq33oLgMPDhrH+qqto17695bNmFZI1dXara1YhWVOnmrWc/k1nzpxJjx49iIjIegDXq6++6l4sQeTN6w1QTv/TMl+l1jAMRowYwYcffsjp06dp1aoV7733nnuhBIDk5GSGDBnC119/zblz5+jcuTOTJk2iatWq+RpHsDdAUrj1SOFWZ7esXdz8/PGHeQ0gf5Os5dNFzc+hF15gQ/v2tsiaVUjW1NmtrlmFZE2dTtYu/ne98847mT59OpUrV8bpdHL48GGPx0+cOEGZMmVYtmwZhw4d4uabb/bqzxCMvN4AWUUwN0BSuPVI4VZnt6ytXw/XXSfNj23s3w8jR8LkyYA0Pzoka+rsVtesQrKmTjdrmf9td+/eTfXq1XP8946Pjyc6Opo6deqwf/9+9/uK3MkFFGxGCrceKdzq7JQ1pxPGjYMWLaT5sbz0dPjpJ+jRA6pXl+anACRr6uxU16xEsqauIFm75ZZb3LeLFCmS67/3lClTKFSokLv5OXjwoP6gQ4jMANmIFG49UrjV2SlrBw7AvfeaDQ/ADTfAZ59B2bL+H4tkLRd798Inn5j/HTrk3mx06MC+225ja+3als+alUjW1NmprlmJZE1dQbO2fft2j/Pos3v9LVu20LBhQ/e2d955hyeeeEJ7zKHGp9cBEt4jhVuPFG51dsraN9/AgAEQFwdFipizQP37QyD+N0vWspGWBrNnw0cfwdy55vk+YK5I0a8fxgMPsNnptEXWrESyps5Odc1KJGvqvJG1unXr5vr4k08+ybvvvgtAiRIlOHz4cEhe87Ig5BA4G5DCrUcKtzq7ZC0+Hvr2hTvvNJufFi1g7Vp4+GFpfixh924YPhwuuQRuvhnmzDGbn06dYPp0OHgQ4403pPnRIFlTZ5e6ZjWSNXW+ytqXX36JYRgMGzYMwN38AOzfv1+aHw0yA2RxUrj1SOFWZ5esLVoE99wD+/ZBWBi88IL5X2RkYMYjWTsvNdU8t+ejj+D33y9sL1cO7rsPHnwQ6tQB7JM1q5GsqZOs6ZGsqfN21p577jlGjx4NwF133UXHjh1ZtGiR+/HTp09TqlSpAr1HKJNzgCxMCrceKdzq7JC1lBR48UV44w1zMqFmTZg6Fdq0CdyYJGvAjh3w8cfmiVfHjl3Yfs015vGIN94IUVHuzXbImhVJ1tRJ1vRI1tT5ImtxcXHZNjiRkZGkpaWxY8cOateubevPuYEkh8BZlBRuPVK41dkha5s2QevWMHas2fw88ACsWyfNT8CkpJgnYHXubM7qjBljNj8VKsCwYbBzpzkLdOut0vx4QUhnTZNkTY9kTZ2vslayZEmP+8888wyGYTB37lwABgwY4JX3CVUyA2RBUrj1SOFWZ/WsOZ0wcSIMHWp+5i5Txpxs6NkzsOMK2axt324e4vb553DihLnN4YBrrzVne264IcdjEa2eNasK2awVgGRNj2RNna+zlvn/QeaP65m32/FzrhXIDJDFSOHWI4VbndWzdvgwdOsGTz5pNj/XXQcbNkjz43fJyfD113D11VCvHrz5ptn8VKoE//sf7NplLnLQq5c0P14WclnzAsmaHsmaOn9k7ZNPPnHfXrhwIXv37gWgZcuWXn+vUCMzQBYihVuPFG51Vs/aL79Av37m5+xCheCtt+CRRwKzwltmIZW1LVvM2Z4vvoBTp8xtYWFmV9q/P1x/PUTkvY6O1bNmVSGVNS+RrOmRrKnzV9bS09OJzPSHpWrVqrFnzx727NlDjRo1AJkB0iWrwFmEFG49UrjVWTlrKSnw7LPwzjvm/csvNycfGjQI6LCAEMnauXPw3XcweTIsXXphe5Uq5ipu998PVavm++WsnDUrC4mseZlkTY9kTZ0/sxZx0R+ZNmzYAED16tXdiyAIPdIAWYAUbj1SuNVZOWtbt0Lv3ubiBgCDBsHo0RAdHchRmYI+axs3mrM9X35pXlgJIDwcunc3Z3uuu868r8DKWbOyoM+aD0jW9EjW1Pkza4ZhZHn94sWLu2+XK1fOZ+8dCqQBCjAp3HqkcKuzatYMAz79FJ54As6ehbJlzXPsu3cP9MhMQZu1s2fh22/N2Z5//rmwvVo1c7bnvvugcmWtl7Zq1qwuaLPmQ5I1PZI1df7MWuZD3xwOh3sBhNOnTzNo0CDefPNNoq3w10Ebk0UQAkgKtx4p3OqsmrW4OHPW58EHzc/jnTvD+vXS/PjUv//CwIHmIgb33Wc2P+Hh5iIGc+aYS1i/8II0P34WlFnzMcmaHsmaOn9m7cyZM+7mp0mTJjidTvdjpUuX5ssvv+S7775zb/voo49wOByULVvWZ2MKRjIDFCBSuPVI4VZn1az98w/06QN79pjn0o8cCUOGmOfZW0FQZS0pybxuz+TJsGLFhe01asBDD5krTlSsWOC3sWrWrC6osuYnkjU9kjV1/sza0aNHqVChAgB33nkn06ZNy/KcG2+8kUceeYTt27cDMHjwYMBzxTiRN2mAAkAKtx4p3OqsmLWMDPPcnpdeMm/XqAHTpkGrVoEe2QVBk7U1a8xze776ChITzW0REeZa4v37m1NuXuo4rZg1OwiarPmRZE2PZE2dP7O2bds26tevD8Dw4cMZOXIkADt37vR43o8//siAAQP48MMPAahYsSK7d++WQ+IUSQPkZ1K49UjhVmfFrB08CH37wp9/mvd794b334eYmMCOKzPbZy0x0ewoJ0+G1asvbK9d25ztufdeiI316ltaMWt2YPusBYBkTY9kTZ0/s7Z06VKuvPJKACZPnsxDDz0EwIoVK2h10V8HL/5/t3XrVml+NFjkYJPQIIVbjxRudVbM2s8/Q5MmZvNTtKi50MFXX0nz4xWGAStXmrM6FSvCww+bzU9kJNx5JyxYANu2wdCh0vxYhG2zFkCSNT2SNXX+zNqMGTPczc+vv/7qbn5+/vlnd/Pzww8/eHxPjx49iHOt2An8+++/OBwOChUq5LNxBhuZAfITKdx6pHCrs1rWkpPNc3smTjTvN20K06dD3boBHVYWtsxafLx5oaTJky+sHw7mP27//nDPPeDDpVKtljW7sGXWAkyypkeyps6fWZszZw633347AKtXr+aKK64AYNKkSTz22GMAjB49mptvvtnj+3766ScSEhIA6NKlCytXrgRg4MCBPhtrsJEGyA+kcOuRwq3OalnbssWcgFi/3rz/9NPw+uvWuLZPZrbKmmGYCxlMnmx2kmfPmtujo+HWW83G58orwcc/g9WyZhe2yppFSNb0SNbU+Ttrp06dAswmxtX8DBkyhDfffNP9nOeeew6ADh06sGjRIgDi4uKYO3cugLv52bZtG3Wt9pdFC3MYrsXFg0xCQgIxMTHEx8dTokSJgI1DCrceKdzqrJQ1w4CPP4Ynn4Rz58xJiC++gG7dAjakHNkma3FxMHWq2ficvxo4AA0amE1P375QpoxfhmKlrNmJbbJmIZI1PZI1dYHKmuv/TUZGBrfccguzZs3K8pxTp04RGRnpvhBqWFiYe3nsZ555xqNhEvkjDZAPSeHWI4VbnZWydvq0+XncdZmCa66BL7+E8yt7Worls2YY8Pff5kpu335rdpMAhQrB7beb/9Bt2/p8tsdzSNbJmp1YPmsWJFnTI1lTF8isDR8+nNdffz3bx77++mt69+7tvp/d/8tA/6HfrqQB8hEp3HqkcKuzUtb++su8ts++feZqy6+/Ds88Y51r+2Rm6aydOgVTppizPZs3X9jeqJHZ9Nx9N5Qq5fdhWSlrdmLprFmUZE2PZE1doLNmGAZhmX5JpqenEx0dTUZGBikpKURFRbFv3z6qVavm8X3x8fEB/0O/nVnwY4n9BXpnsisp3OqskrWMDHj1VbjqKrP5qVXLnLiw0oVNM7Nk1gwDFi82m5tKlWDQILP5KVwY7rvPvHLs+vXw+OPS/NiIJbNmcZI1PZI1dVbImsPhoHHjxgBMmDCB8PBwxowZA8CHH37IXXfd5W5+KmQ6lGL+/Pl+H2swkRkgL7PCzmRHUrjVWSVrBw6Yn9nPn5vJ3XfDe++BVf8gZbmsnThhHiM4ebK5VLVLkybmctZ9+gR8rXCrZM1uLJc1G5Cs6ZGsqbNS1tLS0oiKinKPKzk5mcKFC3s85++//6ZVq1aEh4cDUKtWLXbu3CkzQJos+LdZ+7LSzmQnUrjVWSVrs2aZn9MXLYJixczP8VOmSPOTJ8MwL4jUuzdUrmweJ7htm3mBpAcfNFd5W7sWHnlEmh+bskzWbESypkeyps5qWYuMjKRly5aAef2fzNfz6d27N06nkzZt2ngcKrdz5858vfapU6dITU317oCDgMwAeYnVdia7kMKtzgpZO3cOBg+GSZPM+82awbRpUKeO34eSb5bI2rFj5nJ4H30E//13YXuzZua5Pb17w/lVfqzAClmzI0tkzWYka3oka+qsmrX4+HhKliwJmGOsWbMmu3fv5siRI8TGxpKenk6TJk3YnPm8UHJeBOHDDz9kwIAB7vtB+nFfm1wHyAusujNZnRRudVbImmHAjTeC6/DjwYPhtdfg/Oy9JVkiawsXwrXXgusvccWKwV13wUMPmQ2QxVgha3ZkiazZjGRNj2RNnZWzFhMTQ5kyZTh58iSrVq1i/Pjx9OzZk9dee422bdt6rAaXk5MnT3LzzTezePFi97ZChQplaZqEHAJXYFbemaxMCrc6K2XtxAnza9Wq5sVNpfnJh82bzeYnJsa8SNLhw/DBB9L8BBHLZM1GJGt6JGvq7JC1tWvXAtCiRQtuvPFGwFwYwdX8jBo1KtuZnJ9//hmHw0HZsmXdzc+DDz5IcnIy586do0aNGn76CexDDoErADvsTFYkhVud1bK2axd07Aj790P9+ubkRmxsQIeULUtlbds28x8rKspc5rpo0cCNJRdWy5pdWCprNiFZ0yNZU2enrLn+f+7evdvduISHh3P69Gn3hVBz+3/++++/c8011/h+oDYnM0Ca7LQzWYkUbnVWzFrNmuY5/FWqwNat0KkTHD0a6FF5slzW6taF6tXNWaCFCwM7lhxYMWt2YLms2YBkTY9kTZ3dsuaaBbrsssvo2LEjAKtWrXI3PytWrMjyPddddx1xcXEYhuFufgzDYPz48TgcDhwOh5wDdBFpgDTYbWeyCinc6qyctVq1zCaocmXz6K5Oncxz/K3AkllzOOC668zbc+cGdizZsHLWrMySWbM4yZoeyZo6O2bt8ssvByAxMZGRI0cCMGzYMMCc+WnVqpXH8+Pj45kzZw4x51cMPXr0KM2bNycsLIynn34agLZt20peLiINkCI77kxWIIVbnR2yVru2OZlRqdKFJuj48cCOydJZs2gDZIesWZGls2ZRkjU9kjV1ds7anDlzABg4cCAAcy/6nXHgwAHWrFnjsW3GjBk4HA4qVKjA6tWrAXjqqadIS0vjr7/+cj8vKSmJSZMmUbduXRwOB1u2bPHlj2JZcg6QAjvvTIEkhVud3bL233/QoYN5Xn/jxrBgAZQr5/9xWD5riYlQujSkp5v/aLVrB3pEtsuaVVg+axYkWdMjWVMXDFm7+P+z0+l0XwfIMAz359zu3bvzyy+/eDx3yZIltG/fHsMw+Oeff3j77beZMWNGtu+zatUqmllwMR5fkxmgfAqGnSkQpHCrs2PW6tQxD4erWBE2bIAuXS6sFOcvtsha8eLQvr15+7ffAjsW7Jk1K7BF1ixGsqZHsqYuWLI2efJkAGqf/0PZzJkz3Y8tXrzYfcibq/m55ZZb2Lt3L6+99ho333wzDoeDsLAw2rVr59H81KxZkwkTJpCQkIBhGCHZ/IDMAOVLsOxM/iaFW53ds7Z1K1x9NRw5Ak2amDNBZcr4/n1tlbUxY+C55+CGG+DnnwM2DLtnLVBslTWLkKzpkaypC7asZf5/Xrt2bXbs2JHlOV9++SX33HNPjq9x33338eSTT9KkSROfjNGuZAYoD8G2M/mLFG51wZC1+vXNmaDYWPj3X3Mm6NQp376n7bLmOg/ozz8hJSUgQwiGrAWC7bJmAZI1PZI1dcGYteeee859O3Pz07JlS/f91q1bu7c3bdqUL774guTkZAzDwDAMPv300yzNz759+xg6dCijRo3y8U9gXTIDlItg3Jn8QQq3umDL2pYt5nWCjh2Dpk1h/nzz1Bdvs2XWDMNcNeLIEXOKrFMnP799cGXNX2yZtQCTrOmRrKkL1qwZhuE+7wegTJkynDx50uMcoKlTp3L33Xd7fE9maWlpzJgxg7fffpuVK1dm+x6hSGaAchCsO5OvSeFWF4xZa9DAnOAoVw7WroVrroHTp737HrbNWgCXww7GrPmDbbMWQJI1PZI1dcGcNYfDwe233+6+7zrvJzExkQULFgB4ND/vvPMOmzdvpn///u7r/0RFRXHXXXd5ND9NmjShadOmAOzatcsfP4rlyAxQNoJ5Z/IlKdzqgj1rGzdeWBq7WTNzJqhkyYK/ru2z9s03cOed5pJ569f75S2DPWu+YvusBYBkTY9kTV0oZC01NZXo6Gjt74+JiaFx48asWLGC1NTULI8vXbqUdu3aFWSItiQzQBcJhZ3JF6RwqwuFrDVqZB7lVbYsrF4NXbtCXFzBXjMostalC4SFmUvmHTzo87cLhaz5QlBkzc8ka3oka+pCJWtRUVE0b948y/Yrr7wy2+e3aNGCBg0auO/Hx8ezdOnSLM3P+PHjMQwjJJsfkAbIQ6jsTN4mhVtdKGXNdV2gMmVg5Uq49lqIj9d7raDJWpky0KKFedvHy2GHUta8KWiy5keSNT2SNXWhlrX58+d73H/88ceZPXs2YDZIma1cuTLPi5vu37+fQYMGeXWMdiMN0HmhtjN5ixRudaGYtcsuu9AErVih1wQFXdb8cB5QKGbNG4Iua34gWdMjWVMXilmLiYmhePHi7vsbNmxw387usLa8lCxZkg8++IAvvvjCK+OzIzkHiNDcmbxBCre6UM/aunXQubO5NHbr1ubkR35O0QvKrC1bBm3amCdFHT8OERFefflQz5quoMyaj0nW9EjW1IVy1vbt20e1atUAczW4Xbt2uRdFKIggbQPyFPIzQKG8MxWEFG51kjW4/HJzIYRSpczP/9ddB4mJuX9P0GatRQvzHyIuzpwW8yLJmp6gzZoPSdb0SNbUhXrWLrnkEvftkydPFvj1nnvuOeJ1j0cPAiHdAIX6zqRLCrc6ydoFrusClSwJ//wD3brl3AQFddbCw81VIcCrh8FJ1vQEddZ8RLKmR7KmTrJm6tKli/t2QWZ/3n33XUaNGqV9ncxgELINkOxMeqRwq5OsZXXFFReaoL/+guuvh6Qkz+eERNa8fB6QZE1PSGTNyyRreiRr6iRrF7z33nteeZ2BAwe6L6gaqkKyAZKdSY8UbnWStZw1awa//w4xMbB0qWcTFDJZu/Za8+uqVeZ5QAUgWdMTMlnzIsmaHsmaOsmap7p163rldcLCwihbtqzXXs+OQq4Bkp1JjxRudZK1vLVoYTZBJUrAkiXQvTscPRpCWatYEZo0AcOAefO0X0aypkfqmjrJmh7JmjrJmm916NCBpUuXBnoYARNSDZDsTHqkcKuTrOVfy5YwaZJ5e/FiGDToaOhkbft2cDrN2wsXar2EZE2P1DV1kjU9kjV1krXseSs7HTp0YOHChcTGxnrl9ewoZBog2Zn0SOFWJ1nLv8REePZZuO8+835EhJM2bSKDP2uuH7xRI9iwASIj4eqrlV9GsqZH6po6yZoeyZo6yZrv/fnnn4EeQsB598ITFiU7kx4p3Ooka/njdMLUqWYPcOSIua1Fi+O89FIc119fO3izlt0Pfv31MH48KB6LLVnTI3VNnWRNj2RNnWRN+EvQzwDJzqRHCrc6yVr+rFoF7drBvfeaPUCtWk5GjFjNZ58dC+7mZ+VKzx+8dm2YPRt++UWaHz+RuqZOsqZHsqZOsuZ748ePJy0tTfJICMwAbd26lbi4ONmZFEjhVieFO28ZGTBkCLz9tnnOf7FiMHRoCpdfvoiaNSsHb9a2boXXXoOvvrrwg//vf/DkkxAdrfxykjU9UtfUSdb0SNbUSdZ8b9asWdx0002BHoZlBP0M0MGDB2VnUiCFW50U7rylpUHfvuaRXoZh3l6z5gwtWy4M3uZn/Xq44w5o2NA87M31g2/bBkOHSvPjR1LX1EnW9EjW1EnW8nb8+HHKlCmj9b133HEHZ86ckebnIkE/A9S6dWvZmfJJCrc6Kdx5O3cObrvNPNIrIsLsBbp3D+KsrVhhzvj89NOFbT17wvDh0Ly59stK1vRIXVMnWdMjWVMnWcvbtddey++//671vU6nU3KYg6CfAZKdKX+kcKuTwp23hATo1s1sfgoVgh9/DOLmZ8kS88KmrVqZzY/DAXfeac4EzZwpzU8ASF1TJ1nTI1lTJ1nLH1fz8+eff3LVVVfl+/vWrl0rOcxF0DdAIm9SuNVJ4c7biRPQuTMsWgTFi8Nvv8FVVwVZ1gwD5s+HDh3gqqvMq7qGh5sLHWzZAtOmQePGBXwLyZoOqWvqJGt6JGvqJGvqOnbsSL169fL9/CuuuILBgwf7cET2FvSHwIncSeFWJ4U7bwcPQteusHkzlC0Lc+dCvXpBlDXDMKe1Ro6E5cvNbVFR5gWNnn0WatTw0ttI1nRIXVMnWdMjWVMnWVMTFRVFamoqR44c4dtvv8339xmGweHDh304MnuTBiiESeFWJ4U7b7t2QZcusHs3VK4M8+ZB1apBkjWnE374wWx8/v3X3FaoEDz8MAweDFWqeO2tJGt6pK6pk6zpkaypk6yp69OnD59//jkVK1bM9XlhYWE4nU73/Y0bN3LppZf6eni2JYfAhSgp3OqkcOdt40Zo395sfmrVgqVLg6T5SU83V29o1Mhc0eHff83lrJ99FvbsMdf2luYn4KSuqZOs6ZGsqZOs6encuXOWbVFRUVm2uZqf+fPnYxiGND95kBmgECSFW50U7rytWGEueHDqlNkn/P47FC9u86ylpsKUKTBqFOzcaW4rWRKeeMK8jk/p0l5/S8maHqlr6iRreiRr6iRreuLi4nj++efd95955hneeustUlNTs32+YRj+GprtyQxQiJHCrU4Kd97+/NNc8ODUKXMRNHPhAxtn7dw5eO89qF0bHnzQbH7KloXXXzdnfEaMkObHQqSuqZOs6ZGsqZOs6Zk5cyalSpVi//797m2jRo3K9rkffPCBND+KHEaQ/oslJCQQExNDfHw8JUqUCPRwLEEKtzop3Hn7+WfzqLCUFOjUyVzqGmyataQk+PBDePNNOHLE3FaxIgwZAv37Q9GiPntryZoeqWvqJGt6JGvqJGvq0tPTqV69OgcPHgTgf//7H6+++mqu3xOkH+V9SmaAQoQUbnVSuPM2bRrcfLPZ/Nx0k7kwmi2bn/h48+Kl1aubixkcOQKXXAKTJpmrOjz1lDQ/FiR1TZ1kTY9kTZ1kTc+gQYPczc/Ro0d55ZVXcn1+9erVWb9+PU899RQOh4OlS5f6Y5i2J+cAhQAp3OqkcOft00/No8MMA+6+27yfkmKzrCUlwbvvwhtvQFycua12bXj+efOHioz0+RAka3qkrqmTrOmRrKmTrOlJSkqifv36AFx//fWUL1+eAQMG5Po9e/bsoUmTJu77DRs29OkYg4UcAhfkpHCrk8Kdt8zNzyOPwMSJcPasjbJ27hy8/z6MHg3Hj5vbGjSAF16A22+HCP/8bUiypkfqmjrJmh7JmjrJmp7MWWvUqFG2z2nQoAFbtmzJ9rE2bdqwdOlSwsLk4K78kBmgICaFW50U7rxlbn4eewwmTIAzZ2yStdRU+Phj83C3Q4fMbbVrm4sa3HEHhIf7bSiSNT1S19RJ1vRI1tRJ1vRcnLWc5NT8LFu2jFatWvlqeEFJ2sQgJYVbnRTuvNm2+UlPNwdft6458EOHzHN8PvkEtmyBPn2k+bEBqWvqJGt6JGvqJGt6Ls7aiBEjPB6//PLLc13kYMWKFdL8aJAZoCAkhVudFO68TZxoXv7GVs1PWhp89ZU547Njh7mtYkXzULcHHoDoaL8PSbKmR+qaOsmaHsmaOsmansxZq1evHjExMSQmJno8Z+3atexw/f7KxqJFi7jxxhs5dOiQZFWBnAMUZKRwq5PCnTunE4YNg7FjzfsDB5rrBli6+UlLgy+/NK/bs2uXua1sWfMHeeQRKFw4IMOSrOmRuqZOsqZHsqZOsqbn4qwVL16cM2fOZHnexIkTGThwYJ6vl5GRIef/KJAGKIhI4VYnhTt3qalw//3mJArAyJHmAmmWbX5SU+Hzz83GZ+9ec1v58uZ1fAYMgAD+/5Ws6ZG6pk6ypkeypk6ypie7rLnyVqNGDXbu3EmnTp1YuHBhvl8zSD/O+4y0ikFCCrc6Kdy5i4+Hbt3M5iciAj77DIYPt2jzk5JirupWuzY8/LDZ/MTGwltvwe7d5rV9pPmxHalr6iRreiRr6iRrenLK2rXXXgvA8ePHOXLkSI7NT82aNT3uFylShPT0dJ+OORhJAxQEpHCrk8Kdu4MH4aqr4I8/zL5h9mzo18+CWUtONk9OqlULHn0U9u83z/F5+22z8Xn6aShSJKBDlKzpsVzWbECypkeypk6ypie3rH399dfu51SqVCnL9/76668A7HId1n3e5ZdfTrgfF/EJFnIInM1J4VYnhTt3mzaZMz/795uTKL/+CldcYbGsnTsHH30EY8ZcWM66cmV47jlzmbpChQI3tkwka3oslTWbkKzpkaypk6zpyU/Wcsrf1q1b3RdIvViwf871FZkBsjEp3OqkcOduxQpo395sfurVg3/+sVjzc/o0jBoFNWrAk0+azU/VqjBpEuzcaa7QIM2PrVkmazYiWdMjWVMnWdOT36w9+uijHvdr1KgBkGPzI/RJA2RTUrjVSeHO3YoV0LUrxMVBmzbw119mn2GJrO3fD888Y1675/nn4ehRqFYNPvwQ/vvPXNktAEta50SypscSWbMZyZoeyZo6yZoelaydPn3affvTTz+lbdu2eb7+qlWrePjhh70y1lAih8DZkBRudVK4c3f4MDRoYC58cOWV5mFvxYpZJGuzZsHtt5tLWwM0agRDh8Kdd0JkpP/HkwfJmh5LZM1mJGt6JGvqJGt6VLLWqlUrVqxYkevrVaxYkcOHD2f7mNPplCwrkBkgm5HCrU4Kd95+/dVsfho2tFjzExdnLl+dlgbt2pmDW78e+vaV5ieIWCJrNiNZ0yNZUydZ06OatZMnTwIwYcKEbB8fMmQI+/btA8hyvZ+tW7dKlhVFBHoAIv+kcKuTwp0/y5ebX2+4wULND8Brr5mHu9WrZy5JFxUVmHHkg2RNj2WyZiOSNT2SNXWSNT06WZs1axaNGzfmww8/zPbxNWvWEBFhfmx3Op3u7SdPnqR06dLeGXgIkRkgm5DCrU4Kd/65Zt1bt7ZY1n75xfz66qvS/AQhS2XNJiRreiRr6iRrenSz1qhRIwA2btzo3uZwOEg7f/j3ggULGDt2bJbvczVFQo00QDYghVudFG418fHm15iYs9bKWkKC+fWiC79ZiWRNj9Q1dZI1PZI1dZI1PQXNWpcuXTzuG4bh0eA8++yzXhmnkAbI8qRwq5PCrc61TsiyZZutlTXXtH6mlXGsRLKmR+qaOsmaHsmaOsmaHm9k7auvvsqy7fvvv/e4L02Qd0gDZGFSuNVJ4dZTrFgGAIUKxVora6VKmV9PnQrsOLIhWdMjdU2dZE2PZE2dZE2Pt7JWvnx59+1u3boBcOutt3o8595779UfqHCTBsiipHCrk8KtJykpifh481CzSy6pYq2suWaALNYASdb0SF1TJ1nTI1lTJ1nT4+2sjRgxAoA5c+a4t82bN899u1atWgV6fWGSBsiCpHCrk8Ktx5W11NTCAJQsabGsWbABkqzpkbqmTrKmR7KmTrKmxxdZGz58eJZt//33H9deey0A0Ra66LedSQNkMVK41Unh1pM5a8nJZkGNiQnwoC7mOgTOIucASdb0SF1TJ1nTI1lTJ1nT46ushYeHu28PHToUgEcffdS9GpzwDmmALEQKtzop3Houzlp8vJk1yzVAFpoBkqzpkbqmTrKmR7KmTrKmx9dZmzlzJoD7wqcAf/zxh/t2x44dvfp+oUgaIIuQwq1OCreei7NmGA4SE83HpAHKnmRNj9Q1dZI1PZI1dZI1Pf7IWs+ePQGYPn26e1sp1xERwG233eb19ww10gBZgBRudVK49WSXtXPnwDDMx1NSAju+LFzrc8fFBWwIkjU9UtfUSdb0SNbUSdb0+DNrhQsX9rh/+vRpJkyYAMDRo0d99r6hQhqgAJPCrU4Kt56csla0KLRpYz5n5MgADjA7e/eaXytXDsjbS9b0SF1TJ1nTI1lTJ1nT4++sLVq0CPBcGrt79+4AvPLKKyxYsMCn7x/spAEKICnc6qRw68kra2+8YX795BPYvDkAA8zJhg3m10aN/P7WkjU9UtfUSdb0SNbUSdb0BCJrLVq0AODYsWNUrVoVgFtuucX9ePPmzX0+hmAmDVCASOFWJ4VbT36y1q4d9OoFTidY6iLTGzeaX/3cAEnW9EhdUydZ0yNZUydZ0xPIrLkugvrcc88BsHbtWvcs0Nq1a/02jmDkMAzX0f/BJSEhgZiYGOLj4ynhOo/AIqRwq5PCrUcla9u3Q8OGkJEBf/4JAV9kJi3NPD4vLQ327IFq1fzytpI1PVLX1EnW9EjW1EnW9AQ6a6dPn6a0azGg86ZOncrdd99N69atWbZsmSU/59qBzAD5WaB3JjuSwq1HNWt168LDD5u3Bw82Z4MCavt2s/kpVgwuucQvbylZ0yN1TZ1kTY9kTZ1kTY8VspZ55bcbbrgBgIceegiAZcuW+X08wUQaID+yws5kN1K49ehm7aWXoHhxWL0aMq2+GRiZD3/zw74iWdMjdU2dZE2PZE2dZE2PlbL26quvAtC0aVMAzp07R0RERMDGEyykAfITK+1MdiGFW09Bsla+/IVzgJ5/3jwcLmD8eP6PZE2P1DV1kjU9kjV1kjU9VsvasGHDgAuNEFw4N0jokwbID6y2M9mBFG493sjawIHm17174eRJLw9QRXq6+dXHg5Cs6ZG6pk6ypkeypk6ypseKWQsPD3fffvb8XyinT59OoUKFAjWkoCANkI9ZcWeyOinceryVtcOHza9Fi0K5cl4coKo+fcyvP/0EBw/65C0ka3qkrqmTrOmRrKmTrOmxctZ+/PFHAHbt2uXetnv37kANJyh4vQF6//33ueyyyyhRogQlSpSgTZs2zJkzx/24YRi8/PLLVKpUicKFC9OxY0c2bdrk8RopKSk8/vjjlC1blqJFi3LjjTdy4MABbw/V56y8M1mVFG493szatm3m17p1/XLqTc4aN4b27c3j8D7+2OsvL1nTI3VNnWRNj2RNnWRNj9WzduONNwIwY8YM97bBgwcHajhBwesNUJUqVRg9ejSrVq1i1apVdOrUiZtuusnd5IwdO5Zx48YxceJEVq5cSYUKFbjmmmtITEx0v8agQYOYOXMm06dPZ+nSpSQlJXHDDTeQEdATEtRYfWeyIincerydte3bza/16nlhcAX1yCPm148+unBInBdI1vRIXVMnWdMjWVMnWdNjl6zVrVsXgEmTJgHw1VdfBXI4tueX6wCVLl2aN954g/vvv59KlSoxaNAg93GMKSkpxMbGMmbMGB5++GHi4+MpV64cU6ZM4Y477gDg0KFDVK1alV9//ZVrr702X+8ZyOsA2WVnshIp3Hp8kbUHH4RPPjFXhHv55YKPsUBSUqBqVTh+HH74wbxaawFJ1vRIXVMnWdMjWVMnWdNjp6xt2bKFhg0bUr9+fbZu3ereLtcB0uPTc4AyMjKYPn06Z86coU2bNuzevZsjR47QtWtX93Oio6Pp0KEDf//9NwCrV68mLS3N4zmVKlWiUaNG7udYmZ12JquQwq3HV1nLfAhcwEVHwwMPmLdfeQVSUwv0cpI1PVLX1EnW9EjW1EnW9Ngtaw0aNABg69atVPPThcGDmU8WEt+wYQNt2rQhOTmZYsWKMXPmTBo2bOhuYGJjYz2eHxsby969ewE4cuQIUVFRHhd/cj3nyJEjOb5nSkoKKSkp7vsJCQkApKWlkZaW5pWfKy9nzpxh2bJlVK5cmTp16pDuxUN2gpVhGGzbto2DBw/SunVroqOj/fb/y858mbX9+yMAB6VLp5OW5vMJ4rw9+igRkyfjWLeOjGHDcI4erfUykjU9UtfUSdb0SNbUSdb02DVrt956K9999x3PPPMMTzzxRKCHY2s+aYDq1avHunXriIuL4/vvv+fee+9l0aJF7scv7rINw8iz887rOaNGjWLEiBFZtv/+++8UKVJE8ScomF27dnms1CHyJ3NGRP74ImtVqzZj794qvPfeXlJSNnr1tXVV6N+fVqNHEz5uHMtjYjjepEmBXk+ypk7qmh7JmjrJmh7Jmjq7Za1nz5589913PPHEE4wbN46nn3460EOyLb+cA9SlSxdq1arFs88+S61atVizZo37irYAN910EyVLluSLL77gjz/+oHPnzpw6dcpjFqhJkyb07Nkz2yYHsp8Bqlq1KidOnPD5sZGZ/5JQr149y0+jWsHFf7UqWrRooIdkC/7I2q+/OujZM4Jy5Qz27EknMtLrb6ElbOBAwidPxqhYkfTVq6Fs2Xx9n2RNj9Q1dZI1PZI1dZI1PcGQtaioKACOHj1KbGysnAOkySczQBczDIOUlBRq1KhBhQoVmDdvnrsBSk1NZdGiRYwZMwaAZs2aERkZybx587j99tsBOHz4MBs3bmTs2LE5vkd0dDTR0dFZtkdGRhLpw09wSUlJLF++nKpVq9riGFIrcB2vfOjQIdq3by/HK+eTv7J2/fXm9X+OH3fw55+RdO/uk7dRN348LFmCY8sWIgcMgFmz8lynW7KmR+qaOsmaHsmaOsmanmDJ2muvvcbw4cOZMGFCto8fOnSIRo0aUbRoUfbv3+/n0dmH1xdBeP7551myZAl79uxhw4YNDB8+nIULF3LXXXfhcDgYNGgQr7/+OjNnzmTjxo3069ePIkWK0Of8RQ9jYmJ44IEHeOaZZ1iwYAFr167l7rvvpnHjxnTp0sXbwy0Qu51AZwVysqYef2YtMvLCNUinTPHZ26grUgS+/hqiosyLo37wQa5Pl6zpkbqmTrKmR7KmTrKmJ5iy5lpFeeTIkR7bDxw4QNGiRalcuTKnT5/mzJkzgRiebXi9ATp69Ch9+/alXr16dO7cmeXLlzN37lyuueYaAIYOHcqgQYN49NFHad68OQcPHuT333+nePHi7tcYP348PXv25Pbbb6ddu3YUKVKEn3/+mfDwcG8PV1sw7Uz+IoVbTyCy1rev+fXHHyE+3udvl3+XXw7nZ4t5+mnYvDnbp0nW9EhdUydZ0yNZUydZ0xNsWbv4s/D+/fuJjIykatWqnD17FoB//vmHU6dOBWJ4tuGXc4ACwZfXAQq2nckfpHDrCVTWDAMuvRS2bIFPP4X77vPL2+aP0wndu8PcuXDZZbB8ORQq5H5YsqZH6po6yZoeyZo6yZqeYM3a7Nmz6dGjR5btK1asoEWLFgEYkf349DpAwShYdyZfksKtJ5BZczguHAb3/fd+e9v8CQuDzz83T1Ravx6ee879kGRNj9Q1dZI1PZI1dZI1PcGatZ07d2ZpflavXo1hGO7m59SpU1x99dXMmzcvEEO0BWmAFATrzuRLUrj1WCFrvXqZX+fNg8REv7997mJjzSYI4J13YM4cyZomK2TNbiRreiRr6iRreoIxa9u3b8fhcFC7dm2P7fHx8VxxxRUAnDhxgqpVq1KmTBkWLlzI119/HYih2oI0QPkUjDuTr0nh1mOVrDVsCHXqQGoqzJkTkCHk7vrr4fyF4Ix+/di2eLFkTZFVsmYnUtf0SNbUSdb0BFvW4uPjcTgc1KtXz71tw4YNxGc6QffYsWNUrFiRcuXKceDAAQB+++03PvvsM7+P1y6kAcqHYNuZ/EEKtx4rZc3huDAL9MMPARtG7saMwWjcGMexY5QZPJh2bdpI1vLJSlmzC6lreiRr6iRreoIxa++884779qZNmzAMg0aNGrm3Va9endjYWI4cOQLAggULMAyDrl27+n2sdiINUB6CcWfyNSnceqyYtZtvNr/++itkus6wZRjR0ex89VUyoqIot2oVxeSvXflixaxZndQ1PZI1dZI1PcGatc6dOwPw2GOP0bBhQ8C81k+VKlUAOH36NAALFy7EMAw6deoEmP8ekyZNCsCI7UEaoFwE687kS1K49Vg1ay1aQKVK5jlACxYEejSeXFnbWagQaaNHmxuHDoV//w3swCzOqlmzMqlreiRr6iRreoI5a61btwZg5syZHtf6STx/cu5vv/2GYRh06NABMFdBbtKkCcWLF+exxx5jx44dARu7lUkDlINg3pl8RQq3HitnLSwMevY0b8+cGdCheLg4a4UGDYIePcwTlvr0gfPXQhCerJw1q5K6pkeypk6ypifYs+a67s+hQ4c8rvUzf/584EKDFB8fT8OGDYmJiWH9+vUAfPfdd1kWTRAmaYCyEew7ky9I4dZjh6y5zgP68UfIyAjsWCCHrDkc5gWLKlY0L446eHCgh2k5dsia1Uhd0yNZUydZ0xOKWVuxYoXHktenT5+mTp06lCxZki1btgAwa9YsDMPglltuCeRQLU0uhHqRUNyZCkoKtx67ZC0tzVx1+vRpWLQIrroqcGPJM2vz5oHrxM9Zs+Cmm/w+RiuyS9asROqaHsmaOsmanlDKmutnczqd7tt79uyhRo0aHs+bPXs23bt39/v47EhmgDIJpZ3JW6Rw67FT1iIjzaPLILCHweUra9dcc2H254EH4NAh/w7SguyUNauQuqZHsqZOsqYn1LLWu3dvALZs2cKJEyeoUqWKR/Mz5/y18KT5yT9pgM4LtZ3JG6Rw67Fj1lyHwc2cCYGYM1bK2muvwRVXwMmTcM894HT6b6AWY8esBZrUNT2SNXWSNT2hmLVe538JX3rppZQrV46DBw+6H4uPj+e6667L9vs2bdpEtWrVePfdd/0yTjuRBojQ3JkKSgq3HrtmrWtXKFwY9u6FtWv9+97KWYuKgq+/hiJFzKXr3nrLPwO1GLtmLZCkrumRrKmTrOkJ1ax169bN4/6CBQs8LoSamWEYjB49GofDQaNGjdi3bx9zLHk188AK+QYoVHemgpDCrcfOWStSBFz115+HwWlnrV49cF087vnnYfVq3w3SguyctUCRuqZHsqZOsqYnlLOWOSOZr/WT2cGDB2ncuDFhYWEMGzYMgEqVKrF9+3ZpgLIR0g1QKO9MuqRw6wmGrGU+DM4fCpy1Bx6AW26B9HTo3RuSknwzUIsJhqz5m9Q1PZI1dZI1PZK1nH3zzTc4HA6qVKnCxo0bARg6dCjp6ekcPHiQOnXqBHiE1hSyq8DJzqROCreeYMna6dNQvrzZT2zbBnXr+u69vJa1U6egSRM4cMBsiD7+2LsDtZhgyZo/SV3TI1lTJ1nTI1kzuX5uwzCIj4/n1ltvdV8LyGXZsmW0atXKY9uaNWtYuXIlDz/8sN/GagchOQMkO5M6Kdx6gilrpUrB1Vebt305C+TVrJUuDVOnmtcJ+uQTmDHDewO1mGDKmr9IXdMjWVMnWdMjWbugQ4cOgNkIlSxZ0t383HbbbZw9exbDMNzNj9Pp5MUXX8ThcNCsWTMGDBhAkM53aAu5Bkh2JnVSuPUEY9Zuvtn86qsGyCdZ69ABzh8PTf/+sG9fwV/TYoIxa74mdU2PZE2dZE2PZM2TayU4l+nTpwPw8ccfU7hwYcC8NlCtWrUIDw/n1VdfBaBu3brs2bMn5P/9LhZSDZDsTOqkcOsJ1qzddJM5mbJ8OWRahdMrfJq1l1+Gli0hLg769oWMDO+9doAFa9Z8SeqaHsmaOsmaHslaVj179nTfNgzDY2W4yZMn43A4qFGjBrt27QLg5ZdfJiMjg23btlGtWjV/D9fyQqYBkp1JnRRuPcGctYoVoXVr8/aPP3rvdX2etchIc2nsYsVg8WIYPdq7rx8gwZw1X5G6pkeypk6ypkeylr2Lm5hTp04BEBMT4z6/p3DhwqxduxbDMHjppZcICzM/5ieFyCJAKkKiAZKdSZ0Ubj2hkDXXLPwPP3jn9fyWtVq14L33zNsvvQTLlvnmffwkFLLmbVLX9EjW1EnW9EjW8sc12+Py4IMPkpyczNmzZ7n88ssBSE9P56mnnsLhcFC8eHFef/31AI3WmoJ+FbiDBw+yYcMG2ZkUSOHWEyqFe8cOqFMHwsPh2DFznQFdfs+aYcBdd8G0aVCjBqxbB9msEml1oZI1b5K6pkeypk6ypkeylrfs/k0uXu1427ZtXHXVVRw7dsy9rWnTpixfvpzIyEi/jNMOgn4GaNmyZbIzKZDCrSeUCnft2tC4sXkazezZ+q8TkKw5HPD++1C9OuzeDQMH+v49vSyUsuYtUtf0SNbUSdb0SNbUHDt2jLi4OPd9wzAYP348DoeD+vXru5uft956C6fTyZo1a6T5uUjQN0CVK1eWnSmfpHDrCcXCXdCLogY0azEx8NVXEBYGU6aYt20iFLNWUFLX9EjW1EnW9EjW8q/0+UMuVq5cydatWwFzeeywsDCefvppAMqWLcvmzZsxDIOnn35a/j1zEPQNUP369eV/fj5I4dYTqoXbtRz23Llw5oza91oia23bwosvmrcfeQTOr5pjZaGatYKwRNZsSLKmTrKmR7KmxnV+z3PPPUfr8ysSrVu3DoAnn3yStLQ0jh8/ToMGDQI0QvsI+gZIdqa8SeHWE8qF+7LLzFNokpPht9/y/32Wytrw4dCuHSQmwt13Q3p64MaSh1DOmi5LZc1GJGvqJGt6JGvqXA3Qhg0b3Nvmzp2LYRi8/fbbREREBGhk9hP0DZDInRRuPaFeuB0O9cPgLJe1iAjz8LeYGPjnHzh/0TirCfWs6bBc1mxCsqZOsqZHsqbOMAzKlSvnvn/w/MX42rRpE6gh2Zo0QCFMCrceKdwmVwM0ezakpub+XMtmrVo1+OAD8/bIkbBkSWDHcxHJmjrLZs3iJGvqJGt6JGvqXFmLjY11b5O8FYw0QCFKCrceKdwXtGkDsbEQFwcLF+b8PMtn7c474d57wek0l8g+fTrQIwIkazosnzWLkqypk6zpkaypy5y1W265xWO70CcNUAiSwq1HCren8HC46Sbzdk6HwdkmaxMmmBdK3b8fBgwwrxcUQJI1dbbJmsVI1tRJ1vRI1tRdnLXM1/vZtGlTAEdmf9IAhRgp3HqkcGfPdRjcjz+aEyiZ2SprxYvD11+b5wV9+y188UXAhiJZU2errFmIZE2dZE2PZE1dXln7+eefAzSy4CANUAiRwq1HCnfOOnWCEiXg8GFYvvzCdltmrWXLCwshDBwI//3n9yFI1tTZMmsWIFlTJ1nTI1lTl5+szS7IlciFNEChQgq3HincuYuKghtuMG//8IP51dZZGzIEOnY0L27Up0/eqzt4kWRNna2zFkCSNXWSNT2SNXX5zdrGjRvzfK2kpCTuvfdefvrpJ28P0/akAQoBUrj1SOHOn8zLYTudNs9aeDhMmQKlSsGqVfDSS355W8maOqlreiRr6iRreiRr6ryVtcWLF+NwOChevDhffvklQ4cO9fJI7U8aoCAnhVuPFO78u+46iI6GnTvhxx932j9rVarAxx+bt8eMgT/+8OnbSdbUSV3TI1lTJ1nTI1lTl9+slS1bNtvtaWlpPP744zgcDjp06ODe/t1337F161afjNnOpAEKYlK49UjhVlOsGHTtaq6aNnMmwZG1m2+G/v3N1eD69oWTJ33yNpI1dVLX9EjW1EnW9EjW1KlkrXHjxh73t27dSunSpYmKimLixIkAtGrViqNHj2IYhsfS2eICaYCClBRuPVK41RmGQatWhwBYt65G8GRt3DioVw8OHYIHH/T60tiSNXVS1/RI1tRJ1vRI1tSpZu3iBqhVq1acPn/9unfffRen08myZcsoX748AHFxcaxatco3g7cxaYCCkBRuPVK41bmyVrfuNsLDDTZsCOfAgUCPykuKFoVp0yAyEmbNMhsiL5GsqZO6pkeypk6ypkeypk41a4cOHeL777/32FahQgW2b9+OYRjuQ+AAPv30UxwOB6VKlaJFixZy4dSLSAMUZKRw65HCrS5z1lq1aonTaf6bRUYGeGDe1LQpvPmmeXvwYJg+vcAvKVlTJ3VNj2RNnWRNj2RNnU7WKleuzMGDB923AbZt20adOnUASElJ4brrrsPhcPDAAw+4v+/333+X/ycXkQYoiEjh1iOFW93FWVuzphiGAQ0aQGxsoEfnZY8/Dk8+ad6+554CLYogWVMndU2PZE2dZE2PZE2dN7JWvXp19+21a9cSERFBoUKF+O2339zb//rrLwzD4JprrvHGsINKRKAHILxDCrceKdzqssvan3+aj119dWDH5hMOh3n426FDMGOGue734sXQpInSy0jW1Eld0yNZUydZ0yNZU+etrG3evBmAmJgYj+1VqlRh3bp1lClTpsBjDWYyAxQEpHDrkcKtLqesBXUDBBAWBl9+CR06QEICdOsGe/fm+9sla+qkrumRrKmTrOmRrKnzZtZcCx+43HLLLaSmprJ//3538/PRRx/hcDhwOBy8/fbbBRl60HEYQXpWVEJCAjExMcTHx1OiRIlAD8dnpHDrkcKtLqesHT8O5xeb4fhxyOESBcEhLg6uvBI2boT69eGvv6B06Vy/RbKmTuqaHsmaOsmaHsmaOm9kLbt/55EjRzJ8+HD3/bNnz9KtWzcWL17s8bzTp09TsmRJ5fcMVjIDZGNSuPVI4VaXW9YWLjS/Nm4c5M0PQMmSMGeOebHUrVuhRw84dy7Hp0vW1Eld0yNZUydZ0yNZU1fQrKWmpub47/z4448D8Pfff+NwOChatKhH87Nq1SoMw5Dm5yLSANmUFG49UrjV5ZW1oD/87WJVqsDcuWYz9Pff0KcPZGRkeZpkTZ3UNT2SNXWSNT2SNXXeyNreXA65fu6553A4HLRr1869rWrVqhw/fhzDMGjWrJnWuIOdNEA2JIVbjxRudfnJWsg1QACXXgo//QTR0eY1gh5/3ONCqZI1dVLX9EjW1EnW9EjW1Hkra7Vr1wagcOHCAISFXfj4/v7777tvu84D2rdvH2WD/pCMgpEGyGakcOuRwq0uP1k7fNg8EszhMNcHCClXXglffWX+8O+/D6+/DkjWdEhd0yNZUydZ0yNZU+fNrLn+vc+dP+Ta6XR6PP7mm29iGAbfffcdkecvxrdw4UL3Agi//vqr9nsHK1kG20akcOuRwq0uv1lznf/TtCmUKuW/8VnGLbfAu++aM0AvvEBymTL8VaOGZE2B1DU9UtfUSdb0SNbU+TNrFy/29f777/Poo496PKdLly4+e3+7khkgm5DCrUcKtzqVrIXk4W8XGzgQnn0WgKjHHqP+7t2StXySuqZH6po6yZoeyZo6f2Tt0ksv9bifnp5O//79cTgc7ubn0ksv5dixYxiGQVRUlNfHYHfSANmAFG49UrjVqWbtjz/MryHdAAFJw4dzsHNnwpxOLnnmGRyrVgV6SJYndU2P1DV1kjU9kjV1vsxa5lXckpOT3bevvvpqIiMj+eijjwC46667SElJYePGjZQrV85r7x9spAGyOCnceqRwq1PN2v79sHMnhIebp8OEqqSkJP76+2/i3nwTo2tXHGfPQvfusGNHoIdmWVLX9EhdUydZ0yNZU+frrF111VXu25lXhVuzZg1w4TygqVOnyoxPPkgDZGFSuPVI4Vank7VFi8yvV1wBQXyt4Vx5ZK1JExzffWf+gxw/Dt26wYkTgR6i5Uhd0yN1TZ1kTY9kTZ0/stYh00pD6enp7tvffvstzZo1Y/DgwXz88cdef99gJQ2QRUnh1iOFW51u1v7+2/waqrM/2WateHH45ReoVs2cAbrpplwvlBpqpK79v737Do+iXPs4/t2EEEKEQEASAkFCryIiEoqCVJWqHkGxi4gKHiMgWI5HsYDgEVCRI3isKKKvCDaEgChFDFIVUFDpLYSaRgghmfePcZcsSSDPky0zu/fnunKx2Z3dfTL5zc3emZln9EhdUydZ0yNZU+errHXo0MHt+59++gmAgQMHsm7dOsCcBluUjjRAFiSFW48UbnVlydqPP5r/Frr2WtA4b9ZiY2HBAoiKMrvEu+6Cc6YsDUZS1/RIXVMnWdMjWVPny6xdccUVbt+3b9/edXv8+PEYhkHVoJyOVY/DMApdvS+AZGRkEBUVVWR6QKuTwq1HCre6smQtPd2c9towzGsBxcZ6caAWU+qsff899OoFeXkwejS8/LJvB2ohUtf0SF1TJ1nTI1lT54+sFfd7SU1NJSYmxuvvHWhkD5CFSOHWI4VbXVmzlpJiNj/16knzU6JrroF33jFv/+c/MH26bwZpMVLX9EhdUydZ0yNZU+ePrH3++edu33/33XcAREREAPD000/jcDh49913vT6WQCAXQrUIKdx6pHCr80TWgvHwN62s3X477NoFTz9tXiw1Ph769vX6WK1C6poeqWvqJGt6JGvqfJ21w4cPU6NGjSL3N2vWDIBffvnFbYa4c88VEsWTPUAWIIVbjxRudZ7KmnMChGBpgMqUtaeegiFDzPOAbrkFguQaQVLX9EhdUydZ0yNZU+frrA0ZMsTV/ISGhrpNb71p0ybg7PTY11xzDfn5+TRu3NirYwoUcg6Qn0nh1iOFW52nsnbmDFSpAtnZsGkTtGjh2XFajUeylpcHffpAcjLExJjHENat6/GxWoXUNT1S19RJ1vRI1tT5MmtHjx6levXqru8XLVpEz5496dGjB0uWLCmy/F9//UX9+vW9Np5AJHuA/EgKtx4p3Oo8mbVffzWbn6go+HsPfMDyWNbCwuD//g8uvRQOHYLrr4fjxz07WIuQuqZH6po6yZoeyZo6X2ftt99+A8y9PgUFBfTs2ROAFsX8xTE9Pd3V/CxcuBCHw8H//d//eXV8gUAaID+Rwq1HCrc6T2fNef5P+/YQEsAVxONZq1zZvEZQrVrw++9w442Qm+uZwVqE1DU9UtfUSdb0SNbU+SNrnTp1AiA/Px+Hw0F+fj5XX301U6dOdS1T+MKoJ06cwOFwcN111wFQpUoVr4/R7gL444t1SeHWI4VbnTeyFgzn/3gta7Vrm01QpUrwww9w333mdHoBQOqaHqlr6iRreiRr6vyVtcK/m48++ohy5cqxYsUKt2V+//13AMaOHet2/Z8jR47Qo0cPn4zTzqQB8jEp3HqkcKvzVtYCfQY4r2etVSvzcLjQUPjwQ/j3vz37+n4gdU2P1DV1kjU9kjV1/s7alVdeCcDtt98OmNNcFz5tPy0tDYA333wTgPnz52MYBtWqVfPpOO1KJkHwIX9vTHYlhVudt7K2dy/UqWN+dk9Ph8hIj7ysZfg0a2+/be4Bct6+917vvZcXSV3TI3VNnWRNj2RNnRWy9vHHHzN48GAAMjMzXWM49/d33XXX8c0338jvVZHsAfIRK2xMdiSFW503s+bc+3PZZdL8lNmQIeYU2QD332/OEGczUtf0SF1TJ1nTI1lTZ5Ws3XLLLa7bzjGMHz++yHJz5syR36sGuRCqD1hlY7IbKdzqvJ21QD3/x29Ze/5580KpH30E//gHrFhhHiJnA1LX9EhdUydZ0yNZU2elrBX+fW3ZsqXYGeCEPtkD5GVW2pjsRAq3Ol9kLRDP//Fr1hwO8/C3Ll0gMxN694Z9+3z3/pqkrumRuqZOsqZHsqbOillLTEwEip/+WpSNNEBeZMWNyQ6kcKvzRdaysuCXX8zbHTp4/OX9whJZCw+Hzz+Hpk1h/36zCcrI8P04Sknqmh5LZM1mJGt6JGvqrJq1pKSkIveNGTPG7ftDhw75aDSBxesN0IQJE3A4HG6/RMMwePbZZ4mLiyMiIoIuXbqwZcsWt+fl5uby8MMPU716dSIjI+nXrx/7bPCXUSerbkxWJ4Vbna+ytno15OebkyDUru2Vt/ApS2WtalVYsABiYswrzd58M+Tl+W88JZC6psdSWbMJyZoeyZo6K2ctKyvLdfu+++7DMAy6devmtkyvXr18PayA4NUGaM2aNcycOZNLL73U7f5JkyYxefJkpk2bxpo1a4iNjaVHjx5kZma6lklKSmLevHnMmTOHlStXkpWVRZ8+fcjPz/fmkD3CyhuTlUnhVufLrAXS+T+WzFrduvD111CxojkhwoMPWuoaQVLX9FgyaxYnWdMjWVNn1awZhkHbtm25zzlTKPDWW28B0LBhQ7dlly1b5tOxBQqvNUBZWVncdtttvPXWW24XaDIMg6lTp/LUU09x44030qJFC95//31OnjzJ7NmzAUhPT+ftt9/mlVdeoXv37rRu3ZoPP/yQTZs2sWTJEm8N2SOsujFZnRRudb7OWqCc/2PprF1xBcyZAyEh5rlBxcz44w9S1/RYOmsWJVnTI1lTZ9WsHT58mJCQENauXQvAFVdcAcC+ffuYP38+9erVc1s+KirK52MMBF5rgIYPH07v3r3p3r272/07d+4kNTWVnj17uu4LDw+nc+fOrPr7T8zr1q0jLy/PbZm4uDhatGjhWsaKrLoxWZ0UbnW+zlp+Pvz0k3nbzuf/2CJrffvCa6+Zt//1L/NiqX4kdU2PLbJmMZI1PZI1dVbN2vz586lRowYAvXv3xjAMnnvuOQCuuuoqbrjhBn8OL6B4ZRrsOXPmsH79etasWVPksdTUVABiYmLc7o+JiWH37t2uZcqXL++258i5jPP558rNzSU3N9f1fcbfJxHn5eWR54Nj6Q3DYNu2bezfv5/ExETCw8N98r52l52dTUpKCrVq1aJhw4acOXPG30OyPH9kbd8+yMgIA2DTpjO0aGGdQ7NKy1ZZu/9+QrZvJ3TKFIy77ybf4cAYONDnw5C6psdWWbMIyZoeyZo6q2bt8ccfZ/LkyQB88skn3HDDDeTl5dG2bVsAdu3aBcCePXuoU6eOv4YZMDzeAO3du5dHHnmE5ORkKlSoUOJy5/6FwjCMC/7V4nzLTJgwgXHjxhW5Pzk5mYoVK5Zi5J4jx2Oq27FjBzt27PD3MGzHV1kzDOjatTVLl9bhnntC2bBhPV262GdSksJsk7WrrqL1xo3U+f57Qu+8k/Vr17KvSxe/DUfqmjrbZM1iJGvqJGt6rJS1V199FYBp06YRHh7OggUL2LRpE08//bRrmXnz5rF+/Xp/DTGgOAzDs2fZzp8/nxtuuIHQ0FDXffn5+TgcDkJCQti2bRsNGjRg/fr1tG7d2rVM//79qVKlCu+//z5Lly6lW7duHDt2zG0vUKtWrRgwYECxjU5xe4Di4+M5cuQIlStX9uSP6ObcvyRERkZ67b0CSeG/WjVu3Fh22ZeCv7NWUAAPPhjKu++G4HAYvPVWPnfeaf09QbbOWkEBoQ8+SMi772I4HOTPnIlx111ef1t/Z82ubJ01P5Gs6ZGsqbN61hYsWMCAAQO48cYbmTNnDsOHD3dNfHDJJZewe/dudu7cSa1atWjXrh0bNmwAzPPmvfk5N1B5fA9Qt27d2LRpk9t999xzD02aNGHs2LHUq1eP2NhYFi9e7GqATp8+zbJly5g4cSIAbdq0ISwsjMWLFzPw78M+Dh48yObNm5k0aVKx7xseHk54eHiR+8PCwggLC/Pkj+jiPIb0wIEDdOrUyTLHkFpdVlYWq1evJj4+Xo5XLiWrZO1//zMvW/Pmmw7uu68cBQUwdKhfhlIqAZG1v1e64803KTd0qNmJ3n+/197OKlmzm4DImo9J1vRI1tTZIWv9+/cH4PPPP6d8+fKu+3fs2MHvv/9O7969mTx5Mq+99hpdunRxNUBCj8cboEqVKhW5Ym1kZCTVqlVz3Z+UlMT48eNp2LAhDRs2ZPz48VSsWJHBgwcD5owWQ4YMYdSoUVSrVo3o6GhGjx5Ny5Yti0yq4C9WPYHO6uRkTXVWylpICEyfDuXLm+fp33+/ebmahx7y25BKFDBZc670sDB4/XUYNsxc6cOHe/ytrJQ1OwmYrPmQZE2PZE2dnbJWv359tm/fDsDFF19MamoqISEh1K1bF4DXX3+dxMREOnfuzJQpU/w4UvvzyiQIFzJmzBhycnJ46KGHOH78OO3atSM5OZlKlSq5lpkyZQrlypVj4MCB5OTk0K1bN9577z23Q+v8xU4bk5VI4VZnxaw5HDB1qvl5/JVXzM/he/fC889DOb9UlKICLmsOB7z6qrnSJ0+GESOgShW47TaPvYUVs2YHAZc1H5Cs6ZGsqbNb1j799FPatGkDQFpaGmCeRlL4dJCuXbu67SESejx+DpBVZGRkEBUV5fFjI+22MVmFFG51Vs+aYcC//w0vvGB+37UrfPwx/D2Dp98EdNYMA0aPNpugyEhYvx4aNfLAy1o7a1YV0FnzEsmaHsmaOrtmzfm7NQyDv/76q8iFT/fv309cXBxTp07l0UcflXOANHntOkCByK4bk79J4VZnh6w5HOZenzlzzM/iS5dCmzaQkuK/MQV81hwOmDQJunSB7GwYOBBOnSrTS9oha1YU8FnzAsmaHsmaOjtn7dZbbwWgR48erubnn//8J1999RWA63z5e++91z8DDBCyB6iU7Lwx+ZMUbnV2zNpvv8FNN8HWreZRWlOmmOcF+fLXHVRZO3AALrsMDh82V/Qbb2i9jB2zZgVBlTUPkazpkayps3vWnJ9fnVauXEnHjh0xDIOQEHO/hWEYXjvSKVjIHqBSsPvG5C9SuNXZNWvNmsHPP8M//mGenz9iBNxxh7mTwheCLmtxcTBrlnl7+nT47DPll7Br1vwt6LLmAZI1PZI1dYGQtcLNzIkTJ+jYsSNQ9PqZomykAbqAQNiY/EEKtzq7Z61SJfj0U3NihNBQ+OgjSEyEP/7w7vsGbdZ69YLHHzdvDxkCChdBtHvW/CVos1YGkjU9kjV1gZS1l156CYCpU6e63e+8fMzBgwd9PaSAI4fAnUcgbUy+JIVbXaBlbflyGDQIUlOhcmV47z244QbPv0/QZy0vzzwfaNUquOIK+PFHc47y8wi0rPlK0GdNg2RNj2RNXaBlraCgwDXrceGP6V9++SX9+/fnkUce4bnnnpND4MpAGqASBNrG5CtSuNUFatYOHjTP0V+50vx+zBh48UXPTZUtWfvbnj3m+UDHj8Ojj5ozxJUgULPmbZI1dZI1PZI1dYGaNefv/ujRo0RHRwO4nQeUnp4uDVAZyCFwxQjUjcnbpHCrC+Ss1axpzgz36KPm95MmQc+ecOhQ2V9bslZInTrmLjYwZ5/48stiFwvkrHmTZE2dZE2PZE1dIGdtwYIFAAwdOtR1n04mjh07Rl5ensfGFSikATpHIG9M3iSFW10wZM153c5PP4WLLoLvv4fLLzeP2NIlWStGv35nO8277zb3ChUSDFnzBsmaOsmaHsmaukDP2nXXXQfA559/7na/8zygQxf4a+KMGTNwOBxUq1ZNLpxaDGmACgn0jclbpHCrC7as3XyzOUtc06bmDM6dO8Prr5vX9VQhWTuPl14yzwM6fhxuvdU8P4jgy5qnSNbUSdb0SNbUBUvWWrRoAcDmzZtd9z3zzDNA0QkSwDxcrnPnzjgcDh544AEAKlSowA6FSXKChZwD9Ldg2Zg8TQq3umDOWmYm3HefuUcIzM/pM2eae4cuRLJWCjt2QOvWkJEBjz+OMX580GatLCRr6oK5rpWFZE1dMGXtjz/+oHHjxtSrV4/t27cD7ucBgXku0LJly+jXr5/bc++77z6mTZtGeHi4T8dsF9IAEVwbkydJ4VYnWTP3+rz6Kjz2GJw5Y15D6PPPoXHjkp8jWVPwf/9nzj4B7Joxg22XXBK0WdMhWVMndU2PZE1dMGbNmYvCH9fPl5Xk5GR69Ojh9XHZXdAfAheMG5MnSOFWJ1kzORyQlGSeD1SzJvz2G7RtC3PnFr+8ZE3RzTdj/H3oQ80xY+hUr17QZk2VZE2d1DU9kjV1wZq122+/HTh7LtDPP/9cZJlrr72WEydOYBiGq/kxDIMpU6bgcDhwOBwE6P4ObUG9ByhYN6ayksKtTrJWvNRU83pBy5eb37/xBjz00NnHJWvqDMPg9w0bqH3zzVTesQOuvhqSk0EOgzgvyZo6qWt6JGvqgjlrzs+zJTn3c+6hQ4fo3bs369atc92XmJjITz/95NVx2k3Q7gEK5o2pLKRwq5OslSw2FpYsgREjzO+nTDn7mGRNnTNrew8fJvSzz8yTq5Yvh9tug/x8fw/PsiRr6qSu6ZGsqQv2rBX3R/y9e/fS+Jzjxv/v//4Ph8NBbGysq/l55JFHyMvLk+anGEG5ByjYNyZdUrjVSdZKJz0doqOhoAB274boaMmaqmKztmQJ9O4Np0/D/ffDm2+axyAKF6lr6qSu6ZGsqZOsmV5++WXGjBnj+t4wDNfn3N69e/PNN9+4Lb9ixQo6derk62HaStDtAZKNSY8UbnWStdKLijLPAwJYsOCUZE1RiVnr3h0++shsembOhH/9y78DtRipa+qkrumRrKmTrJ01atQot++XL1/uOizO2fzceOONZGZmYhhGkeZn+fLlNGjQQM4HKiSoGiDZmPRI4VYnWVPXtav572efHZWsKbhg1v7xD3PPD8D48VDMtSOCkdQ1dVLX9EjW1EnW3BWe9hqgc+fOrtsffPABhmEwd+5c13oyDIMPP/yQcuXK4XA46Ny5s2sabWEKmgZINiY9UrjVSdb0dOiQA8CmTTVo2lSyVhqlztr998OLL5q3H30UZs3y3SAtSOqaOqlreiRr6iRrxVu4cKHr9pVXXsmff/4JQP/+/QHIzc3lhRdewOFwEBISwh133EH+Oed+Pv300+Tk5EgOCZJzgCpVqiQbkwYp3OqkcOvJyspi6dKfuPnmbpw+HcLWree/LpDQyJphwKhR5kwToaEwfz706eOTsVqJ1DV1Utf0SNbUSdbOr/A1gZyfcwcOHMinzquLF+Ptt9/m7rvvLrIXKdgF/NqQjUmPFG51kjU9zqzVrx9Hx45mzr77zs+DsjitrDkc8J//wB13mDPC3XwzrFjh/cFaiNQ1dVLX9EjW1EnWLiwyMhKAn376yXUO0LnNT+3atVmyZAmGYWAYBvfeey8Oh4Mnn3zSdQ6QCIIGaOvWrbIxKZLCrU4Kt55zs9atm5m1pUv9PDALK1PWQkLg7bfNPT+nTkHfvvDLL94brIVIXVMndU2PZE2dZK10brrpJgA6dOjgdn/z5s357bffMAyDvXv30q1bN06dOsUNN9zgOiRuwoQJruXPPTQuGAV8A7R//37ZmBRI4VYnhVtPcVlzToTw/ffmlNjCnUeyFhYGn34KnTqZ849fey0E+MmxUtfUSV3TI1lTJ1krvQYNGhS5Lz09nc2bN9O0aVP2799P69atcTgcREREMH/+/CLLz507l9DQUB+M1toCvgFKTEyUjamUpHCrk8Ktp6SstW0LlSrBsWNBs2Oi1DyatYgI+OoruPRSSE2Fnj3h4EHPDdZCpK6pk7qmR7KmTrKmpkePHkXuW7t2LXFxcTgcDmrXrs3GjRvdHq9Zsyb/+te/XIfP3XTTTTINNkHQAMnGVDpSuNVJ4dZzvqyVKwdXX23elvOAzvJK1qpUgUWLoF492LHD3BN04kTZX9dCpK6pk7qmR7KmTrKmrnnz5kXu69atGwfP+QNWhw4dXNcOOnjwIC+88ALZ2dkAtGnTRvJJEDRA4sKkcKuTwq2nNFnr1s38V84DMnk1a7GxsHix+e+vv5rnBJ086bnX9yOpa+qkrumRrKmTrOk5X7YGDhzIPffcA8CqVat45ZVXil1u3bp1rj1A6enpnh+kTUgDFOSkcKuTwq2ntFlznge0fDnk5flwgBbkk6zVq2fuCYqKgpUrYeBA2694qWvqpK7pkaypk6zpcWbtXN27dwfM2eDefffd875G69atiY6OJiQkBIfDQZUqVfjoo4+8Ml6rkwYoiEnhVieFW49K1lq2hOhoyM6GDRt8OEiL8WnWLr0Uvv7aPDfom2/grrvMqbJtSOqaOqlreiRr6iRregpn7VxLliwp9ets2LCBY8eOub6/5557GDx4sEfGaDfSAAUpKdzqpHDrUc1aSAg4Z/gs5o9dQcEvWevUCebONU/E+vhjGDHCvHiqjUhdUyd1TY9kTZ1kTc+5WfOE/Px8DMPgnXfeCdrsSgMUhKRwq5PCrUc3ax07mv+uWuXFwVmUX7N23XXw4YfmRVPffBOefNJ3711GUtfUSV3TI1lTJ1nTI1nzHmmAgoxsTOqkcOspS9YK7wGy2U6IMrFE1gYNghkzzNsvvQQTJ/p+DIqkrqmzRNZsSLKmTrKmx1tZS0xMJDQ0FIfDEdT5lQYoiEjhVieFW09Zs9a2rXm9zoMHYdcu74zRaiyVtaFD4eWXzduPP362IbIgqWvqLJU1G5GsqZOs6Tlf1lq2bKn0WufmNCUlxXW7V69eZRuojUkDFCSkcKuTwq3HE1mLiIDLLzdvB8NhcJbM2ujR8NRT5u0HHzTPC7IYqWvqLJk1G5CsqZOs6blQ1lQboOIuepqXl4dhGCxcuLBMY7UzaYCCgBRudVK49Xgya8EyEYKls/b88zB8uHkc4p13mjPFWYTUNXWWzpqFSdbUSdb0lCZrqg1QcUJDQ8v8GnYnDVCAk8KtTgq3Hk9nzTkRQiA3QJbPmsMBr70Gt98OZ87AzTfDDz/4e1RS1zRYPmsWJVlTJ1nTU9qseaIB6tSpEw6Hg7feeqvMr2VX0gAFMCnc6qRw6/FG1px7gDZtgoyMMr+c5dgmayEh8M470K8fnDoFffvCmjV+G47UNXW2yZrFSNbUSdb0qF0rr+wN0Kq/jy3ftm1bmV/LrqQBClBSuNVJ4dbjrazVrAkJCebRV4XO2QwItstaWBh88glccw1kZcG118KWLT4fhtQ1dbbLmkVI1tRJ1vSoZi0+Pr5M79e9e3c2b96MYRj85z//KdNr2Zk0QAFICrc6Kdx6vJ21QDwMzrZZq1ABvvgCrrwSjh2Dnj1h506fvb3UNXW2zZqfSdbUSdb06GRNNY9t2rTh999/xzAMDMNg8eLFNG/eXHfIAUMaoAAjhVudFG49vsia8zC4QJkJzvZZq1QJFiyA5s3hwAHo3t2cq9zLpK6ps33W/ESypk6ypsfbWduwYQOGYbB27VoqVKhAnz59XNf+OXPmjEffy46kAQogUrjVSeHW46usOfcApaSY5+DbWcBkrVo1SE6GevVgxw7o0QOOHvXa20ldUxcwWfMxyZo6yZoeX2Ttt99+o0WLFjgcDhISEvjmm29cj8nvSRqggCGFW50Ubj2+zFrz5lC5snnayebNXnsbrwu4rMXFwZIl5r9btsD110NmpsffRuqauoDLmo9I1tRJ1vT4Kmu33XYbW4o5V/Oyyy5j+/btXnlPO5EGKABI4VYnhVuPr7MWGgqJieZtu54HFLBZS0gw9wRFR8PPP0P//uYscR4idU1dwGbNyyRr6iRrevyVtX/+858cO3YMwzDYsGEDtWrV8sn7Wpk0QDYnhVudFG49/sqanSdCCPisNW8OCxfCRRfB99/DoEGQl1fml5W6pi7gs+YlkjV1kjU9nszahRqYGjVq8Nlnn1FQUIBhGLz66qtUrVpV+/0CkTRANiaFW50Ubj3+zJpdJ0IImqy1bQtffQXh4fDll3DvvVBQoP1yUtfUBU3WPEyypk6ypsfTWWvRokWR+2666SZ27tyJYRgcOnSIm266STJ9HuX8PQChRwq3OincevydtXbtzGtx7t4N+/eDHfbcB13WunSBzz6DG26ADz+EqCh4/XVQzIq/s2ZHQZc1D5GsqZOs6fFG1lq2bMmiRYtc32/evFl5auuCggKOHz/O4cOHOXz4MGlpaa7bWVlZ/Otf/6JSpUplHqtVSQNkQ1K41Unh1mOFrFWqBK1awYYN5mFwAwf6fAhKgjZrffrABx/AbbfBG29AlSrwwgulfroVsmY3QZu1MpKsqZOs6fFW1lq2bOn2faNGjYosc/DgQeLi4rTfY9++fXz00Ufaz7c6aYBsRgq3OinceqyUtQ4dzAZo1SprN0BBn7Vbb4X0dHjwQXjxRXNP0GOPXfBpVsqaXQR91jRJ1tRJ1vR4M2vnNkBhYWFFlklKSir2uRdddBEXX3yx21dISAjZ2dl0796dmjVrEhcXR+vWrT02XityGIZh+HsQ3pCRkUFUVBTp6elUrlzZ38PxCCnc6qRw67Fa1j7+GAYPhrAwuOoquPZa86tFC+WjrLxGslbISy/BE0+Yt5ctg6uvLnFRq2XNDiRreiRr6iRrerydtVOnThEREeH6vriP8s73NAyDgwcPsnTpUtfXrl27in3dgQMH8sknn3h0rFYlDZBNSOFWJ4VbjxWzduKE+Rl60yb3++PizjZD3buDvya5kawV47bbYPZsc2/Q9OnFLmLFrFmdZE2PZE2dZE2Pr7JW+HULf5T/xz/+wdy5c0v9OjExMSQmJnLZZZeRmJhIQUEB119/vUfHakXSANmAFG51Urj1WDlrhgF//WXOurxwoTnrck7O2cdDQswJE5wNUZs25nWEvD8uyVqxFiyA3r2hdm3Ys6fIrjorZ82qJGt6JGvqJGt6fJm14hqgn376iQ7OqVPL4MUXX+TJJ58s8+tYmTRAFieFW50Ubj12y9qpU7By5dmG6NwLXlerBj17ms1Qz54QG+v5MUjWzuPUKfOXcPIkrF8PhY4nt1vWrECypkeypk6ypsfXWSuuARo+fDjTp0+nevXqHDly5LzPL3wOUPXq1alRowY1atQgISGBO++8M+C3FY83QM8++yzjxo1zuy8mJobU1FTA/CWNGzeOmTNncvz4cdq1a8cbb7zhNn1fbm4uo0eP5uOPPyYnJ4du3boxffp0ateuXepxBEIDJIVbnRRuPYGQtb17YdEisxlavBgyMtwfb93abIZ69TInVSjmnFElkrVSuPFGmDcPnn0WnnkGCIys+ZpkTY9kTZ1kTY8/suZ8j0qVKpHx9394VatW5cSJE65lnB/xDcNg69atbucBFV7u3OWDgVcuhNq8eXMOHjzo+tpU6MD9SZMmMXnyZKZNm8aaNWuIjY2lR48eZGZmupZJSkpi3rx5zJkzh5UrV5KVlUWfPn3Iz8/3xnAtSQq3OincegIla/HxcN995uVojhyBFSvgqafMQ+HAnEVuwgTzkjXVqpmXrJkxw7y+kCrJWin17Wv++9VXQOBkzZcka3oka+oka3r8nbVmzZq5bp/b1DgcDhwOByEhITRr1owRI0bw+eefF1muWbNmrFixwgejtQ6v7AGaP38+GzduLPKYYRjExcWRlJTE2LFjAXNvT0xMDBMnTmTYsGGkp6dz8cUXM2vWLAYNGgTAgQMHiI+PZ8GCBfTq1atU47DzHiB/b0x2JIVbT7BkLS0NkpPNvUPJyXD4sPvjTZqcPXfoqqugYsWSX0uypiAtzTz20DDI3rqVlbt2BXzWPEmypidY6ponSdb0+DNrzve65557eOedd9zuO1dcXBxdu3ala9euXHPNNdStW9dXw7Qsr1wH6M8//yQuLo7w8HDatWvH+PHjqVevHjt37iQ1NZWePXu6lg0PD6dz586sWrWKYcOGsW7dOvLy8tyWiYuLo0WLFqxatarEBig3N5fc3FzX987dgXl5eeTl5Xnjx/SK7OxsUlJSqFWrFg0bNuTMmTP+HpLlGYbBtm3b2L9/P4mJiYSHh9vqd+4vwZS1qlVh0CDzq6AANm6ERYtCSE52kJLiYOtWB1u3wtSp5vKVKhlUrw7R0QbVqkF0NFSvblC7tkGXLts4fnyvZK00qlalXHg4jlOn2Dl9OnH33RfwWfMUqWt6gqmueYpkTY9VsubcA5Sdne12f3Z2NhXP99e8IOfxBqhdu3Z88MEHNGrUiEOHDvHCCy/QoUMHtmzZ4joPKCYmxu05MTEx7P77OJTU1FTKly9P1XPmsy18HlFxJkyYUOTcI4Dk5GRbBmDHjh3s2LHD38OwnWXLlvl7CLYTrFlr1cr8ysoqx6+/XsyGDTVYvz6Go0cjyMx0kJkJO3cW/WvaiBGn6d49V7JWCtV//ZWOp04BcLJiRQ4GadbKSrKmLljrWllJ1tT5O2vOc+i//PJLt/vt+NnXlzzeAF133XWu2y1btqR9+/bUr1+f999/n8TERKDoLjrDMC642/BCyzzxxBOMHDnS9X1GRgbx8fH07NnTFofAFf5LQuPGjWWXfSmc+1eryMhIfw/JFiRrRQ0caP5rGHDsWB5Hj8KxYw6OHoWjR+Hzz0NYsCCE8PB87r+/Hk2atPDvgO3gzBlCHn8cgKM338xl48bRWrJ2QVLX9EhdUydZ02O1rDVt2hSA2bNnu+6rX7++v4ZjG145BK6wyMhIWrZsyZ9//smAAQMAcy9PzZo1XcukpaW59grFxsZy+vRpjh8/7rYXKC0t7bxzm4eHhxMeHl7k/rCwMMLKOt2Tl2VlZbF69Wri4+PleOVSch6vfODAATp16iTHK5eSZO3CYmPdp8zOyjJ46qkzQAijR5+hZcsov43NTnKnTiVs61bOVKlC9H//i6N8eX8PyfKkrumRuqZOsqbHilmLjo4G4Ouvv3bdN3HiRH8Nxza8MgtcYbm5ufz+++/UrFmThIQEYmNjWbx4sevx06dPs2zZMldz06ZNG8LCwtyWOXjwIJs3b/bIxZ2sRk7WVCcna+qRrKkzDIMxYw5z6FAYFSoY/OMf4QTRLKHasnfuJOTvQ5JDJ0zAUa2an0dkfVLX9EhdUydZ02OnrN14443+HoLleXwP0OjRo+nbty916tQhLS2NF154gYyMDO666y4cDgdJSUmMHz+ehg0b0rBhQ8aPH0/FihUZPHgwAFFRUQwZMoRRo0ZRrVo1oqOjGT16NC1btqR79+6eHq5f2Wljsgop3Hoka+qcWfvll+oAnDrloHVrc7rtnj3Nr27dzCm1xVlZmZmcvPVWIrOzMS67DMfQof4ekuVJXdMjdU2dZE2P3bJm9fFZgccboH379nHrrbdy5MgRLr74YhITE0lJSeGSSy4BYMyYMeTk5PDQQw+5LoSanJxMpUqVXK8xZcoUypUrx8CBA10XQn3vvfcIDQ319HD9xm4bkxVI4dYjWVNXOGuzZ1/CJ5+Y02evWGFecPXtt80vhwOuuAJ69DAbovbtIZiP9MrKymL3U0/RfPVqjPLlcbz3HgRQ3fYGqWt6pK6pk6zpsUPW9uzZ47pd2svFBDuPXwfIKqx8HSA7bExWI4Vbj2RN3fmydvIkLF8OixebDdHmze7PrVTJbIZ694brr3c/lyjQZWVlsW7ePK66/35CTp2CV16BQhPTiKKkrumRuqZOsqbHyllzjiU9PZ3//ve/PP73pDPr16+ndevW/hyaLUgD5GNW3pisSgq3HsmaOtWsHTgAS5aYzdDixeZ1Pwtr08ZshHr0gHbtAnfvkDNrV771FlXnzjWvJvvDDxDi9dNMbUvqmh6pa+oka3qsnrXCDdBVV13Fr7/+Cpi/b3Fh0gD5kNU3JiuSwq1HsqaurFkrKID16+Gbb8yvNWvcH4+MNPuCbt3Mr1atAqM/cGatQVYW9QYNwpGfDytXQseO/h6aZUld0yN1TZ1kTY8dsla4AYqKOjs7aYB+rPc4r0+DLUx22JisRgq3HsmaOk9kLSTEPB/oiivgmWfg0CH49ltYuBCWLoXDh83bCxeay1erBtdcA927w7XXwt+nSdqKK2s1a1JvyBCz+bn5Zml+zkPqmh6pa+oka3rsnLURI0b4ewi2IXuAfMDOG5O/SOHWI1lT54usFRSY5wt99535tWwZZGW5L9OsmXm43A03mJMpWP1X55a1P//EccMNEBUFv/8Oha7zJs6SuqZH6po6yZoeO2XNObYTJ05QpUoVwLzOpvO6miUxDMPSP5evSAPkZXbamKxCCrceyZo6f2UtLw9+/tlshpKT4aefzCbJqWlTGDoU7rzTmtNsu2UtLg7HNdfAL7/AiBHw+uv+Hp4lSV3TI3VNnWRNj92y5hzf4sWL6dGjB3Dhw99K+pkqV67M5ZdfTps2bWjTpg2XX345DRs2JCQQjtMugTRAXmS3jckKpHDrkayps1LWjh83G6Gvv4bPPzdnmwNz0oSbboL774fOna2xV8gta02b4ujXzzzpqVo1WLUKGjXy9xAtx0pZsxOpa+oka3rsmDXnGO+9917eeecdypcvT25ubonLr1mzhiuvvFL7/dq2bcvPP/+s/XyrkQbIS+y4MfmbFG49kjV1Vs5aRgbMng0zZ8KGDWfvb9jQ3Ct0111Qo4Z/xlYkazNnwgMPQHi4uRtLpl4twspZszKpa+oka3rsmjXnOCtUqMCpU6eYOnUqjzzyyAWX37t3L7Vr1y7yeHp6Ohs3bmTdunWsW7eO9evXs3XrVrdlAqllkAbIC+y6MfmTFG49kjV1dsraunXw1ltmQ5SZad4XFgYDBpjNULduvptJrkjW/vzTbHhOnoQpUyApyTcDsRE7Zc1KpK6pk6zpsXPWzh3rqVOnCA8PL3bZzMxM12fhAP3Yr0waIA+z88bkL1K49UjW1Nk1a1lZ8MknZjO0evXZ+xMS4L774J57vDvvQJGs5eebM739/DN07WpeBCmAjxXXYdes+ZvUNXWSNT12z9q54z3fx/mqVaty4sSJYh8rV66c27k/bdq0oXnz5oSFhXlyuJYjDZAH2X1j8gcp3Hoka+oCJWu//mo2QrNmQXq6eV9oKPTpY54rdO21nu1Fis3auHHw7LNQpYo5oPh4z71hAAiUrPma1DV1kjU9gZC1wmMODw/n1KlTF1y2RYsWbN68Wfm9du/eTZ06ddQHaWHyJzsPCYSNydekcOuRrKkLpKxdeqk50dqBA/D+++aOmPx8+OIL6N0bWraEbds8817FZm3RInj+eXOB6dOl+TlHIGXNl6SuqZOs6QnErA0aNKjEx6ZPnw7AkCFD2LRpE4ZhFPnKycnh559/5s0332To0KFcfvnlvhq638geIA8IxI3J26Rw65GsqQuGrP32m7lXaOpU8/sXXoCnnirba5aYtSFD4J13zNsFBdaYms4igiFr3iB1TZ1kTU8gZa3w2P/66y/q169/3uVyc3MpX7686/7XXnuNihUrMnDgQL9fL9MfZA9QGQXSxuQrUrj1SNbUBUvWmjWDxETzdni4ef2gsjhv1kaNMt8EzK5LAMGTNU+TuqZOsqYn0LKW7jwGGkpsfpyHu9WoUcOt+fn444955JFHGDp0KFFRUTgcDhwOB7Vr1+bpp59m+/bt3h28BUgDVAaBtjH5ghRuPZI1dcGUtZMn4bHHzNtPPlm2o9IumLVmzWD8ePP2yJEQBP9RXkgwZc2TpK6pk6zpCcSsrVu37oLLOK/78+OPP7rdP3jwYABefvllWrVq5bp///79vPDCCzRo0MDVFDkcDu68806WLl1KQeErdtucNECaAnFj8jYp3Hoka+qCLWsvvwx790KdOjB6tP7rlDprSUnmlVmzs+Huu82TkIJUsGXNU6SuqZOs6QnUrD377LPnfTwnJ4ecnBwAGjRo4Lp/0qRJAPTr14/k5GTi4uJYsmQJBQUFnDp1irlz59K3b1+315o1axbdunUjNDQUh8PBokWLPPvD+IE0QBoCdWPyJinceiRr6oIta3v2wMSJ5u2XX4aKFfVeRylrISHw3ntw0UWwciVMnqz3pjYXbFnzFKlr6iRregI5a8uXLwegW7duxT5+9913A/D++++77jMMg7FjxwJw7NgxFi9ezLfffkv37t0JCQmhQoUKPPDAA3Ts2JFjx45hGAYFBQWsW7eOhx9+2JW7QFiPMgmCokDemLxFCrceyZq6YMzaLbeY1wi66ipYtkxvTgLtrL39tnkhovLlYdMmaNRI/c1tKhiz5glS19RJ1vQEetacP8+MGTO4//77S3y88Mf84cOHu2aFU/GPf/yDUaNGkeg82TQAyB4gBYG+MXmDFG49kjV1wZi1JUvM5ickBF591cfND8C990KvXnD6dNmOvbOZYMyaJ0hdUydZ0xMMWatduzYAvXv3LvLYhx9+CJiNi9OZM2dczU/Lli0B87pApfHZZ5/Rvn171zlBTZo04eTJk2Uav79JA1RKwbAxeZoUbj2SNXXBmLXcXBg+3Lw9fDi0bq3+GmXOmsNhzr1drhx89RUsXqw+CJsJxqx5gtQ1dZI1PcGStX379gFQqVKlIo/dcccdAHzwwQeu+/r16wfAU089xaZNmwCzKXrrrbfIycmhoKCANWvWMHz4cCIjI8/73tu2beOTTz7xyM/hL3IIXCkEy8bkSVK49UjW1AVr1saPN6/1ExNjXvg0Kkrt+R7NWlKSuQuqeXPYuNFsiAJQsGatrKSuqZOs6QmmrDl/tnM/527fvp0GDRoQHh7OqVOnAHO9FNcoFWfYsGE8+uijNG7cGICDBw/y0UcfsWDBAt5++20SEhI8/JP4h+wBuoBg2pg8RQq3HsmaumDN2r595sVOAV55xc/ND8Azz0C1arBlC7zxRtley6KCNWtlJXVNnWRNj2TN1KlTJwDWrFnjus85HfaoUaMAiIqKwjAMjh8/zqRJk4iJiXEtO2PGDJo0aeI63K1v377UqlWLRYsWBUzzA7IH6LxkY1InhVuPZE1dMGftvvvM+Qc6dYLly9XO/fFa1mbMgAceMGeG++23sl2MyGKCOWtlIXVNnWRNTzBmbc6cOdx6661un3Pz8vJcFzx1frw/dOgQsbGxbs89ceIEUcX85cwwDH744QcmT57M119/Xez77tu3j1q1annyR/EL2QNUgmDcmMpKCrceyZq6YM7ab7/Bu++atydNskjzAzB0KHToAFlZMGIEBMjf1oI5a2UhdU2dZE1PsGbt+uuvL3Lf8L9PDH399ddd9zn32gwYMACAO++8s9jmB8zD6q655hq++uorDMPAMAzS0tIYN26cq8lyNlh2J3uAihGsG1NZSOHWI1lTF+xZ698fvvwSbrgBPv+89M/zSda2bDFnY8jLg7lz4cYbPf8ePhTsWdMldU2dZE1PMGetuM+55059/ccff7jO5XEqKCgIqvVUEtkDdI5g3ph0SeHWI1lTF+xZW7nSbH5CQ2HChNI/z2dZa94cxowxbz/8MKSne+d9fCDYs6ZL6po6yZoeyZq7+fPnA9CzZ0/Xfc7mp0aNGgDMnj076NeTk+wBKkQ2JnVSuPVI1tQFe9YMwzzCLCUFhg2DN98s3fN8nrWcHLj0UvjrL3N+7mnTvPt+XhDsWdMldU2dZE2PZK3o59xzZ4X76aef6NChAw6Hw7VHKEA/8muRPUB/k41JnRRuPZI1dZI1mD/fbH4qVjQnXSsNv2QtIsKcEAFg+nT46Sfvv6cHSdb0SF1TJ1nTI1krav/+/a7bzj/6d+jQATjb9Gzbts33A7MwaYCQjUmHFG49kjV1kjU4cwaeeMK8PXIk1Kx54ef4NWtdu8Jdd5m7re6/3zwnyAYka3qkrqmTrOmRrBWva9euAKSkpABnD4erXr06APXr16dRo0Z+GZtVBf0hcLIxqZPCrUeypk6yZpo50zzsrXp12L4dLnRUryWyduQINGkCR4+aJyw9/rjvx6BAsqbHElmzGcmaHsmaO+fn3GPHjhEdHQ2c3dtz7ro5efIkERERPh+jlQXm5bpLSTYmdVK49UjW1EnWTNnZZw95e/ppmzQ/YHZrkyebe4LGjYObb4b69f0zlguQrOmxTNZsRLKmR7JWsmf+/g/ihb+vjj19+nQALr74Yg4fPszIkSMJDQ1l6tSpREZGEhMTQ2xsLLGxscTExBAeHu63sftT0O4Bko1JnRRuPZI1dZK1s154wWx86tWD33+H812CwXJZMwzo0QO++w66d4fkZLULF/mAZE2P5bJmA5I1PZK14jk/5zo5p7c+d/0YhkFiYiKrV6/Wfq8dO3a4ricUKILyHCDZmNRJ4dYjWVMnWTvr8GHzYqcAL75os+YHzGbnzTehQgVYsgQ++sjfI3IjWdNjyaxZnGRNj2StdNq1a4fD4eDxvw81DgkxP95/8803AG7NT7ly5ahcuTLVqlWjWrVqVKlS5YJ7gdLS0rw0cv8JugZINiZ1Urj1SNbUSdbcvfACZGZCmzYwcGDJy1k6aw0amLuwAB591Dw3yAIka3osnTWLkqzpkayV3tdff01BQQETJ04EzL1BANdffz2LFy92W/bMmTNkZGRw9OhRjh49yokTJ8jNzT3v62dlZXln4H4UVOcAycakTgq3HsmaOsmaux074L//NW9PnAghJfy5yhZZGz0aZs+GLVvgscfg3Xf9OhzJmh5bZM1iJGt6JGsXdqTQH5OqV6/OoEGD3B7fs2cP4H5h1MWLFxMTE0NMTIxrAoVDhw6Rmprq+jp06JDbfQ6Hg1atWvnmh/KhoDkHSDYmdVK49UjW1EnWiho8GD7+GHr1goULi1/GVln76Sfo2NE8L+i778ypsv1AsqbHVlmzCMmaHsla6bRp04b169fz5Zdf0qNHD7dZ3tq3b8+qVasoKCggNDRU+z369evHF1984YnhWk5QHAInG5M6Kdx6JGvqJGtF/fmn2fwA3Hhj8cvYLmvt28MDD5i3hw2Dkyd9PgTJmh7bZc0CJGt6JGult379egA6d+7M1Vdf7fbYsmXLAHj11Vfd7o+IiKBKlSpUr16d6OhoKlWqdN4GyXkOUSAK+AZINiZ1Urj1SNbUSdaKV64cOFfFsGFw/fWwYcPZx22btQkToFYt+Osv81A4H5Ks6bFt1vxIsqZHsqZm9OjRABw7dow1a9a47p8wYQJhYWEAjBw50u05OTk5nDhxgiNHjnDs2DEyMzPJz88v8T3O95jdBfwhcHPnzqVx48ayMZWSFG49UrjVSdbOb98+cxKE//0PnP8HDRwIY8dmc/jwSvtmbfFicB6TvmABXHed199SsqZH6po6yZoeyZq69PR0qlSpQrVq1Th69KjrfufH+szMTNdlYJ588kmuu+461/V/HA5HkXN/ijsH6N577+Xf//63X34+rzO8YN++fcZtt91mREdHGxEREUarVq2MtWvXuh4vKCgwnnnmGaNmzZpGhQoVjM6dOxubN292e41Tp04ZI0aMMKpVq2ZUrFjR6Nu3r7F3795SjyE9Pd0AjJSUFKOgoMBjP1sgKygoMDZv3mwsXLjQyMzM9PdwbCMzM9NYuHChsXnzZslaKUnWSu/PPw1j8GDDcDgMAwwjJKTAuOGGY8auXTbO2sMPmz9MbKxhHDni1beSrOmRuqZOsqZHsqauoKDASElJMQC3rxUrVriW6dSpU5HHVb4Kf24PRB4/BO748eN07NiRsLAwvv32W3777TdeeeUVqlSp4lpm0qRJTJ48mWnTprFmzRpiY2Pp0aMHmZmZrmWSkpKYN28ec+bMYeXKlWRlZdGnTx/l3XFNmjSRvySUgiF/tdIif7VSJ1lT06CBefmcVatOkpiYRkGBg3nzqtKokYOkJLDl5RkmToQmTSA11TzGz0sHIkjW9EhdUydZ0yNZU+fM2v79+4s81qlTJ9ftlStXum47HA4uuugioqOjXdf+qVix4nnfxzmLXKDy+CFwjz/+OD/++CMrVqwo9nHDMIiLiyMpKYmxY8cCkJubS0xMDBMnTmTYsGGkp6dz8cUXM2vWLNe0fgcOHCA+Pp4FCxbQq1evC47j3FngRMmkcOuRwq1OsqancNYyMprx1FMOvv/efCwyEpKSzJmmC/2dyfrWrYPERDhzBj74AO64w6MvL1nTI3VNnWRNj2RNXeGsORwOt8/Dhw8fpnr16gBs376dBg0alOm93nrrLe67774yvYaVebwBatasGb169WLfvn0sW7aMWrVq8dBDDzF06FAAduzYQf369Vm/fj2tW7d2Pa9///5UqVKF999/n6VLl9KtWzeOHTtG1apVXcu0atWKAQMGMG7cuCLvm5ub63Yhp4yMDOLj4zly5Ig0QOdhGAbbtm1j//79JCYmEhkZ6e8h2UJ2djYpKSnUqlWLxo0bS+EuBcmanuKyZhiwdKmDp58OYe1ac0d+lSoGL72Uz7332ue0zpAJEwh95hmMypU5s24dXHKJR15XsqZH6po6yZoeyZq6c7NW+PPxudNVt27dmo0bN7qe51RQUMCxY8eKvd5P4a9Tp06RnJxM3bp1ffXj+ZzHG6AKFSoA5swTN998Mz///DNJSUnMmDGDO++8k1WrVtGxY0f2799PXFyc63n3338/u3fvZtGiRcyePZt77rmnyJVpe/bsSUJCAjNmzCjyvs8++2yxjdHs2bMvuJtPCCHsyDBg9epYZs9uyp49lalQ4Qxz5thn2lJHfj6dnnyS6G3bONq0KT++8AJGGa5ZIYQQwWLAgAGu2/n5+YQUulq2s6G87bbb+PDDD3n++edLPZlBeHi4a7KE2NhYWrRowXPPPef2+oGgnKdfsKCggCuuuILx48cDZhe6ZcsW/vvf/3LnnXe6lju32zcM44J/ATjfMk888YTbdH/OPUA9e/aUPUDFkL9a6ZG/WqmTrOkpbdZ694YRI6B2bTh1qhzXXns9tvp/qnlzjLZtqfb77/TesIGCMsw4JFnTI3VNnWRNj2RNXUlZa9SoEX/88QdTp051a06Sk5Ndt6dPnw7gan7CwsLIy8s77/vl5uaye/dudu/eDcAXX3xBq1atuPnmmz36c/mbxxugmjVr0qxZM7f7mjZtyty5cwGIjY0FIDU1lZo1a7qWSUtLIyYmxrXM6dOnOX78uNsuvrS0NDp06FDs+4aHhxMeHl7k/rCwMNd86MLkPIb0wIEDdOrUSY5XLqWsrCxWr15NfHy8HK9cSpI1PapZi4o6ezsvLwxbrebGjeG//4Xbbyf0xRcJveIK6N9f+WUka3qkrqmTrOmRrKk7X9b++OMPAO655x635xQ+L6hy5crs3bsXgOrVq3P48OFSv/eZM2c4cuQIp0+fpk6dOmX5MSzJ438n7NixI9u2bXO7748//uCSv4/tTkhIIDY2lsWLF7seP336NMuWLXM1N23atCEsLMxtmYMHD7J58+YSGyBROnKyph45WVOdZE2PTtYiI8G5o9uWE/fcdtvZ2eBuvRVWr1Z6umRNj9Q1dZI1PZI1dRfKWuFZ3pwKCgpctydNmgTALbfcAsDXX3+t9P7lypUjNjY2IJsf8EID9Oijj5KSksL48eP566+/mD17NjNnzmT48OGAeehbUlIS48ePZ968eWzevJm7776bihUrMnjwYACioqIYMmQIo0aN4rvvvmPDhg3cfvvttGzZku7du3t6yEFDCrceKdzqJGt6dLPmcEC9eubtHTu8OEBvmjYNrr8ecnKgb1/Yvr1UT5Os6ZG6pk6ypkeypq40WWvZsmWR+6ZMmeK6PWrUKABWrVoFQGJiIg6H47xf0dHRNGvWjGuuuYZbbrmFZcuWeekn9D+PT4IAZpf5xBNP8Oeff5KQkMDIkSNds8CB+YsdN24cM2bM4Pjx47Rr14433niDFi1auJY5deoUjz32GLNnzyYnJ4du3boxffp04uPjSzUGmQbbnRRuPVK41UnW9JQ1azfdBJ9/Dq++Cv/8p5cG6W1ZWdC5M6xfDw0bwqpV8Pe0rsWRrOmRuqZOsqZHsqautFkr7nNu4fVrGAYrVqzg6quvLvN4ApFXGiArkAboLCnceqRwq5Os6fFE1saMgZdfNpufV1/1wiB95eBB8/pAe/ZAhw6wZAlERBRZTLKmR+qaOsmaHsmaOpWsnfs5NzMz0/V5d+HChfTq1YtKlSqRlZXFgQMH3M67v5CTJ0+SlpZGjRo1AnYmZTvNFSQ0SOHWI4VbnWRNj6eyZvtD4Jxq1oRvvzWv6rpqFdx5JxQ6rh0ka7qkrqmTrOmRrKkra9ZGjBjhut2rVy8MwyArKwtAqfkBqFixInXr1g3Y5gekAQpoUrj1SOFWJ1nT48ms1a9v/mv7BgigWTOYPx/Kl4fPPoPHHnM9JFnTI3VNnWRNj2RNnSey9sEHHwBw6aWXAvDUU0+5HivpnJ89tpw1xzPkELgAJYVbjxRudZI1PZ7O2vbt0KABVKgA2dnY61pAJZk925whDuDVVzEefliypkHqmjqpa3oka+p0s1b4c+6hQ4do1KgRYM683LBhQ9e6P9+1f4YOHUqLFi3cLnwaExND5cqVA/53Jw1QAJLCrUcKtzrJmh5vZC0vzzxVJj8f9u+HuDgPDNQKXnoJnngCw+Fg79Sp/N64sWRNgdQ1dVLX9EjW1JUla4U/51511VX8+uuvrtc8efKk64KphmEQFhbGmTNntMe5cuVKOnbsqP18K/L4hVCFf0nh1iOFW51kTY+3shYWBnXqwM6d5mFwAdMAjR2LsXMnjpkzqfXYY1T/9lsqStZKReqaOqlreiRr6jyZNWfzc+eddwIwcuRIAN577z0Mw3A1P4ZhYBgGx48fJzU11fV16NAhDh065Haf836Hw+G6lmcgkQYogEjh1iOFW51kTY+3s1avntkAbd8OnTp59KX9xgB+e+ghLt64kRo//0zFQYMgJeXsSU+iWFLX1Eld0yNZU+fJrC1ZssR1e9q0aQDMmDEDMBuiV/+eFrRRo0Y4HA5CQkJISEigbt26JCQkuG4nJiaSkJBATExMUPwOpQEKEFK49UjhVidZ0+OLrNWvD999FyATIVAoa6mpXPLFF9CnD6xbB9ddd8FrBAUzqWvqpK7pkayp83TWbrrpJtftSpUquSY2qFGjBg6Hg0cffRQwzw0CKCgoYPv27Wwv5cWmAZo3b87mzZvLNE6rCYTTZIOeFG49UrjVSdb0+CprATMVNsVkLTYWvv4aLrkE/vwT+vWDnBx/D9NypK6pk7qmR7KmzptZ+89//gPAoEGDAPj6669d02CXVX5+vkdex0qkAbI5Kdx6pHCrk6zp8WXWnA2Qwh/2LKnErMXGmtcIqloVfvoJbr/dnPVBAFLXdEhd0yNZU+ftrDn39KSkpADQtm1bHn744TK/bosWLWjfvj25ubllfi0rkUPgbEwKtx4p3Ooka3p8nbVAuBbQBbPWtKl5jaAePeDzz81rBE2e7JexWonUNXVS1/RI1tT5ImshISEsW7YMgO7duwPmJAjnql+/PjVq1CAiIgKAkydPkpaWxs6dOyluYujNmzezefNmGjduzNixYz0+bn+RabBtSgq3Hinc6iRrevyRtRMnzJ0j5vvD37Og2oZS1ubMgVtvNW9PnQqPPOKTMVqR1DV1Utf0SNbUeStr+/btIz4+HoDk5GR69OhBZGQkJ0+e5ODBgxw5coSWLVuW+X3WrFlDQkIC1apVK/NrWYkcAmdDUrj1SOFWJ1nT46+sVakC0dHmbbvtBVLO2i23wMSJ5u1HH4V587w/SAuSuqZO6poeyZo6b2Zt1KhRrts9evRwXf8HIDY21rUXqKzatm1L9erVufbaaz3yelYhDZDNSOHWI4VbnWRNj7+zZseJELSz9thj8OCDYBgweLA5PXYQ8XfW7Ejqmh7JmjpvZ+3TTz8FcO3l+e9//wvA6NGjATh06JBH32/RokUefT1/kwbIRqRw65HCrU6ypscKWWvUyPx31Sqfv7WWMmXN4YDXXjOnxz51ypwZzk6dXxlYIWt2I3VNj2RNnS+z9sEHHwAwfPhwAF588UWSk5NLXL5x48ZERERQq1YtGjduTP369QkLCzvvezgvoBpI5Bwgm5DCrUcKtzrJmh6rZG3ePLjxRqhRw7xkTu3afhlGqXgsa9nZcPXVsH49NG8OGzdCucCd48cqWbMTqWt6JGvqfJU15+8iPT2dcuXKEfn3SZ+GYRAaGkpBQUGZXv/iiy9m8eLFtGzZkpCQwNtfEng/UQCSwq1HCrc6yZoeK2WtTx/zMLi0NGjfHn77zW9DOS+PZi0yEr76ypwBYssWWLHCcwO1GCtlzS6krumRrKnzV9acU2DPmjWLgoKCEpsflUbm8OHDXHbZZYSGhuJwOHA4HFx55ZUeGa8VSANkcVK49UjhVidZ02O1rIWFwdKl0Lgx7NsHnTrBjz/6dUhFeCVrcXEwYIB5e/78sr+eBVkta3YgdU2PZE2dr7OWnp7uuj1z5kwAbr/9dqZOnVric4prjAoKCjhw4ABff/01zz33HP379ycuLq7Y569Zs6Zsg7YQOQTOwqRw65HCrU6ypsfKWTt6FPr2Na8XWqECfPzx2f7An7yatS+/hP79oU4d2LXLPEcoQFg5a1YldU2PZE2dP7Lm/Jy7adMmWrZsSWxsLAcPHizx9zVy5Egm/33NtObNmxMZGUmLFi14++23vT5WK5IGyKKkcOuRwq1OsqbHDlk7edKcLfqrryAkBN54Ax54wH/j8XrWcnKgenXzB9+wAS67zLOv7yd2yJrVSF3TI1lT56+sOT/ntmnThnXr1rF27VoaNWpU5s+8bdq0oXv37vTo0YOOHTtSoUIFD43YWuQQOAuSwq1HCrc6yZoeu2StYkX4/HMYOhQKCswZo//9b3PWaF/zSdYiIqBXL/N2gBwGZ5esWYnUNT2SNXVWyNq6desAs3EZMWJEscs0bdq0xOeXL1++yOtNnDiR7t27ExER4Tr/Jzs723ODtgBpgCzGChuTHUnhVidZ02O3rJUrBzNmwDPPmN8//7zZEJ0547sx+DRrAXQekN2yZgVS1/RI1tRZKWu9/v7Dj3NK7HP9/vvvABw/ftw1pbXzKzc31+377OxsFi5cyKhRo2jVqpXrNQJtT5AcAmchVtqY7EQKtzrJmh67Z23mTHMvUEGBOVvcJ5+Ye4m8yedZO3oUYmIgP9+8JlBCgnffz0vsnjV/kLqmR7KmzgpZc37OBfOip5mZmTRo0KDIcqNHj+Y///mP6/vOnTvTvXt3unfvzhVXXEG5cuXYuXMna9euZcCAARe8JlCgkAbIIqywMdmRFG51kjU9gZK1L74wzws6dQoSE83zg6pX9857+S1rXbvC99/DlCmQlOSb9/SgQMmaL0ld0yNZU2eVrKWnp1OlShXXmC677DJ++eWXMr3mzTffzKeffuqB0VmfHAJnAVbZmOxGCrc6yZqeQMpa//7w3XfmJXNSUsxpsnft8vz7+DVr/fub/9rwMLhAypqvSF3TI1lTZ6WsvfXWWwA88sgjAGVqfq6//nqmT5/OnDlzPDI2O5A9QH5mpY3JTqRwq5Os6QnUrP3+O1x7LezZAzVrwrffQqHDvcvE71nbtcs89C0kBA4d8t4uLg8L1Kx5k9+zZlOSNXVWy5rzd3b48GHWrVvHtddeW+Kybdq0oX///jRt2pQVK1bw+uuv4/z4P3/+fPo7/2gURKQB8iOrbUx2IYVbnWRNT6Bnbf9+uO462LQJoqJgwQLo0KFsr2mZrLVuDRs3wrvvwt13+2cMCgI9a95gmazZjGRNnRWz5vy9paenu84FUhUVFcWePXss+znZm+QQOD+x4sZkB1K41UnW9ARD1mrVguXL4aqrID0devaEpUv1X89SWbPRbHDBkDVPs1TWbESyps6qWXvyyScBKCgoKPVzunfvzoIFC8jPz8cwDE6cOBGUzQ/IHiC/sOrGZHVSuNVJ1vQEW9ZOnoQbboDkZAgPh7lzoXdvtdewXNZ++cW8EGpEBBw54v3p7jQFW9Y8wXJZswnJmjorZ835Ofe5557j3//+d6mfF6Af+5XJHiAfs/LGZGVSuNVJ1vQEY9YqVoQvvzTnDsjNNXee/N//lf75lszapZdC3bqQk2N2dhYUjFkrK0tmzQYka+rskrXSND/R0dH84x//YJc3ZryxKWmAfMguG5PVSOFWJ1nTE8xZCw83m57Bg82LpN5yC7z33oWfZ9msORyWPgwumLOmy7JZszjJmrpAydqhQ4fYsWMHU6ZMYe7cudStWxeHwyF7gYBy/h5AsAiUjcnXpHCrk6zpkaxBWBh88IG5R+h//4N77oHsbBg+vPjlLZ+1AQNg6lTzYkdnzkA5a/yXJ1lTZ/msWZRkTZ3dsxYaGkp+fj4AMTExRR4fNWqU5AAv7AFydpfnfg3/+39QwzB49tlniYuLIyIigi5durBlyxa318jNzeXhhx+mevXqREZG0q9fP/bt2+fpofqM3Tcmf5HCrU6ypkeydlZoKMycefb6oSNGwKRJRZezRdY6doRq1eDYMVi50t+jASRrOmyRNQuSrKkLhKw5m5/CRo0aRWZmJoZh8J///McPo7IejzdAa9as4eDBg66vxYsXA+bVZQEmTZrE5MmTmTZtGmvWrCE2NpYePXqQmZnpeo2kpCTmzZvHnDlzWLlyJVlZWfTp06fYX6rVBcLG5A9SuNVJ1vRI1opyOGDyZPjXv8zvx46Ff/8bnEdN2CZr5cpB377mbQscBidZU2ebrFmMZE2d3bK2ffv28z7+6quvcubMGVfTY/Wfx9e8PgtcUlISX3/9NX/++ScAcXFxJCUlMXbsWMDc2xMTE8PEiRMZNmwY6enpXHzxxcyaNYtBgwYBcODAAeLj41mwYAG9evUq1ftaYRY4u21MViGFW51kTY9k7cImToTHHzdvP/oo/Oc/Br//bqOsffGFeSjcJZfAzp1md+cHkjV1Utf0SNbU2TFr5/u9njp1ivDwcB+Oxn68ekD06dOn+fDDDxk5ciQOh4MdO3aQmppKz549XcuEh4fTuXNnVq1axbBhw1i3bh15eXluy8TFxdGiRQtWrVpVYgOUm5tLbm6u6/uMjAwA8vLyyMvL89JPWDLDMNi2bRv79+8nMTGR8PBwv4zDbrKzs0lJSaFWrVo0bNiQM2fO+HtIlidZ0yNZK52RIyEiIoRHHgllyhRYvTqLrl1PM2JEO3tkrUsXykVE4Ni9m7x166BVK58PQbKmTuqaHsmaukDL2qWXXirNTyl4tQGaP38+J06c4O6/r8KdmpoKFD0pKyYmht27d7uWKV++PFWrVi2yjPP5xZkwYQLjxo0rcn9ycjIV/Xz9h2XLlvn1/e1ox44d7Nixw9/DsB3JmjrJ2oVdcgk8/HA8b7zRmlWrKrFqVWumTj1Np0776NJlL40bH/fXjpULCs3NpWdICOWBlORkju3f77exSNb0SF1TJ1nTEwhZi46OxuFwcPToUaKjo/09HMvyagP09ttvc9111xEXF+d2/7m77QzDuOAu2gst88QTTzBy5EjX9xkZGcTHx9OzZ0+fHgJ37l8SIiMjffbedlb4r1aNGzeWXfalIFnTI1lTZxgG9epto0WLlWzZ0pbPPgvnwIHyLFyYwMKFCTRoYDB4cAF33FHAJZf4e7TuHG+/TbnsbIyEBBJHjjRnefARyZo6qWt6JGvqAjVrP/zwA2AeCnluA3T8+HE+/fRTPvjgA1atWuW6//LLL2fdunW+HKbfea0B2r17N0uWLOHzzz933RcbGwuYe3lq1qzpuj8tLc21Vyg2NpbTp09z/Phxt71AaWlpdOjQocT3Cw8PL3aXX1hYGGFhYWX+eUrDeQzpgQMH6NSpky2OIbWCrKwsVq9eTXx8vByvXEqSNT2SNXWFszZ4cEcuuqgCkyfD99+bU2Z//jn89ZeD554L5eWXQ1m5Ei6/3I8D3r8fVqwwZ31buRJ+/RUAx/DhhFWo4LNhSNbUSV3TI1lTF6hZa9KkCR999BGtW7dm7dq1vPzyy8yaNYv09PQSnxMREcFbb73lw1Fag9cuhPruu+9So0YNevfu7bovISGB2NhY18xwYJ4ntGzZMldz06ZNG8LCwtyWOXjwIJs3bz5vA+RvdjyBzgrkZE11kjU9kjV1JWUtNBS6dzcboNRU89/LL4ecHLj/fvOSOz5z6JA5b/cdd0BCAtSuDbfeCm+8Ab/8Yk5dd/nlcN99PhuSZE2d1DU9kjV1gZy1rVu30qZNG0JCQrjyyiuZNm2aW/PTtm1bXnvtNdLS0jAMA8MwOHnyJJf79a9W/uGVPUAFBQW8++673HXXXZQrdOE5h8NBUlIS48ePp2HDhjRs2JDx48dTsWJFBg8eDEBUVBRDhgxh1KhRVKtWjejoaEaPHk3Lli3p3r27N4ZbZoG8MXmTFG51kjU9kjV1pc3aRReZvUePHtCkCTjnGXjySRg0yAfXHu3QAQqf6xASApddBlddBZ06mdcCKnTEgbdJ1tRJXdMjWVMXLFkrV64cd955J3fccQdXX301ISEl7+84ceIEy5YtY+3atTz66KNBc96QV/5rWrJkCXv27OHee+8t8tiYMWPIycnhoYce4vjx47Rr147k5GQqVarkWmbKlCmUK1eOgQMHkpOTQ7du3XjvvfcI9eGx26UVLBuTp0nhVidZ0yNZU6eTtdhYePdduOce+O03uP12eOYZeOIJs0EqX95Lg7366rMN0NCh8MorUOj/E1+SrKmTuqZHsqYuGLLWrFkztmzZQl5enuv0j9zcXFJSUli6dClLly5l5XkuCr1//37eeecdXw3Xr7x+HSB/8cV1gIJhY/IGKdzqJGt6JGvqypq19HTz6LPJk+HoUfO+pk3No9G8cjrmmTNw770wa5Z5jZ8ZM8xGyMcka+qkrumRrKkLxKwV93vv2rUrS5cuVXqdq6++mq5du9K9e3c6duzoqeFZnjRAmgJxY/IFKdzqJGt6JGvqPJm1rCzz1JwxYyA/H7Zvh3r1PDjYwgoKYMQI+O9/ze9fecW8gJGPSNbUSV3TI1lTF6hZU/3df/HFF9SvX5+1a9e69gbt27fPbZkRI0bw+uuve3KYliUNkIZA3Zi8TQq3OsmaHsmaOm9lrXp1c0/Qli3QrJlHXrJ4hmEebzdxovn9s8/Cv/+Nty9QJFlTJ3VNj2RNXSBn7UK//7CwMKULutatW5fly5cTHx9f1qHZgrdPTw04gbwxeZMUbnWSNT2SNXXezJpz5umcHI+9ZPEcDnjpJahcGZ56ymyAsrPNhshLGZCsqZO6pkeypi6Qs7Z27dpi7y9fvjynT58GKNL8XHTRRXTr1o1u3brRtWvXoM+RNEAKAnlj8iYp3Ooka3oka+q8nbXq1c1L8xw86NGXLdmTT5pT0z3yCLz8srlnaNIkjzdBkjV1Utf0SNbUBWrWfvvtN5o3b17i487mZ9y4cYwdO7bY62MKk9euAxRoAnVj8jYp3Ooka3oka+p8kbXGjc1/t271+EuX7J//hOnTzdv/+Q889pjZCHmIZE2d1DU9kjV1gZi1Xbt24XA4ztv8FPbYY49J83MB0gCVQiBuTL4ghVudZE2PZE2dr7LWpIn577ZtXnn5kj34oPukCB5qgiRr6qSu6ZGsqQvErLVu3ZqEhATX99u2beNCp+/PmTOHO+64g1q1auFwOFxfbdu29fZwbUMOgbuAQNyYfEEKtzrJmh7JmjpfZs0ve4CcHnjA/PfBB80myDDMPUKaGZGsqZO6pkeypi5Qs7Zx40YANmzYwGWXXVbichdffDGHDx8GKPY6nGDO8iZM0gCdR6BuTN4mhVudZE2PZE2dr7Pmtz1ATg88YDY8DzxgXpwItJogyZo6qWt6JGvqgiFrzuZn37591KlTp8jjYYUutPbaa6/RrVs3mjZtKvkpgTRAJQiGjckbpHCrk6zpkayp80fWGjUy/z18GI4dg+hor79lUcOGmf86myDDMPcIlTIzkjV1Utf0SNbUBXrWKlasyMmTJzl8+DBNmzblqPMK0+c4cOAAAP/85z95+OGHfTlEW5JzgIoR6BuTt0jhVidZ0yNZU+evrF10EdSubd72214gMJugN980b0+ZAqNGleqcIMmaOqlreiRr6oIha7feeisANWrUcDU/q1evLnH5wYMH+2RcdicN0DmCYWPyBinc6iRreiRr6vydNed5QH5tgMBsgmbMMG9PmQIjR563CZKsqfN31uxKsqYuWLLWp08f1+3vvvsOwzC48sorXfeFhLh/lC/8mCiZNECFBMvG5GlSuNVJ1vRI1tRZIWvO84D8MhHCue6//2wTNHVqiU2QZE2dFbJmR5I1dcGUtb59+wJQrVo1unbtWuTxgoICt+8lP6UjDdDfgmlj8iQp3Ooka3oka+qskjXL7AFyOrcJevRRtyZIsqbOKlmzG8maumDLWmhoKECJ5/4IPTIJAsG3MXmKFG51kjU9kjV1VsqapfYAOd1/vzkJwv33w6uvmvdNmUJWdrZkTZGVsmYnUtfUSdbO73zTZAt3Qd8AycakRwq3OsmaHsmaOqtlzbkHaPt2yMuDQrO1+tfQoea/fzdBp/Py+LFvX2rHx0vWSslqWbMLqWvqgjlrTZo0YevWreTk5BAREVHicrfffrsPR2VvQX0IXDBvTGUhhVudZE2PZE2dFbNWuzZUrGg2P7t2+Xs05xg6FN56C4Dy06dzxYcf0kyunVEqVsyaHUhdUxfsWXPO7Pb111+fd7lBgwb5YjgBIWgboGDfmHRJ4VYnWdMjWVNn1ayFhEClSubtnBz/jqU4WbfcwuZHHgGg2kcf4TjnnCBRlFWzZnVS19RJ1s5OhT179uzzLlfbec0BcUFB2QDJxqRHCrc6yZoeyZo6q2fNqv2EM2uOoUMx/t4TxGuvwSOPWHfQfmb1rFmV1DV1kjVTgwYNAJg/f75/BxJAgu4cINmY9EjhVidZ0yNZU2eHrDl7CSv9OotkrXlzc4BDh8Lrr5sLvfqqtQbtZ3bImhVJXVMnWRPeFFR7gGRj0iOFW51kTY9kTZ1dsub8Vebl+XccTiVmbcgQ+N//zAG//jrce691Bu1ndsma1UhdUydZU9e/f39/D8FWgqYBko1JjxRudZI1PZI1dXbKWtOm5r/r1vl3HFCKrN17L7zzDoSGwnvvwYABkJ3tj6Fahp2yZiVS19TZIWvDhg2jUaNGPn3Pnj17ArBv375iH7/tttt8ORzbC4oGyA4bkxVJ4VYnWdMjWVNnt6xddZX574oV/h1HqbN2990wfz5ERMCCBdCtGxw54suhWobdsmYVUtfU2SVrM2fO5M8///Tpezpngvvkk0+KfbxPnz6+HI7tBXwDZJeNyWqkcKuTrOmRrKmzY9auvtr8d/ly/41BOWt9+sB330F0NKxeDZ06WXAeb++yY9asQOqaOsna+d1www1AyTPBne/6QKKogG+Atm7dKhuTIinc6qRw65GsqbNr1tq3N48o273b/PI17ay1bw8rV0J8PGzbBh06wK+/enewFmHXrPmb1DV1gZ61b7/9lnbt2pXpNSpXrgzA+vXrPTGkoBfwDdD+/fsDcmPyFinc6gK9cHuLZE2dnbN20UXQpo1529eHwZU5a02bwk8/QYsWcPCgeTzfDz94ZaxWYees+ZPUNXXBkLXrr7+en3/+2WuvX6VKFa+9dqDyeAN05swZ/vWvf5GQkEBERAT16tXjueeeo6CgwLWMYRg8++yzxMXFERERQZcuXdiyZYvb6+Tm5vLwww9TvXp1IiMj6devX4knfp1PYmJiQG5M3iCFW10wFG5vkKypC4Ss+eM8II9lrVYtc+BXXw0ZGdCrF3z7rWcHaxGBkDV/kLqmzk5Zmzt3Lg6Hg8OHDys9L8eDV392HuaWmZnpdv+dd97psfcIFh5vgCZOnMibb77JtGnT+P3335k0aRIvv/wyrzuvqQBMmjSJyZMnM23aNNasWUNsbCw9evRw+4UmJSUxb9485syZw8qVK8nKyqJPnz7k5+crjcfKG5OVSOFWZ6fCbSWSNXWBkrXmzc1/9+zxzft5PGtVqsCiReascKdPww03wJIlnhiqZQRK1nxN6po6u2XtwIEDACxYsKDYx1esWFHshUqfe+45AN5yXmi5DJwzvb3zzjuEhoa67ndOkCAUGB7Wu3dv495773W778YbbzRuv/12wzAMo6CgwIiNjTVeeukl1+OnTp0yoqKijDfffNMwDMM4ceKEERYWZsyZM8e1zP79+42QkBBj4cKFpRpHenq6ARjp6ell/ZECXmZmprFw4UJj8+bNRkFBgb+HYwsFBQXG5s2bjYULFxqZmZn+Ho5tSNbUBVLW5s0zDDCMxETvv5dXs3b6tGH072/+MBERhvH99559fT8JpKz5ktQ1dXbM2ubNmw3AuPPOOw3AOPcjdGRkpAEYF110kZGbm+u637msJ7LxzTffGIBx2223uV7XU68dbMp5uqHq1KkTb775Jn/88QeNGjXil19+YeXKlUydOhWAnTt3kpqa6prPHCA8PJzOnTuzatUqhg0bxrp168jLy3NbJi4ujhYtWrBq1Sp69epV5H1zc3PJzc11fZ+RkQFAXl4eeXIRuxJlZ2eTkpJCrVq1aNiwIWfOnPH3kCzPMAy2bdvG/v37SUxMJDw8XDJWCpI1dYGWtUqVHEA5jh0zyMvz3u/fJ1n78ENCBw0iZMECjD59yP/6a4yOHT3/Pj4SaFnzFalr6uyatYYNGwKwdOlS133OcW/fvp2JEycyYsQIsrKyCA8PZ9GiRVztnP4SypyN7OxsDMMAYNGiRW6PyR5HdR5vgMaOHUt6ejpNmjQhNDSU/Px8XnzxRW699VYAUlNTAYiJiXF7XkxMDLv/nhooNTWV8uXLU7Vq1SLLOJ9/rgkTJjBu3Lgi9ycnJ1OxYsUy/1yBbseOHezYscPfw7CdZcuW+XsItiNZ0xMIWdu1qzJwDWlpuSxYsOiCy5eVt7MWcvfdtDtwgBobN8J11/HTs89yvEkTr72frwRC1nxN6poeO2at8PnozsPh7rjjDjIzM5k/fz5z585l1qxZbn+sv+2220o8dE7HkSC9JpknebwB+uSTT/jwww+ZPXs2zZs3Z+PGjSQlJREXF8ddd93lWu7cbtUwjAt2sOdb5oknnmDkyJGu7zMyMoiPj6dnz56uqQPFWYX/atW4cWP560EpnPtXq8jISH8PyRYka+oCNWt//WX+e/JkONdddz2ejoJfstarFwUDBlDu+++5avx48t9/H6N3b++/r4cEata8TeqaukDM2vXXXw+c3RN0/fXXc/311/Pcc8+RkJDgWm7UqFG0aNFC6z3Ozdq5mjtPrhRKPN4APfbYYzz++OPccsstALRs2ZLdu3czYcIE7rrrLmJjYwFzL0/NmjVdz0tLS3PtFYqNjeX06dMcP37cbS9QWloaHTp0KPZ9w8PDCQ8PL3J/WFgYYWFhHvv5AkFWVharV68mPj5eTtYsJePvkzUPHDhAp06dLH+yplVI1tQFctYmTTL/bdDAQfnynq3LfstaWBh89RX07o1j2TLK3XADjB0LL7wA5Tz+X6xHBXLWvEnqmrpAzZrz82VISIjb93Xr1sUwDBISEti1axeXX345jz76KJMnT1Z6/eKy1qhRI/744w/XMs7P20KNx2eBO3nypCsITqGhoa5psBMSEoiNjWXx4sWux0+fPs2yZctczU2bNm0ICwtzW+bgwYNs3ry5xAZIlI7MVKPOsNlMNVYhWVMXyFmbPx/eew8cDpgxw7Ov7fesRUZCcjI8/LD5/cSJ0K2bec0giwrkrHmT37NmQ4GUtTp16hS579ChQ24zshW2c+dO1q5dC8CUKVNwOBwcPXq0VO9VUtacM8E53XTTTSo/gvibxxugvn378uKLL/LNN9+wa9cu5s2bx+TJk7nhhhsA89C3pKQkxo8fz7x589i8eTN33303FStWdE3jFxUVxZAhQxg1ahTfffcdGzZs4Pbbb6dly5Z0797d00MOGlK41QVS4fYlyZq6QM7aoUMwdKh5e8wY6NTJc69tmayVLw+vvQaffAKVKsHy5dCxI/x9bquVBHLWvMkyWbORQMta165d3b7/8ccfiY2NdU1OUJw2bdqQn59Pk7/PD6xevTr/+9//zvs+58vauVNe16pVS/XHEOD5abAzMjKMRx55xKhTp45RoUIFo169esZTTz3lNiVgQUGB8cwzzxixsbFGeHi4cfXVVxubNm1ye52cnBxjxIgRRnR0tBEREWH06dPH2LNnT6nHIdNgu5NpOtXZcZpOK5CsqQvkrBUUGEbfvuaM0ZdeahinTnnutS2btW3bDKNBA/OHrlvXMHbt8veIXAI5a95k2axZWCBm7YMPPnCbfnrmzJkGYISHhxeZFrs4c+fOdT23UqVKbp+NnUqTtcJjkM+5ehyGcZ621cYyMjKIiooiPT096CdBkL9aqTMC7K9WviJZUxfoWfvgA7jrLnMHyZo1cOmlnnldy2dt/37o0sWc+eGSS+Dbb6FpU78OKdCz5i2Wz5oFBWrW9u3bR3x8PHFxca4LoxaWl5dHuQuc+5edne22PpYuXco111wDlD5rhe+Xz7l6PH4InLAWKdzqArVwe5tkTV2gZy0z05wPAODZZ4Oo+QGoVQt++AEazsQ2bAAAIANJREFUNjQPg+vQwTwszk8CPWveYousWUwgZ6127dqA+Uf2gwcPFjkfJywsDIfDwbBhwzh27FixrxEZGYlhGEyYMAEwD6u75ppryMzMlKz5kDRAAUwKt7pALtzeJFlTFwxZe+klSE2FBg1g1CjPvKatslarFvz4IyQmwokT0KMHfPyxz4cRDFnzBltlzSKCJWtZWVnExsby4Ycfuu7717/+5bo9c+ZMqlWrhsPh4KqrrmLz5s1FXuPxxx9n7969APzwww9UrlyZM2fOlCprcj582UkDFKCkcKsLlsLtaZI1dcGQtZ074ZVXzNsTJ5qHwJWVLbN28cWwdCncdBOcPg2DB5udoY8EQ9a8wZZZ87Ngz9rzzz+PYRgUFBQwb948qlWrBsDKlStp2bIlDoeD6Oho5s2b55o0oXbt2mRmZtKlSxcA+vTpw+jRoy/4XufueRLq5BygACSFW12wF25dkjV1wZK1p582L4UDEBEBbdpAu3bmzpB27aB2bZQuhGr7rBUUwGOPgfM6IEuXwt/H/XtLsGTN02yfNT8IpqwVzkPdunXZtWsXAAUFBcVmZcuWLTz44IOsWLGiyGNPP/00bdu2pV69euTk5NC2bVvXY0ePHiU6OrrYMTg/44KcA6RL9gAFGCnc6oKpcHuSZE1dMGVt4EDo2RMqV4acHFi50twjdPPNUKeOeXTYDTeYO0O+/948X6gkAZG1kBBzBdx3n/n9tGlefbtgyponBUTWfCzYsjZ//nzXbWfzA+bFUB0OBw6Hgy5dujBz5kyOHTtG8+bNWb58OYZhcOzYMR544AHXc55//nn69etHixYtmDx5Mvv27aNx48YAVKtWrcTpsitXrsyqVau88vMFC9kDFECkcKsLtsLtKZI1dcGatYIC2LYNVq8++/Xrr5Cf776cwwHNm5t7h5xfzZtDTk6AZW3LFmjRAkJDzckRvHANj2DNWllJXVMX7FnLzc3l66+/5sknn+SPP/4477IhISEMHjyY2267jcTERFatWsWPP/7I+PHjiyxbeM9S5cqVOXz4MOXPOY44GD/nepI0QAFCCre6YC/cuiRr6iRr7k6ehPXrzWYoJcX89+9zgd1ERhrUq3ectm0LuP76aiQmOrzRL/he587mjHDPPGNOj+dBkjU9UtfUSdZKdujQIT799FNmz55NSkrKeZetW7cugwcPpl69erz44ovs3Lmz2OW+++47twuxBtvnXE+TBigASOFWJ4Vbj2RNnWStdA4edN9LtGaNQVZW0XzVqnV2D1FionluUWSkHwZcFnPmwK23Qs2a5l6gsDCPvKxkTY/UNXWSNXWGYbBq1SqmTJnCihUrSEtLO+/y0dHRxU6lPWbMGP7973+Tn58fNJ9zvUEaIJuTwq1OCrceyZo6yZqerKwsli//kdOn63PkSH1+/tnB6tWwebN5SN257r8fZszw/ThLxTAgKwsyMiA93fzatAmGDTMfnzcPBgzwwNtI1nRIXVMnWdNTUtZOnz7NwoUL+eijj/j000+VXzfQP+d6izRANiaFW50Ubj2SNXWSNT3ny1pWFqxbB59+CtOnuz/vvvugVSvzYqtXXgkVKnhhcEePwk8/uTczhb+Kuz8jo/iuzckDDZBkTY/UNXWSNT06WUtLS+PTTz/lo48+Ou9hdIH8OdebpAGyKSnc6qRw65GsqZOs6Slt1jIz4bbb4Kuvin+dXbvgkku8MMDly83zd3SEhkJUlPkVG2teFLVvX7jiijINSbKmR+qaOsmaHk9mzTAM5syZw+DBg133BernXG+TBsiGpHCrk8KtR7KmTrKmRydr+fnw11/mrHK//GJ+7dplfu+VqG7dCrfffraRqVz57O3ivgo/XrGixwclWdMjdU2dZE2Pt7JWUFDAjBkzeOihhwLyc64vSANkM1K41Unh1iNZUydZ0yNZUydZ0yNZUydZ0+PtrAXq51xfkQuh2ogUbnVSuPVI1tRJ1vRI1tRJ1vRI1tRJ1vRI1qxPGiCbkI1JnRRuPZI1dZI1PZI1dZI1PZI1dZI1PZI1e5AGyAZkY1InhVuPZE2dZE2PZE2dZE2PZE2dZE2PZM0+pAGyONmY1Enh1iNZUydZ0yNZUydZ0yNZUydZ0yNZsxdpgCxMNiZ1Urj1SNbUSdb0SNbUSdb0SNbUSdb0SNbsRxogi5KNSZ0Ubj2SNXWSNT2SNXWSNT2SNXWSNT2SNXuSBsiCZGNSJ4Vbj2RNnWRNj2RNnWRNj2RNnWRNj2TNvqQBshjZmNRJ4dYjWVMnWdMjWVMnWdMjWVMnWdMjWbM3rzRAmZmZJCUlcckllxAREUGHDh1Ys2aN63HDMHj22WeJi4sjIiKCLl26sGXLFrfXyM3N5eGHH6Z69epERkbSr18/9u3b543hWoZsTOqkcOuRrKmTrOmRrKmTrOmRrKmTrOmRrNmfVxqg++67j8WLFzNr1iw2bdpEz5496d69O/v37wdg0qRJTJ48mWnTprFmzRpiY2Pp0aMHmZmZrtdISkpi3rx5zJkzh5UrV5KVlUWfPn3Iz8/3xpD9TjYmdVK49UjW1EnW9EjW1EnW9EjW1EnW9EjWAoPDMAzDky+Yk5NDpUqV+OKLL+jdu7fr/ssuu4w+ffrw/PPPExcXR1JSEmPHjgXMvT0xMTFMnDiRYcOGkZ6ezsUXX8ysWbMYNGgQAAcOHCA+Pp4FCxbQq1evC44jIyODqKgo0tPTqVy5sid/RI+TjUmdFG49kjV1kjU9kjV1kjU9kjV1kjU9VsqanT7nWlE5T7/gmTNnyM/Pp0KFCm73R0REsHLlSnbu3Elqaio9e/Z0PRYeHk7nzp1ZtWoVw4YNY926deTl5bktExcXR4sWLVi1alWxDVBubi65ubmu7zMyMgDIy8sjLy/P0z+mx2RnZ5OSkkKtWrVo2LAhZ86c8feQLM8wDLZt28b+/ftJTEwkPDzc0r9jq5CsqZOs6ZGsqZOs6ZGsqZOs6bFa1uR3VjYeb4AqVapE+/btef7552natCkxMTF8/PHHrF69moYNG5KamgpATEyM2/NiYmLYvXs3AKmpqZQvX56qVasWWcb5/HNNmDCBcePGFbk/OTmZihUreuJH86odO3awY8cOfw/DdpYtW+bvIdiOZE2PZE2dZE2PZE2dZE2PZE2dVbJ28uRJfw/B1jzeAAHMmjWLe++9l1q1ahEaGsrll1/O4MGDWb9+vWuZc3cbGoZxwV2J51vmiSeeYOTIka7vMzIyiI+Pp2fPnpbcNVj4LwmNGzeWXfalcO5frSIjI/09JFuQrKmTrOmRrKmTrOmRrKmTrOmxatacRzoJPV5pgOrXr8+yZcvIzs4mIyODmjVrMmjQIBISEoiNjQXMvTw1a9Z0PSctLc21Vyg2NpbTp09z/Phxt71AaWlpdOjQodj3DA8PJzw8vMj9YWFhhIWFefLHK7OsrCxWr15NfHy8348htQvn8coHDhygU6dOcrxyKUnW1EnW9EjW1EnW9EjW1EnW9Fg5a1b7bGs3Xr0OUGRkJDVr1uT48eMsWrSI/v37u5qgxYsXu5Y7ffo0y5YtczU3bdq0ISwszG2ZgwcPsnnz5hIbILuw0gl0diEna+qRrKmTrOmRrKmTrOmRrKmTrOmRrAU2r+wBWrRoEYZh0LhxY/766y8ee+wxGjduzD333IPD4SApKYnx48fTsGFDGjZsyPjx46lYsSKDBw8GICoqiiFDhjBq1CiqVatGdHQ0o0ePpmXLlnTv3t0bQ/YJ2ZjUSeHWI1lTJ1nTI1lTJ1nTI1lTJ1nTI1kLfF5pgNLT03niiSfYt28f0dHR3HTTTbz44ouu3XVjxowhJyeHhx56iOPHj9OuXTuSk5OpVKmS6zWmTJlCuXLlGDhwIDk5OXTr1o333nuP0NBQbwzZ62RjUieFW49kTZ1kTY9kTZ1kTY9kTZ1kTY9kLTh4/DpAVmGl+dFlY1InhVuPZE2dZE2PZE2dZE2PZE2dZE2PnbJmpc+5duTVc4CEvTYmq5DCrUeypk6ypkeypk6ypkeypk6ypkeyFlykAfIi2ZjUSeHWI1lTJ1nTI1lTJ1nTI1lTJ1nTI1kLPtIAeYlsTOqkcOuRrKmTrOmRrKmTrOmRrKmTrOmRrAUnaYC8QDYmdVK49UjW1EnW9EjW1EnW9EjW1EnW9EjWgpc0QB4mG5M6Kdx6JGvqJGt6JGvqJGt6JGvqJGt6JGvBTRogD5KNSZ0Ubj2SNXWSNT2SNXWSNT2SNXWSNT2SNSENkIfIxqROCrceyZo6yZoeyZo6yZoeyZo6yZoeyZoAaYA8QjYmdVK49UjW1EnW9EjW1EnW9EjW1EnW9EjWhJM0QGUkG5M6Kdx6JGvqJGt6JGvqJGt6JGvqJGt6JGuiMGmAykA2JnVSuPVI1tRJ1vRI1tRJ1vRI1tRJ1vRI1sS5pAHSJBuTOinceiRr6iRreiRr6iRreiRr6iRreiRrojjSAGmQjUmdFG49kjV1kjU9kjV1kjU9kjV1kjU9kjVREmmAFMnGpE4Ktx7JmjrJmh7JmjrJmh7JmjrJmh7JmjgfaYAUyMakTgq3HsmaOsmaHsmaOsmaHsmaOsmaHsmauBBpgEpJNiZ1Urj1SNbUSdb0SNbUSdb0SNbUSdb0SNZEaUgDVAqyMamTwq1HsqZOsqZHsqZOsqZHsqZOsqZHsiZKSxqgC5CNSZ0Ubj2SNXWSNT2SNXWSNT2SNXWSNT2SNaFCuQFavnw5ffv2JS4uDofDwfz5890eNwyDZ599lri4OCIiIujSpQtbtmxxWyY3N5eHH36Y6tWrExkZSb9+/di3b5/bMsePH+eOO+4gKiqKqKgo7rjjDk6cOKH8A5aFbEzqpHDrkaypk6zpkaypk6zpkaypk6zpkawJVcoNUHZ2Nq1atWLatGnFPj5p0iQmT57MtGnTWLNmDbGxsfTo0YPMzEzXMklJScybN485c+awcuVKsrKy6NOnD/n5+a5lBg8ezMaNG1m4cCELFy5k48aN3HHHHRo/oh7ZmNRJ4dYjWVMnWdMjWVMnWdMjWVMnWdMjWRM6HIZhGNpPdjiYN28eAwYMAMyNNy4ujqSkJMaOHQuYe3tiYmKYOHEiw4YNIz09nYsvvphZs2YxaNAgAA4cOEB8fDwLFiygV69e/P777zRr1oyUlBTatWsHQEpKCu3bt2fr1q00btz4gmPLyMggKiqK9PR0KleurPRzycakTgq3HsmaOsmaHsmaOsmaHsmaOsmanmDOWlk+5woPnwO0c+dOUlNT6dmzp+u+8PBwOnfuzKpVqwBYt24deXl5bsvExcXRokUL1zI//fQTUVFRruYHIDExkaioKNcy3hLMG5MuKdx6JGvqJGt6JGvqJGt6JGvqJGt6JGuiLMp58sVSU1MBiImJcbs/JiaG3bt3u5YpX748VatWLbKM8/mpqanUqFGjyOvXqFHDtcy5cnNzyc3NdX2fkZEBQF5eHnl5eaUaf3Z2NikpKdSqVYuGDRty5syZUj0vmBmGwbZt29i/fz+JiYmEh4eXen0HM8maOsmaHsmaOsmaHsmaOsmaHskakpMy8mgD5HRuF24YxgU783OXKW75873OhAkTGDduXJH7k5OTqVixYmmG7bJjxw527Nih9BwBy5Yt8/cQbEeypkeypk6ypkeypk6ypkeypi6Ys3by5El/D8HWPNoAxcbGAuYenJo1a7ruT0tLc+0Vio2N5fTp0xw/ftxtL1BaWhodOnRwLXPo0KEir3/48OEie5ecnnjiCUaOHOn6PiMjg/j4eHr27HnBYyML/yWhcePGshu1FM79q1VkZKS/h2QLkjV1kjU9kjV1kjU9kjV1kjU9krWznEc6CT0ebYASEhKIjY1l8eLFtG7dGoDTp0+zbNkyJk6cCECbNm0ICwtj8eLFDBw4EICDBw+yefNmJk2aBED79u1JT0/n559/5sorrwRg9erVpKenu5qkc4WHhxMeHl7k/rCwMMLCwkocc1ZWFqtXryY+Pl6OIS0l5/HKBw4coFOnTnK8cilJ1tRJ1vRI1tRJ1vRI1tRJ1vRI1tyd77OtuDDlBigrK4u//vrL9f3OnTvZuHEj0dHR1KlTh6SkJMaPH0/Dhg1p2LAh48ePp2LFigwePBiAqKgohgwZwqhRo6hWrRrR0dGMHj2ali1b0r17dwCaNm3Ktddey9ChQ5kxYwYA999/P3369CnVDHAqP4ucQKdGTtbUI1lTJ1nTI1lTJ1nTI1lTJ1nTI1kTnqbcAK1du5ZrrrnG9b3zsLO77rqL9957jzFjxpCTk8NDDz3E8ePHadeuHcnJyVSqVMn1nClTplCuXDkGDhxITk4O3bp147333iM0NNS1zEcffcQ///lP12xx/fr1K/HaQzpkY1InhVuPZE2dZE2PZE2dZE2PZE2dZE2PZE14Q5muA2Rl55sfXTYmdVK49UjW1EnW9EjW1EnW9EjW1EnW9EjWSibXASobj14HyA5kY1InhVuPZE2dZE2PZE2dZE2PZE2dZE2PZE14U1A1QLIxqZPCrUeypk6ypkeypk6ypkeypk6ypkeyJrwtaBog2ZjUSeHWI1lTJ1nTI1lTJ1nTI1lTJ1nTI1kTvhAUDZBsTOqkcOuRrKmTrOmRrKmTrOmRrKmTrOmRrAlf8eh1gKwoKyuLTZs2ycakQAq3Hinc6iRreiRr6iRreiRr6iRreiRrwpcCfg9QSkqKbEwKpHDrkcKtTrKmR7KmTrKmR7KmTrKmR7KmLkAncfaZgN0D5AxGlSpVqF27NpmZmX4ekfUZhsHWrVvZv38/iYmJFBQUkJGR4e9hWV5WVhYpKSnUqlVLslZKkjU9kjV1kjU9kjV1kjU9kjV1hmGwbt06122hLmAboKNHjwLQrVs3P49ECCGEEEIIzzt69ChRUVH+HobtBGwDFB0dDcCePXskGAoyMjKIj49n7969cmGtUpJ1pkfWmzpZZ3pkvamTdaZH1ps6WWd60tPTqVOnjuvzrlATsA1QSIh5elNUVJRsUBoqV64s602RrDM9st7UyTrTI+tNnawzPbLe1Mk60+P8vCvUyFoTQgghhBBCBA1pgIQQQgghhBBBI2AboPDwcJ555hnCw8P9PRRbkfWmTtaZHllv6mSd6ZH1pk7WmR5Zb+pknemR9VY2DkPmzxNCCCGEEEIEiYDdAySEEEIIIYQQ55IGSAghhBBCCBE0pAESQgghhBBCBA1pgIQQQgghhBBBI6AboNzcXC677DIcDgcbN250e2zPnj307duXyMhIqlevzj//+U9Onz7tn4FaRL9+/ahTpw4VKlSgZs2a3HHHHRw4cMBtGVlvZ+3atYshQ4aQkJBAREQE9evX55lnnimyPmSdFfXiiy/SoUMHKlasSJUqVYpdRtZbUdOnTychIYEKFSrQpk0bVqxY4e8hWcby5cvp27cvcXFxOBwO5s+f7/a4YRg8++yzxMXFERERQZcuXdiyZYt/BmsREyZMoG3btlSqVIkaNWowYMAAtm3b5raMrLei/vvf/3LppZe6LtzZvn17vv32W9fjss4ubMKECTgcDpKSklz3yXor6tlnn8XhcLh9xcbGuh6XdaYvoBugMWPGEBcXV+T+/Px8evfuTXZ2NitXrmTOnDnMnTuXUaNG+WGU1nHNNdfw6aefsm3bNubOncv27dv5xz/+4Xpc1pu7rVu3UlBQwIwZM9iyZQtTpkzhzTff5Mknn3QtI+useKdPn+bmm2/mwQcfLPZxWW9FffLJJyQlJfHUU0+xYcMGrrrqKq677jr27Nnj76FZQnZ2Nq1atWLatGnFPj5p0iQmT57MtGnTWLNmDbGxsfTo0YPMzEwfj9Q6li1bxvDhw0lJSWHx4sWcOXOGnj17kp2d7VpG1ltRtWvX5qWXXmLt2rWsXbuWrl270r9/f9cHT1ln57dmzRpmzpzJpZde6na/rLfiNW/enIMHD7q+Nm3a5HpM1lkZGAFqwYIFRpMmTYwtW7YYgLFhwwa3x0JCQoz9+/e77vv444+N8PBwIz093Q+jtaYvvvjCcDgcxunTpw3DkPVWGpMmTTISEhJc38s6O793333XiIqKKnK/rLeirrzySuOBBx5wu69JkybG448/7qcRWRdgzJs3z/V9QUGBERsba7z00kuu+06dOmVERUUZb775ph9GaE1paWkGYCxbtswwDFlvKqpWrWr873//k3V2AZmZmUbDhg2NxYsXG507dzYeeeQRwzAkayV55plnjFatWhX7mKyzsgnIPUCHDh1i6NChzJo1i4oVKxZ5/KeffqJFixZue4d69epFbm4u69at8+VQLevYsWN89NFHdOjQgbCwMEDWW2mkp6cTHR3t+l7WmR5Zb+5Onz7NunXr6Nmzp9v9PXv2ZNWqVX4alX3s3LmT1NRUt/UXHh5O586dZf0Vkp6eDuCqYbLeLiw/P585c+aQnZ1N+/btZZ1dwPDhw+nduzfdu3d3u1/WW8n+/PNP4uLiSEhI4JZbbmHHjh2ArLOyCrgGyDAM7r77bh544AGuuOKKYpdJTU0lJibG7b6qVatSvnx5UlNTfTFMyxo7diyRkZFUq1aNPXv28MUXX7gek/V2ftu3b+f111/ngQcecN0n60yPrDd3R44cIT8/v8g6iYmJCcr1ocq5jmT9lcwwDEaOHEmnTp1o0aIFIOvtfDZt2sRFF11EeHg4DzzwAPPmzaNZs2ayzs5jzpw5rF+/ngkTJhR5TNZb8dq1a8cHH3zAokWLeOutt0hNTaVDhw4cPXpU1lkZ2aYBKu5EsHO/1q5dy+uvv05GRgZPPPHEeV/P4XAUuc8wjGLvt7PSrjenxx57jA0bNpCcnExoaCh33nknhmG4Hg+G9aa6zgAOHDjAtddey80338x9993n9lgwrDPQW2/nEyzrTcW5P3uwrw9Vsv5KNmLECH799Vc+/vjjIo/JeiuqcePGbNy4kZSUFB588EHuuusufvvtN9fjss7c7d27l0ceeYQPP/yQChUqlLicrDd31113HTfddBMtW7ake/fufPPNNwC8//77rmVknekp5+8BlNaIESO45ZZbzrtM3bp1eeGFF0hJSSE8PNztsSuuuILbbruN999/n9jYWFavXu32+PHjx8nLyyvSSdtdadebU/Xq1alevTqNGjWiadOmxMfHk5KSQvv27YNmvamuswMHDnDNNdfQvn17Zs6c6bZcsKwzUF9v5xNM6600qlevTmhoaJG/6qWlpQXl+lDlnDUpNTWVmjVruu6X9Wd6+OGH+fLLL1m+fDm1a9d23S/rrWTly5enQYMGgPn5Ys2aNbz66quMHTsWkHV2rnXr1pGWlkabNm1c9+Xn57N8+XKmTZvmmn1Q1tv5RUZG0rJlS/78808GDBgAyDrT5pczj7xo9+7dxqZNm1xfixYtMgDjs88+M/bu3WsYxtkTrA8cOOB63pw5c4L6BOvi7NmzxwCM77//3jAMWW/F2bdvn9GwYUPjlltuMc6cOVPkcVln53ehSRBkvZ115ZVXGg8++KDbfU2bNpVJEIpBCZMgTJw40XVfbm5u0J8sXFBQYAwfPtyIi4sz/vjjj2Ifl/VWOl27djXuuusuWWclyMjIcPtstmnTJuOKK64wbr/9dmPTpk2y3krp1KlTRq1atYxx48bJOiujgGuAzrVz584is8CdOXPGaNGihdGtWzdj/fr1xpIlS4zatWsbI0aM8N9A/Wz16tXG66+/bmzYsMHYtWuXsXTpUqNTp05G/fr1jVOnThmGIevtXPv37zcaNGhgdO3a1di3b59x8OBB15eTrLPi7d6929iwYYMxbtw446KLLjI2bNhgbNiwwcjMzDQMQ9ZbcebMmWOEhYUZb7/9tvHbb78ZSUlJRmRkpLFr1y5/D80SMjMzXTkCjMmTJxsbNmwwdu/ebRiGYbz00ktGVFSU8fnnnxubNm0ybr31VqNmzZpGRkaGn0fuPw8++KARFRVl/PDDD2716+TJk65lZL0V9cQTTxjLly83du7cafz666/Gk08+aYSEhBjJycmGYcg6K63Cs8AZhqy34owaNcr44YcfjB07dhgpKSlGnz59jEqVKrnqvqwzfUHZABmG+QGsd+/eRkREhBEdHW2MGDHC9UE/GP3666/GNddcY0RHRxvh4eFG3bp1jQceeMDYt2+f23Ky3s569913DaDYr8JknRV11113FbvenHsbDUPWW3HeeOMN45JLLjHKly9vXH755a7pioVhfP/998Vm6q677jIMw9yb8cwzzxixsbFGeHi4cfXVVxubNm3y76D9rKT69e6777qWkfVW1L333uvaDi+++GKjW7durubHMGSdlda5DZCst6IGDRpk1KxZ0wgLCzPi4uKMG2+80diyZYvrcVln+hyGUegMdyGEEEIIIYQIYLaZBU4IIYQQQgghykoaICGEEEIIIUTQkAZICCGEEEIIETSkARJCCCGEEEIEDWmAhBBCCCGEEEFDGiAhhBBCCCFE0JAGSAghhBBCCBE0pAESQgghhBBCBA1pgIQQQgghhBBBQxogIYQQQgghRNCQBkgIIYQQQggRNKQBEkIIIYQQQgQNaYCEEEIIIYQQQUMaICGEEEIIIUTQkAZICCGEEEIIETSkARJCCCGEEEIEDWmAhBBCCCGEEEFDGiAhhBBCCCFE0JAGSAghhBBCCBE0pAESQgghhBBCBA1pgIQQQgghhBBBQxogIYQQQgghRNCQBkgIIYQQQggRNKQBEkIIIYQQQgQNaYCEEEIIIYQQQUMaICGEEEIIIUTQkAZICCGEEEIIETSkARJCCCGEEEIEDWmAhBBCCCGEEEFDGiAhhBBCCCFE0JAGSAghhBBCCBE0pAESQgghhBBCBA1pgIQQQgghhBBBQxogIYQQQgghRNCQBkgIIYQQQggRNKQBEkIIIYQQQgQNaYCEEEIIIYQQQUMaICGEEEIIIUTQkAZICCGEEEIIETT+H5aR1xmPQKWiAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# make figure and `SkewT` object\n", - "fig = plt.figure(figsize=(9, 9))\n", - "skewt = SkewT(fig=fig, rotation=45)\n", - "\n", - "# plot sounding data\n", - "skewt.plot(p, T, 'r') # air temperature\n", - "skewt.plot(p, Td, 'b') # dew point\n", - "skewt.plot_barbs(p, u, v) # wind barbs" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's talk break that down a bit.\n", - " \n", - "```python\n", - "# make figure and `SkewT` object\n", - "fig = plt.figure(figsize=(9, 9))\n", - "skewt = SkewT(fig=fig, rotation=45)\n", - "```\n", - "First, we made a new figure and used it to make a new skew-T plot. If you don't provide a figure to `SkewT`, one will be created for you, but it's useful to make the default figure size a bit larger for this tutorial.\n", - "\n", - "Additionally, we've also set the `rotation` kwarg to be 45 degrees. This is the angle that the temperature lines will be drawn at. Metpy's default is 30 degrees, but we're going to use a more traditional 45 degrees for this tutorial.\n", - "\n", - "```python\n", - "\n", - "```python\n", - "# plot sounding data\n", - "skewt.plot(p, T, 'r') # air temperature\n", - "skewt.plot(p, Td, 'b') # dew point\n", - "```\n", - "\n", - "For air temperature and dew point, we can use the standard `plot` method. The `SkewT` object provides a wrapper around matplotlib's `plot` method, and can be used in the same way. Note that even though pressure is on the y-axis, we still provide it as the first argument to `plot` because it is the independent variable. \n", - "\n", - "```python\n", - "skewt.plot_barbs(p, u, v) # wind barbs\n", - "```\n", - "\n", - "Finally, we use `SkewT`'s [`plot_barbs`](https://unidata.github.io/MetPy/latest/api/generated/metpy.plots.SkewT.html#metpy.plots.SkewT.plot_barbs) method to add the wind barbs to the right side of the plot. This is a wrapper around matplotlib's [`barbs`](https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.barbs.html#matplotlib.pyplot.barbs) method that applies the appropriate transformation and positions the barbs as expected for a Skew-T plot.\n", - "\n", - "In addition to the elements we have added specifically, you can see that the `SkewT` object also added some of the structural elements we discussed previously. By default, `SkewT` adds the horizontal pressure and skewed temperature lines. " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Adding more structural elements\n", - "Next, let's add the rest of the structural elements to the plot." - ] - }, - { - "cell_type": "code", - "execution_count": 41, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 41, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0AAAAL3CAYAAACj2yU7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOyddXhUZ9bAf3fiJMFDILi7u0sppaW0UFdKu7WtLfWvspVtd7tbd3fqtECRUgoUd4q7BQkWNEp07vfHGYlnZnJn5s7M+3senrkjufOSnHvuOe8xTdd1HYVCoVAoFAqFQqEIASz+XoBCoVAoFAqFQqFQ+ArlACkUCoVCoVAoFIqQQTlACoVCoVAoFAqFImRQDpBCoVAoFAqFQqEIGZQDpFAoFAqFQqFQKEIG5QApFAqFQqFQKBSKkEE5QAqFQqFQKBQKhSJkUA6QQqFQKBQKhUKhCBmUA6RQKBQKhUKhUChCBuUAKRQKhUKhUCgUXiQ1NRVN08r8N2zYMDRNY+TIkQAcPXrU8d71119f6lxffPEFmqYxY8YMX/83ggZN13Xd34tQKBQKhUKhUCiCGavVSlhYmOP5mDFjmD17tuN5QUGB4/3MzEzi4+MB6NixI1u3bi12ruzsbKpVq+aDVQcnKgKkUCgUCoVCoVB4mUGDBgEwceJEgGLOD0B4eDjJyckAxMXFkZ+fD8C2bdvQNA2r1er4rHJ+qoZygBQKhUKhUCgUCi+yYcMGVq5cCUgKm9VqpWnTpo73+/TpA0CLFi348MMPAXGIrFYriYmJAISFhZGTk+PjlQcnKgVOoVAoFAqFQqHwIpqmAbB7925at25NVlYWcXFx5X6+TZs27Ny50/FzF110EX/88QcAJ0+epG7dut5fdBCjIkAKhUKhUCgUCoWXuPXWWwG4/PLLad26NQB16tQB4KuvvuL8+fNYLMVN8t27d2OxWDh06BAAc+fOZdKkSQAkJCSwZ88eH60+OFEOkEKhUCgUCoVC4QUOHTrEl19+CcC0adMAmD59Orm5uQBMmDCB6OhoCgsLefvttx0/V6tWLQCaNm3KZ599BsAbb7zB+++/D0iE6ODBg776bwQdKgVOoVAoFAqFQqHwAvYUtmXLljFw4EAKCgqIiIgA4MyZMw5HJz8/n4iICFJTUx01P0Xp0qULGzduRNM05syZwyWXXMLKlSvp16+f7/4zQYSKACkUCoVCoVAoFF7k1KlTAPTq1QuA559/3uH8aJpGZGQkAPXq1UPXde68885iP79582YsFgtHjhzh4osvRtd15fxUAeUAKRQKhUKhUCgUXsCepjZu3Di+/fZbNm3aBMAzzzwDwH//+18A2rZtW+znPvroI7Zs2VLqfI0aNWLy5MneXHJIoFLgFAqFQqFQKBQKL7FgwQJGjhzpeJ6cnEyzZs1IS0ujZs2aAOTl5TlS44qi6zp9+/Zl7dq1xV7v06cPq1atcqTYKdxDRYAUCoVCoVAoFAovccEFF/D00087ntvn/9idn59++qlM5wckPW7NmjWlhqauWbOGOXPmeGfBIYCKACkUCoVCoVAoFF5m6NChLFmyhEaNGvHyyy9zww03ABLlcYWcnBxiY2OxWq0A7N+/n+bNm3ttvcGMigApFAqFQqFQKBReZvHixQCkpKQ4nJ/09HSXf75ku+wTJ04Yv8gQQUWAFAqFQqFQKBQKH1C0DfagQYNYunSpn1cUmqgIkEKhUCgUCoVC4QPCw8MdneGWLVtWZqc3hfdRESCFQqFQKBQKhcKHrFixgoEDBwJw7tw5atSo4ecVhRYqAqRQKBQKhUKhUPiQAQMGOGp5atas6WhsoPANKgKkUCgUCoVCoVD4gfHjxzN9+nSqVatGVlaWv5cTMqgIkEKhUCgUCoVC4QemTZsGQHZ2NjfeeKOfVxM6KAdIoVAoFAqFQqHwE4WFhQB89913fPzxx35eTWigHCCFQqFQKBQKhcJDVq5cydmzZz3+eYvFwunTpwG46667WLt2rVFLU5SDqgFSKBQKhUKhUCg8RNM0evbsybp166p0nvXr19OzZ08ATp48Sd26dY1YnqIMVARIoVAoFAqFQqHwgH379gHQrFkzx2u33norqampbp+rR48efP755wAkJCQ4UuMUxqMcIIVCoVAoFAqFwgPmzZsHwIUXXgjAunXr+PLLL3nllVc8Ot+tt97KxIkTARmaqvAOygFSKBQKhUKhUCg8YP78+YDTAZo7dy4A/fr1AySVTdM0MjMzXT7nF198Qa1atQAYM2aMkctV2FAOkEKhUCgUCoVC4SYvvvgiv/zyCwAtWrQAnBGhESNGAPDSSy8BuF0fZG+K8Ntvv/H6668bsl6FE9UEQaFQKBQKhUKhcJPmzZtz4MABAHRd5/DhwzRp0sTxHKBz585s3bqVnJwcoqKi3Dp/eno6NWrUAGDx4sUMGTLEuMWHOMoBUigUCoVCoVAo3ETTNMexruu0aNGC5ORkx/Oin/HU3N6xYwcdOnQA4OjRozRo0KAqS1bYUClwCoVCoVAoFApFFbE7P3b++c9/Vvmc7du356effgIgKSmJ/Pz8Kp9ToSJACoVCoVAoFAqF29ijO71792bNmjWO52FhYRQUFJSKEFWFSZMm8dZbbxlyLoWKACkUCoVCoVAoFB4zcuTIYs/tHeHsJCYmVvk73nzzTVq2bAnAgAEDqny+UEc5QAqFQqFQKBQKhYeUdHhKPi/pIHnKnj17AFi5ciXPP/+8IecMVZQDpFAoFAqFQqFQeEjJiExlDpGnaJpGdnY2AM899xybNm0y5LyhiHKAFAqFQqFQKBQKN8jNzXUcl2xv3alTp2LP7RGgJUuWoGkaeXl5Hn9vTEwM+/btA6CgoMDj84Q64f5egEKhUCgUCoVCEUjs3r272POsrCzHcdHmBwANGzYE4LHHHgPEeYqMjPT4u1u0aKEaIVQRFQFSKBQKhUKhUCjcYPv27Y7jevXqsXTp0mLvZ2RklPqZ1atXAxAfH+/dxSkqRTlACoVCoVAoFAqFGxR1gE6ePMnFF19c7P2dO3f6ekkKN1AOkEKhUCgUCoVC4QY7duwA4MCBA6xZs6bYe5qmOYaXKsyJGoSqUCgUCoVCoVC4QefOndm6dSuFhYVYLBbGjx/P9OnTiY2NLVYPBM7BpZqmERsbS2Zmpj+WrCiCigApFAqFQqFQKBRuYE9xu+GGG8jOznakxGVkZHD69GliY2Mdn9U0jZtvvhkwriW2omqoCJBCoVAoFAqFQuEGX331FRMnTiz1ut2sbtWqFfv27WP8+PFMmzbN8X54eDjZ2dlERET4aqmKMlARIIVCoVAoFAqFwg1uueUWdF3n22+/Lfa6pmncdtttjlk9U6dOxWq1cttttwEyuycyMpI+ffqQlpbm83UrBBUBUigUCoVCoVAoKuDQoUOMGDGC3bt3Y7GUjh8cPnyYsWPHsmnTpmKvr1y5kn79+jmev//++9x7772O57Vr12bjxo00btzYe4tXlEJFgBQKhUKhUCgUigr49NNP2bdvH/PnzwcgMzMTTdNYtmwZAI0bN2bNmjUUFhbyySefOH6uf//+aJrG/fffT35+Pvfccw+6rjNjxgwAzpw5Q5MmTdA0jY0bN/r8/xWqKAdIoVAoFAqFQqGogMGDBwOwcOFCAEentxdeeMHxmaioKIYPH87tt9+OruukpKTQrVs3AN59910iIyOpVq0aGzZsYOzYsei6ztq1ax0/3717dzRN4/fff/fR/yp0MdwBWrJkCWPHjiUpKQlN05g+fXqx93Vd57nnniMpKYmYmBiGDRvGtm3bin0mNzeX+++/n7p16xIbG8tll11GSkqK0UtVKBQKhUKhUCgqZeDAgQD8+eefACQmJgI4IkJ2lixZ4jhu2LAhGzZswGq18vbbbwNw/vx5evTogaZpPP7443Tv3h1d10lOTqZ69eoAXHzxxWiaViySpDAWwx2grKwsunbtyrvvvlvm+y+//DKvv/467777LmvXrqV+/fpceOGFZGRkOD4zadIkpk2bxg8//MCyZcvIzMzk0ksvpbCw0OjlKhQKhUKhUCgUFVKtWjWAUkNPrVYrL774YqnN/KLYU+Dsjk6bNm0AsYnDw8NJSEggOzubtLQ0zp49S/fu3QG488470TSNJ554AlWybyxebYKgaRrTpk1j3LhxgER/kpKSmDRpEo8//jgg0Z7ExET+97//cdddd5GWlkZCQgKTJ0/m2muvBeDo0aM0btyY3377jYsuushby1UoFAqFQqFQKMpE0zSg+GBTOx06dHDMAnLFtNZ1nZdffpn/+7//K/b6888/z9NPP01BQQE33ngjP//8s+O9q6++mm+++YbIyMgq/19CHZ/WACUnJ3P8+HFGjRrleC0qKoqhQ4eyYsUKAP766y/y8/OLfSYpKYlOnTo5PqNQKBQKhUKhUJiFPn36OByiqKgohzNUHvYUOF3X2bVrF40aNQLg2WefJSwsjNatW/PSSy9htVp57LHHAJgyZQpRUVH06tVLtdCuIuG+/LLjx48DzrxJO4mJiRw8eNDxmcjISGrVqlXqM/afL4vc3Fxyc3Mdz61WK2fOnKFOnTrFPHSFQqFQKBQKhcJdwsLCKCwsJD09vdR7AwcO5MsvvwQgLy+PDz/8kBdffNGl89avX59t27ZhtVr573//y//+9z8OHTpE69atAfjXv/7FuXPn+Pzzz3nooYf466+/qFmzJvPnz2f48OFltuVWVIxPHSA7JR0SXdcrdVIq+8xLL73E888/b8j6FAqFQqFQKBSKsqhRo0ap1+64445iz9955x3eeecdQ77vmWee4Zlnnin1+siRIzl8+LAjeqRwHZ86QPXr1wckytOgQQPH66mpqY6oUP369cnLy+Ps2bPFokCpqakMGDCg3HM/8cQTPPTQQ47naWlpNGnShOTkZOLj44t91rpwMfrKNYR3boc+dmypc2VlZbF27VqSkpJo3bq17yNIO3di+fVXqFUL6x13cPCQxg8/WIiOhvvvt+J3R99qRVu0CG3HDqwTJkB8PLqus2fPHo4ePUrv3r2JjY316NS6DlX+dRcWos2Ygd6uHbRti/9/YeVTkawVFkJYmB8XZ1KMkrWiFBbChg0aLVro1K5twCINZNo0jUmTwsjK0khM1Pnii0L69HG/dNPves3HFBbC119bSE2F4cN1j35n3pC1UCBoZa2gAMvLL2N5+220ggL0uDis//wn1okTq6yslax5hq9l7a233uKFF17g448/5oorrqBu3bqO906dOlXs+aFDhxyNE6pCQUEBL7zwAu+9916x159//nmeffbZUjauwjV86gA1b96c+vXrM2/ePEeHi7y8PBYvXsz//vc/AHr27ElERATz5s3jmmuuAeDYsWNs3bqVl19+udxzR0VFERUVVer12rVrO9oKAixaBCtWD2dE2hn6nToFtWsXs7gzMzNZt24d7dq1o0OHDv5R3L17w8KFkJsLhYXU6pbI/PmQnQ2ZmdC8ue+XVIr0dLBa4dgx9KZN2b59O+np6Vx00UXExcW5fbpNm2D1arjgAmjZ0oD13X67ASfxLqaQtQBD1/Uqy1pZzJwJf/0F586BrfeKabj9dhg0CK68ErZvh3/8A3bvdu8coSprN90Ep05Bx47ub6x4S9aCnaCWtccfh9dfl+PLLoP33oMSO++6DuvXQ3w82Bp9VYqSNc/wh6yNHTuWF154gXXr1pWK+NSpU6fY88aNGxv2ve+++y7vvvsuf/31FwMHDiQ3N5dnn30WKJ1VpXANw7fGMzMz2bhxo2OabXJyMhs3buTQoUNomsakSZP4z3/+w7Rp09i6dSsTJ06kWrVq3HDDDYCEFf/2t7/x8MMPs2DBAjZs2MBNN91E586dGTlyZJXXFxEBeTE12JeeIN7EiRPF1r58+XIaNWrkX8UdGen0AnbuxGKRQAbAjh3+WVIpunQBQN+0ie3bt5OSksLAgQM9VtwpKXD0KGzYYOQizYs7snbuHCxYAAUFvlufGbEbCVWVtbLo108M5B074NAhw05rGO3agW0/yGWjyo5p9JofqF8fOnXy3PnxhqwFM0Eta4sXwyuvyPFnn8H06aWcH5CNlJkz5d/585WfVsmaZ/hL1uyb9/ZZQL6mZ8+e5OTkkJubyzfffOOXNQQLhjtA69ato3v37g4heeihh+jevbsjd/Gxxx5j0qRJ3HPPPfTq1YsjR47wxx9/FAvhvfHGG4wbN45rrrmGgQMHUq1aNWbOnEmYAflALVsCFgsHwltS0KqdbNdgQsXdvr082jyeok9N0Qq+Y0d0TePk5s2kbt1aZcVtExd27nTtpuESmZmwZAmsWmXQCY3BHVnTdfjqK1i6FDZv9uEiTYa3jYSEBOjRQ47/+MMk11gRdB1+/FGO7Y6QK5hOr/mR7GwoMb6jTJRB6hlBLWtpaTBhglyIf/sb3HZbuV51t25Qty5kZMDcuRWfVsmaZ/hT1sLDJXFq7969nDlzpth7vpzTExkZydgySjgUrmO4AzRs2DB0XS/1z94ZQ9M0nnvuOY4dO0ZOTg6LFy+mU6dOxc4RHR3NO++8w+nTp8nOzmbmzJmGhRITEyE2FvLbdCJl0HXQoIE5FXebNqJgjx+HjAxatJAo0NChknnmb/SYGFKqVSM9PZ1+sbFVVtwNGsjfpqAAtm41aJGHDsGff8KyZVIQYALclTVNk4xIgBUrzGeY+wJfGQnDhknwNSVFUs3MxLZtsvkRGQmXX+7az5hSr/mJvDz44AP47beK/7bKIPWMoJe1++6T+0mLFvDGGxV+NDxcrlFNg40bYc+esj+nZM0zzCRrO0qk5KSmppb6jNUMBpuiTMxbHe4lNM2ZXbZvn7kupmJUqyZbvQ89BPHxhIfD9ddDr17+L4y3K+6D1avTpEkTYvbsqbJlrmnOKJBhaXBt20JcnESCdu0y6KSe46ms9ewJUVFSy+Bu7Ueg40sjIT4e7H1W5s83V8rhTz/J4+jRUEbzoVKYVq/5ichIp36ZPVuiQSVRBqlnBL2s/fQTfPONNNP55htRFJXQuLGk1YKkwuXkFH9fyZpnmE3WXrfXg9koOffn6NGjhIWF+X2dirIJOQcIZBMHYNu2HFb//jtNatQwxcVUivbtoUgDBzNQVHF3u+YaIuPjJT3AgMKJzp3FuTt6tFhplueEhTmtnnXrDDih51RFcUdFieMLEgUKFfxhJAwYID7z2bN+FxkH7qa/mc1IMAtDhkC9epCVBXPmFH9PGaSeEfSyduQI3H23HD/5JPTv7/KPjhghPZbS02HePOfrStY8w0yyNm7cOACmTp1a7PURI0YUe/7dd985jpOTk72+LoV7hKQD1LKldJ/bNmMtLecupd25cwGjuNPTJY/99Gnff3cpxV2rluRn9e/v0q5YZcTGOgu8bT00qk7PnhJe2r8fSuTr+gojFHe/fuLPHTwoKVrBjr+MhMhIGD4cWrUySbdFpPZr925xhC+7rOLPmslIMBtFU5O2bJF6Q1AGqacEvaxZrTBxouyG9OoFZcxgqYiICGe66oYNcvtRsuYZZpO1adOmkZ6eXqp8oySPPvqo4/jvf/87y5cvVylxJiIkHSBNyyQiYhtDh0NCQgLa/v3+XlL57NwpYXebR/Dbb/JvyxbfLqNcxT1yJFx0EUYNT+nRQzLXDGmFDVCzpvNkf/1l0EldxyjFHR8vETII/iiQv42EHj2kfbJtNJnfsUd/Lrmk4n0GsxkJZqRhQxg4UI5nzYLsbGWQekJIyNo770gubEyM3IMjItw+RdOmcOGF0jehVi0la55gVlmLj48nLS3N8VzXdSIqkJG5c+cyaNAgR0qcpml07tyZl156iQMHDvhgxYqShJwDZL+Yrrkmkusn9SA2qhBSU6VlixlJTYW9e6UKmlLN4XyCLw3S1q2l1qlVKwNPas8f27jRp80QjFbcAwZIFKBWreBthuBv5wdKN3fy5+9a1531PxWlv5nVSDAjw4bZu3TpfP31IWWQuklIyNq2bTLzB+C115xzKDxg4EBISvK/XgtEzC5rZ8+edRw/+uij5OfnO56X7Ai3ZMkS7r777mJzKbdu3cqTTz5J8+bNHU6RpmmMGTOGb7/9lszMTApN0sApGAkpB6jUxRQbK+3HQFKkzIjd49m/H3JzadNGajFPnPBNGpxLBqnVKutbvdr7C/KENm0kQtW6tQyX9QHeUNz16sHDD8uOosnuA4ZgBuenKFlZEm399Vf/rWHDBmnWEhMDl15a9mfMbiSYDUmF00lIOEzDhrtNIWuBQkjIWl6ehIBzcyXsaq8B8pCieq1Nm4GkpSlZc4VAkLWidT2vvvpqhZ8dPHgwH3zwAWlpaY7uyBkZGXzzzTdccsklxT7722+/cdNNNxEfH094eDiaplGjRg3+/ve/s3TpUpVGZxAh4wCVdTFlZ8NWSxfSc6PEyjAjdetCnToSudizh5gYZ22CPYfdW7hskJ46BV9/LQNUDBric+4cLFpkUGDOYpE2puPGSXc9L+NNxR0ZadipTIXZnB9w1ttt3CiNOfyBPf1tzBhpzlCSQDASzIau66Snb6d16x0MH97fFLIWCISMrD3zjFz0devKwNMq/D+L6rX69QfxzTdx/Pyz+FiK8gkUWatbty7Hjx+nadOmpd5zZc1xcXHceOONzJ49u9jYmOTkZJo0aVLss+np6Xz44YcMGTLEkUZXw5WWoIpyCQkHqLyLacoU+HlrO3aeqisOkBnzijSt3KGo3pxV4pZBWq+ejFwvLHSk6lWVqVPFATJs+KfFN6LuC8Wt63DggIHzkvyMGZ0fkOBwly5y7I/hqLou1wHA1VeXfj9QjAQzUZas6bo0F1GUT8jI2pIl8PLLcvzJJ3Jf85CSstauXayjw+Sffxq03iAk0GQtMTGRAwcOMGrUqAo/t6e8gVBl8Mwzz3DI1lnXarWi6zqFhYUsW7aMe+65h5o1a1ZlyQobQe8AVXQxtWgBVK/OvvQEyXcxpPeyF2jXTh737IGCAtq2Fb/oyBHpQG00HhmkdkvRII+lWzd53LDBYMPz+HGveY6+Utx798KXX0p6VpGU44DErM6PnQsukJSpAwd8P4Npxw75W0dGwsUXF38v0IwEM1CWrFmt8N138MUX5Q+sDHVCRtbS0uDmm+WGc9ttkjHgIWXJWlQUjB0r769ebcjkiKAjkGXtjz/+AKCgoIA77rij1Ptt2rRB0zRefvnlUvVBRXnmmWeYPHkyIN2KNU0jJyeHF198kQEDBvDee+9x9uxZdF0v1oRB4T5B7wCtWrWq3IupZUvAYuFAnZ4UXnWtYZ3MDKdhQ2n/lJcH+/cTHy+D1sLC4NgxY7/KY4O0Uyfxyg4dki2uKtKxozTdOXXKwLbPBw7Ahx/KZDqDp1z6UnG3bCnN7bKzDWwX7gfM7vyADB21DzScN0/K3XzF9OnyeMEFxbu/BbKR4C/KkzWLRTKMoeyBlaFOSMna/ffL/atFC3jzTY9PU5Fea9VKRtPputQWBvoGlpEEi6yFhYXx8ccfl/v+448/jsVioV27dhwsEXr+6KOPeOGFFwDIyMggIiKCwsJCYmJiePbZZ9lfola9IkdKUTlB7wA1bNiw3IupQQMpCcmt15gj1dubt8BC08QjaNHC0Yrzssvg0UedwSEjqJJBWr26szjJgB7dUVHQoYMcb9hQ5dMJTZqIRXv+vKFRIF8rbovFOY9v5UrfGuVGEQjOj51Bg0RPnDoF69f77nvtDlDRjehgMRJ8SWWydsEFzoGVtk1cBSEma1OmwOTJolwnT/Z4rp0reu2ii+T0p0/DwoVVXXhwEOiydsKWPdS7d+9S7+m6zvfff1/q9V27dtGsWTM0TeO9995jxowZ3G1ruHH8+HFbeq5OeHg4AGPGjKFlkfkguq6z09uF4EFO0DtA7dq1K/di0jRbGhzm7YHg4KKLYMIEh5NRty5ERxt3ekMM0qJpcAbsTHTvLo/bthlUNGqxyJAXMGwmkL8Ud/fu0hnszBnvN8MwmkByfkCus6FD5XjlSt/UAh05AmvXio6yDz8NdCPBH7gia/aBlZomDq7p7wU+IKRk7cgRuOsuOX7ySZk34AGu6rXoaGcq3MqVxmdxBBrBIGvvvfceAA8//DAAG22pGVfbijevu+46dF1nyZIlZf78fffdx+W2qbnLli0j0TaErlatWoCkz82aNcvxebusHTlyxPj/TAgR9A5QZReTwwH665xsxxiWb2UwFfw/qtom3jCDtH17KZjQdcnPqiJNm8rMm9xcA+ce9eghjtDBgzJjqQr4U3FHRoJ9s2nFCnP27yiLQHN+7PTqJfNjbrvNNy3IZ8yQx379pA47GIwEX+OOrDVtCn36yPGMGT7rlm9KQkrWrFa49VZJ2+7VSzrAeYC7eq1NG7kVXXCBeQYu+4NgkbW1a9cC4ugsW7aM1157DXA6RHYGDx7siNyU938dNGgQmqbRokULR43Prl27ADh06BCapjF16lRSUlLoZ8/PVnhE0DtAlWGPKB5df5zcBcsM62LmNTIy4PBhQB4++cTZKtcTDDVIo6Lgnnuk5XRsrOfnsaFpEumIjDTEnxLi4+XuA1WKAplBcffpI/5mSopDJExNoDo/IPV2w4YZItYuUTT9zQyyFmh4ImsXXCAbLmlpUu8VioScrL37rvyxY2Lgm28cKebu4Kleu+wySa/1UYNS0xFMsjZr1iwuuOACQJycb775BoC+ffuW+fm2bdtitVrZUkG5gH3G0ODBgzl16hRnzpxxtNs+fvx4wN1DzUiIXnpOatSQFrOT/qETFV5o7vyH5GR4/XX45RfQdaKjJXq/b59nxbteMUhr1zZ0i7xvX3jkEWfNiyH06iWPmzZ5VIVqFsUdFwddu8qv3OxzJQLZ+SmJrlc5eFghaWnO2oCRI7NMIWuBhKeyFhkpqXB168p1FWqYRa/5jO3b4fHH5fjVV6FtW7dPYZReKyiQ2XehQrDJWlhYGPPnz+doiYFxY8eOLXdoaUZGBp07dwbgnXfeKbeN9tKlS0lISKCOrVvLnXfeyS233BLQ91CzEPIOEEh/geqdm4rhnppq0PRNL9CokWz5nzsHJ05Qt67crG0zUt3C6wZpQQFkZlb5NFFRXuhN0bKlbPVGREglqhuYTXGPGiUBt1at/LqMCgkm56egQDaKP/jAe13z58wRv7xNGysnTy4zjawFAlWVtWbNJIjduLF31mdWzKbXvE5eHtx4o+wcXnwx/P3vbp/CKL128iR89BF8/33V09kDgWCWtQYNGhRrejBr1izCwsL46KOPSn22evXqADz77LPcd999zJ07l3fffbfU57rYa6ttfPzxx1x11VWcCyWP2UsoB8hOtWqQlCTHZo0CRUQ4c/Z27ChrRqpLeN0g3bJFdtQMbKmk6xLtMqTjmabBTTfBpEluDbozo+KOijJ3CkUwOT8g+w9RUSKP3kqTmjZNHrt1O2AqWTM7Rsla0evJsNRbE2NGveZVCgvhoYdkhkCdOvDZZ25nLRip16pVc44hXLrU49MEBKEia/amB0899RQAd999N5qmOZojFOXZZ58FYPr06dx3332AdJV75ZVXANhsm60YERHBmDFjAJg7dy61atWiRo0a3v6vBDUmNp18y+rV8M3+AZw9Hw0leq2bCrvHY2v9ZX+6Z49r2Vw+MUhr1ZKdtR07DMnN0nUZ/PnJJ5IFaAh16khhh4uYXXEXFEgHKwOCboYRbM6PnZEjRXT27jV+r2TZMpgyRTpaXHGFbkpZMyPekLWVK+GNN2R8WLBidr1mOKmpEvGxde3ik09kHoYbGC1rsbFwySVyvGSJzOoORkJO1oAXX3yRnJwcR6pb9+7dqVu3LhkZGdx5550A/O1vf2PFihWMHz8egD179lCvXj0eeeQR4ou0Y8/Pz2f27NkAfPDBBz7+nwQnygGysX077D3fkH1na4tVY9a2Wm3ayBbliRNw5gwNGkgdU35+5caYzwzShg2lMCU/35AezZrm7JRj2EwgO1ZrpQUdgaC4p0yR7lVr1vh7JUKwOj8gom3vwGfkcNTMTJgwwYqua4wbd5ZrrmlhSlkzG96StVOnRIX9+qv5a+w8IRD0mqEsWyZddebNk7DL11+Dzeh0FW/JWseOsplptYq8BVsqXMjJWhGioqLYvHkz+2wG2unTp6levTr5th3rL774goEDBwKwZs0aWtny2Xv16kVGRgYWi4WMjAyWLVvmOOffbSmbM2fO9OV/JehQDpCNFi2A6tXZn5Eg2sfWftB0xMRIojrAzp0up8H51CDVtOIzgQygWzd53LlT5pgaQloavPWWpECUY+EEiuK2/37WrvW/sRbMzo+dIUNknsfx44aJOH//ez7JyRYaNMjjiy9qmlbWzIQ3ZW3UKNlcOnsWFiww7LSmIFD0miEUFMDzz0sbx6NHZXr4mjVw881uncabsqZpMGaM3N6PHYPlyw07td8JKVmrgBYtWqDrOj///DMgjk9RZs+e7Riket111/GXrUvtuXPniIuLY+DAgei6zu7dux3DUcfaB0opPEI5QDZatgQsFva3GoX1kcegZk1/L6l82rWTR1tv+I4doUMHpyNUEr8YpLaQL/v2GZKX1aCBRIEKCmDr1iqfTqheXXKZcnPLPGkgKe62bSUycf68F6JkbhAKzg/IBvLgwXL8558eNRMsxgcf5PDNNxFYLDrffRdBzZrmlTWz4G1Zi4pyDqxcs0ZGhwUDgaTXqsyBA+L4PPecbGzecIPsEnXs6NZpfKHX4uIkOw9g8WLvdpr0FSElay5y5ZVXYrVaucs+fNdGQUEBAI8//jg/2mabnD17tlgaHEDr1q3Jz8/n5MmTPPHEE75ZdJCiHCAbSUmyo5sTFsvR4yb/tXToIKH7664DpGPRNdc4/aKi+M0grVNHutbpuiEei30mEBho4Gsa9OwpxyVmAgWa4rZYnAPMV640Li3LHULF+bHTt6/sk0REVK2F7apV2UyaJPNH/vUvGDbM3LJmBnwla61aycBKXZfUpKo6uv4m0PRalfjuO+lnvny5zH+bPBm+/VY8DTfwpV7r3Fmy3Js29UL3Ux8TUrLmJpqm8eGHH5KRkUFCQgIAl19+OQ0aNODll18GZNZPzZo1KSwsRNM0br311mLnqFu3Lv/3f//n87UHEya39H2HxWJLg8NWS6Pr5q0Dsg+AiYmp8GN+N0gNToPr0kUCNkePGtiCuFs3OemRI5J7QOAq7q5dpaD23DmpafMlfpc1PxAeLs0E77kHbPcwtzl6NJOrrtLJywtj9GidJ54IDFnzJ76WtVGjJFh85oxE+wKVQNVrbpOWJultN94I6ekyRG7TJrlY3cTXsqZpcNVVsnwzJ6FURsjIWhWJi4sjNTWV1q1bA+L0ANx1110kJiai67oj3S0U7qm+RjlARXA4QLN2SG2IWdthl8OpU7Bihez+m8Ig7dgRhg6FK6805HTVqjln1W3bZsgpxWOw5w6uWxfQijsiAvr0kePly33nv5tC1vxE3bpuNRMsRkZGJjfckMGRI7E0aqQzebJm6pbmZsAfshYdLalwYWGV7jmZlkDWa26xYoVsan3zjexqPvustFZr3tztU/lLr0VGFu/KbcuMChhCRtYMZHOJTeKPPvoITdOIjo4GoHPnzrzzzjv+WFpQo263RWjZ0jbnozAb/ew5cztAVqtYuV98ATk5FBbCp5/K6J3Dh01ikMbGwvDhkg5nEIMGyUbesGGGnRJ69QIgd906VixcGNCKu3dvcYRiY6W0yduEsvNTlMJCaaXv6lzdzMxM/u//DrF4cQPCw3V++kmjbl3vrjHQ8aestW4N//iHNL8INELCILU3OhgyROp+mjUTx+e55+Sm7iZm0Gu5uTBrljSr80dKsyeEhKwZjK7r7Nu3z9EGe8yYMVxxxRUA5Nk6Gv3+++9+W18woxygItSqBY8/Djf+LVp2YMzsAFksUgxz8CDs2UNYmOQO67rO3LkHg9YgTUqSvHxDd8qbNiU3Pp7D+/bRorAwoBV3tWpiqN10k+xcexMzGAlmYc4c+Td/fuWfzczM5PPPt/Dxx1K09/LLGv37e3mBAY4ZZM02uN22Hp9/vUeEhEF64IBkGtgbHdx4oww5tbUWdhczyBrIKL0tW+DQIfOMN6iIkJA1gykqa19//TUg3eBOl9hJa9iwIUOHDnU0SlAYg3KAShARgYTLNU3asGRk+HtJ5VNiKGq7djonT55k/focBgwwkUG6Zw/89BMcPmzoaY0yQjKzslhduzaFt91Gy8suC3jF7Ys/u1mMBLPQt6+ojB07Ku4WlpmZye+/r+bll3tSUGBh/HiYNMlnywxIzCZrx47Bxx9DSopfl1EpIWGQfvutFD+uWCGNDr75Rv7VqOHR6cwkazVqSP0ZSBv2M2f8tpRKCQlZM5iyZG3evHkALF68GJDhp8ttPdGXLFlCREQEr776qt/WHGwoB6gsqlUjq04TOTZzFMje9m3PHvT8fPLytpOdnUbt2i3IzDSRQbptm1Tlb9pkyOmsVpll98YbVfdP7Yq7Tp8+tBk+HC2IijAyMgxsGV4EMxkJZiEhwdlQ8I8/ynbOMzMzWbZsOe+915sjRyJp0QI+/7x4vr+iOGaUtVWrxAn69Vfz1mcEvUGaliZh7ptukkYHAwbI/eXGGz0+pRllrUcPqU22D+Q1Y+Qx6GXNC5QnayNHjnR85vfffyc8PJwBAwag67qjO9yjjz6KpmmsWrXKL2sPJoLH2jMIqxU++gheWTuMtJwocztASUlQvTp6bi57//iDEydSGDGiMZGRkRUORfU59m5w27YZYjFYLJIWkJ5etQZz5SruIBjDfe4cvPkmTJ0qvyejMKORYBaGDZMC5iNHSjfpsMvaggVdWbSoOlFRMGVKYHd68jZmlbWLLpIo68mTMq/FbAS9QbptmzQ6+PZbuRk895z8ITxodGDHrLKmadKAIzJSIstr1/p7RcUJelnzApXJ2tGjRwEYPXp0sdcfffRR8vPzGWwbQNe/f39q167tm0UHKcoBKoHFYuvqVKsW+87Whv37zbntAqBp6G3bcvLkSTLWrmXgwIF07y6FH6ZygJo1k/SE8+dh715DTll0JpAnf54yFXd+PsycCa+/LgnYAUzNmjKGyWqV4nwjMKuRYBbi4pxlBwsWOH39orI2fXoiAC+/LLu7irIxs6xVqwZjxsjx8uXSlt8shIRB+thjzkYHS5dKpzcPGh3YMbOsgdQm2wMD8+dXbeaYkYSErBmMXdb2799Pfn5+mbLWoEEDRowYAcB//vOfYu+Fh4ezZMkSUmz5t4VBsFnrT5QDVAYtWwLVq7Nfbw6dOpl2+p2u6+wJDyc9PZ2OYWHEVatG69biwKWlmah8yWKRCW9g2Eygjh2lXuvUKfdz8ctV3OHhElrKyjJsnf7EboyvW1f1jnBmNxLMQv/+4uufPSu7tSVlLSxMZK1bN/+u08wEgqy1by+3BqsVpk83RypcSBikOTmwcKEcz5jhnP7sIYEgayDdPZs2lVuUGWqBQkLWDKaorF122WWMHTu23M/+8ccfADz11FPkl2F/NmzYEF3XOWHYQMTQRDlAZdCyJWCxsL/VKPTRF5tyJLP9Ykq2WmncqRNRbdrA+fNER8PEifDoo2KImQZ7GtyuXYZEV6KioEMHOd6wwfWfq1Bxa5qjJTZ//WXeyJ+LtG4ttSm5ufLf8ZRAMRLMQGSkdH5v2RISE7NKyZq9k5iRaYnBRCDJ2iWXSLv51FTpuOxPQsYgXbpUMgkaNhQPtAoEkqxpGowfL0OX7fMK/UXIyJqBFJU1+2DTiIiIcj8fFhbG66+/DuBIeSuLaG+3eg1ylANUBg0bioGdnS3FrmajmOIePJioxx6Da6+VuzHQuLGtm52ZSEyEevWkvmb7dkNOaU+D27YNbO3yK8Qlxd2li2yznThh/jZPlaBpONorr1rlWWlTIBkJZqF7dxg/PpM9e5aVkjW7A5SW5scFmpRAk7WiqXApKf6b1RJSBql9HspFF1Wpe0igyRpIWrO/lxlSsmYQJWXN3ujgoK1daF5eHosWLSr1cw8++CAAq1ev5tChQz5bbyihHKAyCAuT9GKAfbsLJd/YJGlwZSrucjqX6bqJBqhpmrQrbdDAsAE1TZtC7doS4ais5sllxR0T49xZXLfOkHX6ky5d5KaZnu5+R7hANBLMQFZWcVkDp6zZu/OqCFBxAlXWOnSQxmM332zwbDIXCTmD1O4AlSgQd4dAlbWibN8O06b5Nkkh5GTNAErK2hJbqLhx48Y0aNAAgKioKIYPH17mz6+2FfA2bdrUNwsOMZQDVA4tW8rj/s8WwpdfVjzcw0dUqrjPnHEU/mzYAO+9Z7IBav37w113OXPXqoimyfyVvn2lIV55uK247Wlw27ZJukUAEx4uv5+ICIloukowGAn+oKisNW3agTlzNKZPd76vUuBKE+iy1rq1f1qZh5xBeviwWP4Wi7MrgJsEuqyB6I6pU6Xrt0GTJSol5GTNAMqStTG2kPFmW43x2kra+vXp08eR5jZ79mzvLjgEUQ5QObRqJQGLnn3C5AU/t8OuVHH//ju8/bajT2ZenjQIMCjbzBi8sEXaty9cfLHUupSFR4q7YUNJ2Sso8N0dxov06QMPPuhMh6uMYDAS/EFJWcvM1Fi7VkToyBH5jEqBK04wyVpeHsyZA8ePe/+7QtIgnTtXHvv2ldZobhIssla9urTcB7nte7vZUUjKWhUpS9YeeeQRAHr37k1N2/yDPn36AHDYNiQ+Pz+fpUuXFjuXvS32pZde6qPVhw7KASqH2rWl6LDTiHrygh8dIJcUtz0EsnMn4JyRevgwZGb6aKGukpsr0RUvx+89VtyaBoMGwdCh0u4pwImKknoFVwgWI8HXlCVr9es7e3/Yh6OqCJCTYJO1efOk5fz06d4dJRayBmkV0t+CTdYGDJB9upwcmDXLe7fSkJW1KlCerL322msALLYND7N3ektMTKRRo0YAREZGMmTIkGLnq1WrFtdeey3grAtSGINygCqjeXMxiFNT/dJX2mXF3bq1RFhSU+H0aWrUEAWp6w6fyBwUFMiEzilTDNsq1XUp05ozx1nzVGXF3bmztPOyF20ECYcPS2SwLILNSPAVFcnaiBGShnjwIOzerWqA7ASjrA0dKiWEx4/LfCBvELIGaUGBDMEBtx2gYJQ1iwUuv1zqlXftgi1bjP+OkJW1KlCerE2YMAGA+vXrExMTA8BFF10EwHZbms769evLPe/3338PwJtvvkm2O7nsigpRDlAF6DocT6/GX/m2bVwfR4HcUtwxMc5J2DaPxx68MNVQ1PBwZx9Pg2btFBbCjz/K7mtyslLc5bFoEXz2WdnT64PRSPAFlclajRrO1MN585xdnELZAQpWWYuLk9bYINeY0SM6QlqvrV4teaO1a0PPni7/WLDKGkhT1aFD5XjOHGMzPUJa1jykPFnTdZ3JkycDsNNmmz3xxBMAdO3aldq1awPQ0ybXBw4cKHVuTdP48ssvAehUxfbvCifKAaqA8+fho49g5uFuZORG+tQB8khx2/PebB6P3QFKTjZZLb89L2jLFkPa1IWHO+esrlx53jjFbQ+fffedex0ETErbtvK4bVvxaeLBbCR4E1eNhIEDJQXx1CnnEMNQrQEKdlnr1Emus8JC+PVX47pwhrxBak9/GzVKwh4uEOyyBqJbGjSQ+7tRmR4hL2seUJGs3XPPPY7jGrYUgP/+978AjvbXC23DfWvVqlVux7dbbrkFgOTkZIcjpagaygGqgGrVRLlQqxb7ztaG/ft90nfSY8Vtd4BSUiAjgzp1ZJfIapX0G9PQqpVErDIzxTszgO7dpZ/+vHkp1K3b2BjFrWmylbt7N2zcaMg6/UmDBhJ8s1plLhCEhpHgDdwxEqKjnUXL9nEOoRgBCgVZ0zS49FL5mx89akwqnDJIcTZAcDH9LRRkDcQXHDcObrrJ2by0KihZc5+KZM1qtfLhhx8CsHLlSgCee+45x/v2ZggjRowAYNeuXRV+17Zt2wBoHwS1yWZAOUCV0LIlUL06+xoNFS3jZaqkuOPjwVZMh+1C6t5d/tWt64XFekpYmHPWjkFd1uLiMsnM3ENsbA0KCtobp7jtd5W//vLt0AUvMWCAPK5fD1lZoWEkGI0nRkLPnpKuctVV8jzUHKBQMUhB1PDFF8vx2rVSvuIpyiAFTp50zmQbNarSj4eSrIE0LG3VqurnUbLmPpXJ2sSJEx3H/fr1A+D5558HYJVtF/Kdd94BpBlCQnntbG106NCBxo0bA/DNN98Y8n8IZZQDVAmtWwMWC7vD2lOQ0MCrAx8MUdyDB8O114rXg9QfXH65NEQwFV27yuP27ZCVVaVTZWZmsmLFcgYMiCEhIYE1azTjfJXOnWU79/Rpk3WT8IyWLSUSlJur8+23B0PGSDAKT42EsDDpqZGYKM9DKQUu1AxSkCzfESPgjjskRdcTlEFqY9482XyyD9KugFCUtaJ4MvAalKx5QmWyVrT25+mnnwactT8Affv2BeCBBx4AYObMmS597w5bicPNN9+MHgSbsv5EOUCV0Lix7Ojl5koGnLcwTHG3bSvFPy7mSfuNhg2ldXdhYZWGzBZV3OPHNycmRuP0aQNT/iIjZZAOwLJlAR8F0jQYPlzn5MmTLF+eT+fOoWckeIoRRoK9C1xaWsCLkkuEqkGqaTBkiNw7PEEZpEVwMf0tVGXNzrlz8M47MG2a7Ne5ipI193FF1oo6J61atcJqtTpqf/71r38B8O677zo+07t3b5e+OzY2lvvvvx+AO++80+P/g0I5QJWiadChgxxvm3cUfv7Z8PY+3lbcug7Hjkk5i2mMLk2DsWNh0iTnL9hNSiruqCiNXr1kRp6h/8++fSEiQqZZGlSz5C90XScvbzvR0al07NgEqzW0jARPMcpIsM8BysuDNWsMXKAJCXWDtCg7driuOpRBWgSr1ekA2doGl4WSNahZE5o1kz3FefNc+xkla+7jqqwVbWs9ceJEqhUZxmePCNkdmZdfftmtNbz99tsA/PTTT279nKI4ygFyAbt9fmjNcfQtW6WNlkF4RXHn5UnP408/hcJC8vKk/fHChVKYaxoaNPB4zk55invIELj/fmc/CEOIjXWkFLJsmYEn9i12WTtyJIVHHmnGww9HOUrGFOVjpJFQNCIwa1aVsz9NizJInWzeLG36p06tvJmkMkhLsGGDbDjGxkrLszJQsuZk1CiZEbRzZ+UOt5I193FH1uwRnWU2myE3NxeAbt26oWmaoxYI4JFHHnF7Lb/++qvbP6MojnKAXKBJE+l/cN+DEVICtG2bISEGrynusDCpvk1Jgb17iYpyOnEbNhjzFYbjRlV4RYo7MlJuAIYzYIA4bN27myiM5jolZS0pKc70WZJmwGgjISxMIpQgLbFd3akNJJRBWpz27aUJTUYGzJxZvvpQBmkZTJsmj6NHi3IvgZK14iQkOPv2zJ1bfht2JWvu446sFR1WOnDgQPbu3et4ftttt6HruqMbXP/+/T36/V922WVsNmiWYqiiHCAX0DTpshLWvo1UtJ4+XeU0OK8q7rAw56wdW/tmewBjyxbIzzfuq6qMrsMPP8Abb7j0O3VVcRcWyn/dsG5bNWvCXXdJU4QAu1lUJGuFhdJgKTXVjws0Kd4yEuwdGbOzRUbLmHsXsCiDtDQREXDllaKWd+wou6O+MkjLwe4AjR9f6i0la2UzbJj07Tl+XMmaUbgjazk5OfSx1Q1///33ANSrV8/x/gMPPEB1ey40rjc/KIvyZgYpXEM5QO4QFYXeqrXs4FUhDc4nitvu8ezaBVlZNGsmO8+5udJ4zTRomlgGul5pUYQ7invqVJg+XQaIhzKVydoff0gq1oIFflqgSfGmkWDvdGpvaDVrVtVaJZsFZZCWT4MG0gUQYM4c50BcUAZpuezeLTer8HAYM6bYW0rWyqdaNWm5D/Dnn3LPt6NkzX3clbWLL77YMa/nuuuuA+D6668H4P333wfk72CnTp063li2wgWUA+QGy5fD2xsGs/dMbVHMHqRC+Uxx16snXdasVtiyBU1z+kSmS4Ozd1nbvFlGWpeBu4rb3mX7r7+K3wCqTF6eTBH9808DT+odXJG13r0lZXDXLjh82A+LNCHeNhLsDlBSEsTFwalTxgzM9CfKIK2cAQOkSD0vTzZoCguVQVoh06fL4/DhEoG3oWStcvr0EROgWzdnwoKSNffxRNYWLVrkOF66dCmHDh1i9uzZAPz9739n3759jvcffvhhw9escB3lALlBWhqcjajHttP1PUqD87niLurx6Dpdu4oyPHCg+A6k32nSRAak5OeX6Z15orhbt5ZUo5wcgx2+Eyfg99/FYjXxNEtXZa1uXblJgkSBArC8yVB8YSTYU+DOnZPShlq1COhmFMogdQ2LRTK5oqOlPHPTpixlkFZEGelvStZcIywM7r4bRo6U0inl/LiPEbI2ZMgQR5raTTfdBECLFi0c77/22muOWUEK36McIDfo0AEID2cnbSms10Csaxfxi+Lu1Ek04YkTcPw4NWrIIMz4eDh71vtf7zKa5owCrV1brHLTU8WtaWAbvMyqVeUXg7pN48bQtKls365cadBJjcVdWRs6VMTkwAHvzroyO74yEuwRoJMnoWNHuPdeuS4DEWWQukeNGjKY+rLLsjh5cpkySMvj6FFR3CC/MJSsuYu9GVBmZibLlinnxx08lbUDtoLOESNGONLg7HzyySeAc3ZPVFQUABMmTFBOkJ9QDpAbNGkiKSs5rTqz/8K7JJ/BBfymuGNiJBesRw9HB51x4+DBB01ocHXpIus9exZsHVOqapB27Sr50OfOSVtQwxg8WB7/+qvyvrY+xhNZq1FDUuEgdKNAvtwhtUeATp0SRz083PmeYY66D1AGqWc0bpypnJ/KsLf47dcPkpKUrHlIZmYmv/66jrVrOxEfr2TNFaoia2+99RYgqW0dOnTg999/d7wXExPD+fPnHY7QwYMHHelwygnyD8oBcgOLRVqaYrG43EjA74r7ssvkn63QLi7OS22iq0pERLGUPSMM0ogIp2G/YoWBa23ZEurXl2T+tWsNPHHVqIqsDR4sPvLRo9KpKpTwdXpI0QiQHatVGna8+265ZXCmwu96LUApKWsZGZpZA8n+xV7/M368kjUPscvamTMtKChI4o8/tJDc3HKHqsram2++CcDo0aMB+PDDDwEcXd/sw1A1TSMxMbFYOpxygnyPGU1hU9Oxozzu3AmF2bkV1gGZWXFbrXDsmL9XUYI+fWDsWDIvvNAwg7R3b9lhj4w0sBmCpsGgQXK8erU4Qn6mqrIWGwv9+4tvZ59TEwr4Ize+LAdI16Ud+ZkzMH++15dQJcys18xMSVnLzdX48EOZ12LgbO3A59w5R5MZ/fLLlax5QFFZu+WWxkRFaaSkwNat/l6ZeTFSr1lsu8zTbY58WloaEyZMcLz/+uuvA/CnTc7tDpJygnyLcoDcxJ4Gd/7YOZKf+lRGfJexrWIqI0HX4cgRR0/o7Gx480349FOTZXDVrElm27YsX7vWMIM0Lg4eeAAmTABbyq0xdOgAtWvLL3D9egNP7D5GydrQoXDzzc72zMGOvwqDi6bA2QkLg0svleO//jJvRz5T6bUAoixZi452Dq2cOVOa7CiA2bOhoAC9Qwe2FxQoWXOTkrJWvbrm2K+bP99kcwBNghF6Lc+2ERofH1/m+z179nQcP/jgg3z66adccMEFAOzdu1elw/kB5QC5icUiJTW9hsZSPSpXtmxLRIFMZyScOweffCLdy9LTqVZNHIPCQuk8bRaKKe727dEMKogoMnPMOCwWGDhQHCE/DiMzdtfKwIWZHH92RSoaASq6d9K0qTMLdOZMuT7NhOn0WoBQkawNHQoNG0o/nenTQ7P+rhS27m+nBg1SsuYm5cla//5S65mWZtrePX7DKL02ZcoUwNna+vTp0wB0sQ2l/8c//lHs83fccQcA7du3JyEhQaXD+YEQMnmMY8QIuHR8BPW6N5QXiuQvmNJIqFVLrCtdh02bgFIdsv1OMcUNaB98IFvhhn4H7Nlj4Al79oRrrvFbyMRbspaVJWk569YZcjrT4e+WsHYHKDdXZLIoF14ojTtSU81lqJhSrwUAlclaWBhccYXUKyYnG1yrGIicP48+Zw4Aezt3VrLmBhXJWkSE6BaApUshI8NPizQZRuq11157DZBZP+Cs/3n44Yd56qmnHJ+77LLLHM4RQEpKCrqus3TpUkCaJYBygnyBcoCqgr0gaNs20HVzGwn2YS8bN4Ku06mT1MacOOH/WqBSijsrS7bH16wxzDtLTYU33oApU9zqXm5avClrO3aI8b1woSnKmwzF384PiIMTHS3HRdPg7O+NGiXHixebo129qfWaiXFV1urUgYsvluM///S/PvYn+h9/oGVncz4hgc633KJkzUVckbWOHWWKQ36+qXr3+A2j9doG28DBevXqAU6H6Nprr+U///mP43MPP/wwP/74o+N5RkYGFouFIUOGAJCcnKzS4XyEcoA8RNfhUHQbtp5uAGfOoB87Zm4joWNH6QRw+jQcPkxMjK2jHQYPCnWTMhV3165SsHPqlGGDaRISxNDIyzM8sCRW6uzZsGuXwScuG28bpN27S9AwK8tRNhYUmMH5AemhUVYjBDtdu0qH/cJCOHjQp0srhXJ+PMNdWeveHdq1k7/5kiU+WqTJ0HWdc19+CUDYlVcSV04thaI4rsqapsng5csug2HDfLtGs+ELvXbWtnt17733Fnt98ODB3HPPPWX+TOPGjR3d4ZQT5H2UA+QhBw/C599EMvt0PwoK4eCcOeY2EiIjbZNckSgQzjS4LVv8UxhZruKOinJGrNasMeS7NE3yoEGMekPrK9avly21JUu8nk/oC8UdFgbDh8vx8uWB0Za5Mszi/NipyAHSNBg7Fu6803kZ+APl/HiGJ7KmaWKYDhokKXGhhq7rbN+8mVhbV6zIa67x84oCA3dlrWFDqWEOpXrPknhDr+20DRq81NbJRi9iB3z22WfFPvuvf/2r2HN7JziAw4cP88MPPwAoJ8gHhPBlUDWaNJHWwdk16rN+v5Xz69YxcMAAcxsJdo9n61bIy6N5c6hZU1LCbNeZz6hUcffpI4+7dxuWB9S5szR/SE/H5TlOLtGvn+QTHjkCtknQ3sCXBmnnzpCYKLKxfLnXvsYnmM35gbI7wRWlTh0ZNeUvlPPjGVWRtWrVYORIqdcIJeyyljV3LpHp6SL89mHTinKpql7Lzy97AyaY8ZZee+ONNwAckZ0//vgDgKa2BkmvvPIKAElJSTz33HPFfna/LcslMTERgOuvv5777rsPUE6Qt1EOkIdYLNCunc4pXWdxdE8aP/WU+UP2TZpI6+boaDh9Gk2DSy6Rnea2bX23DJcUd5060KqVRFQMSlgOD3f6VStWGBisiY2VbTWAZcsMOmlxfG2Qapo0+wCJmJUs1g8UzOj8QMURoJKcOGFYINQllPPjGUbKmtUKq1ZJGmowU1TWutk3j8aOFWWtKJeqytrx4zJ0+bvvoKDAS4s0Gd7Ua9G2os5LLrmEBx54wFH/c9CWw2z/rmbNmhX7ub59+3L77bcDcKJIN+H33nuPpk2bouu6coK8iHKAPETXdSIj95CWmcn5pqOJadDI30uqHE2TQS+TJjk6l7VpA0lJ8pYvcEtx272V9esNy9Hr1UvurceOwaFDhpxSGDBAvOJ9++DoUQNP7D+DtE0baNRIfvW2BjUBhVmdH3DdATp7Fj76CObMMVysykQ5P55htKz99ptMLfj1V3N06fQGxWRtwAAiZ8+WN8aN8+u6zI4Rsla7tjjZZ88GV51neXhbr7311lt88803ALzzzjvMmzev2Pv//Oc/AVhRos1jq1atij3fuHEjObYuTYcOHcJisZCdna2cIC+hHCAPsF9MVmsy7do1xmqN8mbmk7HUqlVuArC3b7RuK+5WraTV9NVXG7YjWK2a1FWEhxsc/q9ZEzp1kmMDo0D+NEg1TVJy+vTBMUgvUDCz8wOVp8DZqVVLxErXZTaQQaOxykQ5P57hDVnr3Vtq8Xbv9kLTFhNQStb27JEdqaJtEBWlMErWIiPBNoOTJUuCO9LoK7124403YrVauemmm0q9d6ocRf/tt986jhs1akRSUhLR0dHUrFnTMT8oNjaWvXv3KifICygHyE2KXkyDBw+kW7coALb9dhC+/VZiy4GA1Sod4RDlN2MGvP++9wwsjxS3xSLpEC1bGhqiGjYMHnrIOYXdMAYOlMcdOxy/26pgBoO0WTNJkzR7dmdRzO78gHspcKNGSdbqsWPeS4Uzg6wFIt6StcRE2XwAmclVmaMcSJQpa7bhp4weDbY5KIriGC1rXbtKIkhurow8CEZ8nzquMXnyZM6ePUu8mzfNXbt2OVponzt3jsOHD/Pvf/8bgNatWzNr1qxSTpC9YYLCM5QD5AZlXUz2xmpHN59C371HGgyYnePH4fXX4euvQdeJipKmACdPyjA+ozGbQRoXJxuNhpOYCF26SLikijdxsxqkZs8XN5uslYc7DlBcnHOI4Z9/ShMPIzGrrJkdb8tav37QooWkoP7yi8GdK/1EubJmd4DGj/ff4kyMN2TN3hYbJMqYmlrlU5oKf+q1mjVrkp6ezloX65efeuopBgwYUOy19evX8+STTzrS6caOHctTTz1VzAm66667jF14iKEcIBcp72Jq1gxuuw3ueiBKghTbt5s/abtOHbFk09IgOZnwcLHbwfiZQIYo7owMmDdPcoAM5uhRg9s8X3GF5BZUwcMyo0F66pQEOH/5xd8rKZ9AcX7A2eHtyBHXPt+jhwwxzMuTeiCjMKOsBQK+kDVNE38gJkaif4G+S1+urB07JsPE7V15FMXwpqw1bSrzAHVdIo1mN11cxSx6rVevXui6Xqr1dUmSkpLYtGmT4/mgQYNITU2lc+fOjBw50tFM4T//+Q89evRwOEG1atXy6vqDHeUAuUBFF5PFIs3VtLZtpH/pmTPmT4OLiHDWq9g8HnuH7B07jHMIDFPc2dnSi3nDBnHaDGLWLPj4Y3NNxTaL4i6JrsPevSIfrhrtviSQnB+QnX2AlBRJQakMTYNLLxV9s2OHMfOBzSprZseXshYfL/OBILC7MVYoa/bJr127SnW+woEvZO3CC6XeLCLC/BF+VzCjXsu0Xbh16tQp9d73339faljq9OnT6du3L1ttGUVNmjRxNEfYsGEDmqbRsGFDDgRM8bk5UQ5QJbh8MUVGYm3ZGquuyW6W2Snq8eTk0KCB7EoXFsLmzVU/vaGKOzFRQm1WK6xbV/XF2WjSRB7XrDFY8eu6WKjffeeWN2lGxW0nIUHsE4AFC/y7lpIEmvMDUK+eBAl1XYYqu0JiIgwdKmkrJbqpuo2ZZc3M+EPW2reXlvR/+5ukQwYalcra4sXyOHSo7xdnYnwla7Vrw333wXXXBf4MKjPqtaysLF5++WUAUlNTWbRoUbH3r7/++mLP33//ferauuS89NJLjtejoqLQdZ3OnTsD0no7JSXFiysPfpQDVAHuXEwLFsBra4dw4FxNcYDMHktOShIrrKDAUbdk94mqmgbnFcVtb4n911+GeSsdO0L16rKranjp1ty50sLJxap1MyrukgwbJjuF+/d7p1bMEwLR+QGJ6Nhm5Ln1uxw6VGpDqjLJPRBkzYz4U9aGDPHvYFxPqVTW9u+Xnt8g/0kF4HtZC4ZMKrPqtXbt2gHw9ddfY7FYGDZsWIWfnzp1quP4iSeeAHBEfwA2b97MY489BkDHjh0NXm1ooRygcnD3YsrOhqxqCWw700Ca65s9DU7TpB80wMaNAHTuLAbu8eOSlu0JXlPc7dpBjRryizYowhYWBn37yvHKlQb6rJrm7Bu9erUUblSAWRV3SWrWlK7kIA6/v338QHV+QOqpduyQ4xo1PDtHQYH7DRECRdbMhplk7ehR2LXLb1/vMhXK2rlz8OijEt46eFAs8EoMw1DBn7KWkQGzZxtcF+sDzKzX7FGas2fP8v333zte72DvoFWC+fPnO45//PFH1q1bR0xMDFdffbXj9f/9739Mnz7dOwsOIZQDVAaeXEwdOgBhYezQ22Ft3DQwkmm7dJGt5JQUOH2aatUk0DJsmGdtj72quC0WZ9/q1asNs7579JCZCCdOGFNX4aBjR7mpZ2dXGFIzs+IuiyFDJE0iJcW/RpiZDFJ3+eMPmDhRjidNcjrh7nDsmLSt/+kn1y+FQJM1s2AmWTt0CD79FKZOFR/CrJQrawUFIritW8Orr8rm0IUXyqRlVf/jd1n74QepibWXZQUCZtdrp20jMf7xj39www03OF7fvn17sc+FhYWV+tlLL72U3r17A/Dcc88Ve+/yyy8nzcCa6FBEOUAl8PRiat5ccvqzW3bmwPBbpWWT2YmLgzFj4K67pDMccNFF4gC5q0N8orh79JAJpkePGlaJHxPjTP1budKQUwoWi3Mu0IoVZfawNbviLou4OEnBAv8NaPS3kVAV1q2TRoEFBXD99fDaa56NuIqLk/ldKSmu/R0CUdbMgNlkrVEjaNhQGmdMm+bdwbieUqas6bq0L+zSBe69V9pKtmsn4Ya5c2XDKMQxg6wNHy6Pa9YYMsrO6wSCXqtduzZ79+6t9HOFZdgIsbGxjuPvvvvO0HUplANUjKpcTBaL6HM0jRKOvbnp2VOmoVUBnynu2FhZb9++hlYD9+snRujJk1Ak1bbqdOsm60xLgy1bir0VCIq7PAYMkG61117r++82g5HgKXv2yO8tK0uGXH75pee1PPHxUhgPMH9+xd3BAlnW/IkZZc1iEQc6Kkoyx5Yv9/eKilOmrG3dKp07LrlE8j7r1IF335VuO5dcYuiQ60DFLLLWqpUE5woLZfKEmQkkvXasjJqCS4q0fC/q6JTHuHHj+P777+nfv7+hawtlNF33dya/d0hPT6dGjRqkpaVRvXr1Sj9vxMW0bx9Mnix2+sN3Z2FJPyfbdQFGYaHU7x8/7twRKg+zKO6qcvCg7K6WEYWuGsuWiYWakAD33AOaFlCK20wEsqwdPy6OY3KyBDIXLfIszbQoVqukQx09KvV7V15Z+jNK1jzD7LK2cSNMny4O0d/+Zo7bTClZy86GZ56BTz4RYY2IgAcegKefloJCBWA+WTt5Ej74QP5kt9wi2S1mI9D0mv1vOnjwYJYuXVrp5xs2bMiRCrJc7Ga7u3auojgqAoRxF1OzZpJSlZVyloP//BR+/tn/leKucPq03E1t07jT0+HHHyUPuKI8c7Mp7qrQtKkXnB+QuqVGjSQdTtcDTnFXhtUq2SzeJpBlLT0dLr5YnJ+WLaXpVVWdHxDjd+xY2UDfskU2YIoSbLLmKwJB1rp2lawxq1XqgSrps+J1islaz57EvfeehBM++kgWeeWVEv159VXl/BTBjLKWkOAst50713xploGs18LDw136XEnnp2GRHY5GjRpxPtC6VJiUkHeAjLyYwsKkicDAi+KoEVsg3eA8bafmSwoLZUtx61bIzqZWLdn10XVHg7hS+FVx24enzJhRZm1NVSgshNRUA08YHQ233w7duqFrWsAq7rI4fRreew+++gry8733PWY0ElwlNxfGj5frqF49MSgSE407f4MGziYKs2c7/w6BbCT4k0CRNftg3OrV5Tpcv95/a3HI2uHDDD1xgrjeveH//k9aivXsKXN+fv5ZvH+FAzPL2rBhcus6fhw2bfL3apwEql6zOywLFy4s8/2hFczA+vXXX4s5RCkpKVSrVo2HH37Y2EWGICHtAHnjYho+HC68JILaXW1NEAKhIKhePZkLVGQKqr0xwMaNpYNYflfcVitMmSJ3fXsvYQM4fRrefltqM4w26ANVcVdEzZoiMhkZLo87chu/y1oVsFphwgT4808pBfvtN+/YgMOHiyFcp45EAoJR1nxBoMlaTIw416NHe9ZJ0AjsspYxbx4jn3uO6FtugQMH5H7y1VeiGNR8n1KYXdaqVZMaw4EDpVO5GQhkvRYdHc3BciZeR0ZGstg+DNhG0fk+//vf/wCIi4tD13W++OILAF5//XVqeDpDQQGEsAPk9YvJLsCBMBQVik9B1XXat5cdoHPnig9qNIXiDgtzxugNtLxr1ZKd1exshx9oCLqus33TJtIXLGDIuXMBpbgrIizMWSO2bJnBDSQwiax5iK7Dgw9Km+qICElTss9QMpqoKLjjDrjhBqhWLXCNBH8SqLLWvLmziYuv0XWdPb//Tp2//51+Dz5I2OrVYjk/95wUkU6YULWJvUFKoMhanz7SoTw62t8rCWznx06TJk2YMWNGqdfzyshf3VZk1uGKFSsAOGerR5g4cSJWq5Vr/dGFKMgISe3k7YupsBD20JrNpxsGThpcp07SYvrECTh+nIgIKawG5xgbUynunj3l5nrokGG/X4vF+MGodlk7vncvPVJTidmxIzDkwUU6d5ac8fPnpdu3UZhK1jzgf/+TaCLIRviFF3r3+6SmKPCNBH8Q6LJmJy8PVq3yzX6bfuoUZ265hVaXXUb9pUvFA7vtNnF8nn1WOgEpShGosqbr/qszCwbnx87YsWP597//XeFnGti68r788svFXn/jjTccx5qm8cMPP6g5QFUk5BwgX1xMycnw7ZRI/jjXB6uuBUYaXEyMrY83Do/HHhTasQNOnjSZ4o6Pd0bZDIwC9eghO+qnTknb4qpQVNb6jh5NlP0XumxZ1RdqEiwWZzvmVaukxXNVCVQjwc6XX8ITT8jx66/LvB9vY5e1vXuPcvbsEPbsCVwjwZcEuqzZsVrhs8/g99+9l44KQE4O+iuvYG3RgjqTJ2MpKJDhcRs3ygLM0I7OpASqrKWmwhdfSMmtrwkm58fOk08+WW7Nz/jx4x0tsx977DFAUt0AHn30UV599VXfLDJECCkHyFcXU/Pm4k9kxjfgwLmasHNnYKTBdesmj1u2QH4+DRpIwXaNGjksXLjGfIq7Tx953LKl4kEobhAV5UxVWr7c8z9bmbI2aJC8uX279BoNEtq1E7snL0/aO1eFQDUS7Pz2m/S8AHj0UUmD8zZFZS0+fiA7d8bwxx9Sm6Uon0CXtaJYLE69NW+ewY1cQDys779Hb9cO7bHHCMvIoLBTJ+nq8fvvMuBUUS6BLGtWKxw+LD2SfJm8EIzOj51F5dwop9k68Q6y2Qp9+/ZleJFZJMoJMpaQcYB8eTGFhdmCE3XqsCFpjAxqCASF16KF9IMeMAB0HU2DK6/MpHXrxXTsmGg+xd2okfwrKJCcNYPo10/+hgcPSj2vu5Qra4mJ4i3oulTGBwma5kzxOnfO87apgWwkAKxeDVdfLSmwN98M//2v97+zpKwNHVqNBg0kJXHmzMDYd/EHgS5rZdG7twyxLCiQpmuGNXJZvFhyg2+4Ae3gQXLq1CHngw8I27gRRo0y6EuCl0CXtfr1JUMeDL3NVkgwOz92Stb+FG1osMyWJfLxxx/T3ZY5MnPmTEA5QUYSEg6QPy6m7t2BsDB25LfiPDFe/z5DsFjg1lth8GCIjCQzM5MNG5bTuLFJFbemSYehmjWlEMUgqld39ljYu9e9n61U1kaMkHXv2AEVDDoLNJo1k8jHDTd4Vvcc6EbCrl0wZow00Bg9WrKBvF3/XZashYVJZ7CwMCnHMFMLW7MQ6LJWHpoG48ZJ+U1qqsxfrhI7d8Lll0tP5HXrKKxWjT0TJlCwfTvRd9/tpcFpwUWwyFr//vK4davMNfMmoeD8AERERDjS3YBS9Ty//PILXbt2BWDWrFlceumlnDhxAlBOkFEEvQPkr4spKUk2/AsKRGnYFuOT7zaCkoo7J0cztDOaYbRuDfff70zfM4hBgyRw507xukuyVq+eTDEEWLDAmMWahEaNPAt0BrqRcPSolEGcPi278FOmSOc3b1KRrNWr5+zON2cOqDpZJ4Eua5URGytOEEhE0qM6xtRUuPde2fafMQM9LIwz11zDks8+o8F77xFXr56RSw5agknWkpIkOcRqFbnyFqHi/NipX7++I9pTkiuvvBKA6dOnM2bMGECaH9idpkcffZS37Z12FB4R9A7Qzp07/XIxaZqzicD6347Dp596uTrVODLT09n47be0PXyYDh06kJ+v8dZb0sr3+HF/r64EmuaVncj4eGjc2PXPu6W4hw2DNm283xrMT2Rny+6zKyk4gW4kZGTAxRdLumTr1jKM1NtqxhVZGzBAHNLcXCleDqC9F68R6LLmKq1bSxovSD2Qy3/77Gz4z3+gVSt4/30oLEQfO5a9U6ey9rbb6H3ppUFvkBpFMMragAHy+NdfoleMJtScHzsDBw7koYceKvf9Sy65BJCucPXq1eOxxx5zRIL++c9/+mSNwUrQO0BHjhzx28XUpYvY5tbsHM4nH5fBnSa3RDIzM1nzxx+02byZpocPo505Q2Sk3BPBdznAblNYKJ2I7D27DSQzs+KiYrcVd82akitma3cZTOg6TJ4sje4qa3YX6EZCYaH8GTdvlmjv3LmGZmKWiauyZrFIKlxEhHS2D/UoUKDLmruMHCllOxMmuBCVLSyUXu1t2sBTT4lX36sX+sKFbH/pJfZHRYWUQVpVglXW2rSRYcs5OdJ3yEhC1fmx89prr3HZZZcVe83e/CAyMpLXXnuNxx9/3PHZevXqOZwghecEvQPUr18/v11M1arBfffB3c8mEhODWCImngFjV9yJ7duTMHCgKG5bvLtoDrApu0vt2AHTp7seenCRXbvgrbfg11/L9l0NUdyedg0wIfayLJAuemfPlv25YDASnngCZs2SQYEzZkj3R2/irqzVqQPXXgv33CM+d6gSDLLmLuHhEpmsVB3Nny/t4yZOlJrEpk3h22/RV61ie0JCyBqknhLMsqZp4lhfeaUzu8UIQt35sfPmm28Wez516lR69+4NwCOPPALAiRMnSLDtslWrVo1ffvnFp2sMNoLeAfL3xVSrFmjVYqB9e3lh/Xq/rqc8Siluew7Fxo2Qk0PDhpISVlgI69b5dall06GD/LKzsiRGbxD2sRZHjpTOp6+y4s7JkSKNjz4KKieoXTtpKFhQAH/8Ufr9YDASvvgCXnnFeWzvyO4tPJW1Vq1kIyZUCQZZM4Lt22X/zcGWLeIhXXihdMqoUQNefhl27kS//nq2+yl1PJAJBVlr316GXxuVda6cH+HgwYO0aNGi2Gu1atVi4sSJjud9+vShnq3+7vnnn2fGjBk0VHO3qkTQO0BmIa9TD86ej5Ybj79GKpdDmYq7eXOpps7Lczht9ijQ2rWGBlmMwWJxztlZvlysbwOIi3Mat4sWOaNAhihuTRN5OHFCHM0gQdOkE5rFIoG5ffuc7wWDkbB0Kdx1lxw/8wxcd513v88IWdN1SdUzcG/A9ASDrBnBmjXw00/wyy+Qf/CotGvs1k3m94SHwz/+IRfpo4+iR0Upg9QDQlHWqrpnp5wfISUlhWbNmgHw+eefc/r0acd79957r+N4zZo13H333bRu3ZrnnnuOX375hXb24fUKj1AOkA/YuRNe/bkZM1J6SPXg9u3+XpKDchW3pjkradesAauVdu0klSY72/gcYEPo2lV6WGdkGOpQDBgAkZHS7Wv3bgMVd1SUM19s0SITepWeU6+e03H8/XeJHAaDkbB/v9TW5OfLzJ9nn/Xu9xkla3v3ShOTOXPg1CmDF2lCgkHWjKJjR6gVkUmHH59Fa9taerRbrXDVVbJD8eabUKeOMkg9JBRlbc0aSQ0/fNizn1eyJhw9epTGtm5LH3/8Mbfeeiu1a9cu1txg5syZ5Nq6Tnz00Ufstc3mmDJlSkjImjdRDpAPqF8f8gs0kiPbShTIC4X6nlCp4u7cWfJnzp2DXbuwWMSotVjkJdMRHg4DB8rxsmVidRtAbKzTmP/zT51t2wxU3L16SfpJerqE1oKIYcNEfE6ehCVLsgPeSEhPh7Fjpd11z57w5ZfenfVjpJHQqhW0bCmB0enTgyrjshShaJCWS0EBsd9+zL1vtmLYkn8RnpvN+e79JUo+ZYqju40ySD0jVGXt2DFprOJJUyQla07sKWzvv/8+d9xxBwCTJ0/mhRdecHxm7NixWCwWOnbs6Hjtl19+weLtQXMhgPoN+oCaNW0F0vXrsyGsl0RW/NwNziXFHREhll7jxlLpjTydNEnmeZqSHj3EYzl3rsgApqozYABEROhs2XKSlSvPGqe4w8OdQ1uWLpW6oCAhOlpKDDp2PE96emAbCYWFkuq2fbvMxPj1V+/W1hhtJGgaXHaZBB1TUmDFCoMWajJC1SAtha5LT/auXeGuuwg/dYKsBi358eqfefe65WR2GVDko8og9YRQljV7OvyOHeU3uikLJWtl87e//Q2A77//ngkTJgCwf/9+mjRpAsjQ1G3btjk+f+WVV7I2yDZM/YFygHxEjx5AVBQb647E2ra9ZxMjDcItxT18uEwEtbW4ioqSLDPTEhEh2rlFC2mDZRAxMToNGhwkKyuNFi16GKu4u3SR/snnzwedZdq6dSbVqy+hVaukgDYSHn1U0sdiYsT58WbtqbeMhBo1pO4dYOHCilu7ByKhbJAWY/16add16aXisdeuDW+9RdTe7ZwZfiVZ2Zqjq6UySD0j1GWtXj0JHuo6rFrl2s8oWSvNO++8A8DFF1/MlClTuOGGGwDYu3cvzZs35+DBg8U+X1BQwEpb2K1Pnz4cOnTItwsOMpQD5CPatRPjKT29eFG4r3FbcVcQZj150qTzRQYOlAEYjRoZcjq74k5I2MNLLzXgggsM3vq3WJwhtfXrDWvg4G9KyhpoARng+vxzeOMNOf7qK8la9BbeNhK6doW2bSWiNW2aYVmififUDVJACtMmTpQw/Z9/ym7VY4/JDeeBBwivFsmVV0rQec8eOHBAGaSeoGRNsEeBNmyoPHFBOT9lc9999wHw559/cs011wCwa9cuWrZsCcDQoUOLff6NN96gX79+/PzzzwB07tzZh6sNPpQD5CPCw2WjH2DD8mxYvFgqqn1IlRT3+fOSN56ZCcCSJfDee5K1ZToMvCEVVdzDh/cnKclLirtdO8kXu/tuEZYAp6SspaVpfPstfPON37M/3eb99+Xxoouk8YG38IWRoGlSxxQTI3n8PlZBXkEZpDa++UY8dIAbb5QhZv/7X7EhUPXqSWDo+ut1srOVQeouStactGghA6Dz8iruLqmcn4qZOnWq43j79u20adMGgJEjR7JkyRIA/u///g+ARx99lKVLlzJr1iwuuugi3y82yFAOkA+xDw/bvegoufOWuB47NoAqK+6ffoJ58xxDgGypqWzaJF3hTElWlgz6s3VNcZeKFPeRI3DggEHrBLFMBw50YXKh+SlL1sLC4NAhqT/ZtMnfK3QP2ww65s4VG9Mb+NJIiIuDcePgllugdWuvfY1PUAZpETZvlsf77xdBbdq0zI917apTUKAMUndRslYcTXNGgVavLruxinJ+Kmf8+PGO4xo1agCSErdgwQIA8vLyeOmllxyfGTJkCF9++SWbN28mJSXFt4sNMpQD5EPq14cxY+C+f9YiKrxQ8hDS073+vYYo7p495XHtWigooGlTaNBAsi5MO1tk5UrpBld0gI+LVKS4t2yBTz6BWbO82E0rQHsVlydr8fFgj+bPny/d4AOF666DJ5+U49tvN37fwh9GQtu2jrK+gEUZpCXYuVMeO3Uq9yMlZa2wMI41a3y0vgBGyVrZdOokpsG115bOllfOj+ussNX+NmrUiMsuu4zff/8dEOcnIiKCgoICWpfYrTpw4ADx8fE+X2swoRwgH9O7N9RsWUdCKLru9e1wwxR3+/bS/SArC7ZuLTUmyJS1BP36STpZSgokJ7v8Y5Up7jZtJIXo1Cko0pjFGAoLZff2vfdKjG43P5XJWr9+0pciM1MyQAOJF16Ayy8Xx23cOM/nX5TEDEbCmTOOWccBgzJIy2DXLnls27bMt0vKmsUSx4cfwm+/yXwzRdkoWSuf8HBJqS3ZFMYMei2Q6G8Lpem6zsyZMwHIzc0lIiKCwsJCIiIi2LNnT7GfiYqK8vk6gw3lAPmLHj0kKLFhg9eKIgxV3GFhzmE4q1eDrtOpk6TTZGR4wREwgrg4Z+TKlktbGa4o7qgoaYsNElwyNAoUFiZfoOtSyBwguCJrYWEwerQcr1oVWEEui0X80i5dxC+9/HLZC6gKZjAS0tLgww9h5kzjnDpvowzSMsjJcebkluEAlSVr1apJUwyQzoa28k5FEZSsuYfqLOg564vsQuXk5BAZGYnVaiW8SE3w3LlzaVoktdWeMqfwDOUA+YEjR+C7zZ347UAH2X41tJhE8Iri7tFD2kwfOwaHDhXziVatMmlx+8CBYnkfOCBFKBXgjuLu00fmwJw+LSlxhjJ8uFjcu3ZVumYz4I6stW4tETSrFX7/3aQyUw5xcTBjhnQs37ABrrrKc6PRLEZCjRoS3NV1GZCan++XZbiMMkjLYe9e+SPWqCGV6UWoSNZGjpSPZ2XJ3z+Qrkdvo2TNddLTJSV8yhRz6LVAIzMzk9QicwlWr15NYWEhYWFhjtdSUlIYNWoU+/zZRjjIUA6QH8jPh937w9lMZ/IKw8SaMhCvKe6iW4a2QoiePSUMfu6cRIJMR/Xq0K2bHFcQBXLXIC0aBVq82OAoUN26zo4Z8+eb2irxRNYuukh80rNnpblgING0KUydKkNef/8dhg1zP1PRLM6PndGj5TI5fVrEzawog7QCiqa/Ffm9VCZr4eHiyIeHiw+1erUvF21elKy5R34+rFuns2jRSbZtO2EKvRYoFJW1Y8eOAdL+umjkJz8/n4a2PMM77rjDL+sMRpQD5AeaNpXZdLl1GrL9bAOxpg3C64q7b1+xXiMjQdeJjYWbb4YHHzTxgNRBgySisncvHD1a6m1PDVJ7FOjMGS+Ucg0dKlbJoUMed7HzNp7KWp06IjP33CO/v0Bj0CAZJFq3rjQAsQ3xdgmzOT8g9WyXXSbHq1d7JSBdZZRBWgn2oroi6W+uylpCgmxKgDT6DLDSQ8NRsuY+tWvrxMamkJ6ejqb1N4VeCwRKylr9+vVp1qyZ4/0aNWqg6zrh4eFYrVZiYmL44osv/LfgIEM5QH5A02wb/PHxrO8yUVrDGYBPFHdCAjz8MIwf79hpbNpUMuNMS61a8gvv3btUm+mqGKSRkWIMV6/uhf9/9erO/MIFC0wXBaqqrDVrJn50oNKvH/z973IcHe3az5jR+bHTqpWzXG76dHN16VMGaSWsWiVNU0DaceG+rPXqJamphYUul0sGJUrW3Mcua4mJ+2nSpAm7dsVUuT4yFChL1t5//30OFNmBOnfuHACnTp0iLCyMnJycYjJpH57azZ7lonAL5QD5iW7dQLNoHDoabkgxuE8Vdznb9rpu4sL2Sy8VR7NImMoIg7RPH3jggQo7z3rOoEESHczNlWp1k2CkrBUWiv3mg27whmPvUTFqVOWfNbPzY2fUKJmZee6cT0eUVYgySCshO1sGOlmtcNNNMGaMR7KmadLYY9Ag6XIYiihZc5+isjZ+fE+aNYukoMAxLlBRDmXJ2sSJE7n33nsBGDhwIACvv/46K1asICEhwfGzum0zdPDgwfz0008AJLvR5VbhRNN1k20tG0R6ejo1atQgLS2N6ibNzfruO2k/OnCAzoWdjkkuSq1abp/Hb4o7NVWqZ5s3Jz0dvv5a6oAeesjQrD6vEAgGKSApe4mJpgmXGC1r06fDxo3QuTNceaUhS/QJaWmSyldYCPv3VzxTJ2BkDUl/279fMjD9LXLKIHWBBx+EN9+EpCTYuhW9Zs2AkTUzoWTNfcrSa1u2wC+/QGysiGaRMhaFjfJkzf545swZ4uPjiaggrWTChAl8/fXXjuebNm2iS5cu3l14EKIiQH6kRw953PTLHgo//ARsw7DcwW+Ke+dOeP99af2i69jnceXmGt7TwViOHkX/4Qd2rVhhqJFgtUodkOHtwJOS/G+J2vCGrPXtK7vPW7YERMM7B4sWifPTunXwOD8gqYkjRvhf5JRB6gJLlsBbb8nxp58a6vxYrXI7CoXW2ErW3Kc8vdahgzQizMqCzZv9vEgTUpGs/fe//wXg5ZdfJjw8nPr165d5jueff97h/MTExAAwfvx4L688OFEOkB9p3Vr+Dbu4Gjo2K9CNPrR+VdwtWkjxw+nTsGdPscGoq1cb3BXNQPSFCzm5ZAnZ8+YZapBu3AjTpsEff0BBgSGnLE5hoUyrzMvzwskrx1uy1qCBcyPgt9/MKzcl+eMPebzwwvI/E2jOT0kKC2Wfw9cog9QFMjNh4kTJO779dvTRow2Vtd9+ExkP9tbYStbcpyK9FhYGQ4bIv9at/bhIE1KZrD322GOAOEKapnH8+PFS53jggQd49tlnHc/P29qorvBg81yhHCC/EhYGN94IvS5vSHjt6jLMbscOl37W74o7MtJpudp6p3btKll8Z886u7KaCV3X2V2/Punp6XQsKCDOQE+lSxeIj5fUKK9EwL77TobQrFnjhZNXjLdlbcQI8aWPHxcfLxCwO0Dl1f8Eg/Pz+efwww++vZb9rtcChUcfheRkaNIE/dVXDZe1vn2DvzW2kjX3cUWv9ewpOt2eFaJwTdY0TaN5BekEnTp14u233y7zPXskSOEeygEyA462cLhkAZpGcffpI2vftw9SU4mIkG5CYJ4iajt2xX2goIBGQ4YQFR4Oy5cbdv7wcBg8WI6XLvVCFMg+f2nZMp8Oz/GFrMXGyuxXkMYCZp8NlJwshmFYmHPdRQl05wfk/2bvxjpzptTaexvT6DWzM28efPghAPrnn7M9JcVwWSvZGruMzeiARsma+wSDXvMH7sja7Nmzy31v69atpV7bZsu5P336ND///HPVFxtiKAfIBOTkwFprTzadqC9VyKdPl/tZUynumjVljDw4tgn79BHj6eDBMkfu+IWSijvanre0YYOh01t79JAmc+npMh/GUDp1kmYIOTmGOm4V4UtZ690b6tUTQ3vhQq99jSHMmyeP/fuXnn0VTEbC8OFiCGdmSkqUNzGVXjMzaWlw220A6Pfcw/b69b0ma716yVihwkIpbHcjO9vUKFlzH0/02r59MHlyaM+VclfW3njjjWLPH3nkkXI/m5eXR6NGjQBo0aIFV199NUHa08xrBL8DZKaBFuWwYwfMXhzHkuyekm9dTg6VKRV3377yuGkTZGcTHw8dO8pL27f7b1l2ylTczZpB48YSplm50rDvCg+X3GeQQI2hBoPFAhdcIMerVxvquJWFr2XNYoGLL5aGAvYoolkpL/0tmJwfEHkeP17+Nlu3eqHBhw1T6jWz8uCDkJKC3rIlOyZO9KqsaZoMyI2Lg5MnnXIfyChZcx9P9dr69eIEGXiLDSg8kbWiQ05r1qzJq6++WuozY2yt7iMiIrj++usdr0+ZMkXJs5sEvwO0Z4+/V1ApHTtKSc3puGYcSqshfWhLYFrF3aSJVLJHRcldEnECbrnFaa/7i3IVt6Y5PZW1aw3N7+neXbrgZGR4IQrUurU4bvn5zsnvXsBfsta8OUyYIJEgs1JYKHNpoXgDhGBzfuwkJTlTO2fPNr4rmGn1mhmZNQu++AJd00h+9lkOnznjdVmLjRUnGGRfzkTjyNxGyZr7VEWvDRggj1u2eH2/znR4ImudOnWioEjuvH0IalGio6OZNWsWGRkZaJrGb7bQfIMGDbjqqqsMW3+oEPQO0NoF6aa/+CIjbYM069Rhfetr4fbbi71vasWtaXD11bIz2bQpAHXrijHrz2VWqrhbtZL8jpEjoYJ+++5i74LTtKkYj4aiabJekO21ClIlPcXfslb068yYcrNunQwKrVnTGakKVufHzpAhUL++7BPMmWPcef0tawHF6dNwxx1yOGECe+rV85mstWwJo0fL19eo4fWv8wpK1tynqnqtYUPZHy0s9EvvHr/hqaxtcyHEnpOTw7fffltqtuVOf7TrDAKC3gGan9XfFKlYldG9O2CxsP1cEjl5zj9LQCju2rXLnXiWm+ulttAV4JLi1jS4/npJ4TPQAQKpBZo4UZS/4TRtKpGgZs0M709rFlnLzRVD+/33/db1u1zsaUAXXCAiH+zOD4hTP368iF5ZTR88wSyyFjDcfz8cP05u8+ZsuOIKn8tav35SghiIKFlzH6P0Wv/+8rhunfl0uTeoiqx9++23ANQoY5fh3LlzbLYNVrrpppscr39oa4ai8Iygd4DQNMponmE6GjWSguP8fMm3x2ol8+zZwFLcui5NHGysWAFvvCEzcny3BP8bpJrm5ejXNddIrljduoad0kxGgsUirZfPnvVZvweXKVr/YwZZ8xWJiXDrrcaInJlkLSD45Rf4/nt0i4UNkybRf8QIv8rakSNS8hkIKFlzHyP1Wtu2sj96/rxv7QB/UFVZu+GGGwBIK5Fnev78eaKjo+nSpUux17du3VqsBkjhPsHvAAGHD1opI53SVBTrhD39ELn//S/bPv88cBS31QoffABffgkpKYAYsjk50hLbF81JPFLcVqskKX/xheFbVOfPS72I4XM0DI5Ymc1IiIhwNhhYvlwcITOQnu5s7z5yZOg4P2Vx7Jhn17TZZM30pKai3303APuvuYZOt93mV1k7dgw++0xGkpm9u5eSNfcxelPHYnEOSPeVHeAPjJK1gQMHlnrthhtuIDo6utTrHe3dphQeE/QOUNNzm2D5cjYtN7h61wt07SrGX3TkefZv3UXT1FQ6tGsXGIrbYnEWvSxdCohDFxUFp055f6J8lRT3woXSt9vgdjW7d8uvYuFCL81ROX9e+hNXodGHWY2E9u2hRQtJn5w1yxw3zkWLZD2tWumcPx+6zs+iRfDxx+479maVNdOi6+h334126hQZzZuT+N57fpe1+vUlA7ewEKZO9X16s6soWXMfb0W0u3UTmenfX/Ybgw0jZe2XX34p9dq0adMcx+3bt3e0vp41a5bH36MQgt4B6lI7BQoL2TDnuCmMqIqIjYU778ykfq991GpQl8ToaLRAKm4bNEhCWbt2wfHjREU5d38WL/aeEVslxW2xyNhqkJy9rCzD1tW5sxgMOTleatq2cqVUl/7+u0eWiJmNBE2DMWOkzmbfPrClP/sVe/pbr15nQ9b5AdFTuu7egEwzy5pZ0b/9Fm3aNKxhYYR98w1xtWv7e0mO1tjVqkkEyIvNKD1GyZr7eDOdNzISbrxRZr2FhRl2WlNgtKwlVlBo9/TTT7N9+3bHQNSxY8dW6bsUIeAAtR3VlOjwAs7tPUXyfnN7QJmZmaxfv5yGTZuSOGaMXEz2nJtAoG5d5xCgJUsAcYAiI8VQ2r3b+K80RHF37CitvHNzHdErI7BYnKlca9d6oWnbwIEypOP0abe34wPBSKhTB4YNk+O5cw31TT1i3jzRH23bHghZ5wfcH5AZCLJmNvQjR7Deey8A+U88QTV7T2ETEBsLdttr2TI4fNi/6ymKkjX3CaVaRiPxlqxNnTq1zNdfeOEFQJokDLbNJvj8888N+c5QJegdoIhObenc6Czhedmc2nzU38spl5IX07nWfdhzLkHuLkeO+Ht5rmMfGrJjB5w8SUwM9OkjLxkdBTJMcRdtL712LUYWjLVoAW3aSOh/3jzDTitERTmH0Sxe7PKwhUAyEvr3lyia1Qqpqf5bR3Kyzu7dGhaLlTvvbBPSRoI7AzIDSdbMgm61knn99YSlp1PYvTtRzzzj7yWVon17SdnWdZg+3RwdvpSsuY8vnZ/MTLm9Hjvmta/wGd6UtfH2wVslyC6SRz/PZkw8+OCDhn1vKBL0DhAREQy9NJ6H+6+gT6E5RxKXvJhSUjTe/jyOaWeGkl9oCawoUGKi3B113RFN6d9fapuOHzfOiDVccbdsKd5KYaEU7RjIhRdKNGjnzmJN8oyhSxdpIZiXB/PnV/rxQDMSwsLgqqvgvvtktpQ/0HWdb76RzZM+fXSSkkLX+bFTdEDm2rVl1/gFmqyZAV3XSXntNeKXLkWPiiJs8mTDm54YxcUXQ/XqEoDesMG/a1Gy5j6+jvzMny/DlP0tK1XFF7LWrFmzUq/dXmQ+ZFRUFDfffLPh3xtqBL8DBMQN7EpMRIFEJbxSje45ZV1MDRvKwLnshKZsSU2Ebdv8n//jDkOGyOPZs1BY6DCW7r/fmFkSXlPc9ijQ5s1w5owx50Tam/fsKccG+1ayHX/xxXK8aVOF+SiBaiTUrSvRBn9gl7Xjx6U1aUJCkCWxV4GWLZ3T3mfMkJ4cdgJV1vyJXdZiJ08GQHv8cWdKsQmJjoZx46RWzx7l9wdK1tzHH2lvdlHevj1wmyH4StY2ldFn/vvvvy/2/Msvv+Rvf/ubV74/VAgJB4gGDeRfYSGnlmw3TTOE8i4mi0XmcxIfz6rYC9DvuFO2XAOFBg3gzjvhttscVY8dOkCtWlU/tVcVd1ISDB0KN98swwsMZNgwcYKuvNLQ0woNGzp7qP/5Z5kfCRYjwd5ZzxcUlbWLL5bwUyD1JPEFI0bIgNRRo8QghuCRNV9il7VT69ZRe8sW2dgosuNrVlq0kOJ2f/2Jlay5j79qflq0gJgYSYU7dMgnX2kovpS16tWrF3tep04dAObOnet4zWKx8Prrr3ttDaFAaDhAgD5gIF/mXMe7izpx1ASlQJVdTN27S/OA1OqtSD5f30+rrAJJSeXeFc+c8awWyCeKe/hw0dQGYy8cLqHXjOOCC2Qb9qqrSr0VLEbC8ePw3Xfi49lGTXmNkrLWo0cMAPv3S68MhRAeDhMnSqtbTQseWfMlRWWt39698uKIEdC4sX8X5ia5ub5Nb1Ky5j7+bHgQFgbt2snxtm0++1pD8IeszZkzx3F82tZBafTo0V7/3lAiZBwgrXMnavRtB9HRrF/v37W4cjFFRzs39R0lQIEYN87Jccyp0XWZHfH22+7XwvhFcWdne613t4v9ClwnLg4uuaRUpDCYjIT69aXkSddh5kwp1/IGZclagwYQHy/fuW+fd743ULGLVGZmJn/+uZLY2KYBL2u+opisDRhA1A8/yBsTJvh3YW6Snw8ffQS//iqZ5t4mmPSarzBDt7dATIPzhqw9+eSTaJpGdnY2K8uZP1ies5NhuPEQuoSMAwROh2LLFv91rXHnYurTR4yL3VvzOD35N5k+aJb8PVdIS4M334QffoD0dDTNmSbjzvwIvyjuFSvgrbcMz3nKzYUff4R33pFUAK9x8mRQGgkXXeScQbJihfHnL0/WNM25e6nS4EqTmZnJzJlrWbasM+vXtyU/P/BlzduUkrUtW2DvXtnEuOIKfy/PLSIinMbtzJne1W3BqNe8jRmcH5BGNjExUtJ88KBfluAW3pC13NxcXnrpJQBiY2MZUEGL++uuu85xXLNmTQBuuummKq9BIYSUA9S0sZXaecfJW7+VbRsrGV7hBdy9mOrUkQnK0dUspK5PkRygQNp+rlFDuh4UFsLy5YDMSg0LkwiQKwrQb4o7J0e8lQULDN2qioyE9HRxwA1viAAyEPXbb8l96y3WzJ4ddEZCbCzYN8YWLzZ2tlJlsqYcoLKx67U2bRJJTEzkzBmN33/396rMTZmy9vXX8uaVV/qv60cVGDpU1H12Nsya5Z29OuX8uI9ZnB+Qe3/79lLn7M+xBq7gLVm70Da64grbJkffvn3L/exnn33mOD5nG88xY8YMQ9ahCDEHSLNo9MhaCqdOsX62bwuBPL2YxoyBhx4Lp/1FTeSFQGqJDc6OcH/9BZmZVK/ujMRVFgXyq+IeOFBCDadOwcaNhp1W0ySKAbB+vRduAuHh5OTnc/jAAdrs20eH9u2Dzkjo3BlatRJfb+ZMYwwtV2RNOUClKarXevRozxVXaGiayPb27f5enTkpU9ZyciQ0DHDLLf5doIeEh0vgKixMrpEyGllVCeX8uI+ZnB87w4bBI4/YGj2ZFG/JWnp6OkttXXzsA08vvPBCNE2jsLCQ80VbaQLVqlUr9rxHjx4ATJ8+3ZD1hDoh5QChaXQb0xCLpnN4w2lOnvTN11blYqpRQ6IGjny4vXvx2cKNoEULmVNTUAC2XNdBg2QHaP/+8rs2+11xR0U5h7ouWlT5uHs3aNJEuuLpesVDJD0hMzOT5XFxxNeuTcPcXLRdu4z9AhOgabIxEBEhkcT9+6t2PldlrX17efRFjUMgUJZea95c9g5AnNO0NP+u0WyUK2szZ8oA5saNxUIMUBITpY8MwJw5xv39lfPjPn6/h5ZD9eqyt2hWvClrvXr1AqBJE9nQfv3113nxxRcBCA8PL+XwACwskiqy3lbAXt6wVIV7hJYDBMT170ybumcgPZ3NS855/fuMupj0WrU5ULsHVl2D1asNXqUX0TRnFGjtWsjOpmZN6RoFZUeBTKO4e/cWDzQ9HdasMfTUI0fKTunevfLPCOyyVr99e+pdfrnI2ty5hjpvZqFWLen5cP31Mo/GU9yRtaIRoEAqxfMGFem14cOlM/v58zBtWuAUO3ubCmXtq6/k8eabZXcogBkwQPy43FxRP1VFOT/uY5p7aCWYraOmN2UtNTWVPbaGUIdsfcBnz54NwDDbpse1115b6ueGlbMhcsbAWYWhSmBrWk+Ij2fQ0DCu7biVYdWMNWpLYuTF9PXX8OW+wew6VUdyC0qESk1N69YyGygvz5HCN3iw3OePHSs+49VUijs83LmduXSpob/z2rWdwwP/+KPqRmIpWRs8WLbazp3zTrcAE9C9O7Rt6/nPuytrLVuK05qZiSla6fuLyvRaWJiUsURGSoTO4L2DgKRCWTtxAkfRVIB1fysLi0UGpHbqJJsUVUE5P+5jqntoOaSnw+efS0dYs2yQeFvWWrVqVez56tWrWbBgAQCLFi0CoGPHjmV+72233eY4vso26qIsZ0nhHqHnAAGNLmxP+4RThG3Z6LVeukZfTI0aATVqsCqjo+zo//WXMQv1BfYokMUiue7IDv4NN8A//uHs3GxKxd2lC9SrJ86bwW1rhgyRjjg5OXD2rOfnKVPWIiPBVmzJsmVBn4uUmenebCBPZC0y0hltCtU6IFf1Wu3aYvx27OiM9oYqlcrad9/Jfahv36p59CaiTh0ZSVYVFa6cH/cx5T20DOLipIFNVhYkJ/t7Nd6XteTk5GLtq1u1auVwauxpbz/88APPPPMMAJqm0b9/f8fn33//fcfxzz//DMD8+fMNXWMoEpIOEK1by1CP7Gz0ncbXSHjjYurdGyxhGgfjO3Gs62hnJ4FAoV07eOCBYluCrVrZ6pswseK2b2fed58zB8ogYmLgppvg/vvFYPCECmWtUycpOIqP93LPbf9y5Ai8+67UkNv86wqpiqyFciMEd/Va165iBNtb34ciLsmavftbEER/ymPvXvd2+pXz4z6mvYeWgcXirKn091BUX8haixLD1RcuXMg22388OzsbgK9teqBTp04ADBo0yPH5qKioYj8/btw4AH766SfD1xpKhKYDZLGgd+3GkqyevP19ArbugobgrYupenXbnIWEBFbRr9TAS9OjaWDrY18Sq1VnwYLd5lXcSUmype0FGjaUYn5PqFTWNE0s0HvukS8KUurVk6LajAyobFOsqkaC/aYdag6QJ3pN05xDUnXd/eHHgY5LsrZ5s3SZjIiAIjM/gonZs+GbbyQQ7QrK+XGfQHJ+7NjnRu3Y4b2h1pXhC1nbvHlzsefPP/883UqExXft2sVvv/0GwNatWwF45ZVXin2m6MBUezTpjjvuMHq5IUVoOkCANmI4yZ3GcjY8wbAux96+mPr1k8etWwN8Q//kSdi9G4D8fJ3nnjvGl1+G0arVIPMr7uPHwQvFh1YrbNggudGu4LKsVa8utUxBTEQEjB0rx+vWga2+tBRGGAn2CFAodYKrql7Tdfj5Z/jyS9FdoYDLsmaP/owd67VNFn/TuLE8LlokNZ8VoZwf9wlE5wegaVPZxz1/3j9pcL6Sta5duxZ7PnHiRE4XGWB3wQUXFBt4CsU7v9npZzcAwVE7pKgaIesAYbFga6nOhg1eKEL3wsXUsKHcTAoLYd3UQ/DFF+X3kTYrycnw/vvw66/oeXns3r0dqzWVJk2a8NdfJo9qrV4NH34I8+YZfurZs+HXX2XuamV4JGtWq6zfwJlGZqJ5c2dW6IwZ0nW9KEYZCfHx8hgIU8yNwAi9pmlQt64cz5qFoRF3M+KSrJ0/D08/LVXgENTpb507S+TUapWugCWvTTvK+XGfQHV+QNLgOnSQY1+nwflK1uwzf+ysWrWKpk2bFnvt+++/Z8OGDY7nFoul3M5v9913n+FrDGVC1wFClHJMeD5pO4+xf5/nfW19qbjtmwDJ606LFRZILbFBalJq1kTPzCT5559JSUnhb39rTWRkJNu3m3w6dIsWYs3t2OFexb0L2J3xTZsq3iX1WNa2bJHBHHPnyqj2IGTUKCmuPXVKmvbZMcpIyM0VmxWkjXmwY6ReGzpUGrnk5MDUqebp/GQ0Lsna779Lfd6//y0Nba66SgZbBSmaBpdeKrv9qalQxua2cn48IJCdHzv+SIPzpawNsY8AAWrVqlXqb/Tpp5+WihCdOnWq3PM9+eSTxZ5PmzbNgFWGLiHtAIVbrHQ5MAN27WL9nBMencPXirt9eymcn/hEA3lh+/bA6vAVFoY+cCAnT54kb9EiBvbtS/PmsY6doCVL/Lu8CklIcLa0mjfP0GEwDRvKTimIj1LWqaska507y5TC8+fLtkCCgJgYuPhiOV62TIwtI42E//5Xan8SE+E//zFo0SbFaL1msUhr7KgoSVEssTEaFFQqa0ePwrXXipDu3y8e4dSp8NNPQZ+mGhsLl10mxytWFE9TVc6P+wSD8wOyH9q1q/RG8sVsNV/KmrXELs+uXbscDQ7sjB49mmNFdjxvvfVWatWqVeb5ZsyYQVJSUrHXRowYYdBqQ5OQdoCwWOgxvAYAu5afKjaPxhX8obgtFumepjWoL3k/VqsMGA0QdF1ne0QEZwoKaFG3LnG2wWD2jZJt22QH37QMGybGysGDxk0wtXHBBXLqAwdgV4nmhFWWNYvF6R2sWye1TEFIhw5SpyMzbI0zEnbudDo9b70lbdyDFW/ptVq1nIGOxYsDL3u3Iio0SAsLpU1h+/bi7Fgs8OCDsnk1fryzU0SQ07at7B/pOkyfLr8W5fy4T7A4PyCXwvjxMm3C23sAvpY1i8XCTTfd5Hher169Yu/v2rWLxvYCORufffZZmee68sorufzyywF4+eWXHa9/8cUXALzxxhv8+9//ZtasWYasPVQIbQcISLygE0nxGRSmnmbzGhd66Nowg+LO79mPjNxImQmUl+fz73cXh+I+fpwmN9xAZGSkbNUXFlK/vtwgdd3kUaAaNZwTTOfPN3TbqmZNZ4rjvHnOlADDZK1ZM8k50HVJh/PFlpuP0TS45hq46CKdvXuNMRKsVrjzTrnELrlEzh+seFuvdeki/+z1IP7q/mQkFRqk69fLRX3//dLhpE8f2YB4/XVnQVkIMXq01LFecgmcP+//e2igEUzOjy/xl702efLkYk6Qna5du6LrOnqRe/CMGTNKrSsjIwNN05g6dSoAx44d49FHH3W8P2nSJACee+45nn76aSYEcS2hNwh5B4j69enTNZfuiUdpluVaJZ4ZnJ9du+CN2W347Vh3SWvatMnna3CHkoq72sCBUrCRluZY+9Ch8tnTp01uGA0eLMNNTpyQ2hqDTx0bK7+Ddeu8IGsXXiht0w4e9P8ABi+haU5ZGzBgIBERVTMSPv9cUraqVYP33gveDXtf6bUxY8QXv/xyCAvzylf4jHIN0vR0mfLcu7dcyDVqSPOXFSsCb4abgURHw223Qf36/r+HBhrB7PycPSt7od5oLuNve60sJ2jNmjW0KzFXcKy9lamNJUuWUL16dUAcJqvVSv369QHoXoYOGTNmTLHucorKUQ4Q0O3yplzebhcNDq2udFfc3xeTndq1Ifu8xs6Izpw9Hy3NEEy6o1+m4o6IgAEDxKq0kZQEt98u/0xtGMXEwKBBXpnFFBUFw4dLeUDNmlnGy1rNmrJ2kAhWkFWjF5W19u0H8vPPcfzyi+eXxunTYN9we+EFMdyDEV/qtagomDhR2uAGMuUapHPmSC7m22/L9XXddZJD+fe/m1yx+YasLKesNWzYgZwc5fxURjA7PwCrVsntaP16Y89rFntt8uTJxRyci+3p6DaOleh8dN999zHUtiP84YcfsnHjRjRNIzc3F03TinWNA0hISGD27NlqI8FNgrvy0lU6d4Y//pCq6SNHxPosA7NcTCD1+C1bwr6C+qzJ6clFQ+uLlWeyC6BCxd27N/TqBZGRjpfK+dWbj759Zf0lJjQbQY8e0LZtJitWeEnWBgyQQqtBgyQJO0goKWvnz8eRkiLRxO3bnR2H3OH116Vtc5cu8MADhi/ZFPhbr506JX5BINVVlanXzp+He++V8QQgCvr996U9oQIoLmsWSwc++ECjTRtpkKEom2B3fkB08+rVsk9QUGBMPZC/9VpJZsyYwc0338w333zDn3/+6Xh97NixjshObm4u0dHRjvf27dtHixYtANi4cWOZkR+AkydPEhERwdKlS9F1vVj3OUX5BI/1UxWio9Hbd+BoZnV+m5JFbm7pj5jtYgJbvUh4OOvrXEhum86mM2YrVdwREcWcn6Lk5oKtP4I5iYjwivMDkJ1d3PkBg2UtIkIsjsREY8/rR8qStYQESSkE+O03sU/d5ccf5fH//i84G3X5W6/t3g0ffQS//GLytNcilKvXHn9cnB9Ng0mTYPNm5fwUoaSsxcdr5OVJFnGQZuNWmVBwfkDqwqpXl/u+Eb2F/K3XymPy5Mlcf/31xV6bPn2647iaLSOmTp06FBQUOJyff/3rX6Wcn5iYGMfxP//5T8LCwhgyZIgjcqSoHHNZzP5k+HCmNriXNWltS00rN+vF1KqVDBjMzTXffEu3FLeuS1HT/v0AZGTAm2/CDz8EQIdvXZe7t0Gd+IrKWsuWHViwQOPXXw05dfmY/pdcMRXJ2qBBEi3NypIgr7s0bCiPZW2KBDpm0Gv16kn0JyVFOsOZnXJlbf16KRAD6e7wxhvF0ntDnbJkrVEj5wbF7NmQmenfNZqNUHF+QPYM7BH6qjrDZtBrFfHdd98xssggufnz5zuOR9k2TH766SfCwsIoLCykevXqPPvss47P3H333QCcL7Kj98ILL5CTI028VB2Q6ygHyIZWqyY9+suOftH0SjNfTJommVgAq5floy9fYYoZL24r7rVr4fvvHQNw4uOhQQPZEV62zDdr9pj9+2HKFGnbVsU7eElZO3dOY/lycW690jJY18UreOst2LfPC1/gfSqTtfBwmT+iaXJdJye7d/7eveUxgDrNu4RZ9FrNmjIkE6TRhDeKoI2iXFkrLIS773bW+9ja1SqEimRt6FDR9dnZMGOGactYfU4oOT927A7Qrl0yH9gTzKLXKmPevHlcalN8F110EZs3bwbgq6++AqRGaM+ePYSHh5ORkQFAy5YtAakJAnjxxReLnfOCCy4AKJZCp6gY5QAVoWtXySJL2ZfLiROBcTF17Sqddc4cziLl51WwfLncTfyER4q7c2dJJztxwjEAxx7FXb9eGiqZlhYtJEyQl1elLeyyZK1+fefc1fKGo1YJTRPjzWqV6fSBkoNkw1VZa9xYSs0AZs507+YajA6Q2fRap07O+TBTp3qWquhtKpS1Tz4RAYmPl6IxhYPKZC0sTObAhIVJOqTZMhn8QSg6PyC30Ro15FbqSRqc2fRaZcycOdPhtHTt2pXDhw87ZgXl5eXRpk0bx2cfe+wx9hXZpLz66qt5+umni51vwYIFAKSlpbFjxw5vLz8oUA5QEWJjrLRLXQIrV7Js5rGAuJgiI2XD8b6natC4XaxUEK5Z45e1eKy4Y2Kcs3UWLgRdp2lT6RJVWGjyuUCaJq2lQeYxnTzp9ikqUtwjRkjJTkqKlBQYzrBhkqpz8iSsXOmFL/AO7srayJGSYx4RgVsDj+0O0KZNwZEGZ1Yj4eKLpbNlWpr5IgEVylpqKjzxhBy/+KKEMxSA67JWr57oOZCNHtuGd0gSqs4PyK20QwfR0WfOuPezZtVrlTF//nz62tJ4mjRpwtmzZ7njjjtKfa7o8FOAKVOmlPpM+/btueWWW0hKSrLVDisqQzlARbFY6N0+g8LCQhZ+v52EhMYBcTG1bw91EzRne+PVq31urVVZcffv74wC2Wbr2G+K69dLO2LT0qwZtGvnjKS4Yb1Vprjj453RsD/+gBzXZ/W6RkyMs1B70SL37zx+wBNZi4qCm2+GO+6QtCtXad4c6tSRXUmvOKA+xMxGQlQUXHWVRAJ27JCufWagUll79FFpE9i9O9xzj1/WaEbclbX+/SVS272713rLmJ5Qdn7sDB0qDWcGDnT9Z8ys11xh1apVDoeldu3avPLKK6U+ExERUeE53njjDXbs2OFIoVu6dKnxCw1ClANUgoQRLQnPPUx0Zh45Z5sF1sXUvj0ZcQ0kh8SHOTuGKO5q1ZwO3MKFUFhI06bQpo34FbbornkZNUqst337HGl8leGq4u7fX5pdZGVBke6ZxtG1q6TyFRTArFnm2n4vQVVkLSGheCc3V/6bmuZMnwvkNLhAMBKSkiSYOmSIbOr4m0plbfFi+PprEZIPPgjONoEe4ImsWSwyG+qii8ptDBrUKOdHiI52b1RWIOg1V9i2bRtJSUkA1Cxjhy6/nLztnj17AvDggw8C0KpVK0CiSYrKUQ5QETIzM1l+8AD9uueSWN1C5L6d/l6Sy+g6TJ9h4Y39l3M0I17SmTytJHTrew1U3H37QlycjIVetw6Q1CWLRcLipp7ZWbu2zNcByeOopJ7GHcUdFgZjxsjxpk1eqJHQNKlEDw+Xpg6bNhn8BcZglKwVFkqwa/Zs1z4f6HVAgWQk9OsnkV9/d/SvVNby8pwRnzvvdHajCXGqImtFDV9dD7iSRI9Rzk/ZVHa/DyS95gpHjhwp1tq6Ml544QX++uuvYq/ttRVPnQmATA4zoBwgG46LqXFjLrirHw/1X0WvjIUBo4U1TW4a1rr1WHKqg4QLSlwcRmO44o6MlBh4YqJs1yP54ZMmSaGsv42iShk8WHqTX3ZZhdtYniju5s2lTuKeeyRrzXBq15Z6oKgoU0aAjJS148dl837dOim8rgx7eVogOkCBbCQUFjqyYX2KS7L2xhuSp5eQAC+95PtFmhCjZO3kSRmn5JVot8lQzk9ptm+XjvK//Vb+ZwJZr1VEtgsNrIYNGwbI7J+y2LdvH93s3ZMUFWJ2k9InlLyYwrt2Iqx6rFRjBlA3jUGDQAuzsDO6G6mNe4rV7CW8prh79pSWsrYBYCDF6wFBZCTcdFOFv/eqKO6+faVLjtfo318m2ZczbdpfGC1rDRvahggjBfeV3XPsEaAdOwJrVkkgGwlWqxjBv/zi24CkS7J28CD8619y/MorUKuW7xZoUoyUtbNn4dAhSWI4ftzARZoM5fyUTViYOMEHDpT9fiDrNVcoKCgo9727776bRYsWlfneP/7xD3RddwxPVVROyDtAZV5MYWHQqxdWXWPHb8mcOuXvVbpGQoItd75BA5bWHCuRFC/gVcVtsUg4qwxOn5ZGAKZOhStKiVw1IxV3crIXup2HhZnO2/SWrF1wgVwvmZmVp8LVrw+NGoncrV9vyNd7nUA3EiwWaN1ajmfPxic62GVZ+8c/5OIbPBgmTPD+wkyO0bLWpo3MhLFapW19wOh7N1DOT/nYy1dOnSrdsTPQ9ZorhJWRPWKxpb/YZwCVZPv27fznP/+hbt26jvlCisoJaQeowoupVy/m1LmJHzMuYfly/63RXeyTtbdu9U5DL58p7vx8mYJqG+xaUACffQYrVvgnLcZtli+XNBnbZEcjFffChfDVV1BkgLTx7NsnX5KX58UvqRhvylp4uDOtcts2uV4qIpDqgILFSBg8WIKpeXnw88+iA7yFy7I2cyb8+qsI0AcflLtZEyp4S9ZGj5Zs3CNHHOWgQYNyfiomJsa5d1t0MHKw6DVPsFayC7BmzRpiY2M5ffo0We7MeQhxQtYBqvRiioujy/iWEBbGli3uzQ7xJw0ayM6prsOyORmS42NQ/16fKu7Dh8XCX7YMzp0jPNzZY2DhQu8aQ4Zw9qxYbnPmkJmebqjitg2EZv16+TUZTmGhGHrJyQ4H1Nf4QtaSkqTjGEiUoaL5I3YHyE8jtlwmmIwEiwWuuAJiYyUV6o8/vPM9Lstadjbcf78cP/SQc3R9iOJNWYuPlwY4IB1ATT0M2w2U8+MaTZvKo90BCia95gq13EyrnThxIgDvv/8+C/10zw5EQtIBcvViatRIjKSCfJ2/Vpvd4nZiN+p2Lj9N3tpNMkm0inkEPlfcLVrIv8JChxHet69kaJ07FwC7giNGQHQ0eYcOseWrrwxV3E2aOMt0Zs/2QopI0bZzq1bB0aMGf0HF+FLWBg+2XeMFFf83AyECFIxGQny8ROpAnE+jSzLdkrUXXxSLrHFjeOYZYxcSYPhC1nr2lHtwbq6MVwt0lPPjOkUdoGDUa5Xx2WefVfqZkh3jzpw5w9///ndvLSkoCTkHyJ2LSdOgX2IyrFnD2p+SA6UhHI0bi9HwwEsNiIyLlGTaKlgOflPc9i3AzZvhxAkiIqRRGYhPZ/hQUCOpVo3sfv04dOgQLZKT6dC8uaGKe+RISRU4ftxLRnnr1tC5s4QSZ8zwWTdEX8taWJhEGe6+G9q2Lf9z9llAycm+qUdxl2A2Elq1cg5GdKHDvMu4JWs7dsCrr8rx229LWCpE8ZWsWSwwdqw8nj3r89nehqKcH/ewO0CHD+fy558rg1KvVcS4ceMqfL9+/fqcL1JjnJaW5nbUSBFiDpAnirtji/PEFaaRsS+V7ZsDJwrUtStE14hytrtassSj9sZ+VdxJSZJmouuOSajduknxena21AOZlczMTJaeP0+15s2pFx+PVk7nFk+JjZVCfpB2sRWlb3nM6NFOL2vVKi98QXH8JWt160KdOhV/pmZNZ1G+2aKPwez82BkxQpzQW25xb1Biebgla7ou/efz82Ve1uWXV30BAYqvZS0xUf7md9whNUGBiHJ+3CcuDho1yiEiYhuJicGr18qjsv/rcVt7xAU2u+ihhx7y+pqCkZBxgDxV3GEd29G79TnIz2fVVN+mAhmB3rsPZwprwIkTrg09KfqzZlDc9qmIu3fDoUNYLE7Df+VKLxn+VcQha02a0ODWW0XW1q6Vv4GB9OghLZ1zc2HePENPLcTGymh2kDRELw5XM4WsIe13p08ve6/AjGlwoeD8gDg9l15qTMdpt2Xt229lcm5MjER/gvR3XBn+krWmTQNgBlw5mEWvBRqZmZk0bryYq6+Ook+fdkGr1yrixRdfrPQzF9iMobYVpS8oyiVA1Yp7VElxWyz0HNeYMM0KycnknDffkMjyyMqCT7+N4cMjYzmfH+5WFMg0irtOHWfBi223o21b2Y0fMgSio/2zrPIoJWstWkCHDnIHP3LE0O+yWKRUp0YNaR3rFbp2lVqsggKvtd8zi6zl5Iitu3Fj2QEvsw1EDRXnpyz27YP9+93/Obdl7dw5ePhhOX76aa/OVjMzZpC1ggLZhzl2zOdf7RFm0WuBhhlkzQzUrl27zNfr169f6rW77rrL28sJSsL9vQBvk5mZyZYtW6p0McUN6sZ9A9+nVngGnGgKzZoZv1AvUK2a5Mvn1W/C6uNNGRZhsxrsbcTKwXSKe9gwCXPYCoA0DW64wXwbseUq7tGjJWxVWZ6VByQlwQMPGJMWVCaaJlvvJ07YhkwZi5lkLToaLrwQZs0SX7tVK0m3tNOzpzz6cjBneYSykbBrF3z/vQQo775bGiW4gkey9uqrkJoK7drBI49UbeEBillkbcECifrv2QO3327uqJCZ9FogUVLWdF3j2DHRwxER/l6db9B1nV69erG+nKFzx4N5OrCPMbEKMYZVq1ZVXXHHxFCrny3EuHq1cYvzMppmmwsUGckqywBy+w+TPtkVYErFHR8PV10lxRo2iv4pPShtMpwKjYTq1b3i/Ngp6vx4ZWhg7dpB7/zY6dlTHJ+CApg2rXjBvf2+k5rqn7XZMYtB6i9atpTakKwsmDrVNZl3W9by8uCdd+Ctt+T5iy9CZGTVFx9gmEnWBg6UTYqjR80ThS0LM+q1QKAsWfvoI/j4Y0lNDgVSU1OxWCwO56djOa32x9i7tNq47rrr0DQN3QzGUAAR9A5Qw4YNjVHcffsCkLNlD4e2Bs5QgvbtxW/IadiStbHDJCxUDgGjuPPzHYd798JHH0FKiv+W45aRcPSo5FgZjK7Lad9+G9LSDD+9k6wsQ7oAmFXWNA0uu8xpaC1bJuL2xBNwzTXyGXskyB+YySD1F+HhcPXVsiOcnCx/o4pwS9asVgkvtW8vodXMTLG8K+nKFIyYTdbi4orPBvKqnvMQs+o1s1OerNmzvYoORA1mEm0TYMeOHYuu68y3TTsveu09+eSTzJo1i4yMDJ544gkA5syZU+pzisoJegeoXTuDCugSEjjeZRSv597LD7Pji9rgpsZigUGD5HjlSspdd0Ao7uxsqVB//33HJNRt22Rnft48/0SC3HZ+PvlEcqzOnTN8LRs2yGm9NjMjN1d+97NmiefpIWaXterVnWOQpk+XRor//a/I1513em8gZ2WYzSD1J3XrOv9GCxeWbyC5JWvz5kmruRtukFTh+vVld2XhQi/mmJoTs8paz54y5sE2Y9pUmF2vmZWKZM3eDvvAAf+szddMmDABgJtvvhmAarYN66KRnXfffRdd15kyZQovvfQSAF27dsXqlfSP4CboHSAjFXe9cQOo1rAW2ec1b9WDe4XOnaWNb1YWrJ+RAl98UawgP2AUd0SEGCZnzzpyIIYNkx3hgwerZJN7hNtGQoMGUj9WUGC4Fa1pcMkl4vDu2CF58oYTFSXCBOIE5eW5fYpAkbVOnWSH+YMPYP16aTTx009iD1cQRPUaZjVI/Um3btKjQ9fhl19kf6QoLsvaX39JaGHUKNlFqF4d/v1vUSh33hk6xQc2zCxrmuacDbRzp/wzA4Gi18xGZbJmd4COHCl/8zaYePfddwG45ppr+PPPP6lRo0apz6Snp3PNNddw2223OV5bsmSJqa7TQCHoHSAjsVicnaBWr9JNUXviCmFhzijQ7qUnxFtYsgQIMMVddBLq0qWQk0ONGo7sRObP91INTBl4ZCRomjREsFhg+3bP2lhVQGKi83cxZ44jSGYsI0aIN3DunLQGdoNAkbWsLLF733xTgl4DBkjjg6uv9s96zGyQ+psxY6S8Lj29eJNCl2Rt71647jqJ+ixYIDU+Dz4oLeaefDIkh50GgqzVq+ccjOuvyH9RAkWvmQ1XZK12bSkBLiw0vImqKYkv0tHF3uL6ySefLPW5n3/+GYBNZujIE8AoB8hNurfNJuLAHk78voEDyQHiASG7pddeCzc91VQM8V270I8fDzzF3a2b5L8UmYQ6aJDUbJw44bVOzcWokpGQmOgcKPP778aNtbcxbJjcMM6cqbw2wiMiI6UrHEhOpYs9aQPFSNi8WezhTz+Vy+Spp2DxYudOpK8JBIPUn0RGimM6bpzT+a9U1k6cgPvukzqfH3+UP/TNN0t7uddfL9ZsJZQIJFkbMkTmoN10k3+7gQaKXjMbrsqapjl1b6jUAT311FOO4/379/Pvf/+7zM8VFhbSLEA6EpsV5QC5SUxcGN30DZCezuoZxg629Cbh4XK/1xLqQseO6LpOyvffB57itlgkCgFigGdmEhPjjHD9+aeXIh82DDEShg2TPKrUVEMaChQlKkqCTCAOkFdml7ZuLTliug4zZlQadgsEI0HX4b33JMK7c6dkK86fL82/wsNlRtAff3iU9ecxgWSQ+pP69WVfBCqRtYwMeO45aSP33nuiKC6+WNLevv46YMYbeINAk7WICGlWYsRgXE8JBL1mRtyVtVBzgP71r385jpvb5o5ZzNzzPYBRv1V3iYqi7yXS0njX0lTOnvXzejwgr+8gdh7KJnf9ega2bRt4irt9e2jYUJKCFy8GZPe3enWp29i61Ttfa5iREBPjdOIWLixdvFBFOnRwzi71Wl3U6NHy/zh2rMKetIFgJJw5A1dcIUGB3FxJq9q0yfknAvjuOwk4+qoBQqAZpGZA13X++msHv/ySS69eRWQtLw/efVccn+eflxzH3r1lt+S336SQKIQJBlk7csR36c8QGHrNjHgiay1bwvDhzuz3YMdisTgcnhMnThAbG1tmg4O37C36FR6jHCAPqHthd1rVPoN25jSHNgWWB3T4sM6Tb8HXRwbRuFFj4rzQktnraJqzH+qOHZCfT0SEbOZec4137BnDjYQePcRLGTlS8vcMRNPEiP/b35w1a4YTFydF4716lfsLDwQjYelSWf706bKr/MYbMHNm8QGoIDdgkICdt5ttBINB6mt0XWfbtu18952VnJxOLFwYh15ohR9+kA2T+++Hkyclejllisxzs/9RQ5hgkLV586S5pq9G9AWCXjMjnspa7dowdCg0aeLlBZqI322tXOvXr092ORukDz30kC+XFJQoB8gTatfmootgUr9VdM1e6e/VuIyu65w8uYMzZ9LR2g5if3qSFD0EYhireXO4/HLZtrd1aWrfXqIfRt/DvWIkWCxSd9Crl1dGmtepI+1ivUr37lIPVIYDZ3YjobBQggHDhskMqdatYdUqmDSpbPlp3txZY/Lrr3D+vHfWFQwGqa+xy9qRIynceWdzoqMjyZ4xn/OdesP110uzkcREaem3bZsMVVa/16CRNfuM6YULvT8byOx6zawEi6z5igsvvNBxPH78eDIyMsr8XHmvK1xDOUAeknBhN6pH5cr0yZwcfy+nUuyK++TJw1x5ZWMi69RhiWUo+uXjpKtXINK9e7nRk9xcYzLLvKq4i56roMBr7YzOnpWULq+i6w5H2uxGwuHDkt723HOSNnPLLdIJuUePin9u5EgxtjIyJHPKaJSR4D4lZa1d9i7unzWKCZMvpNrO9Vjj4qWQa98+uPvukGtpXR7BJGvdu0t0IC8PZs/2Xlc4s+s1s2KErOXmSrKHwSWzpkXXdRo1agTAo48+SlxcHPfee2+pzz3yyCMA5OTkcCBUhiUZiHKAPKV5c+nHmZfH6UVb/N6KsyJKKu7hw2OIiIBjdTqzL7aLVyIQPkXX4dAhx9MdO+Ctt6SzbVXwmZGwa5fUKHiheOnMGan3/vVXyQDyCllZMHkyfPIJelaWqY2EX3+VgvklSySL75tv4MsvpXNeZUREwPjx4rdu2SKdzI0imAxSX1FUrw1q0IC4O+6Anj2ptXYehWERrOw7iS+e2kf+Y0+FZEvr8gg2WbPPBgoLg927vTMbSDk/nmGUrJ05Iw0b583zba2XP7DL2gsvvADAddddx/fff897771X6rM//PADAImJiY6GCQrXCXDL149oGgwaxC+F43hnYSefD+F0lbIUd7VqknkFjnFA/h+m4ClWK3z1FXz+uWNcdGysRH82bIBTpzw7rU+NhNRUmavjhTZjtWtLEanVKlELr/yZo6MhMxM9K4vDn35qSiMhJ0fKQMaNk5tpz54iHzfe6N55GjVydhxctMiY32ewGaS+wK7XTmzdyvBp04jt2VPqfTQNbrqJ3E27WH7VGxzOSWDOHH+v1jwEq6wlJDhnA/32m7FJGcr58QwjZS0xUTqc5uZKF/tgpaisXXXVVQAcOnSIG264odKf/eKLL7y9vKDDcAfopZdeonfv3sTHx1OvXj3GjRvHrl27in1G13Wee+45kpKSiImJYdiwYWzbtq3YZ3Jzc7n//vupW7cusbGxXHbZZaSkpBi93KrRpQtxg7pBTIx9JI2pqEhxDxgg7X0PHdTZP3WjRCDS0/23WE+xWCQSBzB3Lug6TZpA27Zi9M+b5/4pfW4k9O8v/VwzMtweLuoKo0fL3zo52UupcGFh6GPHcvLUKfLWrmVQvXqmMhJ27JD6HduQbR5+WDq6tWrl2fmGDRMnaOLEqpeSBKtB6k10XWfHxo2Ev/kmw++8k8iPPpIU0tGjYf16mDyZah2bc8UV8vdJTvZezVYgEeyyNniwbPhkZBTZ2KsiyvnxDKNlzWJxNkEokuwRVJQlawPtXj1w6tQpxo4dW+bPHjt2jIkTJ/popcGD4Q7Q4sWLuffee1m1ahXz5s2joKCAUaNGkZWV5fjMyy+/zOuvv867777L2rVrqV+/PhdeeGGxgq5JkyYxbdo0fvjhB5YtW0ZmZiaXXnophQYPjqwq/frJxZmcbK5JxZUp7vh42QUHOLTqKJw+bdxdw9cMHSrbQ8eOSU0WcOGF8nfZtcu9rl1+MRLCw+GSS+TYjeGirlKrlrOF6Ny5kJlp6OlF1tLTOZSURJMmTYhdsMDw1t6erQs++0yinZs3yy7xb7/Bq6/KAE1PCQuTeqBq1aq2vmA3SL2BbrVy+O23aTZmDG0//RQtPV2KtxYsgDlznAOBkCaLV10Fd90lHdtDmVCQNXsn0Li40l0cPUE5P57hLVmrX18eU1MNOZ2pKE/W7N3gAOrUqcPzzz9f5s9HREQwfPhwXnnlFZ+sN1jQdN27uU8nT56kXr16LF68mCFDhqDrOklJSUyaNInHH38ckGhPYmIi//vf/7jrrrtIS0sjISGByZMnc+211wJw9OhRGjduzG+//cZFF11U6femp6dTo0YN0tLSqF69ujf/i0z/9BQb5xyj3ZB6XPePRK9+lyu4qrizsiTo0yDvIHzxhXgM990n22iBxsqVYt3HxsIDD0BUFHPnyst168Lf/y6Ga0X43UiYMkW6VCUlwe23G1qbZbVKq9hjx6RT3jXXGHPeYrLWpw9x330nxUadOon16SfS0sTw/fFHeT5ypMy6bNDA2O/RdYmq1a/vvEG7gt9lLQDRN2wg+667iLXPnWrQAP7zH5gwIfDrGL1IKMmarkswsKq9LpTz4xnelLUtW+CXXyQSdNtthp3W71Qma/bf4YsvvsjTTz9d6fl8YfMGC16/a6TZ+lLWthnVycnJHD9+nFGjRjk+ExUVxdChQ1lhyyP766+/yM/PL/aZpKQkOnXq5PiMmRgUvwnt9Cl2Ljzm990JdxR3bKzNIGzaVPKBrFbpJRqI9OkjLbqyshyRrKFD5f946hSsWVPxj5vCSLj4YqmnOXq08gW7icUiXcMtFine37On6ucsJWu1akmXAItFGjp4ayJtJaxZI52hfvxRgmv//a/4xkY7PyCts6dPlxtzfr5rP2MKWQskTpxAv/126NmT2LVr0aOj4emnpeJ94kSXnB9dl3m9nqTEBjKhJmuappwff+FtWbNH9VJTA7dkuSSuyNq//vUvAIfzU7+CnbZRo0Yp58cNwr15cl3Xeeihhxg0aBCdOnUC4Pjx44B0rShKYmIiBw8edHwmMjKSWrVqlfqM/edLkpubS25uruN5uq2eJT8/n3xXLRMPqTGyG21//pPtJ3QW/3KccbfX8er3lYeu6+zatYsjR47Qr18/oqKiXP6/n+s6lMw1x2myaRPWvn2l6jDQuOACLN9/D8uXY+3cmbA6dRg6FGbNsnD6tE5+ftlaMysri1WrVtGwYUNat25NQUGBjxduIyoKhg/HMmsWekoKusFyW6cODBggN6XGjXWXDfayKFfWEhLQ+vdH274da1yc616BQVit8P/snXdcVOfy/z9nd+m9CQioiIIiitgQG/aaxBqN0fTEmGhuvOntd0t67jc3pseYcpMYjR07Nuy9F1SsqIAgSF867Pn9MdtAypZTl32/Xr5YYdl9gDnPmXlm5jOTJqmQnc3Aw4PFli11iI9nUVdHs3+4pmtXYN8+BXJygM2bWUyY0PydWTK2Jgc0GjC//QblW2+BKSoCAFRPmQLms8/o0AYw2b6ysoANGyhQCg7WICqKjwVLi9ZsayxL5y/XrjGYNIk1uVfPmntoa0YIW/PyAjQaBcrKgMJCjUnKnVLGFFv75z//iU8++UT//7KyMhw8eLBeckDHiRMn0FvX12DHJHgNgObPn49z587hwIED932t4ekAy7Itnhg095xPPvmk0frI7du3w9XaYn0TcA+6hoJLDA4tPwpFGwYqlbhHFHv37jX5udnZrti3LxTBdzvjab/lqFi4EFlDhvC4Ov4ILSuDqrwc2cnJqPL1BcsCERFOqKuranF2y40bN3Djxg1hFtoULAuXsDBUODjwM2xGy7Zt3L3WfbZWVwcmNBTs2bMCDCC6n27deiI7uz1KSxm89142XnjhLJyd+esd9PJyxenTYbh6FcjKykJoaMtNVpKwNQnjnpWF2O+/h79WHKeoY0ecmzMHhV26UJloA9EcU1AqA5CW5ov/+786jBlzE25urSMgaI22VlGhwsaNHVFXxyAvz7RrsiHm3EPtEHzbWtu2rnB3r8G+fTU2Ncu4oa2p1WrMnj1b/3+FQgGNRoNvvvkGb7311n3fX1RUBC8vL3zxxRdwd3fHnDlzeF+zLcBbAPTSSy9hw4YN2Ldvn36gE2BI3+Xk5CDYqCYlNzdXnxUKCgpCdXU1CgsL62WBcnNzMWDAgEbf7+2338Yrr7yi/39JSQnCwsKESwnGxyO8biUivPOhjH9O0AxKw5MENzNnXlRXA8XFCqhzQ6EuyUEf10zE9utHzTNyY+hQwNkZ0SaUxRifWkVFRdl8eUhD6uqoV8acli+LbK262jrVATMZNw744os6vPeeAnv3hiEvLxTJybW8lMDpaNeOweHDDIqLO+ORRzRouOW0dlszGZaF4vPPofj3v8FUV0Pj7Iwrjz2GoI8/RoKVA5vHjAF++41BVhaDsrIoTJ3K2mTrkN3WCB8fBgcOMKit7YwxYzTN9oBaew9trdhtzXxMsbW///3vAABXV1fk5+djz549GDduXKPBD0CBZy+jSd7t27c3qVe+1cNyjEajYefNm8e2bduWvXLlSqNfDwoKYj/77DP956qqqlgvLy920aJFLMuybFFREevg4MCuWLFC/5w7d+6wCoWC3bp1q0nrKC4uZgGwxcXFVv5EZrByJcv+858su3q1YG+p0WjY1NRUduvWrWxpaanFr3P0KC3985dustU3s7hboIS4d49ld+xgWY2GZUtLS9mtW7eyqamprEajEXtpjVNayrIbN7JsRQXnL11QwLI//MCyCxeybFWVad9jtq3V1bHsgQMs+9lnLFtYaM1yLeKXX1iWimFY9ptv+H2v2lqWXbSIrqHffqMfXYcsbE0KaDQs++qr+j9ayaBB7J7ffrNqX2tIQQHLfvwx/Z127uTsZSWD3dYMVFay7H/+Q3/rY8eafh5X99DWht3WzMdUW7tx4wYLgO3Tpw+bkpLCAqj3r0+fPvd9zvhfZWWlgD+VfOH8/GvevHn4888/sWzZMnh4eCAnJwc5OTmo0A5iYBgGCxYswMcff4ykpCSkpqbiySefhKurq37Yk5eXF5555hm8+uqrSElJwenTpzF79mx0794dI0eO5HrJ3KGdkMieT0Xu5ULe347lsFmzVy/A2xso9W2P41ltuVukWNTWAvv3AydPAqAkxM8/AwcOAMeOlcujMXj5cuDECWDnTs5f2s2NhgUWFQG7drX8fItt7fJlksRet07QztUrV6hPHiBBupkz+X0/pZJE7xwcaB6vblZFa2tCtxiWBV5/HfjvfwEA2W+/jUPvvoveU6dy2oTu4wM89BA9PnAAuH6ds5cWHbut1cfJiYRwABqvZtQirIfLe2hrQixbKykhjSNT7llSwxxbCw8PB0B9PSNGjKj3taSkJBw5cqTR7/vggw/AsiycnJy4W7gNw3kA9MMPP6C4uBhDhw5FcHCw/t8KnR4tgDfeeAMLFizAiy++iD59+iArKwvbt2+Hh1FX28KFCzFp0iRMnz4dAwcOhKurKzZu3AhlS1rGYhIcjJLo/viu/En8stqT02nUDeF641apDLNi9u/XTtIuKZGv3MqFCzQbZMcOoLwcjo40b7S6uhq//HIbgYFh0ncSdMH+iROcT39zdAR0M9WOHgUyMpp+rsW2plAAkyYZooKjR61dtklcuUK2nJ1Nwc+uXSQAwTd+fqS09/jjQIcOdofUZBoEP3feew/nEhMxcNAgXhzSbt1oNhRACpG2gN3WGqd3b4M4aMNWZHvwYxli2lpVFe3nR47IyzXhwtYeeeQRANRbHxYWdt/X7927h/feew9HjhzB2rVrrV5za4D3OUBiIeQcIGNYFvjhB5JqHD4c4ENLgK+NW6MBvv+enIJEj1MYVr4ZmDqVBsfIDY0GWLwYyMkB+vYFJkxAUZEab7+dAYbxw9SpARgxQgZOwvr1wOnTpAE6d27Lw4zMZN06mh3r708vr2rQFciJrR0/DmzeTC8+dy6vvWXnzgFjx9YPfrgYimgudofURDIygA8/pGsVFPycHzSId4e0pga4excwak+VLXZba560NEqmq1TA3/9O2W978GMZYttaXR2N/qqrAxYsoKoVqWOprRn/btPT09GhQ4cmf9/FxcVwcnJC586dkaE9zbRR155TbLAFVFwYBhg8mB4fOcK9CjCfG7dCQUGboyPg4MjQLrNrFwUTckOhoG54ADhxAmU3buDo0YMYN06FgIAAHD7MoJD/KkXrGT2a7th5ecDBg5y//JgxNDn93j39+CQ9nNlanz5ARASVJSYl8WJPGg3wxRcU60ol+PHwaI/8fLtDeh+1tcCGDZSC7NBB8OAHoKSkcfAjV19BbIdUDkRF0b4we7Y9+LEGKdiaUmnI5uflCf72ZmONrU2dOlX/2NXVtdnf95IlS+Ds7KwPfrKysixfdCvCHgDxQLeuGviUZaJ8/0mcOsRdHZwQG3fXrnSyMmhONODqSp6xCFLGnNC+PdCtG6qrqnDju+8QGhKCBx7ohIgIBrW1wPbtYi/QBFxcKKUBUISSn8/5y48fT48PHKCEGcCxrTEM1YY5O9NAlkZk8a0hMxMYNQp49VXq9XrgAZrnK2bw4+8fhr17o7BrFyPWPFjpcesW8I9/0HU5cSKwaROg0YBNTMStb78VLPhpSF4exWAcV5nyjhQcUjnAMMCECRRr24Mfy5CSrbVpQx/FHjrfEtba2scff6x/3HBupvHrA1QWBwBfffUVWJZF27Y20MctAPYAiAcUSgYDVUeB0lIcXJnFyQBGoTZuhqG4B05OelEH7NlDp7YyRJ2QgFtZWQisqEA0w0ChYDB2LCWILl2i1hTJExNjyKDs2cP5y0dHU+AbGkon47zYmqcnRVpK5f11dlawYgXQvTtle1xdgUWLKLkghoK7sZPQq1dX9O9PTsKmTSQ20SqpqaGs3/jxQHg48MEHwJ07dIz76qtgL17Exe++Q1qnTqI5pEeOUNZw9WrS65ADUnJI5YJuX7t27Q4GDLAHP6YiNVvTHWxJOQDi4h4aGRnZ7NdffvllRGvbEzw9PVFWVoa//e1vFq23tWIPgPiAYdBzRhTcHatRcjkb505aVwcn1qlVun9fHMqPomExJ04I8p5colarcfDCBaiGDkVAQACYXbsAlkWbNsCAAcCIETLpAWAYSmskJNBHHpg0CXjqKcDXl0db694dmD+ffvlWUlwMPPYY8MgjFFz07UutUs8/D1EG5DXmJCQmAmFhJCiydq08K0ktJj0dePddoF07YMoUIDmZ6syGD6eGjKwssP/3f7io0Yh+Gj9mDMVjJSWCixVahNQcUjmgu4du3arGqVNDkJNjD35MQYq2pssASbUEji9/7Y8//gDLsnj77bcBAF9//bX+axkZGXB1deXkfVoT9gCIJ1Q9ojGgWxFQW4sbOy2fjCxW8HP3LvD7MgfsrElEQYULScM1piMqUYw37g6PPgqmVy/g0Uf13vHIkdSrxWEygl98fMhT40nekl7WYGsJCTzYGsPQz6HDQk9z716gRw/gzz8pk/ePf1B7VAsHZrzRlJOgUJDv7+RE5VUNe6xsjupqSqOMGQN07Ejdyjk5dGT7xhskz5eSAsyYAdbRUTKlSI6OwMMP015w5YpgYoUWIUWHVOoY30M7deoBhnHCjh2t7EDCAqRqa7oMUEGB9A4ruPbXjAefzpo1C0OHDsUnn3yi/1yhLBqZpYs9AOILhQK9p3fC47FnMcVps0UlZGLWKwcGAp07A5o2QdidF0OlLNnZgr2/Ndy3cTs5Uc9BE1rIGg35brKBZTmv3dPZWnp6FsrLhyApyZ3fm8udOySX2Jz+dgOqqoA33wSGDaOAomNHaif697+pdE8MWnISfHwMSbu9e+XXZ2IS164Bb71F6a6HHzY0140aBaxaRU1an31GGwqk2YcRFERxG0DK+XfuiLuexpCqQyplGtra6NEucHGh8qkzZ8RenXSRsq35+gIvvkjK+RJaFi/72ptvvql/rFQqsXfvXgCAg/aGl89xT3Brwx4A8YhT3x7o2K4WTGkJ6fOagRSchOHDASgUSPUdjLuPvExdpBLHpI3bqCEjMxP48UeZCCIAFK398Qfw22/ADcszi8YY21rPngNw6ZIL0tP1M2T54fhx8kKSkkyKPi9cAPr3B/7zH4r/nnmGHJiEBB7X2AKmOgnduwOxsbTuw4cFXiRfVFVRA9aIERTYfPYZ/T2DgoC336YJo9u303RYR0f9t0lhX2uKPn2oH66ujuI2Pue4mYuUHVKp0pitubgYRlPs2iWzgy+BkLqtKRRUBielkZB87WveDXS+X331VbAsi61btwIA5s6dy8n7tFbsARCfqFT6fofK3YdRcM+0nLtUnITgYBoayLp7YtdRN1HWYA4tbtwsC2zcCHz1lT7zUFdH5X4nTxoU0CSNbvcH6GexUme9oa2FhrpDN3h6xw7qteGFMWNIGKGgANi5s8mnaTTA11/TQMMzZyiJl5QE/PwzYDQ3WXDMdRLGj6dYYdo0gRbIF1eu0NFraCg1YO3aRcewY8dSo9Pt21T61rHjfd8qlX2tKRgGeOghmi3i4cH9CANLkbpDKkWas7W+fSkzq1YDhw6JuEgJYrc18xFyX/v8888BAMOHDwcA7Gzm3mmnZewBEN/07o2r3n2xMGcm1m9oeTORmpMwbBg5BpcvU7YEN28CpaWirqkxTNq4GYY8apbVN2VrlbKNPyV9hg+n4KGwkOqqLKQpW+vbl6qZqqpofikvvxNnZypLBIBjxxrNZmVn0yinl1+mtYwdC5w/T4INYmKJk+DkRD1nUjq1NJnKSmDZMtoMoqKAzz8nefy2bYH/9//ob5ecDEye3GQtotT2taZwdgaefJL+iRlg67A7pObTkq2pVNQDClDvoARvZ6IgJ1vLzCTBkt27xV2HEPvaL7/8on+8Z88e3Lp1CwDQr18/zt+rtWEPgPjG0RGBT09Aracvbt1mmu0BkKKT4O8P9OxJj1O+SqXSKyucbj4wa+MeMYK80Tt39PONRo8mv+3WLUArqy9tnJwMw3sOHaIUlpk0Z2sKBZ2EK5V04H/+PFcLb0BEBEVbAN3NjGqONm8moYPt28kp/e47YMsWykqKCRdOQl0d3bglX7596RLwyitASAgwaxZJsCsUNFRl/Xq6YN5/v8XSWCnua83h7U0/pg6xyqTk5JBKBVNtLTqakpgajY325ZmJ3GytrIwqAi5fFm8NQu1rjz/+uP7xsGHDkJiYCABYsWIFL+/XmrAHQALg6Uk9AABwYH/jx+lSdhISE0l5pddIX8oGnDpFpUsSwOyN293dUAS+cydQVQUvL2DgQPrU9u3SKX1pli5daHiPRkOlcGZIGpliawEB9HcHgK1b6YbDC6NGUVdrSQmQnIyqKhrE+8ADlGTo2ZPM7cUXxW945cpJ2L6dzhDWrAEnM8I4paICWLKE0lXR0cDChXSth4YC//oXZYA3baII2QQJRSnvay1RV0e2/9NPwgdBcnNIpYA5tqYrd5w/nyoAWjNytDVjKWwx1PyE3NdUDfbZ89oTyQ4dOuDatWu8vW9rwB4ACcTAuHIwN67jytrU+3pNpO4keHuTA9p9TFswnTvRjiN27hlWbNzx8eR0q9Uk7w0KgLy8qOfl4EEeF80l48ZRNigz0+Q5TebY2sCB1NOu0fA4dM7RkWraGAZplxn0j2fx1Vf0pQULaEhl1648vbcZcOkkDBgAuLhQElIClxGRmkq1hm3bAo8/TvJ6SiV5iZs2UeDzz39SbaSJSH1fa4nKShLfyMujCj+hkKNDKjaW2FqbNvVV+VsjcrU1b2+q2qirE/4sVsh9jWVZuLnV77/2MKrNDdBpgtuxCHsAJBB+3nXoVn0ayM/HgSTDBC+5OAn6fVHXIZ+aalHpFVdYtXGrVAbN28OHgYICODhQKRxA8YQseoE8PamYPTCQHNcWMNfWlEpq2p83DwgP52rRjawrrB1+cX0JvT+YiDNnGfj7k8+9cCFvY4/MgmsnwcsLePBBenzwIGdifuZTXk4lrQMGkFTd11+TQmL79sAHH1CJ2/r1VPJmZvOSXPa15nBzA6ZOpb3v9GmzhTwtQq4OqZhwYWt37gBZWTwsTsLI2dYYxjAPSMiBqELua7W1tVAoFCgvL6/3tyksLMQTTzyBPKlOgpUR9gBIKDw8MGi8JwDgws5s7RAveTkJdXXA8cxgLMkfR2nnlBRR1sHJxh0ZCXTqRB629ggpOhp47DFqd5DNvaBPH2DOHCpRagZLbc3fn99m8KIiYOZM4Nk3fFFezmDECHI0J0zg7z3NgS8nITqalO1YllTtyss5eVnTOHuWan/atgWeeooOAZRKEjFITiYJ6/feo94fC5DbvtYcHToYSkE3beK3b0vODqlYcGFrZ88CixdTJbEsDr44wBZsTVcGx1t1QgOE3NfKysr0s35iY2OhMarz8/X1xR9//IHVq1frP/fTTz+BYRj4+/vztiZbxB4ACUjQA33Q2a8ATEE+bp3IlZ2TUFNDMc91l+44nxdEHfICd5BytnEzDB3Dv/QSBULaT0VEyCj4AWixxqfzjTQwcbVxX73Kbcx7+DAQF0fjZFQq4NNPge2bqhF8cpNeoEJM+HYSxoyhALO0lBItvDpfajXwyy9U/tmzJ6lKFBdTau/jj0kWfu1aktqzQqrOloIfHUOGUCBUXU3zgSyYad0ituCQCg1Xtta5M52D5eTwKPgiIWzF1nQZICECICH3tbt37+pf/5FHHsGZRib2PvTQQ3jhhReQo+2neO211wDUV4yz0zL2AEhIfH0xeoID5vU9ioAzv8nOSXB2BgYNAuDqipSqQajx9OPHG2gCzjduLy9qxmiEykoSvRLwx7MOjQbYtw/45pt66QSuNu5790gJef9+inutoa4O+Ogj6rO/eZN88AMHgDffBBRnTlE/0+bNogptCOEkODpSiZVSCaSn85RdOHUKeOEFyvY8+yxJjqtUVNu4fTtw7RoNLuVAXs8Wgx+AFOGmTgVcXclJ5jrxbSsOqZBwaWuurtr7GmgLteUskC3Zmp8fnf9VVfH7PkLua5cvX0ZQUBAA4N1338Vff/0FALh+/Xq9561fvx5z585FVFQUACA4OBiVlZWYqBstYcck7AGQwPg/2B91ZRmoPHcOgzp0kJ2T0L8/NSCWBEfhcNwLjQ485ANeN26WJf3rI0f0//39dwqAZDMoT6OhvqySEtKLBrcbt78/kJBAjzdssLxkKyuLhN/ee48CoZkzqb8iPl77hH79qAelulo0mTQhnYTgYKo8mzOHfsecUFpKNT19+lCd3aJF9LlOnYDPPqMmt1Wr6A+h4OYWYKvBjw4PDxpb5exscWVgo9iSQyoUfNhav370t713D0hL42CREsTWbK1zZ7qPzJ7N33sIua8dOHAAXbp0AQAsXrwYH374IQDg2LFj6KStUtHBMAx+/PFH/f/T0tLgJIWGWZlhD4AEhGVZXMzNRZa/P9q1a4eyXakoLBR7VeahHyKnUuHAYZUgQ+R437hv3QJWrgR27ADu3QPDUF84QCeCElH8bh6VitTUFAogNRVsairnG/fw4VR2oFZTP4S5J6UbN5Ic/O7d1GD+22/A0qWUiNOjUABTplBmLisL2LXL6nWbgxhOQkwMB8EPywLHj1MkFRwMPP88cPIkSSU98gilLS5fBt54g0QzOMTWgx8dUVEklBcTw83r2ZpDKgR82ZqTEwVBgG1mgWzR1pRKfgdLC7mvrVq1CoMHDwYAbNmyBc899xwAYOPGjYjXng6uXbu23vc8+OCDKCoq0v//7NmzYBgGzs7OvK3T1rAHQAJhfDF1fvZZnPQdjx9uTxBLR8AqunWjnvvqamB3ioYcr6NHeXkvQTbu9u3pOKmujkqvWBYxMdQPVFtrmbMvCm3bAoMHg2VZ3P3f/5B99SqnG7dKRbGJQkEJs9RU076vspJarR56iMq84uKoMuuJJ5rot/LyoicDJJPWIP3PF1JwEm7epASeyfZWXAz88APQqxd5cD/9REObIiOBzz+nIPKvvyh65SjbY0xrCX50GFfMlpdbvi9IwdbkBt+21r8/nRdkZwu25QiC3dbMR8h9LTk5GdOnTwcAnDx5EuPGjQMAfP/993hIex/89NNPMWXKlHrft2HDBv3fcuTIkeipnVg/f/583tZqa9gDIAG472IKC0P47EFgnZxx4YJwKiZcwTAGFekzKfkoXrOThopynA4SbONmGGD8eLr7pacD586BYUiJTKUimWJTnX2xYQcPRrZGA/XduxhUXAz3BjMErCU4GBg6lB5v3kwVd81x6RKVt337Lf3/lVdI/CAysoU36toV6NuXHicl8TiJlZCCk6BWA3/+SW06zY51Ylk6cHjmGQp6X3yRxqI7OZGE4d69VMfz6quGTmEeaG3BjzHXrwPff6+vmjULKdia3BDC1lxdqWLUw0P4wbd8Yeu2tn07VRLcucPdawq9rxVoS0xGjhyJXr16AQBef/11zJs3T/+ct956CwCQqJOkBFBUVIQt2nL348ePA6Aeos8//5zX9doS9gCIZ5q6mIKCSAqXZYHdO+TSaW8gLIxGAj37lj+8OrcxSMRxhOAbt4+PQe92+3agogK+vqQABdBE+IoKfpdgLSzL4uLly7gcHY2wDh3gnJ7OS+Q2aBD1QegGRTa+FkpG9O5NstYBAZTZ+O9/zZjtM3o0aZ1qNLzWIUrFSXB3N4zZ2rYN9w1MRlERRZKxsXRc/euvlIbo2pWGJmVlUQQ1ZAjvUoatOfgBgMJCClh37qSMgalIxdbkhJC2NnQolTlGR/P2FoLRGmwtK4uy5lzdHsTY12bNmgUA2LlzJzQaDSZPntxoEFNQUIBNmzbp/+/n54eZM2cCAF599VWwLIvIFk8W7RhjD4B4pKWLaWhcMZjU87i04hyy78ihxqo+gwcDbUOM0kFnz5rnDTSBaBt3QgI53GVl5NmAeoECAuhTe/cKswxLMLa1vg8+CKdRoyh9xYNEjkJBjfszZhiEEYwpLASmT6d2lIoK6rU/dw7QZvZNx8GB3uSFFyji5gGpOQn9+1OvSW0t6RRUVbJUBvjkk5Tteekl0up1dgYef5zk8y5cABYsIFkkAWjtwQ9AgX2XLlQ1u3q1aRkDqdmaHBDa1pydaduUO63F1nT9o8XF1r+WmPvaO++8AwBQKpVYt25dva8tW7YMLMvCx8en3pqMZwP94x//EGSdtoY9AOIJUy6mNkEKdHdIA0pKsHv5XRFWyRGhoSgM70WCXVu3WtUwI+rGrVQCDzxAj0+dAvLzoVLRp3r0oIBPijRqa4MGUeDQpw8v7+nvT4mHhhw8SGNmVq8mR+I//yGT0Cp7mo+fX/1JrBw2Y0nRSWAY0rJooypAp81foapzDP0tf/+dosmYGODrr6nm4/ffgYEDBR1cZQ9+CIahNjVPT+prS05u/vlStDWpI6at6UQ18/IEe0vOaE225kmz5VssxW4Jsfc1neKbjtraWii1Cg9Tp04FANy+ffu+v2UxF5FfK8YeAPGAyReThwcSp/pDwbC4sjsLmRnyywIBNBvm2yujceJuGCmqWagjKomNu107qoN47DH9iXr79tT8z3E7DSc0aWtKZf2MAI8qDmo1lWy9/z5VX92+TQIShw4Br7/OYe/9xYs0zJODAn1J2FpDWBbYtw8uz83GCx+2xbhtC+CZeREaJxfgqaeoeercOcoC+fiIsDx78GOMqytlQhmGpNybKgeVpK1JHLFtbft2OsSRcta/MVqbrXERAIltawDJWnfv3h0A8M0330CpVOKzzz4DAPz444+YNWsW2rdvDwD6OUEAlc3ZsRx7AMQx5l5MfuP6ITbkHlwrC1ByNl2gVXKLiwtQ5+CMPZohqKhRUfmYUXrWFCS1cQ8d2ux8I6lIl5tsaxkZwM8/W39M1ggaDfX1PP888M9/0v9nz6YEmk7DgBNqaijKyszUzzmyFEnZGkDDR774glJqiYnA0qVgqqqg7hSLTeO/x5Zfsqnfp39/QbM9xkjBSZAi4eGGIZobN1KbljGSszUZIAVbi4ujjxcu8DSgmAdao61ZGwBJwdZ0nDx5EgDw0ksvAYBeBOFvf/sbli1bBgA4dOgQsrKy9N/zxhtvCLxK28IeAHGIRReTmxtGPuKPl+OPIDpjm0z0luvTqxe1zlQEhWMfO5imzJtx7C/pjbukRL+7VlUBy5eT+lNDR0doTLY1lqXjzKwsmmDKsX1t2ED997duAY6OVJ21ZInhxsQZDg6UhmMYUjw7f96il5GMrbEsDUSaOZMUJV59leb0uLkBzz4LHDsGt8unEbnwBUx41Kvl1+N1qdJxEqTI0KE0FqBLl/oy2ZKxNRkhFVsLDCSlSlbbgid1WqutWdMDJBVb0+Hg4IB+2mFUGzdurDfPZ+bMmdBoNEhISIDCyLe6bqJee0FBAaptRdqQQ+wBEEdYczG5jegPJzcVcPculfnIDIWCBLugVOKYSyLyHYNN/l5Jb9wXL5LqlnYQkKMjtWHU1Jg5q4VjzLI1XbOCSgVcu0a1OhxQUQHMm0clQMXFlDCbM4feppYvUcP27Q1KfZs2mZ2Kk4St5eYC//d/pHQwfDhF1NXV1FX/448kIvLTT0DfvmAUDCIjDUkfMexNak6CFFEqSY9i0iSDwqEkbE1mSM3WdD2fZ8/ykjznjNZsa56etD8qFOYVnUjN1nRs374dAPTzf8LDwwEACxcuBMMwqK2tRbdu3Ux+vR9//BEMw8DPzw9OJsuvth7sARAHWH0xubgACQlgWeDShqvIyOBnnXzSqRP9q6vTC6iRRG8zSH7jbtOGfqArV4C0NDAMCSIolfpPCY5FthYQQM42QGVkVjZOsizFVN9/T/9/7TWaW9OuHcXwe/ZY9fLNM2QIvVFVFRXp19WZ9G2SsLU9e0jN7o03gKtXSff6+efpl3fiBEWQxoIPRlRUACtXkjMmFFJ1EqSIo6PhcWmpGtu3H5HuviZBpGhrYWFAhw60xRw6JPZqGkcS+5qIuLoC771H8+VMLTqRoq3p8PLygp+2d/fEiRNYuHAhAOCjjz7C8uXL4eDggIstHJLn5+cjMTERDMNg7ty5AABnZ2fcuHGD38XLEHsAZCWcXUz9++Ng24exovxBbJNnJRxGj6bTmEsXWdz8fS/VRjUhoyOLjdvfn1S2AJJ5qqpCQMB9nxIMq2ytf3+6o1dVAevXW21g9+7Rx7Awuvn4+AAPPkifO3iQhBB4QaEApk4lvdqsLJOiLcnY2sWLlO3x8qKerOxsYNEiyv60wNmzNFR20yZhlKmk7CRImdxcNT788AaOHo1BeLhE9zWJIWVb02WBTp7kfRaz2UhmXxMRhqEDSVORsq3pOK2t0ujbt68+E/TNN9/oZ/588sknYBu5f2/cuBEMw8Df3x/79u0DADz77LOorKxERUWFPptkx4A9ALICTi8mZ2f0nNUNDs5KZGZStZLcaNOGfDlHJwZF2RWGxvUGyGrjHjwY8PWlGojdu5v6FO9YbWsKBdXoODgAN27QHd1CGAZYs4aCn4wMSi7dvUs9ED17UmzFq3qSlxeloAAKKJoJ5iRla7oppxUVwCOPUAbIRPr1ozLDmhqaD1RTw9MaIQ8nQYqo1WocPXoICkUAnJ0DsWkTI8uDLCGRuq117EjjtwIDWyxoEBRJ7WsyQeq2piPMaObdrVu39I+VSiVKSkrw1ltv3fc9Xl5e+mAJoFI6lmXx008/2UvfmsEeAFkIHxeTu7tWOYtlsWtTmSxvnsOHk0pvzzn96Gjm2rV60ZzsNm4HB2DCBHp89CiQnd3Yp3iFM1vz8zM44Vamwzt2pOAvNJRKAXVB0NixpIo1Y4ZVL98y0dHA3Lk0XbUJG5KcrUVGUk1NdbXZdYIKBWlAuLtTG9HWrbysUDZOgtTQ2VrHjiGYNy8ISiWDixc5a7mzSeRgawxDExGeeYYqiaWA5PY1kTlxAvjtN1IebQo52JoxuixQjx49MHToUABUEuehLZE+duzYfd8zduxYFBUVgWVZjBo1CgD93Lr+IYZhGs0ctWbsAZAF8HkxDeySD8fTR5G97TzSLpjW3yAlXF21bQy+vnRsDVAWSKOR78YdEUEDKFmWtG41Gv2nvLw4GUvTJJzbWnw8RScPP2z12iIiKAgKCaHqruHDKSs2cmT9ngjeMJ6uqtHUywRJ0tYYhiJEwKIIxt3dIIR38qTFQnhNIjcnQSo0tLXQUEZ/zpCcbCgXtWNATrbm4iKa+vx9SHJfE5miIuDmTTqAaww52ZqOnj17AgBKS0v1Q1LffvttADQzKD4+vt7zi4uLkZycDC+tLN7du3fRp08fKBQKvPLKKwCAAQMG2O2lAfYAyEz4vpjcgj3Rv+1toLISu5dkyDILpCO9/VCcLuwA5OWhfP9+eW/cY8ZQdBcerpebmTCBlNC088k4hxdbYxiaN8PR779TJ0pmtG1rCIJ0PSosS6dzFRWcvFXTlJQAf/xB6ThI3EmwIgACKPM2ZAg93riRuxklcnQSpEBTtjZggKFkcfVqHpURZYhcba2iAjhwgN/y0+aQ9L4mIrqRC41p+8jV1gAgOTkZADB//nwAwNYG94zMzEycapD2WrVqFRiGQVBQkH6u0N///nfU1NTgoJGeu1qtxvfff4/IyEgwDINLly7x+aNIFnsAZAaCXEwODkh4NBzOqlrknr6DC2dE2m2t5NYt4PflTthSPQL5pUDGkiUICwiQ78bt4QG8/DIwahRpPYNOBh0c+Hk7QWytspK66gsKrHoZXRAUHEyDA0eMoCBo82Z6+c2buVluk1y5QkeAO3ag7No1aTsJw4cbJMktbPRLTKSg28WFGxEOOTsJYtKcQ8owJBHv6grk5AApKSIuVELI1dZYlsqsdu4Up6zRHvw0jW4WUEOpcrnamo6x2sOyM2fO6D9nXMIWEhKCiIgIAMCjjz4KhmEwffp0/df3798PlmXx3//+F8eOHcP06dP1pXAeHh6YN28erl69CgAol1KDm4DYAyATEfJichkQh4SoAgQ75sMtPZW39+GTdu2oSb7Muw3+uhQMbzc3dPXykvfGbdxMaLQRsSxw/DgNBeUCwWxtyxZK0axbZ94QhUbo3JnK4YKDqTRr5Ehy0hUKIDWV/vFG795AVBSqKypwe+FChAUGStdJ8PCgJimgUYEQU1AoqILx+ecp82YNcncSxMIUh9TDA5g4kaqBzRjdYbPI2dYYBujThx4fPGiy+j4n2IOf5tFlgIwDIDnbmjGLFy8GAHTq1AkAkJSUpP/avn379CVvm7WnjFOnTsWtW7fw0UcfYcqUKWAYBgqFAgMHDsSqVav039uxY0d88803KCkpAcuy6G2CEqktYg+ATEDwi0mlwqAnIjCn90mEX9/Jb5MJTzAMMGhQGW5nZOBy4BjUzf8IjPa0Qvbk5AC//KI/wc/Pp1r/U6coGWENgtra8OHUrHP7tr58zBqiooBdu6g159w5ah6OjaWvbd4MlJZa/RaNwzBQjxiBG/fuwY9l0fXWLWk7CVaWwQHUD+Tqavi/JSVWtuIkCI05DmlUFJXJhoYKuEAJYgu21rMnXXfFxdz33zWFPfhpGV0ApFZTYGoLtqbjueeeAwBc0/oab775pv5ribqh4AD++OMPAMCaNWvQvn17vPvuu8gzmpfw1FNP4cyZM2BZFizL4vr165g/f75eVKG1Yg+AWkCsi0nZuycYXx8aPnD8uCDvySVqtRo3bx5Anz6O8G3XHjsOucu6n6keZ88CmZnk1dfUwN+fxuwAlFSxtEZccFvz9qbeJoBqdDjo1u7ShTJBgYH0a/rXv6hEoaKCk/FDjaJWq3Hw9Gkopk1DQJs2YE6f5jnlZCW6AGj3bqtr2FiWSnK++gooLDTn+2zHSRASSxxS4zklBQXynPFmDbZiaw4OQEICPT5wwOqkeYvYgx/TcHU1XGMlJbZha8YYy15fMyqb7tevn/7//XUOCIC4uDj8/vvvqKys1Ac8v/76K2J1p5Fabt++jTfeeAOffPIJzz+BdLEHQM0g6satVAKJiaiuU2L/9grBTpy4wHjjfuKJMDg4MEhPBy5fBskvZ2aKvUTrGDqUjp0KCwHtwLGhQ8nRLyoyW+EYgIi21qsXNfHU1nJSCgcYgqA2bYAzZ4D//Y+SmNeuWTV+qFGMba3zqFFgjBUCzIkIhKRHD0qTlZVRPY0VsCxlHktLaT6QKZkgW3FIhcZah/TkSeD774EjR3haoASxNVvr04dmMN+7R/L/fGEPfkyHYeje6+7O4ty5KzZjazo+/vjjev/38/MDABw9ehQBWm12Y1ns06dP4/HHH683/6empgbLli1Dv3799H1A7du3x//93//hnXfeEeCnkCb2AKgJJLFx9+iBM72eRgpGYPt28dRnzKHhxu3jw+hPzbb9dBu1v/1JzTJCFlFzjZMTzZ8ByIHNyYGjIzB+PH3q8GHgzh3TX05UW2MYGirq7EyB6f79nLxs164UBAUEULnI2rWUBdq5k5vGfaAJJ2HoUGo+8/Tk/4jWUqyUwzZGoQCmTSNBhDt3gB07mn++JPY1GcKFQ8qyFKCmpNAsJ1vHFm3Nyckw3YGDquFGsQc/5jN/Potx4y6isvKmzdiajobiBrq+n9LSUqRo1VVmz56t//pXX32FixcvYs6cOfpgx9HREbNmzcJxo2qi2NhYxMXFAQBuWDkXUK7YA6BGkMzGrVCg14Mh8PZhUFoq/ZPDpjbuwYPJJx05MwBKN2e6+zcyyEtWdO1Kwzg1Gsqc1NUhKopmA2k0VO5lSownCVvz9DRMdj15krOes+ho6gkKCKDs39q11BTOxWDqJp0EhYLmHD33HA1+lSocBUAAnX5OnkyPjx4lJb7GkIStyRCuHNLevWkWbm0tkJQk7zOglrBlW+vTh8rhvLy4/xvagx/zYVkWly7Zpq3pWLJkif6xLljx9PTElClT7nvuyy+/jG7duuGnn37Sf87LywuDBg2Co9GAvrNnz+oHrmbzPc1doth+ANTUdKwmkNrGrVKRrDBqanBgzV2UlYm6nCZpbuN2dASefhro1scFzKiR9Mk9e3jsiheI8ePp6D0nR1/KNG4c1STn5ZEUeHNIyta6d6fFP/88p1NMY2LoxNvfn0rgnniCygStoUUnwd29/s/A+yAiCxg5koK18+eBrCyrXy4y0iAut2HD/fOBJGVrMoJLh1SXbHV1BbKzgb17OVyohLB1W/P0BF5/nYYSG/d3WYs9+DEfW7c1HY6OjuijkyE0YvDgwY0+v2/fvujatav+/8XFxThw4ACqGxxuLly4ECzLYuDAgdwuWCbYfgBkRr2NVC+mmPAyBF9KQdWZS9i7vkjs5dyHKRu3/lNxcagOakd/l+3bhV0o17i7G0rhrl8HWBZubnRjfPZZGoTYFJK0tfh4wM2N85ft3p2CID8/0vMYM8YwusdczHISWJYC0y+/lF7NkZ8f0LcvPbZQDrshw4eT9HhVFfUD6UpmJWlrMoAPh9TdHXjgAXq8f7/82yEb0lpsjcMzIgD24McSjG3NzW0wVq1y560sUQrs3Lmz3v9feuklbNq0CQDqZXYA4Pjx4y0ON83IyMCCBQs4XaPcsP0AqF07k54m5Y2bcXfD6OGUaz+x9hZn09+5wNyN+8xZBl9mTsOVfD86/U5PF2ilPNG9OzB9OqU2tD97p07Nz2eRsq3pOX8euHiRs5fr0cMQBB07RlnNJUtgVkbTbCeBZUl0o6oKWLGCu+YjruCwDA4w9AO5u5P8slIpE1uTIHw6pNHRdD2wLJXCyXDKQaO0RlvLzbU+gWsPfsynoa3V1rri1i2qvLBVvLy86slWnzdSxmqY2TEFb29vLFq0CL///jsn65Mjth8AmYAcNu7wmf3R2b8AmnuF2LXcvLI+vrBk487LA8pVnkiuGo5ajYKkpOVcDM8w5NEoGr+UcnNpJo4OOdgaLl4E1qyhWipr69WMiI0lEQRfXzr5XrwYWLbMNFlgi5wEhQKYOpVqVvLz6eeRkgaxLgDascOyQT6N4OEBzJ8PDBsGMIwMbE2CCOGQjh8P+PjQNaFScf7ygiOLfY1jTp8mVT9rErj24Md8GrM1Z2f6WmWluGvjm1Sj8Q7nrZQG9vDwwAsvvIAnn3zSylXJF9sPgGpqqDO4iaMB2Wzcfn4YNcUT3QJyMbwyWXRHztKNe8gQrYJ0QCQOlsdRKqCJ4EF21NSQh6+dp3P3LvDjj+R35+XJyNa6dCHVispKUi7gUE2tZ0/6FXl7UxD0/vukFtccVjkJrq6UoVMoSB1ASuIbffuSF1xUxOm6nJ0NtnbrVhZiYiRsaxJDKIfU2ZkGpA4ZIv/tTzb7Gsd06kR/u9u3LauwtQc/5tOUrbm40Nel2O7JJe2MKpryOSgFeuutt1BcXGz168gVmW+9JrB9O5CcrJ/XYozcNu42ExPwcK/r8Cu9KeqgR2s2bicnYPRoAA4O2O/1AAqDuho1CMmcbdtoQt6GDYBGgzZtqA+othZYv55FaqpMbE2hoEYmJye6ux84wOnLx8VROZyHBwVBTz1FLVSNwYmTEBpqGPi6bRuQkWH54rlEqdReDOCsDA4w7GtpaTm4dm0I1q1zt5kyKz4R2iE1zvzU1kqvQtMU5HYP5RIPDyo1BYATJ8z7XnvwYz7N2VpryQABwMiRI/WPdZLYlvD111/jk08+gaenJxfLkiW2HwD17k0fU1PrTbqX5cbt5maQekpJQU0FN2Uz5sDFxt2tGxAeDtTWMQa/zxY8tMGDqTv29m3g+HEwDDU8OzqyOHUqDykppfKxNR8fw2CjPXs479bu1Ysksl1d6dc1Zsz9c0s5dRL69SPD02hIIUAqd0qO+4CM97VBg+JRU+OMvDxg0ybRk8aSRkyH9O5dKgfV9jPLBlneQzlGJ8x19qzptzB78GM+LdlaawqAvvvuO05eZ/78+cjPzwfbim8Mth8ABQXRMQ3L6oc8ynrj7t8f5S5+SLo7AD8uYgVtn+Fq42YY8q0VCpoPc2XdRVLqaioNIBe8vAwn+jt3AgUF8PRk0anTDZSUlKCwMA7V1TKytR49SORBo6GeII6PqPv0oeSsszP96YcPB9Rq+hrnToJOgzgwkA4RuBhGxAW6zNSJE1Z38Dbc1wID3TFtGl1n584Bp05xsF4bRGyHtLaWzubOnxc1sW8Wsr6HckjHjnRWVFXV9PwtY8S2NTliiq3pAiBbL4EDgMjISE5eR6FQwN/fn7PXkyO2HwABQGIifTx3Duy9e/LeuB0coHzxeVzz7Yd7xQ6COTVcb9wBAUBCAj3OuqwGysuBLVs4awYXjd69gQ4dgJoasBs24OKFC/D0vIYhQ0LBME6S68NvFoahAane3pSeuXqV87cYMgRYupSSm2fO0NvdvcuTk+DkBMyZQ9kgqTgewcHUCc+yJIZgIU05Ce3ba+eIgYLNVjrvrkmk4JCGhFDyGCBNGKmPR7MHPwYYxlBk0lIZnBRsTW6YamsuLlRRrFLJ6P4qARITE3GA4xJ3OdE6AqC2bYHISLAaDTKWLZP9xu3k4aiP6fbs4b92nK+Ne8gQmpcz7OUepN2bnw8cPszJa4uGNtPAqlTIO3YMJbt3Y9CggXj4YWc4OtLsG1NOCiWDszMpqc2eTVNNeWDKFBKLAKhVb8GCu/w5CcaTCysrgTt3uH19c7lyxSAysWePRS/RkpMwYAANSq2tlVb1n9hIySEdMoRi4YoKYP166Tpx9uDnfuLiaFspKjJksBsiJVuTC+bYmocH8N57wCuvSOdsiy+4sp3ExETs2bMHgYGBnLyeHGkdARAAdsgQ5OXlofrECQyMjpb9xt27N+DnpEbZsQs4tL2JXZcD+Ny4nZyoPx3OzobSsX37OJVeFgPWxwfpHTuipKQEvUpL4e7sDB8fqnYaPZpUs2VFWBhJHvFAaSnw5pskhAAAKpUGwcFu6NqVZyehqIgaL/78ExBDBUf3g8fEUO2TgwNpV5uJKU4CwwCTJ1Mir6CAU70F2SI1h1SppIMAlQq4dg04eVLU5TSKPfhpHDc3GgP397/TOV5DpGZrcsBcW2MY2w98uGZ3S/KrrYBWEQCxLIuLxcXI8fBA6LBhcHd1FXtJVqNUAiMVu4C8PBz66yYvZRNCbtwFId2xv7ofSUnL2EPTbdxXfX0RMn06nObN08s99e5Np/Gylr0tKqK/j5XS2BoN8McflJn4z3/oz963bx7mzs2Dh0cgjhzh+W7m7k6Bd3k5pUWEaqZr7AcfP56aP2bONOulzHESXFyAhx+mudBDh1r5M8gcqTqkAQGGcsVt2yhYlQr24Kd52rVrfJ6TVG1NythtzY5QyNkVMwnji6nj22/D+amnaBy9DdDlsb4I8ypBzZ172L3Gek14Y4TcuCsqgEU/MkipScTVQn8gLY2XfhO+qbdxDxoEl4ceImGERqittX6CuODU1gK//gocOQIcPGjxy5w4AQwcSKemOTlARIQG//73Sfzvf7l44ok2YBgGKSk8V6epVBQRuLiQwt327Ty+mZbjx+v/4J06kfTX5s0UEJmBJU5CSAhl2ry9LVy/DSB1h7R/f2ohDAmpX60pJnaH1HRY1tDDJXVbkyLW2NqWLcD//id+VbPUWbhwIWpqauz2iFYQAKWlpRkuJhu78zNtgzH6AUcAwJWt6aiq5KZwXOiN28VFKyfq5obkmpGo1Shkt4u1uHFfvw6UlACgiqtFi4AlS/SfkgcqFUm1ATS91MwIrq6OarT79aMYyt0deP/9KixcuBNTpzojOjoavXsz6NqVnrtmDc/q6D4+VBsG0LBkviS40tKAxx4D4uMNP/hnn9H7TZhg9stZ4yQYX8rXr1MCrLUgB4eUYYAZMyhGtmLEB2fYgx/TycoCvv4aWLYMKC2Vvq1JDWtt7c4d4NYt6YuIiMm6deuwYMECqBpLV7ZCbD4AysrKuv9iKi6m4wIbmIAb9nB/TIm5gpc6JcPptvVZE7GchMREamQs8O2EQ7EvGJT7ZECLG/fBgxTtaIexeHhQ/1NlpQzns8TGGubpmBGh1NRQDLBwIf28jz0GnDpVhn799qBjxxC9renUqj09SRMjOZnnnycy0iDBtWGD1VLU9Th3jrzZ6GjqNdL94JcvA2+8YZEUN1cO6dGjZJJJSTKzPwuRQ/Cjw8WlfqBaUyPOOuzBj3n4+JDzfetWNTZsOCELW5MKXNiarUth5+Xlwc/C6qUZM2agrKwMEydO5HhV8sbmA6D+/fvffzFt3AgcO8b5hHtR8PZGj4nhcFLVkYyuFb0ZYjoJTk5aHQSVCvsuBchGB8GkjbtzZ6pnuXIFSE2FQgFMnGj41Pnzwq/bYnTTXb28qEnBhAilooISLX/9RUmk5cuB779X48aNA43amosLNYQzDHD6tACqecOG0WTe6mpqvrCWY8foDxwbC6xcSRHGpElUAvfHH6RKaQFcOqTt29Pf4upVq6oZZYGcgh9jamronO7nn4WfDmAPfszH1RUID6/A7du3UVjYUVa2JiZc2ZotD0MdM2YM2rRpgwILGgM1Gg2WL18OVxvofecamw+AGr2YBg2ij6dOyawGqQkGDwZcXMDm5uHa5ssWnehKwUmIiaH699parQ5Cfj6wd6/g6zAVkzfuNm0MGa0tWwC1ut6nkpOblk+VJC4uFNHoIpSLF5t8akkJMG4ctbk4O5PE74QJLdtahw6GyzQlxWrNheZRKEjqu0cPQ0mcJezfT1J/8fGUTWIY4JFHKBOUlGQYG28BXDukQUGkvQDQ7/fmTateTrJIYV+zlOpqCv7v3qWKU6GwBz+WoVarUVd3DJ6enigqCkNVlXxsTSy4tDVbDoC2a3tUd+/ejSFDhpj8fadPn5bVnic0Nh8ANUqHDvSvrs42skDOzmBHjMRS9lH8eTzK7FYGqTgJDENOmUIBpKXW4vrHK+jOf/myKOtpDrM37oEDyeusqKAgqPFPyQfjCOX48UbrqO7dI1WrvXupvHHbNmDIENNtbehQagp/8kkBlPPc3Snt5OZm3vexLLBzJ0WzQ4aQmIJSSU0cly5R2qt7d6uWxpdDGhdnmMG6Zo3MgnATkMq+ZilubsCDD9LjQ4eov4Fv7MGPZehsrVcvf0RHB6C2lpFXZl8EuLY1Fxf6aKslcAAwdOhQREVFmfz8Xr164bXXXuNxRfKmdQZAgOH4/dQpm+iaY/r0RruRkYBCgZQU00smpOYktGlDfvXw0Sq0H6290JOTxSuEbwSLNm6lksqgFArKmFy82Nin5MXQoZTxmDXrviEMWVl0iZ04Afj7Uxzbq5d5tqZUAmPHUj+Q4Jw927zIA8tSA1dCAjBqFM2vcnQEnn+e6sp++w0w40bV9Nvw55AyDGkwBATQFrh2Lc+ZNgGR2r5mKV26UKDKssC6dfwOvbYHP5ZhbGvdukWjb1+ytRMnWkd/nSXwYWu2nAFydCSxq5ycHKxcudLk72NZFtnZ2XwtS/a03gCoQwcS76+tpdIVGyAhgU7aiwo0OLq/5eZ0qToJw4fTYbpq2GDqNSkqIgdTAli1cQcFGbImmzcDlZX6T0VEWNwaIh5KJRldA0WZGzeoKvPiRZLz3bcPiIqy3tYuXQJu3+Zq8c1w8iSVrK1cCZSV1f+aRgOsXk1e6YMPkpqAszPw8sskq7ZoEfUTcYAQDqmjIzB9On28cYN60uSOVPc1Sxk7lqTLCwsp2cgH9uDHMhqztR49aEu8exew+573w5etubjQ712okW5C8uijjwIAgoODUdyMeJeiQalEamoqli5dyuva5EzrDYAYxjB5/eRJurvIHAcHYETMXeDECez75WqzJS2ycBIcHVE3ehzKqh2oU/vuXVGXw8nGPWQIOcgTJuiPrIYOBWbPlvl8Fo0G2LULqduyMGgQkJ5OQd2BA0BYmPW2du4csGIFxR68Szd360azwoqLKQiqq6ODkj//pEa1hx+mDJG7O/Dmm9RA8+WXQGgoZ0sQ0iENCCDlvcmTKeMgZ2Sxr5mJkxNpagBUbcp1KZw9+LGMpmzNxYV0Yp5+GggOFnmREoNPW+vVC3jvPWDaNM5eUjKM0E1INkKXFTJGo03h79y5EyzLolu3bryvTc603gAIIEc0KooaDXT5U5kT260WIcocVGXmYefye40+Ry5OQm4usHhfF6wsHAW2TkON5SLV6HC2catUwOOPkzSyFoWifgWZLCsyDx3Csb+uI3GKL7KzKU7Yvx/w9+fG1qKiKCYpKaFSIF5LS5ydSbzAyYnSIq+8QpHBY49RGsrbG/jHP8gT/fRTIDCQ07cXwyGNiaF+IDkjl33NEsLDycFzceG2x8Ee/FhGS7bWsycVmNiQCVqN3dYso6ioCO+8847+/6+++ioAoLqJERQsyzYaMNm5n9YdAAHk6IwaZeigkzlMaAjGTaSTgTPrbyErs76nKCcnwdGRlJZvecfidEF76sk4e1bwdXC+cRv/ztVq/TyqmhpSaP/2W8hGBlzH7vJ4jFjyBArKXRAfkYe9e1h4eHBna05OlHhRqahM6/BhDhffGO7u5Gl+/TX9u36dmpk+/pgyPv/+N+Dry/nbSsFJKCsjLQc5lZLIaV+zlNGjgXnzuMvSScHW5EhrsDWusduaZSQlJcHHxwcZGRn6z33yySeNPnfRokVg7U1nZmEPgGxw8wp9ZBBiQ/MRqMmu11kvt43b25v6geDkhO3MGKj7jySpYgHhdeO+eRP4/nuq69JooFRS1quqSoAsB4ds3AiMe8gB6ipHDO+Yjp3Tf4Lz8W2c21pQEGkuANQLkZlp9Uvej1oN/Pe/QMeOwAcfUMrJ3Z0aMQ4eBN5+m/rSeEAKTgLLAr//TqpjfPWbcI3c9jVLcXYmU+QCKdiaHDHH1nJzqdVTwpMcBEEoW8vJAZYtI20auVNbW4vQ0FBMmTIFAPD//t//03+tsdI3AHj++ecFWZstYQ+AdGRkkHJTc8pPcsHdHeOfbYvn+5xEyLlkoKpKtk5CfDyJA1T6tsVW9SBqvBcI3jdub286Zs/IAA4ehEJBfRiOjhQbHTnC7dvxwV9/kXp0VRX1KWxeVgJHqHFn6VKEMwznttanD7Xo6LQIOCsHKi4GPvqIxFFee43upu3aAd99R0FqfDylI3lCKg4pw2gPHUBZtkuXRFmGych1X7OWtDQaKGxJRbBUbE1umGtrhYXUs9Wa1eCEtLXKSqoOsIWZZgsWLECW1he9e/cu3n///Waf36FDB5w7dw5///vfwTAMDtjCeBcBsAdAOk6epCsnJUXslXCC0+B+UPj7Amo1KrZula2ToFCQ2JZCAaSmalWq6up4F0QQZOP29qYpoQDpRGdnw9fXkOVISaFTRKny66+kgF1bSyIOq1YBtd0icMHBAZ4eHuh87hwYjhULGIbswceHygTT0qx8QbWayto6dKAO2vx8oFMn+uGuXQNefJFk0mbPpl5BHpCaQ9qlCzBgAD1et47XuM8qWmvwU1FBf5e0NPMPSaRma3LBEluLiKCsXWmpQOqVEkNoW9OJkcqpdLcx1Go1umjrXMePH482bdpg7ty5zX7PzZs3ERsbiy+//BIAEG3UY2ynaewBkI6hQym7cOMG/ZM72iEq5ZW1WP5XFrLvdJatkxAcbPA9N6+uQPV3P1GdDk9yYIJu3LGxQNeudJS7di1QW4tevYDOnSmwSEqS5ob+66/As8/SyeYLL9Cfo6qKnASnyZMREB0NpqqKFx1YZ2fqB5oxg9SoLaKiAvjiCyp1e/ddiqa6dgWWLqW0x1NPkawiQA1InToZvre2lrMjXak6pCNGUAKsqoqE8CQ0hgtA6w1+AGpXHT2aHu/ebXqAKlVbkzqW2ppKZejXunCBxwVKEDFsTVccYuoMRCmis7VhWoXiLVu2gGEY/Pjjj/rndO3atcnvT0hIQF1dHXx56E+1RewBkA5vb6qvAejo3QZy1urgYCT59MJx32m4nRGOwkL5OglDh9KfyDvQCZW1Kgp+tm3j/H0E37gZhjRT3d2BvDwgJQUMQ7LELi4UP0ithtw4+Jk3j6rEyssNTkLX2FgwM2YAzz1XP3DgkLZtKV4xm+pqKmnr1Al49VX6nXfqRIHP+fPAo4/eN9eoHkVFwM8/U12LlUjZIVUqSU7WzY2qAbduFXtFBlpz8KMjLo6U4XTCKS3drqRsa1LGWlvTqRBfvGg7Q4ZbQixbk3sGqKGtNcWlJuqSjxw5gkOHDt03C8hO09h/U8YMHkwNGFlZwOXLYq/GKnQXU+yEKPTvHwCNhuEjXhAMR0eaq/Dk0wp4Th9LgcPZs6TOxRGiOQlubhTxANR4cfMmPDwoLnJ1ldYsiYbBzzffAGVljTgJAQFAmzaGb+TxQKGkhDJlVVXNPKm2lhYfGUkLv3OHUhy//EIZn0cfNa2/LC2NIoLkZKsGssjBIfX0BKZOpUstPV0aE9btwQ+hKwVVqehvc+ZM08+Vg61JES5srWNHOshSq7mf3yRFxLQ1OWeAGtrav//973pf79mzZ7MKb8eOHUN8fDzfy7Q57AGQMe7uhlqrlBTZHtkYX0zdukVj3DgGiroaXN52E9evyPR4BOSQMQxo4GS/fvTJTZvoVN9KRHcSIiMpA9m7N6U3QKeHf/ubhZkOHvj2WxODn4ZkZFCgUVbG+ZpYlprBz55t4iS8pobETbp2BZ55hryQ4GBKW125QlF1cxmfhsTH09AcjYZqw5qZyt30muXjkHbsSOWGc+aIPyrNHvzUx9fXMMt72zY0OvhaTrYmJbiyNaWy9ZTBiW1rcs0AGdtaVFQUvLy87guATp8+jWvXrjX5Gnv37kVwcLBdBttM7AFQQwYMoCObvDzpSyA1QmMbd4A/i36F24CbN7F10U3ZbRANqaoCkmtG4nBhF5La2bPHqtcTe+PWM2ECHesayVwaO50cxHkWodEAb74JvPQSBRjz55sR/LAsacFmZlKPE8cbNMMA48cbRDJOndJ+oaaGgq4uXaif59o1muPz3/9S1vDFF6m3x5I3nDiRNLnLyoAVK8xqkJGMrZlBdHR9OxTjHmsPfhonIUGrkllZb+IBAHnamhTg2tZiYqh8myf1fEkgBVvTZYBYVj4dDA1tzdvbG6WNTEL/7rvv0Llz5yZf5/XXX0dOTo49ADIThrXR31hJSQm8vLxQXFwMT09P87751ClydGJjybOSCc1t3JVHz+Kb9+6iTOOCse/2Rv/hriKu1DrOnSNf2qHkHl50+Bk+rlXUb6LNnJiDFDbuRmFZ6m728wNAzs2mTVSSFBEh3DKqqylJsnQp/f/DD4F33jEx+NGRlwcsXkyBwvDhwJAhnK/z4EFgxw7AEdWY7/4bPL/92FBz0qYN8PrrwNy53A1SKSqin6m8nGZTTZ7c4kwxydqaibAscOwY9aVNnCjcCDV78NM8d+9SGaixfyR3WxMLPmxN52HZqtlKxdZ0gY9cXLbGbE1nb+Hh4bh+/TqGDx+OPWYc8NqoO88bMjEVgenVi7pM5XIloeWN27lfDwyPLwPq6rD/9xuyrJPV0b07qRbXePpjc+VwsO3aW1SfI5WN+z4qKoA//6Rm+5ISAKTQXl5O8reczb5pgeJiUuleupTKC/73PxJMMyv4AagfaMIEerx7Ny+DGgb0rsL4Wz9g3sJO8Hz9eQp+AgMp45OeTrN9uPz7enuTPLZCQRH58ePNPl2ytmYG9+5RqdWZM5xoQJiEPfhpmcBAe/DDBXzZGsPYgx8hYBj5uGxN2doY7QyMvLw85OTkNBn8dOzYsd7/XV1dUStnp04kZGIuIlJbKz0N2AaYtHEzDOLm9EVCaAaeCdoM1V35Dnw1bgC+5tkbqb2foIJ4M5DSxn0fjo4U5VRUAOvXAyyLUaMoGVRaCmzZwv8SsrIoUbNrF8UNmzYBTz5phZPQsyf9Y1maYNpYw4IlVFYC334LplME+v32IrxKMlDqHoxzT39Jgc8rr5CSBB906EBDm4KDgaioJp8maVszg4AAYORIerx1K+lI8Ik9+DGf4mIWK1fekL2tCY0QtlZXR5W4ci9B12Er+5rQNGdry5Yt0z+nbSMVLVu0N/8bDUa19OzZE0oBh8TbCvYAqDkuXaJmB3OnzQmIORu3ol0oxkzzgK9LBalYyThd6uenraRSKrF1G2MYCWSCcIXkN26lkkqqVCrqVzl+HA4OwJQpdMJ1/jz1u/DFhQvUW3DuHJ0u791Lfr7VTsL48eRFq9VUw2iNyEhFBfD111QP+NJLFLGFhKDg39/gq5dvYH+vl1HJuFj++qbSrx+JKzRR4C95WzOThARqq6qrIw0IvrKR9uDHfMrKWPzrX7nYuJFFaOgg2duaUAhhaywLLFpEif30dM5fXnCkuq8lJZEoDg96O5zQkq01N78nLS0N48ePb/RrycnJnK6ztWAPgJqjpobqgA4eFK7uyAws2rhHjKAMQ2YmcvdclHMMhIEDqb2jrAzYsaWGUiN//tlsYCfVjfs+AgKAUaPo8Y4dwL17CAkhpXaAdAUa6ZW0mmPHgEGDSLgtKopUuXv14shJcHSksjEHBxIgsCRlX1gIfPIJDUF5+WVKQ4SF0Wyf69fh+4/5mP64s3CqZQxTX0Xu+nW9WoVsbM0MGAaYNAnw8aE2qHXruD9HsQc/5sOyLG7evAgfnyy0a9cOKSluUi9ckARC2RrDUMIYkL8anJT3tbQ0+icFyf6GmGprL774Yr3/h4eHAwC66OQE7XCGPQBqju7d6Qi8spKCIAlh8cbt4QEMHYotdWPw/Y7OvGYS+EappFI4hgEuna9B2dFU4MaNJodiSHnjbpR+/SjDUVNDGZO6OgwZQhVXRtVxnHHsGE2YLyqik/6DBynO4NRJCAggTeXp0+up3bVIRgYNLm3XjlQY7t4F2rcHfvwRuHoVeOEFvapbZCTFWDoEC/KPHAGWLAHWrQOr0cjL1szA2Zn+fCoVjUs7dIi717YHP+ZjvK+9+GIk/P0dUVBgtTimzSO0remGol66JN8yOKnfQ3VnUVJrhzHH1goLC/WPf/31VwwYMKDF1z9x4gSef/55TtbamrAHQM3BMKRaBQBHj/Jz5G4BVm/cAwbAfVQC4OiIHTvEk1fmgrAwmiE67zVXuI0eSJ/cvv2+HhOpb9yNopNcdnGhTMe+fVAqqRROpaI+fK5upNnZFPwUF1OWaft2KjPkxUkICDB0BbNsyz1269ZRIPjFF/R3jYkB/viDAp85c5qUs2ZZCuI2b7Z+ySbRti2gVIK9cAE3//xTXrZmJsHBwNixVJLJld9oD37Mp+G+5u/vrtcbOXyYrms79yOGrbVrR+ePlZWczu8WDDncQ6U4C8gcW4uPj8dff/2l///TTz+NpToJVi3BjUxGHzFiBBYvXmxXgTMTewDUEpGR5GXX1AD79om9Gs427oQEcqBLSoADeyR2XGImcXF0Y0FCgiE9snWr/uty2LibxNOTFNT8/fWN9gEB1PbywAPmzfBsji1bKPiJjqbH7u4COAlVVcCaNcBffzXdD1RURPLVNTVU87hlCzUnPfZY/TRPI+TkADt3kmLZuXPcLr1R2rUDO24c8vLyULdjBwa1aSMvWzOT3r0p8WbCAWWL2IMf82lqX4uKomyDRgNs2CAtZ1AKiGVrCgXtr4D8yuDkcg/V6QBIJQNkrq3l5+cDAL755ptGv/7666/j9u3bAABFA8m7tLQ0+75pJvYAqCUYhvpmAODkSUBroGLA5cbt4ACMSSgBzp/HocWpKMi3gZMDhQKXoycjp8yDVAIuXZLNxt0sMTEUBBipwhj33LOsdXoCACU4AQqqBAl+AMqoXr5MZYtN1et89BGVu0VFkSTduHEmpxyCg4HERHq8aRONI+ITlmVx0cUFmUFBaBcWBretW4HcXH7fVEQYhoJxHTU1ltmhPfgxn5b2tXHjKHGcnU23LTuE2LamK4O7fFk+gamc7qG6AEgKv1tLbG3dunUAgB9//LHRr586dQoq7amnxmizzc/PR1QzSqR2GsceAJlChw40aEGjoZ1LBPjYuLtE1CCCuYHae0XY8lOWrAURAOph+SulDdZVj0edhgG7cSMunTwpi427RYxTPUY1wiUlVA22e7d1L3/sGH3s319AJ8Hfn5q4AMquNnZt6erXPvjAvJ4hLUOGUB9TdTWplvFV7mnsJES+/DIcIyMpw7VsmXQliThEN+t2/37zvk9sh1SOmOKQurtTSevAgTTP2440bC00lFT5KytJuFLqyCn4AaQzb8lSW4uJiQEApBo1ZzMMgxptmXhKSgr+85//3Pd9Kq5KQVoZ9gDIVMaOBZ56ipt6DzPhbUCbvx/GP+YHlUKDa7tu4+IZGTcDgcoLXF2BHK8o7C/pgdycHORdvCiLjdtkjh4Fvv0WOHsWAJCZSbKqBw5YN1+0uJg+enmVC+sk9OgBxMfT47Vr78+wagfBosHgN1NRKICpU6lEMi+PMkFcB/r3OQleXqQS4OtLJXwXL3L7hhLkzh36/e7ZY7rMrxQcUrlhjkMaF0dCkk20yLUqpGJrCgX1rM6dS5X1UkZuwY9UsNbWRuqGrWlhWbZegPPmm29ysk479gDIdPz8SHVKYPjeuP0m9MegboVwZcsMaQCZ4u5Oo2ZYhsGa0l7YGzMSvadMsa2Nu6qK8vubNwP5+YiOJkeHZSl+sFSt3dOTPh45clF4J2H0aOoQrqoCVqyon6bRzUUwynqZi7s7MG0aOR/nzgGnTlm5XiOadBJcXYFHHyURi759uXtDiRIba7DDNWtannMrFYdUTljjkLJsq0hENorUbK1LFyAoSDrZisaQa/AzZw7w7ruiuGoAuLG1hqIHALBmzZp6/7cHQdxgD4AsoaSEZHl5RpCNW6XCoPk9Mb/fMXTLSZG9bFB0NAsPj0wUVtUgRz0cLi7y2LhNZtAgKsmsrgZWrwZqazFuHMXnJSXU9GxJhsPdnYqmnZ0DhXcSlErg4YcpUsnNpTSNDh8f+lhQYNVbtG9Pgo5KJXcZoBadBH9/igoM38DNG0uU8eNpLpdaTUFQU/1AUnNI5YA1DmlBAfDrrzQizdpeQblhtzXzkWvwA1CluIMDHXYJDVe21qZNG/3jcePGAQCmTZtW7zlPPPGE5Qu1o8ceAJnLrVvAN9+Q88njpDkhN25VVARc46LIQdu0SbZ3SZZlcenSRXTqdBmRkWEoKHCm8U2XL1PGxBYcUIWCdLBdXSlY3bkTjo5U5qVU0oyJ06fNe0m1Wo3iYio1a9cuVBwnwcODysa8vIA+fQyf12WArAyAAOqHmDu3/stbitlOQnk58Ntv8pN/MgMHB8N4p/R0YO/e+59jd0jNx1qH1MmJyhOzs7nNfkodKdvatWtAUhIN7ZQScg5+xIRrW/v3v/8NAEhOTtZ/bseOHfrHERERVr2+HcIeAJlL27bkfBYX0+BDHhBl4x4zBqyjEy7ccMGK3ytlFysYb9wjR/bH5MlU+L53WyVKfk8Cjh+HrKe+GuPpSaVVANnglSto29Ywsio5Gbh3z7SX0tladbULAMDbW0QnoV070vdu187wOQ4DoIaqZVVVlsXEFjkJJ07Q4UlSkjy6ny3E35+UBAHStbhxw/A1KTukUoULh9TNDRg2jB6npFAsbutI3dZu3qQ2Tim1B9pC8LNzJ22xpt7/uIAPW3v33Xfv+9zVq1cxZswYAICTvbGPE+wBkLk4OBhksQ8c4LywWrSN28MD5dMexwa3mbh0y1VWJ4WNbdwxMXTSP+MJZ3iO7k9P3LJFMsNsrSYqyiAesG4dUFaGAQNIK8Db27QknrGtVVbShmosry0Kxmo2ubl02ABY1QPUGNnZwKJF5p9hWOwkDBpEM8Vqa2nukU51wgbp0YNmBLVrZwg4pe6QShEuHdK+fak8saLCesVIqSMHW+vUiT5evy6NwgRbCH4AyqidPStcvxtftqbU6XkDeOONNwAAL774ol4Nzg432AMgS+jenTJBVVWc3k3E3rjdIkMwbCRdeDt3yqNptqmNm2HoJDoyEsDgwYYBqXzIgInFqFFASAjVdrm6gmGoFG7OHHJ2mqOhrRUXk62JHgDpuHoV+PlnkrkDOMkAGZOZSTHVjh2Adq5ci1jlJOjk6AIDqUnmr7/40+SWAOPGAU88QZWNYu9rcoRrh1ShoB4tgJKRMm/1bBK52FpYGJUmlpWJ/7ewleBHaPi2taSkJADQDz4FgF27dukfDx06lNP3a43YAyBLYBhAm4rEyZOcTFiUysbdrx8Q1EaDiquZ2LFU2kMcTd64lUqUjpyMgio36gc6d07YhfKFSgU88wwFQFp7cXOjJKWOxg6MGtoayzL6xJhkAiA/P/LadD8AxwFQnz50jqHRUDtfEGiisAABAABJREFUS8E+J06CkxMwcyb9kXJymlcKkDkqFf35dLbm6tpe0g6plODLIe3QgWyeZSkZbivnQDqkcg81BaWS5pMB1A8kFvbgxzKEsLVJkyYBAJYvX67/nI9OFAjAww8/zPl7tjbsAZCltG9PepYsS8fIViCljVuhAB4IPA7m2lWcSUrHreu1oq2lOczZuG/cAL5b1QZr6iZBwzLUJKObLyN3jOVuqqv1xc8sSxWa335b37lvzNYqKgzOUFWVgGtvDl9fypjoap11mSCOYBiawervT6awdm3TsQinToK3NwVBKhUF43v2WP5aEketVuPAgYNIT++ClJQoXLsmXYdUKvDtkI4aRSIVNTW21QskpXuoqRiXwYmBLQY/QgT1Qtqai4tLvf8XFhbim2++AQDcvXuXt/dtLdgDIGvQ3U3atLH4JFeKG3fohFj07lgIVFRg07fpqKsTe0X1MXfj1vUhZLl0wqGKnjSG+9Il/hcqJAUFwOLFpHVbWYnaWqqFLi4G1q+nG0NTtubmBiQk0Mt8+KGIP0NDOnemTBBAwR3HtSKOjqRa5uBATsi+ffc/hxcnITSURCx8falhxgbR2VpYWChCQ9sBYJCUZNOtT1YjhEPq6Qk8/TSVybq5cf7yoiDFe6gp6IS8MjLoliQkthj8GMOXCQhta3u1UprG0tgTJkwAALz//vtISUnh9f1tHXsAZA1+fsCrrwIjR1okPC/ZjdvZGSNeiISbQzXyzmbj6vEisVekx5KN28MDGDsWAMNgt2Ik8sbMNggI2ApubjQgtagI2LgRDioW06ZRouHKFWDfvvJmbe3//o8+/vKLtJSJ9BM1AwJoSCrHx9Zt2hhUy/bura9axquT0L078OKLlIKyMRrua2PHMggOpj/d6tWQ3IGKFBDSIQ0KEmdOCh9I9h5qAj4+dPm3aSNsQYKtBz98IYat9dUO0c7NzUVYWBgAYOrUqfqv9+FipkMrxka2QRGxUI5Q6hu3S59ueHBEOR7vfhpdrklDOMCajTs2lhIKdc5uWJfayfZaL5ycgGnTyLO5cAE4fRqBgRSbV1dX49dfs+Di0nQfxsCBwOTJlMiU1JBpnXR5x44U3B0+zPlbxMaSallEBDmHgEBOgrHiXXo6kJ/P/XsITGP7mkpFc26dnOi026iP1w7Ec0hraijoz5V2q2eTSP0eagrPP0+zyVoSreEKe/BjGWLamm4I6ltvvQUAOH36tD4LdNrcoX926mEPgLgiM5NOqE1QdpLFxs0w6PLcYHT0L6EuTZFLxqzduHU9H87ONIbl8GGQJPaePZII7jghJMQg0Z6cDOTloVs3Nerq0uDm5oXz56NQW9u0rX36KTXnbtokkdaUmhrDpMA5c0hKWjfQhGPGjwdmzSLVbcGdhLQ0YMkSYNkyUiqUKc3ta76+htFVBw9SVtKOuA7ptm0kYpqcLL8tUBb3UBMwFqzhm9YQ/Dz7LPDGG3Qr5AqxbW3x4sUAgHnz5uk/N3PmTACGoMiOZdgDIC7QaEjR6dKlFk+oxb6YzMLPj5xOACXrdyPzlji1K1xt3J6eBvG+3Sl1uLdwCXn6chp61BIDBlAqo6YGlUuX4vD+fZg2zQEdOgQgL4/Bzp1Nf2tkJJ1IAsBrr0lAoOzKFQqC3N0pRWNhqakpKJUUJOts7ezZPOGchNBQqtPMzwdWrpRljZgp+1p0tKHyNClJ+L4HqSG2QzpwICUh09MlVvbaArK6h5pITQ2/AjRi25pQuLjQIZbRGB2rkIKtGSu/PaCt137uuecAAEfMHWRnpx72AIgLFApyzgA63mxi2KYULiazGTwYt4P64duSx7FqrVLw0SVcb9w9e1IpXJ9+SngO7UWf3LaNyqtsAYYBJk9GlUqFzBMnEJmVhT59umDyZCpFMtpLG+Wf/yRf/ORJwEh9Uxx05W8xMfW7WuvqgO3bOS8ZY1kWFy5cxKpVVUhNHYCMDIGcBHd34NFHSZUhPR3YvFlWR/Lm7GujR1M1oy4b21qRgkPq46M/38K2bfIYSyXLe2gLpKQAn33G3zmcFGxNjkjJ1j744AMAQFxcHACgoqICKuMSajsWYfMBkGB+RHQ0TTerrm50OKqULiazUKkQ9PR4uAZ6oLi4caUsvuBj42YYUiEeOxZwHNSPxtVXVxuk0mwANYBjISFwjo5G+xkzwDAMOncGXn4Z6N+/+e9t08bQA/TOOyInI4wDIGN27AAOHaIIjSOvTWdrWVmZiIvrCkdHR6xbx/n4oaYJDKQeLoYhT0gmJ3vm7mtKJfDYY7Rdtlak5JAOHEjK7CUlJJsvZWR7D20BNzegtpafeUBSsjUh2LWLSrgLC617HanZ2ttvvw3AEAgBht4gO5Zj8wGQYHbLMHS8CQCnT9OgQy1Su5jMxdGRJrsDwKEdauTm8F8bxefGra+iUiigeXAiylhXOnk/fpyz9xALna359uuHkLfeAuPpqf+ah4fhedXVTcd78+fTx1u3RO7Lr9XOoGq4iEGD6IfJywPWrbM6cG1oaw884IJ27agkZeXKxofJ8kJkpKFGc/t2Q/+TRLF0XzN+Wmkp2VlrQWoOqYODViETVLwgWMBvJnK/hzaHbh7QrVvc7jVSszUhOH8eOHHCIB5qCVK0NaVRTd+b2hPK5cuXw7k1p9E5wOYDIEEJC6PTapbVd5ZK8WKyhKgooAvSoDl2Ehu+Tue1P0Sojbu4GPhtox+WVk9DnYYhpzMvj5f3EoL7bM24X+baNX06JzsbWLSIHJ7G0I3bcXMzzFAShUcfpY8bNpByhQ53dxrgo1RS88L+/Ra/RWO2plRSMsbNjc4xBK1Ii48H+vShNxRrQqIJcLGv5eaSHS5f3jrmA0nVIY2KorbBurpGixdEx1buoU3h50f9qbW19bc5a5CqrfGNzi+xtFVUyra2fv16AMANo1kN6enpYi3HJuA8APrhhx/Qo0cPeHp6wtPTEwkJCUhOTtZ/nWVZ/Otf/0Lbtm3h4uKCoUOH4sKFC/Veo6qqCi+99BL8/f3h5uaGhx56CJkWToJPT29+yjvnjBpFx2q3bqHszBnJXkyWMH5oOZwUNcg8koXjKfwMLhBy42YYinfuOIZjX00C3YG0g8fkRrMbd0oKDUjdsQMABTgFBVQukJFx/2tdvkwfIyMFzKA2RvfulO2pqwN+/rn+18LCAK0UKHbtskilsDlb8/Q0VKSdOSOgTgbDkCTdlCn0UYJw5ST4+QFeXiR8t2aNBEQ3eETKDinD0G2rWzdg6FCxV1MfKTukXMEwVIkNALdvW/96UrY1vtGVbFsigiB1W3vooYcAAKtWrdJ/7rXXXhNrOTYB5wFQaGgoPv30U5w4cQInTpzA8OHDMXHiRH2Q85///AdffPEFvv32Wxw/fhxBQUEYNWoUSo2EAxYsWICkpCQsX74cBw4cgFqtxgMPPIA6CxoSkpKAc+fonyB4eQEjR6J85EgcuHtXsheTJXgmxmHUwHJAo0HK4usoKuT2WFzojdvTU+tDMwz2KxKRFTnMoNUrI1rcuEND6eORI8DFi4iLo9hCo6HBlA2Vl3USxVFR/K+9RV54gT7+9JOhJE5Hr171ZcXu3jX5ZU2xtfBwg6r41q3WlVWYhUIB9OhhiD41GslIpnHpJOgybU5O5PjJ9OyhReTgkAYF0awmPz+xV2JA6g4pl2hnXFodAMnB1vhEd4swVx9ALrYWGRkJAPj+++8BAEuXLhVzObKH8wDowQcfxPjx4xEZGYnIyEh89NFHcHd3x5EjR8CyLL788ku8++67mDJlCmJiYvD777+jvLwcy5YtAwAUFxfjl19+wX//+1+MHDkScXFx+PPPP3H+/HnsbE7DtwkGDqSPKSnCqdyou3XD/rIyhIaFSfpiMhuGQe+/DUQH3xL0czkPt2tnOXtpsTbumBhtMODghLX5iaiBgIMZOMCkjTsqynAhrF8PpiAfDzxAs1mKi+9vo9FlgCQRAE2dSnV4WVnAxo33f33MGJIVYxigrMyklzTH1gYOBOLigBkzqPJOcGpqaL7Y0qUCNiM1Dh9Ogq8vKcIBJLBiaxUdcnVIG541CI1cHFKu0GWAMjMtL7eVq61xiSUZIDnZ2rp16wAAX3/9tbgLsRF47QGqq6vD8uXLUVZWhoSEBKSnpyMnJwejdWIBAJycnJCYmIhDhw4BAE6ePImampp6z2nbti1iYmL0zzGH3r1J5aa0lJch8vdx38VUWyvg0TH/MP5+eHyBL0Z2vAGHXds4+dnE3rjHj6dsUH6+tkqMZUkQQSKn7k1h1sY9YgTQvr2+s99JUYOHH6YbxeXLwNGjhqcal8CJjpMT8Mwz9Pj99+8/xVAo6Oj6uecoEGoBc22NYSgpqGtUFpySEjoWzsgQuJa3Pnw6CTExlMxjWSqFMzGOlTxi72uWoFZTMvXXX8UTxZSTQ8oVgYFUgjhkiGXBpxxtjQ90AZCpGSC52VrXrl0BAGlpaWjfvr3Iq5E/vAiJnz9/HgkJCaisrIS7uzuSkpIQHR2tD2ACAwPrPT8wMBC3tFJAOTk5cHR0rDf8SfecHCNltYZUVVWhymiSWEkJ9aiwbA0SE2uwdq0C+/YBPXpoeDvJLSsrw5EjRxASEoLOnTuj9to1KNavBxsYCPaRR/h5UzGI7ws29RyQnY269RtRM2kaHB0teymWZXH58mVkZWWhf//+cHJyQo3AJ90qFQVBS5cqcPgwEJG+A51yDoJNTwc7ebKgazGV+2zNlLvmxIlQLF4M3LkDdsMG+D/0EEaMYJCczGDrViA4WIO2bYGMDBUABr6+taipkYA0+IsvQrV4MZgzZ1D39tvQfPpp/a+rVFR6qrOb8nKahtcALmytsBC4eZOyQoLg6QlMnQrFn38CqalgXV3BjhkjaHOWRbZmJiNHAjdvKpCXB+zcyWL8eAnYnRVIYV+zhLo64MIFBaqqgNOnNejeXdj3F8LWpMqkSYbH5piKXG2NazQaoKZGoX2safF3KFdbmzZtGlavXo1XX30Vf/vb38RejqzhJQCKiorCmTNnUFRUhDVr1uCJJ57AXqMC74ZRNsuyLUbeLT3nk08+wb///e/7Pr99+3a4uLiisLAd7t1zweefF6FfP9N7BSzhxo0buHHjBhxLStDh1CkwGg0y1WqUtW3L6/sKiZOrK9wvF2DDJR8ozp1CwoCmg1NT2St6E0Ab5OW54rRPPthr14CrV3EnJwelEj5p0dmaqbj6+CDs7Fng6lXcKi5Gha8fKivboqZGgSNHsuHsXIewsN64dSsU3313C1VVqTyu3nSC5sxB/KefQvnFFzjq5YW82NhGn+d69y7aHjyIe927o6hz5yZfzxJbq6hQYcuWcNTUKJCYmIngYOFSFR6+vmh76BBw9SpyL15EYZcugr23DnNtzVy8vByRm+uDmppcbNki7wDIGPH3NfNQKPxw9ao/vv++BuPH37Coodxa+LY1W0VutsYlLAt066ZCXR2DXbtqTFaCk5utTZo0CatXr8bf/vY3fPHFF3jllVfEXpJsYViW/0T3yJEjERERgTfffBMRERE4deqUfqItAEycOBHe3t74/fffsWvXLowYMQIFBQX1skCxsbGYNGlSo0EO0HgGKCwsDPfu3YOnpydu3wZ++00BhgFeeEEDf3/ufj7jk4SoqKh6gRqzYweYw4cBPz9o5s61TJ5EomSlV+PXP53BssDMmRo042/eR8NTKzc3N/4WaiI1NXSwrlIBzJ49YPbtA5ydoXn+ecowSIDmbM1UmCNHwHp7A1onurqahAt1L7VlC4NJk1QICGBx82YtHCTSFqWYPx/KxYvBBgej9uRJNHYRMwcPgklJoRlPs2cDHTpwamubNjE4dYqBiwvw3HMaeHtb8QOZCXP4MBitkp9m6lSqmeERLmyttSHFfc1cqquBb79VQK0Gxo5l0a8f/8Go3dbIgS8qIpVOUwYF24KtiYEt2JqjtuTm7t27CAwMRHFxMTyNZv7ZMQ1eMkANYVkWVVVVCA8PR1BQEHbs2KEPgKqrq7F371589tlnAIDevXvDwcEBO3bswPTp0wEA2dnZSE1NxX/+858m38PJyQlOTk73fd7BwQEODg6IiKCG5tBQIChIyVkFiVqtxtGjRxHWlODBiBE0q6SoCMqTJw3N6DZAh0gHDBxIvVXbkhlERCjQyJ/gPnT1ynfu3MGgQYMkU69cz9EfPhxVV2/DKTcDys2bgccfF1kT2gRbM5XBg+v9t2GAk5BAugN5eQx273bQq02LzsKFwP79YC5dgsPcuaTe0PB3kJhIzVznz0OZlAT22WdxMTubM1t78EGtdPodIClJiaefNl9xyGIGD6YmjWPHoNy2DejaFSZdcBbAma1ZCMvSQMPu3QG5zPqT6r5mLg4OdNvatIlmhfXpw5uZARDf1qRCVRXwww9k++HhVP3aFLZia0JjK7b20Ucf4d1338U333zT6Nfv3LmDmJgYuLm5IaOxWRd2APAggvDOO+9g//79uHnzJs6fP493330Xe/bswaxZs8AwDBYsWICPP/4YSUlJSE1NxZNPPglXV1c8qh166OXlhWeeeQavvvoqUlJScPr0acyePRvdu3fHyJEjrVrb2LHUcMtl8NNiA52TExW4A6TzaiT3bQsMGwb4aPJRvPM4di1ruQxODs2aGg2w94ASX+c+gpI6N5KmEkJBoxl4a9YsKSG7ZFnU1dHM0cWLDfXoS5Zw8zac4OoKLFsGODrSQhctuv85DAM89BDQti3YsjJkL1yIrBs3OLM1lYpmsLq4UBC0davVL2k6DEObWK9ewOzZvAY/YjcGb9pEA2g3bhSvGd8c5LCvmUNcHElil5cDFmgPmYwUbE0qODmRHDnQ+Hw2HbZma1xRUUHz51NSGv+6Ldnam2++CQD48MMP630+MzMTbm5uCAkJQWFhIcpsRVGGJzgPgO7evYvHHnsMUVFRGDFiBI4ePYqtW7di1KhRAIA33ngDCxYswIsvvog+ffogKysL27dvh4eHh/41Fi5ciEmTJmH69OkYOHAgXF1dsXHjRig5LB+rqrJOUMmsiyk2llJP1dWABVLeUsbREXgg7CxQUYFjK28i40bTnYdy2bhZlpTQyuCG9Q7TyAHbs+f+gTkCwdvGXVND83V27waOH4dCQQmG2lroS7vWryepbMnQsyegzRbjlVcou9oQBwewM2bgblkZytPTMSQ/H+4clod4e5M6N8NQluLMGc5eumUUCgrwQkJ4eXmpOAlxcfSjXrgg4BBaC5HLvmYOSqVhBtbZswZ1LS6Riq1JiZbmAdmirXFFeTmpmR47dv/XbM3WGvrCGRkZcHBwQFhYGMrLywEAhw8fRkFBgRjLkw2cB0C//PILbt68iaqqKuTm5mLnzp364AcgAYR//etfyM7ORmVlJfbu3YuYmJh6r+Hs7IxvvvkG+fn5KC8vx8aNGxGm2xk44OxZ4OuvLR+OavbFxDDAuHH0sabG5kaeRzw+ED3Di8FWVGLDwmuN3izltHErlcCUKVQKcr2uA477jQWefpqO/QWG143bwcFQkrltG5isTEyaRKUXLi4Us1dWkvqypPjb3ygTUlkJzJx5n1w5y7K4mJmJtJ49ERYeDuebNylS4ZBOnajaDgBOnxYxS3HnDmXFOBhyJiUnITTU4IAnJwO5uaItpVnktK+ZS9eupI7JR+uqlGxNSujmATUWANmyrXFBUxLYtmprG43m4sXExOhV7I4dOwaWZdG/f3+xliYbeJ0DJFXKyuifJcNRLb6YQkKAefOofsZUeRK54OSE0Qui4eZQDYeb11B2Lbvel+W4cfv7A6NGAWAYbC/pj3uqIMHXIMjGHR9PHbd1dcCqVXBFOaZOJRPViVqsWcP921qFQgH89hs1Kp07B7z1lv5LxrbWZ9IkOE2dCvTowYtudWIiOYiPPSZSe1hdHbByJXDlCrB6tVUHK1J0EgYMoECztpZ+PKkp+8pxXzMHhgH69eO+B0uKtiYVdOe8d+/W901s3da4QKdibRys26qtXb9+HQ/qJkhrOXnyJFiWRd++fQEABQUFGDZsGHZohXPs3I+NeeKm0a+fZcNRrb6YuJSekxiusZ3x1MxKPNvrFDx3rdMfx8h54+7bF4iIoI117Vrtj5SdTYNgeEawjVvXM+PrS7VuSUlo347FsGF6kTjs2CHB1rXAQAqCAOCrr4Dk5MZtrWdPYPJkXpQKdA6iYCIIDVEqgWnTaAFXrgBbtliUipKqk8Aw9Kdzd6cMkKD9Vi0g533NElgWyMy0/nWkamtSwcuL/mk0ht93a7M1S2mYAbJFW7ty5QoYhkGnBpO5i4uL0atXLwDAvXv3EBYWBj8/P+zZswfLli0TY6myoFUGQCqVQZfg4EHqe2gJTi+m0lLq8hWpp4Qv/GeMgMLVmY6vDh2S/cbNMMDEiXQCeucOsH95FvDzz3Qcra2z5QPBN25nZ8pMqlTA1avAgQMYNIiSQ76+dBK5eTO/S7CI8eOpHA4A++STuLxvX+O2pvv9sSxw4IBpF7yZaDTArl20nwhKaGj9hqQDB8z6dqk7CW5uVI7KMNRrJYWSdrnva+ZSVwf873+09WVlWf46Urc1qaArg8vIaH22Zg3GGSBbs7Xi4mIwDIOoqCj9586fP49iowbd3NxcBAcHIyAgAJna6Hnbtm343//+J/h65UKrDIAAGqGh0yXYvbv553J+Ma1YQc7Knj3WvY7UcHMDxo5FTZ0CO7fXYcWKG7LfuD09gQkTKDZw6xhIEYFazZs8lWgbd1AQBRQAcPEiFGwdpk4FevemT61bJ8wyzOazz8B27w4mNxd+r72GgQkJTdvatm0kQrJiheFuyRFXrwL79tHLp6dz+tIt07Ur9UQBVNdrYnOjXJyEjh3px3vmGbr8xKQ1OqRKpeH3vnOnZdueXGxNCvTtS+dRvXu3PluzBl0GqLa20uZs7auvvtI/vnDhAliWrdc736FDBwQGBiInh5R4U1JSwLIsRo8eLfha5USrDYAYBtDZxqlTTTfZ8rJxDx9OH48fp2yJLdGjB1Ljn8ba/Ghs21aHbt3kv3F3706Jhr4JKjqOViqBS5c4l/8S3UmIi6OU19NPA0ol3N2B99+nL23ZQsqJUoN1csL1Dz5AnaMjAk6cgHtzp119+lC2KyODUlocBrCRkVRtx7KUICwp4eylTSM+ngY4ASTd18LsB9FtzUzi44G2bcVdQ2sMfnQMG0aHQOnpwPXr5n2v3GxNbNq1A7p2ZXHrVuu0NUupraW5kunp12zO1kZoFWHmzZuHaO2U3Dt37iA0NBQAUFhYCADYs2cPWJbFcK2PqVar8f3334uwYnnQagMggDaa6GhyWm7cuP/rvG3cHTvSG2s0nDtiYsMCcOhQDGfnXAQHd8Du3e428ePph9IFB6N28DB6vGULcO8eJ68vCSeBYSgIMpqM2q8vi7ZtqWpz/XqaMSoVdA7pdWdn1Hz6KX3yjTdI5rEx/P2pZ4ZhSLqNwwEnDEOZwqAgElhZtYof6eBmGT2aUtsdOxoGijSCJGzNCrKzG5e65ZPWHPwA1Jei7a3G7t2m37Lkbmti0NptzVLatFEjLu4Apk9X2pyt6RTdkpKS6s36KdU2527btg0syyJRK01aUlKC2NhYeHh4YN68ebh27Zpoa5cyrToAAshneO45oKFiIO8b95gxNETn9m2BB4nwh27jzsrKxMsvd4CrA3B9cxpO7SoUe2mckZkJfHdmAC45x5Es1erVVpdTSdJJYFlg3z4otm/VD0X9/HOqHpOCGldDJ8F5wQLgwQeppvXRR5vu0erUyVAutnMnZfI4wsGBSld0SaZt2zh7adPQqQY88ki9INYYSdqaGRQUUC9KcjJw65Yw72l3SIlBg8issrIaPzBsiNxtTQx0tnb69D2w7GDk57dOWzMXtVqN48cPIjo6EAkJXWzO1nRzf+7cuVNv1s9O7VxJXYBUXFyM6OhoeHl54Zy2FHr16tX3iSbYIVp9AOTtff9MQUE2bi8vYOhQerxjB69N9ULQ0Elo394dI5wPATk52PbtNRQV2Mbso7Q0oLBIgQ3VY1Gi9AFyciibYCGSdRKysqir/+hRTO5Op0cXL9KPK3bSslGHlGGAX38FgoNpoa+91vQL9OtH/1iW5P2s6exugK8vVUkClKWwdNaYxahUBh1YliWZS+0poWRtzQx8fUnVXPenazACinPswY8BNzdDT+Devc3vAbZga0JjbGuurv1w5Igr0tLEXpX0aY22ppv1o5O8LiwsROfOneHt7Y1L2kO9devWgWVZTJ06VcylSppWHwAZU1AAnDhRJtzFFB9Pcr7l5cD+/fy9D8805STEz41DO78yVBeWYcMX12yiFG7YMOpFqNA4IcnpEWhGjqbeEguQ9MYdGqoP0BPvroSPtwZlZZTZOHPGqpjPKpp1SP39gd9/p8c//EA1e43BMJQF6tyZvDiOG3YiI2lGkIODSPOBdOzdS2mopUuhvndPurZmJmPHGlTbN23iLxi3Bz/3M2AAxdeVlU0Hn5Le1yRKQ1sLD6eh29qedjtNYGxrTk7R2LWLwdWrYq+KXzQaTb1ZPwCJIOjK3DZt2gSWZTFx4kTR1igX7AGQlrt3gYULq/Dtt3fg7d1OmI1bqQQeeICal4cN4/e9eKI5J0Hh44WJ88PgoKhD5pFM3LuUJ+JKuUGpJNVhBwcgvTwQhzDAIi9XFk5CYiIQGQkHthoPdqKjyLIy+tKWLcLfnE1ySEeNMmR/nnmG9MsbQ6GgfqCnniIVNY5JTATmziUBDdGIjQXc3VF9+zbSP/kEoUFB0rU1M3ByoiybQgGkpgLnz3P/Hvbgp3E8Palk/IUXABeX+78ui31NYjRma7oWvpwcm2oR5pSGtnbrFoP9+80X6ZALM2fOBABcunQJ9+7dQ2hoKMLDw/VfT9bOwpswYYJYS5Qd9gBIi6urGmVlV+Hq6oWMDAFrSMPCDP1AMsMUJ8FvaHdMHV+BF/scQ8D+tSJ0hnOPn59BMXrXLm0FVXU1ZfE0LZf6ycZJYBjyNP38MDmCarmOHWPRqRO1Pa1cyX8Jkg6zHNKPPgJ69SLFhscfb/pv4uRUv/5VrTbp72cKCgXZiY6KChEcGR8flE2ejJvZ2QisqED0xYtgbMSbCg2lIBOgksxCDtsM7cFP8wQFNX7mI5t9TUI0ZWsBAbSHVFSIoCgpAxqztepq+poMXSmTmDx5MgCgW7duCAgIQJZR6XZxcTHG6npbG3DhwgW0b98eX3/9tSDrlBP2AAh0MR06dBAPPeSANm0CkJrK4PZtERbCsrKRxTbZSWAYdHk+Ed4+DMk3mTmoUar07EmCWxoNsGY1i6pf/qQZLC3MdpKdk+DsDMyYgdFdbsNFVYNbtxiEh1MLW0GBMH9Osx1SR0dg2TLA1ZX+Jv/9b8tvkpMDLF4MbN3KzaKNyMykijyhTV+tVuPAtWvAzJkICA4Gc/kyvzVjAjN4MCl5VlXRRAEusAc/plNTY9AQkd2+JgGaszWVioIggG6bdgw0ZWu6MQ22GgCNGzeu3v9TUlLqDUI1hmVZfPrpp2AYBjExMbh9+zaSk5OFWKasaPUBkPHFlJgYid696WJKTubsMNg0KioM47aLigR8Y/Mx20nw8NCnTG7suI5zp7gdQikGDEPVi15egH8Ag7o+8fSF/fublEiSrZPQpg1cH56AcZFUY7x1K6md9etn0PHgC4sd0qgoQDc87p13gJMnm39+YSEdtR47Bhw9at2iG5CbSy+9a5dp6llcYGxrnUeNAqOT/z51quXJzzJBoaAE5ZgxVPloLfbgx3Sqq4GvvyZVyGvXBOybtRFMsTXjMjg7RHP3UFvPABnbiPGsH2OysrLQvXt3KBQKvP322wCAtm3b4sqVK/YAqBFadQDU2MU0fDgdemdnC9zo7exMd/SaGmqwkOgprcVOQkwMbsZOxB/sY9iYrOK0ZEUsXFyozWTmTMC1bzeSSNLJU+maZbTINvjR0a0bJi/oAABISqLKsfHj6aSSL6x2SJ95hhq2amvpj6RWN/3crl0NXvTWrcCVK5YvvAG9etF4Jd2Q1CYO7TijUVvr2pUidoWCFARsBG9vaqG09nKyBz/m4egIdOhAgyd//dX2Bk/yiam2FhxMH2VSFMI7Ld1DbT0Aao4VK1aAYRiEhoYiNTUVAPDGG2+gtrYWWVlZ6Ny5s8grlCatNgBq6mJyczOcaqekCNfjoJ+kqFSS83X5skBvbDpWOQkMg/aT4tChswNqakigS6Ixnll4eho5X2PHosY3kBztpCT9Dyj74EfLhGkuUKmACxeAK2crKGsJypQeOMCtkjsnDinDUFlbaChw9SqwYEHzzx8wgKIVXaTC4dHr+PHk0JSXU++UlaOjmqRZW+vdG5g/n+o3bZCaGsqy6UphTMUe/FhGr15qZGTcRlFRMPz95buvCYk5thYTQ2IT06YJuECJYso9tLUFQMXFxXqJ6zlz5ug/f+TIEbAsi88++0w/P+jUqVP48ccfRVmnlGmVAVBLF1PfviR13L8/vyfc9xEQQE4YQDV4uitaAnDhJDAMMHEi4OjA4uaRHBzbLH9VOB1VVcDajQ5YopkFjUIFXLsGHD5sM8EPAPj4GMQKk947SZkujQabN9NM0bVruQlqOXVIfX2BP/8k4/vlF2DVqqafqzuECA+na2/ZMv0MHWvRDUl1cSHRDB5ajUyzNePsj1ot3DRRAVixAti3z7zfrT34sQy1Wo0rVw6iZ08nBAQE4MAB+e5rQmGurbm705QM3Viv1oqp99DWEAAlapVfGIaBt7e3fhDqww8/jPLycrAsi/h4KsfXaDT4xz/+AYZh0Lt3b8ydOxesLZw6c0irC4BMuZiUSpL6HDJE4AAIoDf19qY6mRYa6oWCSyfBxwcYFXQeSEvDzh+voyBX/v1AAJ3sX74M3C7yxP6ghwEAVXv34tDevTYR/OjQDflMOtOBsip79qBfP7pOrl2zfpwVLw5pYiKgrYfGnDloVuFEqaRIxd+fGnd27LD+/bX4+NDvj2GAEydIwpkrzA60S0pocOzSpZwOghWTwYPpd3v6NM3CbQl78GMZxrb26KOhYBgGqakkumincey2Zhnm7GszZtD2Hhoq4AIFRqcEp2P58uUAgJ9//hkuWl36mzdvIiIiAkqlEh988AEAIDIyEjdv3rQJH4RLWlUAZM7FZPwljUbAci0HBzqFBoAjR0QvAOZj4+7zSCeEB1WgprQS6/9z2SZK4Xx8DH+2vdmRuNJpGPZ36YKQDh1sJvgBKIPHMMDRzFBklXgA+/YhsDANDzxAX9+9G0hPt+y1eXUS/vUvUm0oKgIee6x5OXYXF2DWLKBHD8MflSM6d6Z4rEsXoFMnbl7ToiyjmxsZbXU1BUH37nGzGBFp3x4YNIgeb9zYvHyw3SG1jIa2FhzMICqK7o8ynuXNK9bY2pUrwLp1/My6kjrm7ms+PlS54+ws0AJFYNKkSfrHLMvWU4ZbvHgxGIZBeHg4bmjVdv71r3+hrq4Oly9fRvv27YVeruRpNQGQpaVIt24BP/4ocEtO585AdDTQpo2ojTJ8OQmMmysmvtoJjso63DqRhyt7bUPns0cP+ldZVYMvDgTCt32UTQU/APWx9O9Pj9dXaecOJCWhZ+i9eo3+5laO8e6QOjhQSZu7O9VJffpp88/XpWucnLhdBygAmjGDmxu1xSWWSiUtIiSE0pdLltjEwJGhQ8kJqqggx7Gx7dMe/FhGU7Y2ZAgditTW2kZfJ5dYa2vZ2cCZM5Rdb03YUuk4lzQMYgoKCgAAXl5eeP755wEALi4uOH36NFiWxT//+U8oFOTmq5sTAWqltIoAyJqL6do1SsJs28Zf43KjPPQQ5XN1WpgCw7eT4N23MyZMAKZFX0TkudXUwWwDDBmiRmHhdSgUvrhxoyvZ2oULwNmzYi+NM3RZ+LVp0XTsXlUFLF+O8SOqEBhIAnirV5suIy+YQxoRAXz3HT3+5z8pw2raAoFDh1qW0jYRhjFkmFkWSEuzzHG02klwdKRMl78/ldwuWaIXtpArSiUJ/zk4kOT44cP1v24PfiyjOVsLCQFefpma9e1+qgEubK01SmFbsq+xLAmgHDhgM65Ei+iyPTqeffZZVFZWory8HD21Qje1tbX4+9//DoZh4OHhgY8//lik1UoTmw+ArHUSBg+mMTaFhfffTHlFJ4stAkI5CbEvDkRMp0owBfnURS9z1Go1Tp48iKlTFQgMpIG6Zzfepsb7TZtoIIwNoAuA9uxlUDDiYZLCu3cPDvtSMH06JU3u3DFtgJ/gDuljj5Ekdl0d8OijpmU9rl4Ftm8HNm8Grl/ndDkbNgDLl1NSyhw4OyF1dQVmz6a/YV4eZckkJL5iCX5+gG4o+uHDBofIHvxYhim25u0t/LqkDFe2pguA8vIEPoAVCUv3tZoa2kNtwI2wiOLiYvz0009w0lYsXL58GYGBgXBwcMCXX34JAIiLi8Prr78u4iqlh80HQEeOHLHKSXB0NIwH2beP/xke91FbS2IIGzYI8naCOgnOzpTpAlB28AzSjgr9y+UO4417xIhIDB3KwN0d8IgOo8xDTQ0FQjJ3LgHqXenenWKITXvcqZSqSxdg2DD4+dFJ8LPP0slwc4jikDIM8MMPNMQkPZ1koVuic2eqbdRoSMOaw748XUXDnj2ml7lwXh7i7U1BkIsLlcOZqyMtQXr1AoYPpyS6g4M9+LEUc22tqEiSExwEhUtb8/Sky1KjoSDIlrFmX9PdVhlGBOEqkcjNzUVRUZH+/yzLYuHChWAYBl26dEGu9sD1v//9LzQaDU6dOgUHBweRVitNbD4ACgkJsdpJ6N6dHJWaGn7ka5slNxfYu5cmuF+9yutbieIkdOqE4r4j8b1mLlZt9xJb88EiGtu4Bw+mGQ4dIxjqJfHwoDvYpk02USivywIlJYEinUceoTs1KF4IDGz++0V1SL28qPFfoaCyr6VLm38+w1Cg3qEDBQdLl3J2EtKzJ9CnD5nEmjXkQDYHb7XxbdpQduypp8hWZQ7DUG+Kh4c9+LEUc20tOxv46iuSw7eBGNoiuLY1hqHpGIBN6JQ0ibX7mm5eo5OT7Zdh+mpHGRw/fhxpaWkASB5boVDglVdeAQD4+/vj4sWLYFkWr7zyir2HqglsPgDq0qWL1X983XgQhQK4dIn3OKQ+bdsCWl13bNrE251FTCfBc/wghHb3QV0d3TzllOpvauNWKEhoCwDg5obyCQ/TJ8+d46yXREx0cthbt1LPTz1OnNAXrWdkULxgnPiShEM6YADwj3/Q4xdeoIaR5lCpKNMVEEBlc0uXcjYleexYQ+N+c0NSeW8MbtuWRCJ0ZGbKPljX2drhwwXo0GGQPfgxEUtsLSiIyg+rqqhxv7XB177m708fbVVmnIt9TbcVa8/gbBpdf89bb72F/lpFojPaC+7ll19GTU0N8vLy0LVrV5FWKB9sPgDiyklo08agfsXl/A6TGD7cMBto1y7OX15sh1R3wO7mBtxNL8fuJZmCvr+lmLpxp6YCXyW1w6UIrVZ0cjI1yciYHj1oXmhlJQmE6Dl+nAL1v/5CXUkZVq+mAwNd4ktsW6vHu+8CAweSZN3s2S1H3i4u9DwPD8rMLl9uutJDM6hUhiGpd+6QeTREcFWk06dpcGxysmyDIJ2t7d5djBs34rF9u1uraZC2BkttjWEMZ3VHj8rWbCyCz33Nz49+t+XlnL2kZOBqX9Npt9iyBLYOXQB03kgbfevWrWBZFl9++SVUraUGkANsPgDikqFDSWHISIpdGBwdgQcfpMfHjtGxOkdIxSF1cwMe6p8LnDiBQ0vTcfOctCV5zdm479yhU9H1t+NQFBpDzTOWDsuRCAzToAxOR/fudMcuLoZy9QpMfrBWn/g6flwatqZHpaJMjpcXdctrh8Y1i5cXKac5OwPdunEmVOLtbVDROn26fr2/KJKwuvHzx47xcujCN8b72owZPeDn54j8fCAlReyVSRtrbS02li6NggKaYdMa4Pse2qcP8M47wPjxnL6s6HC5r+kyQLYeALEsiwBdTSSAzEwaYp2QkCDWkmSNPQAyA0dH8u9EKaeMiKC7C8uSIEJzgxxNRCrBj46ogf7oFVMFtrYOSR9fQmW59afrfGDuxj1iBE2nrqxisLr6IdRNn0mZB5mjC4A2bTIqcXN2JpU1Z2fg9m10uLAZI0ewYFkWS5bk4fTpPEnYmp727YFFi+jxhx+aNs0xKIh0f/v25XQpERFUDvf444a6f9HmYRgPgd2/n/RlZULDfS0gwF2ntYIjR4CbN0VdnmThwtYcHYHevenx0aMcL1CCCHEPdXIiIQ9bgut9rTUEQDpbCzRqsNVoJHIflSn2AMhCqqqo2kfQNP+YMZQqKSqyuoRKasEPAEChwJh3+sDHvQbFORXY+8MFsVd0H5Zs3Eolne47OwOZuY7YlRVl+KKM60QSEkjsoKiIVMz0+PvXS2f0Z47A0zMThYUlyMhIAMNIwNaMeeQR4IknqJxt1izSvG8J42Lzigrg4kVOlhIfT1oLgASGAfbpY5DA3LmTNjyJ09S+1rkzKcMBwPr1NiHGyClc2lq/fpQYvXGDU8FEySHJe6gM4GNf69aNFB+HD+dggRLE2NamTp2q/3x2tnz9BylgD4AsoK6ODo03byZRBMFwdSXH8oUXgLAwi19Gyhu3U5APprwUgrigbAwt3iCpXhlrNm5vb73iNw4e1ApplJQAv/8O3LrFy3r5RqkEJk6kx/XK4ADSyh49GizL4t7SP9HTYxfi4sJQVeWENWs4aZ3hlm++oRRMRgYwd67pgWllJfXKrFrF6WagVquxefMxpKd3QdeuIk5CHziQ5NQA2vDOnRNnHSbQ0r42ZgxVMBYW0lgnOwTXDqmXF9C1K2UubFW6Weh76J49wP/+B9y+zevb8A5fhzqurqThYlQdZjM0tDVPT0/9144ckd4hsZywB0AWoFRSNRpAKliCSn6GhwNaGURLkHLwoyNsdFdMnKqCk6KGZOEk0LnMxcYdHW2omkpKAkq3HaJ6nNWrAbWa2wULhK4Mbv36+4MaNj4eGf7+KCkpQULndnjsMSc4OJBjJDmlPw8PGgKqUpEU2++/m/Z9Tk6UstHpWHPQn6dWq7FnzyEcOxaN7Ox2OHBAZAnTYcMM3e2mTLcVAVP2NScnQ//miRM2M5fYKvhySMeMAV55BYiJ4eTlJIUY99DsbDon04pryhLRM9oypCVb27Fjo0grsw3sAZCFDBxIcUhJCY3pEYXbtwEjJZCWkEPwA4BKpx54APDwAJt3D5dXnRO1UozLjXvMGCA4mOa/uD4wnI6sSkshzbRIywwfTsP6srPr1/yzLIuLly4hLSICwW+/Dddhw9CmDZUpTJ9OvQKSo18/gxDC/Pmm6d0zDHUnR0VRVLdsmVUDO3S2Fh4eglmzAsEwDHbvBq5ft/glrYdhqDlpxgxg9GgRF9I45uxr4eEkZjNzJil7tmb4dEg9PSngtDXEuofKXQqb7+Dn/HmqrLClQw1TbO348U0irMx2sP0AiAOxgMZwcADGjaPHR46IUOt86xbw66/Axo0tT0+EjIIfHS4uYCdNxipMw19pcaKNzuF641apgGeeIT9S6eJoiAbS00WMpC3H0ZFiVYCSdUB9WxswZAjcoqP1zw/wqgbDarTPM8iXSobXXycPuawMePRR05pFFAoqTQ0NpR/ozz8tyug1tLVevRj07m36kFReYRiqa9LZf22tJLwNS/a1oUMpXm3NCHUaz7J0q+LpNiwoYt5D/fzooxyHoQpha6dPAzt2yDtDZoyptnb3bsszWdRqNZ544gls2LCB62XKHtsPgE6d4u2lO3emsiaNhsrjBc1StGtH/6qrW3xz2QU/WpiIjmg3LgZQKLBtm/CnX3xt3MYy/XW+AcgfPIn+s3cvcO0aJ+8hJMZy2BpNM7ZWWAj8/DOwfTuqq8mp/+03SVQ4GlAqgSVLAB8fqpP65z9N+z4HB0or+PpSpLJsmVmd9k3Z2rhxVNteXk5tRpIoHaypoRlIv/4qakkcF/taaSmnUwVkgZClSMuWUe8KRxohoiH2PVSuGSChbM2WBqFyZWv79u0DwzDw8PDAH3/8gTfeeIPjlcof2w+A9u9vZFQ9d4wZQ6fgt28DZ8/y9jb3o5seqlRSqU4TpXBib9zWEh8PdOwI1FRpsPar29DUCRNlCrFxq9UUAPx2LBplMdoei7VraeCtjBg7lspdrl8H1q+/3rSt5eRQ1uDIEVQdO4ubNylzqhuSKhlCQylQA4DPPjN9Do6bGw1KdXWliMXEfac5WzMekpqVRT2HkqCmhryOJUtE6XTnYl+7cwf4/ntgxQrbHDLZGEL3Yei0eg4fltg1bgZSuIfqMkBFRRI7MGoGIW3NVgahmmpr/rqIuAE1NTV46aWXwDAMEhMT9Z9fvXo10tLSeFmznLH9AKhDB157K7y8qKSiRw8SvhIUf39AZ+Rbt97ncElh47YWhgEmPaSB84UTyNp3A/t/4X+6nlAbt6Mj+ZClpUBS2WiwwW0Bd3fZ1Yu4uwOjR5N3k5SEpm2ta1e6WAB47N6AaQlZUCjo4ODECQEXbApTplDDEssCjz1m+tGrry89/9lnKYvUAqbYmrc3DWBmGIo1RHeAdNkuXWpqyRLTpMM5gqt9LSCAYla1GkhO5niREkSMJvTevSmIv3MHyMzk/e04Ryr3UFdXQ3ZDDlkgoW3NFuYAmWNr3bt3r/f/tLQ0+Pr6wtHREd9++y0AID4+Hnfv3gXLsvWks+0YsP0AaMoUUnjikYQEehtR9saBA2kYS3k5sG2b/tNS2bi5wNNbgQmTqaN274ocZKXy52wJuXE7OlLriEoFXEtX4lDH2cBzz1ml8icGLMsiPp7kys+cCW/e1hITqW60rg4dDi3DyPhSABS/S85B+uILaha5c4cCGlOPsIOD628GTTTvmGNrnTpRcunxxyUyFNHZmRYUEEBKMH/8QZE8z3C5rzk4UPmmQkEJdLmXaTWHWApcbm50OAhQr6yckNI9lGHovNPTU4J9kw0Q2tZYVv4BkLm2FhNTPwCKj49HofYQ6uuvv4ZGo8GRI0fQRqv0UlRUhBOSO2UUH9sPgASg4fWtuxgFQamkUjiGoRkdmZmS2ri5ovusHoiJATR1LNZ/fAFsLfdZEjGchMBAg5hGymFXZOQYebcyqMvR2Vpk5GUolSzOn1c2H8gwDGkRBwUBZWVIuP4nojvXoK6O1Kd5rFY1Hzc34K+/yFNet44CInM5e5ZmDDVQ8bDE1iIi6HLXIbpooKsrRWQ+PpQB+uMPXv+AfOxrISHAoEH0eNMmWVxyZiO2/LBOQf3SJflU90rxHvrkkyQtHh4u9kqaRgxbq6oynE3JsQfIXFu7c+cO1qxZU+9zQUFBuHLlCliW1ZfAAcCvv/4KhmHg4+ODvn37gpVrHSpPtI4ASCczfPo0r2+jVlM9+a+/ClzFFBJCpUWTJ4Nt21ZyGzcnMAwmvBeH9gHleCjoGJhdKZy+vJhOQq9eNC9Do6FG9/IylnrXvvpKEkpbTWG8ccfH94NGQ7+zFjMUjo5UQuXmBib3LiY6b4O/PyUS1q6VWK9AXBzw+ef0+LXXqPnfHPLzaTPYtEk/KNVaW6uro4zZypUS+F15eABPPEFH0yUlvEnV8emQJiY2mkS3CcQOfgD63eoq0c+cEfztzUaKwQ9Q//BDiohla7qMmEpVX2BIDlhiayEhIbhzJwsA4O0dAgC4fPkyOnfuDACoqqrC2LFjwTAMnnnmGf33bd++3T57qQGtIwBKTaUahx07eM0fKxQk+ZmbCxw6xNvbNE5iItgePXDx0iXJbdxc4RLkhac+6IhQzxL6BXOkmCa2k8AwwIMPUqNrSQmwaSNLsthVVeRwC5pSNI2GG/epU+5gWWrzCQw04QW8vCgIat8eTqMTMWMGVf4NGXJ/RlV0XnoJePllevz446aLIgA0RLRXL72WddmFC1bb2r17wPHjQFqaCPtMY3h7UxD0+ON0GMMxfDukxkn0s2dFnrnEIWLva8b06kUf09NFW4JJSDX4kTpi2pqHB/D881SRKye4sLW2bTvoH58+fRoqlQrOzs7YZnSSc/DgQbAsi1GjRnGxbJuidQRA/frR1LvyciCF28yBMa6upIgFkKKxkM2K9S6mXr3gXlIi3JsLSZcuQN++AIDclXtQXGhdHZBUnAQnJ1L7Cg0Fho/UzpXx9gYKCiSXFmls4969m742bJgZLxQaSnUdHh4ICKDZo+3b87FiK2EYKn97+GFSIJg82XTJR91Q3y5dUF1ejqzPP0cHZ2erbM24bHLnTuDmTYtehlv8/OoHP7m5FMBbiVAOaUgI0L8/lWuFhvLyFoIilX1NR9eupA3yxBOiLqNZpB785OdrVUN/E3sl9RHb1lQqarvs0EHQt7UKrmwtK4saF728vNCrVy/UaUuPQkNDce/ePbAsiwEDBnC2blujdQRASiUwYQI9PnmS9GR5ont3qtWvrRVO3tf4YhoUGQn3P/6gAQxS75a0lNGjcdFvMBaXzULSeoXFvRBib9wNCQykIan+/qBoesYM2t2vXJHMkNSmNm6LAiCgXrpHceE8SbqD1M5EUFduGoWCelwSEylNN24cpXtN/F71mDG4XFUFbxcXRB47BsZK1bTevYHYWNpfVq8WRH/AdLKyqA74zz/NmoXUEKEd0tGj6c/q5MTr2/CO1PY1gMpiIyIkmN3VIvXgB6Bbwc2bNHJD9P4/LVK0NanDpa0VF9e/j0ydOhXV1dXIyMiAn1Y7/aeffgLDMGAYBl9++aU1S7c5WkcABNDRss5j2LSJtx1Ed+Dr4EDpfr5nAzW8mNxCQ+kObsvarg4OCJo1Ago3F9y8CRw8aP5LSHXjNl7GzapglA6fSP/Zswe4fFmUNeloauPOyzOModKqXJvP5cvUp7dqFW4ez8NPP0mw+s/ZmcQQYmJoAOjYsZShawG1Wo2Dx45BOWsWArp3B1NWZnUzBMPQmU6bNnSpr14tHacICu1tJSODDmIs0O0WwyE1vvZYln6vckOq+5oxdXUSkHI3Qg7BD0ClXgoFXedSsE2p2NqtW+QDSCIT3gJ82dqHH34IlmWxevVqODg4oLy8HImJiWAYBnPmzNE/78knn+Tk/WyF1hMAAcCoUeTEZGfzOnjEx8fgCG7bxp8wUqMXk4MDqWzpVOFsdPiVry8wfjw93r2mAJnHTZ9IL5WNuzlOnwZ+/x1Yc6U7NH360SfXrhXtztfcxr1nD33s3t0wsdxsOnWiGobqagSkLIeLogr5+RRvSKj6j8oSk5OpTiotjZq3msm0Gtta17g4MI89RvuQ2amy+3F0pLJJJydyAnis7jWP4GCqd3JyIq/kr78oJW4iYjukRUVUZrRkibxGcslhXzt2jKpJpaLIK7atmYNCQVojAG9aIyYjJVu7do3au7UaM5LFWlurrq5u8vf80ksvAQAOHToEhmHg5uaGffv26b9+4sQJsCwLb29vi9dvi7SuAMjdHRgxgh4fP86rZ9W/Pyn9OjnxI/3Z7MUUGgro6j5tVdsVlNCL8bwNzZlzWPPJFVQVt5wukNLG3RxhYRTL3rwJ7HYcQ9qno0aRNLPAtLRxW1z+ZoxSSSV/fn5wq8zHDOVqqJg6pKWRIJ6kCA0lGTZvb1IhePTRRj3lRm3N3Z1md+nsTqMxKzhoiL8/MHEi7TM86A9YTkgIdSU7OgI3bpA8pgk/pxQcUgcHymrevSsRkQkTkMu+plDQgeDp0+IfbEjB1sxF57+KKScuNVvTHTC7uoq6jGbhwtZuNVNy/dZbb4FhGAwcOFD/ubCwMOTl5YFlWfTu3duidds6rSsAAqh4fvRoGmzI44Wr8+defJEGpnOJSRfTsGE0pNCGS+EYBnjg6Tbw9mFQWMBiy4enmr2rSm3jbg5/f1KmAoD9h5S4mvA40KeP4EX0ptgaJwEQQEMcZs0CXF3RtuwqJjjtBFgWu3dzJvjHHd26ARs2UOSxbh0pxRnZnkm2VlNDWtZW1q9FR5NIXXS0xS/BD2Fh9Pd0cKDerlWrmk2pSMUhdXMTT8zGEuS0r8XEkDnk5vLaitsiUrE1c/Hyoo9iZYCkaGu6812pBkBc2VqnTp0AAC7aYUcKhcF9/+GHH/SPdX1At2/fhr/FJRmtg9YXACkUlB0RoNPVx4cOQLnE5ItJpTKUwp0/b7OlcM7ezpjyViRJ2B6vxtUNjefBpbhxt0RMDAkYAsDaJMZw6ldRIcjYelNsLTubTIthSB/Aanx96eRAqURc5WH0cTirU5CGlboB3DN4MLB0Kf3wP/wAfPwxADNsLTeXIru0NKsVU4xv/qWlViWVuKV9e5I7V6lIEKGJAEhqDmn37lSVWVsLbNwofraiKeS2rzk709kBAJw6Jc4apGZr5iBmBkiqtiblAIhLW9P9viu0JdeaBodmn3/+eb0+IADYs2ePXgBhy5YtFr+3rdL6AiBjWBa4cIH3Qm+WpYo7Xa+E5a9j5sUUEkLlNj16SFRfmBvaxQdj2FRfDA9PR8S5pPvkw6S6cZvC6NH0Z6yo0B6gl5YDixfTf27c4O19TbU1nU3HxVHAzwnt21NdF4CxffMRGsKiokKi5UhTpwJff02P33sPlYsWmW5rISH0/QxD3qA584WaID0dWLRIYknfjh1J7vzRRxs9EZKiQ2osZnPzJu8ztC1CrvtaXBx9TE3lRCndLKRoa+bg7U1iCEIP/JSyrekCIBGqw5tFSFsrLi7Gq6++qv//Dz/8AIZhMMyoLGPkyJG8vb9cad0B0MqV5EgeOcLr29y6BWzeTOUU2ab36tfD4otpxAhgyhQqL7JhhszrjiHDlFDU1VBJkfYIXMobtymoVDR+xtkZyMwEUq+7UICg0z/moRbCHFvjrPytIT16AHPnQjVmBKbPYDBkiKEsSXLMnw+8+SYAwHHePHRJTzfd1rp2JSEFgJqdrNyLNBpyCE6etFpojltCQymaAMh2L10CWFbSDqm3NzB8OD3evl1aUuNy3tfataOxUdXVdP4oFFK2NVOJiwNefVXYvVDqtibFDJAQttZNl0rVUltbizlz5oBhGLz44ov65+Tm5oJlWThyXY5kA7TuACgqij7u2cNrTrlDB0r7syyVU5hb7m/VxdRQ21XM7kk+YRgaUOnmhtrsPFzdclXyG7epeHvTj/bAA0CPWO3RdNu2tPOvWMGppqy5tqZLWnAeAAGkIgJSPho+pBbK0iIe3oQb1O++i6wRI6DQaNDu1VfBmCNz1auXQZxl61ZSb7SQiAiDAuXmzdTILzl27wZWrAC7YQMuXrggaYc0Pp4SdV5e0pFkl/u+xjBk8gAF6kJgC8GPGEjd1jQagwinVAIgPm3Nzc1b/7jSaEMaNmwYHBwc8NNPPwEAZs2ahaqqKqSmpiIgIICz97c1WncAFBtLx1E1NeR48Mi4cXSKf+cOcPSo6d/H2cVUUUGDVRYvtllVOHh4oGr8ZPxU9zR+O9oRa9eelOzGbS5RUUYaCCoV9cm4ulJKcfNmTpoUzLW1jAzg+nUS/Bg82Oq3b5qyMtIE//131JWUYetWGgYoFdRqNQ4eOoSizz8HO3o0mPJyGtJjjnLDoEEkHQkAW7ZYNcR4yBDqX9FpLAhdZtQigYFgAeRt24bKtWsxcMAAyTqkCgXwyCPAnDmkKSM2UndITSU2lsxdJ/TCJ/bgxzLkYGsMQ9fmY49JIwDi29bCw4foHxurwp3SNtTp+oD+/PNPe8bHBFp3AKSbJqhQUEmGdgo9H7i7Uz8HQKfmplQucXoxOThQF3lZGTnMNopTt07wjvHDrVsZuHAhCuHh0ty4raGiAth+1As1kx4mGz5zxurBGpbY2t699LFXL8N8Ct5Qq4HCQhz4cA+OHNJg5UpplCTVcxJiY8GsXk2/kLw8OvW4d8+0F2IYYMwYUr2YPduqklWGoapXLy9SMFu/XlpN/Gx0NK736IGS0lJ0r6yE+4ED0lpgAzw8KMgXGzk4pKbi7k5lXIGB/L6PLQY/q1YBX31leTm9KcjF1hiGxo5FRBjmL4sF37ZWUQG0bWtQGqo1UrpZuXIlevfujddeew0///wzp+9ry7TuAAigHTg+nh5v3kyFyTwRF0ftGzU1LSsLcX4x6VThFAoqvE5Nte71JIparYa7+36EhbnBWemLjR+ngq2V0TTDFmBZEh47dAjYckk7Gwig3hELpb8stTWdKAGv2R+AulsffRRwdkaC0ym0uXMG6lIWK1eKO6iyUSfBw4P2kfbtKQM0caLp2RyGoem+oaGGz1kYGLi60pBUpZIEA6XSD6Sztetubmg7dy6dUh49ShOjJRwEAXR57dsH7Nwp/HvLxSGVErYY/ABUxV5YyJ8Utt3WzEcIW7tzBwgLG1Dvc4cPHwYATJ8+HSe19aRTp07l/L1tFXsABFADg5cX7SjWSrU1A8NQyl+lIrWmpk5weLuY2ral+hiAZHdLSrh5XYmg27g7dgzB/HmBUJ0/jUsH8nFikUTGjnMAw1BjNsOQMtUppwRg5EjgmWcskgayxtYOHqSPRrPX+CMgAJgxA46OwCN+O+CceRUZGbxXrjZJs05CUBCVsXl5UZT4xBOWzfnJziZ5bQsH0YSEUNY5NtYgPSwmDW3NdeBAgwDEkSMUBEmYzEzK3h88COTkCPe+tuyQ3rwJJCVxL2hpq8EPQGcsACXFuUZutpaTAxw4wGvxTosIZWtqNdChQ596n0tISNA//vjjj8GyLHw4k2O1fewBEEDSrBMmUDaI52mCfn50z3/22cYHpPJ+MQ0eTJ5RZaX0amOsoOHGHRKqwMhHqb5i29oy5ByQ2iRNy+nY0aBOtSWZwZ2Og+oXQJv4N7XG1oqLabwUQGO1BCE8HJg4Eb4uFZjquhVMViaOHxdeotgkJyE6mjw7BweqWdGqxJkMy1JAkJsL/PGHxeIl/fpR4lfscvAmba13b9oQGUYaTTbNYCxms2WLMFun3BxSc7l4ETh7lv5xhS0HPwCVDwLclwDL0dZu36aMbGuYKRUbC7z7buOHnDk5OXj77bd5e29bxR4A6YiMBJ5/vn75CU/ExooU/ABUEzN5Mjlm168Dx45x/x4C09TG3f+RDoiM90GtRoHNC6+ALSwSd6EcMmgQCSPU1lKju17X4tQpYO3aFr0za23tyBF6i44d9WJtwtCjBzByJDr7FWCocj9QW4vNm4WbKm+WkzBsGPDrr/T488+B7783/Y0YhvTP/f0p+PnjD4uOfBnGIATJsuRwCn3m0aKt9e4NzJtHHyXOmDEUTN6+bZVYn0nI0SE1l5gY+piWxo2Ypa0HP4AhAOIyAyRXWysro49i/JnFsLWkpLX1/p+SkgIAcNH2jP6///f/wDAM/ve///G+FlvAHgAZY9xFx2MvkDG6YfCCXkz+/lQb4+0tsPfKPc1t3AwDTHovBt2iajGt81kwq1eJ2zTCITrVb19fqtxcuxbQFBRR/8n58waFgkbgwtYELX9ryMCBwLBhGPLhaER1U0GpFEbY0CInYfZs4IMP6PFLL1Hzn6m4uQGPP07XaX4+sGSJxepwLEuJqJUreR971uB9TbQ1f3/D47IyqmuRYHba0xNI1PYhb9/OnzS2XB1ScwkLo0rRqirry5haQ/ADcB8AydnWdL8Dof/UQttabm4eGIa5r78nWluxdPbsWTAMgw8//BAAMECwsgx5Yw+AGqLRkPO4cCF/XYZabt8GfvwRWL2axYkTacJu3H36AC++SM3aMsWUjdvVQ4mHP+sDLx8FpQm2bxdhpfzg7EyN7g4OJDpWqvSmGUEA9bJdunTf93C1cesEEEQJgBgGSEwE4++HyZNJBrVzJ36dZauchHffpR4tjYY0lc1R7PP0pCDI3Z2G+ixdapGuNcNQBSEA7NhB/Sx8Y5Gt1dVRoLdzJ5CcLMkgqH9/itfKygyDgLlEzg6puTCMIQtkjS5Pawl+AG4DILnbmu534OYm3HsKbWvPPPMMAgPbAAAUCmU9eevz2jr0Idre7mHDhqGurg5RuhmXdprFHgA1hGGoNKyigvdC75AQwN+fxe3beVi3rkrYjZth6jcGSGXKn4mYtXHrJokCuHIwD3mZUhuMYjlBQeRTP/88naQiLg7QNUauXVtvEiZXG3dtrSGLIEoAZISzM+BXeI1OEtRqXszYaieBYUjMYPRoSlU98AB1f5uKry8FQS4uFLk0k91rjj59qIdFo6FskBWjhlrEYltTKkmVk2GoPFeoZhszUCpJrA+gilMus49yd0gtQRcAXbli2cyq1hT8AHQm4ulpfdbDFmxN6BI4IW0tPz8fDMPgV20Z9ezZ27BhQ60+2AGA0brZKgCuXbuGXbt2QSG2HriMsP+mGsIw1JSrVNKOfPEib2+lULDo2vUK1OoSsGw0bt8WpZAVOH6cMl5CHAtzgEUbd2QkTnadhWV4FKs3OnFSby4VIiIaaCCMHEWfrKkB/voLKCvjdOM+d45uPF5evGuGtExdHUnB5eQg/euN+PqLWr04Axdw5iToxBB69KCgdPx40rI1lTZtqJwuOhoYOtSiJehUKH19qa0oKYmf2MJqW4uLI/lwhqG9SYJBUMeOpED/wgvcDWC0BYfUEoKCKKNWW0u9QObQ2oIfgObevPIKTQawFFuxNSFL4IS2tYta31OpVOKXXzSIiBiNkBAgRndiYERxcTEiIiIAAFu3bgXDMFi1ahWv67MF7AFQYwQEGIabJCfzclSqu5iqqm5ixowQODo6YvNmYXoZ6sEwQEYGHb2tXStY75OlWLNxR03oDDcvFe7elbzirsWcPg3873cFaidN0zcIsStW4OL585xt3Lr+n4QE8YfPQakEZs4EXF1xI60a5ScvYcN6DScyxZw7CZ6e1KMVEkLliVOmmHfkHRJCNY/GmVszAwMnJ3oJlYrOd7RjJDiDMyehZ8/6QdDmzZILggYOpEuMC2zFIbUEXRmcv795A2dbY/DDBbZiaywrXAmcGLY2aNAgAEBdXR2ysxloNHV44YUh+PLLL/XPSdQ1JAIoKioCwzAYN24cAMDb25v3Ncodsd0X6TJoEO3IajXnk+8aXkxjxrggIIBO1UWZazJ+PDlnBQWS7pGxduN2dyefEyyLE+uzcGHRfn4WKhIVFdTfcfs2kLzHBZg5E6yTE24qlci8c4ezjVvU/p/G8PMDZs7EsE4Z6MReRc2Fq1ixnLXq3II3JyE0lJx5Dw/q03r2Wcsce5alBpRNm8z+/qAgYOxYerx7t6GMxFo4dxJ69iQNb4ahvik+Gm44IjPT8nMyW3FIrWHwYBICbORwu1HswY9l2JqtPfssJcY9Pfl7D7Fszfhvc/LkUnzwgQpHjtT3WS5p+3zffPPNevN/7t27h1G6Iel2msQeADWFSmUY0nfyJHDrFicv29jFpFIZDjvPnaMhqYLi7KzvkcGJE+JOFWsCrjbuiAhgUHQBcPUqNqyqQuHBCxyvVDxcXICpU8mOTp4ETmX449KoUbgSFISBgwZxtnGLqgDXFGFhUDw8FVOjL8Gn8AYKz97GmjWWzR/l3UmIjaVyOKUS+PNP4B//MP81cnKAffvoD71zp9lBUO/eNL/pySe5OT3lzUmIjaUgyMcH6NWLm9fkmH37gJ9/tiw+szWH1FKUSoNce0vYgx8qX/3qK/NaCW3N1hiGDnM6dTIvc2gOYttav379AABJSbMBkMw1a7TX5+bmAgAWLVoEAFi3bh1YloWfn5+g65Qr9gCoOdq3J09BpaLsiJU0dzGFhtIp2OjRIgmzhYcbmufXrxehFq9puN64h03zQ1ifQFTVqbD681uou3uPo5WKT0QEjZ9hWRa//ZaLM1dKDbZWXW31CPuMDPqnVNKQTUnRtStcHhyJGTEX4HDrGq4dKzDbKRXMSRgzhoQbAODDDw3zgkwlONhwQHPwILDfvGwmw9BeExJi3ts2Bu9OQmwspQckWtIRFkYfjx8HsrNN/z5bc0i5oKYGuHGj6a+L7ZBKhdJSaiE0dT6y3dbMRwq2tmDBAv3jjRtL8f777zf6vHHjxkGj0WDixIkCrcw2sAdALTFyJHW6xsVZ9TKmXEzDh9OprGh9FSNGUP+TWk3zSiRQc8/Hxq1UAlPfiYJLGw9kFbri8rc7uJnCJxEGDWLh5paFgoJSZGYOgFLpTnfMX3+lgZrmNN83QJf96dlTWOlRk4mPR9DoHnhokgLw9sb+/TRnyxQEdxKeeYYksgHS8ja3/LRXLwqkAGDXLuDoUYuXkpNj2TR1wZwEldEE9LQ0i0r/+CI8nEq3WNZ0vQa7Q3o/lZU0L3jJksYdeyk4pFLBHClsW7W1nBwaF8ZHwYpUbO2RRx7RP+7cmdbw8ccf3/e85cuX28zfVUjsAVBLuLhQj4EVWHIx1dYC94ROTKhU1CTj4AAEBoruYPC5cXv7KjDprS6Y1ucmopWXyXOxAViWxaVLF9GlyyX06BGG8nInUvtycqbIurwcWL7cMr1ZSLD/pzFGjUL3l4YiYaACPXqYllEVzUn44ANg1ixSs5v2/9m76vAm8q57Jkmbuhs1KFCgUGCLFpfi7uxiCyysCyvvfu+6viusscYKiy1ui7ss7k5xbWkpVWibatrM98ftRNo0OpNMAud5+jRNJyOZO/d39dxRwLlz5n2+QwcNK9zWrcDZs2afQk4OlXBt2mRepa9djITCQmD1airV3bDBshpHAdCnD3FT3L1r/BY4q0FqLdzcqKSJZYGL1SqTxWKQigWmOkDOLGupqVT9a0ngxhDEJGva96ui4iIYhsF7XNDsMazGYwfIHNy9C6xbZ9aia8nDlJsL/P47BettPp6nTh1gxgwyquxI8WULxd24lSfiX+pG9UBnzlA/hQNDW9Z69uyAiRPlcHGpKnNycaGBQdxAzX/+sch4FGX/T3UwDMAw6N0bGD5UBZd9uwwONbarkcAwwNy59LwVFgIDB5pPR9+tm6Z8dcMGs8t1AwOJXVulAtasMa2Z325Ggre3pmHyzBmz9bFQ8PGh2wAAu3fXTqbpzAYpH+BIELSnT4jJIBULuK/AEIGJs8uaEBTYYpS1xMREAPrprx/DOjx2gExFWRlNYT97lgb0mQBLHyZvb1rTCwrsxAqnXdtUUUHRaRvCpoo7JgZISoKi3BXb9nvY+lJ5gz5Zq1MHePVVMswYBmSlPfkkZfquXiXKODOgUGgSFB078n8NfEMiAZjdu4CDB8H+vQgXjhXXSGqKwkiQy8khjYsD0tPJCSooMP3zXENP27Y0ZNVMbmaGoUMGBNBh1683nPy1u5HQvDllyyQSYo1ZvdrmOkof2ren71Ch0AQKtCEKWRM5mjSh3+np9D3aXdZECnd3+l1bsOJRkLXCQvrt7c3P/sQoawoF8MorM2q8//bbb+v8nak18PwxTIfgDtCXX34JhmF0mrlYlsXHH3+M8PBwuLu7o3v37rhYLeddVlaGV155BUFBQfD09MSQIUOQZs9BnXI59QMBFOIz0kdhzcPk6qphfz17lmxVuyA7m2pj9u612SHtobhVHTphoffLOJofxzfjuU1gSNa0FwelEijwidQw/h05YlbW69gxsjOjo4m0wyGQmAjWxxerD4RizeeXsX+3ptdLVEaCvz+VYYaGklE/erR5fWmcF6PNlGZGCatcToeUSqnF5sQJ/duJxkho1owGGkmllC5YuZKCNXaETEZLhKcn3U5tiErWRAxvb8pYsyxw5YpIZE2EMOQAPSqyxqcDJBq9Vg2bNwMrV2rqHKdNmwaWZZGUlKSzXV+uF/QxzIKgDtCJEyfw559/okWLFjrvz5w5E99//z1++eUXnDhxAmFhYejduzcKOYkGsV+sXbsWy5cvx8GDB6FQKDBo0CBU2jPS17o1ZQyUSio1qcXA4ONhio7WRNk3brQTKVt2tqbT0Abc3PZS3BIpg14jaJDAkSPA5XPloiirMQWmytrDh8SBsHgxUB7bjKjiAOLwNdHQdoj+n+rw8QEzaSIahhcDhYXYO/sSrl2uFKeRUK8eNeJ4eBAhwgsvWN6HV1REwQtTGSBA1a/c6IgdO2oSBorOSGjShIbgchlNvpsBLEBcHPDaa0QSwkGUsiZiNG5MsrZnT7p4ZE1k8PQkUsTqX8ujJGucuWjtDCDR6bUqsCyLt95qi/Xrp6nfmzNnDgAgNjZWZ9t9+/bZ9NycBYI5QAqFAuPHj8ecOXN0BjSxLItZs2bhvffew4gRIxAfH4+FCxeiuLgYS5cuBQDk5+dj7ty5+O6779CrVy8kJCRg8eLFuHDhAnbZM0TPMEQ96+JCDoGeBZfPh6lHDw0pm1169Js2pYgyy9LgAQG9MHsr7saNqxzO4mKs//AU8taLf0iqObImldKCkZVV5bt36Uq1cVOnkjybAIfo/9GHoCAk/KcX2kZngs17gBUfn8fWLcfEaSS0aUMkFRIJ9QbpYfwxCYcOUR3R8uVmBS/atwcaNaJkysmTmvfFaiSgYUMikWjbln7sDIahDD4He+s1R0Tjxiyys7Nx8WIJ2rYVkayJCFFR1KqrRRL2yMkaHxkgseq17OxsSCQSpKWREm7dug0AIC0tDevWrUP9+vV1tvf19bX5OToDBHOAXnrpJQwcOBC9uLKxKty+fRv3799Hnz591O/J5XJ069YNh6tCzKdOnYJSqdTZJjw8HPHx8ept7IaAAKKLBihMqsXXyffDJJNRtZJEAiQn12TGsQn69aMu6YICwaixxaK4k5KAKK8HKM0vw6q5BahIvmKX8zAF5sqatzdVDHGydPQYQx62tuI0cG8rKyk7BjhG/08NREai33utUccrD9mXb+PyWjkaNhSpkTB4MPDTT/T6/fcpbWcukpI0nszSpUSZZAIYhspv+/YFBgyg98RqJKgRE0Plf9y9rKy0mOWQL7AscPx4MWbOvI6IiEfDIOUDLMsiO/sSmjS5iU8/rYOAAJHJmkghljXUVqio0MRjLXWAxKrX1q1bh5CQEABAbOxA/PYbi88+o/k/Xbp0wXCuhP0xrIbM+CbmY/ny5Th9+jRO6Ckkv19VVxEaGqrzfmhoKFKqOFjv378PV1dXncwRt839WgY5lpWVoUxr0SuoaiJWKpVQ8j3jJSEBzPnzYO7eBXv8ONju3cGyLK5evYr09HQkJiZCLpfzctzgYKBDBwZpaUBoKGv7cTUMAwwdCsm8eUByMlT16vE6kb2oqAhHjx5FREQEYmNjUWHnOv5hL4Vgzu0CpN9UYfPXZzHgGz+radD5hqWyVqcO0KsXg61bGWzbBgQGqhATU/XPy5fBnDkDduxYvWO109KAggLKFF24UIH4eHHMYDEHRaFBiEnKQ8aaQCj9G2HNmkqMGsWaPIHepnj2WUhu3oT0hx/ATp6MSoYBO2aMefsYPhzM8uVgbt0C/v4bqvHjTWrecnGhRFRlJVBRIYxeEwwqFZh//gHy88GOG6dplrAx7t8vwq+/ZsHDIxwqlb/d9ZojQFuvTZqUCE9PkcuaSCC2NdQWUKmAadMoCySVmj/GTyh7zVr897//xffffw8AeO+9lWCYEQgLq0Dbquz2nTt3AACpqamIjo6212k6DXh3gO7evYvXXnsNO3bsgJubW63bVY9QsCxrNGphaJsvv/wSn3zySY33d+zYAQ8PDxPO3Dy4urvDPSAA+UVFNerT+K7HVKmoqVYfs5Ct4O/ujpAzZ8D+/DPu9OmDcp5Trrdu3cItQyPAbQi/Nm64c6kSJy+VIPz9z5DRrwdYE8vEbA1zZY1lgYqKOrh92wdffFGJPn3uwFtWhAabNkFSXo78q1dxv107VPcKWBbo2TMBe/ZEY8oUKc6cOY3u3e1ISmIp6gej7lMMdh7Kxc1NuVAqU+DnZ99sQa3o0gUJZ88i+t9/IZ00CadPnkQaN/PHRDA+PogsKIBHZiZUH32E1B49UGYGS1xFBYNz54LRqJHKIerMXQoLUXfnTkjLylB27hzu9uiBSrncLufSsGEQLl5U4eefs9C//y19cYXHqAWOIGv2xp49USgudkH37nfh5aUU1RpqS1y7Zt3nxSRrP/74IwDgl19+wdWrDZGVdR15edswfPjr6m3Wrl2L0yLod3QGMCzLb03TunXrMHz4cEi1tH1lZSUYhoFEIsHVq1fRsGFDnD59GgkJCepthg4dCj8/PyxcuBB79uxBUlIS8vLydLJALVu2xLBhw/Q6OvoyQFFRUcjJyYGPtV1yBlA9kuCpTSEtEBQKfrnvTQLLglmyBFAqwQ4fTh2YVkA7atW4cWPRpewvnShCo3/nwLW0AGx8PF2znc+RL1lTKoH58yW4fx9o2JDFuHEscOMGJMuWASwLtlcvsHrq3FQq4IUXpJg/XwKGYTFnTiUmTRJ/JkifrJ0/T4m9CPc8YnRs0MDep6kfKhWkL7wAyfz5YBkGlX/+Cfbpp83bR3k5mKVLwaSmAnXqQDVtmlFZ5mRtzZpylJY2Q926MkyZwjqGEZ+VBcmiRUQEERIC1YQJNlOY2rJWr15jzJ4thUIB9O3Lon178T8r9kBteu3SJSA5mUFiIovHwe6a+OabCly6lI7Jk5Xo2rWB6NZQMcIe9po52LJlC4YNG4YRI0agZcuVWL/+RZw+/ScAoG7dukhJScHt27cRERGB9u3b48yZMwCob15IO9dZwbsDVFhYqC5l4zBlyhQ0adIE//d//4dmzZohPDwcr7/+uprLvLy8HCEhIfj666/x3HPPIT8/H8HBwVi8eDHGVJV9ZGRkIDIyElu2bDGJ8q+goAC+vr6CCgZXQ3rv1i108vGBR9eughrJSiXNBbp4kQiibN73VlpKHb5WDkh1mHrl1FRgwQJApQI7YCCYdvZrsua7XvnBAyIcGzxYy5c9fpyymQxDDUNxcTU+p1IBL71Eg3oB4M8/genTrToVQWFQ1vLyiGigvByYNIk6i8WI6l/6H38Azz5r3j7Kyoj9ondvo8ELbVmLj++ExYu9UFJCvV9abZniRk4OsHAh1cgEBgJPP209XZQR6JO1U6eoddLdnWZy2akiT7QwpNfWrqW5Yx06UE/aY2igUCjw7rspqKgIxuuvByM2VqRrqEC4c4fm0kdFEXmmKRBrz0916LOHbt26hcuXL2PgwIF45ZVX8NNPP+GNN97ADz/8AOCxA2QpeCdB8Pb2Rnx8vM6Pp6cnAgMDER8fr54J9MUXX2Dt2rVITk7G5MmT4eHhgXHjxgEgRotnnnkGb775Jnbv3o0zZ85gwoQJaN68eQ1SBXuBe5jSU1LQ9fJlePz7r+74agEglQKZmeSHGBtWKAjc3HSdn9JSs3fhMM4PAERHg+3dB0fKW2PTnWZ2Ow0hFLe/PzBxYjVbuF07+mFZGsyZkVHjcxIJMHs2GXMA2eGzZ1t9OoLAqKz5+gIREcjIk2P5/52BMj3LPidqDNyX/sor9PdzzwG//mrePrhBP9o3XM9IgeqyFhHhhaFD6X+HDwPXr1t2CTZHUBAwZQrd49xcYP584oIXCLXJWkICjXYqKSHG+cfQwJhe44aiXrlih7VOxOBkLSzMF8HBwSgtFfEaKhBu3KBxjFdM5ClyFOcHABpoVSMEBwejsrISMTEx6N+/PwDg559/xtKlS9GtWzd7naLTQPBBqPrw9ttvY8aMGXjxxRfRpk0bpKenY8eOHfDWovP44YcfMGzYMIwZMwadOnWCh4cHNm7cqFNaZy9oP0wdu3aFvF07+seWLVR2IRAkEmKFc3EBbt3Spam1KSoqgO3bgV9+oXo8E+FQzk8VsmLaY4fLQJy65IGqbLNNYSvFffUqER2gXz+iFlYqiT1Mz/1lGGDWLODNN+nvl14C3nnH7nModWCSrEmlqBwxGivSO+HKPR9sfO8o2If5NbcTAxgG+PFH4I036O+XXwaWLLF8f1eukBOl5RTUJmtNmpBfDADr1mnoZ0WPgABygvz96aQFcoAMyZpEosmaHT/uQN+dwDBFrzVoQEyoDx7QSLrH0JW1Bg0iwDCM3mGozo4qjiuTGOAcyfkBgJUrV6pfZ2VlQSKRoLKyUofqumfPnujSpYs9Ts+pYBMHaO/evZg1a5b6b4Zh8PHHHyMjIwOlpaXYt28f4uPjdT7j5uaGn3/+Gbm5uSguLsbGjRsRJYISFb0PU5cuQEgIOT9btwp6/MBAmjYOEAt3Xp6gh9MPlgVu3iTj2MRUlCM6PwAQGsagZy96TDZvBjKP3dEbORcCtlLcycnAsmXAypVAUYkEGDWK6AebNaOhnHrAMMA33xBLMwB89RWVqWSJIIlijqxJ3Vww7KMnIPFyx/k7Pjj22Q47TR02AQwDfPutxgl67jnLOoBVKuDff0l5LFxIjGlGZK1PHyAsjFTc2rUOFJH38yMnaPx402tlzIApstagAZVxTZjAz9R6R4epes3VFeDGnZga6XdmVJc1Dw+SNbGqKyFh6gwgR3N+AKCVFssuywI3btyATCZDoVb0RKVSISAgQF0C9xiWwS4ZIEdFrQ+TVAoMHUoGSnKy4KVw7drRWq5UkjGiUgl6uJpwcSEjWSajmpijRw1u7qjOD4fOnSkpUnH9NlZ+fAmlG3cKfkxbKu7YWKoYKiggJ6jSxY04Rvv1M9jvxTDAZ5/RrE1PT2DPHqB1a6PiICgskbV6ce7o+3ozQC7HjtNBuPPjervPkakVDAPMnAl0707eyJgx5peiSiRkjQcEAA8egF2wAFeOHTMoazIZPfIuLlQZmZvLz+XYBD4+0PC9g7x0PeWd5sIcWevbV/cUHlWYq9caN6bf1jJ9OTr0yRrXT2ZBJbrDg/MFDImPIzo/AN3P+PinAABJSb0RGxsLAHj11VexceNGAMDXX38NAJg6dap9TtJJ8NgBMhFGH6aICLKUAeouF7AUjhtWKJdTI+DBg4IdqnaEhJCBDAA7d9LUeT1wdOcHoO97xAjAN9wTuSUeWL+4EOxp4erhbK245XKaKC6XAykplFmENnVwZSVw/nytYf+xY6m8p0kTKqPr2pWqq2ydJbBG1tr19EKLJ5tCJXPFqtP1UfDQ1lEFMyCVUvlbcDB1iXO1iObA2xt4+mmwfn7IvnoVWLgQnZo3NyhrQUHkb73wAr12SDx4APz9N5GbmDgcVh+skbVH0WAFLNNrDRvS7/T0R/d7q03WvLwowWknlne7gWU1JXC1EUE5qvMDkKwPGkSEN//+uwsAcPDgQfz4448YOHAgAOAnblD2Y1iFxw6QCTD5YerWjTpei4upQ09A+PnRpHYPD/JF7ILWralMSqUCVq2qsUI5g/PDwcMDGPNyCKQN6uJyTjAOzz5b1TTDL+yluIOCyMkDgGPHgLNnq/6hUpGx/c8/BlM7TZuSEzRqFGUmX36ZSBYEjAPowFpZYxhg8ARfhPVpjqImbbByo7uoeppqIDwcWLSIXs+eDaxebfYuWB8fXElMRC7LooG/P7xWr9ZYFrUgNlZwMjVh4eFBdcRlZfT93bxp9i6skbX9+4Hvv6cezkcJluo1X19a3yIiHs3+KUOylpgIzJgB9Ohhv/OzB8rKiLgT0K+LHNn5AciskMs1F/bw4UN06tQJgH6GuMewHI8dICMw62GSyYiloHlzTaOOgGjRgoihOLYcm4NhiEfZ358ajDdsUIf9ncn54RARAfR/vh4kIYGQoQJYsYLXVdneirtxY6qsAiiJee8eqFyKC8Pu2GGwvNPbm0rovvtOk6RITBS+fIUvWXNxAcZO84G7lxTu7lWkDrduibfhpW9f4L//pdfPPGOWVc3JWmp+PqLefx+uoaHUE2QGs8rVq1T26FCQy6n8T5vo4/Jlkz9urawpFGS87dkjXrHiG9bqteeeo4rc4GCBTlCkcMY1lA9wMRp3d9LZ2rD3GsoHuLjqiy9+BQA6/fMA1PMzM3go433UwfscILGAjzlAjvYwlZXZKR2enk7W7oABQHy8UytulgVy75UhaN1fRE0UGQlMnkzOr1X7FYessSz19Fy9SpHFbt2q3ty6lVI8MhnNVDFCSLJ/P5XG3b9PUboFCyg2wDeEkLWcHGqPkRw+COzaRU13/fvbfRCuXiiV5LUePgy0aQMcOkTd4wagV9by84FTp+imm3Cd2dkaJu5x44BGjXi4FluishJYs4YceoahHs4nnjD4ET5kTaEgMj+lEnjqKU2Pi7NCLHrN0eDMa6i1qKigWE1pKXQG5DqDrLEstXiWlADPPKNCdLS06n2Nmb5hwwYMHToUr732Gj799FPB5106Mx5ngGoBLw8Ty9osgnz5Mi2sdmkWjYigXLyTOz8A2UpBEXKyXtzcUHYnA5VXrBuOIibFzTDkqIweXeX8cG/260fWWkUFUcYZoR/s2hU4fZra4goKqLzu//6PX6psoWQtKKiK+8HHBywYFB08A+zdy8u+eYeLC90Pf3/K3nAZoVpQq6z5+gI9e2qcH5XKYP1icDBl9wAigjSDDV8ckEqpXjMhgfTzunUGM0F8yZqXF9C+Pb129iwQ33qttFS83CR8wlRZu3ePBlEvW2bjE7QzZDIqi3Q25wegZbWkhK4xPFyi9b5mvR08eDAA4Mcff7T5+TkbHjtAesCb87N2LTXc2mCATEoKtR5t2GC7vgsduLqqFXd0QACaNmjgdM6PDgICkNVjLP5UTcPOtDiLdyNGxe3mRq1dHFgW5BGMHEm9J8XFlPEzwr9apw4Zea+/Tn/PnEl0ypmZ1p+jLRztiqYtsN5zHP441QZFOw8DR47wfgxeEB1NKTYA+OEHUgJ6YLKsqVTU8zVvnsGeoF69qOWxqMhOg5mthUQCDBlCHklEhIZzuRr4lrVOnShTn5kJXLxo1a5EC7712tatpD/OnePpBEUKc2StspKcID70qSNDjGuopeDK3+rUoRjNli1bAADTp09Xb2OJ/snLy4NSqeTlHJ0Jjx2gauDtYWIYGpwBANu2CTqFHCBjJCSEIrEbN9qPgSuGYdBk714wmzc7oEVkHvJ8Y5DrWgdHj1pmyDiC4i4qolEx586BSqvGjSMGjqIik4ZQubhQ0/fKlRT9/vdfoFUrqtiyFLbKMlZWAmnusSgIb4JVl5pBtW2HTYIZFmHIEI2nOXlyDYYzs2StuJhW4txcuvm1OEEyGWX2ODZ8uw1mtgZcdvPpp3XrhwXsZXR3JycIoACBjcaK2QxC6DVvb/LLLeCscBiYK2ucuHKEAI8Kzp0DDhwgx88R1lBzEBtLpeMcoXD//v0BAP/884/OdlwfUKYR7/ePP/4AwzAIDAyEq5HS6EcRjx0gLfD+MCUmUnS2vFzwEClnjEilNDTOlnaatuKObdwYTEkJcOGCFpWYc6JJE42iWr+yDNl//EO9FCbAURT32bPAnTvkVN+7B/Jixo8Hpk6l/icTMXo0tRDFxdF+unUDfv7Z/EfCliWWcjktRq4No3HHuzl23apP2RUzmuZtiq++oj6gBw+oRLMq4me2rHl5kRPl56dxgmoh+wgN1fC9bN9OvUEOB4bR7Zs6eBDYvBmKwkLBZK19eyKke/iw1gkCDgmh9FqDBvT79m3ncxgBy/QaJ7KPQlmgNs6fJ5Lde/ccYw01Bx4etEZq9wbGx8cDAJKTk9XvffTRRwBqEiQAQG5uLrp16waGYfD8888DANzc3HDrUaOeNAGPHaAqCKK4JRIa2OPiQpr7xAnr92kAYWFUxg9Q0smEAL3VqKG469bV8HJu2UJDB50YPXvSgMPyC1excr0c5UtWqQ3P2uAozg8AdOxIDe4VVaR3RUWgBhBt7nUTay7j4ohie8wY2t+rr5IvZWr/iD36y4KDgeEjGKB+fRyuaIfkzGByMMQIV1e6ST4+lGL78EPLZc3PT9cJWrCgVieoffuqQcEVRJ7h0MjOBnbvRvnhw7g+cyYi69QRRNbkcgpYvfKKbi+DI0NIvRYWRsOWy8sFmT5gV1iq17gMUGWlczqFtSE/n2QtM/O6Q6yh1mLNmjUAgKFDh6rfGzJkCABg9uzZ6vc2btwIhmEQFBSE/fv3AwCmTZuG0tJSlJSUIObxJOYaeOwAQWCDNCAA6N2bXu/cKfgI9Q4dgLp1aaFYu5bKBoRCrYq7c2cK2SmVNB/IiWtPudYY71axyFb6YcNeH7AbN9Wa2nAk5wfQDIENDKSFZ9WqaovtnTuUyjGx/snbm1jmfviBspbLlpEBbcxwtie5Rlwc0LkLAzRqhPVuY5HZoKPNjm026tcH/vqLXn/1FVLmzLFc1kx0gjgStSef1GREHRbBwSju1w+paWmIyM1F04sXwQhkXTZsSNwVzgCh9RrDaFq0nKkMzhq9pp20fFSyQCwL5OezyM7ORmGhY6yhpiIrC9i3j/q5tdGoimJTO4NTXU58fX3VThEA7NixAyzLYs6cOZA/apNyzcAj7wDZxCBt25a0t1IpeCmcREIsXm5uVJ4ilANkUHFzVGJeXhRR3bpVmJMQCby8gNGT3CGJb4rk7FCc2pZNqY5qcDTnh4ObGxm3rq7k7+zcqfXP1FSiZ9q8mRpBTADDEGngv/9Ss+elS/SIVAW6akAMzII9ewINGjJQ+gRi5coqJ7CsjDizxYbRo8FWlT7UefttdK5f33JZ45wgX1/ygGsJ4Hh723EeGY9QKBQ48PAh2LFjEVynDpirV2lWkMCNFvfvO24vh630GlcGd+OGILu3OazVa1KpZvqCo8qOuSgtZZGeno2CggL06tXOYdZQU3DjBq2J+uaNT5gwAYCmF+j48eM1tunXrx8ePnwIlmXRuyrozrIsfvjhBzAMA4ZhdOi0H+MRd4BsZpByIdKQEJrZIbAB5+cHvPwyMGiQ1eNp9MIkxe3lRakRhiE+ZLH2TfCE6Gigz1h/xHSOQFxQNg0N1QpVOqrzwyE4WDPH5+hRLTamLl1ofgrLUnro3j2T99m5M4lG166UWBg1CtDK6AMQh/MD6JLgDRgASMuKqTdmwQLBs7rmgmVZXJ4+HQX160Oenw/PadOsCxFzTtD48UC9ekY3Lyyk7HNpqeWHtAe0Za3hgAFgJkwgr//WLWLzNMJ6aCl27gR+/11vzET0sKVe4xygjAzBboXNwJde8/Oj2MSjUALHsixOnLiKgoICNGoUBX9/x1pDjYEr7dTXWvtr1dC1kSNHgmEYtOe49KuQn5+PrVu3wtfXFwCRI7Rp0wYSiQRvvPEGACAxMdG5mXktwCPrANncIPX1BV54oVaqVb6hfTksy18VmlmKOyaGut1btNCsXk6M9u2BiR83gGe7ZpR6W7UKyM11eOeHQ1wcOSsBAeQIACAHd/BgkuvycqLHNqP5LCyMZo2+/DL9/cMPmv+Jxfnh4OEBTJ9eJcoMQ/dYoSDjWGCWR1PBydrd7GxIV68mRbB/Pzkv1lhJ/v70PHPIztZL+MGy1IZ07pxjJX71ylpMDDBpEtG2paUJVnvFtdMdOeJYkXxb6zVvb+IVGjCgak6Xg4JPvfbyy0T+GBjI4wmKEJys3biRjejoaISEOFdZF8sCd+/Sa30OkL4hp3fv3kXjapOUV61aBYZhEBYWhlOnTgEAXnvtNSiVShwR6xgHO8KB1YjlsJtBqq3oHjywSW9MQQHZZ5s2Wb8vixR3t26UOngEKBgZBpBIGUq9RUXhWkkUKlSMUzg/HHr0AJ57jjJCakilRJcWFkaECIsXmzWMysUF+PxzMmpu3KCqOrE5PxzUp+HujryBE3GHiSFHwABdtK1QXa95JiRQKsbVleoLX3yRn/Jbjhlu/vwajh/DAH370u9z54iRUuwwKGuRkcCUKUD//kDz5oIcv3lz8i+Liykj6giw1xrarx+Vy7q52eRwvEOsek3M0Ja1hg1bw9XVFVWJDqdBQQFlziUSreBiNcycOVPn78jISHUp3Lhx48AwDMaMGaP+/4EDB8CyLGbNmgWZEKVAToBHzgESRTQ+ORn47TfichQYDx9S38a5c8RMbSksVtwMo7EaWZa63Z29DlUmw+7QcVhSORZ/rSl0GucHoFup3VN5715VYkEupyyDnx9lgKpYaEyFry8ZNgCwZUup6I2EjAzgzyWeWIGxeCAPo4DG33/baQqxAb3Wqxdl5RiGxsa//771B5PJyKl6+JCcoGoZv6goYg8EiD7dTl+JSTBJr4WEUHqXQ3ExNe3wBIlEQx5x6BCx6YkZolhDHRCPnR/zUV3WOnTwwIsvaqj3nQVc+VtoKAUE9eHNN9/U+Xv//v3qkrfNmzcDAEaMGIHCwkKwLIvO1Rhp9u/fj4YNGz7uB9LCI+UAiUZxy+VU63D0qOCUNtHRlIQBKAtkCYMvL4qb6xFZtsxBJyaah4iGbsjOy8PBg0r4+HSBl6MXrevB6dNEOLZtW9Ub3t7AhAk0i4ZjPjQDHIX76tW5ojcSgoOp7KSEdcNKt0lQevkTIcKiRUBJiU3PxaheGzWKmkwA4IsvAD2zI8yCry/1BAUFUfZLTx9Ujx7kNxQVET+GGNdai/QaV+Y5fz6NNuAJLVsSe3lhobjHp4lhDc3JAU6dcizmM6Gcn82bgTlzeBVF0UCfrLm4kF7RqUBwAnAOUFRU7dtIqtV9duMMOwB///03WJbFmjVr1M8ky7JYvHgxZDIZGIZBt27dcNOZKBR5wCPjAIlBcasRG6sJd69bJ7jB1LUrPVhlZcA//5jHDMeb4mYYzdO9bZtzTf+rBpZlUVl5CfXqpSA6Ohq75+cgY+YiWrWdCF5eZNieOKFVuhMUVJN9w0Trt2NHeg4uXAhBXJx4nR+ALm/MGOoLysj3wObQKWA9vagnyIYpD5P12rPPAv/7H71+/XVy1KyBjw85QcHBVL8xf77OFFSZjCpfJRJi+dOa4ScKWKzXWJayX2VlVOrJE7mLTAZ06kSvDx4UZ1O7WNbQpUsps8j1TIgdQmZ+cnJoKRVzltUSiEXWbIWMDPptbLb4NnW0EWjXrh2uVzGvcjOCysrK8Pnnn4NhGEgkEkycOBGV1ZTJBx98gJKSElGvr7bCI+EAifJh6tOHjMXCQkrNCEyNPXIkJZ7u3iWueVPAu+JOTKRO+spKygbZOFJuC2jL2gsvxKFZM1dUKFmsSG6GknXbqR7RSdCokWbm7ebNegwSlgW2byduTyNQKBRQqQ7C1VWFrCwXXL8ufuXs60vJFYYBzt70weknplK/SFCQTY5vtl575x1yfgA6T2sbA728yAkKDSXHb8ECHVrwOnU02eejR8WTBbJKr3GlnpweW7mSt8adVq1o2KdSKTpiQVGtoXXr0m9HUKVCl71xcSaxl02aA0OytmsXcOCA47MAVsekScDzz1Ns3BD69u2rfn3s2DGEVDGoTJ8+HQzDwM3NDR988EGNz82dOxeVlZVgWRaffvop3By1iY5nOL0DJCbFrQMXF5owKZEAFy8C588Lejg/PyLrAqg9o/qwreoQRHFzdOABAdQ/sHateKwiHlBd1ry9vTBiBODfMhoPfaKx5mITqJatsKwOUaTo0kXXFtSZk3n7NlFb7d9vsOyRk7UGDcLRqRPJmQ3a43hB/fpAUhK93nI0AOmlWnRM9+4JZplYpNcYBvj2W2DiRLpho0eTNWENPD2Bp58mb8fPT5d+EtTb0qsXbSKGgCMvek0mo++uVSvSXxs2UNrGSl3m4kK+1YwZGmY4MUBsayjnABlbw+wNW/T8cA6Qs8waNyRrKhX1yO3eLc4MqTWQSIhDyN3d+Laenp4AgCNHjqh7gFauXKmzTWRkJHbt2gWWZcGyLKZOnQqGYfDuu++qe4Ae4xFwgK5cuSIaxV0D4eE0FwgAtmzRSyvLJ+LjaWRLUJBhFh1BFbebG9UOyWTAtWtkODgBalPc7u7A2CcZuMQ3xg1lXdy570Y1HI5UwG4ADAMMG0YGW2EhUSCrbf769TXyvXmzXkqw6rKWlESytmePTU6fF3TqpHECDx2qevP6dWDePMp08rxaW2WQSiTA3LlUplhaSlER9VAnC+HhQSHMCRNqKBaplJwgMZBA8qrXJBL67rhG4127tG6+5QgPr70J2h4Qm/MDaByge/fEa/jbivDAmTJAxmStoIBiDFJpjTjLI4WRI0cCADpyTDNVaNasGS5dugSWZXH37l0kJSWhtLQUw4cPV5fEffnll+rtq5fGPYpwegcoPT1dNIpbLzp3Jo3etq1NnuoBA6gdIDRU//9torjDwuhEAKrHUyj4P4YNYUxxh4UBQ0dI8dQnjVE/uoJ6JVavNq8ZS8SQy4EnnyTbNy2tWjKzWzegdWtauVavJo7rKuiTNY4I4d9/Hefr4ZzA7t0pqQtAY8VevWp+450B8GKQurhQuq5zZwq69OtnPRmLu7tu+PLYMU1nr/rcqRTOHglQwTLavXpRObOXF9C0qfX7rALLkg9tzwS5GJ0fgBKNPj4UV6gmYqKALdnenMUBMkXWuPiwr684ssl8YccOagXn+oCMoWHDhjXey8/PR3JyMuLi4pCeno6EhAQwDAN3d3esW7euxvZr1qyBVCq17sSdAE7vACUmJopGceuFREL1Ib16UWhDYLi66kYYtae125SmMyGBDLDJkx06nGOqkRAfDzRu5UWegkxG1s3VqzY+W+EQEED9ML17061Vg2GAgQOBxo1plV62DMjOrlXW2rYlMrm8POsTE7aEXE4OkJr7oV49utdSKZW4rl9vtTXLq0Hq7k6d5C1aEKVznz6mr8DGcPEiTUFdtEjH4d2xg/hPePgqzILgeq1jR5pIGRCgec+KC2RZSh4uWWI/FSFW5wcglSLWMjhbU11za7kjO0Cmypq2A+RMuHiRmB+1bTFD6K2HYfXkyZMIDw8HwzCIjIzE2WpUknXq1MH777+vLp8bOXLkYxpsPAIOkJgUd63QpjesrLTJQEWWpYqNWbOob9nmMwq46Kkx2hMRwyIjISIC+Ukj8I/7eJTVjxP+JG2Ihg2pHKyG6Egk5B1FRgIlJSibNw+H9+/XK2syGbEWAo7TB1QdKhVVRF1WNqTrlkjIm7OCD1oQg9TPj0gq6tcHbt2iTFC1waYWITYWiInRMKVVdau3bUsBmDt3KEFkC9hMr2mX/l2/Ts6fqRZNNTAM+c8Atc/Z2k4Rs/PDQYwOkD3m/MjlFMuQOKglZ46scarJmRygggJy7BgGiIgw7TPNmjWr8V5SUhIyqgWwOnbsqJ4dlJGRgc8//xxFVXSBrVu3ftwHhEfAAXIoPHxIob9Fi2xS3HzjBq3RS5aUYv/+w/advXL/PnD4sO2PayEsNRJYFlh2rinOl8TaPBJuS5SVUW+4uq3NxQUYNw6lfn444eeHiLp1a5U1jlTAkfqAtHHqFLW2rVsH5IbEER80wxARxPbtZt90QQ3SsDBg5076ff489bVYS7Hk6gqMGwc0aKCZm3PjBgICKNEEkIMoNNOZXQZPKpUk+LduETW4DiuI6UhMpEfm3j3ala3gCM4PQAnlceOAsWPtfSYEew05TUoC/u//NGyLjgRzZc0ZM0DaA1BN7ZM0JFtjxozBlClTAACHDx/Gd999p3e7U6dOqTNA+QL3nosZjx0gMcHFhZ7y7GwylAQEw5BdJpWW4cSJNKSmNraf81NQQI3ZO3bQ0BCRwxojgWGo/1wqpUs9uLuMGuXz8gQ8Y9tj0yZiB16xQuPLK1Qq7GvcGP6dOxuUNa4PaP9+8TY5G0KrVhShLiujVhtlk+YaCkaFwiwHyCYGaf36pG98fclzGzPG+i/exQV46iniSlcqqfTxyhW0bk1+UUUF+QlCBQDsZZCqqdy8vIDMTNJrWtTgpsLTk1rnANvFhRzF+QGoTLZRI8NkPraC3WTNgWGJrHF2up+fsOdmS3AOkKmFMJysVUevXr0AEBvc/PnzDe4jISEBAQEBkEgkYBgGfn5+WLJkiVnn7Sx47ACJCZ6e5JUAFC3machebZBIFAgPPw4fHx9kZETj6lU7KW4fH93BsFoDFcUGPoyEyEgNB8Sev27i+v4MipI70VykpCQiB7t3j1pNCgurjIToaI2RkJ9PvSLV2GiaN6d2iqIi4MwZO12AFZBKqfKNs4E3bQLYhFbElMZR35sAmxqkLVrQibq7U6ne009bz14nk1GIvmlTNU86k5eLwYMp2pmSYpAd3WLY3SANCwOeeQYIDNRk9S3o1m/fngImN28CWVn8n6Y2HMn5ERPsLmsOCEtlbcwY4MUXKfvnLOBm53Ez4g1BW9aqY9euXSYf88yZM8jTCrhOmTIF48aNM/nzzoTHDpDY0KCBZiT4hg2C9QNxD1NiYgCGDAkGwzBYv15wJu7a0asX9Q2Ul1PaQIQ00XwaCa1bV5GjxTTAmtutkJdWTOkCJ6Gm9POjUSkSCXDyZDn++itZ10hQqajU89ixGqkAiYT6ygFemIXtAm9vzZDUc+eqZmXWr69xflhWLy04B7sYpJ07A2vWkOOybBk19lubouG8wZYtKbUXGAg/P3rcASpzLC+3+szVEI1B6u8PTJ1Khf3FxcDChUT7b+Yu4qraBI8cEeAcq+Cozk92NpVS2muSghhk7dIlEq39+21+aItgjay5utK4BQ8PAU/Qhqis1PDOGMsAVZc1fo5Pg1HnzZv3yDrujx0gMaJnTxoIUVLCK4Uuh+oPU+/eDCIi6HBr1tiJfphrlPfxoZKRdetE1SAjhJHQvz8Q1VCO0iZPYPnllii7nlqVLhDPdVuDmBigS5dipKam4saN+nBz0zISJBJqCOEIAnbs0LluLgbgQG1hNVCvnqafaetWLZI1bnjm8uVEA18NdjVI+/cn4gKGAX7/HXj3Xev3KZEQTzg3MwdA21aVaNOGEk18zQgSg0GqA25IbGwslQGa6QABmkBAdrYwetlRnR+AkmsHD9onSywWWSsooHnTIi6aUMORZU0IFBZSkMPTU5dAsjrEImvOiMcOkBghlQIjR2ook3i0AvU9TFyQ1tOTqlXs9nx5elKeWyql8j+RhP+FUtwyGV2udx0vSNq0QlmljFZzkVy3tVAoFCgrO4B27VwRFBSM1asZ3RkwjRoBQ4fS6yNHdK5bOwPkyP5gp05UssEwWgRrDAMEB9Prf/8FDhxQby8KI2HsWOCPP+j1V18BX39t/T61lUpZGZj58zDI9wDCwqzfNSBiI8HVlejQ+/fX1L2agchIYPp0qqjjm+lLFLJmBTjWrNxc21YPi0nWOJkQe+GAtbKWlUWl1EKUzNoLfn7ASy8BM2bUbnMJJWuJiYmQSqVgGEY8utIOcHoHyFGGKdZAYCAtmOHhmjoIK2HoYfL3B157jdiH7Po8aDfIpKTY3foV2kjw9qbWkGfeCYHP8Kp0wa5dDkEGYQicrEVFReKFF6IQGclAJtNjqLRsCfTtS6937aqqFaOWMBcXyppUsSg7JDiykenTqz3GHTtq6sB27wYOHxaXQTp9OvDNN/T6v//VOER84PJlID2drnv3boBlkZlp+TxkMRmkeiGVUkMPZ62qVGTJmbg4RUTwr5NFJWsWwsNDEzlPT7fNMcUma9oiJVbwIWuZmcSumZwswAnaGdpzGbVhSNaaN29u1jGqy+nRo0fVr/ty6+8jCJnxTRwbjsqPD4CMwxYteLkIUxS3dilKWRlFlexSb9uqFR2YC53bCbYyErhkANq1A3JzUXL+OtyDggQ5li2gT9aefJL+5+2t5wMdOhDjwcGDFObz8oJ7o0Zo1YpahA4fpnI6R4Wbmy5bVUVF1cDUzp3JctmzB+z27bh95w7SAgPFY5C+9Ralrf73P+CFF6g89amnrN/vE09QX8yOHcCBAzh9yQ2b8jqiSRyDMWPM25XYDFKTwFEk3rxJmX6ZactwWRndjtBQ6w7vDM4Ph8hIItBMT6c5ZEJCjLLGzU4XqwPEl6xx2XNnYoCrrNTcv+owJmvNmzfHhQsXTD6WvqGnSqUSMhN1j7PCkd0Dk+GwJTQMo+v8WEgFZK7izsykgO+aNXb67hiGwuXa125jDW8PI4FlgX1uffFT+fPIk4UIfjwhUJuseXvrOj9V89g0SEoixzckBKhTB4DjEyHoQ2oq8PPPWrNdunYF260bsrOzodqyBV3kcnEZpJ99RnUaLEupyk2b+Nlvx47AwIEAgPCUI8DVq7h0kTUr8SlGg9QkNGigKfNdtMik+q3UVOD774knxRqd7EzOD6Apg7OAZM8siFXWxJwB4lPWnM0BKiig6uKFC2veO1NkzdwMkD5Ia/O+HiE4vQNUUAAsXUrDuR0a//4L/PYbDSs0A5YobomEGvRu3hSB8ckNDNm40WbemL2MBJUKuHFLgpJKVyxfXkWEd/euKBnx9MFUWUtOBn78Ebh6VetNbkDSlClqT4kjQrC7DPKIs2eJaXHNGtJNLMviUnAwUqKjERUTAw++mmL4AsMAP/0ETJhAz+Lo0cDevfzsu21bYNgwhHkXoZPsGHD5MrZsUpnUzyFWg9QkNGsGTJwIyOVU5jt/vlG2z7AwuhW5uRZxKQBwPucH0LBnpac74UwpEyBWB4hvWeN6R53FAUpLI16UkhLdOK+pssaHA9S5c2cwDIM5c+ZYvS9HhdM7QCdPkvOzcSNQWmrvs7ECEglp+M2bTR6aaaniDg6mnl2AaGo5rnq7ICODiAHOnKEiYIFhTyNBKq0iRfCmZN/6n1PBzl9Ag1LFtsJVgzmylppK1Mf//FONvUgi0akV6xhANNEXLgjGBm9z9O9PxmxREbBqFYsLFy4hLT0dcS+9BPmrrwJNmtj7FGtCIqFZNkOGkBIdPBg4cYKffT/xBDB6NLrFpCJImQFFXrnRGdBiNkhNRr16RJPNPex//WWQysvV1brBqM7o/ABUDiiV0tJYI6vMA8Qua1Ip/YjptISQNWfLAHE2lTb9tTmyxocDdLhKkVzViUQ+WnB6B6hLF2qULCiA0YVV1OjSRTNefs0ao7Qv1iruhAQaSKlSAatX23FGZ1SULpewgLUOYjASvL01RHiXMvxx8G5d4MYNunaR1nKaK2t9+2pEefnyWgITFy6gzr7liAnIB8sCWj2bDg0XF7q/rq4sTp3KxsaNJSRr3t5azWCgkKeYOn5dXGg+V48exFbQrx9w8SI/+27aFLIJT2Lohy3BuLvh7FkSeX0Qu0FqFkJDid4tKIgWqMWLKctWCzgehZQUGjBsKsSg14SCTAa8+irw9ts0eJhPOIKsNW0KfPABJRTFACFkjWU18wmdxQHizBhuAKq5shZlyuRUA+jVqxeSk5PBsiy+/fZbq/blyHB6B8jFhZh2GYaSCJaWD9gdEglNkXdzo3z/nj21bsqH4uYqkgICSPnYdSxPp06aafIrVlB9Hs8Qk5EQFVVFhOftjT3y/riWG0gRdyGnIVoIS2SNy3T5+lJJj97ZU/XrA4GB6BR5BwBwaK+S/5O3E/z9WTRvfgMFBQUoKmqBtLRqslZUBCxYQF+MPYac1AY3N2D9eiLryMujOU63b/Oz79hYRCUEoV07+nPzojwoC3SjLo5gkJoNPz/KBNWrR5k1A03JPj5AfDy9Pn7ctN2LSa8JBV9f/jMgTilrAkMoWVMoaOmXSOgZcHRUVGgCGJGRlsmaufLYunVrXL58GSzLgmVZ7Ny5E82aNbPk9J0KTu8AARRtTkyk1xs2EAGRQ8LXVzM35dAhvY1NfCpuuZxK/mUy6tfgq+rFbDAMXXdICDk/K1YYjJSaCzEaCa1bA23aAGxQMNZUDEFRuQuxZvEVdecB1siapyeNm5HJSIz//VfPBhMnomMslQUdXpfp4DWsBE7WXF1vYfToCLi6umLdOujOR+IYEFmWHI4qanBRwNsb2LKF+lju3SMqb/WEV+uRlAQES3PRLmM9pIsWqLmxndog9fCgganaNGaFhXojTpyDmJxsfB0To15zBDi1rAkEIWXN25vmMb/4ooOz+lYhI0PDsOvqKqysnTlzBizL4uTJk3Bzc8OgQYPUs38qeLShHBVOIE6moWdPqjBRKKiNxmERF0e1EACwdq1ObZoQirtOHap2qV+fbB67QS6ngYJubpQ/3rqVl92K2Ujo35++937To+HZpRW9uXYtNdHYGXzIWng4tZUANAu0RjLBzw+dXqHGh6M3g1GxeDl1jjooqsvaoEHuiIyke+zurrUhw9DN557zDRts0v9mMgIDyRmvX5/o7Hr3plQeD3B1BV6YVoEOjXIhyc4E5s2DIi3N+Q1S7WvKyyPCm23baqRGIyJIJ1dWGp6PJWa9xjeKi4kd748/rK9ScDTnJz2dSJ7sWd5vC1lzdaVKUWcAV/4WHFyKw4eFlbVLly4hPj4eDMMgJiYGm7WMX2fWCabikXGAXFxoIKFEAty/b8eeFj7QuzcQHU2/q5rGhVTcrVtTjbGnJ2+7tAwBAcCoURQ64WE4rNiNBKmUvveEVgw1zjRpQpkvO/eG8ClrLVoQI3LnzpSprY5mnf3h462ColyO5JOlZOmIfey5HuiTNe7+jh6tOycIABnE/fppUtcbN4rLCQoPp8G14eGUlRwwgLfSVEmdUCoL8/dH8b0s3P3kU9T18HAIg5QXpKSQVX/sGBGgaDn9XGnya69RVbA+iF2v8Q25nCoUMjI0zfKWwNGcH4CqZa9dI5GxBx41WeMDfn5AdHQpCgvPCC5r48ePx0U9VSNPPPEEbt68KcgxHQmPjAME0Fr91FPA889Xi7g6GmQyogtOSAAYRnDFzTC6Acpbt+zYD9SwIa3+Vk69cxTFrf7eJRIU9x+Js7GjNBR9doAQsta7N1VS6StvkEqBxA70j0Pp9YhCzcHqIAzJmlyuuccsW43gkalyfLWdIDERI8TEUCYoIICaUoYO5a9MMSAAye2fxP8OtUD6wxg0PnwYDI+ldqJGQgJ5xdysoIULdSjOIiJqbwZ3FL3GJ6RSqo4GKLhpCRzR+QHsy/5mK1k7dIjGjwk968lWiIpSICJiH5KSfGwqa6+++iry8vLAsizOnDmDCG6I1iMMx7IkeEBsLGWDHB5VD41CocCR3btRTy63ycO0bRvw9992ns0il2te5+WZHfZzRCOhtBT4c74L1l2Px8VLWhazDet4hTIStHdTUUFcD9qVP+p5QPKe1CTiIMYJYLqslZcT2+Iff9TiBHXoQKxh9evb5sRNRbNmpBS8vKiRa+xYXsoUFQoFdh65g4dxnXGysieK8yuIGMIAVbRToVkzGjzr7k6W39y5escfaPcBOaJe4wvc+CxLHCBHdX60YeuApC1l7epVGmfCMcE5MviUNWMOTEhICFavXg2VSgWWZfHjjz/C39/f4uM5Ix45B4gDy5Khdfasvc/EcigUChzfvBnNDx1CoxMnwNiA3YGLtO3ZY7+0uxopKcCffxIpgolGl6MaCW5umqq/deuAzDQllcesXm2TGUG2MBJYFli2jOrZd+7UvN+xI/0+fNJV86ZSSeQAIqUGB8yTNZmMKsjKyui26vi1DEOMa1OnUvmn2NC2LWWn5HLqV5o61SqZ5GStVy8vxCfUQWnT1tih6EhZ38BAHk9c5Khbl75LPz9yfv76i2YGgapAly0DvvuO4j+Oqtf4AucAmZskdHTnxx6na2tZ4whiHN12VygU2LHjGHx9o3mRtXiOElILI0eOxO3bt8GyLDIzMzFy5EiHk2lb4pF1gC5cIENry5ZqDEwOAk5xhzZujNC6dcEUFdFkSYENwoQEoGVLzXwgIYbPmQxfXyqHysggtiwj1+7oRkLv3kCDBmT7L59XjOLkW8CVKyTIAt53WxkJDEPMdwAFJ86do9fa80/S00HCt2QJGdv79wtyLtbCXFmTSDTtbRkZepqaGUY383nypOlcyLZA9+6kEGQymmfz6qsWyaS2rMXHN8XgwQwYFxnO+XXD7YQRmvJHETu+vCI4GJg2jeq3AwLUVqBUSnqgshI4edKx9RofqFOHfpuTAXJ050cbtnocbL2GKpWa1kJHdoA4WcvKaoitW5tgzx7rZa36MNTk5GSsXr0a9erVM3kfKpUKubm5uHLlCg4cOIA1a9bg999/x2effYb/+7//Q6EAI0fEhEfWAYqPpwBbebmdZ9xYAB3F3bIlmDFjqK7v5k3Ba9MYBhg4kNblwkLyuWyQgNAPPz8aKCORUG+EgRHpju78ABoj2d8feKDyxSq3CVCxDDVLCzQp1NZGQlwc0LUrvd64kZiWvb3J6QaqxFsiIUIIgMquRDYl1VJZ8/GhUV8MQ5Tztbb7pKVRUfyWLXTvxYJBg6g+lmGAX3+lCY1mQJ+sRUZWOcUSCTZtk1FmjGXJ+RXTtQsJLy9g8mRg3DhN/TbLom1bkrWtWzORkpLusHqND4SG0u+CAtPGXDiL82PL07bHGspVt8vleohiHATassYw0WAYRl1JYw2qO0CNGjWqsU1GRoaa9lrfj1QqRVBQEOLi4tC1a1eMGjUKL7zwAj788EPMnDkTzz//vPUnKmI8sg6QRAIMG0b0iikporOhaoVexR0cXDU5E1SbJjBNsqsr9ehyPteBA4IezjDq1SO2LIBYqfSMkHcG54eDuzsRebi6ArfLI7HDdzT9Y8cO4NIlXo9lLyOhRw8ag1NRASxfTtT16jI4zsdNTKQNAepBEcnAUGtlrWFDoEsXer1hQy3s0hERRJsHEB28mJTXU08Bs2fT6//9D/jmG5M+ZkjWkpLIB8jNrXKAr1yh+711K7Bvn2NFryyFq6tu+ePevWh0ZzuKi+8jM1OBwMDODq3XrIVcTuXZdeoYr0pwFufHlrDXGqpd/uaIt0lb1mJjmyIzky4iKsr6fVd3gFz0NLfPmDFD72e9vLwQExODdu3aYeDAgZg8eTKmTp2KsWPHYs6cOdi0aRNOnz6NJUuWWH+iIgbDss65ehQUFMDX1xf5+fnwMTA++ORJCqbKZMBzz5EvIVYYVNwsSzNizp+nUPLzzwveL3D2LGXPJBLglVfsmKJmWUoXnD5NYaLp09W9As7k/Gjj8mVqfQrwZ/Fcve2QnzlKQvz007xoV3sbCWVlwJw5QE4OMb7L5cCECeR0d+lCPm+/vizi7+0Ac/QIrY6jR9fODWwD8CVrKhUlUu7cIYPu2Wf1LP4sS8EOLvrAESWIBV99BbzzDr3et0+T1tMDU2TtwgVgzRpK/I0dw4I5sF8zPTcxka7fES0kS3D/PtjffkN2djY2FCTgVuRENGzkhqlT7X1i9gXLGhcBe+s1vsGymusW6lLsuYYeO0Zxjrg44ldxJFSXtdRUBvPnU0XDG29Yf79KS0vhrkVnrM+U5+SbZVlkZGRgz5496p87tQwSGzNmDFasWGHdyTkIHtkMEIfWrSnqWlFB5VxiHTFiVHFztWmBgVQHsHu34Of0xBNkcz35pJ3rcxmGMmBRUUSXVmUUOqvzA9CCMGIEMP1ZBvLBfTQpkxod9OZDDEYCN/dWLqe+77ZtgebNqSZ8zx7g7beBFi0ZRD7TB88cmoJVyXF4sGgTDcWwA/iUNYkEGDmS2j769atloWQYmu7MORbbtwMHD1p8TN7x3/9SyRZAabxaYKqsxceTbz92LMBIGKBbNw0d/NGjFPwRq/LmGWxoKG62bIl8hQLDQ9PhduUiUm+UPzIEebXhUXN+ALpmicQ5nR+Asv+A4/X/6JO1u3fpf5GR/NwvNwM1gaNGjdKRb4ZhEB4ejgkTJmDevHk1nJ/Q0FAMHToUH330EaZMmYItW7ZYf4IOAOfPAD18CB9fX4PbFhZS1UZ5OQ0mNKOHzCYwS3Hfv0+G0KBBjls0aykUCqqR6tkTrFTqtM6PXiiVYFesBNO1C6VMLITYjITbtymhGRhIkc4bN6jibds2SgBoDzSWMCq0b6VEvyFy9OtHwQ2pVPhzFMpIMCWiDZalDMvevfT35MniUWBbtlBQJjKSynKrXQwvsnb+PKWhVSqKZI0ZQ+ViTgptWescEQHPTZuw7ERDXC2KRKdpceg9yvBa9yhA33MjNr3mCLC388OhrIxiG2IkwNSH2mRt2TKi9O7TR1PSbS205Zgz5Y8cOYKOPBzgf//7H959912r9yNmOL8DZKQEjsPNm4Cnp4ZOUyxwJMX98CEF4Nu1s+95iEVx2wosS6WcFy7Q6BCZzLL9OIKsaRs3paXk65NDxOLiRd3zDQykxaZfP/otxLNtK1nLyaH7WtsATBw4QOmxnj0FOb5FKC2lm1BcTOWpCQnqf1kja8XFlPTp2rVK1q9fB1auJCdo8mR+CuxFCL2ylp2NlF82IidDiWbRhXCbMEo8DrCNUVREpaP5+ZQh5ggDHUGvWYqMDNKBAQHUK8cXHrU1lC/UJmssC3z7LcnoM8/wp6L0OUAvvfQSZs+ejaCgIOTk5Bj8fHBwsPonKCgIISEhCAkJQUxMDCZNmuRUz4o+8F4C9/HHH9dgmgjTsjxYlsXHH3+M8PBwuLu7o3v37rh48aLOPsrKyvDKK68gKCgInp6eGDJkCNKsGQNsgo/XoIETOj8sS4aHDagMi4tpiOOWLbz34psFteJOTUXXsjJ42akkypYoLtZwX2zcWCXu9+8TLbGJ5XCOYCTcvAn89ptGnN3cgF69aGFJTmaQmkp9QyNHAj7eKuTmUtTt6aepl6ZVK+DddylhwsOsTpsZCdeu0bO1Zo2BKq8uXXSdn4oK+5MDuLlRbw5AjA5VsEbWWBZYuJDYz48cqXozNpZu8siRj5bzAwDBwaj79li0bieFW4WCyp8fUbi7E1FGaamGPcwR9Jo1KCwELl4Ebt3ib5+PnR/LYEjWWJYqdtu311C28wlvb2/166VLlwKA2vlhWRYsy0KlUuHSpUv45ZdfMGLECPj5+SE7OxuXLl3Cvn37sGbNGvz222/4+OOP8fTTTzvds6IPgvQANWvWDBkZGeqfCxcuqP83c+ZMfP/99/jll19w4sQJhIWFoXfv3jp84zNmzMDatWuxfPlyHDx4EAqFAoMGDUKlJTXe+fkUFrpyxeSPZGRo+mvtBV4U97//kuGxZo3gXNUeHpoA7/r1tbBXCQxtxd0lIADup08DmzeLYGKrsPD0pP5/iYRm5xw9WAEsXUo8ymvXGjWEHcFIUKmI6C4ri4L9+lRBVBSNTFn9cwZy3v4GB55bjPdeK0Tr1vT/M2eAL7+kkTWBgcDw4eRYWCIetjQSQkKolO/uXU2lm0EolTSLZ+tW+ztBgwfT740bAVgvawwDdOpEr/fv15oOHxmpS4CRkwNnaYoxKmuenuQAjhkDtGhhn5MUASQSDYlRVpZj6DVrwT3efF2amJyfwkJg0SJSY2KHMVmTSKiPsX9/yys0DKGplu57yHn/VeASERKJBE2bNsXLL7+Mf/75p8Z2TZs2xQG7UvraHoI4QDKZDGFhYeqf4CqtxLIsZs2ahffeew8jRoxAfHw8Fi5ciOLiYrXXmp+fj7lz5+K7775Dr169kJCQgMWLF+PChQvYtWuX+Sdz9iw1EmzYoOmoMwCFApg7l6LE1RJTNgNvirtFC6qHv3PHJh5dr140W6msjBjKyssFP6Qa1RW3R7t2QLNmZCmvWKEJCTop6tfXBNt37JHhZsIospovXjQ4KNVRjASJhOw7NzdyBAwuioGBcAkPRuewG/g8/Dec3JKFzExaTMeP18ywWreOyBLr1SNSiddfp6/K2BwRWxsJfn7AkCH0+uBByoQZxJ075NUdP66VErQTBg4k6+zUKRRdvcqLrDVvTm1uSiWwc6eeDQoK6GbPm0czkxwYpsoaK3PBiaKmmDOnapkrLCRhtpIQxdHAOUApKcUOodesBZ8OkJicH4CCqDdvUoWrmCGGNVTbAaoN2iQIt2/fVmeGuJ+LFy+iMzde4RGBAL4ocP36dYSHh0Mul6N9+/b44osvUL9+fdy+fRv3799Hnz591NvK5XJ069YNhw8fxnPPPYdTp05BqVTqbBMeHo74+HgcPnwYfTkrrxrKyspQVlam/rugqhRA2a4dKlNSgMxMsP/8A/bJJw1qC7kcaNeOwYEDDNavB8LCVDChhYg3FBUV4ejRo4iIiEBsbCwqrFnAfH2B/v0h+ecfYO9eqMLCAD3DsvjE0KHAnDkSZGQA69ezGDqUFZydlmVZXL16Fenp6UhMTIRcLoeyogIYOBCS7GxK6S1eDNXkyXSDnRQJCUBaGoOzZxksPxyBZzoNQfC/q4FDh8C6u4Ot1hjJq6zZAD4+5AgsXy7BsWNAcLAKrVrp2bCKEptZvBjMvXvA/Pnwf/ppjB0biLFjKZt09iywfbsEO3YwOHqUwZUrDK5cAWbNol14e7MICgICAlgEBlKNfVAQi8hIFt27X8WDB3c1ssZHPZ0RxMYCTzzB4NQpBqtXA88+q0Kt9km9eiT7GzYAJ06ALSsDO2SIpinClvD3h0wuB1NaituzZyN82jReZK13b9Iz584BLVuqdNteWBaMhweYvDxg3jyoRo2iL9DBoFevGZC1U6cYpKczOH1KhY5Xl4G5exfs3btgR492nA5yK+Hvz6C0tAIHDlzF2LHhDqHXrEF5OVBZKYFKxUKptDzQYa6s2QJZWXRtPj7WXZuQMHUNPX2a1pCoKGGIeTgHqKjaEKyioiJ4PCLPviXg3QFq3749/v77bzRq1AiZmZn4/PPP0bFjR1y8eBH3798HQJR72ggNDUVKVR3K/fv34erqCv9qvIehoaHqz+vDl19+iU8++aTG+zv27IG/tzfqHj4M5vp13M/ORn7DhgavobISyM2ti7w8N3z2WRG6d0+z+YiJW7du4RZPhb0hAPyvX0flzJm406cPKgSO7Pj7u+Ps2Whcvw6kpmaiYcOHgh5PG/v27dP5W+bvj7onTkB2/ToUt28jvUsXp54XwjAMHjyIQk6OOz5KZTAm2gcRF04B168j4+xZFOhpkOZT1mwBN7cAnD8fjB9/ZNGzZyqCg0v1bicJDET0uXOQX7+OiqtXkZKUpCP7LVvSj0Ihw/nzwThzJgSnT4ciN9cdhYUMCguB27drysrLL5ejV6+yGrImNCorGWRl1cX163J88olxveQdFIQ6R4+CuX4dBSdPIqN9e9vQ4mkh6Px5dCql+1Ps4YEMHmWNZUNx/bofvv22DP363dHx75jAQERcuQLPjAywn3+O++3b65V9R4EpslZU5Ifr10ORlVWO0idUiLxzB5Lr11F+7BjSunWDUqtPwFmRnu6FO3ci4O8vcTi9ZglSU71x/Xo48vNLsGULPwPQba3XasO5c0G4fj0QwENs2ZJp79MxCEOyplRKsGZNLFgWGDbsJtzd+XfImzVrBgDYoNVrCeCx82MEvDtA/bnZDKBJtR06dECDBg2wcOFCJCYmAkCNFCHLskbThsa2eeedd/DGG2+o/y4oKEBUVBT69OkDHx8fMDExYHbuRGxxMVSJieSOG0CHDhRhVCqBoKCWaN9e2AiEdiShcePG/KZR+/QBs3AhmPR0NC4sBDtypOCGUKNGDHbvZuDt3RD9+wuTBaoetfL09NS/YWIiJH//DVRU4Ak3N7B80uWIEN27A/PmSdC2LYsOHeIg2bkDzNGjiM3Lg2rgQBQFBQknazZA//7A6tUMLl9mkJvbCCNGqFCrbdenDyQLFwI5OYjLzISqf3/o23jMGPrNskBenhK5uUBeHoPcXCrF+OcfCbZskUAur8Szz9ZHkybxwl2gAXToAPz1F+mliIgWeOIJIx/o3p0ywJWVYEtKbPLsq1FRAcl//wsAyB09Gk988gkSeJS17t2BX3+VoKQECA1thrZtq+noQYPArF8PJjkZjXJywLZuDbZ9e96OLxRM1mvVUFoKKBQSVFQAsf3iEDlkMCTLlwMPH6LZ3btQjRljFUW+2FFUVISdO0/B398fYWGB6NevqV2SnrZEcjKQlSVBvXosBgwwXydZKmu2QHExA6WSQZ8+LBITxZUBMsdeu3kTOHdOAj8/YOTIBoKcT1xcHAANAQIANGggzLGcCYKUwGnD09MTzZs3x/Xr1zFs2DAAlOWpo0WFkZWVpc4KhYWFoby8HA8ePNDJAmVlZRnkNpfL5ZDrKW9ycXGBCzc+/tYt4M4dSDdtAqZMMVgSUqcOGVqbN1PjcaNG1IwsBBQKBY4dO4aoqChhakhdXGiq5B9/AJmZQHo60d4JiG7dqDc3IUGYpj+uXvnevXvo3Lmz4XrlmBjqeN+4kXLQLi78n5CIEBAAvPqq1jiUAQPIOiouRom/v7CyZiOMGgX89RcQEQH4+EhrlzE/P2DqVGD+fCAwEFJvb6P3PyxMlxFSoWDx3nsVACR4660KNG9uv1kr4eHEK/DgAdC6tdS4gdeiBTVOrVhB/TBFRcQAYQOUzZoFlytXUOHnh4DffgPD83weX1/qe8vIoKHMNW6riwt5tr6+xJu9axdRhXGsGCKEWXqtGlxcqD/q/HkgOVmKmMERwHPPERViejqkS5cCw4bRRk4Gbg2Ni4tEbm4IAgMZsKzTq3rIZBTPcHEx/1qtkTVboLCQri04WFz30Vx77f59uo569QAXF2GCTwFVAf1Nmzap3/v6668FOZYzQXAHqKysDJcvX0aXLl0QExODsLAw7Ny5EwlVlGHl5eXYt2+f+ma1bt0aLi4u2LlzJ8ZUhWUzMjKQnJyMmTNnWn4iDEPK/7ffqEu/qEhvJFgbbdoQBe3168CpU5rB43zCZg10FH4gjWmDUhCGAdq2FWbfFjVrtmhBjtAjUAYC6M6CLCtncD9hGAIDFTh09KhTNAa7upJfI5ebUNHo7U0BDw8Ps7MfLMvi7bezkZkZAjc3FqNGyU0bUCogtMbpmIZGjYBx48j4t5HzU3T7NlyrSpKlX34JRqDjGvVlGIa8JE9PCpeb0CxsL/DRhJ6QwDlANP/KxcuLZiP98w9w+TLNi2ra1OalkEKi+hoaH++4es1cNGtGj7f5EzLERXhQHZSJp9dGinVsCkvsNY6HxdYM/SNGjLDtAR0QvDtAb731FgYPHozo6GhkZWXh888/R0FBgZpXfMaMGfjiiy8QGxuL2NhYfPHFF/Dw8MC4ceMAAL6+vnjmmWfw5ptvIjAwEAEBAXjrrbfQvHlz9OrVy7qT8/MDJk4EQkNNCikwDDX1X7wozHBPm7OHGOl9EgoqFbHqMQyVrVgDqxS3tvNTUEAnVutkSedAURHNTcnMrEDjxqfRsmUkmsbFgTl+nAwhB3YI3dw0r1UqygRERNSysfZ1sixw7Bg5xQZqpDlZO3cuCABQWsogIYEWsj596CcpyWY+hV5UVtLcLaNB/eoZ33v3yLLQ/hJ5gqKwEMVPPQXPoiKwTzwBZvp03o9RG5RKPaqdYagCoEMH3XR0ZaVoHAG+DNJ69UilPXxIgbumTaHJhO3dS6kykVwzHxADA5c9IZGYz+sjducHIHIHLrtdrR3cbrBE1lQqYi0FbO8APWrPgiXg3QFKS0vDU089hZycHAQHByMxMRFHjx5F3bp1AQBvv/02SkpK8OKLL+LBgwdo3749duzYoTPI6YcffoBMJsOYMWNQUlKCpKQkLFiwAFI+FHdkpO7fRsK5Xl40vIpv2F1x5+RQScjw4YIzo926RQ4QQCU8lhLR8aa4MzNpToq7O6URBDACxQJ3d8DVtRQ3b6ahtDQOgweHgjl0ENi9m6hppkxx+OtXKqnC6/ZtCnYbXWj27SNj8OxZmp/i7l5jE21ZW7q0LlasoDlEBw7QgjZ3Lv0wDGWKe/cmh6hDB93sm5BQqYjpOT2d1JjJI2DS02k2WmAgMGECrwxhCoUCKe+9h2bHjoF1dQWzYIFNDO68PBrCDNAl6YW283P0KHDhAmXG7Nz3wKdByjBE7JGZCV2WQIYBevTQ3Tg5mTwmERrApsDY4MmyModXbbzDEZwfgEySt9+mym0xlL9Zaq9lZ5McurpS3F1IpKZqSDBqY0t+DF0wLGvvSXnCoKCgAL6+vsjPz4ePPh5rlQo4dIhCZdywPiMoL6dxOp06Wbdm2N35YVlg9mx6OuPiKDoo8Dls3gycOEEL0rPPmp/W5lVxFxQAc+ZQkXGDBjQcxkm7ZRUKBf799wiOHImHi0sYoqMZPD3kAWQL59LAkOhoyoqKYZWxECwLrFpFmRBvb5Ivg4mt7GxgwQJKj4WHA5Mm6VhKhmStuJgGcO7cSQ5RcrLurr29yRkaOJBar7R7iYTAvn2kk+RymmlkUrQ0I4Pm5BQXU2PjxIm8ZAIVCgVOrV2LLs8+C0lpKfDdd4AWMY2QyMsDfv2VkjoTJhhJdpeWAj//TPc/IIA+YKc6G7sZpNev07BkHx9yAoW2zniGoTX0+nUalhweTvEdZ8atW1TyGBlJgRhDcBTnR2ywxl47eRLYtImq759+mv9z484lPz8fv/32G/5bRTpz+vRpdZvJY9QO57T6TEFmJrBnDzX3mDjxdN064MgR+m2p22h35wfQ1PZJpVQXfviw4Ifs14+UdGkpLU7mjBjgXXFzi76LC1G0bN1q32GRAoGTtfr1w/H662Fwd2dw9y6w5Yg/2AkTyehPTQVWr6aAgIOCE2duwOmqVWQI14rgYFqNPDyoFGzRIhJMGJc1Dw+S5e++owRCejqVGI4fT75EYSG1WzzzDBGptGkDfPghZY6EGAzcpQv5sGVldFyTbmOdOmQZenvTsI35860eFMzJWov168n56dIFmDHDqn2ag4AATZnyjh1Gvgc3N7p+Pz/ynObOJTmwMexqkAYE0E9+Pl3/tWu2O7aVMLaGenrS+pKba6cTtCGysiiRXTVFpFY8dn4sg7X2WkICMH060LOnQCeoBW0GuMfOj2l4dB2gOnVokQaIHSw/3+hHunenKoobN6iFwFyIwvnhEBmpYXXYtYvqhwSEVEqJJk9PYkUxdUC9YIq7Th0ihWAYSk0dP87PfkWC6rIWHMyoL/f0aeB4Sijw1FMk0FevAhs2OLQTKJcT0SHn023fbuQDISGa8rf0dGDxYrClpWbLGpdAWryYEisnTgAff6whADl1CvjsM6BrV7I3+/cHvv0WOHOGH59TIgFGjKDrv3uXslMmITiYyj85J2D+fIstRk7WGioU8Fu3jt788kubZ1W7dqXbmZVF369BBAWRlxoWRpmgBQtIsdsItjBI8/LIONaLwEBg2jQKTZeXE1Pc0aOi1wGmrKFcMk+hoMCAM4ML9Bh61BzR+dmxg3SqPcc48WGvSaXUl2qL/p/z588LfxAnw6PrAAHE1cylJUwIn4aEEKEQQCUwBuay1oConB8OrVtTUyzLUhagoEDQw/n4AKNHk7I+f56MRUMQXHE3aUL1SgCwbZtDRUENoTZZi43VXO7hw4AyvK7mhpw9S0LtwAgMJGcAIH/WqBEcGkrei7s72Lt3ce/bb5F2967FsiaRUMbno4/o+Pfvk18xdiz5G0VFJGb/+Q/QqhXpk9GjiZ3eWATXEPz8gEGD6PW+feQAmgR/f3KCgoIoADR/voZ6yUSoZa1OHdT/6iswlZV0UZ06mbUfPuDuTiodoOS+UeOXYwesX5+cgKVLgXPnBD9PWxikhYXATz8B69fTa71wd6fyv9ataQ3Yto1qlQ2mT+0HU9dQNzdNW5eZ4uxw4EyW2trsHNH5AUgf3rhhPwdWlPaaiXj55ZftfQoOg0fbAZJKyWJydaUn7tAhox9p0wZo3JjWiDVrTCvlEu3DxDDUrMBFQVeuBCr4n1KsjXr1yAiXyQxzL9hMcXfoQNYoywIHD4o+AmoMxmStQwdiLps2rartp3FjYMgQst7tSWfGExo10vR6b99uwgJapw7YCROQqVAgJTAQnXichxEaSqQMy5eTM3TuHPD99/TIeXlRwmX1aurdqVePKG3/8x9yTs0Vw+bNiQSBZcmGNfnzPj7kBISGUlbU1/QZRzqydusWmJMn6fM//mjeyfOItm0pA1BUZJI6JyU0fjx9gSoV9UUJCFvpNW9vKo1k2Zp9ajqQSsl77tuX1oOTJykjLDKYu4ZyqszZy+AMZYAc1fkB7EuBzZe9ducOVbrY4nHSbuV///33zdr+UYbgc4BEj4AA6lZet466ievXN8Clq+k3+O036qXevl0TfdUH0To/HFxcKET9xx+kRcvLhZlcqoXERLK7a1NuNlXcnBPo7Q107GjfAS9WwhRZ4xiBdfDEE2QtiWngghXo2pXKX1q1Mk5wyLIsLj18iHvdu6NDjx6CyZpEQg5KixbA669T4OT4cSLj27GDegsvXaKfb78lbpLp0ylBZapfOnAgGURJSWaKsacneWrcVEUToCNr4eFgxo+nf0ycSI6UnSCVUoBlxQrgyhUqWzZaiccFwpo3t5yi0gTY2iBt3pyygRcuUOCjVjAMbRAYSFZb1VR5scCSNTQwkK79UXGAqj+2juz8lJTQD2D7JYlPe+3GDSqBZlmyd4TECa1ymlAjhCa1XZOPjw9atWqF1q1bo3Xr1mjVqhViY2MhcVKCKOBRzwBxaNmSwq8SCdFDG4GHB7FHA2SwFBXp3070zg8Hf3+KAnON4QKDYXQVW3GxRpHbRXFLpZQ20LaWHSxCYqmsXbxIWQjWv9oNsWfxtZXgfFpjdri2rOk4P4WFRN1jDlOHmXBxoSqxDz+kxGNODmWKOFbqy5eJQC08nPg69u41LpJyOVWfWWQ0uLtrmABZlryymzf1bqoja3FxYCZOpPRWYCDwyisWHJxfNGlC7X3PPWdGGxLD6Do/paVUEspTRtweeq1pU7r+e/dMWtbo+vv00XjPpaVm1FMKA0v1GvcMOLsDxJXAacu5Izs/gOae+fjYlpyUb3vNlvN/li1bBgBwNTKD4YSBvoOCggLs3bsX3333HcaNG4cmTZpAKpWCYRj1TzshBmLaEY8dIIAU/qBBFHJt2dKkj9SvT5mgF17QP0bCYZwfDqGhumGkKlYsoZGeTsmnnTtForhZlmpnVq1yGCfIUlkrLATWrqUSmT17qt4sKqLhMkuXUjTYCZCeTixs2qhV1liWGsJPniSPROCSUA7+/pSIXbSIyBR++40YhLj+9B49KIr4zTfU5G8Kbt2ykNzt3Dmqw1u6lDwxLdSQtTlzqOZOLqeHWMAMiqlgGMp+WDx+iOuJPHSI5iVx4WiLd2cfvebpqZl/a7AMTh8qK0kHLlhAYWw7wJo1NCKCHOHqY/+cDdUzQKJYQ62EPcrf+LbXKitp3QFs4wBxDHAzZ840uB3nwNy9excsy9b4efjwYQ0nSBuGHChHxKM7B8gYjAxINQSHc360oVKRIXP5Mg1UETgjdOUK2Zksy6Jly5vw9LxpX8Wdk0PWZ2UllcT16WOf8zAR1sra+fPE/wEAo0YB8U1V1At25Qr1xj39tMGSULEjP59GvlRUVF1fvAlGQkoKURAplWRBPvmk3eYknTpFI6uWLtU0s7u4AMOGUbwmKUl/luPUKUpi1a1Lt9AsseAaHC9d0tT8PvFETVm7fp28tOJi4IcfbEp7bSoqKymRZbZfducOeZ5lZUQSMX68RSPp7W2QnjtHQY7gYOCll8z4YEUFlYVznlP79tQnZKNyGIdeQ20IpZJElHpqHd/5ASjbvXcvlTAPGSL88YSQtfR00tvu7jTQVSjxrX6upaWlkNdS911YWKi2hZ3U7DcbjzNA+pCeDvz5p1kUMpcuUdDU4RV3eTl17T18aJP5ME2aAF26sMjOzsaGDSwaNOCvCd0iBAWRdQnQDRUxPTYfstaihYawa/164N59CXkKHD3u4sXU7Oag8PWlnjOAri8z0wQjoW5dMni5OVHLlwtaDmcIrVsDv/9OZUx//UV2qFJJwfk+fWjg5xdfUNZIGzExdPp37lB/kVmQSkkGEhIoELRuHYr37NGVtcpK6vcpLqYhF6++ytcl84bKSsouW5TMrFePaLJ9fCgo8tdfZs8KsrfzA1DWUColdV4rG5w+yGRUR8gNMDl2DFiyxOpsmClw+DXUhnBxIUIVZ3F+ADI53N1tw8kjlKxxlaNRUbZtK67N+QGA6Oho9WvtsjaGYeDi4oLExES89NJLmDt3Ls6ePQulndY8W+JxBkgfFi6kuTgREUQTa6SWgvP2lcoyNG58FK1bBzm24s7KogW/vFzwLAjLskhOvoTFiyshlTZBSIirLRJPxnHgAHWoMwzNyxFBaY82+FTcKhUFu69fJ3vv2WcBL5cyKv9JTyeCiKlTLYqAiwEqFflxN2+yUCrvo0OHZPTo0cG4kZCSQkZfeTnVvD71lN0yQdo4f570zaJFmvFlHJnXs8/SoFaJhLJAGzfS/557jmi3zUJVL1D5vn1ITU2FNCkJ9Z5+GoxEAnzyCQ088vOjE7JFnYcF2LyZ6PYjI8mfMfsxKSggD+r+fbr3o0ebpAvE4PxwSE2lfjiLRffyZUoTK5VklY4bJ5h1yqdeY1mq6JXLRfHYCgYxyRqfUKmETTgK6WivXElB8V69gM6dedttDWifs1wuR6mB1gVu2/j4eCSbXRMLpKSk6DhRzoDHGSB9GDZMMyBR3RxROyIigMaNS5CSchfJyY1Rr54DOz8AWUpDh9Lrw4eJRkgAcIr73r00vPVWfYSFudoq8WQcnTtr6LFXrbLLpPjawLfilkgo2BsURPbeihVAhVROHfkhIRQ6/vtvM0PI4gFdH4vS0kykphYhJ6cLPD1NMBK4TJCrKzXUbN0q/MmagBYtqKzv3j2K1XTqRNmO9euJ/KF5c0ritmpFtnplJdmvZo93YRgoOnbE2YAA+Pj4oF5qKpisLKK+/Owz2mb2bNE6PwAxArq4AGlpFo754mjCGzYkB2DrVqN9YWIzSKOjrXQA4uLIe/T1pQ51gfoj+dZr8+cTo6ID87kYxfHjLH7/PRVnzuSIQtb4hKM6P4CGGMuWqnHs2LG1/m/27NkAgGeeeQYXLlzQ2/9TUlKC48eP4/fff8f06dPRqlUrW5263fA4A1QbuOYUgAzBhg1r3VShUGDv3sM4cqQ5ZLIwNG7M4KmnHJpRmbBrF1FUubhopqbzBH1GgnbiSejIiUmorKTo782bVGfw8ss0Zc+OEFJx5+ZSZqF1a63eksJCIkUAiJPZAbNAnKydPZuNK1c6QCqVIylJDx14bUhNBbZsoci3JbrEBrh0ie7drFn09+efA++9R3Tgs2dTpVqXLnRfTYWOrBUVgXF1Jcr0Z57RyIRKJXpFt3s3JXRDQmjmkkWGVWUlMeO1bm0wlSY256c6rIqqFxVRQ1Hv3kSawyOE0GtcFL5fP00ZrDOBZVl88006zp8vxQsvhKNTJ3uXTTgGbFViWVRE5oLFZCwmQPvcb9y4gQYc60kt25WVlekwxf3000/w8PDAmDFjLLOTHRyPM0C1oUkTgKP8W7uWLAk94B6mmJgIvPxyGFxcGFy7RiXTDo+ePTWRzxUrBKeE5RJPjRvTwFm7QyoFxoyh+pHu3Z3a+QGoquXll8m+URtJ3t7k+DhoCZy2rA0d2gbDh1ONdHq6GUHs6GiqIdNeIEQWN2raVGPkyeV0ywDy2wcPptcHD5rezlVD1tq1I+cHAN58U0MZP2cOb9cgFDp2pEc3K8uKZLZUCvTvr+v8pKbq6EQxOz/nzgG//mpBP5g2PD0pGKjt/KSmWpBa1IVQeo1TVxYxIYocnKxlZz9AdHQ0fHycw/lJS6Ps9oYNwuzflv1lnp7COj8AkM/VQAO1Oj9cuVtISIiO87Ns2TK89tprmD59Onx9fdX9QJGRkfjggw9ws5YxCM6Exw6QIfTpQ8q+qIhqSKoZPdUfpjp1GHW7zM6doqqasgxcbVRYGFnFPAxINWYkNGtGpFt29jU0kMuJbsvOHpmtFLf27aioADIzQZaEt7fmHykpNqOHtgb6ZK1VK0rkjB1rZuJCe+OLF6kBp7yc93O2FMXFwH/+Q6/ffVe39CIujsgThg2jMkdjMCpr0dHkDAA0rEjkC6W7uyab/O+/VtvrhDt3qP5w0SKgpETUzg9AopqdXYPV3DqkptJ38PfftQ/DMwIh9ZqfH/1+8IC3XYoC2rIWExMLV1dXoWeX2wzZ2VSJIITT6ozkGqdMoKjnqK8PHTqk8/64ceMAAN988w1aao1/SU9Px+eff46GDRvqECVMmjQJe/bsgcru/Qn84bEDZAgyGbEhubiQK69l8NT2MLVtS8mjykonqT12d6fod9OmVu/KVCOB00ssC5w+bRPiIcPQrhkpLqb5IDbMANhDcRcXk22zYEG1YYIXLtA/Vq/myZIUBoZkrVEjXRkz6zJKS4lf+tYtKo8UiRP0zTc0eC86GnjrrZr/79+fRpwZEx2TZO3hQwoI1K1Lhu/EiaKWBYAcQG9v8uWLi3nYIcvS+pCSAnbuXFw5elS0zg9ATjDDUIS9oICnnSqV6u8Ac+ZURUtMh9B6zRkzQNX1mkxGkUKhMw22Ake8yzfHhi3X0PnzKSZg6rw2a/Dxxx8b/H9JSQlKqgyohlptHNy8oCFDhmDHjh0IDw/Hrl27oFKpUFpaijVr1mAwVzpQhUWLFiEpKUk9HHX79u38Xowd8NgBMobgYMoAjBunLvsw9DBxYzPGjRNBDwtf0FYWBQXAjRtm78KSCOnu3ZQKX7NGBKQIABl58+dTem//fpsc0l5RK1dXsvFKSqgVTk0u4+1NDuGVK9R1L7JSMMB0WVMqqbp140YzLsPNjYgR5HLKAojACUpNBb7+ml5/841xBsXiYs2QPm2YLGuRkVQS+eSTJChHjhAXt4jh4kJxnKef1k1mWoyYGGDqVLDe3si+dAmSefPQuX59UTo/AGV2uawgb1mgBg2AadNoYuXDh8DcuaQXTIAt9Jp2BkiEasps6NNrXCLeWTJAXLCNTwfIlmtoeTnp41u3bFPFsr/KDkmqpblz8uTJAICFCxeq32NZFv/3f/8HAMjLy8POnTuxdetW9OrVCxKJBG5ubnj++efRqVMn5OXlgWVZqFQqnDp1Cq+88opaxzlDBu2xA2QKQkLUToBCocCh/fsNPkzu7qJjTeYHeXk0WGPFipqDRwzA0vKQ+HgyXG7cMImMT3hIpRRKBqiW5uxZQQ9nz5S9TEZlYj4+VJbwzz9VTmi9ekQFLJEQ/fGWLaKyLsyRtYwMSmidPWvmsPvISMp6cE7QkiU0jdBOePttclS7dKFbYwhZWTTnd9ky3UyI2bJWpw6lmriZWZ98IvrGR759EzYkBFc6d0aOVIqY4GB4rlxJ9HsiBZfEv3SJx51yAcL69cn6W76cgkMGdIKt9BrnAJWXi6CKwErUptec1QEKCOBnf7ZeQ9PSSPR9fW3LlzNmzBi9769cuRIAMIlrCgXw8ssvq18fPHhQ7+eys7Px3//+FwEBAWAYBhKJBF9++SXGjRuHwsJCsCyLPiIfEm8KHjtAZkCRl4frM2ei6cWLaBoXZ9LDVFBAM0hskQ4VHH5+ZPgolbTQ1UIMoQ1rauPDwjSToA8epNYLu6NNG01qb8MGwfofxFCv7O1NQX6ZjCiE1U5o48bA8OEUFDhxgtgCReAEmStr0dEaVrStW83s2eOcIDc3KgFatEgrTWY77NpF8QiJBPjxR+MlbgEBdMoKBbBtG71nsawFBVFAhKv5nTLFrMCIvVBURLJsjc/KyVrqw4eI/vhjuMbFafTi3bv8nSyPaNKEfqem8lQGyMHdnbKiHGnQnj21elm21GsyGc3yTUwUhXqyGIb0GucAOcOcI5bVlMCZ0qtoDPZYQ7lH31b015GRkQCAgQMH1vjf4sWLAQCjRo1Sv1dRUaGmxG7evDkAmgtkClavXo0OHTqoe4KaNGmCYl4Vie3x2AEyEQqFAie2b0fEgweIVCjAHD9u0ud27KAMxqpVdq+UsR4SCfVEBQbSBMaVKw3W/vPRGNy8Oc05AYB162geod2RlETDWFQqs7NhpkAMzg+H8HDNSKiDB7VYtJo3p8mbAPVE7dtnl/PjYKmsdeqksd9XrjQzUhwZSXRr7u4U+jtzxrKTtxBlZcBLL9Hrl14iY88YZDJK2jAMJfBOnSqyTtb8/CgDJpFQbdXJk+Zehs2xZAklKUxU4TVQQ9a44aCtWxOLS5VRIjb4+RGnD8taVMVsGFIpMGAARayaN9fbM2oPvTZ0KNFge3oKfihBYEyvTZ8OvPoqJeIcHQUFFEOQSjXZO0thrzWUc4BsNS80LS0NAOCtp6534sSJAIC///5b/d6Qqojye++9hwtVi3lFRQXmzJmDkpISqFQqnDhxAi+99BI8jTw0V69exYoVK3i5DnvhsQNkAriHKaRFCwSPH08P086d+gvpq6F/f4qkZ2dTtZDDw80NeOopKv9JTaVR63rCa3yyIiUlUbk5F2C1e9CBa/SKiSGvdskS3jptxeT8cGjeXJP02rGD7gMAMvj69aPXRUV2C7NaI2sMQw4B18agh+zRMMLDqbGkc2ebDxv57jvKzIWGauaSmoKICHL8ysvL8fvvaQgMjLJO1lq1Al58kV6/847oGQK523T4sPlZoFplTSqlgACXGQXoQRFZ1KtlS2Iz56vEqAZatQJGjNB8B1VNEWLUa2KHKXrN25vupTOUwJWVkToNC7NuCKq9ZI1lbZ8Bqg0chbVcLoe7uzsA+l62Vg3z/t///qfe9sqVK5g+fTrc3d0hkUjQtm1bVFRU4NSpU+ohqffu3cM333yDHj164NatW+r3p0yZYvuL4xGPHSAjqPEwtW9PlDqVlZTWMVL24ulJTNIMQ70GAreN2AZBQZQJYhiiaTtxQufffFPCcomngACKEt25Y9Xu+IFUSk0yoaFUf8ADC5aYjYSePan9afLkauUWiYmUBRkwwC4DMfmQNTc3GvckkwHXr1vAbxEWRpN7ueuvqBDcS09Lo2GnADlCvr7mfb5NGwXy82/AxcUfKSmmlfMaxKefUmb44kUaOHPmjOUpFoERH0+nWlJi3ikalTWG0dBxsSylrOfP55F2zXp07EgOv6BJKm2KxQ0bUPbnn0ieOxeRERE212ssS7GZwkKbHZIXiJ1WXQiEhADPPktZLUthzzU0K4ucOFdX3ucEm43OVRHLE1q2GUeH/eabbwIAfH19wbIsHjx4gJkzZyJU66T/+OMPNGnSRF3uNnjwYERERGD79u2IiYmx4ZUIi8cOkAHofZi46L+/P4WMTWDCqlcP6NGDXm/e7CT9QLGxZPQB5NVV0bQJpbjd3akfZcIEXhi5+QHHCPbMM1bT1ojZ+QHICe3fv5bLrF9fY/RUVgK3b9vknPiUtbAwCuB7elpZvsAFRubPF9Tq+vhjMuA7d6bqK3OgUChw7NghjBwpRUhIMC5cYKzv3ff3B7io4nvvUU/Uli1EFiKyBgyJBOjWjV6bmgUyW9by8ylSk5EB/PWXSGp3bQyVCiVlZbh75w7qX72KpjdugLExXfqRI8SMuHOnTQ9rFcxhsdy2jdhSRcGSamfYew1VqWhufIMG1mWwzMGyZctqvKdUKnG/St9wfT6ZmZm4XEX/+N133wEAUlJSAAB+fn74z3/+g/v376sZ3/bs2YNBXIk7aN7QuHHj4OrqCoZhkG5C9ZMj4LEDVAsMPkxubkS3JJVS3bsJYcTOnTVlXE7RDwRQOHHAAEoLSCSCR61CQsjW5iAKu8rHR5de6t49s1cjeytuS3DzJi2+OveAa6T5+2/BGSuEkLUnngBeeYUqGy2GQkHGbnY2DVESIPp/6RL5VwAwc6Z5iTdtWevRoxE6d2bQsiVPNevTp5NOKCoiRjiWpd6wzZtFZ6GZkwWySNb8/IgiOjiYZGDePEovigAsS2qK9z6galCUlGB/YCAk/fsjOCQEzNmz9EzYMB3DtUaIKAlnEObIWnk5cPQocOCAXZLvvMOa9VwMa2idOhSgHTvWdsccMGBAjfdeqmoM/fnnn9XvcVmbYVWsnZMmTYJvLWUDDMOgR48e2Lhxo7rULSsrC5988gl8qqjtXF1d+bwMu+GxA6QHJj1M4eFAnz4UMjaBskQiodJob29SVnbvY+EDDEPMP66uGsV9965NUvY5OURAJapAxLlzFO2t4RnUDjEobnNRUEDjb44erWY8SiTkDLIsDW8SiBJYSEdbe3bDgwcWVDb6+lJAwM+POF3nz+d9EuM775A/MXw40KGD6Z/TJ2tJSbSfqjJx6yCRAH/+STWShw+TbmQYIkZYvVpUvUGmZoGskjV/f8oOc72CS5fWKBe2B65do9skJIO9WtaiohAzbhwYjjExLY0OXtW8LTQ4Gy8/3yaHswrmyhrXi+ni4hwO0OzZVD2bnW3e5xxxDRUSc+bMAaChu7527Zp6GOq6desAAAsWLDBrn8HBwfjwww+Rn58PlmUR7AysG3jsANWAWQ9Tu3ZEv9SggUn79vQk5tzp061nORETWJbFpYsXodi2Dd0yM+FlA8qd/fsp0L5ihUls3LaBTEYWxfHjxIxmBI6quH18NNWP27fT0DcAtAoPHKhhyFu5Uuuf/MBWtfFXrwK//07XZzb8/YkSOiCAvKj58+k3Dzh4kNjXpVLgyy9N/1xtsqYtcizLQ6S8WTMaTAQQL3ffvnSyly7ZfV5SdcTHU61+fLx+R5cXWXNzo7BwQgJ9wZs3A3v3Wn3u1qBePboleXmauSt8Qq+sNWhADR7BwZQBWrXKJg4xN4uloEAkFQO1wBJZ03aAHB0VFRTUzM42LxgjljVUqRSHHcI5ONozeho3bgwACAkJAQAsXbrUYWwNofHYAdKC2Q8Tw+iOXTdBy4aE6CosG5dE8w5OcWdevown8vPhdvs21f0LjIEDNdUlK1aIJLjcrBkZfAANaDl/vtZNxaK4LUViIpWMqVRky3DzGyCRUJc1RxSybBnNyeEBtmwMZhiy1Y8f16L+NgdcJoijjJ8/n1Z4K8CywH/+Q6+nTaNxTKbAFFkrKaFb9eefPGSn33uPiuHv3aMhaOPHU2fw7dsWfpnCQCIBnnuOdIm2Ggd4ljWplOihk5IoSKJdx2sHyOXkBAH8J2kNylpAAAlus2ZUDmED6jKu4qKyUrxVF5bKmjM5QHl5pN/kctMpy8W0ht68CXz7LcV47Inhw4cDAFatWgUAOHLkCAAqa8uqaj5/6qmn7HNyIsRjB6gKVj9Mly9T/tbEaegsS9HcP/5w3H4gbcXdrn9/yEeOpH/s3y+4oSOXEymCmxtRTwpZzmEWEhOpDwIgFig9hfZiUtyWgmGINCAyUmM8q4P7EglRH8bG0iq9ZInVwyFtzYrUqBHQtSu93rjRQt/Fx4cyQcHB9CVZOY5+3ToqO/TwAD76yLTPmCprLi6UpFIoiOrcKri7k2IDqK4lM5OcwS5diDpdRNDXrCyIrDEMXf+rr+o2XNmpN6pRI/rNZ1uSSbIml1P/bN26mvdu36a+MQEglWoMajH2AVkja5zd4AwOEJeJDAw0rZxPbGtoair95jKO9oA2MQHXq9OxyhZhq4yjqwKVpTsqHjtA4OlhKiwkC3DHDpOMvdJS8pWyssjAEoXxbgb0Ku6WLTVTS9evF7zOOzBQl41bNKy7vXvT8ByuDExLMYlNcVsDmYwaPrk5V2vXasmxTEbc0hyjgBWpTntRwnbvrmnfWLlSa/6ROfDyIuN/4kSrhkNUVFDvDwC88QY13BqDObImk1GSgqPrrxojYTl69qT5SCyrKX1KStKdDyMiZrR796i0UKkUWNa0LaTMTAqa3bvH7zFMQMOG9PvuXX4CcBbrtawsip788Ydg3wNHhCA2Kmxr9Rp335yhH50LMJnQTi3KNdTWA1D1oWfPngCAo0ePAtCUwwVVfakNGjRAIy7y8RgAHjtA/D1MbdtSMTlXE2QkouXuToEwiYSSJQ4wQF0Ng4o7KYlqcyoqaGqpwN2nDRuSvwFQv4aNGJgNg5uu2aABrVJVjGhiVNzWwtubMnEyGWXjdALaLi40NHfKFE3NjZmw5zwMLpHl5UV22ubNFu6oOrf2/fuakKGJmDePypWCgjRlcIZgiaxFRVFbI0BBGasN42+/pShFcjINK+LAsQXOmyc8FZkJUKlIVZ06xWLt2lu2k7VduzREGZcuCXusaggIoFa1ykrr56pZpdckElIiHFOeAIPymjWjxLw9o/PVwYde4wIyzuAAcRkgYw6QGNfQigqN726vAaiVlZW4du0aAKB9+/YANOVwOVXe5QURlR+LBY+0A8Trw8QwwODB9AQXFNBIeSPlDdHRmmbybdvsEgg0G0YVN0d3FxpK9TTLlgne6NShAyWfIiMp0CwKSKWUARk4EOjdW5SKmy9ERFAvxdChmjmQari66qYrsrIo8m0CxDAM0MtLk2U8e5YqXa1CXh7RhC9aZDJBRFGRpuTtgw+MG3LWyFpSErUvPXzIQytfUBDw/ff0+pNPNGmlykrSjRwz2rlzVh7IOkgkQIcOLLKzs/Hvv+Xo0MFGsjZqlKZMdOVK4jO2USkAx0sAWMdTYrVeCwoiViAuaLZuHdUz87hmdO4M9OtHs77EAL70Wmws0fYPGcLzCdoBXAbI0Dg9sa6h9+6RuHp6UlDBHvioaoH4vGo69uzZswFAzdb2xhtvQCqVYtasWZgzZw42bNiA48ePIzU1FWUiIqaxNRiWdbTiK9NQUFAAX19f5Ofnq+shtSHYw5SVBcyZQ4tat26aCai1gGWpif/KFWKGe+45nihpBYBZivvhQ4rodetmk7p/jgTBBn21ZkMta+HhaBobC0aba9kJoVKR71vjscvKojkgDENlYQa8VTE4P9o4cIAckd699Th55kCppAf+xg1NmaCRsoTPPyfHp359csAMRXz50GvXr1PbFsNQz3pEhNm70IBl6UvbvZuiPTt2aLrS163T9Ar27k29c3YwaliWxblzl/HzzzKEhtbDuHGuiI+30cFVKkpdc72jTzxBzXU2UGRZWdSWFhlpmUzzuoZyM6M4hry6dalEws7PPd8Qm14TCzZupIr5kSOJKKo6xOr8AET4unMn8f7YcgYQoLFzOahUKjAMU+P7YVkWiYmJOGZij7o+3Lp1Sz1PyFnwSGaABH2YQkIoEwQQGYARBiyuWsrfn3wGnT4KEcFsxe3nR+EpGzU9y2S6NsPt2+L4HtWyFhqKphcugFm2TCSUdcKgtJTKiebN08O65O1N6YWiImDhwlo5eMVoJHBRZKucH4DKAp98EmjSRFMmamBobHY2DTsFgP/9T3jnB6DIcosWpJOs7tFnGOITd3Ojki+OJkkqpUwxRxiyc6dZ87P4gprFMvMuRo2KgqurKw4etOFpSCRA//6UKZZIKM24aBE9SAIjJIT8DLs7PwDJSffuVDIrl9O6yVNdOBeQ4Xkcl9kQo14TCwYPBl54wfGcH0DT/2Ov8jcO7du3B8Mw+O9//wsAkFQxvGyuqt3Wdn5kMhl8fHwQGBiIwMBA+Pn5QS6XG9w/xyLnTHjkHCCbPEwtWgBt2gDt21N4zQjc3CgQLJeT8SE2WKy4telpiottVu+/Zw/Z1zZg4zYIHVkLDweTkkIL+5o1dmN/EhosS+UMDx9SK5xOJYu7O5EBcOWRCxfWmI8jViNBW01UVlLiwmIjWSaj6DZHlLF6da1lYJ9/Ts3brVuTjqgNfOu1AQPIIOFlUW/YkFJYAPD665p6F4ahYdIcdfyxY1T+ZCNUl7Xu3d3h6kotWlaTQJiLtm2JLlwuJ/kQMbWXoGto48ZUEte6tYaG0UpcvUrtaGvW8LI7iyCEXrt2jdY6nketiQpid34AKr9v08bu7PbYtGkTVCoVvv76awCUDQKAAQMGYOfOnTrbVlRUoKCgALm5ucjNzcXDhw+NlsIpxDDoiGc8UiVwNn2YWNbsco6SEvGVv/GiuAsLKSVQUEClTwKHSs6do0waQHZms2aCHk4v9MranTs0F6Wighb4QYOcY4R3NWRlAX/9RS0e7dtTgFsHRUVUCpedTZnCyZMBPz/ROj/aYFlq4bl9m4L2bdtasTOVCti0iSgMAU1mqAq3btGfSiUlT5KS9O/GFnrNAnWmi/JyoFUrynZNnkyN/9q4cIGcn0mTTKO4sxK1ydr27cCRI5QZmTJF8NOoiZwcKvuyUZlsbi75nRIJZTiNwS4GaWUlUXy2a2dRuuruXWDuXFI1M2bwfnZGIZRe27KFvpauXYl00VGhVJLPX12UHMH5sTdu3bqFBlXNfCzLYuzYsVi5cqX6/6mpqYiKitL57nbu3InQ0FCEhobC19cXeXl5yMzMxP3799U/mZmZOu8xDIN9+/apGeWcBSLsmBAGNn+YtPevUlFhvZHJhdrOT2mpprHOXuBNcXt5UQfqgwdU8jN9Oq1GAqFlS+qzP3yY2gwCA23bAFurrNWrR2U/q1YBp07R92KkR8wRERJCl7l8ORlXoaFk+6rh6UmG7oIFZIEtXAh28mRcSksTtfMD0GMdG0sO0LZtlOC12F6XSKj2w8UFyMioEUJ8/30yDvr2tZ/zo1IBJ05Q8nbcOCucIFdX6o3s1Inu+8SJulZb8+bUC6VdhqFS6R/UYyUM6bUOHagfMy6OB6fPEmgbGCwLbN1KvXJWedq1o7SUjGi53Hh/m90M0h07SJFcukRpUI7X2kRwt1ehsP09FTKo4yw02P/+SzqmWzcqNQYeOz+mYvTo0QCADRs2oLS0VMf56dChA6KiotSZIA69OdpcEzFkyBCsX7/e+pMVIR6JEji7PkyVlRQyXrbM5OGgmZk0FmHVKvtVSvGquBkGGD6cvJCiImJ+ErjGvVcvqrxRKumrF2jOXg0YlbWmTSl1AFDTr2iGF/GLJk00vt3mzXpGY3l705wYf3+wXl64fMuG9MNWokMHimVUVtIzahWJDsNQ6H3iRI0lw7K4fo3FsmX054gR+j9qC72mUBB/wfXrwJkzVu6sQwfg+efp9XPP1WwS03Z+7t6lIao8150b02s+PjSrNDFRBMnZmzdJP2zezDszGofwcBqsW1ZmmIXUrmtow4aaidd//GG0r7Y6OH+posLKZ9VMCJ3RdhYHKCeH1mnu8Xck5+fmTRJLe7X1nq6qHujWrRu6VisZ3bdvHwDgxx9/1Hnf3d0dfn5+CAoKQkBAALy9vSE1EPnYbPH8B/HD6R0guz9MUqlmBsiGDSZRAEulZLDfuUOlL7aGIIrb1ZVCyN7eZNTUaBDhFxIJscwGBtIoohUrhFdSJstamzYa72DXLtt5ZzZG167k71VWEit8jdvt4wN28mRcbtUKd7OyHML5ATTEJb6+xGpt9SBjhtHt+di3D7JD++DlRTt97jnqydF2QGyl13x8NKK6cycPovrll0Qrd+NG7QONWJYOlpNDpbPWDqpR79Y0vSYae6tBA4rkMAw5QkuWUJ00j2AYzYiu2mao2X0NjY2lqoGQEE3v4NGjJj90MpnGSbCVqrVFOS/nzBnpXRc9tIeg2l3WzMS2bVReaa9xZm+99RYAIC8vDydOnFC//+WXX8Klak154403dD5TUlKChw8fIicnB3l5eSgsLESlAVvM0P8cHU7vAB09etT+D1P37rSYcRS4RrIfQUFkYAFUxmXLGXmCKm4fH2L5cXGh0MnWrYLSLbm50eHc3GjupJBKymzF3bUr/UyaZN86RwHBOQqxsdSLVT3IxLIsLqWl6To/J0+Kb2S7Hri7k4MtkdCcT6uzIxwyM4G9exGTsheXf9iO555lIZXSo9KqFdGsnj5dZFMjoX17St6WlJBfYhV8fTX9P7Nn04VVB8NQP1R0NOnKRYtMzp7XBnP1Gkd0ceSIVYe1DgxDNUFjx5IFf+sWNddxFiNP4Jht9fmZojFIAwOJk50jDtm2jaIqJk7r5VRsDWZKAWCrXkZncIAqKjQ8OG5uIpE1E1FSQm2sgP0Y4N5//30AQJs2bXTe55jgCrXW0nfffRcHDhzA9evXUVhYCIVCgZs3b+LQoUNYs2YNfv31V3zwwQeYPn06hgwZgvbt26Nu3br45JNPbHdBNoYgDlB6ejomTJiAwMBAeHh44IknnsCpU6fU/2dZFh9//DHCw8Ph7u6O7t2742I1KtiysjK88sorCAoKgqenJ4YMGYK0tDSzzyUiIsL+DxM3Ut7Pj0LGJnBdN22qYYhdv573NU8vbKK4w8Ppu2AYWtAFLoULCiJDdfRonf5yXmGRkcAw1AOhzRLohMxwrq5EbhUervu+Xlk7doxIARYscAgnKCpK05uza5fJtphhhIZSuahEgsi0o/i950pcSa5Q99+sXAm0beuBP/5oBy8v2+g1iUTD13H2LA8Jmd69iSIfAKZO1U+H7uFBZYFcCnHNGhq4YUHAxBK9lppKh9yzh/eki/lo0gR45hlyHnNzyQnikaaOywClpupmyUXj/HBwdaV60P79SSivXTNZT3AOkNAZIFsSuTiDA5SXxz3SZTh3TkSyZgI4czQw0D4xTJZlceXKFQBArpYOPXDggPr1gAED1K+/+OILdOnSBbGxsfD29oaXlxcaNGiATp06YeTIkXjppZfw2WefqQelHjt2DGvWrMGHH35ou4uyMXh3gB48eIBOnTrBxcUFW7duxaVLl/Ddd9/BT6vpfebMmfj+++/xyy+/4MSJEwgLC0Pv3r11vNUZM2Zg7dq1WL58OQ4ePAiFQoFBgwaZnY5r0qSJOB4mDw9q4JTJiJdTS0hrQ69exEZUVkaJI14MrFpgUwauJk3IK5k2zSa0dw0bCscEx5uRcO8e8OuvxMHrxEhPB06frkXWGjfWGHkLFzqEE9SxI/WLTJnCYy1+y5akK6RS4PJlNDyxDEvml+Pw4WIkJmZBpWKwdq0/GjViMGMG720yehEZqRnptWkTD9WrX39NeuD+farx0+fYuLhQ5KJDB/p7507qhTEjUGCpXqtXj3xRpVJD0mdXhIYCzz5LWbGyMl6DJUFBRBRQUaEx6kTn/HBgGEpJTp5MgbTAQJM+1rQpPadaMyN5h61ZLJ3BAcrJAcrLy/Hw4Q1ERYlM1ozAnvN/OFlLT0+v8b/OHJMEgIMHD6pfMwwDLy8vBAQEqGf/eHh4GDxOamoqfyctQvDuAH399deIiorC/Pnz0a5dO9SrVw9JSUk6VH2zZs3Ce++9hxEjRiA+Ph4LFy5EcXExli5dCgDIz8/H3Llz8d1336FXr15ISEjA4sWLceHCBewysylGVA9TeDgV8wMUzTSSj5dIaP339qZU6+7dwpyWXeiHmzUjp5CDUin8MUFM3H//zU9GjVcjYe9eMvwXL6awmBMiKwuYN4/FvHnZOHkyp6ascZTYvr50gxYupJp/EYPjMAgO5nnHTZpQ6qyqXLR0zhwUZu/GX39l4/BhFj16UEDkxx+JPO7994Uf9JiURJHOvDyz+9Brwt2dZF0mo1TL4sX6t2MYosHr25dem+EUW6PXGEbjdx07Jmi7oung2BPHj+d1YBzDUBmcvz8l5EXr/GgjOppYAzncvk0LZC2OYceO9JwKxbBujzX06aepNcqRmYlTU4uRmpqKmBhv8cpaLeB8A67F21bQlrXqcpbN1eQBuFktS8yyLBQKBfLy8tSzf4qN2KC5tQwrdxbwPgeoadOm6Nu3L9LS0rBv3z5ERETgxRdfxPTp0wFoeMtPnz6NhIQE9eeGDh0KPz8/LFy4EHv27EFSUhLy8vLg7++v3qZly5YYNmyY3prEsrIynUFOBQUFiIqKQk5OjnoOkFjA7N8PNi7OZKspNRU4dIjB0KEsjDjsZoNlWVy9ehXp6elITEyEpz1yuadPQ3LgAFRTplCfkIBYtYrB5csMAgOBqVNVFiegioqKcPToUURERKBx48bWK+7SUkj+/psi4v7+UE2ebDbdKx8orSiFXCoXZCFSqVjMnp2BU6eUiI2NwIsvyvSzoT94QN9Ffj4QFATVpEkaLlsRoqyiDHIZhWFTUqjMpmlTnnZ+9y4qFi5E+s2bUI0ahXoDBoBhGLAssGcPgw8+kODkSYpj+fmx+OqrSkydKlxf3Y0bJJahoaQ7lColXKWWp74kX34J6UcfgfXxQcWpU5Tyrg03b5K1YcKQUD70WkUF8NNPEigUwPDhKjRvbnh7ZaUSLlIbDzB98ADMzp1gBw2CNYtDRQX5oqbotQpVBWQSEU3QKC2F5NdfgaIiKGPqQjpytFXfhbkQeg2tVFVCKjF//pEYwLIsWLCQMDVj7UVFRVixIhkFBdHo2rWO7qgEAaBiVWDA8LK2VVYCM2dKoFQCL7yg4j8AVguqy5q2fVydrjohIQFnz55Vf46DSqVCXl6e3nk/2j+lpaXYsWMH6nE1sk4I3h0gt6oBbm+88QZGjx6N48ePY8aMGfjjjz8wadIkHD58GJ06dUJ6ejrCtRoDnn32WaSkpGD79u1YunQppkyZUmMybZ8+fRATE4M//vijxnE//vhjvY7R0qVLjab5HsN+YCorUXf7dsjz81Hm74+UpCSwAk5BLy2VYseOuigqckFYWBG6dUsTYtSIRZCWlKDu7t1wKSxEma8vUpOSoLJhfQPLsph/bz5UrApjw8bCW8a/A1ZRwWD37mjk5bnB378MvXqlQCarqYJcCgsRvWcPZMXFKPf1xZ2+fcFaMARRaNwvu4/f7v6GgcEDUbe0K/79ty6kUhX69r0DHx9+spryBw/gnpODh3qi/iwLHDsWhqVL45Ca6gM3twosX24b2tKTBSexK3cXxoSOQX0Py8agM5WV6Pzuuwi4ehW5cXE49Pnnpt1nlkXQ+fPIr18fSgEDBRcvBuL8+SAEBJSiT5+UWhniSipL8H3K92jn2w49AnpAxtjAQWBZRO/aBfecHCi9vJDWpQvKBZyvBgBlqjL8kPIDErwT0DOgJ1wkNnb4aoH3nTsoPbsbXwedxJPFzVG/zZMoDQhQ/1+lAsrKZFCpAE9PO3EWW4CiyiLMSpmFTn6d0MW/C6SM+HSgIVwtuor12esxKGgQmnrxFRWyDPse7EOyIhmDgwYj2t26tE1enhu2b68LubwSw4ffsBtz5DCOLQvE1ibRMmY4R2/8+PFYvHgxPvvsM5P7eeRyOcLCwtQ/8fHx+PTTT3X27wzgXUurVCq0adMGX3zxBQDyQi9evIjffvsNkyZNUm9X3QtnWdaoZ25om3feeUeH7o/LAPXp00d0GSAd3LkD5sYNsElJJvOvnj9PZS/WBMVFkfnh0KULJHPnAkVFaFZcDHbsWEEGIHLo2BGYP19SNYG6Jfr1Mz0GwHvmpzp69oSkigSg2cOHYMePt9mgh/VX1yMtMw0yiQwJnRLQKLCR8Q+ZAG1Z69YtEd26eeKvvyQoKgKUymYYPJjVL/q9e0OyaBHYDh0Q164dL+fCJypUFZi2aRqkXlIUBBZgUlIPSKUS3LnDoKCgMUaNUkFmhYZVy1rr1rqyVlREtUpV/Q8DBwIvv0x9OqWlMvTrN0Bwpz6vJA8zl89CobQcXrFeGNBygPEP1YZmzcC2bYvAy5cx8MwZqExYpJkjR8AolcDdu1A9+aSaTIRvvda9OzBrlgQVFUB8fLNaE1RfH/4aldmVSHNPQ79+/azKipmFdu0gWb4cePAATe/ehapNG93SMBPByVqdOhFo0KAx5HL9em32ydkozypHqnsq+vbrCzeZm7VXwAtYlsXza46i6IYUKR4KPJuaClWzZkBVlcm5c8D69RLUr89i9Gh+Yr62WEO/P/o9KrMrkeGVgYEDBqozKaWlwNGjDNzcgMRE4TK+1kDFqrBs/TKUupVCVleGAe1JRwi+hupBsbIYP636CQ9dHiIsPgwDGluhr0AZ027dqCK3aVN+1klDqE3WGjVqhGvXrmHWrFk6zsmOHTvUr2fPng0AaufHxcUFSiMtB2VlZUhJSUFKVa3z+vXr0bJlS/XgVWcB7w5QnTp10LRa/UdcXBzWrFkDAAgLCwMA3L9/H3W0CnKzsrIQGhqq3qa8vBwPHjzQSfFlZWWhI0eNVg1yuRxyPdFyFxcXNR+66FBQACxfTvnUoCCTpn3v30/MRPXqEUmSJUFxrob03r176Ny5s/1nrwQHAxMmEPvXrVtEqTVggGADOaKiqLdqxQrg1ClqzeIavA1BoVDg2LFjiIqKEq5eOSSE+mDmzydihMOHiTVLYKTmp2LW8VlgGAYvt3sZzcL4YY2oTdaeeopafK5cIeZrvY91aCixhYm0y3fBqQW4mnsVvm6++LD7h3Bzc8WYMcBvv1HP3r59UvTrZ9m+a5W10lIS3IICemaqdKh2c7dS6SJ4xeCH677HnYxChMoaY3z8FLi4WLGUNG5MX9qECZD+73+QtmkDDB1q+DOtWpHw3LsH6ZIlwIgRYOPieNdrvr6kG3JyALlcqrf67nzmeay7ug4Mw+CDbh/A082GwaTwcBouu3IlcOcOpKtXE7tk584m609O1nJzG+HMmRi0b8+gZ8+a2915eAfLLi4DwzB4u9Pb8Ha3fYlubdh+YzvOF16HvE4kXpdPhPTmfUi3bAEyMoDBg+HrK4FUSn1zfJgDtlhDUx6m4J+r/4BhGLzR8Q3IXTV68OFDaiN2dwe6dOH90Lxg6/WtuPHgBrzkXpjeZjpcXFx09FpsbFOUljLw9hZ+9taqC6uQX5aPun51MbzpcKtLOF1cKAhtCxiStWvXrgEApkyZovOZvn37ql/7+PjgbhVjQ1BQkE6fkDFUVFQgJycH5eXliLZ1s5MNwHucsFOnTrh69arOe9euXUPdqtBZTEwMwsLCsFNroER5eTn27dundm5at24NFxcXnW0yMjKQnJxcqwPkkPDxgXql2bpV01VnAE2bkj1o6ZBUuxAemILISKI4ZRjgxAnBB3DExWkGPG7ebLyp26aNwSEh1OjctCmFoAVGhaoCH/z7AUorStEmvA3GtxjPy34NyVrdulA7B3fvGmA31nZ+SkqA1atFwQ53Necq/jrzFwDg7U5vI9iTisC9vTUzvI4eBa5fN3/fBmWN68YvKqKAQRUntaenpn1OaOKePbf34GTebsikEnRUfoQjh3iIo40fr2GDe+opYh4wBC8vChQ0agRUVIBduRK3lyxB2t27vOu1AQPoUPrYnipUFfjfgf8BAAY3GozW4SZEUvgGRxneti19f7t3E7GECcQy2rLWuHEMysoYvfLDsixmHpqJClUFOkd3Rpdo8VjdJcoS/HiMpt1PbTUNoROeI8YOhqHaN4ZR93ryQWluqzX0x2M/olJVia51u6JdhG4GnOsOcBNHAq4GyivL8dvJ3wAAT7d8Gn5ufjX0Wloag++/B/78U9hzyS/Nx6LziwAAz7d5Xlz9a0ZgTNa0Wd44qLSIQGbOnAkAePLJJwEAmzZtMuv4MpkMYWFhTun8AAI4QK+//jqOHj2KL774Ajdu3MDSpUvx559/4qWXXgJApW8zZszAF198gbVr1yI5ORmTJ0+Gh4cHxo0bBwDw9fXFM888gzfffBO7d+/GmTNnMGHCBDRv3hy9evXi+5Tti44diRFNpaIoXkGBwc21h6QeOWLefEDROj8cmjYF+vSh1zt2EGeygOjaFYiPp+/UED2qXViRIiOJClk7XCnQ0Ni/Tv+Fi1kX4S33xifdP9HbsGouTJG1tm1p3uWYMSZGADdsoKmjCxYYfU6ERHllOT7a+xEqVZXoGdMTfRv01fl/o0bE1AsA69aZ568ZlTVPT7LG69UjK2jxYuDKFTCMJiJ565alV2YcBWUF+OrgV2AY4OmWkxGExjh8mCfiwl9+IW+jpAQYPNj4rBtXV+DJJ8G2bYvsrCyotm1DV4UCXjz3fBoqJ1xyfglu5t2Er5svXkt8jdfjmgWplGohBw2iE3740OhDVV3W6tal7dPTa7Le7b69G8fTj8NV6oq3Or4lKrau+WfnI6soC+He4ZjYciJdd5cu9JwMHKhxgFjWagfIVmvoifQT2J+yH1KJFK+1rylX3Pg8sTpAay6twb3CewjyCMK45uP06jWOiVVIanIAWHhuIYrKixAbGIte9a23HwsKKGianMzDyRmAKbLWXA8zyw8//KB+/eabbwIADh8+DABITEwEwzAGfwICAtC0aVP06NEDTz75JPbt2yfQFdofvDtAbdu2xdq1a7Fs2TLEx8fjs88+w6xZszB+vCaq/Pbbb2PGjBl48cUX0aZNG6Snp2PHjh3w1mpm/eGHHzBs2DCMGTMGnTp1goeHBzZu3AipCBuhrQLDULlHaChR/q5cqTuNTg/i4jRp7w0baHi8MYje+eGQmEjWY1JSzemZPIP76p95BvrZyCASSliWBf79l7KEPDtB5zPPY96ZeQCAdzq/g1CvUKv3aaqsMQyxPXNfKcsaoRvu25duVG4uOUH5+VafqyX46/RfuJF3A35ufvhv5//qlYnevemRLiqi4aGmwGRZk8up/K1JE9IVK1cCZ8/axAH6/sj3yCvJQz2/eniv/zQ0bEj3bNs2HnYuk1F5X6tWVEPYv79RvnqWYXCpbl3catQIUXXrwv3yZdMUogUoKqKKVE5G0wvS8edpCl+/nvg6/Nz8BDmuWWjThviRx46FoQY0fbIWFETJJKWSKsc4FCuL8f2R7wFQND/SJ7KWvdoe6QXpWHyeKNRfT3xdt/eqbl11/6S7GwskJ6Ps8i1UKi2boWSrNVTFqvDDUTJiR8aNRF2/mo1nnAMkxupgRblCnR1/tvWzqCit0KvXuEosIWm8s4uyseLiCgDAi21e5CW4l5IifJGKNbL21ltvqV9LJBKdwaim4MGDB7h8+TL27t2LFStWoLsNqlDsBUFaZQcNGoQLFy6gtLQUly9fVlNgc2AYBh9//DEyMjJQWlqKffv2IT4+XmcbNzc3/Pzzz8jNzUVxcTE2btyIKHtMnLIFqiKZcHenSXRbthg1dHv0ABo0oMVq+XLDqX2HcX4AzWCVLl2ELwwGJVi0F5G7dzWjJETh/ABkjezfDxw/Tg1gPELKSFHHuw4GxA5AnwZ9rN6fpbKmVAJr11LGpFbR5+YE+ftTysFOTpCKVYFhGLzb5V0EuAfo3UYmo1m/gwZRO4YxmC1rMhmlzp54ggR23To08CLD31jixFIoK5V4UPIADMPgw24fQi5zRb9+lHy4do1+rIaXF01ajY6m+sGhQ2tVbmpZS09H/LRpkE+YQNsLMOyFZYG//qLE9KVL9N6l7EtgWRat67TGwNiBvB/TYtStq0uhv3cvNTtWoTZZYxjNTBPtMriLWRfxsPQhwr3DMfmJycKfvxnYl7IP5ZXlaBfRDt3rda91O7d7tyhwkpqK0nlLzZ4vZss1NDkrGTfybsDL1QvPtn5W7zZizgDtuLkD+aX5qOdXD0kRSbXqNS62ISSF9JrLa1BWUYYWoS3QOdoERWwCuGdDKHPUGlkr1Co32FYVlRpQNXvy3r17REtu4k9RURFu376NoqIifi9QRHCcYkhnh78/WUyLF5M1qFIZZDiQSGgQ9p9/UrXDzZtUzlUdDuX8cNA2/srLaQJ89+5U/iMgjh4Ftm+nAYgdO4rE+QEoEzZwIBmGBw7QqtepEy+7bhbSDMtGLtOZE2AprJG1zEwqKVCp6HK5IZQ1wDlBCxYADx4QWcTkybWn8ATAy+1exuBGg/VGZrURHGza4m6xoy2RkMHv4QFcuID6LcnoFSoD5CJ1wax+s3A55zKaBhPRTVAQJW0PHaIsUP36BhMPpqFOHcp2dupEKZdJkygzpFWLplfW4uJ095OdTQIVan1Wk2GAli3JlzhxAmjeHOjdoDeaBDVRl46IEqmpdNIAkJkJRadOOHT0aK2yFh1N3BKpqRpikrYRbbF6zGrkFueq512JBeOaj0OToCYIcA8weA8ksQ3gluCF0vPXUHLzHjz/+IPWW0Nzp6pg6zW0RWgLLB+1HKn5qbVmFcXsAA1vMhzBHsGoLK/E0SO1y5otMkDTW01HHa86iPGP4e0ZreITEMQBslbWXn75ZfXrvn37qoefAtAhHTMFHh4eTj0DCBAoA/QYFqJBA2DaNCIDMKHUz8ODKh3GjXMi56c61q4li2P5cpOaeq2BlxdFevfuLcfChefF4fxwaNNGwwa3cydRp1mB8spy9WsPFw94ulrnXFora5GRVOEGUJT99m0DG/v6AlOmAAEB5P2vWSNYf5Q2tJ1EY85PdZSWknNdXq77vtVZRoYhuXj+eTRoTr0vQpbAMQyjdn44dO1Kjl67djwmbZs2pXSgqysRX/znP+p/mSRrCgWwZAkwbx5vKbHWrckHS02lecUAEOUbJaqSsBqIilIT7ZQfPIjbn36KqMDAWmVNOwOk/UiFe4ejeaiRSbB2Qqs6rVDPr57x7fqHIvHZFnAJ8afGvIULycE2oDvstYbW969vMKMlZgeIYRgkBCag7FZZrXqttFSThBPSAZJKpBjaZChahLbgZX9lZZoKW755AfiQtb///hsA0KIFXe97772n/l9tPT+pQrPmiBiPHSCxISJCtymC03S1oE4dQM98ROdwfgBavN3cKOyydq2ghm58PNCuXQlSU1Nx5UpDeHmJxPnh0KmTpvlr82YaCGUBsoqyMHT5UKxIXmH3zI822rWjii6WBVatIt+mVvj4aMgAhg0TvFzy7P2zmLZhGlIeGqELrAXLllHN+JYtmvd4K7FkGMDTU9MDdFMF1crVRnsJTcWZjDP4dN+nKCjTTzwhlwMvvkiZIF5bNLt1owwfAHz/PfDTT6bLmlRKWcGyMnKETp+2+nS8vckvO4e/sXKfZc+ezcEwQNeuKBoyBHcyMhBaUoK4AwfAZGXp3bxOHYrDtW0LHEo9irP3z9r2fE3E4buHkakwr9erTx+g31hf+L76NKXwVCqKttTSwGbrNTSnOAe3HpgWvUhMBKZPJ50pFmQXZaOgrMAkvcaVv3l7C9PHlFeSpxPk4wtpabQ++fnpVplaCz5k7boW5ejq1asBAF9++SUAGBwF8/nnn+Onn37CypUrsX//fly7dg35+fm82AZix2MHSKwoK6Pm5sWLTTZkHjygyqCcHCdxfgAKLT/5JBk0ly7RgiUQFAoFJJL9SEiQIyAgGCtWMHjwQLDDWYaePWnVY1mKkJt5gipWhY/3fozsomxsur4Jlawh1gHj4NNIYBiq9AsPB4qLqerJYNKPc4KqBoIC4M3o10aJsgQf7/0Y5zLPqRuuzUXPnnR9Z89SqZ8Q/WXR0YBUyqK0TIL7x1LI8Of4ci1EWUUZPtv/GTZc3YC5p+fWup326ass6zHXj3HjgKpFnJ0xA3d//tk0WXN3J6KIFi3ohDZsoLkBVi7q3g3P4zh+xswrz+BalmNEThUKBQ5mZ0M1ZQqCGzcGk59PDU1cM5MWpFJi1G7fuRhfHPwU0zZMw7+3/7XDWdeOByUP8O7udzFi5Qhczblq/APV4epKVRYDB9LrFjWzA/YIIM4+MRtPrn4SSy8sNbqtlxfFSgP0tyDaBd8c/gaDlgzC7C2zjeo1d3eK51XNqeUdXx38CiNWjMCJ9BO87pcrf+Mz+8OXrI0aNUr9OjY2FsXFxeq/y8vLIaulNnnOnDl47bXXMHbsWHTr1g2NGzeGn58fJBKJTqbo0KFDFp2XmPHYARIriotpxkdaGvV+mLBwb9sG3L7NYtas+7h1K93xnR8OXJQfoDC6APQrnEEaFRWJV16JRHg4g+JiitxbaUPyC4YhdqyEBOqw1xoUbAqWJy/H8fTjkMvk+KzHZ1bNRBDCSHBxobJOT0/iftDOmBjFjRvAzz8DtUS3LcXPx39GWkEaQjxDLKY6rltXk7xbs6YMO3bUXhtvKVxcgOho2tetwmCqI1ywwOyGb238ceoPpOanItgzGNNbTze6/bVrwOzZPM8i+r//A/vss2BYFhH/+Q+6uLiYJmsyGTB8OGWSAODgQQoqWVhKW6GqwPwbX0DmwqIhOwgP74h/NobOnJ8uXcA8+6yGPccA5eLc03ORVZSFCJ8IdIwS1+y92SdmQ1GuQIxfDGID9ZQ/1AKlkirfSkpAerRtW+D118mT4JCTA1alsrnzczXnKjZe2wgVq+KtXMuWuJB5Abtu7kJmXiaa121uVK8FBlLlrr6Bu9biUvYl7Lm9B1lFWQj0CDT+ATPA0f3z1f/D5xp6vqoiZNKkSQCAN954AwCwYMECsCyLiqrgIMuyUKlUyM3NxcWLF7F7924sWbIE33//Pf7v//4PTz/9NPr27YuWLVsitKp/kmEY9SxPZ8JjB0is8PcHRo+movOzZ6lD3wgGDWJRUpKJO3eKkJvbFZ6eTuD8cGjeHOBmQG3fDly8yNuuq0fjXV0ZPPUUpbizsoTn+zcbDAMMGUJ0wRxMcJBv5N3AL8d/AUCUsabUzdcGISOkvr7Un+zlpTc4W9sJAfv2ESvcggWaJg0rcfLeSay8uBIA8GG3D+Hlavl1dusGBASU4vr1u7hypQni4vgvseTK4G42HazxIufNMztTCACXsy+rM17vdH7HpGu/epXKW7Zt469alQVw6cUXkdWuHaTl5fAYO9b0vh6GIcpMrq/y8mXLJkgDWHphKW7k3UCIjy86SV+D2MmR9GYZ3d1p6Oy4caRT9eD2g9tYdG4JysqBtzq8JSrigys5V7Du6joAwH86/scsWuNt24DvviMyTTW4CakAkJEB9rffcPfnn5F++7bNnB+WZTHr6CywLIu+DfoiPkRPQ281nDxJ7UsGy4RtBJZl8f2h76FQKNCrbi/0a9fPrqXjv52gAaz9G/ZHff/6vO57xAjgzTf191ybCz7X0F1aOu2XX2iN/+OPPwCQQ/TjjzQouFGjRmAYBjKZDO3atcOrr76KZcuW4c6dOwgNDcXQoUPx1VdfYevWrTh79izu37+vdpgiI0Xc62ghHjtAYkb9+rqd4QYWfZZlkZp6CS1aXEFMTBTu3HHD/v02Ok9boVMnKv/y8uIt919bKZKPD1XeDRxIzc+ig/YCU1REvRJcfl4PyivL8f6e91FeWY7O0Z0xMm6kxYe2RXlITAzw2mv02yQwDBl1XP3cwoXAvXtWnUOxshif7vsUADAibgQSIxOt2l9JiQJ16hxGQIA3ysoicOwY/0ZCgwb0+9YDf2DqVA1l+Ny5ZjmFykolPt3/KVSsCn0a9EHXul1N+lyPHlTTf++exS1qOlDL2v378Fi/nh7GnByTZgTpoEULYpOLjiZGSTNxr/Ae/jhFBsU7PWfg/bf80KOH2buxGQyWWEokNK1XszEFDbKywLIsvtj3DdLuVcArtwvahXWx+bnXBpZl8c2hb8CyLPo17IeWYS3N+jzXa1JbWy2bno7s+/dRfuIEul27Bi9rp6aaiAOpB3Di3gm4Sl3xUruXTPrMkSNkEojBAdp9bTcO3ToED7kH3u/3vknOz927tGzx3WZyOuM0jqQdgUwiw3NtnuN351Xw9tb1my0B32voyJGa9dzb21tNbBASEgKGYfD6668DAK5VzSpQqVS4efMmdu/ejb/++gvvvfcexo8fj44dO6JOnTo1yt8YhqkxqsYZ8NgBEjvataNyJ64zPDe3xibaD9OwYW0wYgRp+r17eZrNIRZwM4Kee46XWR/G+jAiIqhKQvT491+qOVqyRHeCoRZmn5iNG3k34O/ujw+7fWhxhM6WtfHafZs5OSZUcrm7k5EbFUV1LgsXGnQKjWHW0Vm4V3gP4d7hmJE4w+L9ABpZa9o0FBMn0qJ0/Dj/LUs6w1ADA8kJCgujL+/CBZP38/e5v3E99zp83Xzxn47/Mf6BKnh5aUr9du2qyXpnDmrIWlgYlQPXrUszgoYMMTwArTrq1iX2QG3rhePiNXIeXx/8GmUVZWhdpzWGNx1ktQEkJMzuL9u+ncqt//oLu/fNw5ms45DLXNGBfQvp6TY5ZZOw/eZ2nMs8BzeZG15t/6rZn+cY0/SVNLMsi0vu7rjcrh2imjaFvKAAmDPHrGfGElSoKvDjMYrOPxX/FMK9TRv+zTlx9pbDgsICfL7zc7i4umBy28mo4218XVYqKSn9zTfgNYvKsix+Pf4rAKLiNvW7tDWEXEO//fZbAMDYsWMBAJs2bVLTYFuLSoNTyh0Tjx0gsYPrDI+KIq23apVO2ETfw5SQQIY7yxJDsDmBUtFDItGlX0lLAwr0s1MZgrlGQkkJ+RcplpGACYs+fSiyXVoKLFqktwfGR+4DqUSKD7p+UOvwTmOwF7PgzZtki6xcabBtgeDmRs3vdeuSpbNoERl3ZqKsogyXcy4DAD7q9hE8XDzMP/EqVJe1Nm0Y9O5NLE5Wz8ypBnUJHJcs9vYmooikJPoxAeWV5fjnyj8AqMzI3928PrPERGJJKiykMh1LUKushYXRjCB/fwqDT5hgglBoQfs5P36cGpZ0aqJq4sS9Ezh09xBcpC54t8u7OroiM1NcPYIWkWv07w/ExKCkvAjf7/0KKCxEn5Cn4YMI0ThAxcpi/HTsJwDA1ISpCPEMMXsfnANUPQOkLWutR46E/NVX6UEqL6cFdNMmQchVAOCfy/8g5WEK/N39MSVhikmfYVmN329PB0ihUODHzT8iW5WNYJ9gTE2YatLncnPpGtzd+R3td/juYZzLPAdXqavJ52IONm8mTiprbACh11Au03O0qmWibdu2eOWVV6zeb3x8PDp06IAyMSk7HvDYAXIEcFPfw8Op8b1qUTP0MPXrRzZxYKBuJN2pcPMmlW4sWWKULlwblhgJ+/dT0HnFCovaKYSFqyvV9UdEUPnX33/XyBROTZiKdWPXmVzKVB32pFXnZpympppIAiiXk2HMGTEWRHHlMjnmD52Pn/r/hNbhltdA6pM1hqFqTg/LfapaoS6B02bTdXOjtAw3SLSykqZd1gJXqSuWjliKNzq8gb4N+pp9DjIZ+eQADUg1Nz5hVNbi4jQzgv75R2dGkFnIzCRLbMsWcqpqoa9rG94WH3X7CC+3fVln/tM//wC//SaeHkGLmQU9PICJE+HWvjNeRju0KPTA+IxwoKICaWnCnrOpkDASDGo0CDH+MZjQYoJF++BK4LRtOL2y5uVF+qNbN1prT56kPlwB4Cp1hbfcG8+1fs7k/kJuTjpgvzlAnKwpPZTwdPfElCemwEfuY9JnuaRrcDC/0wuOp1MgY2yzsQj2NGECtZm4fp14dixNhNhiDZVIJNi3bx8AoFdVz/SCBQtqbNegQQN06NABPXv2RM+ePZGYmIj69evXqjOSk5Mxf/58zJo1i/dzticY1knJvgsKCuDr64v8/Hz4+Jj2YIoeLGuS88OhuJhsBL6jzKLBw4dE56pQULPIhAn/z951hzV1f+/3JhD23qAIqLgXinvvvevWWrVVW+2y69f221q7basdtnVrnbi3dSuKiAO3KA5AkL0hzJDc3x+HSwJk5yZE6/s8Pgi5ublJzv18znvGezQOItHXSZBIqM0mJYUW7tmzzXAIXUkJEcL0dMDREexrr6HC0R6WQsMYsDnMlIqNJUU+gBpRtRJHqKig6H7nznLn34TQxtZYlnplHBzk2RtDkJcnFwYUi5VEWFmWPPc7d8jB693bKDOUWJZM8elT0i7p3l3b5+lga2FhwOTJ9P9ff6WmMV0v8uJFuShCcDAwbpzWg0kiI4mQ+/oCb7yh20vzDd5k1W/dAnvwIJJz7bD2fjfYdW6FD76wNfaYLa1RIavQW7mSW0P8/Cj7qpWtPXkC3LpFaoJG+hAKygpgZ2kHoUC7IVr5+cDy5bTVff650Ueg1UJNW0vIS4CPgw+sLbTbEM+eJb2akBCqYuUTN9NuItA5EE7WTryet6CARpExDPDJJ7rPLjLWHvrs2TPUr5SkO3HiBAYMGAA7OzsUFxcjNTUVWVlZaKVC7EQXXL16FYGBgXBz41dVr67xMgP0PEGB/DwMD0fupUtqbyZb2+rk54UqhQMoNTB1KrG8+HiKCqvh84Y4CZaWJIrg4EARrN27eZ53wge4Hhh3d6CgAP+GfY3p+6bjcc5jvU9pDuQHAF9vTWEAAPgwSURBVJo0AXpWJq8OHdKyn9/CAujaVU5+ZDJoCmlfeHoBf139y+Ahetra2o0bNN933z7d2llUwdlZrg9SLQukCG4TCw+n8p5KQ04uSMbxx8d5GYDHqbVPmULZLm2gs61NmgT8+CP9/7336EPU9SK7d6fsuoUFNUyuX08eJoCk/CQUlatuUmjThpzQlBTeRAf1gqHkh2VZlEgqja9NGzCzZ8PbVwChECiSiOq80V7RHg2R7VfMAGltaw0bUsSF+0wlEpJT57EfgitP1haK5W91TX4YhkGgS6DW5AeongHiG2292/JOfgB5K6mXl/mQHwBYtGhR1f8HDBgAlmWr5v94e3tXZYEMRWhoKNzd3TF48GBezmcueEmAnjOwLIuH589DsHEjQhMTYV+5Wat/DkVd/vxTbeXL8wkfHxocIxBQVPvECaUkiI8IqaMjBZwtLSkVbsSZrPrDzg549VWkNHDFj5aX8TjnMcITwvU6lbmQHw69ewONGpEPsnOnTlWPZBMHD5KDq6IkrqCsAN9c+Abrb6xH2N0wva9TF1tr2ZL4SGGhjjOP1KCaEEJNMAx9kFwpbXQ0sGMH2PJyfHvhW3x25jOsjl7Ny3V4e1NSRZtbTW9b+/BDYP58+n6nTNFqXEAtNG9O4gj29pQ9XbsW0pJifHzqY7yy6xXczVBe42ZnBzRtSv+/cUP3l+UDfKxrZ+LPYMyOMTjxpHJB8/WFxfzX4dWvJWBhQWKKLFsnEZ8ryVfw2oHXcC/D8LEHTk5A27ZAs2YGrGvHjlHGUE9peQ4rrqzA+afn9Qo2cATI1BUIirb2zOoZ4vPi9ToPF4jliwDdTr+NrGLjRnf1HYBq7D10504a0cBlef7+myTAP/jgAwBAeno6r693/PhxXs9X13hJgJ4jcDdTQnEx6vfsCSuBgMpANBTZMww5i1z1C89zIuseDRtWH5Rao/Oat/IQULnLmDH0/6go4Pp1vU9lNMjs7fCl2x0UycrQ2qs1ZradqbPzYm7kByCOO3YsZTlycqh6SWtwjoZMRjeBki/ux4gfkV2cjUCXQExqOUmva9TV1kQieXXNnTtATIxeL1sNnMKxWgGCDh3kmY/YWBxc9T6uJEVBJBRhaOOhhl9EDRQXq153DLI1hgF+/50IXWkp1dSoTH2pAVcX5e0NdO6M7Y/24mH2Q5RWlKpVk2rbln7eucNrUkAr8LGulUhKsCxqGbKKsxCfq+DQ2tmh6wA7jB5dOfQxKgrYto2fNKWWqJBV4OfIn3E34y6OPjI8OuDiAowaxcLb24B1LTiYUi/JycCqVTRXSkfcSb+DjTc3YtGJRUgq0F2l0teXTJXb8kwBRVvzDPDE1+e/xqTdk/AgS7eIqlQqb0/lgwCVS8vx2ZnPMCpsFK6nGm8z5gY76zIA1ZR76KZNmwAAb71FMurffvstTqiJ0DZp0gQ2Njbw8/NDkyZN0LBhQ1hqaBZnWZaX6gBzwksC9Jyg2s3Uowesp04FPD0pdBwWpnG6+cCB1CZTXk6Hm3AfMw1at5Z3Xj97VuXw8kl+ODRvThOsnZ0Bc5wNtunWJtxIuwFbS1t80/cbCGMfUq9UZWpcE8yR/HCwtSW/vXNnHce5CATAqFFyecSDB6tlC87En8HxJ8chYAT4qvdXEAlFOl+bvrZWr55cOvrwYS3kvjVg/Hj6uXGjhoq/Zs2AGTOQaS3F8uzDQE4O3uwwH/WdeBpzXomEBOIoyspGebE1Cwta1EJCqL5m5Ej9VLucnIDZs5HWOggrr60EALzTdh5crVWr4DVsSImj4mJqkjYV+FrX1t9Yj3RxOnwdfClQooCWLYngOVoU00yFx4+B1atNVu+3O2Y34nLj4GTtxMtMF15srUkTYN48uSrrjh2UutXS3liWxfKo5QCAEcEj4O+kY0oBVILl52e6vaemra29vhalFaVo4dkCTdya6HQulqXS2C5dqKLCUOx/sB+phalwEDmghUcLw0+oBOXlcpPXNgNk6j00KCioqvQNAEQiEYYMGaLy+NjYWJSUlCA5ORmxsbF48uQJJEp8SA8PD9y8efOFlMAGXhKg5wJKbyYrK6rHsrWlInQN/S9CIfDKK/LouVn2sBiKrl2pHO6VVwCGMQr54dCjB+2DnrqrsRoVD7Ie4O9rlAb/sOuH8LXxpLKNlBRSh9PAfM2Z/HDw9SWVQw16F7XBMMDQofKmlGPHgPPnkVuSi+8jvgcAzGw7E809mut8TYbaWq9elHwoLqYeJ0MCbcOHUxlcRgY5GuqySmz9+vi+aSbEFjI0rx+Cya2m6P/CKuDlRR99Rgb1k1e9Np+2ZmdHH5yLC3DvHnDhgl6nYS0ssDTyJ5RWlKKtRyuMiMigxVJFgEkgkAty3DO8Sksr8LWuJeYnYvPtzQCARV0WwcpCRXODra18qG5uLg3V5WPKrRrkluRWDZ59K/QtrRXGVIFlWdy7F4P4+GS0adMNdnYG2JqTE0nLc+vIlSv0mWhREncm/gxup9+GtYU15neYr/81mAg1bS2pIAn7HlCv3cKOC3W2PQsLSj4PGmR4/1JpRSnW3VgHAJjdbrZq+zUQxcU0VcHdnb56TairPZSTwN68eTNkMhlkKhw8gQ6CQJmZmWjbti2EQmHVQNSOHTvycr3mgJcEyMyh9mZycSGHXyik3ff8ebXnsrWV97A8eSIXP3qh0KwZIBDQwh0RAX9HR97JD0CLt2INdlJS3WfVSitK8fmZzyGVSdE3sC+GBw+nHWf6dHIQ09JoLo6K5pnngfzUhExG/W1aSy0zDMmS9ekDAGDPnMb32+YjtyQXjVwbYU7IHJ2vgQ+HVCikUjihkNSqUlJ0PkUVLC2BM2coWP3sGfX5qyoXPBl3EuczrsHC2wdfDvtJ3oxtyATTGrCxkWe4zp4lLmEUW/P1ldcF7d+v1ynOJZzD+afnYSGwwKeBMyDIyaW1dcMGyrYrQYcOtAyPGqXfZesCvsgPy7L46eJPqJBVoGv9rirl8ZOTgcuXgUJbL5K6a9yYvsC9e0k63EiR4b+v/Y3CskIEuwVjdNPRBp1L0dYuXeqFlSvtDR/AKRQCAwaQCI+tLQlnaHAsy6Xl+P0KzTKa0WaG3lLNjx9TeauxZzQps7W/rv4FGStDd//uCPEJMe4FaMDOezuRXZwNXwdfg21EHZydgVdfBSqry9TC1HtovkIP+OrV1Ls5bdo0tXLVyoiRTCZDSkoKDh8+jCVLlmDUqFHw9VVe+nv16lXDLtqM8JIAmTG0upkaNKBBqQB5OxrSOl5ech8hMtIwR8tcIRaLcfH8eTR7+BBNz58HU2MmDt+4e5fKjXbtMn0fgCKKJcVwtXGFu607Puvxmdw5cnenFZzLFm7dWmt64/NIfgDywcLDtRySyoFhKOUycCCSBUW4VPYYQoFQr9I3PrOMXl6UoHr1VSpxMQQNGhDp6dKFAtP9+9fmBKUVpfg5kiaHz2o3Gw1dK4cIZWYCv/3Ga5S/Y0eKnhYUAFFRRrQ1RQKkYxqtWFKMnyJ/AkAOalDbPqSqyN03q1crXTBdXSnuYuxxA3za2tmEs7j07BIshZb4sOuHKs/FjUhKTAQx2cmT5XKMly/TZEie+wIeZj+syjJ80PUDCBj93RTFda17926ws6MsAW/8vnFjKgWYNKl6ekDJPrzr3i4kFyTD3dZd71lGAPHxEycUhh0bAcpsLSYzBqfiToFhGLwVqgUbUIKEBAoWGvr5F5UXYePNjQCA10NeN3jUgzbQdLvV5R6aWNmk5O3tDaC6Opwi3n///ar/t2jRAh07dsSsWbPAMAx8fHwwbNgw/O9//8P+/fuRnJxc1fdT89+LgpcEyEyh080UEkIL8OTJWs07adGCAuBjxlDQ9EUCt3DX9/VFfWtrMCUllPXQdRqjDvDwoIBgXBw5C3W1PrjauGLl8JVYO3JtbSlQT09y5mxsaAfatq1qF3peyQ9AVY/W1sT9dRao6doV9d7+HGHTDuDLXl+iibtu9ezGKLFs35569fiAmxtleUeMoKTfuHHAypXyx60trPFt32/Rs0FPvNZWYQr99etAURFF+S9e5MWgLSyob45lWezdm4HHj1OMY2sDBhBhSUysXm+nBSRSCdp5t4Ofox9mt5tNf2zQgDrOPTwoA7Rhg9qaQmPd+3zbGqdsN731dLU9Xz4+9LOK9wkE9EVOmkRl2E2b8q7FvPf+XrAsi4ENBxqUZVC2rnESxjwmOKmZRbE55MEDYM0aqjWvhLhcjLU31gIA3gx9E7aW+k9B5ioNjDFIGVBtayuurAAADGk0BI3dGut17mPHqFowXj8BuSpsvbMVBWUFCHAOwLDgYYadTA1YVrvW2breQ2fOnAkAOHz4MApVZKoBYNmyZVX/v3fvHq5cuYL169dXlbdx/zp06IBPPvkEp0+fRqlOcqvPF14SIDOEXjdT06Zy8sOytSL8NdGrF82xeJGguHA3a9MGzNSp5AXm51Ok0kg1al5e5FxyQ8OvXDHKy6iEjJVHGwWMAPUcVXTHentTOZy1NU2ojI6u84XbULi4kDIcQJ+7CoVr1XB2hp+jHymf5eRQyFuLVJIx+8s45OToJTJVDba2xGNef52C0vPnA198IXfUQ/1CsWzQsuoR1IEDKXUEACdPktfCQ8Ngy5YsZLJUZGYWgmW7G8fWbGyowQDQuQzOydoJ3/b7FlvGbKneT+DiQpOPFTXYb96s9fwLF0jsgWflWaPY2tud3saaEWswq90stcdxAbJaia+mTakmSLEfoLiYFwb4UbeP8HnPz/F2p7f1PoeqdU1UmeDllQApQiajeyY1lVTi7hLRtLO0w5LeS9AvsB+VJhsAxTlAfEOVrclYGTrX6wxXG1fM6zBPr3OzLH8KcCzLQiQUYV6HeQZlCDUhMxNYupS+SlWmbQ57aHR0NACgffv2WLBggdJjmjVrpvL5IlH1yofo6Gj8+OOP6N+/P2xsbKqIUZHBtaPmhZcEyMxg8M0klVIz8D//aL3KFxXpJGRjllC6cNvZkcPv4EAd2Nu3a1TL0xdNmlDwGSB/8bH+s0d1Asuy+OjkR/jp4k8oq1BPegGQRzNtGtC5M9hOnep84eYDwcHVh6Ryg/bU4Wz8WVxLuSb/g1RKpYFXrmhUVTQF+cnMpGzN3r3VAsl6wcKCNvAvv6Tfv/4amDqzSPX9zjBEIjgicfky1XcacO+wLIsHD2IQFPQEAQH1IRIZwXvjoGMfUM2SDgcrh9oHWVvTnKHOnWk9adiw1iHJyVRuqDMJVwNj2lo7n3YaB1hyGaC0NCUOoKOjPPtTWkqh/f37DV5jBYwAo5uOhre9t17PV7eHGp0ACQRUw9qgAQUhd+8GDh4EU1GBHg164McBPxrssHMZCb4JkDpbEzACzGgzA0emHFErC68OublkGhYW1FdjCOZ2mIsDkw6gb2Bfw06kAdz8H2tr5YlOcyA/HAZVrtecJHZN3K+MpuXm5tYqaSsrK6v2e1FREY4dO4ZFixahjUKk3NrUw6eMjJcEyIzAy80kFlMKPiWFJqNriMixLFWIXblCErzPY3mnWifB2ZkcfmtrKovRqVlEN3TpArRrR5/hrl3aOeKG4kDsAZxLOIc99/cgMT9RuyfVqwd20CDE3L9PttalC+x1HW9tZujdWy7zvnOnegcnoygDX4V/hXmH5yHqWaUUtlBI+qyWlqRnvGWL0iyqKcgPQG1bfn7kMBw8aPh9yTDA4sVEhBiBDNs32aHbwHT15R1dupCmtlBIqah//tEri6q4ro0f3w4ffmiFofyPGpJj2DC65lu3tKq12RWzCx+d/AgZRRoGpAkEJD84fz6RIA6Vxsapwd25w886yretsSyLjTc3Ik2svYy1hwe97ZISDVXECQnE1G/dIsl9PVj79dTrKK0wrNxG0x7KjToxUhyM4OhIJKhnT4BhUHz9MvWP8TSAj7tn7ex4OR0A7W3NkF4bbj90d9eqUl8jPOw8jJr9AdTP/zEn8gMQ8XmiojGMG4wKAC4uLujduze++eYbREVFoaIyEhYfH49du3ZBIpHA1tYWgwYNws8//4ybN29WESOhztKr5o0XngDFxtb1FWgH3m4mJyeqz+acltOn1R7OMFTxIhBQVYc+g9TrElot3F5eFL21sKBGHSMpPzAMSRBzwT9jT4dPyk/CL5d+AUB15drWZVeztc6dYX/8uFazpMwZAgGVITo4UMWjqlElLMvim/PfQFwuRgvPFgj1DZU/2KgRZQytrKhE8J9/qhWAm4r8AGRLI0dSxDohAeBLeCd0xA0Ezf0QjGUprpz1Qr9+8snsStGypbx3TCiUe5Baoua65uBgr5WUrEFwc5OnBA8cUHtoZlEmVlxZgTPxZ3DhqZbS2YrNF3fvAn/8ATx7hsaNyXTy8+WRY31hDFu7kHgBK66swOQ9k1Es0W4mmIUFOayAhtK+pk3J6bezowNXr9Zp800Tp2HhvwsxdsdYzURUBbTZQ01CgICqXqmbwztguHAHtmeeob6gvDyDTsuy/JfAqbO1ClkFFh1fhPNPzxvc/M4RIEPK3/bE7KnqXzMFuPu45vwfcyE/it+Jp6cnxo0bp/S4n3/+udrv4eHh+N///ocuXbrA0tISDMMgKCgIEyZMwNSpU416zeaEF54AHT4srzs1V/B+M/n7yzVZIyI0euJBQfJqlxMnTFe+ZSh0chL8/WmC5pQpuo1z1hFCIUniDh4sL4kzBqQyKf539n8okZSgvU97rVWFatlaaSllPJ48oaF+z3EdpL09ffavv656YN2hh4cQmRQJkVCExb0Wy2WfOfj704wPTvlrwwagoMCk5IeDiwuptwEkZqDFmBG1KKsow9fnv4Zz23DM+TUMLi4U8OjenUiWSjRoQD0wkybpJHWmaV3LyDBivxy3/mkog/vl0i8olhSjpWdLjGk2RrfXYFng0iUSR9i4EZb3b4MrszekDM4YtlZWUVal+De+2XidmvArhaU0zz8NCADmzpUPCd2+nfTYtegf+/3y7yirKEM9x3rwsNXdQ9Z2Dw0Kot5Xo5PwymtanrQTBR6OiHcT0lRZA2u/SkvlHycfIgiabO3AgwMIfxqOb85/Y3B2zlAClFqYip8if8LM/TPxMPuhQdeiDcRiSmQyTPWhs+ZCfgBgzZo1AIB33nkHAHBLR+EXRQwdOhR//fUXwsLCeLm25wEvPAHiSmLMNbhttJupdWt5FPTwYQ0eDvWyhoTQnr57t4aosBlALychOLh67b6RCsFtbalVgLskluW/tHDdjXW4m3EX9iJ7fNXnK61KAZTaGpcds7Qk5hsW9lyToHr1qm+wip97mjitKmM2v8N8BLqokFvz8aHBj46OQGYmSg4cMDn54RAaSvyjvNzwUrjV0auRmJ8Id1t3/DJ7HC5eJL4XG0tqemr3Tnf36iHnM2eo1FYFNK1reXnA33+TaiJPlUHVwRGgCxdULmYXEy/iVNwpCBgBPu3xqe7lNAxD2bEmTeie2bsXrQpINe/ePf0qbY1FtP+59Q9SClPgaeepUfigJrp0AV57DejUSYuDHR0pgMAdfP48DX9SgxupN3DiyQkIGAE+6PqBzu9Zlz20WzdSP23QQKeX0Asn407iXsY92FjZYe6svygqxqGwUK9BPiIRBXimTTNcdl2TrZVISrD6Os2WmRMyBzaWhqWcDCVAa6+vRYWsAqG+oQh2CzboWrQBl/3x8JDP/DMn8gMAH374IQDg888/x3ENMqjt27fHkiVLsGvXLrz99tvVvu/9+/fjyJEjmD9/vk6DUp93vPDv1NaWMvJHj9b1ldSG0W+mPn1I81oqpaYUNQ4/w9AMEn9/efDOXNUPeXESsrOBv/4CKtVTjAWJhD76yEj+znk34y7WXidJ1U+6f6JVs7BaWwsIoIF+HAl6zjNBHJ4+pQROaSm9/6/Dv0ZReRFae7XG1NYa0vzu7sCsWSgNCECEk1OdkB+A7stRo+iriY/XP7PwIOsBNt/eDIBsxsHKAc2akV22akWiVb16aWmnDx6QY7tjh9IUjjbrmrMzVU2xrEb/WD8EBFDEXSajAFANlFaU4seLPwIAprSaor9DZWVFmbHKSa+BT07B7tFNFBdUIC5Ot1MZi/wkFyRXzUx5v8v7OjuyPj5EGLRuE+T66caNo/uoc2eVh8pYGX6+RJmp0U1H6/w9mJtDyqFcWo4/rvwBAHi1zatws3OnzwUgm9y7l0QjIiN1imoIhdQb2KiRYdenja1tv7u9atDomKY6ZkeVYOBAMgvFbIq2SMxPxKGHhwBQubcpULP8zVxtDSAVt8GKBFsJoqOj8cUXX+CVV17B77//XlU+5+TkhD6Vg8H/a3jhCdDIkbRwBwTU9ZVUh0luJoYhRaSGDSnsVUPqsCYsLKhKzMmJnmok1WiDwJuTEBNDYejDh9XO9TAUDx7Q6U+dUhsw1wm5JbmwE9lhUMNBGNxI/aIHaGlrAQHyTNCjR5Q2fY5JkExGGZPERKqCupgYicvJl2FlYYXFvRdrFe0XW1gg3McHvg0bym1NLDb+xdeAqyuVU/bsCTRvrvvzK2QVWBK+BDJWhgFBA9A7oHfVY35+xGV69KDelYEDKbmjFsHBNLCIZSmydOJElROny7rWpw+tM/fvG6ktT40a3JroNUgpTIGXvRfeaP+GYa/DMEC/fsC4cRBYCtHe8jZCsk7A0Vr7DLMxSyx/ufQLyqXl6OjXEf0C+/F2Xo1o1Qp4883q3fpPn1Zz+A88OIDYrFjYi+wxv8N8nU6vzx7KshSUMnZFSNjdMKQWpsLDzqN2eXJFBWVTZTK6d7ZtIylWE0EbW8svzcc/t/4BQISDj0GjAQGUGHRQIrKoCauurYKMlaGHfw+08mpl8LVog4AAqooJDjZf8vPpp58CAGQ6jCno378/jh49CqlUCpZlkZeXB0dHR2NdolmDYV+ksa4KKCgogJOTE/Lz82Fp6WgUzXx9YfKbiWV1GlaXmUmLlLkpHvLqJLAscOQIDe4RCsn5VyJtyweOHKEmdktLaqXw1pyw0Yh0cTpsLG3gaKV+4dLZ1uLjSQ4aoDKw53hSbkoKBVmlUmDAABYFnsdQUlGCsc3GanyuUlu7coWY7OTJ/E0rNQHKpeVYe30t9j/Yj7DxYXC1ca11THExxUhOnKCA0Z49JKamEixL/YWcyEqLFmBHj0bMw4c6rWt79wK3b1NEe5p2bWza49YtygLZ2FAZXGXTRLm0HBN3T0RSfhKWDVqGng168veayclURtq6tdZNgMYkP5eSLmHhvwshFAgRNi5MddmnBsTEUDAhJIRmKuuFW7dImbRNG2D4cBTKSjF251jkluTi/S7vY0qrKVqfSt899ORJmu3bpYu875Vv5JXmYXTYaIjLxfiy15cY0WRE7YNYlqoPjh0jQuTgQAPNNKwrKSlUze7lpd92pa2t/Rb1Gzbf3oxgt2BsGbvF6Gpr6vA45zEm75kMlmWxbdw2k5S/KcJcyQ8g93OXLFmCL774QuvnvaBuv8544TNAyMmpRn7E4rrNbNTJzaS4yGVnU4hXzQ2gWPMK1EnQuxZ4dxK4mj+uRDAszHDpJhUYMoQ2K4mEgn36fp6KA0+97L34Jz8AbcBTppCT/xyTH4Aun6sKOH2aQSubIfqTH5alZpnycpLINnRCqQGQyXTrmxEJRXgz9E3sn7RfKfkBiBscPEjldmVllDzZtUvNSRmG0kZjxgBCIdi7d5Hy/fdIefxYp3Wtd28SzHr8GHj2TPv3pBVat6YwbkkJMbtKiIQibBu7DV/0+oJf8gNQSm3ePMoIcSgvV7neGltco613W8xqNwuvtnlVb/IDkK8eFWXgEllSQnZTKZVdnpmGEO8QBDgHYEKLCVqfxpA9lFOBM2Zy+0ryFRRLihHsFoxhwSqiCAwDdOhADT0eHtQTtGkTBRTUNI8lJJAp69Prrq2tZRVnYce9HQCABR0X8EJ+nj6la9Znptmqa6vAsiz6BfZ7SX5UQBvy4+rqivHjxyNBQz/4fwkvPgFSWCmSk0mdU4vxOEZBnd9M5eXUFHH+PP3TAJalGYi//SbXw68LGM1JEAgo6sZNeN+6lf8x7pUv88orVA5fUKDfPNackhxM2TMFEYkRWh1vkK0FBVUPL+bkPLflcBXeUQhsmg+ZjBx6TcEPlbbGMEQKmzUjB2XnTuPrnCtBYSGp6W7YoJlIy1gZpDK5M6VJ+cvKij6jKVPo6540Cdi4UcMFtWkDdupUZBQUoOThQ3StX18nW3N1lc/PCQ/X+mnagSsBBmqVwdlY2mBkk5E8v2Al7OzAMgI8ewbciq6gQWuHDtW6h0yhLGhjaYM3Q980uG+Cy/oYNNusc2eSyra3B9LT4bZ5N370exX/jP4HFgLtOvoN3UM54QBjLmcDGw5E2PgwfN7zc83kwcuLSBBXUnr/vloCxFXK6aoAp4utudm44Yf+P2BM0zHoUq+Lbi+kAjdukN+law8jy7LoUr8LfBx8MK/DPF6uRRukpADPnrG4c8f8yY8mpKenIy4uDsuXL8eePXsQEBAAhmFeZoHwXyBAvXtX/VcgoFKPhw9JHMiUqHPyA1APEPd5nD1LtSca8PQpOes7dhg8wkAvGN1JEAqp8YlTf1CIFPMJbpC8jQ0RcSV92SrBsiyWhC/B45zH+PPqn9UyQaqO583WMjOB9eufS3W4pPwkfHjyA2wpnwChcwry88kPVrXua7Q1Cwtispxc4oEDVE9jQtjaymeBHDum/tjdMbsx84BukrGWlhSInjOHMk2vvQb8+afq41mWRUxJCe517gzfuXNhFxKi9Wtx6NmTKoACAowQmOII0KFDyCnMwL77+zTeP3wgNZXmgR7Zlg/J0xTg+nWaK1XJWo29rhWVF/H6PjkCZLBiHyeVzQ1L27kTdmcjtJLM42NdMwUBAoAglyA099CyYU8kAkaMoLVl/Hh5r66Sm0GfIai62hrDMOjZoCc+6/kZb3bJ2Y2u5ZMMw2Bss7E4MOmAQRlMXXHuHIvvvsvE6dOFZk1+VAVSFQeWenl5ISgoCK+++moV6Vm0aJHJBX3MEbwTII5d1vz31ltvAaBFbPHixfD19YWNjQ169+6Ne/fuVTtHWVkZFi5cCHd3d9jZ2WHkyJF4pm99hMKX7OODqgnkZ8/S6BNTwCzID4cOHUjzFiAH7ulTlYdyAVQfH4o8bd9uNOVopTDZ7BWRiNhJSAhtQEaCqyvNqXF0pK9BW+y9vxcRiREQCUX4us/XaqOKvNtacTE5Ko8f65e6qiPIWBmWhC9BaUUpGroGYtYEbwiF5AAp87W0tjWBgJyVbt3o95MnqS/IRBAKqUxNIKAZnA9VcJs0cRpWXFmB+5n3cTPtps6vsXo18O679PuCBcDSpbWPU7S1jsOGwbZSCQ0AKSpoKS7i6kqv1a2bTq2K2qFbNxqMmpODA2s/xLcXvsV3F77j+UVqw8eHlO7KHdzwuOsMioAkJQGrV6Po4UOjr2tfhX+Fmftn4lH2I17OxxsBAnAx9za+aBCHjNBKgnDpksbaOr7WNWMSoIfZDxGXq6P0nyJatKjeIBoZSXu0wqarawZI1z3U0Fk/ysCyhktgm7IHSSZjER2djoKCAgwd2spsyQ+gujJHqmSTW7RoEQoLC8GybK3BqP9V8G5VV69eRWpqatW/kydPAgBeeeUVAMDSpUuxbNkyrFixAlevXoW3tzcGDBiAwsLCqnO8++672LdvH8LCwhAREQGxWIzhw4cr/VK1QlkZDbdJSEBIiDyAu2cP7dPGhFmRHw4DBpCcFNf7omZSrEhEpTCVVQvYu9c05YMmHzxpbU2SgYoNY/ramxoEBABvv639LNaneU+xLGoZAKrHbuSqWv/UKLbWoAF1p4tEFDF4TkhQ2N0w3Ei7AVtLW3zR6wv4+Qowdy7x25rzM3S2NYahe4hrcjexWoiPDzVxA5RJLCur/jjLsvjuwncolhSjtVdrjG+uO6lnGGDZMuDzz+n3jz8GvvhCfu+rtbXycmp227mTUu1aLBgKAUt+YWFBhBWA1eFjYBgGo5uONtKLycEwcsW+e+IGVb0e5VlZSPn2WzQsKjLaunb52WWciT+DB1k8yU5C7riKxfIshD6QSCX45dIvOPr4X+xwT6fNpV8/tTKtfK5rnJ3xTYBYlsW3F77FpN2TcOyxhtSsNhCLKUp74wZFI1JTAeiWAdJ1XbubcRdDtw7FtjvbDL36asjPpy1DKKRghzZgWRaLzy3GkYdHTJKxVXzdS5dikZ4uRlBQfTRqpEOqrQ5w8aL6KP5vv/2GioqKKtJjFv6nGYF3AuTh4QFvb++qf4cPH0bDhg3Rq1cvsCyLX3/9FZ999hnGjh2Lli1b4p9//kFxcTG2baObLj8/H+vWrcMvv/yC/v37o127dtiyZQvu3LmDU/pGWiMiKFy6axdQUIChQ8mJKC42rtqvWZIfgHbnMWOoYbekhHpf1OxqTk7yIfAPHmghk2sgTE5+lOHyZZIQM8IwJEUHPC1N9Ty8ClkF/nf2fyirKENHv46Y1HKSynMa1dYUSVBcHDm3ZkyCEvMTseLKCgDAu53fha8DiTl4elYfTiuRGGhr3bqRY8tlg0yI3r0BFxfqKeOE2Dj8+/hfRCZFwlJoiS96faF39JRhgK+/Bn74gX7/+mtg0SKKkKq1NQsL6iMD6OIOHdKyxIlaIPiuQpWMpEb03rfyML7pOLT0bMnvC6gAR4AePgQkjm4QT5qEBzIZnOzs0PDWLTBRUby/pkQqwU+RPwEAJrSYgMZujXk5r0hEGS3AsD6gnfd2IjE/Ea42rjSQtWnTqhlKAKjOOiJCL1l1bWCsDBA39NTKwgqhvqGGn9DentZcR0dSMFy7FoiKQpGYPhdNGSBd1zWWZfHH5T9QUFaAxzmPDb9+BXBZQ3d3ylxrg6spV3H44WF8c+EbZBWbZio7Z2s3b+bA398fgYFWxgvM8ISFC1WXHJeWluLtt9+uVg73EtVh4Cxh9SgvL8eWLVvw/vvvg2EYxMXFIS0tDQMHDqw6xsrKCr169UJkZCTmzp2L6OhoSCSSasf4+vqiZcuWiIyMxCAV2pVlZWUoUwiFFhQUAAAkEgkkXbpA8OABkJYGdvt2sDNmYMwYC6xdK0BiItV79urFb1qDZVnExsYiOTkZnTt3hpWVFSTm5jSOHw/B+vVgra3BlpfLJXKUwMuL1Mz27xfg3DkgMFCmdRZDFxQVFSEqKgp+fn5o3LgxKuqi76SkBIKzZ4GiIrBbtoDl5uPwjKQkYOtWAUQiYPZsGZycqj++KnoV7mXcg6OVIz7r9hmkFVJIUduRNImt+fgAEydCsG0b8Pgx2E2bwE6apHG2lKkhY2X44swXRBp9O2J4w+G1PovSUuDgQQalpWXw9Y1AvXoG2Jqnp9ybKisDc/Ys2D59dJgaqT8GDwa2bBEgKgpo0kQGf38Sy/j54s9gWRaz2syCn52fwbbw/vuAjY0A77wjxPLlwOXLYvTtW44FCzqptrW+fcE4OIA5dgy4ehVsdjbY8ePVZstycoDt2wVgWaBpUxl8fAy67Cpsck/FVEsGvtnlmG/ZzWTrsKcnYG8vQH4+cONGEXJyrsJvyhS4pKZCFh0NWWAg74GELXe2ID43nghG61m8vldXVwbZ2QzS0mR6CUTmlORUKXrNC5kHESOqfn0yGZiwMDDJyWCfPIFs1CjEJiXxuq7Z2QHBwQw8PQGJhJ89v1xajt8v02DJaS2nwdHSkZ/P3c8PmD0bzKFDYGJjgSNHIH5gCWnDFhCJhCpNR589NOpZFK6lXIOl0BKvtX6NV7tJTWUglTJwcWG1+sw5MsayLMY0GQMXkYvR71nFPdTFpTvS0oTw8angzUaMgUoXVylat24NKxPsQc87jEqA9u/fj7y8PMycORMAkJaWBoCashTh5eWFp5W9KGlpaRCJRHBxcal1DPd8Zfj+++/x1Vdf1fr7iRMnYGtrC0tnZzS4cgXCR4+Qn5iItNBQuLjYIzfXCXl5aTh61Hhp1nDe5Y34g6W3NyqsrcFqeY0ikTtEIilu387Veyq9NoiLi0OcrqPUeYSVlxf8z5yB4NEjFMXE4Fn37rzX6UgkAiQn+yMvzwr/+18Z+vV7CktLeeTzUvol5OfnY6TvSFwLv6bVOY1ta9Y+PqgfHo6y3Fw8c3KCzAjE0BBE5EYgIiMC1gJrdC7rjH///bfWMTk5Vjh5sgFkMgbt29uivJwfW/M7fx72ycko/fdfPOvVC1ITlMZJpd4oKBDh4sU03L1bjs0pm5FYmAhfK1+4PXPD0eSjvLxOgwbAwoX18eef7RAZ6YDIyHb49ddydO/+DL17J6FJk1yl/Tt23t7wi4wE8+gRyqKi8KxnT1SoieKXl/sgIcERf/xRiO7dDZ+OmlmeiRUP/8B4CwbWEha3zlxATroeWrx6Qiz2wKNHrti7twBdupQhLj4ecQCEDRtCevly1XGC8nLIDAwm5Ffk4+f4n1EmK8Ngm8G4cJpfpR+BwBItWsiQmirFUT3MalfaLqTkp6CedT0wjxgcfVz7JI4lJfCOiwPz6BEk588jpWtXlLm787qu2dlRL40+70EZzuWcw4PMB3CycILLMxccTeHpxBzs7eHs5ATPGzfQo3wtCh4749KFjhCI1KdTtN1DZawMvyb+ivzSfPR06Ynr56/zdeUAgKgoH8THO8LaOgtHj6out+dwT3wPl5IvQSQQwSfdB0f5+qK0RHh4HPLzRfDxSUZZmRnMAFGBuDgnlY+5urqCYRhkZ2fDVdu6w/8gjEqA1q1bhyFDhsC3RrioZjqWZVmtUrTqjvm///s/vP/++1W/FxQUoH79+hg4cKB8ym1ICATbtwMsC9bbG+yw9jq+I82oGY2300WuxRzw7BlQr57KhzkRCb6hGLVq0qSJeSiU9OwJwdatgESCNqWlYMeN0z6HryV69QLWrROgqAgoLW2BkSPZKkdyGIbhXuY9tPBoofS5dWZrAwcCLi5oaW6TcgF0L+sOq8tWaOfdDiODlcscFxUVIT//PmJjg1BU1AghISwvw2nRpg2tL8XFaJWaCtnUqfK6ISNhwAAq62GYliiRlGDPsT1wEbpgxYgVaObejLfXYVkWQUGxaNkyAvfuhWL3biukpIhw7Fggjh0LRKNGLKZMkWH6dBkaNKjx5GHDINixAygsRAuJBKyaRSQ0FPj7b0Hl/9vq3TTN4d3j72L8/TI4lcjABgSg8/vvG7HhqDaCgorx44+ZYJh6GDy4LQQCJevakycQ7N4N2YgR8ro5PfBl+JewdrBGB88O+GKY/qWPxkBsdiweHHwAJycn/DTsJ7T1aqvyWDY1FVl//43ipCT0fPIElsHBYDt1MoJChuHIL83H8t3L4eTkhM+6f4YRwUqGnvKF9HQE79sHtm1bsJ0713pY3z30ZNxJiNPF8LH3wY+v/Ahna2deL7t7d+ofdnVtCDc39cfKWBm2H9gOJycnTGs1DZNCVZd984Gae6hAYIdr1wTw9ASmTm2os9y4KbFnj+rv99y5cwCoFLImAcrNzcXOnTuxadMmREZGVv09JCQE0dHRRrlWc4XRCNDTp09x6tQp7N27t+pv3pVeRlpaGnwU6hsyMjKqskLe3t4oLy9Hbm5utSxQRkYGunLqZUpgZWWlNOVnaWkJSy5K3awZOW+nTpF6k68vyR9DPpi5eXPdNfY5cDWkKSkp6N69u/n0/GiLM2doPtDQoUDHjhoPLyujPs2+fQ2rhBKLxbh8+TLq169fdz0/ytCwITB1KvW8PHxIIcPRo3ndiD086CU2biShtQsXgL595WS/rW9bpc+rU1urvGeqcOsWEBxcXUCijuBm6YZv+n2j8nHO1vr3rwdPT088fMhg/35S5jW4mi8ggHqCtmwB8vIg3LSJ6vhrZLz5hGICztLSEhtGb8Tt9Fto7dOat9dQtLUpU7rB3t4ay5bRvb9pEwmjPH7MYMkSIX76SYiICBKaqUKDBjQc9NAhEiRQkzX09QVatqReoMuXhRgzRo8LTk6mGykiAr+cOw1RDEklMQsWwNKEpF0sFuPZsyjMnBmIPn18IBSqWDdu3wYqKiDct48EabjpsDqgrKIMyeJkCAQCfNL9E1iJzKv8ZdOdTQCAQY0GIbSe6h4ZlmURU1iI5K5d0SMvDzZPnlAfWXIy9a3yUNbDsvSPj1jWpmubIJaIEewejNHNRxuXdNarB8yfTwSe24PS0gChEGIbG7320ApZBdbcXAOGYfBq21fh4WBgxEEJ3NygkfhwOB13Go9zH8NOZIdZIbPkvpsRoGwPlUqB2bOpb8nJyXx7Z1hWtQJc06ZNsXXrVrRr1w7Xrl3DTz/9hM2bNyNfjeKXjY0N1qxZY6SrNV8Y7W7dsGEDPD09MWyYfBJyYGAgvL29q5ThAOoTCg8PryI37du3h6WlZbVjUlNTcffuXbUESGt060ZykzY21RzZU6dIUWn3bpp/oSvMVvBAF3CLzb//ktqBBoSF0XRwQ5ThzELwQB0aNqT5DAIBOfqP+JGVVUT9+iRtDACbL5zD1C3vqG38NCtbu3qVJtxt2mSYPJSBiMuN0zjYTdHWWrRojtGjGTg6ks/JW5WFuzswaxY1gBQW0sRSNVLzfKG8HDh+HNgRJkBb73a8nVeVrQmFQP/+9LWnpdHPkBDSVHnjDSVN5o6OxPS5bDxATXBKvrPu3ennnTtazh5LTyelrOnTgcBAchQnTwb+/BPW92IhYEEXN2eOPh+BXuBszd+/Hvr1a6ya/AAkTcjJ+p0/T0qLOoqvWFlYYcOoDVgzYg2aefCX+VMEy9I+GRZWW3lQE77s9SVmtp2Jtzu9reb8clvr2qcPbKZNo2CcUEhSYjxk7p49A776CvjjD4NPBQDwdfCFg5UD3u30rtEzbllZwMXLFnj4qNKWysuBXbtQtmIF7mzYgHp+fjrvoTfTbiK5IBkuNi6Y0mqKka5cO8hYGVZGrwQATGs9DU7Wqku8DIW6dS0gQKv4b52CYVQvZw8ePED79u0hEAjQsWNHrFixohr5CQ0Nxe+//46MjAywLAuWZVFcXIwQPWa4Pe9gWCOMg5XJZAgMDMTkyZPxAychVIkff/wR33//PTZs2IDGjRvju+++w7lz5xAbGwsHBwcAwPz583H48GFs3LgRrq6u+OCDD5CdnY3o6GitFS0KCgrg5OSE/Px8eQkch/JyWsErXw+gPXTtWupJ7d6dNndtYVYOqSFgWWKB0dFEhl59VW05XFISZS6kUhLy6ddPt5cze/KjiDt3qOvQiIpfe49l44OoiYB1Hj7sNwfzQ2tPvjY7W8vIoAGPRUWU6ZgxQ7cpfTwgLjcOU/dORSe/Tvi+3/ewsaydiVJla0+fkg2zLDB2LNCar8RJSQk5somJpP361ltGK726nnodx+9HoCTiDQhk1hg/nrIohkJXW0tLI1Gv/HzKpH/6Kc29qik7DgC4d49UOdu2paxQjc9m0yYSHOzYUYuy24YN6WAOAgEqWreCRa/etJh36wbeFBW0gCpb43Zalcvc7dvAwYPEHt3cSHrT0BpAnvHzz6TQ/Prr1KPPF9TaWkoKiWdwpTwaP0jVSEkhruzkBLz3Hg8XDho6aycy/pp36xbFmho2JK6PoiKUbtuGZ+HhcHR0hEePHmBGjdK5hCUuNw6phano5s//3paSAsTGUtFAw4aaj49Oicbm25vxTd9vYC8yzt5mdnuoAVDnM1lYWGDGjBmYPn06evbsCYGalGdeXh7Cw8Nx7do1vPfee/+ZviGjhCxOnTqFxMREzJo1q9ZjH330Ed599128+eab6NChA5KTk3HixIkq8gMAy5cvx+jRozFhwgR069YNtra2OHToEH9yfiJRNfKD/Hx4ebJVUfiICCrB0AYv0s0EhgGGDQMaNyYmuH07STOpgGLm4sIFWqC1xXNFfgCgVavq5EefNKEasCyLs+xXsHbOQ6dGwZgdUvveMUtb8/QEZs6UD4rauJEyHyZChawCX577EhKpBAwYWFvULnFSZ2sNGlAflqMjz+06NjbkpbRuTSzASOSnrKIMX5//Gnseb0JBw/UAgGPHDFdv18fWvL0p4eXkRDNQp00jQrRunZIByiUltN7cvAls3ky/K6BHDyqH08ZpQs+e8v+//jpiHkWi5wJb/D21CfXtmQH5OXmS5ipVjnNRjtatqf7GyYnSkmvWALm5al8vpyQHq6NXo0RSovY4vuDuTj+ztFQm1iYzq9HWfH2rD5A5d46G+OmahoL8NuRzxJspyA8gH4LKxZfELIvw+vUhGDIEHt7epBT399/VgwFaIMglyCjkB6DRceHhdJtrg/a+7fHr4F/rhPxIpZRFv3eP9+3dpGjevHlVVmfdunXo3bs3JBIJwsPD8eWXX6JHjx5gGKbaPxcXF4wePRrffPMNPvjgg7p+CyaDUQjQwIEDwbIsgoODaz3GMAwWL16M1NRUlJaWIjw8HC1rhCutra3xxx9/IDs7G8XFxTh06BDqG0NzGSBrX7ECuHoVLVvKKxH27dO8yJulQ2ooBAIq+fLxoRVXw4yg1q3lYxwOHlRdl6qI54781ERZGWU9eJzjsef+HlxKioSzgwjf9vsGIqEILCvfqM3a1jw8gNdeIxaRmUkkSJ1GJ4/YdGsT7mfeh6OVIz7t8WktW9LG1nr2pNL6mq1NBsPSktJKij1A2dm8ThJeHb0aSflJ8LDzwOIxM+DmRhF6Q2Z1GWJrY8ZQVu3bbymJ8eQJlWq0bVtD8blDByqJs7ICEhIo/a4QbOHaqZo00eJF16ypDIkD7Nq1uLh0Icql5UgTp5l0bVFna7m5FBfQWFns40M1hAEBVKqtgZWvuLICq6NX47Mznxl8/dpAFwKUUZSBGftmYPbB2SgoU74e6GxrBQXyuX6rV1PQRQfwQYBYlsVX577ChacXNJI7PqFIgKpsrX59BE6ZAub11+nLKSykgMLJk2rfZEFZARLyEox+zdzMKE9P9ceZYtipJltLTQUuXQKOHDFLvY0qlJcDO3ZQ9bkyeHt7g2EYiESiKoJjbW2N3r17Y8mSJYiIiKj1nJ49e2Lx4sWIiIjA+vXrjfwOzAfmIxNTV+DGFB87BiQkoH9/2nvKy9XXOpu1Q2ooRCJyTpydyWF7rH4wWt++pC8hldKNqa5u/7knPwCR5qdPyWZ4UE15mvcUy6OWAwAWdlyIIJcgSKW0EO/YAUilz4GtubkRCeKi1xs3Kgn784tH2Y+wOno1AODDrh/Cw656uZC2tiYQVNdvMFor09OnFKE9dowXEvQg6wE2394MAPi/7v8HZ1t7DB9Oj129qnrArjrwsa45OVH5W0IC8Msv5HTev08ls9XQqBH1SylmPBISAJADovXSYGFB9jZ/PhiWxeurrmLW2Ty80/kdna9dX2iytaZN6acWrZXk4U6fTtl47jwlJbXSencz7uJg7EEAwMy2Mw18B9pBFwL0x+U/UFpRCgEjgIPIodbjetmaoyNlnLnmvTVrgOvXtb6f+CBAZxPO4tDDQ/i/0/+H3FL1GTo+Ia5UZGaY4tq25uNDSi4dOtBnkZamVuXhn5v/YMKuCVh/w7jOLjcEVV0lZ7m0HJN2T8KfV/5EscQ4i682tsatT/XrmzcBevqU1tOLF5U/fkZN9OvAgQO4e/cuNm7ciBkzZqBeZYvD+fPnsXjxYnTv3h0LFy40xmWbJV4SoC5dqLxJJgN27oSwMA/jx9P6mpOjvH/5hSY/HOztiQSNG6exMYJhKPLr40MbjCrS+EKQHwBo105eDnf4sG61fzVQIavA/87+jwZ3+nXExJYTAdDefvMmEBvLYt26p8+Hrbm4EAlycaGN2IhDUitkFVgcvhgVsgr0atALgxsNrva4vrZ2/Trw66+UueAdGRnU33H5MqmtGDDkt0JWgSXhSyBjZRgQNAA9G1AZWGAg3a4sSwRal1IOvtc1e3saosolMZSW5Xl5yRtKSkooep0tnxVSWkoBf41xBoEAGUu/xNYhtKG/GfYErkv/4DXbpgra2FrjxuSPZmRorGojCIXy5imZjEq+Vq+u8ihlrAw/XvwRADA8eDhae/Gn+qcOnJqXwlekFLfTb+Pfx/+CYRgs6rJI6egLvW2tfn1SFWzcmO6hgwdJiUeLkjiOE+hb4iSRSvDHFVJQmNZ6GlxtTNcrUVREolGPHt1UbmuWlsDw4dQ7pqhWKpVWuw8yizIRdi8MMlaGRq6NjHa9MpmcKKvLAO1/sB9xuXE4/OgwhAz/pcLa2poiATJncHtTUJDmY2uq6I0aNQotW7bEzJkzsWnTJjx79qza4wEBAfjoo4/4ulSzx0sCxDDAyJHkvRcXA9u3w15UjokTqZ+7ZhXff4L8cPDwIHLIQSJR6VCIRCS89PrrylV/XxjyA5DN9O8PdOpEn8f+/VSSoQcyijJQWF4IRytHLO69uEpJyNMTGDWKRWZmJs6fr4C9fY/nw9acnck54UOxUQ023NiA2KxYpaVvhthaaiolrvbtk5ec8IbQUAooCIWURdyyRe9mnS23t+Bh9kM4Wjniw24fVnts4ECqLMvOlpegaIIx1zVOebpEVZuKvT1F9Vu0INUDBc3c+/dJeSw8XHPU/udLv2D5aC/smVqpZrR4MfDxx0YlQdramo2N3LHSWUiysJC+yJwcKhW8dw8HHhzA/cz7sBPZqVVW4xvcV5OTo/pjlbEy/Bz5MwBgRPCIWqp0vNiarS0wZQqtwwIBidRs2KCR2RhKgPbe34uk/CS42rhiRpsZ+p1ET+TklCIxMRGBgR7q17WmTav3OB85QuUslQva2utrUVZRhtZerdHDv4fRrjc3l/ippaXqSs6yirKqLNTsdrNhZcGvfLu2tqYoK/28EKCSEuXD0UUKgUdJtbpjwN7eHqNGjcLvv/+Ou3fvQiaTVSnBsSyL+Ph447WbmCFeEiCA7tBJk6j0ID0d2L8ffr4sAgLkh9DsgP8Q+akJsRhYv57CsSrg6Fh93eVK4V4o8sOBYYDBg0lel2UpAqlVfUt1+Dr4YuvYrfhjyB/wtJOHyViWhUAQg4CAp/D398eZM7amUFPmB4qzOkpLqY8sLY3Xl2jv2x5+jn74pPsncLOVO8yG2trAgcT7xWIKLPPuO7dqVb33ZcMGnUUjSitKsfXOVgDAoi6LakWh7e2pjW/BAu1GEBl7XePKptQKAFhakhz0gAHyvxUXo1WTctjbU+uHuhhDRGIEzsSfgYARoM3vO4DffqMHfvoJ+Ogjo5AgXW2NC6Y9fKjjCzk5UXlTUBBQXo6CXVuw4tgSAMC89vNMmoVwdiYSwTCqAwRHHx1FTGYMbC1t8VboW9Ue49XWGIZU/riSuE6dNA73sbCgystGeiQ+xOVirL5OJbfzOsyDraXppmSKxWLcvZsAR0dHtGnTSPt1LTeXKhRiY4G//kLSzfPYH7sfAJVbG3Mv5oIv7u6qv5bdMbuRVZwFHwcfjGoyitfX18XW8vJozRcKSXPDXFFQAMTExOCrrxhMmqR8nlZ5Zen5V199hdLS0moEp7CwEPv378fChQvRokWLF8MXMwAvCRAHJye5WlNMDEWUKpGZCaxZw+Lixdj/JvkBKGyZmkpD6bSQdLlzh7Qlzp9XUq/8ooBhqOSgdWsKKR45UqPTWzvYWtqihWeLqt8VF+7585uhXTtRVX+VVuUz5oTTp8l2Nm7UrylFBUJ8QrDrlV0YECR3mPkg2paW8iRNbCxwTXmQzTAEBVGpIKect3atTiTI2sIam8dsxhvt38DQxso1ohs1qh6MUAVTBHU4IQON8QGGkXtKFRXAjh2w2LQenVpQ80NkpGoek1WcBSsLK0xtNZXKet5+G/jrL3rw55+BDz/klQTpY2scAUpI0KM9ztaWZPW6dcNqRCM/Px1B+QK8EqBJI5xfCARU1vjpp2S+NVEsKcaKKysAAHNC5lQLThjN1vz9SWa+bVv53zIylJbE2djQxzhFj5E3G25sQH5pPgJdAnl31tWBs7WpUxm8954HPDx0WNdcXEhUw9MTKCrCyv2fQZqbg65+ndHOh795YcrA9f+oKn8rlhRjw80NAIA57ebAUsjf0FNdbY0rf/PxUTunuU6RkJAAJycGf/3VQvPBAD788ENY8TA4+EXGSwKkCH9/ajzt2rXaII0TJ1jcvJmJ7dtZdOjwHyQ/APW9cBMKDx7UKIyQlwcUF5dj7doUsGzgi0d+OAgEVG8dGkqNy1qunksvLsW2O9tqqd/UXLgdHOwxejRFpYqLqZLhuZLo7NePagpKS2m4i4FprKJyedhZJBRV2RSfWUZvb3ki4vhx7cvIdH6R2bOppqhePeXepLqn23vjjfZvaPU+nzxRnn0xVUabEwCIjdXhSXl51ECQloYON9dCVJqP9HTVCr+jm47Grld24Y32b8j/OH8+iU4ApMbAEwnS19bc3Yn7duigV5yE1poBAzBtxGfoJ2yEj4rawmL3Xj1OZBjs7VU3iWcVZ8HVxhX1HOthUstJVX83uq1ZWckvqriYss6rVmlIO2qPrOIsbL+7HQDwdse3IRQYR9a+JhRtrWfPYDRuzOjeWunlBbzxBh62qYfjeAIUFWHBE1fes/I10b07sHBhdZV6Rey4uwN5pXmo71Qfw4OH8/a6+tgaJyZortVf7dq1Q2BgYNXvGzfGalQgDAsLw/Tp0+Hn51dN8jo0VHnm6L8IowxCNQeoHYSqA1iWxbVrD7BmDQN39yC0bi3CxInmrRJiNLAsNUfcvk1NPzNnqswXFxaK8dNPj5CV5Yf69T3w+utMVSnMfwIVFSomQALnEs7hgxMfgGEYbB6zGU3dyUNUt3AXFBB/GDSIen+fK5SX00yp+HgiiJMna9fBWQMPsh5g7uG5mNd+Hia1nGQU8sOBZcmHevyYuMqcOSq/TsNQXEz3EndyllW5uGQUZSA+Nx6d6nXS+vRXrgBHj9JtOmeOPMFiynLebduo6q97d5oXpjXy8shu0tNxLD4YUXb90bCLJ6d4rT1WriQyBFD64uef9V7AzaacNyODhBFGjzbpnCNtIGNlSBOnwdeB9gaTl45nZNDNm59PqdxBgyhAZcB3xbIsLiRewIWnF5TK7RsDfNvamfgz+Pr4p+iSY4fvyntQ2eA77xhtRpk6VMgqMGzbMGQXZ+PrPl9jSOMhvJzXEFvLz6efTk68XAqv4L77H364gbKytnj1VZphV9MmPDw8kKkhYrdx40a8+uqrRrvW5wkvCZAasBUVePrPP3jk7o4Gzfpj5047VFQAffrQ8MT/JKRS2lzi4qhnavbs6kPqIF+4vb3r4dq15khKYuDqSg6YjkOqn08kJJBzMmlSrXHp2cXZmLh7IvJK8zCjzYyqBmZtFm6ZTGOJu/lCIqEavsePydl/5RUth7wQyqXlmLFvBh7nPEb/oP74of8PAIzrkIrF5DuHhND9bnQ/gRPU8PcH2rev8RCLRScW4fzT81jYcSFebavdBiYWA3/8QdVAI0bQaU3tkF6/Tq/r4SEvi9EaZWXAnj3Iu52I36I6gQ0IxLzvG8Dbh4GMleHb899iWPAwhPiEqD/PqlUkzgHoTYLqmvwUlBXA0UphL6tJlp8+pfXGKExdjqQkmpfi5ETcQh3qrG+2pITuJS7t2Lw5MHIkKiyssXQpraUffli9XdGcUNPWcnIY3L9PWUQuo6oPCsoKUF6YB/dTkVTVocMazDdSC1Ox78E+zOswr0r8xxC8yD3a3FrDsizKyoD09GcICPCvlQXy9fVFSkoKAOD3339Hv3790KxZsxez+oYHPK/ulNHBsiySVqxAxdmz6JGaiuCG1hg2jB47e1avfvcXA0Ih9Up5e1MX7IED1cpKFBfu1q2bY9IkBi4upBq0Y4dByr/PDy5elA+kq1yMALKpJeFLkFeah2C3YMzrMK/q79os3IrkJzeXFLKeG3BCI82akREcPaqTMay9vhaPcx7DxcYFH3f7GIDxHVJ7eyrh6NvXREHSmBhqWD50iBYZhfvqZNxJnH96HhYCC/RooL1yk709BWwAascqLja9k8D1vnBCZjrBygqYNAnOfUPQ2isdrUsuw/LiOQDA4YeHcSD2AN459o7KQZtVmDuX2CwALFsGLFqkUzkcn7ZWUUHJUC7irA2KyoswYdcEfHb6M/l7VbyG5GRKEW/YoNuJ9UBZGZmqolT89dTrWBO9BqUVclXDOnVIbWxovRk8WN7Xu3IlmORnKC+n70CbUmKWZauV3ZoCymwtNZXUEA2dve1o5Qh3d3/6bBTJz/371fqeDUVODsUA1V2vj4MP3gx98yX50QK2lZHjzMxM+Pm5o0GD+kpL4Djy8/bbb2PhwoUvbusBT3hJgJSAu5me+PigfsOGsE5LA44eRbu2LDp2pGP27jVSb8DzACsr6iRt3JgGAKkpRbKzo4onKysKUF6/XsfXbgq88gpF8UtLiQRV1lrvvb8XF5MuQiQU4es+X0MkFOm1cOfm0vy/3bvl0p3PBSwsSOmrY0eqidIyUh2TGYONNzcCoIGfLjYuJovGK0aIpVKtRo3oj+bN5anl8HAKLkilyC/Nx0+RPwEAZrWbhSAX3coHQ0Mp+1JUxGLz5kSTOwn29tTmBOjYB8RBIAAGDsToj5tgbIdEuPVuhbzSPPx2mZTe3gh5o3pmRBUUSdDy5VqTIL5tbfdu4J9/dFPOX3t9LbKKsxCTFQNrC+vaB5SVUSllcjJlu1Q1S/EAFxf6mZtLHx8ne70qehXWXl8LwEwcUoYBOnemYbsuLkBeHpioSzqdIjIpEiO2j8DOezuNdJHVocrWuCGo+nyM11OvIyIxQnXPSGEh9fXu2UPGqVKvXnukphKfUmbjOSW6RkHUw1Bbu3SJKm11Vmc0ISZPngwA8PT0RHblEK7Lly+rPH6KPiof/0G8JEA1oHgzhQ4bBqupU2khjY4GrlzBoEFAQACVXf8nyrlUgRuUWinwr85J8PQkTtCjBzljLzxEIvps6tWjzWTTJiQ+jsbyqOUAgAUdF6Cha0O9F25nZ7JBThmOkxt/LiAUAkOHVpcGUvMGyqXlWHxuMWSsDAMbDkTfwL51UoqUlQWsW0fJGaMVDTMMpWtGjiSn/+ZNYNs2LItYitySXAS5BOG1tq/pfFpqg6CZUhcvShAcbHqHlAs260WAKsGEtKOeBXd3/H75d+SX5qORUyAmt5qs/UnmziWCABAJev99tV+oMWyN62XWoCNThYS8BGy7uw0A8EGXDyASKumCDwoitS9unt3mzTSywAjG6uxMpiqRVBYBPDiAh9kP4WDlgGmtp5kH+VGEnx997506gRkhb7bX9NFIZVL8dvk3FJQVIE1sXMEAQL2t6UuAZKwMSy8uxbvH3sWumF3KD7Kzk0uI371LwiEGEmiu1NXDo/rfc0tyMTpsND46+REvmTU+bO3RI1qXCjQkkesSgwfL7fbo0dNgWRYduWg8AEGN2njFx15CNV4SIAUovZmCg2nYGgAcOwZhwhNMmkRDUu3s6vZ6zQVisRg3t29Hs9hYNFdRb9qoEQmC/WeysVyWzM8PKC7G3d1/QlJWglDfUExqOcmghZth5L3PRUUUvdJZVtdcEB9Peunh4Uo9kjXRaxCXGwdXG1d81O2jOuvDKCujRN7du3rPvNUeISGUNrW0xKUn53Dk8hYwMhn+1/N/eknFUt14DBwdU1Gvnj8iIuyNORtUKbi+BYNLh0UinIm5iS1XDwJlZfj0sQ8s7sbodo433pCToF9/VUmCjGVr3AyaxETN9y3Lsvjp4k+QyqTo4d8D3fy7qT7YxYWyHe3a0fs5dYoiJHoO21UFoZD65wHgWYYYf10jufE3Qt6Ak5WTeZEfDtbWwJAhYGxt6HeWBXvsuFpH/9DDQ4jLjYOjlSNmtp1p1MvTZGv6EqDjj4/jcc5j2IvsMbjRYOUHCQRA795yVUpOcefYMb1r1lVJYP9z6x8US4qRKk41eI4SH+RHJgOePaP/m6sCHAC0bj0CAGBr64bBg/vWelxWo57zZdmbdnhJgCqh9mbq2pVmDLAssGsXrMVZ1XoCFNo8/nMQi8WIOnUKje/cQf3sbDDHj2sMrVVUUHUPj2NhzBPW1kSCfHwwtNQfG91m4as+X4EBY/DCLRKRj8yNktm716gD742HlBQyiLNngZMna70JawtrCAVC/F/3/4NFhUWdNaH7+cmr044cMXqbBdC4McpmTMF3wktARQUm1R+KVl6tdD6N4rr25psN4eMjqqmvYBLwkQECgPKKCry37zuIxUCX4o5oLXEl4z99WrcboCYJeu89lb2MfNuaqytlUaRS0ktRh3MJ53A5+TIshZZY1HWR5pNbWlIGccQIYioPHlBfGc/gyuDW31yL3JJcBDgHYHzz8eZJfmqAYQBkZIC9Fk2ZsjNnajUElUhKsPIalUvOCZmjXYmlntDG1vQhQBKpBCuj6T3MaDND83vgMmUdOtDvUVHA6tV6abYrI0BZxVlVpYTzO8w36J7iK8uYkUFBCCur2tkqc0JCAjmcxcXZ/50gsgnwkgBBi5uJG3jJhQgqVyOWpSDJ6tW89g8+N+AWbp/GjeH5+uu0oF2+TKUXanDuHHDjBmUujO5I1jVsbGg+UPfuaDZuHjxsPXhzEhwdqZfVwoL8nDNneLxuU6FbN2pUBmjS5ZEj1RzR2SGzsW/iPoR6hNa5/HCPHlTVWFpKAlPGJpyiegF4d9R3aBXYCfMHfqrz82uua/7+9liwgFqNTP3x8ZUBOh1/EqXWcbCGMxo7LZPPJrtwgbIduqRC33iDFm8A+O23KhJk7Cwjw8izQOrK4MoqyrAsahkAYHrr6ajnWE/7F2jfnrJBHToARiiHcXEB8pGIwwlhAID3Or+Hhw8emj35ASpt390dbJu2dBOfP0+DmhU2o613tiKrOAu+Dr4Y33y80a5FW1vThwAdiD2A5IJkuNq4YnJLLctERSLydaZMoRcLCNB5MmhFhVzsRJEArb+xHuXScrT2ao0u9brodE5F8FliyfXQ1qtn3gqrulQktlUcCPwSamHGX7lpoPXNZGFB3uacObQogBZSro/74EHeZq49F6i1cLdqJXdkT59Wq3bQowfNZhOLaUaIURvL6xAlkhJ8cOIDPCx5BvTvD1YgIFtLSkK3tm15cRLq1aOAL0DVZM+lyl7nzvQmGAa4dg3Ytw+swhtxZBzrnPwAtEGOGUP+QHw8Nc8aEwzDoF/r0Vg/fY+8XCQjgxStNEDVuqb40ZkyY8hlgJ480XMIaCUGNxqMHwZ+jZ6CT5CT5oRnTfsDY8fKowDr1unWFPf669VIUPmCBbgYEWF0W2vYkH4qKqnVxNP8p5BIJfCy99Kr9wt+fuTMcu9BIqHglFSq+7lqwMUFuCZYgQpZBbrU7wLnQufngvwAND8loKEQguFDSZTFyoo84ZUrgQcPkFOSg023NgGgfk2lPVc8QBeirSsBKq0orRKkmBMyBzaWNrpdXHAwzc7iJkIDRBBzczU+NSuL1hYbG/n1povTse/BPgDAvA7z9L6v+O4vS0qin/7+Bp3GqBCLqfzavXJeYIkGkYpp06aZ4rJeCPynCZDON5OdHapN8xSL0bcPi8aNaW/Zvl2+UL3IULlwd+4sj8geOqRSp9nKSh5gSk8n4RltJEmfNyyPWo5zCefw0cmPUCGtqCI/PcVi2G/bptVmog1atyaRiVdfNfoIEOMhJAQYNw4QCHDn9knM+L0PHqbH1PnslZpwc5Pz/DNn9JhrowUkUgnySvOqfq96z0VFwJYtwM6dlC1TwWA0rWsyGfHMFSvolKZAvXokGiORaC77UgeGYTCm1RCMbk19mVeugG6AmTPlC8rq1bqlll9/nWQVAYj++gsdtmxR2cvIF4KCiFBnZ6vma8Fuwdg7cS+WD1quuwOrDEeOUF/Qhg0Gd3x37Qpse+dtjGrdByPcRjw35AegdXLmzMoe3pYtqezL15cEa8LCcPkoyXm38GyBAUEDNJ1OL+i6rk2fTtXUNUbuqcSOuzuqMlhjmo7R7yLt7OTZH24I+t9/U/mGmuhJXh7ZtqennHuvv7EeEqkEIT4hCPXVTwnJGOIaHAEy5/4fLvvTpQspux0+fFjt8RMnTjT2Jb0w+M8SIINvpsrmbcHVyxg3jnhRQcGLP+tG48Ldrx85syxLsprp6UrP4+REPSwWFqTCcvy4CS7ehIhIjMDe+3sBAJ92/xSxD2LJ1tq3h01aGjloGzfyRoJatKheqfBc2mDLlih/ZSy+Ys7jviQFG25sMivywyEkhBTgvb2NMx9o482NGL9zPM7E16hptLGhOUoAcOIEzVKqETnQZl3jRC2zs0l7whQQCAAHB/q/Piq7sVmxKCwrrPqdq+q6d6+SxNWrR0TG15e+HB2HX4snTcLdd94BALht3QqmRk8Q37CyAkaNIt9b3eR5W0tbBLsF8/OizZpRX+KzZ5TtMEDpy8ICqOfoh5l+M8Hmss8N+VEKV1cSAOjaFRAIMKT9RISND8NnPT4zypqjT1DHy4vKJkVaJqMauTZCkEsQ5nWYp5dwSi2UltJaU15ODbxhYSqjvU2bAp9+Ssk1gJQ8LyZdBKB/748xyI9EQveeSFRrXrlZgbtNx46lMsZt27apPb4eN3PgJTSCYVWKwz/fKCgogJOTE/Lz8+FYYzPk5WaKjCQnhGGAKVOQ7doYa9bQOtGunbyi50WC1gu3TEZRakdHYMgQtR9ETAwdCpA68oug3phTkoNJuychpyQHU1pNwSDHQdVtrbCQBoFkZdEK/NprVXLihoJlKTMRF0dRTh3Lt+scv1/+HZuurYOzrTve9HwLTQKamBX54VBaShsn33XjcblxmLJnCipkFfiu33cY2HBg7YOioihiwLJUqjJ+PCDSbaZUQgLxb4GAKl1M0QDs5UUZs1u3KGmjLYolxXhl1yuQSCX4Y8gfaOJO9XRr1pCQSv/+8sQzJJLqtcnl5cRS1TDVauvapUtgXn+dHli4kHqDTGx711KuIV2cjiGNh/AyJLIacnNpwU1NpffVuzfQs6dO77GgrAAOIofnQvBAZ+TmyhUeAIoSuLryZgOmzGjLWAqO8GZDMhnV/Z45Q2WUtrYktsEFZdSgtKIU55+eV76eaYCxZdVlMvPu/7l3j4ppQkOBgACyF85tV2Y/L6hLbxSY8dduHPB2M3XpIs907N4Nt4p0jB9P6+SNGy+ewplOC7dAQDVZGsgPQA3Z/ftTcLumZObzCJZl8c35b5BTkoOGLg3R175vbVtzcKA6DDc3eSaIp2E+hYVU3pScTH1pz9NaeDv9Nrbc3gKZUIjB9kOI/DRrBubMGbMb0mBtXX3T5CPjJmNl+Ob8N6iQVaCHfw/V5TedOwMTJpCT//AhsHEj2MJCnda1gADqy5HJSHzPFOBsUVefb+31tUgXp8PawhoNnBtU/T00lKreqpF8S0s5+eGy0Js2qaz1q7WuzZkDrF1LF/nHHzR3yIQ3kUQqwfcR3+PLc18i7G4Y/y/g4kLZDm7vOnuWGjGLi7V6ekFZAcbuGIs3d72JTWEFiI3tBZns+SI/y5YBS5fWXlIeZj9EPPLkf8jOJqXAXbt4GQ6qL/nJzKTWLV0HdQoYAb8EWiAg0Zo33qBoRnExlbzs36+xkdfawtosyQ9g3uQHoOqO8eOpd+0l+IWZf/X8gtebiWGAYcPIkygrA7ZvRyNvMYYMASZOlE8+fxGg18ItFMo9HamUItYqnNhu3YA336zSlniucSD2AM4/PQ9LgSVm1J+B9JR05bbm4EApGjc3Ij88kSBHR/KNBQJSJrx40eBTmgRlFWVYfG4xKqQVaGbRDEOaDyFbCw8nha/16+XSQmaEigoiEGvWGE6Cdt3bhdvpt2FraYv/6/F/6u+zZs2IRNvagk1ORtKGDTqvawMGkJ08fEgVvcaGYi++tnic8xhbbm8BAHzU7SNYW1hXPdaqFQm3deqk4slZWZTqevqUvqC06sMsVa5rs2dXJ0GzZhmm3KAG9+6R/5iVRb+H3Q3D07yncLVxxcgmI43ymrCwoBKF0aPp/8nJWhvvmug1SM1Lxb30e3Cxb4OcHGu+qnhNhuJi+qfIa1mWxbcXvsXE3RNx7PEx+iP3ucTEUMkg1zCiBwzJ/CQlUevW1auaj111bRW23t6KcqkRB8N5eVG5affudI+kpFRlWMvK6FY7cIC2/Tvpd6oyUbrC2OTnuZ2dpwajRo2q60t4rvCfIUBGuZmEQmI7nBO7Ywc6hlRokxF+bsBLyv7ffyl1vmWL0kgaw8j7AwAqk3kexSRYlkV4AjVVjPAdAYt8C/W2pkiCCgpqOWj6IjCQkm8ACfIZOnvFFFh5bSUSchPAlDJ4u8Pbcltr145KUPLyiASp6CmrK5SXAzdv0mWdPav/edLEaVhxdQUAYGHHhfC00yIdWr8+2Nmz8czeHrGBgTqva+7u8pEfx48bX4iEWxejo7U7XsbK8P2F7yFjZegb2Bfd/btXe1xDZRvV9c2ZI7efdeuqFPQ0rmuzZpG9CYUUnBg92iiKEdevk/08fkxzUtZcJzGGBR0XwF5k5MxK27b0+UycqFXPVHxuPP659g8k5RJ8Nfgr+HiTMuGLMMrgVNwp3Mu4BysLK3mTfuvWRIZdXelNbthAktk63iiG7qHcXqi4RypDSmEKNtzcgOVRy3E7/bZOr6EzLCyodOO110i8pjLrmpkuQ3KiFI8fA0mFCZh9cDam7JmCYol2GUYOxiY/EgllAf/6S/85wXPnzkVwME/9eSoQG0sZQI6sDxxIWbRn3PTWGpg6dapRr+dFw3+CABn1ZrKxIUkza2sK1URGVj2Un08VGM+rzDNv9crdu9PqnZEBbN2qNvSSkEB+yvbtRgu6Gg0Mw+DngT9jdtBstBO0087WuHK4iRPlw1J4QGgoObdcFZAx1Mr4glQmxc2UmxCLxXi77dvo2Kaj3NacnckZ9fYmT2DDBoMisXzD1lYuQx4Zqd+lsSyL7y98jxJJCdp6t8W45uO0fl5MWhpiWrdGlz59yNZYVqf62969aelKS5PPxDAWevSgnxcuaHf8odhDuJV+CzaWNljURfUQUJmMslhKHXEPD4pWBwXRgrJzJ0qOHtVO6nrmTErP2NiQ4ES/fvJUDU8ICqKf8fHU/1YsKUYLzxYYHjyc19dRCW/v6rU19+/TYNkaazTLsvji6BcoLS/FwCYD0adxnyrxBp6qd00OzqmUSCVVwYfprafDzdZNfhA3HLR1azK0M2eopFJL1sfHHqqtBPbq6NWokFWgo19HdPDtoPPr6AV/f8oIVSLjxE0gOhqelrlYHb0aMlYGPwc/uYy/FjBF2Rs3f7ukhARJ9MHq1avx6NEjfi9MAVIp7d1//imP+02ZQkpwO3bsUPqc4cNNtG68IHjhCZApbia4uZED27YtKcmAFtewMCpD2rPn+ZN55rVZ09mZdDxtbEiBSI1UnqMjleUkJ5Pq5vPUw8KyLB7cf4AgaRB6dO+hva05OsoHpQC0ufLgVQwZQmWF5eVki+ZKKEuKSzDBdgK+CP0CM3rNqG1r9vbkjNavT+G6TZtIOtBM0KQJ3fosS/6yrp9zhawCXvZeEAlF+Lzn51rV7atc1y5fphqU8HCtbh6OwM2da/wS1J496ef585qPzSvNw2+XfwMAzGs/D172XiqPPXCA2liuXVNxgI0NaQh37ozy8nIkb9uGpk+eaLeuDR9OaVRXV/psu3c3TMe7BgID6WdU/G0cfXQUDMPg424f8y9+oA3Kyqhx8PZtsqHMTABka9subMPl1MtwcnDCRz0/AiBXr3teM0DcV7/n/h4kFyTDzdYN01ormaFiZUWzpsaMIeWThARq9NUAvvbQwkrxQ3XbSVxuHI4+OgoAeCv0Lb1ex2BIJMi4kgAUF0Nycz1O3iQV1Lkd5mp9CpP4a6guf21m+jpVePaM9m5bWznHHDOGJM1VKcHZ2PAgl/8fwgtPgB48eGAapZrAQHlNNeimGjFC3qd8+rTxXppvGEWpxtMTmDqVNpAnTyjKqIQVurrSvFmhkKpVTp0y/KWNjfuZ97H04lLcuHPDcFsrKKCSmw0bDJbIFgqpH8jDgyL95qgIx9maf31/TO05VbWtWVsTieaGbu3apXXjtikwaBAl87KzdS+FsxRa4tMen2L/pP0IcA7QeLxaJ4ELF589S2xMi6GXzZsDPj66XbM+6NKFbPLpU/qnDgwY9GzQE8FuwZjUcpLaY7nYwY0bat6uQABx9+64Vq8eHDw84D96tPbrWpcu1IVevz7VpHTtSiSBB3h7AyIRi3PlP0EiAUYGj0Rzj+a8nFtnWFnR4uvgQORn9Wqwt27hzr07WHVrFezt7TG59WT4O9HUSI4AmZk+iUYoxgXE5eKqssO57eeqz1S0aUORgvbt5elMFeBzD+UIkLoSuJXXVkLGytAnoA9aeLbQ+7UMgqUlMkKHAR4eCHc7DrawAP0K3BAsddbq6aYiP4A8223KAaj//vsvOqlsWKwNTv46KEhO0jhF4+tqBs2/hPZ44QlQcnKy6WU6WRY4eRK+5QkYPZr+dPEi1XqbO4wq01mvXnV28++/Sg9r0IBmZAD0uZnzvV5aUYr/nf0f/on+Byuvr+TH1gQC3uYE2dqSzLEussOmQlR8FN7f/T48fDy0szWRiOynTRuKxtpqX1ZhbNjYUMADoHY3bUvhFCVLten70egk9O9PFyIQkN705s06KVjl5upfE68J9vbkOwKay+CcrJ2wuPdirBu5DkKB+mFLTZrQzEaxWHVikFvXnHr1gud334FRHPyhTW9Ps2b0xbZsSRLSPXoA585pfp4GCAQkbdsFixBk3QFvdayj6D2HBg2AefOAoCCw5eXIXLUKCXvWwcJOCBdbF8wJmVN1KNc29LwRIA4MQzO38kvzEegSiFFNtGggd3Oj+4trPuPqlFJTqw7hew/V1AMUkxmDM/FnwDAM5ofON+i1DEVGvhWyW1jipncKGIEQc8VNSUnv4kW1ZTCmJD8sWzcDUIcOHYorV65ofbwiAdIGzjyN0vgvgXcCVFFRgc8//xyBgYGwsbFBUFAQlixZApmC8bMsi8WLF8PX1xc2Njbo3bs37t27V+08ZWVlWLhwIdzd3WFnZ4eRI0eqbPxSh86dO5t+RkFUFN3wO3agpU92VenHoUNm1b5QCyaZURAURJqO1tak76gCrVtT1gIADh82aGafUfFb1G+4n3YfNjIbfDniS8NtzdGRyr3c3eWNtwaqnynKfIrFusupGgNZeVlYdGgRLhZcxIXiC9rbmlBI5EdRaUQsNotayeBg4mYikTxqqw6RSZFYcHQBUgpTtDq/1k5C+/bUl2hlJW+q04JIX7oErFihfY+OPtDUB1RTMcrGUnNJh1BIJYiAcoGFWuuaYplISgrN+omI0GxDfn504T17ktc/aJDKII4uaNAA8EZbTLBdCVcbV4PPZzDs7MBOnYqEgAAUFBZicJkdDpaNxvJ+S+FoJRdLcHSkCgdjDAM2Jnx96Z9QCLjbusNeZI+FHRdqJNpKERFBde5r1wKXLkFcWMjrHsqymkvg/rr6FwBgaKOhCHLR0ls2AoqKaCm+hpWwsLfGwNBJCAruRCTx7FmVZd2mJD8AZelLSsh2vb11e+6ePXvAMAwyK8tDtUWJjjLqpaXyVs6GDas/xpW5FdbYZGbMmKHTa7yEEQjQjz/+iJUrV2LFihW4f/8+li5dip9++gl//PFH1TFLly7FsmXLsGLFCly9ehXe3t4YMGBAtS/03Xffxb59+xAWFoaIiAiIxWIMHz4cUi1KOhRRJwPaOnSgbEdJCbB1K/p0KkazZrQOhIWZZ820KQe0oVkz4N13NTYd9OpFUrcymXYSoKbGpaRL2HR9EyTlEvw49Ef4ufE0TpoTRnB3l5fEZWcbfNqCAmD1amrBqksiLhaL8en+T5GHPPi7+mNWu1n6nywvj97Uv/+aBQkaPJgk3ZtrqGIqlhTjuwvf4XLyZey6t0vjeXV2Eho1IvEIJydq3F+3TqMai5sbrVGXLxtvjeJiHqoEF7bc3oL3j7+P1MJU5QeoQEgI/Xz8uPq1a1zXHjygQvtTpyiSr0kb19mZJPNGj6Zjx4wxqE5XXC6uWgZ5GDXDC1iWRcyDB3jo6wufDz+EyNkZ9gHBaO3XvtpxHh7AZ5/RWJjnCbNn0zXb2QGTWk7CocmH0MNffUmbSoSGkniNVIryQ4cQt2QJ/F1ded1D33iDWthUZYDe6/we+gb21anXxhgQiwEH5zLIrHIgFAjwepe3gMmTqZxj0CCqb68BU5MfQL73+fnpTt5TUihYdfToUaWPX7hwAfv376/19yVLlgAA1qxZo9XrJCSQ3+PmJi815cApva1fvx5ChTfACSS8hPbgnQBdunQJo0aNwrBhwxAQEIDx48dj4MCBuFbZocqyLH799Vd89tlnGDt2LFq2bIl//vkHxcXFVY1d+fn5WLduHX755Rf0798f7dq1w5YtW3Dnzh2ceh6aQiwt6cZ3dgZycsDsCMOYERXw9tYsZVkXMCn54WAtn+eBjAylTaUMQ2tn//6UNDIn5JXk4cMjH0JSLsH0kOnoF9yP3xfgJLI9PHgjQQ4OtOhLpUSC6qJ0RSwWY/OJzYgsiISNtQ0+6/kZHKwMuCkSEylEeuUK9ZXpGCDhGzY2tTcsZfjr6l9IE6fB18EXb7RX70Hq7SR4eZHMsa8vNe9rkDtq3JiyERUVvFR3KYWLC/1UFgxOLUzF6ujVOP/0PK6lqFI0UA43N2rDZFn5UqLVuta3LwkdCATA3bskfa1JgMTaGti5kxansjJSkdDjA3uY/RBDtw7FodTV+OADFrMMiAPwBUVbq9eyHiLt0sHOmwcMVBhiWVICSKVgGPNtINcFDlYO+u95trbAxIko7tsXT1NS4F1UhKZnz4LhSaSFYeg2btRItbPe0LUhlg5YCl8HX15eU194eQGL3rXCxQ83YMvYLdTPyI0yCA2VH5iUBGzZAjYvz+TkByAe1ratfqKrffv2BQCcOXNG6eNDhgzBmDFj4ODggHKFYMoPP/wAAJg9e7ZWr6Ou/I0TQrh69Wq1hEDHjh21OvdLyGHB9wm7d++OlStX4uHDhwgODsatW7cQERGBX3/9FQAQHx+PtLS0Kj1zALCyskKvXr0QGRmJuXPnIjo6GhKJpNoxvr6+aNmyJSIjIzFo0KBar1tWVoYyhQhnQaV3J5FIIKkL+SuRCJgwAYING4D4eAgO7cGEV8bAypqBSGQ+ilxFRUWIioqCn58fGjdujAo+Rtrrgvx8CNauBUpKIJNKqYaoBjp1omgIV0Upk9Xt9GaZTIZF+xchQ5yBZj7N8G6Xd41jY1ZWwNSpEGzeDMhkkAkEBhvO8OFAZqYA6enA1q0sZs5kOd0Oo6OoqAjnI89jT/YeWFlZYWijoejk08mwz65ZM6CiAoIDB4CbN8EWFoJ95RW6/+oYT54Aly8zmDCh+md8O+M2wu6GgWVZfNTlI1jAQuVnwLIsYmNjkZycjM6dO8PKykq3z4sTjxAK5bZTUkJ/V+L09e4NrF8vQHQ0EBoqg4eHDm9YCzg4MAAskJPDQiKpvtYsjVhaJQU+KHCQznbRqhXw+LEACQks8vLE2q9rbdoALi4Q7NpFdSd//w3Z2LGai++3bIFw4kQIjh4FO3w4pIcPg+3WTatrZVkWP0b8iKLyIjzJeQQrq4o63xNq2tr/Lv4Pkc8iMbPNTMxrP69qEWa2bgWkUrDjxmnH9s0QP1/6GV3qdUHXel0NDvgVFRUhqrgY/q+9BtfbtyHLyAA2bwY7aBBYHZredUWFrAIWAhMt3joi0DFQ+f3LshAcPAikpSHz6lXkNW6MTlOn6r6uGQCuBBLQfTtt3LgxgOoEiLvuJ0+e4Mcff8SCBQsgFothZWWF48ePoyfXAwFo7V/16kUFMo6O1a+xqKioqm/0+PHj1Z5jksD1Cwbe756PP/4Y+fn5aNq0KYRCIaRSKb799ltMnjwZAJBWOezRS0E7nvv9aaU0UFpaGkQiEVy4cKHCMWkqhkV+//33+Oqrr2r9/cSJE7Ctw2ZpW3d31AsPB/PoEbJjY5Gl4ODn54vg5GQe44jj4uIQVxeNNiwLz9JSuDx6BHbZMqR07Qqxis5EmQy4ccMTZWVCdOmSWmfRx1xJLq6mXAVYYIDFAJw5oTwaxBeEnp5gWBYV2ugHawEXF0tcvdoAjx4JkZhYgE6dTPdZHsg4gITcBDhZOKF5XnOVpQS6ws7HB34REWAePULp1at41qsXpPoOeOABFRUMDh8OQkmJBZKSstCqFWXvKtgKLHu6DHlleejg2AHZt7Jx9JZ2n0F4eLjB1yUoL0eDU6dQ4uqKtNBQpWHlkhI/PHtmj+XLC9G9u3b9SdoiIcERQB9kZJTh6FH5Bn5PfA+Hkg9BwAjQ0aUj/tWjt0YqZRAYaAVn51JwH5Uu65qFvz/8IiJg/egRcPs2Evv1Q4kGBiiYOROdUlLgefMmMGQILi1ejFwtQss3Cm4gPDUclgJLtChoUXUfsKx5ZFVWHV2Ff5/9CyEjhE2SDY6m0/WJ8vLQ4Px5CMrLIY2MxDGXMYiTBKBZs2zUr2/+06tZFlh/vAiRLlvg4rQRnzf8FM6Wzryc+1FZGR77+cEjKwtOcXFISEiAxMCsfVaWNdLTbeHmVgpvb7nqpYyV4bfE31DPuh6GuA2BvUUdlPrXwLX8a2hh3wI2QvV9e5aOjvC5fx82WVlwS0/Hk7g4pHXsiIrnSMJZsR+du3enT5+OwsJC7N+/H3v27MHmzZurBeunTp3K234HAFk8zyT7L4J3ArRjxw5s2bIF27ZtQ4sWLXDz5k28++678PX1xauvvlp1XE22yrKsRgar7pj/+7//w/vvv1/1e0FBAerXr4+BAwdWSQfWGUJCIDh6FA1HjapqDoiIYBAdzWDUKFmdKHQpZn6aNGlSt9GDoUPBHDwI5tYtBGdlQdavH+X8ayAtDbh1SwCRCLCxYdG3r2l7PhQjpHsm78GjwkcYEDTApNcAgCR4PT117+BUQIcOwLZtAshkgLs7i06djPdZcrbm5OmE+Nx4ODk54ZcBv6Bbfe2i5Vpj0CAIwsKA4mK0Sk2FbOrUOo1QN2wI7NkjQEVFY3ToIIOnJ7DuxjqUppciwDkAK8augJO18uurGY23s7Pj56JiYyG4exeQycDm5FC2rEaAqEMHYNUqAVgWaNeuLa8S2Y8f08/iYisMGTIUDAOUSEqwet9qODk5YVqraZgVqn8tmMHr2ujRYI4eBYqL0XDSJO3YyKBBkI0eDYuzZ9Hju+8g/ecfsMOGqTy8WFKMlXtXwsnJCW+EvIGpbaciPx84cIBBQQGDt96SmZQE1coy2lhh0/5NcHJywuSWk/Fqx1erP2HIEDB794JJTkZsbDHyLe3QslkzdOtp/qKykgoZPr/xGkSMDV4NfQVTeujfN6HS1kaMAMRiNFYs6Xr6lDSXdfxiIyIYJCQwcHdnMXSofI0+/uQ4CtMLkWSZhMGDBlcTp6gL3Ey7iY0b/4WjZRROzt4DD2flZKbK1tzc0E0ggG1UFJUtP3kC2eDBlMY1ovHn5ZHAgKcnf1UkQ4cOBSDPBA0dOhRDhw7FkiVLEMgN+gKwaNEitGzZUq/XqGlrNdFCjaDUS6gG7wToww8/xCeffIJJk2h2Q6tWrfD06VN8//33ePXVV+Fd6bSlpaXBR2FnzcjIqMoKeXt7o7y8HLm5udWyQBkZGehaOWi0JqysrGClJOJraWkJy7oegBIaCjRpAqECEZNK6Qb8918hvLxIM8FUEIvFuHz5MurXr2+6nh9NGDuWUjwxMRDu3UtlOzVE+uvXp97j/ftJscrTk8qLTQGuNj4lJQXdu3eHvb09GqOxaV5cEQ8fkiweV9rkq1/dd5MmNCj12DHiU9yMFr5R09Z2NNmBs/Fn0TuoN/8vFhgIvP46ST9bWUFob1+nw4/atAHu36fRMf/+K8SrM6U4n3QeDMPgo+4fwd3BXenzlNkab2jZkmxn1y6atPfPPzSfy82t6hA/P7r22FggL0/I66yMpUvpZ6NGDEQi+m5W3ViF9KJ0+Dj4YF7oPL3Xa0Vba9SI1jWdT2VpCYwbRws0V7cokZDElSqZWUtLkvgcNgxMeDgsxowBPv4Y+OYbKKsv3XpzKzKLM+Hn6IfXQl6DpdASzs4kSCeVAmKxUFm/uFGgzNZ23tuJp/lP4WLjgrkd5tb+Pjw96T47eRJOT9MhSExGyaE4WHbobPYlccef/Isc5iFEsMOc9m/wYmtK91DF6pX4eGDrViqpHD1ap0bgkhJal11c5EtZhawCa2+uBcMweLXtq3Czd1N/EhNg5dX1kEoBH1kfeLk6Kt1Lqtlaz560rrVvTxPPU1IgPHSI7EdJ8JMv3L5NQo7t28vHFhgKzoYElYyK+z0gIAAsyyIwMBAJCQkICQnBe++9h2XLlqk939mztA60a0fLsjJbCw4OxkMFOVfO334J3cB7yKa4uLjKEDgIhcIqGezAwEB4e3vj5MmTVY+Xl5cjPDy8ity0b98elpaW1Y5JTU3F3bt3VRIgs4diFio/H/1aZaBJE2o4NqUyXJ0IHmgDgYAcj0aNyOHYuhVIT691WNu2qCYrHh9v/EvjFu6w22FgG7B1oyzIwd9frjC4aRM5sXqiUyciQbNmGY/81LQ1TztPTGw5kf8X4+DuTjJP06ZVF9qoAzAMMGwYtXI9ewZEXxNi4+iN+Kr3VyozhyZRRWrUiD6jSpEWrF1LskMKGDgQeOcdfudH7d9PWh4MQ6NBAEAileBsAk2O/bDrh1rJXiuDoq1lZTXHL78wuHVLzwtlGDlxYVkKOKxaRU1dqmBnB5w4ASxcSL//+CPQr1+1+TAA8KzgGTbf3gwAeL/L+xAJqVfNwoKIJ6BaIY9vKLO1grICrLy2EgAwv8N81QIlQiEweDAchvUELCxQmFxAIiRmjHJpOf6OJsnoNpgJVxsXDc9QDp33ULGYvuAnT4C//yblQS3BCdUocqaDsQfxrOAZXG1cNQ4JNgWup17H5eSrEMAC/dxmqSU/tdY1Dw8Saunbl6JyNTWfeYaiApy+8FcSEUpPT6+myKaI+Pj4KhGw5cuXg2EYZKsojWRZ4No1UlcvLFRta5wSHIdx48bp/4b+w+CdAI0YMQLffvstjhw5goSEBOzbtw/Lli2rUq5gGAbvvvsuvvvuO+zbtw93797FzJkzYWtrWyXj5+TkhNmzZ2PRokU4ffo0bty4gWnTpqFVq1bo378/35dsWmRmAmvXgtm6BWP7F8DLi9bH7ds1K7AaCrMlPxyEQmDiRJKi8vFRGXHt04cC2TIZqZkZsxSWW7ivPL6C44XH8fn5z3E9tQ4ns1pbk3Pv70+5/M2b9faYGIZIkCJP4EtJWtHWpG5SRCZF8nNibeDoWH1oRlQUpTPqAI6OcgGt06eBogIRhgUPU3rvmVQS1tOTHA9FMq3gmDk4kE/PF9LTKWkAAB99RKJ0AGAptMS2sduwpM8S9Aropde5a65rlpYMyst5GjxdXk4LTEkJsGWL+nlBIhHw+++0KDk4AOfPA926UflTJe5l3AMDBp38OqFXg+rvl/OrTEGAVNnamug1KCgrQEPXhhjddLTG8zi0DgTat0eBvS8prJgxdt7biTRxKuzgiVaYrFellV57aKtWwNy5tKcVF1PE89AhrTZ8bjIIR4DKKsqw9vpaAMDMtjNha1m3w6BZlsXKaytRIQGaYjQaKynL1riuCQQU1VQsOS0tBY4coc+LJ0il8tk6hgxA5ZTgOFy8eBHe3t7VhlrXRPv27SGVStG0sj/Q3d0da9eurXVcRgYlmy0tARcX1bZWU/LazxBG9x8G7wTojz/+wPjx4/Hmm2+iWbNm+OCDDzB37lx8/fXXVcd89NFHePfdd/Hmm2+iQ4cOSE5OxokTJ+CgEOZYvnw5Ro8ejQkTJqBbt26wtbXFoUOHVLLs5wYODuRxFhTAavdWTB5bBjs76m/Zu9d4o0zMnvxwsLSkIY5Tp6qU7WUYqiSoX5/WyW3bKJPGN7iFOz4xHkdKjkAGGXo26Il23iaqu1MFKysiQQEBJMO7ZUutCL6uYFniCXv2GG6DirYWFByExeGL8c6xd3Aw9qBhJ9YHcXFU57djB3C9boirX3A6Ut23okwixd27yo+pi3kYsLeneVMtW9K6pKIONz7eoEQjWJbIT1YWZZRqatVYWVhhaOOhep1b2brWujX5VM+eUbzJIFhZAa+9RvUoLEszf3bvVu+8TphAYdxGjejD6927igQNajQIuyfsxqc9Pq21BpuKAKmztZ4NeqKRayO83/l9rQaDOjgAsLFBYetuqCYZeOeOWQ28E5eLsf7GegBAB8yDBax17gExaA91d6eAQ/futIFFR1NWkfPIVaAmAdodsxsZRRnwsvfC+OZ1PxviWso1XE+9DrbCEu0wCzW0rXRb1xQ/zxMnaPjfn39SHTEPSE+n4hJra/o69EVNAhQTEwMAGlXsBAIB7t+/jz179gAAXn/9dTg6OlaTy+b0Wry9SxEVpdrWGhmxTPC/BN4JkIODA3799Vc8ffoUJSUlePLkCb755huIFGRpGYbB4sWLkZqaitLSUoSHh9dqDrO2tsYff/yB7OxsFBcX49ChQ6hvCG03F1hbk3Nvbw+kp8P5+A5MekUKoZACsDyND6iG54b8cLCyqt67ceVKrc3UwoICRl5eFGHnW8pZceG+b3cfCQUJcLFxwec9PzePz08kIjsKCiJnbMsWg+YE5eQAJ0/SKJSLF/W/rJq2tvLaSiTmJ8LDzgN9Avrof2J9ERBAzqtMBhw8SFF5Ew5MZVkWSyN/xGXBcuS3+gE9lMxbrBPyw4HreZkzp3rWrHK+xJUr1CZ0/Lj+H9vmzRTwFomq2rNQUFaAPTF7IGNlel+6qnXN3p5mGgFU828wLCxo1s/w4ZSlvncPWLNG/f0WHEyzgRo1ouBEr15Vjpyvgy/8HGtHbLntLSuL18B3NWiytVC/UGwbtw2d6mkn38w55mKxgn0kJlJfx8qVdZZ5rQk7Szss7r0YPev3RTAoU6XLMs7LHioU0lC7GTMoNZydrbZ8QSajzxWgz1nGyrArhoYmz20/t6p8sq7AZX8AoIVwLOzgCU/P6o/rva516EBZ6qIiCl7t3m3wTcGVv9Wvb5jOQp8+tI/5VvbfvlE5CZgbw6JJ6nrs2LEQV36xhYWFsLKywtmzVAb85Am1hBQU3Hx+/LXnGOYv2/IiwtmZnFeRCIiLQ/0bBzF6FIsRI2jf5BPPHfmpiago4OhR8sK4cFgl7OyoskCfgWbqoLhw2zWyw87YnQCAz3t8DlcbE3UnawMuWxYcTEIbBnROu7lRPxBApVqcWpcuqGlrt9NvY9tdGm78WQ8DB57qC4GAnFeOeZw5Q/Yk09/x1gWn4k7h/NPzsBZZ4J2+k2s9XqfkhwPDVG8yuH2bHPz8fDRrRv5/UpI8OqkLCgtJDwAAFi+W9xStuLIC30d8jy/PfqnXJWta17jXuX2bJ77LMOSUzZxJn1VmJgUd1NmRnx+RoMaNgadPIe3SiQi4CtjYyCPTGhIDekGdrSkSUQGjvVtgZ0fbmKOjQlLMwYEUKktKqLb7+PE6H1DMMAx6NuiJb3svhZenAO7u2jvBvO+hgYHA/Pm04Co22dWwpaIi+hPDEKkXMAJsGrMJCzouwLDGqlUGTYVyaTnqOdaDjYUNgotmAkAVATJ4XfP1Bd54g9Ztbkjxn38CldkWfaBIgAxBvcpMeUFBAVJTU2v141haWoJhGMydOxc5OTlKz2FnZweWZfH9998DoKxS79598PBhKRITExES4vx8+mvPGV4SoLqCjw+VSggEwK1baJV1Fu3b8/sSzz35AUg23MWFUhSbNtGuoADFMob8fMqaGwLFhbtNaBv8cPkHsCyLUU1G6d2jYFRYWFDf1MCB8h1dT4+vfXsgJISevns3feTaoqatlUvL8VX4V2BZFiOCR6C7f3e9rokXMAw1pA8dSv+/epVU0Iw8eC+/NB8/Rf4EAJjVbhaCXGiwZlERcOOGmZCfmqioIAaclgasWQOHgmR06EAPnT2ru2n98AOdqlEjYNEi+tvdjLvY92AfAGBMszE6X6I261qTJpRpys+v1oJjOOrXp6hLQADJSGmqo/LzQ/bJg7jb0AHC/ELIBvQnUqACjRoRX+JbvFCdrUllUsw6MAvrb6xHWUWZmrPUhoUF8OmnJJhRVbHs4kIiG5070++XLgHr1wO5uTy9G91QLpWXGNnaAm++CSxYoB0BMtoeamNDDZjc+YqLgb/+4haGqmudP58SRpyZOVo5YmbbmVqVJxobVhZW+KrPV9g15ghaBHrA1ZViu7ytaxYWtG7PmSPPBu3cSWlpPcAXAeIgFovh7e2NLVu2VP3t888/r/r/6tWr4ebmBoZh0KNHD9xVUv/8ySefIKnywsLDz+Hrr20gEqWjRw/NEv7PfT+8GeAlAapLNGok12J8+LDKISsupqyvLg5oTbwQ5Aeg0CJXMpCZSTU0JSW1DispoaD1kSP6Nz/XXLivZF5BmjgNvg6+WNR1kWHvw5gQCuUbaUUFNUXpIYHFMMQR6tWj3qqwMO2EOZTZ2l9X/6oqfXu/y/uaT2IKdOwIvPIKfV737xun3lQBv0b9ipySHAS5BGFm25kAyE7//BPYv5/FqVOPzIv8AOR0vPYaqtRZNmxAd9cYWFhQT406IbSaiI8HfvmF/v/jj5QpkMqk+D7ie7Asi2GNhyHEJ0Sny9N2XbOwALjRGLyUwSmC650KCpL/LSlJ6boEAL/HbcfcdxvhapcGEJRLKGv7ww9Kjx08mIoDAgL4u1xNDune+3txN+Mutt7ZijKpbgRIJSpV4jB5Mjn7yclUEmdABF8fPMx+iKFbh2LbnW1qm9SVwaR76JUrVA534AA5+cXFEArpNgwMBJLyk3S+flPB28UR06cDb78NAEYI6ihmgxwcqGdRR7AsFQL07m2YApwmfP3112BZFjKZDPv27YNb5XiBiIgItGrVCgzDwNXVFfv27av6PuvVq4fCwkKEhhKh2bChOz788AONr1Uz8/QSuuMlAaprtGtHM3Bee60q7HfkCPln27aRI6orXhjyw8HFhUgQpxaxdSs1/yvAxkY+E+jQId01AZQ5CSObjMQvA3/BN32/qXO1Ha1x4wY59vv3U6OtjrCwoMSkvT0p0hw4oD7qr8zWEvMT6770TRWaN6f5SX37Vg0lNgauJF/BoYeHwDAMPu/5eVW9vo0N0LQpi8zMTOzfL0WnTmZEfjg4O5M2enAwUFEB+6M7ESq6BbAszp3TPgu0fr38Np02jfyXUbMeIep4PViKg/B2p3d0uixd17X27UkxUlnflcFQfO3sbFqTVq+m9UkBt9Nv48ijIygTCWC79xDADev+v/+jlJqRoYn8FJYVYmU09XHMbT+X/4GaTZoA8+ZR2L2sTN7UYiL8fvl35JXm4W7GXZ32QZPvoT17Un8QF5z5+++qOuTMokxM2jMJcw/PRWFZoYYTGR8sy+Lvq38jIS+h1t+NltHmskELF8oHN3PKPTWqQpSBYUhhu3dvCsTwBYZhqg075UgNwzAYPXo0srKywLIs7t69ix6VC1Fubi7Gjh0LgUAAhmHwxRdf4OzZs9iw4VdcuUIlLMuWLQPDMCpL6ADqJXoJw/CSAJkDWreupng2uHcpHB0pILRrl27tCi8c+eHg7k4kyMaGQtHbt9f6YPr2peCQVErZC23lsdUt3L0CeqG1F4/DUIyNDh0o08GyxAQvX9b5FI6ORIIsLdUP6FVla/5O/vhpwE+Y3np63Za+qUJAgHyYFECRe4PlwuSQsbKq0rdXmr9SzX5YloWf331IJLlwcmqImzfNjPxwsLIilZHKuWvd8o7A8tE9PEtitc4CTZhAlZmOjvQRR0QAR/5pirjVPyJq0U60auSKMWMoGXL2bK0Wv2rQZ13z8yPtAcWZlEaBVErrUm4uzVSqzL4q2sHIJiPRwrsVpcTmzKHnrVih8pSFhfoFvxShjUO69vpa5JfmI8glCOOa6TdLJDKSuJ9KkUUnJ+qdGjuWehXlF6jX62mLy88uI+pZFCwEFljQcQEA+opWrADWrVP9vDrZQwUCUoibM4fU9AoL8fC3f3HhpygsP7MGZRVlqJBVwF5U9+vFxaSLWHdjHWbsm4FiSTEkEhOW8yqyl3v3SOHzr79Mnlncv39/1f8TFKKtHKlhGAa9e/fG6tWrkZOTgxYtWuD8+fNgWRY5OTmYN29e1XO+/vprjBw5Ei1btsTy5cvw7NkzNGnSBADg5uamVC4bABwdHREZacLxEi8gGNZc86oGoqCgAE5OTsjPz4ejI89RLWOBZWk3iYxE6rA5WL/PBRIJ+bTDhmmuWX5hyY8iUlKoF6hfv+qbaSUkEno4KYkcnzlz1M8zqblw29nZYe31tRjddDQ87DxUP9GcwbIk6cYtjv37ywev6ACxuLowWPXHXhBb4wwmM5Mcfp5qj+Jy47Dq2ip82fvLquyhoq25uPTA0aO2EAqpJ8Gt7oe5q8b168DhwzhuNRKxNm0xeLBuYi0yGYmBfbRhD6Ius5A964D8pw0glVa3GYahsrVOneT/WrQASkqeA1srKaE5BlxZZWgo9geW4ZuI72AnssO+ifvkAir37lGkRiikBqUaNTm7d1PP94gR0LsvVBuHNDE/ERN2TUCFrAJ/DPkDXep30eu1jh2jQHy3bsAA5fN9a6OsDNiwAejSBWjTRq/XVQcZK8P0fdMRmxWLyS0nV5UwZ2SQv2xrS/OoasIs1jWJBDh5Evs3FeBCjgWO9fgKNl5WWDV8Fdr78tworCNYlsWr+19FTGYMZrSZgbc7vY3ffmORnJyOdu3uY8SIUNNltFNTSW0wI4N+b96cariVvH5UFCW2g4L4zQABpP52+PBhfPrpp3j48KHaYwUCAaZMmYKpU6eic+fOiIyMxMWLF/Hdd9/VOjYgIKCKXDk6OiIzM7OamjLwnPq5ZoSXGSBzglRKO19REXxObsK4wUVgGBopoSmQbxYLtyng60vFxkrID0BZi0mTiPzk5lImSJUqpTInYe/9vVgVvQqv7n+1WvPscwWGIU+kV6Vow6lTpH6mY6xDcR8pK5NPJVdla09yniC7WH8p7jpBRQV9XtxQWVWDenREkEsQfhzwo1Ly061bN4SG2qJhQ7rljx41qTK37ggJAd54A33ebYMFCyrJjw4XLBAAzZoBv3zcCiPf/xcXL5eioIDBhQvAzz8D48dThRTL0se/bh2V/LdpAzg5sejatRw7d7bHgwfNkZKi27rGssQ3du5U2aLDD2xsqLend2+AYVB4NQIrDn4OSKWY235udfXIFi0oAymVUuNiDXDzn/VVgtM2Gv9b1G+okFWga/2uepMfQL5OaFGJJMeVK1QuuG8f/SvjqfeoEscfH0dsVizsRHaYHTK76u+cGJ2ycYJms4daWgJDh6KwQx9EB54Eay9CR7+OdU5+AOBC4gXEZMbA2sIa01tPR1kZi4cPM5GSIkbfviYkPwAJSb3xBt1LAgFlgf76i2ZQKaxPEgmNFQoLM468vJWVFcaNG4fY2FiwLFv1Ly0tDb///js6c2IgAGQyGbZs2YIhQ4bAxcUFw4YNw3fffQcvrwD07fspvvhibVVJnWJmqaCgAFZWVjhz5gz/b+A/jJcEyJxgYUEdsJXee9PorRjQm4QRjh8nnQRlMJuF21SwVejHKS4mB19BZtXOjnwRa2vyb5XtrcqchMT8RCyPWg4AmN56ep3PWTAIDEMNEFxI9vJlOYPREdnZ5KeFhQF5ecptrayiDB+e/BCv7HoFt9J0F2CoM9jYUE9Qs2ZkQ7t3k2qVHpDKpHiYXfsmVWZrnOCEhQUJC/A068948PaGyIohNSqJhGTpdSSLwW7BWDtyLZq6N4WtLSUlFy2iMt/EREru7tsHfPIJma69PYuiIgZ37rhi/Xp3jB/PoF49KsscNw5YupRUpdU53gwDhIeTb/TggWEfgUYwDBGgKVNgZ+WAt0vboAPjhwktJtQ+dv58+rl6dS01Qi4hpA8B0pb8JBck42LSRQgYAd7r/J7uL6QALsOuEwHq1o1qlhmGSgZXr6aIPg8ol5bjr2t/AQBmtpkJZ2vnqse4qumaBMgc99A4UTEe+dyA0ILBW6FvkVN/+rRB894MAcuyWBW9CgAwscVEOFs74+LFh8jPL0DTpvXh5VUH5XkWFmRHr79O0uvFxTTN+99/qw5JSaHv3cGBqjFNBS8vLyxcuBCXLl2qIkUymQwREREYN24cPBWGJqWnJ+DMme+wZMkcxMfHV/3dtcZoi379+oFhGHz88cco0umGewlleEmAzA329tQxbGsLpKSgS+IOtG8rhbOz8jEv5rhwmwwsS0oRERFUfqLQE+ThQUJNr71WuwROmZMglUnxv7P/Q2lFKTr6dcTElhNN/GaMhG7daIDjtGl6r/5CIe0rCQnl+PXXh/Dzq21r3MBTkVCEQJdANWczQ1hakjpcp8rhj8ePU12PjmmZrXe2YtreaVh7XV6zrc4hdXOjBv2OHasLipk7KqKuITqyDMnrj2ulja3YuK1uffLxAUaPBr7/Hjh4UIwdO05g377HWLOGxeuvU6ukQEDEYO9emi/UqxctmXPnqn59TjSKp+SeZjRuDMG8+RjZfgpWvn4AFoyQmnqSk4mJXbokD0akppLqjQI4ApSZqZ0KIwdd+jD8HP2w85Wd+Lzn5wbfr1w8Sid/TCCgyP1rr9G6lJ1N/VNRUQanQ6NTopEuToennScmt6o+e4uLkymql5vrHnomfyVYyNDTvzdaeLYgedMLF0hN79o1k6eNw5+GIzYrFraWtpjWehpiYmJw/342/P394e9vpfkExoSPD5GgPn1ow1IYDsjXAFQ+UFRUBLFYjK+++gppaWlgWRb5+Sw+/7wMkyYdwLhx1YMlqkQQli5dCnt7eziZktG9gLCo6wt4CSVwc6MUxj//gHnyGENbHkTZnNGwtat+95rrwm0yMAx5QGFhVOciFJIHVbm7+fhUPzw/H3B0VO4krL+xHvcy7sFeZI8ve32p0zBAswc3yIVDZiaxaWV1IErg7AwMGVKEpUtT4eBQDyUlHtVs7Xb6bWy9sxUAqb7xriRlCggEJNvr6Ej9U1FR9PfBg7V6elJ+ElZeWwkZK4OXnRcA7RzSnj3rflPWFafFnXCpxBONs25iang41eCPGaO0uD65IBmT90zGK81fwfzQ+bAQaN5yuHWtQYN6aN68IRiGqdINEItJ3HDnTqp24bB6NcU/2rQhotSxI2WAASJAZ87QIFd1fW1aITtbTmDy82v9YwsKwOblQlBQSH+bMYOO1UHJxsGB/hUWUpWYv7/m5+jThO7v5A9/Jy1OrgF6ZYCqLsKfVOIOHKAU3bFjlBEzQLqvS/0u2D5uOzKLM2FtYV3tsZolcOa6h+YXlSBT+gQMGLzVqTJbGBREmtjx8cDhw9RYN2qUgQatHWSsDKujVwMAJrSYgJS4FDx79gy+vj2RmSmCQjKj7iAUkj8QElJtsHPS1VSg1AX161urebLxocrW4uMBoVCEvn1H4vXXRwLYUfWcjIwM7Ny5E1u3bkUUtye9BG94SYDMFfXqUVQ6LAzCu7dg27YVzQ0CRTTs7cW4csX8Fm6To3Fj+px27qSBH0IhCf4rfB4sS4Gzc+dYdO78CCxb3UmIyYzBmutUi/9/3f8PXvZedfJWTILUVCpfatCAPjcL7RzSlJSLGDiwMR4/9sCxYwx8fMhEyyrK8FX4V5CxMgxrPAw9GhhDc9hEYBjKmDk6UtF4TeKoAizL4rsL36FcWo6Ofh0xPHi41g6p4m3LslSuaV23+7RGhHYSIOpKQzxKtUNqcSJ87t+nhrvJk6tlGVmWxdKLS1EsKcb9rPsQMpoJtyaH1N5e7uMkJZHQIQdFsaSEBDJxgLi+n588AdOxowFv/t49+ew2JWAq/yl/kKGSS3d3uqABA+hcNeyMYajVMTaWrlkTAdKF/BSVFyGpIAlN3ZuqPEZXKBIgltWD0NvY0DDnq1eJXIboNhtKGRq6NkRD14a1/q5YAmeu5AcAJCU2GI8dyLG8hebele/DyYkIdVQUlcI9ekRRgBEjqITXiJDKpOgf1B/icjFCRaFVtrZ3rw0AmAcB4qBAftjcPCQdvw9ILFG/pxPAtqqTiJM6W4uLo5/KqgA8PT2xYMECLFiwoOpvLMsiLCwMU6ZMMfZlv/B4SYDMGcHBtLhJJFXk59YtYNeuMshkTzBlivkt3HWCpk2pKWD3bpqDIxTWks1LT2eRlpaJsDDgiy+qOwlrotdAxsowsOFADGo0qC7egelQVESNUbGxVD44aZJaWRzFhXvAgEDs3s0gJoYG9c6bB6y7uwpP857C3dbdvIfF6oJWrcimKudyAaDPTAVZPPTwEK6mXIWVhRU+7fEpAOgcjc/NJWe+ooKqgsz5lnZ1pY/oNuuN8x7TMbF4A6UqVq+mzHVlDde5hHO4mHQRFgILfNztY43rlC4OqYMDcPAgRfQfP6bYx61b9C8hoTZpaNmSyMTduwYSIE9PkmZzcqJ/jo5V/69wsMPfj7bhGSNGj1bDMDx0qvzxoiL6ggsKyK6GD1erfubnJydA6qBr5mf9jfXYdHsTXg95HW+0f0OfT6AW7OxINd3WluxX8bbRGgxDX0xISPX77P59miUk0JyRzyrOQlF5ERo4N1B5jFBILbaWlqVmS34AMhMBhGjmXIMMMgwp5zVsSHWgaWm0GPfoQcqoRoKl0BKvtX0NoZahSElOqbI1ToDNy0xjhjnZLIpFzrAoz4NP1D4g8wb5VMr6CYwEdesay8oJkMI4IbVgGAaTJ0/GxIkTsWrVKrz55ptGuOr/Bl4SIHMHN92zEiJLMRITU2Fv74OUFA+0bGleC3edoUULCu/t3Uv10ba21BwJAGDRuHEMIiNZODsH4+BBEebMkdeuf9fvO5pr0GZGnV2+ydCoEQltbN9OK++mTfS7jU2tQ5Ut3KNGUcVTVhawZv89bCveAgD4tMenz2fpmyooenFPnpC3PWlSrbrKnJIc/Br1KwAaJOnn4KfXPAyhkDIaEgmJGLU289FT3bsT6XiQ5Y6saW/A/eR2KvmqvKmKJcVVM3BmtJmh1ikF9I/GC4XkHzdpQglNVWjRglq7kpKotEwhSKwbmjal9UUJNl5fi3+cLOFp1wSLJ/wIWNa4p+bNowbtJ09I7SEpiUoslRDrhg2JM6nrDdOV/KQUpmDb3W1gWZbXDJBIRHNdeYHiZ3H7Nq3n/v40Q4iTx1OBv67+hcMPD+O9zu/V6v3hEBAAzJ5tvpkflmVxKu4Uuvr1wptvimrqY8jh6UkzHs6do3EHjRsb/bpiYmKqkR+plBJP6enUc2uOSC52Ado5w7fiCYRWFlRv9vff5Bt06qQVsTYEmta1rCxajywstCt1VYRAIMDUqVNfEiAD8AI1Orz4EGdmomL9YozvnA4PDw9ERjKIjq7rqzIjtGpFPUDOzkDbtgDkC3d6+jN88kkAvLxEyMmpLo9tY2mDBR0XvFgOvDoEBlYfKrtxY60J7aoWbisrqlYJDgamDA3EuGbjMLTxUPRs0FPJC70AYFmSEcvPp7kl3JyXSvwc+TMKygrQxL0JprScovcwQEdH+WzWEyd4VwXmHZ6eRDpYFoi85wTMmkWqI5VTR9deX4uMogz4OvhidrvZas9lilIkR0dqgvb1rWXqvCBNnIYNNzcAAN7t/C5sapIfgMjh1KlVUtm4dg1Yvx7Iy6t1qJ8fMGQIfcbKoE/Pz++Xf4dEKkFHv47o4f8clKoKhbTgJCZS47+aYZdPcp7g8MPDkLEytPRsqfI4cy57A4DLyZfxf6f/D9MPTIKre0XNEVHVYWFBM97eeae69/z0aS1lQX0hY2X47PRn2BS+CUlJSdVsjSu0mDWL/9k6fKFVK+DtdxgMWdCIlBcDA+mzOX6c9j1dpszrCG1szdKSZk23a6dVNfpL8IyXBOg5gVgsxv21a+FVXIwRueHo04qkMI8ckadQXwJUVvLWW4Cray0nwcvLvkoe+1FiAT7etAtSIy6AZo169Wg6u709hfA2bKBQFDQv3B4eVOnk6WKLj7t/jMW9F5v++k0FhqE3GxREklzbt4OLOrAsi/Y+7eFo5YjPe3yO2AexBk1C79KFKjPEYuJc5o5u3ejnrVtAYZmIZGhBzujWq+uA7Gx82P5tWFmoVogypUM6YwYJRdUUR+EDv0X9hrKKMoT4hGBAkJppoAIBESAu65qZqbOzqg/5uZl2E6fiTlXJXpub468ULVpQ1szPj+Z07dxJZYRKPq8/rvwBGStDv8B+aOXVSunpzJ38sCyLv66Sske3+t20EgwBUF3dMzsb2LKFCKO+g6QUcDruNPbf249frv+CNh3bmHbODw9gGFpTfXxA/5kxg0rgrKyINBopA6StrTk7AwMHEpF8CdPjJQF6DsDdTLZDh8KjUycwEgl6xW1A68BCyGS0L2Rm1vVVmhEsLauchJzLl9FTIoF9ZaeuhwcwYQKLCOZ7bE/8ER8d/L6OL7YO4eVF4TtnZ9pEbWy0Wrizi7MhY+XEMeaeoK5GU5gG1tbksLZtSxHDQ4eA06fBABjXfBwOTz4MWYbMIPIDUARwyBD6f1SU+d/T/v70j+OGHBKyn0CUW4jeZT7ocSxG5RsxtUOqV2+KFohOicbJuJMQMAJ80PUD7d5Ho0bk3E+YoLJ+qLycgvmK43H0IT8yVoZll5YBAEY1GYXGbvyXS50+TS1gvM9acnGhNap7d/Jmo6PphdLTqw65nnodEYkREDACvNXxLaWn4WytrKwhLlxojlOnzIv8ACQzzQ0ZbcO+hgsX9Bj5U1RE61V2Nk0UPnu22ow8XSCVSfHLuV8gKZdgTuc58HGtHjnIy+Mt0WQ6MAz18L31lnxQOEBrVEoKLy9h7kT7JeR4SYDMHNVuptatwVT2ITDFRRiZvQH+niUoLaUo7EsQOCchLTYWHRMSYHPtGu3QlXMTHsqOI9vpJFxdhJjdbUwdX20dw9WVHIxJkyAu1dwYXC4tx/wj8zH/8HxkFGXgyhXSntixQ7eZJc8dhEKSnO3dGwAgvRAO7N0LtqIC8Y/iDSY/HBo3prInmYxm+Zl41IfOmD6duKGbm/xv/RoPxJ7pB/GR4xAgJ4fk2WpMca5LJ6G0lGrv+cLl5MsAgLHNxiLYLVj7Jzo5Ve/dSEyk6H2lnnRUFCVmIyPpYX3IDwD8++hfxGTGwNbSFvND52t/fTogN5f8RyXVfIZDKKRSr+nTqXkrM7OqjpFlWfx2+TcA9Pkrk/VWtDUvr4ZIS2OMc50GQMbK8Pe1vwEAU1pNweM7rjh9mm4fneDvD7z5JtV+yWSUSl67FlVqBVqCZVmsO7sOcblx8HLxwmvtX6t1zK5dwHffqR7QXtd4+pSCwzdvKnnQ0VEeEZHJgP376XM6dcogVqfLupaXRwIuzx2JfIHwkgCZMZTeTFZW5HG4usKiIAeTJFswpG+ZMQVgnisoOgmdBg6E1fDh9EBEBHDmDNIL0/BDxA+wtQXe7fE6mns0r9sLNgc4OkJcXk625ueH5unpYLjpcTWwJnoN4nLjEJ8XDyuhFZo1oyq6jAwaTWHuDrtBYBigd2/c6dsCY5iduFjyEDEPHvBGfjgMGkTZoIICGkBrzlCVVfEMaAnPue9T13lZGZUOXrgAsGydkp+YGOCnn8hW+cKboW9i9YjVmN/BAHIhk9EsnMePgVWrgMTEqlK91FT9yQ8ACAVCOFs7Y3a72XC1MY76FScoY1R7DQqirNno0aQSAeBM/Bncy7gHG0sbvB7yeq2n1LQ1mYxsTcsRaCbDiScn8CTnCexF9pjWelrVnFy9xDpsbEgVdfx4+n9qKmXNtJwjw7Is7t67iy0xW2Bvb48ZbWfAwcqhxjHEQ1m2qu3P7BAXR/d7fLyGAyUSehMyGfkJK1cSe9IRuq5rd+5QvGPfPp1f6iV4wksCZKZQezPZ21M0zN4etrnJ6JS6v0o2VyZ7wZ1QNVDqJHTsWFVXJLtwHou3vQFxuRgtPVvitbYU1SouJv/shS7jUoNqtlZRAeb8eWDzZnLGFBCTGYN/bv0DgOYlOVk7wcGB1LcEAhJtetFFOSRSCb5O34UUNxG2WibiWXIyr+QHoKTcq69Szy43Y8XcUVAAfBy2AZcSr8j/aGdH61SHDrQonT6Nki1bcPHChTorD/HxoYqgp0/5ddZDfELgZG3AVHaBgFQG3d3pw9y4ET5PowCWRVYWi1u37utNtAc3Gox9E/epVEbjAxwBKikx2ksQ7OyqBG4AoCg3HfaZ+ZjmPQhutm7VDlW2h3LCN+ZEgKQyKVZFrwIATG89HbZCxyrbdDLApNCyJWWDGjcmxZ/SUo1P4fbQQ/cOQWwphpONk1K7yc2ljL+FRfXsrzmBi+HVq6fhQCsrIouTJhHjzM6m1Ovhw1qr0egT1OF6twMCtHqJlzACXhIgM4RWN5OLCzBtGjUe9+8PgBakHTuo2uu/BrUR0k6dgMGDEYa7uJp6DdZFZVjS+ysIBbQLHj0qH4tj7hF3vlHL1lq0oA1TIqEP5O5dAFT6tvjcYshYGQY1HIQ+gX2qztGgQZUJ4t9/eSulNkv8c+sfxOXGwVJoh/72A8jWbG0pev/sGW+vU7++eTlp6sCywHdrYrDlwV+Ys+9NxOUqqLIIhTTzZsQIlEmluB8fj3r+/nVWG+/iQksmy9I9bwgOPzyMjCLdSovUwsMDeOONqvIl+4hjsHt8E5mpabh7N8Mgou1g5QCR0HhSXZyKvtEJUA2MTLTBAck4TL9cQvKJlf0uqvZQjgCZk+JWQVkBApwC4GLjgsmtJldlfywteRiK7OBAIi6vvEKzgjhwU2sVwO2hiUmJuCq7SjLLrabCXlTb5riKOnd3oytJ6wWZTK4BobW8dNOm1BvUvj39fu0a8OefGusQ9SE/EomcoKmTun8J48IMTfe/DZ1uJm9vYO7cqhBMXBxt6hERwPXrJrpgM4A25SHikJZY6UqO2Xv5zeCfKmc6gwdTpC07mwgkt0m+6FBqa5aWFAnjasj37AGuXcPa62sRlxsHVxtXfNjtw1rn6tKF9g+plOquTe0ImQIJeQlYd30dSkpLMNx1OAb2Gki2dukSDeDduJEGN/IIqZRObwzpZr7AQoYbdt+DBYsG5UMR6Fx7Rxc3aYJLzZrBavRoua3VUaq6aeUIHEMa9h9lP8KS8CUYu2MsvyRIJKKZN8OHgxUIYJd+C4iOhr97S53Jz59X/sTpuNNgTfA51xUBwvDhcOrQHbawpGaptWshTkhQuYdyegDmRIBcbFywfPBy7By/E7aWtlUEyNGRp4HIDEOKelxERSql+W+bN5O8P2rvoQs7L0SITwgmtZyk9JScBoW5DkDNzKTkjZWVjjOKrK1JJW7mTErFOzionT+lbzlvUhL5GY6O5ptB+y/AKASosLAQ7777Lho0aAAbGxt07doVV69erXqcZVksXrwYvr6+sLGxQe/evXHv3r1q5ygrK8PChQvh7u4OOzs7jBw5Es94jLCaI/S6mRSOaWr5BL0crgMsi8OH/xvy2NrWxtuL7LFmShgmNRmHsa0nVRuwYW9PbVVWVlQac+jQi19GqNbWhEJywkJDAZbF/cMbsPHCHwCAT7p/Amdr51rnYxgqzXdxoeZOc22M1RcyVoZvzn+DguICNLJqhLeHvi23tdBQGoxUUUHs79Il3gxo/34aWWHOWd09MXuQifuwYuzRqujdWjX3nK15tGmD5q1aka3JZJRhvHzZ5Ddbs2b088kT/YQ7WJbFT5E/QcbK0K1+N3jaefJ7gQwDtn17POzRA1Y2+XCuXx8FEt28pJjMGGy4uQEfn/q4ekbOSDA1ATrw4AAuJl4Ea2FBGcZJkwAbG5Q/fYrUxYvRqKAAzZs1q7WHmmMGiIOLDTXTKBIgoyAlhbIacXHAX3+BvXEDMffuVe2hjg6O6BvYF6tHrFaa/QHkGSBPnk2fL3DZFT8/PTNUAQFUgzxhgvwE/9/eecc1df3//3UTkrADiCwBRUFRcSEOnHXWXUfdWm0dH622te2ne2k//XX47XbUbZ21VkVt3dZVB4oIglARBdlLQFaArPP745CwAmRChPN8PHi05t7cnJy877nv93kvuRyIiVGvV4bkMqp0Mx8fIxm5DL0wiQG0ePFinDt3Dnv27EF0dDRGjx6NkSNHIq3CJ7l27Vp8//33WL9+PcLCwuDm5oZRo0ahqKIPCQCsWrUKISEhOHDgAK5evYri4mJMmDABCj1LOpo7BicGFxQA+/fjucLj6Ca4D6WSejN0LP7yTKFrYnAn50747+x14KZMqVzUCAEIgYtLZS7L3bs0X7u5opWscRwwbhwwZAj44KFdEQ+jXIMx3Gd4nde1tKTPi1mzaDum5kTIvyG48fgGODmH7yd/D7uq2clCIf3SFQYjzpyhcZVG6DHVrx/9b2SkeYYW5pXmYUPYBprC0mEFrOCEGzcqj9cpazExtKnsqVPA8eON6nZ1caGbu3J5rTQ3rfg78W/cybgDIV+IVf1XGX18qnXtsVSKbu++BEHXrsjMqpi38vIGrTZCiLrs9Ti/cejg1MHoY6yJlRW9/01VarwqeaV5+O7Gd3jj9BsIS6/YWPX3R/H8+YiTSiG2tkb7e/fARUXVeq9AQNOIRHW3pmo0yuRl+Pnmz8gpqV4mvsIpY1j+T314edFiEl5eIGVlyNm6FfK9ezGwh/Z9flR6hbl6gFQGkJeXARcRCKr/CJcv09J3+/ahODXVIH1NtUnEwt+aFqMbQKWlpTh8+DDWrl2LIUOGwNfXF6tXr4aPjw9++eUXEELw448/4qOPPsLUqVMREBCAXbt2QSKRYP/+/QCAgoICbN++Hd999x1GjhyJXr16Ye/evYiOjsb58+eNPeQmxyhVkcRiYORIcBzwgvQPeCsfo7ycbrKac/iMvmhr/MTmxCLuSY1g/6oVI0JCaK8EQuDrS3V+ALhwgepozQ2dZI3jgOHD0fH5Odg7dhs+GttwzyR398oQo+YCIQQXYy5CJpXh7cFvo4OrBoWSx6PC8/zzdN7CwmhlDS2TaOvC0xPo3p3aVadPm59n8sfQH1EsLUbn1p3x9thp4Dhq19BKxfXIWkAA7QDIcZXhg6qtbxPDcfqHwZXJy/BD6A8AgIU9F8LdzrhdVWuua/49HDFukgXGjAH98Y8doxW96tnZupB4AZGZkRBZiLCy70qjjq8uPD2B998HXq5dLdnobLuzDRKZBF1ad0Efjz4AKmQtOhq8hQvRes4ccJ6eVMZqMGIE8M47tK1QU3Mw5iB2392NFSdXVAtT7NeP1i6omrJjdFq1Alm4EI99fVFQXIzOPB6sf92JpbtexO7IXSiT118wISiI1qKo6H1sdigUNJDBIAOoJpaWgIUFpLGxyPj4Y/g9eYIu/v4662tlZZWbWT4+RhwfQ2eM7giWy+VQKBSwrJG9Z2VlhatXryIxMRGZmZkYPXq0+phIJMLQoUNx/fp1/Oc//0F4eDhkMlm1czw8PBAQEIDr16/j+eefr/W55eXlKK+ibBRWPExlMhlkZlxovaSkBKGhoWjTpg38/PwgN2QnNCgIXGEhuKtXMV2+B9uVLyNX4Y7ffyeYP580G1crIQRxcXFIS0tD//79IRKJNP7GEpkE7517D9kl2fh6+NcY5F3jqRcfD15EBL2mTAYybBh69OCQlcXhwQMOTk7KZlWjX1dZUxIleByPyhUAEej9hKIirbZ7CwqAM2c4jBtH8Iw1EFejkrUJdhMwecJkDG4/uP71JCgIsLEB7+hR4NEjKLOzDdYShg4F7t3jITERiI5WqkO4mpq43DiceHACHMfhv/3+C7G9Ah06KBEXx+Hvv0vh4HC1flnr0wdwcgLvyBEae/rLL1C++KIOWcv606ULYGvLoWNHotM9vjNiJzKLMuFm64bZXWYb9dmiaV0DZOjVix6X5RWCl5REDcVNm6AcM4ZqoVUWdqlCih9CfwAhBPMC5sFR6GjWzz9dSSlMwaHYQyCEYEXvFZDL5dXXtY4dIee4Sm+sTAYoleDCw0ECA82mskiJtAQ7I3aCEII5XedUuz84rrK0tKl+OrWstW6N4E8+Af/cOZzOvIrwtNuIJ7mY5PcC+KTuuQoMrPx/cxSvF14Axo+nc2m08fXtC4mbG5I3bICLlRWc79+HYutWkPHjdVrjeTxg8WJapMHKyrDxNad7uyngiAkyJAcMGAChUIj9+/fD1dUVv/32G1566SX4+flh586dGDhwINLS0uDh4aF+z9KlS5GUlIQzZ85g//79ePnll6sZNAAwevRo+Pj4YPPmzbU+c/Xq1VizZk2t1/fv3w9rVY3OlgAhcL19Gw4PHyJfZoffhC+h5ygJWrVquARmc+OPrD8Q+jQUDgIH/Lftf2HFt6p1jmNcHFwqKkbkdemCnO7doSQcZDIeRCLDQ5ieVeREjg3JG9DVtiuGOQ0Dn6MPQ355ObzPn4fC0hKpgwdDKay7stTff3sjO9sKbm4SDB2aYpbVgkyFZW4u+GVlKGnTxijXi4pyRkxMK9jZyTB2bIJZ6HGEEEQVRyGzPBPPO9NNqawsK1y54gk/v6fo2TOngStQBEVFaHP1KkRPn4LweMjo1w9FZlgbNk+Wh28Sv4GcyPGSx0voYdf4cZ78sjK4h4bCJiMDAFDo44PM3r1BKjYjLuZdxF85f0FsIcZ7Pu9BxDODWC8jsid9DyKLIuFv448lnrX7/miiVXQ0nO/dQ5mTEzKCgyE1WXKN9pzNPYszT87AReiCd9q9QzeamhClXIafYlYjTSjBGJfxGNlqJI2QaEmLtrYQAvGjR3C5exc8qRSEx0Nmv34obII1SyKRYM6cOSgoKIC9Gcj1s4ZJUgH37NmDV155BW3atAGfz0dgYCDmzJmDO1VKk9V0GxJCGnQl1nfOBx98gLfeekv978LCQnh5eWH06NFmKRhVd606depk3JKwY8eCCwkBFxODPhYXQUa/Yr7BujpQc4fUpp4mKddSruHfzH8hFouxbsw6BHkEaT5x3Dhwt26BO30akMlAhEKQkSOr7aomJdHpM7gkaROhj6xti9iGgqwCxPBi8PHwjysbKKalgffgAVBeju7Z2VDOmYO63Dt9+gDbtvEgkwH29t0xZIiZxW/VAyEEETER2BKxBR+P+xierRpqJtEAaWnUc6ZnfOCIEcCGDTwUFwMuLp3Rr595zOV4jK/27+LiEri53YKPjzs6dQrSfl2bMgXc8ePgHj6E77RpZrleSWQSFN4txIPcB3h/9PtGW7MbWtfy84HHj2lBKl9f0Lm6dg1cRegu0tOhnDYNxQ7W+O737yAWi/HJ4E8w3m+8xs8zFQcOcCguBqZPJybJX4nNiUXin4lwcHDA2hfWwkPkod261r49eHw+IJEg9SwfOW0DMHieF9p3aJqQiMLyQnx3sOJ3GvYJRvqMrHb87FkOVlZAnz7E6M+cumTtbMJZFD0RwVPUGv+b/j/YCG3oM7GkBGTs2MpGTwAyM6ld1KqV2TjUqkGI8QsLaHyGFhWBO3UKXEICfOfONWHSVt0UNlLYcHPFJAZQhw4dcPnyZZSUlKCwsBDu7u6YOXMmfHx84FbhKszMzIS7e2X8dHZ2NlwrHnpubm6QSqXIz8+HY5U2w9nZ2RgwYIDGzxSJRBUhA9URCAQQNEZmpg4UFxfj5s2b8PLyMl0/jOnTaSCsjQ3g4QHweEhPp+UrVSEVzxKq2Pj09HQMGjSo3mTN/NJ8fHntS3Achznd5iC4bXD9Fx84kIZznTwJ3LpFV/WK/ISoKFqJy8eHVop71jbE9JG1B7kP8GvUr+A4Du8Pfh+u9lWU0XbtqP9+714gJwf83btps0un2h3mPTxoKEJICC3N3r79sxHzrJK1TRGbcFd6F5/f/Bw7Ju3Q/z4tKgIOHaK9N0aPBvr31/kJLRDQXkv//ksLzjXlkpYryYWAL4C9qPrGUnFxMW7duokOHfTIZVSVX3/yBPyqdWtVwfwmQCqlzXvT02nl24aGKxaI8UbwG5WhoUZAm3Xt0SNaV6Nz58oKdhg2jN5Mhw8DeXngHzkCxxUr8H+j/w8n4k9gUudJje5VyM6moi6TGV8+CSH45c4v4DgO4/zGwdvGG9euXdNuXevWja5bR48iJ8oaqVdTIBffh+DV55qk0/BvEb9BIpegk3MnPO/3fLXfSSaj6YMAMGCAceexLllTEiV23t0JjuMwv8d8ONg40PjlyEh6/6Wm0kp7FZs3ly/T4iETJtCIX3Nj1y6aZzNunHFygOp8hjo5UaXg6VPwq5bKjoykVWatakecFBXRdlUdOlTr56s35qbbPmuYdIW0sbGBu7s78vPzcebMGbzwwgtqI+jcuXPq86RSKS5fvqw2bnr37g2BQFDtnIyMDNy7d69OA+hZwSgFD7SBzwdmzqQaKI+nbm58/PizV6JYl2pvhBB8dfUr5JXmob1je+2TgPv2pSs6QJ9AT54AoD0E+HyqhJw8aX5J6PWhj6zJlXKsubwGCqUCw9oNw6j2o2qf5OYGvPIKDVTPzwd27KDbghro0YMa3IRQXa1KoUezRCVrV+Ku4K70Lng8Hlb0WWHYfWpjQ5UHVYW4EycqG5LoQGAg7X3c1KVnv7n2Dab+PhXXU66rX6spawCHlJTKakxawXHVm3YkJwM//6zjRbSHEFqE7s4d2gOsLpRECSWpDIc1tvHT0Lqm+r1r1T1o145W8/LzU6/z/Tz74fNhnzdJSJXKW1FmomjrWQGz0LFVR8zvPF/3Z6idHTBvHuSduwEcB4ukBOCXX6iMNSJ5pXk4cO8AAGBZ0LJav5OqApxQaNxKdfXJ2rlH5/D46WPYi+wxs+tM+qJYDCxaRO/H4mLgwAHgyBGgtNSsewCp7LWMDI32h85o9QytavwkJtId0w0bqpXMrno4OppW/2c0PSZZJc+cOYPTp08jMTER586dw7Bhw9CpUye8/PLL4DgOq1atwpdffomQkBDcu3cPCxcuhLW1NebMmQMAEIvFWLRoEd5++238/fffiIiIwLx589CtWzeMHDmygU83XxrN+FFhYaHe1nRyUKKbIhKktAyHDtEF4llA11LX11Ku4ULiBfB5fHw+7HPdup8HBQGTJtGd6ApFzN0dmDaNTuPt28/OwqWvrO2K3IW4J3GwF9nj/UH1hPk4OVEjyNWVPiB37qxTUR03jipxxcX0GWqE6tAmQSVricmJOFN2BjweD5M6Tao7fFJbeDyakauqEHf7Ni3PqKOmWPOnaApj/HrKdVxIvIDC8kJ1/xtNshYWBmzfDhhUtPPyZaoR/vor3ZQw8hcWiSo9knFxdZ93OPYwFh1fhNicWKN9ti7rmkrRzMvTkDBtYwPMnYtCV4fK1+7fp2X4GhmVwmkKA4jjODzX7jlsHr0ZCXcT9HuGchzkbTsAvXvDwtmBVmhs5PxgC54FXuzyIgLdAzHYu3aZN1VEk1hsvDCu+mSNEILtEdsBAHO7zYWNsIpHzMODNlofNIgOJioKkh82oyiRbg429UaMJrKy6D1iZWV4g1G9nqECAeDsTB92f/xBK4GqrFqw8tfmhkkMoIKCAqxYsQL+/v546aWXMGjQIJw9e1btrnv33XexatUqvPrqqwgKCkJaWhrOnj1brbfGDz/8gMmTJ2PGjBkYOHAgrK2t8eeff4JvjkGnWtDoxk8NuL/PY7z8GDqkXYG0WIr9+6vdl2aJrsYPAAzwGoC3gt/Cyj4r4e+sR75FYGBFoH0FRUXw70QwqsIRcuaM+XvQ9JW1h3kPsfXOVgDAOwPeQSvrBp4gdna07m3btlSRqKNjtkBA+wMJhYBEQv/MjaqyliBOQGpxKpysnIzX54XjgOBg6pUVCKhLcft26kHTkeJi6kQ6dsw4Q9OWcnk5vrn2DQBgTrc58HXyrVPW/P2p3ZeUVNk1XmdmzqQd7BWKyi9s5H5Bfn70v3X1AyosL8Qvt39BdFY07mXfM8pn6rqu2djQ24sQtWO6GtdTrmPC/gnYG0XDUnH4MC2VHRlplPFqi8pjYWwDSFWnqbi4GNevXzfoGSqTAbC1hWD+LOpOdXauPFhSYqQR1429yB6r+q/CpgmbNI5f9Uw2VtpyQ7LGcRy+HPElJnScgFkBs2pfwMKCxt4uWgQ4O1Mv5P37cLCRmUUvpZqo9uA8PQ0zIPXW1zw9qVd26FAaOvLgAfUGhYaCKJTVGqAymh6TGEAzZszAo0ePUF5ejoyMDKxfvx7iKgliHMdh9erVyMjIQFlZGS5fvoyAGjX7LS0tsW7dOuTm5kIikeDPP/+El1GLujceTW38AAD69QPf0R7T296Ca2IoivJk2LfPdOEKhqKP8QPQ8JQ53eZgfo/5hg8iL48qEseOIbifEoGBVAk5dKjOiK8mxxBZi8+NB4/jYUjbIRjjO0a7N1laUkViwQJqENWBszNNFVq8uM6aCU1GVVnz6OqB/bG0H9k7A96plediMP7+1HNmb0+V1cuXdb5EURF1iERGNq4nd9fdXUgrTENrm9ZY2ntpvbJmb19Z70GV06AzQiHw4ovAqFFUm4mMpOGWRty5URlASUma18JNtzehsLwQHZw6YFrnaQZ/nj7rWtXIwJphcAqlAj+E/gCJTIInkifUUvL2ppr+0aM0Aa+BxqnGQqUQG9j6qhpShRQLji7AjrAduPTPJYOfoSoPmsBaQDduVCQnAz/8AFy71igu6rpCFKt6gAxFW1nzdfLF6udWV/f+1KRCsc9qHwz4+sLV0zxzT4zRANVgfc3CguboLVtG70WpFDh9Gvk7QlBQQO2iRqj0z9CCZyyl+9nDLIwfgK6oL70ESwdLzGl7DXbxd5CdocDBg3qlI5gUfZSEsLQwlMpKjTuQrCy6KxgZCe7YUYwfq4SPD13P7hlnM9ioGCprY/3GYv+0/fhw8Ie6J7BX9f5ERVHFvkbIkpdX9aRec8inqilre/7dA7lSjsHegzGyvYnCbd3dgSVLaBasqvOujm/v1o3+f2P1hU4pSMGvkb8CAN7q/xaU5coGZa0P7VGJqCgDNlo4jhYpmT+fKvfp6cDmzcDTp3pesDpOTtQ4Vyqh3p1V8SjvEQ7FHgIA/Df4v+DzDIs+0HdTB6gMN6oZ2RZyPwSJ+YkQW4qxqNci6i6aN4+WDeQ44O5duomjtxtOe0yRA3Q49jDuZd3Dxmsb4d7G3eBnqMqBWCt3PCaGHjx3Dti92+jhEWmFaVh5ciWisqLqPU/1sYYaQNrImlypozfVwgLZPv0AN7fK8Le4OOpxNBO3flUPkD4YVV9r3ZpGSEycCFhaIlHcUz22erpHMBoRZgCZELMxflS0agXMnw+xIw9zvP6B8P5dWHAKszKA9FESEvIT8MbpNzD3yFzkleYZbzCdO9MEIB4PiIoC/9gRzJimwIQJVL8wJ4wla+0c2sHZ2rnhE+siL4/uPF+8SKtGaNhNVSqBK1doXm1TGkGaZO3ToZ9iVsCs+vOfjIGdHTB5cuWTkBAgNlbrCRk+vLI4x6NHphsmHRrB/13/P0gVUvRr0w/9XfprJWvt2lEdQFVtzSDatweWLqXWX7t2Ri05q/ICxcdXvkYIwbfXv4WSKDHcZzj6tOlj0GcYYvwAlR6gqgZQsbQYm25vAgD8p/d/YCeq8MByHDB4MLBwIXXFPXkCbN0KhIcb9B0awsqKGkHGum1KpCXYcnsLiouLMb/LfAR2CzT4nrSwoMZPLQNozBia/ykU0prjv/xCs9WNxNY7WxGaGoot4VvqPc8YIXDayJqSKDE/ZD7+d/l/Oj0zqxVAUIWmRkcDGzfS3LMmpLCQzh/HAfq0XzOJvsZxQO/ewOuvI5GjiT8+PqCGo6kXbkaDMAPIRJid8aPC1RWYOxfuraRY1PZvzBIeMZvdCH2UBJlCho8vfAypQgpvsTccLR0bfI9OdO1KE1j4fODePVidOISgXgr1Q16pbHpPhiGyplAq8OnFTxGdZaSHvZMTVSY4jsY+HTpUK28jP58aQHFxwPXrdVzHxNQla7ZCW/x3wH/hatvIJY6uXgUOHqTzpUV3b0fHSg/L+fOmlUG5Ug4XGxcI+UKs7LVS6zwMjqsc461bRhijgwMNH5w8uVLLlkoNDvHy86N7HFWn/eLjiwhLD4OQLzQ4D8xQ4wegVXXnz68sVAkAOyJ24GnZU7RzaIepnafWflPbtpVV4uRyo3nN6mLECOD992n6gzHYFrYNablpaOvQFitGGFiJsYK33wY++kiD/cxxNP9z2TK6RV9WRj0bhw4BpYZFFjx++hgn408CAF7t82q9586YAbz6Kv299UFbWTufcB7xufG48PiCToWCnnuObr54eYE+E2fMqF4prgm9QXI5EBBAxV3X/CST62vW1igr58BxgI9bKS3Hu2cPna9GyD1jaIYZQCbAbI0fFZ6ewOzZcHVWgBfYEwBVThohSqJO9FUStoRvwYPcBxBbivHJkE9MM9f+/jQhm8+njVh+/x2QyyGV0v+9eNH4H6kthsravuh9OBl/Em+cfgMSmZEeXH370twNPp96NfburRYX06oVMHYs/f+//6Y9QhsTTbJ2K+2WOtm6SbCzo/MVE0OrnmlRL3zIEPqgz8igbzMVAr4AHw/5GPsm7kNydLJOstajB91Ul8mMVAJdIKjuNTt2DNi2rf461g3Qti3w7rtUZFWcij8FAJjffT487Dz0vrYxjB+AKuwdOlSm2aUVpuG3e78BAN7s/yYseHW09LO2BubMAaZOpXkJKsy1FGMFSTlJ2HJzCwRCAd4f/j4s+CZpWVgbVXXL556jVvG9ewZXvdkSvgVKosTQtkPRpXWXes8ViWi4oz7F6bSVNSVRYtudbQBo5TdbofYy6etL1x21AenpWb1SXHQ0TfqPNV7FRG1xcqL3cEUxYa1pLH1t3jy6zni25dMYZtV8rV9Pa/E39U5qC4QZQEbG7I0fFT4+wKpVgJ8flErgzz9pqLiqTGNjoq+SEJUVhV13dwEAPhr8UcNVywyhY0e6sgoEdLdLLsejR9SLceWKEUJ89MBQWUt6mqQOoVnVfxWsBUYsCdu1K13xRSIaUrJjR2WGL+hma9euVA87dMi4idP1oUnWLj2+hFdPvIrXT71erd9Lo9KzJ/DSS1TzSUujIUsNVDiwtqbNEgHqSTPl87O4uBgPIh7oLGsiES188cYbxqtspaaoiCavZ2fTxUvPEBw+vzJ/RcU3o77BZ0M/w8KeC/UenrGMH01EZkZCSZTo16YfBng10BuP44Du3Su7OMvltGz9jRtmqXQVFxdjzZ9rAAugj3cfDPcZ3rgD4PGoAfTKK0C/fnTu9CQ+Nx5nH50FQPv+mApdZO18wnkk5CfATmSnufKbrqgqxS1eTK23khLqzW7snS09aGx9zcoK4FsJaZTE4sW0p15phUfo11+bpHx9S6bZG0CN6Y19ZowfFRVPfY4DynOLoEhIwu8HSKPeg/oqCRKZBJ9c/ARKosQ4v3GN85Ds0IEqqfPmAZaW6NyZbnwBdCO6MXvqGSprSqLEmstrIFVIEewZjIkdJxp/kD4+NAnUzo4qqVVi6jmO5oY6ONCQuL/+Mr0upknWiqXF6tLO/s7+TdJAUk3btrQ4QuvW1FjcsaPBndT+/Wm6x7x5xsu9UJGQn4C3zryFuIw4g2TNxaVS9zYq9vZ097ltW2pBHzhAXYoGeDdUhjiP42Fip4mwEujXTdEUxs+jR8CFC3SdGd9xPP6Y/gfeG/Se7s+Z6GiaLX7mDO1TYqSHZGoqrR/w55/6X6O4uBinL5/GnZI7sLK0wuv9Xjfac7SoCNi1i3rttcLTk7qqVZ9fVka92TqUXlRtMI1qPwp+rfzqPVe1Duraa04XWavq/ZkTMEcn709SEt1jqNOT26YNzdMbMoRu6OiTiKMnCgW1HXR5hjSmvqYxz1o1X88/TzdWk5KATZvMvz9JM6LZG0BHtuYau3WERp4546cKnLQck3O2wSs3EmX3H2PfPurkMDWGKAmbbm9CWmEa3Gzd8O7Ad004yhp4eVWLTxjhEo3OHaRQKOiDVY+2LjpjDFk7cO8AorKiYC2wxsdDPjadvLq50R4SQ4dWuisqsLSsrDERHU0LVpmKumRt/a31yCnJgZfYC4sDF5tuANri6Ejny9eXxo0dPlzvA1EkorkXxu7nSAjBN1e/waXES/jkz0+Msq4pFAZFqmnG1pZuSvTvT//9zz/Avn06K/VlZdTptnztBRRKDCtjZirPT0wM9Tarcqe9xd7wFutRT7dnT9qY18KChndt2kSVLwMpL6eV9FJT9Xu/al3r3K4z/pjzB5YHLUege6DB41JRVkYjHPT+qhcu0IZR27bRnL0GDO37T+7jctJl8Dge/hP0nwYvn5NDeyTr0r5JV1m7kHgBCfkJsBXa6uz9uXWL7jHUG+1gYUGThF54ofK1oiLaAdsoMbCaSU+nkXfr12t3fmPqa0ol8P33dD+rll7F49H+cCtW0CiTHj2MWuCFUT/N3gBK+fsB/tpfaPLwkGfV+AEAiEQQDBuE2d3uwSn7Pp7eTcL+/aZtH2GokjC/+3wM8BqA1c+t1mkXy6iEh4M7chhTCnfBvZUUJSV0Q9WU4VzGkLWUghRsCNsAgIa+mTzh38GB5h+oxiqTqWMtvbxotImFhenSEuqStaisKBz+9zAAGkIpsjCTzn6WljTcsn9/WiZbhwdilShDgzjz6AzC0sJQXlKO5YHLDV7X0tNpm5V9+0zg6ePzaUjJtGmVTWb379fpg0Qi4GFRFE4r3sXkfTP0zoczZdibszOQhluISosz7EKq6hSLF9OLFhbS8JvLlw26CQ3pA1RzXfNr5YdFgYv0HosmVM+zWhXgtGXoUFoZVKGglUd+/bXeHS9fJ198PORjzO8+H+0c2jV4eV1LYOsja79F07yxOd3mVFYN1BJVDypXbR4XVdeKU6eo1bRhA7XuTKCMqYzuqn1t66Kx9bWMDBoVmJ1dz0aVgwMwezbdmFCRn09DS1iRBJPR7A0gyGWI3B+La+dMEwv3zBs/Kvr0gfW45zC3WxSsUx8g/VYqDh82jVJqDCWhtU1r/Dz2ZwR5BBl/gNrSpg1gYwNhThpmS3fBTliO7GxaBdoUGEvWjt4/inJ5Ofq26Ysp/lOMPMoGUCX97N6t7pA5aBCwfDnNCzI2dcmaVCHFF1e+ACEEkzpNalo50gSPR5X63r0rX3vypM5d1OJiGt6zaZPhBnixtBjfXv0WxcXFmNVpFp7r/ZzB65qzM7V78/JMmGfYrRtV6lu3BkaP1ikmkECJW4L/AwC04frolQ9nSuMHAOwdy3EZn+P7pHm4knTF8Au6udEQnJ49qVJ68SINi9MTVW0KXTfOVOtamzZt4OTtZLJnqLoJqr4GkI0NrXo2eTK19pKTabnsOhLYLXgWmOw/Ga/1e02ry+tiAOkraz+M+QFLey/F7IDZWp2vQi6v9N6qewBpy9ChgIcHdcEdPUp3QYwc5qVtA9Sm0NdU6127dg2EAnMc3cxRceoUEBHBiiSYkGZvAI3qkQ2UleHxgVAo5cbV5puN8aNi4EC0GtcPswOiYZHwAPGX0/UOZ6gLQ5QEQgjuZZtRB1I3N9prw84O9kVpmK3cByerUnVekDExpqyt7LsSHw/52LShb/VhY0MX8xMngL//Bo8jaFWlfoWx+lLVJ2u77+5GQn4CnKycDC5z3ChIJFRxqKM4grU11SkkEhqqYgg/XfsJyU+S4S32xrtj3jWKjAiFlc1bIyIMvlzduLpSa7pqq/WUlAZLi//14C/kkH8hhA0CJCt0/lhTGz8AcDF3P4qRCUu5C/p69DPORYVCqtBPmUJzqlShhHpeCtDNAKq6rhWJi/DCgRfw3fXv9B5DfahEwKC2DxxHDcZly2jumVRKE9hr1PPXuckotDeADJE1e5E9lvZeqrP358kTundlZVVZiVBrXF3pxsTIkdTV//Ah9QaFhRlNqVfpKfU1QG0qfU1lAPn46PjGoUOrF0nYubPSDccwCs3eAAp6Zzim93mMOa87g2dhvK/b7IwfFUOHwmtcN0zrHIs5wkPwLvnXaJc2VEk49fAUFh5diC//+bJpSxZXRdXtWSyGhzwZKwWb0cbauIlAxpY1juMw2X+yQeV99YbHo9UPVCV5//mH7gpWWD2pqfTZmJBg2Mc0JGt92/RFe8f2eDv4bdiLjF2ezASUl9PdQVVxhBp1r1WFqwCqi+nrBYpIjsDu8N0QCAX4YswXRg0LVHn4/v3X4NYq9VN1mzU7m3obt2+vM1ypRFqC9bfWQyQCArnFKM1z0mmDujGMn7zSPPwRvxMcBwSRlSgrMXK4Zo8ewOuv0xw0FQ8e1OrhVR8qw0Iu1y5yoOq65t/ZH+turYOSKE32LDU4BK4qjo7AggXU0+jgAPTqpT4UlhaGqb9PVff+0RZtDCB9Za2wvNCgZ2bVBqh6/Tw8HnX1L1tG3TRSKd0AM3S3BnTeCgvpR3jU8UhrKn1NoagsjqSzAaQqkjB6NL25kpOpi//8ea16xTEaptkbQHByQtcv54LXk5ayJMQIISLN1fgB6Oo2ciQ6T+gA3wBL6reF4aFwhioJWcVZ6mpdbrZu5jXnqt4RTk7gFT6lCmppKdLTaQVoQzCWrCmJEnuj9qJEagbxxBxHd7cmTaJPrbt3ac5GeTkiI2mYVEiI/sWptJG17q7dsX/afozuMNqw79JYODrSXVRVcYQ//gAuXaq2gxoQQO3x0lIgNFT3jyguLsbas2thIbTAxC4T0d9Lf2+AJtzd6YamXN6IZePLyqjykJkJbN6ssafL9ojtyCvNQ1sHb4z2oInh2obpNYbxA9CiLxKZBG2EXeCL541fTAKgu/MqVHlU27bR7X8tqOpZacgLVHNdO59wHg9yH8BGaINXer2ix+AbxigeoKrweLSwy8qV6uQOolTil1OfI70wTedohYYMIH1lTUmUWPbXMiw+vhhJT/WrAKEygHQOf6uJszPdMBw7ll6siuGoLyrvj6ur5t+2KfW11FQqdzY2dG3WGZWMrVhB+xEqlbQAhxEMR0ZLMIAA9ZaPQgGc+EOCnauT9E7wb9bGjwqOo/kHCxcCVlbIzaUbD6o4W10xVElQEiVWX1qNEmkJurl2w4IeC/QbiCkRi+nC7uIC9OmDlCdW2LmTVobTV1kxpqwd+fcIfgz9ES8dfQkKpZFizAwlMJAmfqoS1w8exOjR9BlZVES9/rpuWjYka1JF5Y1vwbN4tu5fVXGE4GD670uXqCFUsZhV9QLduKGbl0Ula+/1ew9vDXoLbwW/ZdShA3RZUek7jRbS7u1NS2V7eVFjaP9+Ws2rYkcnuSAZ+6P3AwDeDn4bHTvQZ4U2HsjGMn4e5j3E0ftHAQBT3d8CB562Non+EEKV+sxM2mNJi+R1Pp/+iUT1b1DXXNfkSjk23t4IAFjQYwEcLB2M9z2qoFTS8RnFA1SVKobjjct7EZUaDmFOHl5x1L41g1JZWcDEwaH2cUNk7UrSFTzIfYD4vHg4Wjk2/AYN6FQAoSF4PNpfadmy6k2NT57UK8SrvvyfptbXqoa/GfTRYjEwaxb98/Gh88cwmEZqr2welOSW4d+94SgpVODwdwQz32unU3+Kpr6ZGhWOUy9O//wDZEek4bfHIix6z7lavkZDGENJ+P3e7whLD4OlhSXWPLcGfB6/4Tc1BXZ2dJdeKISbjNpCaakEv/3GYfHi2s0W68OYspZRlIGfb/4MAHix84vmNX9+ftRwPHgQGDYMQiEt5rVtG+05cedO9ToA9dGQrD2RPMG8I/MwK2AW5nefb17zoC08Hu0b4eJCm4bExtLtxYrqQV26UCUlK4saQcO10MFqylpPrqfJht+9O3DuHB1fTo4RdpS1wd6ebuacPUubrFy5Qrdmp02DkC/EkLZDUCYvw0DvgUjhqAeyY8f6L9lYxg8A/Bj6I5REieE+w7G4V0/w+Y1QKdfXl+ZSHTlCtbijR+kmxYQJleXeasBxwMcf16/oaVrXQu6HIK0wDa2sW+mcnK8LgYH0z1SGNyEEm9KOARYWmCHvBOeDfwH9cmjuSwNWF48HvP8+9QLZ2NS+riF5s1vvbAUAzAqYpXe479ixNPWwvhwbnamqfN2+Tb0a4eG0j9CgQdULAtRDly50emuGmJmDvubqSh03Da0nWuPvT/9UmKp0aguhZXiAKrB3scTsORwseErEnU3C2R3aZ/ibw83UVIzrEIc2meGQ3I7Fvp+eaF2V0RhKQmJ+ItbdWgcAeLP/m/r1vWhMKoxGgQCYNaUc9vG38SQ+H4cOab9WGVPWCCH44soXkMgk6OHaAzMDZup9LZPh4QG89pr66eruDowYTL0ap09r50HTRta+vf4tnkie4ELihWf//u3Vi+YgeHpW5lOBKp8qL9CDBw0reypZy7fORyf/To3SCX3CBKpbN4rxo4LPp1qcqlR2QgIQHg43WzesHbUW347+FgDdRX7xRRpOWBeNafwoiRJD2g5Ba5vWeL3f63B2ptGQJmksWxM7O2D+fNpoStWsa9Omehv96Gr8SGQSdWPOJYFL9G48qwumEvErSVcQK0mClbs3FvRcSF+8ebPBOVMhEtF7our4DJW1f5L/QdyTOFgJrDC321yd3luVVq3oPaHJO2UUOnWifwoFrUa4eTOQlqbVW729qYi2b1/5mrnoa507U6dN9+4m+oAGGmUz6qdFGUAA4DlzIKa8oAQIQej+BIT9ldXge8zlZmoqhF18MXuaFA5CCfKuxuK3dTkN5uAZQ0lQEiU+vfQppAopBngNwNTOU/X8Bk2D3d2rmO1+GYKYSDy8mYuzZxt+j7Fl7XjccdxMuwkhX4jPnvsMPM5Mb/mqu30ZGQi++SPaC1Mhk9FN6Poqw2kja1eSruB8wnnwOB4+GvyR+c6DLnh706apVZtLpKTA359W612yRDuFtNy+HN/d/w4vHX0JpTJTVieg9OxppFAafejWDViyBKRXL1Qt1yjka5cY0pjGDwDwOB5mdJ2BP2f/CU97Y26/azsAHjB4MPXSOjjQQhJ6xPTWta49yH2AckU5vMRemOw/2bhjb0SURIlN4ZsAALO7z4Hj5FnAvHnUiMzNpUU4dEzMM1TWqnp/ZnSZAbGlGTfYtLenlsK0aXQ9y86mYQBnzuic8N+i9LUuXZp6BM80zUAL0BGOQ9eVwzBicDmgVOLUz/F4GFZ31a4WdTPVBZ8P2/lTMG9KCax45Ug9+y+ObM6p06NhLCWBx/GwJHAJfBx98MmQT569uR86FO59PDG1Uwxw7x5Cj2cjPLzu040ta9kl2fg+9HsAwPKg5ebvPVMRHg6uVILJRXtgmZUEaytS5zNQG1mTyCT4+urXAIB53eehk3MnU46+cakqI+HhwPbt4E6fQhd/Zb0RJCpZ82jjgUOZh0AIga+Tb6PswFelSYo5urjgQHsJPr28GjklOdS6vnBBXR2HEBqeFx9fc6yNa/xUxYJHo9Xlcpr61dCmgNHx8qI5G+PH04pxKmr8gGfPAnv2VN+8r29d6+nWE8dnHcfXI75Wf0dTceMGbVT9r/EKm6q5k3EH8bnxsBHaYF73efRFX1/g1Vfp9j8h9Vr9MTE0olVVo8MYsnYt5Rr+zfkXlhaWlWPSg0ePgGvXNFbfNy4cRzcoVq6snLMbN6iw10FyMp0zVb6jOelr6en19sk1Do3iCm6+6Dx7V65cwcSJE+Hh4QGO43C0RtdHQghWr14NDw8PWFlZ4bnnnkNMjZKt5eXleO211+Ds7AwbGxtMmjQJqTVcxPn5+Zg/fz7EYjHEYjHmz5+Pp0+f6vwFNcLnY9DHw9CzSzmUUjkOrYlB2ZPiWqeZ083U5PD5cF70AmZNKAafyPFvyH1cO1Lbe2ZsJWFI2yH4/cXf0dpGnxIqTYyFBTB9OjoPd8fwdglAbCwenkvUqPSZQtbW3VyHEmkJAlwCMLe7/uEPjc64cUC/frAXlWOp/QHMcTwFS2Fta1tbWdsYthHZJdnwsPPA0t5LTT36pkOlBdy8CezdC5SWQqGorbhUlbU4Xhxic2JhI7TBG/3eaLSh5uZSveaPPxrtI9Xkl+Zjy50tOBl/EleTr9KkpCtXaLJ/djbS0mgp9iNHKvX7xjZ+SqQleOXYK7iQeKFa+WI+nyqjUVGAsR6HWmNpCfTpU/lviYSGd92/r34pJYUqzKqEfm3WNbGluFE2JdLTgbg408xbkEcQtk7civcGvlc9z8bKCpg6lRqPVZNUMjKqxUQnJNA0mLQ048maqgz3jK4z9C5+AFDj7Nw50xiOGrG2pnM2dy6N9xwypM5TQ0NpXZPwcPPT106cAH76CbhnRq0LGdXR2QAqKSlBjx49sH79eo3H165di++//x7r169HWFgY3NzcMGrUKBRV6WC+atUqhISE4MCBA7h69SqKi4sxYcIEKKpsac2ZMweRkZE4ffo0Tp8+jcjISMyfP1+Pr6gZTiTExK8HoVPbMkwNfAxLQfXtNHO7mcwCCwu0XTEBU0YWwds2D71jdlfrTG+shbtMXkZ3Zit4psOV+Hxg6lQMntoa0zrHYnrpbnChN6qdYipZeyv4LYz1HYtPh376bM0hj0fzNZ5/Hk7WZeDCbtFyejKZWmfQVtZismPwe8zvAIAPB38ISwsdKlE8awwaBMycSfPQEhKQ/9Nu/PxlMXbtogXQgOqy5u7jjo1htPrWq0GvopW1DtVNjEBUFFWqqiwhjcKm25tQVF6Ejq064gX/F2hyg1hMrbKtW+GeEwWhkNqTWVlN4/nZGbkTUVlRWH9rPRSk8tnEcbTqPkCLNTQp167RCTpwgGp7Mpm6qJdMVv+6llGUgesp1xu1n5uq8msdNRwMppd7L4zzG6f5oJtb5f/n5dGmljt2qMMJVSWw7e2NJ2tfDP8C/xv2P4O8P0D1HkCNip8fzQ11d6987eZNtSVGSGUFOEfHErPS18rKqMENaK5OxzAPdNaKxo4diy+++AJTp9bOxyCE4Mcff8RHH32EqVOnIiAgALt27YJEIsH+/bTUaEFBAbZv347vvvsOI0eORK9evbB3715ER0fj/PnzAIB///0Xp0+fxrZt2xAcHIzg4GBs3boVf/31F+Li4gz8ypXw7W0w+8d+6PjBtGpldZjxUw8CAQLeGYuXX8iD9fD+6rbQxlQSfr75M2YemokrSVeMNeqmhePATRiPblN8weMIcPUqiKQUcrlpZc3RyhH/G/4/tHds3/DJ5khwMDB9OmBhgbKYRwh54xJOHCnXSdYe5T+CBc8C4/zGob+ncfvamCWdO9O8IAcHiEszIQy7hrLUJ7h1q7asrQ9bj8LyQnRs1REvdnmxUYfZqhVVDAhpxJ5AoDknIfdDAAD/HfBfujHg6UlLZXfoAMhk4B87gra5dwClEgkJjW/8ZBRlqEtzr+q/qlZomNkYQMOH0x4lABAWBmzZAoHkKQDg6VNJvevaL7d/weunXsf6W5o3Uk2BURuhVqBQKpBXquMPkZtLLdnUVOpBu3kTBU8JCCHIzo43mqzxOB7G+o2Fk5WT3tdQhYMCjVy0REXVEK+cHBpj+fvvwO+/ozCtCEVFgFxejsRE89LXkpPp3Dk5NULFRobeGDXoNjExEZmZmRg9urK5oEgkwtChQ3H9+nX85z//QXh4OGQyWbVzPDw8EBAQgOvXr+P555/HjRs3IBaL0a9KrfP+/ftDLBbj+vXr6NTJiO7yKp2v8/OBK4dTIPSIgXdbL7O5mcwOoRDcgpfUievh4QRPnz6AXG74wh2aGoqDMQcBACK+ibbqmgKOA0aNAmxsIG/bAX+dtUJ+fhnc3K7B29t4CzchBHez7qKnW0/Dx2wOdOkC2Noi65eTiMpyhTJKAJ7VQ1hYaCdrkzpNQg/XHnqXf30mcXUFli4F7+BBDM5OwJEYS1w+3R2FhWHw8aGyFp0djeNxxwEA7w96v0lKgvfoQXdwo6KAgQNN/3mEEHx3/TsoiRIj249EoHtg5UFraxpyc+UKcPky2uVH4MF9BW5Y2COgX+Pm/GwI2wCpQore7r0x2HtwreOqR5bJ8wsags+nXeo7dKCdi3NyYHH/PGSi3rgTnolRozWva/G58Tj18BQAYET7EY02XFUDdGN6gE7En8Daa2uxJHAJFvTUsj+dnx/NDTp2DEhIADl5Ck/vWeCJgwuKi1MxdqxhspZZnAknKyetC3vUR34+NRwtLKBT+wuT4OhIDe5r14B//0VqaBFkT0ehyK4YPj5tzEpfq9r/h2G+GNUAyszMBAC41vCVurq6IikpSX2OUCiEo6NjrXNU78/MzISLhu0GFxcX9Tk1KS8vR7lqhQNQWBGELJPJINOiiohcDmz66DHSr0ajz1ABRnzrC7lc3uD7WjRKJaKigO2bcyCMf4RVX/tBJBJpNd+aKCwvxOqLq0EIwYudX0Sga6De1zJb+vZFVhZw+3YpHj9Ow7CerhgxrIPRZO1cwjl8cukTjG4/GmuGrjGbB4JBuLvDY9UUBN2ww19nchASosDnn/fTWtY8bDwAoPnJUn0IBMCsWfB3OAsrZWtEJ+fCp0t7+Pl5Qy6XQ8SJ0MO1BzztPNHZqXOTzA3tjcFDejqQmqo0eYjNxccXcTv9NoR8IV7t/arm7zxwIODmhjY7z6EkNhfpcSK88pr2smYoMTkxOBV/ChzHYWXQSo3rgp0dB4WCQ04OgUzWFFUkauDtDSxeDO74cZBoCYpiI9DNywZ+fr01jn/dzXVQKpUY4TMCfg5+jSZ7paU8KBQAxyl1LSymEZlChs23N6NUVgqlUqnb97C2BmbNAhceDsmJi8hPygDvUQpGznE0SNYIIfjg/AfILM7EmqFr0Mutl17XUZGaCigUPLi4AAqFsnELb2hiyBCgY0dwf/2FR7E8FN0PR++e5fBzes6s9LWHD6mstWljHFmrixb1TDMBJim7UlPpIoQ0qIjVPEfT+fVd56uvvsKaNWtqvX727FlYVy0TWw8u9kVIU1ri1sVylL25H67P6+86binIZBzsUglKcmTY8loo+i6+Cc7VTq9r7c3Yi4eFD9Fa2Bq+ub44efKkkUdrPrRubYekKAfc2f0Y1tF/w+YFHxAtG7/VRZG8CGsfr4VEIUFhSiFOnTplpNGaBwolB6WyHYqLhdjx2hkMGJyJIp92tc4jhCAkOwRB9kHwtnpGKt+ZCg6w6JgFeZg7/v5bDnvlIVjwCWS2tphIJkJeIG/S+6ykxAMpKXbYvj0PPXvmNPwGA/g5+WcUlBZgdKvRiLgSgQhE1Hku17018uKcIFEIcfz4DTg4SGlMiwk3FAghWJ+yHgWlBQiyD0LCrQQkIKHWeRkZNoiP90R2djns7R+bbDw6Y2+PRw5KyAQCPOKLNK4/CZIEnEw5CR7HQ8eCjo0qe3fvdoBEYoGrV5MQG1tm8PVuPL2BuKw42FnYwTbJFidT9PsuRW6dUMTjQYxixF6LwpPip3qP6aHkIf5J+QcWnAXu37qPDAvDSrfdu9cK8fHOkMsLcPKk5s3nJsHNDdcUllCgFA7ZEYh//zQeTZwIYsz4Rj0pL+fh6lU/EAI8ePAQKSmmsxolEonJrt0SMKoB5FaR6JeZmQn3Kolr2dnZaq+Qm5sbpFIp8vPzq3mBsrOzMaAintjNzQ1ZWbUrjOXk5NTyLqn44IMP8NZbb6n/XVhYCC8vL4wePRr29vWHv5SUlCA0NBR957ZHe08lLh7MRVqMEwYNbwW/F1iddU0QQhAXF4e0tDS8tq4Xfn//IQqyypFzpgxzv+sBQRvdAobPJZxDQmYCHB0csXH8RgS41NOJ8BlGJWvDh7dGR2sb3NjnhPgkeyxIfAKPZRPVjVT14cOLH0JgK0CQUxC+nfStycvKNhZVZe3NN9vit59LIb3XGo6xORjS3Q5k0KBqiumph6dwL+seHpU8wrEJx1pW+FsVKmXNGQqFL4qeKuEaE4Mg8SMop02r3jmwifDxAf74gwcrK2DMGKVJq7oOlQ7FbzG/YW7A3DrLfVeVtb5juiItzRJ+fr7o4/QQ3D//gEyZYrKg/ojMCORn5cPF2gXfTfsOLjaa19C8PCAtjQehEBg7tospbTKtUcmaY99OKHH3QtAAYPhwQo3GiAige3cQPh9LTyyFWCzG5E6TsWCgliFjRiI2lgeJBBg7toPB4VxShRSbDm2CWCzGm/3exOSuk3W+hkrWbuY8heOwILTjZ6LvO9NovBlAM+lFIp2M7uUnl0MsFuPFzi9idvBsncdUk5ISDmVlHEaNIggONgNvI6isXbt2ExL3nnDyscGAdqVw7O6FjsHBTT00ALRGg68vD61bA9OmdTDpZ6kinRj6YVQNycfHB25ubjh37hx69aKuV6lUisuXL+Obb74BAPTu3RsCgQDnzp3DjBkzAAAZGRm4d+8e1q5dCwAIDg5GQUEBbt26hb59+wIAbt68iYKCArWRVBORSASRhuBegUAAQT27AsXFxbh58ya8vGjODwI4FObdRcSFfBz95QlecX0Mt8F++k9KM0SVhJ6eno5BgwbB1tYWL31nj+1vRCEtl4e/Pg7H9O+DwbloV7o6pyQH34Z+C47jsChwEXq1Mcxtb67UlLWAAA5PJbaIOx6HQ2ccsVT4B+wWzaje2FJLLiRewMXHF8Hn8bFm2BpYiRq3n4up0CRrI2ba40JRCc4kKNHh3E3YFxUBEyYAfD6elj3FT2E/geM4LO69GK1smzpwvWmoKWvl5RxOH5fiJ+UJBEmz8J8DEtg8PwHo18+kXo2G6NIFaNeOhsPxeHyjJqjXxEHggOV9l9d5vKasdepkA4UC8GqjhGDbucqGllOn0jwOI9PXqy82jN+A9KJ0tHFoU+d5rVsDb75J7TC+gV5jY1BV1kaNagcej6sUqdu3gVOngPBwXAn2wL2ce7AUWGJZn2X1PpdNwQcf0FB3Pp9vsMiHPAhBjiQHrraumNFtBgR83b5LVVmbNWsgBAIrlJX5QG2XKxS0aZGdHV3b7BqOqriTcQeRWZEQWgixqPcio8zv9Om09oCtrXGLR+iLStbatvXEp5+6ICODg3O3OfT3VP2oSUm0NPuwYQZtKOpLx47AnDm0yrlAYNr7s7HvoeaGzvttxcXFiIyMRGRkJABa+CAyMhLJycngOA6rVq3Cl19+iZCQENy7dw8LFy6EtbU15syZAwAQi8VYtGgR3n77bfz999+IiIjAvHnz0K1bN4wcORIA0LlzZ4wZMwZLlixBaGgoQkNDsWTJEkyYMMGoBRA0VeDiOGDCh93h08MeUgUf+798jMLoJKN95rNOXRW4WntbYdZXPcC3t0Fsqj3OfXSpsnxMA9gKbTHGdwy6tO6CxYGLTTj6pqMuWZu6zAUuI7qhSGmDg+ccQXbsrGyioSUFZQXqRp8Ley5sNo0+65K1QYM5tBnSARZdO+FpmSXdYd67Fygrw4+hP6KgrAC+Tr4Gl399VtEka4GBQP+Z9/DANwa/WT9CEskHTp+myetNGEduYUGL1g0ebDoFKyorqsFyy5pkzceH9rIUWfGAefMADw9aG3vfPuD8edTZCdoA+nv2x9TOtSusVoXHo9WlzMD2qSVrfD5X3bhwcABsbIDsbIj+PAlvhS1md53VZH3dLCwMt/fL5eXYEbEDAPBKr1d0LjagSdZEohqOxbQ0Wn86Lg7YuJFWCmlAhrfd2QYAmNhxYp3eQ10RCKjYNxBE0yhUlbWuXbvAxYVDjx4Ax+Mqf1SlEvjzT9pAdeNG4OHDRh+npSUtxtm1a6N/NENHOKJjIf5Lly5h2LBhtV5fsGABfv31VxBCsGbNGmzevBn5+fno168fNmzYgICAypCmsrIyvPPOO9i/fz9KS0sxYsQIbNy4EV5VCqbn5eXh9ddfx/HjtFLRpEmTsH79ejg4OGg1zsLCQojFYhQUFGgMgWuo/HCZRIntK+5A+CQds5eJYTt+qFaf25zRpvxwdFgZjnx+D8OdozAoqAzcq8u1fuJIFVKjVK4xNxqStbw8YO+mYkwo+R3tBSlUaXjlFa2fOp9c+ASnHp5Ce8f22Dt1b7OYw4ZkLT+fRodYp8XTbppSKW45lOBV0XlwFhbY+cLOZhtGWR91yZpcKcfcI3PxKO8RpvpPwYfCEbSkrFJJ+2zMmtUs67VGZ0Xj5WMvo5dbL2wcv1HjTr3WZdXlcjpnt27Rf3t7Ay++aLB2WFReBJlSZlC54qZA6xL+JSW04tmDB1BACZlPW1hOnaGVV8McuZ1+G6+deg3O1s44MuOITt4fndpFZGUBR49WdjL296feIA3vuZt5F4uOL4IFzwIhM0Pgbude65xnGZ3aRcTH075Uqo633boBY8ZQQ7yZ0ZCey6gfnQ2gZ4X6BEPbm6kwVwarx/9CENitScNEzAFdFu6c5FK0vnyIlkitp7RTQVkB7ER2z1aTTh3RVtaUSoBX+BTYs4c2XJg+HdomRISmhuLLf77EVyO+QleXZ3/bSeeeUpmZKN+3GzOLdyLVyQIzAufj3YHvNs5gzYj6ZG1/9H58f+N7iC3F2DPhCIRKMZyLEqnxKJHQkK65c5ts7DIZ3ex2cKBteYyBkijx8rGXEZMdg0mdJuHToZ/WOqchWUtOBh48oGF6vr4VL8bEAMeP07rK1tbA8uUGKfPfXf8Ox+KO4d2B72JCxwlavef+fZpr0L49LSfe2NQlawkJNOrNw4P25VVDCD1w9iz9sa2taSihelJNS2EhcPIktR0maDfF9ZJVnIWM4gyd2g3UJWunTtGItwEDKns8qVEoaNnny5fp/1tZAePG0ea9Ve7vLeFbsCV8C6b4T8FHQz4y/AuC2hFxcXRpMGbnEV3RJGsnTgDOzkDPnnWUNZdKgYsXgdBQKntWVsDzz9ObxYS63OPH9K9jR3oPmBpmABlG88iS1gFddhLsWwmAVt3V/05JlMOzdTk42+a3k1Afuiqkrb2tgPnzAdB16OlTwKWVolrMhkKpwJtn3oQFzwKfD/scbrZudVzt2UUXWePxoPb85BaLUJTMQ7t22n1Of8/+ODLzSLMoeqCrrBECRGe7YZelJ1IteHBx8sKKPisaabTmQ32yllOSg023NwEAJru/hh0bxfDyAhYs8AGWLgX++ss4WqEBXLpE9byuXantbwxOPzyNmOwYWAusNcqENrIWF0fHVVpaRVfv2pV6zQ4eBNzcDDJ+kguScTD2IBRKBZytnbV+X2YmcPcuXVIb2wCqT9aePgViY6mzTMXxuOOQyCSYGjgVwnbtgCNHqHfDmA15GqCkhBqNxtIRXW1d4Wqrfd32+mQtOpruQfTpo+GNfD4t/dypEw1XzcwEbt6kMlhl3pf2XorB3oPhaOWo4SL6oTJmLSyazgDSJGuFhbTvLscBvepKFxYKqcHTrRvdrMjMpN40W1uTGt337tE5KytrHAOIYRjPvsakAzq5UWtw6awUlzbGYpRvIgb+bwzdUWgB6LwbX4XiYhouX5iUj0V2B+G0eCrN4AWw++5uRGVFwUbYPI1JfWUts8gGv/5K/3/pEgKn0JN0wdbwBCosL1RXOGuJxg9AZezPPwFb2SzM7G2N4B7OVKZyc+nWff/+zd5725Cs/Rj6IyQyCQJcAjA3aBLW36CN+tLTAQ8PB5rfUhVaxqhRs567dqWGxoMHdNPE0NxliUyCn2/+DABY1GsRWllXL4ahrax5e9NxJdVMA3VyAhYvrp6XIZHQXXodDKL1t9ZDoVRggNcA9Pfsr/X7mqoZakOypipgpjKASqQl+Pnmz3ha9hS2Qlvq4Vq8mG6TVwl5R2mpSZ+pqhaBhsiVRCZB0tMkdG7dWaf31SdrUikVG6CBCFRXV2DJEuDqVXqzqKIDlEq6vnGczuNqCFUhXg0tGRuFumQtNZUed3XV4vf08KDzFhpK39jBtFXZHj+m/9V285LRtDTf2KMaGGL8AIAlVw5IJDh32xEx355q0sThxsIQ4weo0J8IQUnMY+y74gXJlr1AdjYe5D7A5vDNAIB3BrzT7Lw/hsiaszO1EcvKgN/+LxXlN+4Av/8OVBQdUXEj5QYm7J+AkH9DjDz6pkFfWbOzA0aOBDjwIIuejK52g+i9uX8/cOYM3f1r8u59pqMhWcuV5OJqylVwHIf3Br4HJ0ceunWjx65f13DB+/epvO3YARQUmP4LVODuTjvNq0LhDOXXyF/xRPIEbezbYHa36uWAdZE1lY7+5AnV0athYVFpJBJCd+h/+UXrxOuIjAhcSLwAHsfDqv6rtPxmFFUqbCP+RFqtazUNoL1Re/G07Cm8xd4Y6zuWvsjnV1dEc3KAH38ErlwxSWEJoNIAMsTpdODeAcwPmY/vb3yv9XsakjXV7ycS0eT5euHzgaFD6UOigrQTB5C9fyvdCTIyKgPI1A2KNVGfrKWk0P9qHSrL59MGxzNmVG6GlZYCu3dXXswIFBXRdYLjgLZtjXZZhglpEQaQocYPAPQfZYd+CzsDFhYIueiA5I1/NWvFylDjB6CL+py5HMQDuiKX74IDt9pDsn0HPjn1DuRKOYa1G4bxfuNNMPqmw1BZs7Cg67SdHZAjbIOQ0jEgCiV131dorCXSEnzxzxeQyCRIyK/dKPFZwxBZi8iIQEAvCdq2pbupf/4JEAtBZXlnVYW4Wtrrs482stbKuhUOzziM1UNXq3eIVe0yYmMr84TViEQ0PyMjA9i8mbqKGgGOq6yaFBNj2LXSi9KxN2ovAODN/m9WKwqiq6xZW0PdM0a186yR0lKqAUkkVN4aqBKnJEr8EPoDAGCy/2S0d9StJ5PKW1BQ0GBxMKOg7bqminJWKIC80jzsjaa/w4o+K8Dn1VG2LjqaWigXLgA7d9KqMEbGUAOoWFqMPVF7AABdW2uXZ6mNrKnuPy1rO1WnqAjfR2zAC/H/w4mfX6PzaCRhKCmhfxynDtpoNBqSNdV9WNWBqBVVr3P5Mo3x27GDFkwoM7wxrsr74+bWYgKEnnmavQFkDONHxfOzHOE/xR9yWOC3P22Ru/uEyXasmhJjGD8q7OyAuS8LYdmvB5IVbbDicRweJYTDiW+LDwd/aNDvYW4YS9bs7ICZMwG+gIf7tkG4bFthJJ49C5w7h59v/oSs4ix42Hng1T6vGvEbND6GyFp2STbeOP0GZhyajr4j0iEQ0GfanTsA+valzRiEQqrEb9tmEsWqqdBF1pytnTG+Y+VGg5sbTZ5XKmk6QTV8KvKC3N2pMr9nDy0p2whatsoAeviwUmHVh2JpMdo6tEUfjz4Y2rayeqe+sqZStOrdLLa2pqFdqkSOq1eBX3+ts6T92UdnEZsTC2uBNZYFLdNqHFWxs6P6nEJhks3/augiayoPkEIB7IjYgVJZKbq07oLhPsPr/oBhw2hBBJGITvKmTXTjwogyZ6gBtD96P4rKi9DesT1GdRjV4PnaypohBtADaQYutyqGXMBHV6kYOHyYem+NIBAq74+jY+O20mlI1hSKyqJ4BhVLGTKEVlAghCYUbdhAd4QMkDkW/vbs0ewNoNDQUKMYPwANu5221BltRvijVCHEvoMClIScbZwtuEbCmMaPChcXYOY8AbIClTgrvoXCUgE+zvaHY4EBWo6ZYUxDG6CL+8SJADgOl0r64H7HSQCA29f+wOEbtAfFp0M/rbOj/bOAobK29tpaSGQSuNq4orOXG4ZX6Fhnz1aElvj50SYzYjHNCdq6VUMyx7OHNrKWXZKN6ymaYtwoqn7S4eEaNj9VZdh79KBW0pkzNHHdxGG/Li40ukcuNywMrmOrjtg3dR++HPGlem4MkTWtDCCAav/jx9MqDiIRLSG3aRMtp1WD9KJ08Hl8LOy5UK/y13x+ZUK/KcPgdF3XVB6gXGk6DsUeAgCs7Luy/vdxHNC9O62mp3LlHjtGi0yoEmQMxBADqLC8EPui9wEAlgQuabBqqS6ypvrt9DGAtt/ZDggEGNV3FtoNm0IVlPv3qTJvoDeoKcLftJG1zEy6PlhZaaiYpwvW1sDkycCCBdTFW1RE5e3AAb1vKJWz3MfHgHHpSDMt4txoPPuZ03WgEgwHBwd4enqiqKjIaNce/7Il9jxxR0ZYPO6cS0KPPil6+rDNC0II7t+/j7S0NPTv3x9KpRKFOjblrItWrYChgyxw6UJHeOTYo6OsNQovXqQKwzNOcXExQkND0aZNG6PKWvv2tIjN7dvAPyW+cB8+An+d+gSK8hJMaj8JHW07Gu33aWwMlbUnJU8Q/jgcKAde7/E6iouK0bkzVejT0ugGcmAg6JNy5kzg0CG6dXjyJPUMPaOeR21l7UL8Bay9thYvdX8JrwS+Uut469bUi5CXR2seaMwNHj6cGo/nz1Mh9PY2eTmodu3o7/fwoeE7qXzwUSgrNFjWHByoAp2RQXWjBkXHywuYPZsq8ZmZNDdoyZJqVTBf7PAi+jn3Q2ub1nrfw0IhHVdmpmkaVeqzrkkkdEyPCi5BBhl6ufeCv52/dt+RxwOmTKFuyStXaN6joyMtZGIgeXl0XAqFzn2mcS35GkqKStBW3BZ9nPvU+110lbWcHDouCwvdxiWRSRCRFAFFqQIz/Gah0Kk9Tfg/cYJaL4cO0d0EPXvfZGTQcdnY6D5f+qCtrCUlUfu4TRtqsxhMq1a0/P/169TTHRVF5XDsWJ0uU1paKWMODo0zZ4QQhIeHq/+foTvNtg9QQkICOpi44geDwWAwGAwGg9FUPHr0CO3b65ZHyGjGHiCnCv9ocnIyxM2ww7mpKCwshJeXF1JSUlhjLS1hc6YfbN50h82ZfrB50x02Z/rB5k132JzpR0FBAby9vdX6LkM3mq0BxKuoky8Wi9kNpQf29vZs3nSEzZl+sHnTHTZn+sHmTXfYnOkHmzfdYXOmHyp9l6EbbNYYDAaDwWAwGAxGi4EZQAwGg8FgMBgMBqPF0GwNIJFIhM8++wwiQ1o/t0DYvOkOmzP9YPOmO2zO9IPNm+6wOdMPNm+6w+ZMP9i8GUazrQLHYDAYDAaDwWAwGDVpth4gBoPBYDAYDAaDwagJM4AYDAaDwWAwGAxGi4EZQAwGg8FgMBgMBqPFwAwgBoPBYDAYDAaD0WJo1gZQeXk5evbsCY7jEBkZWe1YcnIyJk6cCBsbGzg7O+P111+HVCptmoGaCZMmTYK3tzcsLS3h7u6O+fPnIz09vdo5bN4qefz4MRYtWgQfHx9YWVmhQ4cO+Oyzz2rNB5uz2vy///f/MGDAAFhbW8PBwUHjOWzearNx40b4+PjA0tISvXv3xj///NPUQzIbrly5gokTJ8LDwwMcx+Ho0aPVjhNCsHr1anh4eMDKygrPPfccYmJimmawZsJXX32FPn36wM7ODi4uLpg8eTLi4uKqncPmrTa//PILunfvrm7cGRwcjFOnTqmPszlrmK+++gocx2HVqlXq19i81Wb16tXgOK7an5ubm/o4mzP9adYG0LvvvgsPD49arysUCowfPx4lJSW4evUqDhw4gMOHD+Ptt99uglGaD8OGDcPBgwcRFxeHw4cP49GjR3jxxRfVx9m8Vef+/ftQKpXYvHkzYmJi8MMPP2DTpk348MMP1eewOdOMVCrF9OnTsXz5co3H2bzV5vfff8eqVavw0UcfISIiAoMHD8bYsWORnJzc1EMzC0pKStCjRw+sX79e4/G1a9fi+++/x/r16xEWFgY3NzeMGjUKRUVFjTxS8+Hy5ctYsWIFQkNDce7cOcjlcowePRolJSXqc9i81cbT0xNff/01bt++jdu3b2P48OF44YUX1Ionm7P6CQsLw5YtW9C9e/dqr7N500zXrl2RkZGh/ouOjlYfY3NmAKSZcvLkSeLv709iYmIIABIREVHtGI/HI2lpaerXfvvtNyISiUhBQUETjNY8OXbsGOE4jkilUkIImzdtWLt2LfHx8VH/m81Z/ezcuZOIxeJar7N5q03fvn3JsmXLqr3m7+9P3n///SYakfkCgISEhKj/rVQqiZubG/n666/Vr5WVlRGxWEw2bdrUBCM0T7KzswkAcvnyZUIImzddcHR0JNu2bWNz1gBFRUXEz8+PnDt3jgwdOpS88cYbhBAma3Xx2WefkR49emg8xubMMJqlBygrKwtLlizBnj17YG1tXev4jRs3EBAQUM079Pzzz6O8vBzh4eGNOVSzJS8vD/v27cOAAQMgEAgAsHnThoKCAjg5Oan/zeZMP9i8VUcqlSI8PByjR4+u9vro0aNx/fr1JhrVs0NiYiIyMzOrzZ9IJMLQoUPZ/FWhoKAAANRrGJu3hlEoFDhw4ABKSkoQHBzM5qwBVqxYgfHjx2PkyJHVXmfzVjfx8fHw8PCAj48PZs2ahYSEBABszgyl2RlAhBAsXLgQy5YtQ1BQkMZzMjMz4erqWu01R0dHCIVCZGZmNsYwzZb33nsPNjY2aNWqFZKTk3Hs2DH1MTZv9fPo0SOsW7cOy5YtU7/G5kw/2LxV58mTJ1AoFLXmxNXVtUXOh66o5ojNX90QQvDWW29h0KBBCAgIAMDmrT6io6Nha2sLkUiEZcuWISQkBF26dGFzVg8HDhzAnTt38NVXX9U6xuZNM/369cPu3btx5swZbN26FZmZmRgwYAByc3PZnBnIM2MAaUoEq/l3+/ZtrFu3DoWFhfjggw/qvR7HcbVeI4RofP1ZRtt5U/HOO+8gIiICZ8+eBZ/Px0svvQRCiPp4S5g3XecMANLT0zFmzBhMnz4dixcvrnasJcwZoN+81UdLmTddqPndW/p86Aqbv7pZuXIloqKi8Ntvv9U6xuatNp06dUJkZCRCQ0OxfPlyLFiwALGxserjbM6qk5KSgjfeeAN79+6FpaVlneexeavO2LFjMW3aNHTr1g0jR47EiRMnAAC7du1Sn8PmTD8smnoA2rJy5UrMmjWr3nPatWuHL774AqGhoRCJRNWOBQUFYe7cudi1axfc3Nxw8+bNasfz8/Mhk8lqWdLPOtrOmwpnZ2c4OzujY8eO6Ny5M7y8vBAaGorg4OAWM2+6zll6ejqGDRuG4OBgbNmypdp5LWXOAN3nrT5a0rxpg7OzM/h8fq1dvezs7BY5H7qiqpqUmZkJd3d39ets/iivvfYajh8/jitXrsDT01P9Opu3uhEKhfD19QVA9YuwsDD89NNPeO+99wCwOatJeHg4srOz0bt3b/VrCoUCV65cwfr169XVB9m81Y+NjQ26deuG+Ph4TJ48GQCbM71pkswjE5KUlESio6PVf2fOnCEAyKFDh0hKSgohpDLBOj09Xf2+AwcOtOgEa00kJycTAOTixYuEEDZvmkhNTSV+fn5k1qxZRC6X1zrO5qx+GiqCwOatkr59+5Lly5dXe61z586sCIIGUEcRhG+++Ub9Wnl5eYtPFlYqlWTFihXEw8ODPHjwQONxNm/aMXz4cLJgwQI2Z3VQWFhYTTeLjo4mQUFBZN68eSQ6OprNm5aUlZWRNm3akDVr1rA5M5BmZwDVJDExsVYVOLlcTgICAsiIESPInTt3yPnz54mnpydZuXJl0w20ibl58yZZt24diYiIII8fPyYXLlwggwYNIh06dCBlZWWEEDZvNUlLSyO+vr5k+PDhJDU1lWRkZKj/VLA500xSUhKJiIgga9asIba2tiQiIoJERESQoqIiQgibN00cOHCACAQCsn37dhIbG0tWrVpFbGxsyOPHj5t6aGZBUVGRWo4AkO+//55ERESQpKQkQgghX3/9NRGLxeTIkSMkOjqazJ49m7i7u5PCwsImHnnTsXz5ciIWi8mlS5eqrV8SiUR9Dpu32nzwwQfkypUrJDExkURFRZEPP/yQ8Hg8cvbsWUIImzNtqVoFjhA2b5p4++23yaVLl0hCQgIJDQ0lEyZMIHZ2dup1n82Z/rRIA4gQqoCNHz+eWFlZEScnJ7Jy5Uq1ot8SiYqKIsOGDSNOTk5EJBKRdu3akWXLlpHU1NRq57F5q2Tnzp0EgMa/qrA5q82CBQs0zpvK20gImzdNbNiwgbRt25YIhUISGBioLlfMIOTixYsaZWrBggWEEOrN+Oyzz4ibmxsRiURkyJAhJDo6umkH3cTUtX7t3LlTfQ6bt9q88sor6vuwdevWZMSIEWrjhxA2Z9pS0wBi81abmTNnEnd3dyIQCIiHhweZOnUqiYmJUR9nc6Y/HCFVMtwZDAaDwWAwGAwGoxnzzFSBYzAYDAaDwWAwGAxDYQYQg8FgMBgMBoPBaDEwA4jBYDAYDAaDwWC0GJgBxGAwGAwGg8FgMFoMzABiMBgMBoPBYDAYLQZmADEYDAaDwWAwGIwWAzOAGAwGg8FgMBgMRouBGUAMBoPBYDAYDAajxcAMIAaDwWAwGAwGg9FiYAYQg8FgMBgMBoPBaDEwA4jBYDAYDAaDwWC0GJgBxGAwGAwGg8FgMFoMzABiMBgMBoPBYDAYLQZmADEYDAaDwWAwGIwWAzOAGAwGg8FgMBgMRouBGUAMBoPBYDAYDAajxcAMIAaDwWAwGAwGg9FiYAYQg8FgMBgMBoPBaDEwA4jBYDAYDAaDwWC0GJgBxGAwGAwGg8FgMFoMzABiMBgMBoPBYDAYLQZmADEYDAaDwWAwGIwWAzOAGAwGg8FgMBgMRouBGUAMBoPBYDAYDAajxcAMIAaDwWAwGAwGg9FiYAYQg8FgMBgMBoPBaDEwA4jBYDAYDAaDwWC0GJgBxGAwGAwGg8FgMFoMzABiMBgMBoPBYDAYLQZmADEYDAaDwWAwGIwWAzOAGAwGg8FgMBgMRouBGUAMBoPBYDAYDAajxcAMIAaDwWAwGAwGg9FiYAYQg8FgMBgMBoPBaDEwA4jBYDAYDAaDwWC0GJgBxGAwGAwGg8FgMFoMzABiMBgMBoPBYDAYLQZmADEYDAaDwWAwGIwWAzOAGAwGg8FgMBgMRovh/wMODyX+tO+4lAAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# make figure and `SkewT` object\n", - "fig = plt.figure(figsize=(9, 9))\n", - "skewt = SkewT(fig=fig, rotation=45)\n", - "\n", - "# plot sounding data\n", - "skewt.plot(p, T, 'r') # air temperature\n", - "skewt.plot(p, Td, 'b') # dew point\n", - "skewt.plot_barbs(p, u, v) # wind barbs\n", - "\n", - "# add dry adiabats, moist adiabats, and mixing ratio lines\n", - "skewt.plot_dry_adiabats()\n", - "skewt.plot_moist_adiabats()\n", - "skewt.plot_mixing_lines()\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Similarly to the `plot_barbs` command, the `SkewT` object provides convenient methods for adding the remaining structural elements to the plot.\n", - "\n", - "The default appearance of these elements is:\n", - "- **Dry Adiabats**: dashed red/pinkish lines with an alpha value of 0.5\n", - "- **Moist Adiabats**: dashed blue lines with an alpha value of 0.5\n", - "- **Mixing Ratio Lines**: dashed green lines with an alpha value of 0.8\n", - "\n", - "These defaults can be overwritten by providing additional keyword arguments to the methods." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Polishing the plot\n", - "Now that we have all the structural elements on the plot, let's make it look a little nicer. The previous plot has all the necessary information, but it's a little cluttered and hard to read." - ] - }, - { - "cell_type": "code", - "execution_count": 50, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Text(0, 0.5, 'pressure (hPa)')" - ] - }, - "execution_count": 50, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAowAAARDCAYAAADiXXCNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3hUVfrHvzPppJOEhDQgCQRCQgdFUKqKBRUFXevqb61rWVfRVde2trWsZVV07RUbCtKLilgREVCSmUx67733zO+PNzckkEym3Hru+TwPD0MyufcAycx7znnP52uwWq1WcDgcDofD4XA4w2BUegAcDofD4XA4HHXDC0YOh8PhcDgcjk14wcjhcDgcDofDsQkvGDkcDofD4XA4NuEFI4fD4XA4HA7HJrxg5HA4HA6Hw+HYhBeMHA6Hw+FwOByb8IKRw+FwOBwOh2MTXjByOBwOh8PhcGzCC0YOh8PhcDgcjk14wcjhcDgcDofDsQkvGDkcDofD4XA4NuEFI4fD4XA4HA7HJrxg5HA4HA6Hw+HYhBeMHA6Hw+FwOByb8IKRw+FwOBwOh2MTXjByOBwOh8PhcGzCC0YOh8PhcDgcjk14wcjhcDgcDofDsQkvGDkcDofD4XA4NuEFI4fD4XA4HA7HJrxg5HA4HA6Hw+HYhBeMHA6Hw+FwOByb8IKRw+FwOBwOh2MTXjByOBwOh8PhcGzCC0YOh8PhcDgcjk14wcjhcDgcDofDsQkvGDkcDofD4XA4NuEFI4fD4XA4HA7HJrxg5HA4HA6Hw+HYhBeMHA6Hw+FwOByb8IKRw+FwOBwOh2MTXjByOBwOh8PhcGzCC0YOh8PhcDgcjk14wcjhcDgcDofDsQkvGDkcDofD4XA4NuEFI4fD4XA4HA7HJrxg5HA4HA6Hw+HYhBeMHA6Hw+FwOByb8IKRw+FwOBwOh2MTXjByOBwOh8PhcGzCC0YOh8PhcDgcjk14wcjhcDgcDofDsQkvGDkcDofD4XA4NuEFI4fD4XA4HA7HJrxg5HA4HA6Hw+HYhBeMHA6Hw+FwOByb8IKRw+FwOBwOh2MTXjByOBwOh8PhcGzCC0YOh8PhcDgcjk14wcjhcDgcDofDsQkvGDkcDofD4XA4NuEFI4fD4XA4HA7HJrxg5HA4HA6Hw+HYhBeMHA6Hw+FwOByb8IKRw+FwOBwOh2MTXjByOBwOh8PhcGzCC0YOh8PhcDgcjk14wcjhcDgcDofDsQkvGDkcDofD4XA4NuEFI4fD4XA4HA7HJrxg5HA4HA6Hw+HYhBeMHA6Hw+FwOByb8IKRw1EpR48exV/+8hfEx8fDx8cHPj4+mDhxIm644Qb89ttvg5778MMPw2AwoLq6Gvv27YPBYLDr13BkZmZi7dq1mD17NoKCgjB69GgsWLAAn3/++ZDPr6ysxNVXX43Q0FCMGjUK8+fPxzfffDPoOY2NjXj88cexePFiREREwM/PDykpKXjqqafQ3t4+6LlFRUVYtWoV4uLi4Ovri8DAQMycORMvv/wyuru77fr3Ky4uxu23345FixYhKCgIBoMB77777pDP3bZtG6666iqkpKTAw8PD5r/NUEjx7zUcJpMJf/3rXzF//nz4+vrCYDBg3759JzyvrKwM999/P+bPn4/Q0FAEBARg9uzZeP3119HT02P33y03NxcXXnghgoKC4Ofnh9NPPx2HDx8e8rmffPIJZsyYAW9vb0RGRuL2229Hc3OzKu/F4XAcgxeMHI4Kee211zB79mwcOHAAf/vb37Bt2zZs374dt99+O0wmE+bOnYucnJwhv3bWrFnYv3//oF8RERFYsGDBCR8fjj179mD79u246KKLsGHDBqxfvx4TJ07EmjVr8Mgjjwx6bkdHB5YtW4ZvvvkG//3vf7F582aEh4djxYoV+O677/qfV1hYiBdeeAGzZs3C66+/ji1btmD16tV4+OGHce6558JqtfY/t6WlBQEBAXjggQewZcsWfPLJJ1i4cCFuvfVW3HjjjXb9G2ZnZ2P9+vXw9PTE2WefbfO5mzZtwi+//IKkpCRMnz7drusPRIp/r+H47bff8OWXX2L06NFYtmzZsM87dOgQ3n//fSxbtgzvv/8+vvjiCyxatAg33XQTrrvuOrv+XlVVVTj11FORmZmJt99+G5999hna29uxePFiZGRkDHru+vXrcemll2Lu3LnYuXMnHnroIbz77ru48MILVXcvDofjBFYOh6MqfvzxR6vRaLSuXLnS2tHRMeRzPvvsM2tJSUn/nx966CErAGtVVdWQzx83bpz1nHPOsXsMVVVV1t7e3hM+fs4551hHjRplbW9v7//YunXrrACsP//8c//Hurq6rElJSdZ58+b1f6y5udna3Nx8wjWfeeYZKwDrDz/8MOK4Lr74Yqu7u/ug+w9HT09P/+ODBw9aAVjfeeedEZ978803Wx19aZTi32s4Bo51w4YNVgDWb7/99oTn1dbWWjs7O0/4uPD3KywsHPFed911l9XDw8Oan5/f/7GGhgZraGio9eKLL+7/WHd3t3Xs2LHWM844Y9DXr1+/3grAumPHDlXdi8PhOA5fYeRwVMYTTzwBNzc3vPbaa/D09BzyOWvWrEFkZKRkYwgNDR1yW3bevHlobW1FbW1t/8c2bdqExMREzJ8/v/9j7u7uuOKKK/Drr7+ipKQEAODr6wtfX98hrwnQNvRIhIWFwWg0ws3NbcTnGo32v7w58tyhkOLfy9WxBgcHw8PDY8gxAbRlPxKbNm3C0qVLMW7cuP6PBQQE4MILL8TWrVv72wN++eUXlJWV4Zprrhn09WvWrIGfnx82bdqkqntxOBzH4QUjh6Mienp68O2332LOnDkYO3as0sM5gW+//RZhYWEYM2ZM/8fS0tIwbdq0E54rfMxkMtm85t69ewEAU6dOPeFzVqsV3d3dqKurw6effop3330Xd955J9zd3V35a8iGFP9errJ37164u7tj0qRJgz5uMBiwePHi/j+3tbUhJydn2LG2tbUhNzcXAP2dhI8PxMPDA5MnT+7/vBL34nA44sALRg5HRVRXV6OtrW3QKotAT08Puru7+39ZB/T8ycGbb76Jffv24f777x+0wldTU4PRo0ef8HzhYzU1NcNe8+jRo3j66aexatWqIYuFp556Ch4eHhg9ejQuvfRS3H777XjiiSdE+NtIjxT/Xq6yZ88efPDBB7j11lsREhIy6HNubm6DxllXVwer1WrXWIXfh3vu8X8nOe/F4XDEQRvTdA6Hg9mzZ+OPP/7o//MzzzyDtWvXynLvnTt34uabb8bq1atx6623nvB5W6eKh/tcfn4+zj33XMTExODNN98c8jlXX301li9fjtraWuzduxfPPPMMGhoa8NJLLwGgFcjjT/xKufp4/AltNze3If9+Uvx7ucrhw4dx8cUX4+STT8a///3vEz4/3OlzR8Y63HOP/7ic9+JwOOLAVxg5HBURGhoKHx8fFBQUnPC5jz76CAcPHsSWLVtkHdPu3btx4YUX4vTTT8f69etPeEMOCQkZclVH6NsbaiWooKAAS5Ysgbu7O7755pshnwMAERERmDNnDs444ww8+eSTeOSRR/Dyyy/jyJEjAID33nsPHh4eg35JyfH3eu+99054jhT/Xq5y5MgRnH766Zg4cSJ27NgBLy+vEb8mODgYBoPBrrEKq5XDPXekv5Oc9+JwOM7BVxg5HBXh5uaGpUuXYs+ePSgrKxvUx5iUlASAVubkYvfu3bjggguwaNEifPHFF0MewklJSUFqauoJHxc+lpycPOjjBQUFWLx4MaxWK/bt24fo6Gi7xyMc2MjMzMTMmTOxcuVKHDx40JG/kkscf68JEyYM+rMU/16ucuTIESxfvhzjxo3Dnj17EBgYaNfX+fj4ICEhYdix+vj4IC4uDgD9nYSPC9+nAK0kWiwWXHrppaq5F4fDcQ6+wsjhqIx7770XPT09uPHGG9HV1aXYOPbs2YMLLrgACxcuxJdffjnsqtSqVatgsVhw4MCB/o91d3fjww8/xEknnTToNHdhYSEWL16Mnp4e7N27d8heTVt8++23AICEhAQAtNo0Z86cQb+k5Ph7DewDlOLfy1V+//13LF++HNHR0fjqq68QHBzs0NevWrUKe/fuHXSCvampCRs3bsR5553Xv/1/0kknYezYsSeI0T///HM0Nzfb5UeU814cDsdx+Aojh6MyFixYgHXr1uHWW2/FrFmzcP3112Pq1KkwGo0oKyvDF198AYCUI8cjVv/Wjz/+iAsuuAARERG477778Pvvvw/6fFJSUv/9/+///g/r1q3DmjVr8OSTT2LMmDF45ZVXkJGRga+//rr/ayorK7FkyRKUlZXhrbfeQmVlJSorK/s/Hx0d3b/a+NBDD6GiogKnnXYaoqKiUF9fj127duGNN97AmjVrMHv2bLv+HkLSinDC9rfffoOfnx8AYPXq1f3PKygo6F89FITowteOHz9+xEJUin+v4WhtbcWOHTsAkGIGAL777jtUV1fD19cXZ511FgAgIyMDy5cvBwA8/vjjyMrKQlZWVv914uPjERYW1v9nd3d3LFq0aFDizNq1a/HBBx/gnHPOwSOPPAIvLy88+eSTaG9vx8MPP9z/PDc3Nzz99NO48sorccMNN+DSSy9FVlYW7r77bpx++ulYsWLFoL+DnPficDgioaQEksPhDM/vv/9uveaaa6wTJkywenl5Wb29va0JCQnWq666yvrNN98Meu5dd91lBWBtamoa8lqOirsFEfhwv44XRZeXl1uvuuoq6+jRo63e3t7Wk08+2frVV18Nes63335r85oPPfRQ/3O3bNliXb58uTU8PNzq7u5u9fPzs86bN8/64osvWru6uuz+e9i630DeeeedYZ/35z//WZF/r+HIy8sb9j7jxo2z6++EISTmAKyLFi064X7Z2dnWCy64wBoQEGAdNWqUddmyZdZDhw4NObaPPvrIOm3aNKunp6c1IiLCettttw35PSnnvTgcjjgYrFaZ3RwcDkd0zj//fOzfv3/Qih2Hw+FwOGLBt6Q5HA3z448/4ueff8aOHTtwyy23KD0cDofD4TAKX2HkcDSM0WhEWFgYVq9ejf/85z/w8fFRekgcDofDYRBeMHI4HA6Hw+FwbMK1OhwOh8PhcDgcm/CCkcPhcDgcDodjE37oxU56e3tRWloKf39/nlXK4XA4HI5OsVqtaGpqQmRkJIxG/ay78YLRTkpLSxETE6P0MDgcDofD4aiAoqIih6JNtQ4vGO3E398fAH2DDJWwYQur1YoDBw4gICBgUPaplunsBDZuBM44Axg9mj5WUlICs9mMJUuW9Md4sUZXVxf27duHqVOnihrhpjZMJhOam5sxb948ZlfUGxoasH//fixcuLA//cUZenuBzz+nn4WgIPHGJwZWqxU///wzwsLCMGnSJKWHIxmFhYXIzs7GokWL4ObmpvRwJKGzsxP79u3DjBkzMGbMGKWHIxlHjx5FZ2en5DGfrtDY2IiYmJj+ukAvsPmuLgHCm2ZAQIDDBWNZWRl6enowe/ZseHh4SDE8RbjySsDNDejqAry8ulFYWIh58+ZhtFBBMojJZEJ4eDgSExOZLaQaGxtRXV2NRYsWOfy9rhWsVitSU1NFK/yvvBKwWgGDARgmQloRioqKYDQaMWPGDKYnccXFxZg3b57DWdla4ujRo4iKiurPUWeR+vp61NfXY8mSJfD19VV6OCPC6nvAcOhn810henp6kJaWhqSkJKaKRQDw8QGam2ml0WzOho+PD9PL883NzcjNzUVKSgqzLxRWqxVpaWkYP348s8UiQJO4pqYm0VbdvLyAqipg2zYqHNVAd3c3zGYzpk6dymyxCACZmZnw9/fH2LFjlR6KZDQ2NqKgoADJyclKD0UyhElcXFycJopFPcILRonJycmBh4cHYmNjlR6KJIweDcyZ04atW+uQnJzMbCEF0OpiTEwMAgMDlR6KZFRUVKChoQGJiYlKD0Uyenp6YDKZMGXKFFEncTExQFQUkJoq2iVdIisrC6NGjUJUVJTSQ5EMvUziUlNTMWHCBKa3QEtLS9HS0oKJEycqPRTOMPCCUULa29uRmZnJfCHV0mLCmWd6oqpqtGpWV8SmsrIS1dXVmDJlitJDkYze3l6kpaVh8uTJ8PT0VHo4kpGdnS3ZJO6kk4DJk4HqatEv7RCtra3Iyclh/rUnLS0NsbGxTK+Gl5eXo7GxkelJXHd3N0wmE5M7cSzBC0YJMZvNCA8PR2hoqNJDkYyamhqUl5dj6tQkVFYC+/crPSLxEQqpxMREeKmpQU1kcnNzYTQaMW7cOKWHIhltbW3IysqSbEXKYKAt6e3bgaYm0S9vNyaTCVFRUUz39FVWVqK2thaTJ09WeiiSIdVquNrIycmBl5cXN5GoHF4wSkRdXR1KS0sxdepUpYciGcJWyaRJk+Dj44OFC4H2dqCjQ+mRiUt+fj56e3sRFxen9FAko729HRkZGUhJSWHaK2Y2mxEREYGQkBDJ7uHlBZx9NvDjj5LdwibV1dWorKxkfjU8NTVVF5M4Nzc3PonjqAJ23xkURCikEhISMGrUKKWHIxmFhYXo6upCfHw8AFpdWboUKCqiXyzQ2dkJi8XCfCFlsVgQFhaGsLAwpYciGbW1tSgrK5NlEhcWBqxYAeTmSn6rQQycxHl7e8t7cxnJy8sDAEyYMEHhkUiH0NLEeiFlMpkwduxYpu0arMDuO6CCFBcXo62tjWn9QVdXF9LT0zF16tQTvGcxMcC33wI1NQoNTkQsFguCg4MRHh6u9FAko76+HsXFxbpYDZ84cSJ8fHxkuafBAGRlAWazLLcDABQUFKCnp4fp1fCOjg5drIanp6djzJgxumhpYsVPzDrs/rQpBFdZ0JbcqlVAY6N6FCPOwFUW7FBUVISOjo7+1XC5WL6cisbeXunvZWsSxxIWiwWjR49mWl5dV1eHkpISPonjqApeMIqMnlQWtk5g+vvTSuPnn5PYW2sM9BFylYW2UXIS5+YGnH8+kJ1N6UhSkpGRgcDAQEREREh7IwVpbGxEYWEh85O4tLQ0xMfHM9/S1NnZyfROHGvwglFE9KKyMJlMiI2NHdFH6O4OzJoFbN6svZXG8vJy5n2EelFZZGZmwtfXV9EoRy8vaaXeTU1NyMvLY/q1Z+BquCtRjmqnpKQEra2tTE/ihNXw5ORkplfDWYMXjCKiF5VFTU2N3SqL+Hhg8WLpV1fEZKDKgmUfoR5UFi0tLaoQO48bB0RHA7W10lzfZDJh3LhxTPsIxU7nUSMDJ3GstzT5+fkxnc7DIrxgFAmushie0FDg0CHg118lHJyIcJUFO5hMJkRHRyMoKEjpoWDePFJOiW0QqKio4D5CRsjO5hGrHPXCC0YR4CqLkZk/HygrA4qLxR6VuHCVBTtUVVWhqqpKVYVUSAiwdy9lsIuBXtJ5WI9YBailKTs7WxevPaxHrLIKLxhFQE8qi+TkZKdUFgYDcO655KerqpJggCKRnp6OsLAwrrLQOAPTedQ0ifPyAs46S7xVxry8PBgMBowfP16cC6qQtrY2XUzizGYzIiMjmW9pYj1ilWV4wegielNZuOIjdHOjpv8dO4C6OhEHJxJcZcEOap7EjRkDTJgA/Pyza9fp6OiAxWJxehKnFdLT0yVP51EaYRLHciE1cDWc5XQelmH3VUYmuMrCMby9STNy8KAIAxORgSoLln2EelBZCOk8ai6kvL2BhgYgPd35a1gsFoSGhjLvIywtLWV6Nfz4iFVWyc/Ph9VqZTqdh3XU+WqqEfSkspgwYYJoKougIOCMM4DDh4HublEu6TJcZcEOGRkZCAoKUn06zxlnUPa6MzQ0NKCoqEgXq+F6i1hlES1M4jgjw//nXEAvKovGxkZJfIT+/sDWrco7GrnKgh2ampqQn5+PqVOnqn4S5+YGzJwJ7NnjmHZKikmcGtFLxKoglWd5EqeHiFU9wAtGJ+EqC9eZOJE8jS0tol/aIbjKgg0GpvNoaRI3cSKwfbv9E6eysjI0Nzcz7yPUS8RqQEAA05M4PUSs6gVeMDqB3lQWUvoIp00jmfHhw5LdwiaCyoLltgJAHyqLiooK1NfXay6dZ8IEICnJvrxpvfgIecQqGwxcDWc5YlUv8ILRCfSkspDjxSwmBsjPp7xduRFUFiz7CPWgstD6JC4xEThwYGTdTnZ2ti58hDk5OUyvhgNAWlqaXRGrWqa8vFyyliaO/PCC0UH0pLIIDw+XxUdoMADnnUcnR3t6JL9dP1xlwQ4spPPMmkVS7+FaNIR0nmnTpjFdSAkRq2pI55EKvbQ0paWlMb8arifYrXgkIjMzUzcqCzlPYLq7A1FRwKefkm5EavSksujt7WVaZeGqVF4teHsD55xDj4fqZzSbzYiIiGB6NVwvEauCVJ71SZy7u7umJ3GcwWj31VUhiouLdaGyiI+Pl11lYTAAK1YAmzdLv9KoJ5VFSkqKpgupkRDSecLCwpQeisuEhlJP7969gz9eW1uLsrIyXbz28IhV7aOXiFW9we67iESMHz9eFyoLpXyEo0cDq1fTtpxURaOe0nlYV1nU19czN4mLiQE6OgCLhf7M03nYQVgN18MkbsyYMUxHrOoRdr9jJYJlJ5haVBajRgFlZY6pRhwhMzMT/v7+XGWhcQSNTlxcHHPpPGeeSRGC3d1AUVEROjo6mF4N19MkbvTo0cy3NOkhYlWP8ILRQVhu3lWTyiIxkd4whVUWseAqC3YoLS1Fc3Mzk+k8bm6Anx/wwQfdOHo0XfFJnNToIWK1oaFBtIhVtaJkS5OcFI2kM2AUXjByABxTWaipkDr5ZBJ7i6nb4SoLNhB8hElJScxO4jw9gcjIPJhMMYiMjFR6OJKhl4jVtLQ05tN5SkpKFG1pkoOuri5kZGQoPQxF4AUjBwCpLCIjIxEcHKz0UAbh7g4cOQL09Ym7RGVlpS5UFnoQO2dnZ8PLywsxMTFKD0UyWlpa0NWVgcsvj0R7O5uFFMAjVllBbxGreoQXjBxUV1ejoqICSUlJSg/lBIxG4IILSOztCr29vUhNTdWFykLrPsKREHyErJ/ANJlMiI6ORnR0EHbuBEpKlB6R+OjFR8j6ajign4jVvLw8Vb5XygEvGHWO0HOSmJioWpWFhwewZAnwyy9AU5Nz1+AqC3Ywm80YO3Ys0z7CqqoqVFVV9RdSZ58NfP010NWl8MBEROvpPPYiRKyyns6TnZ3N/GuPHiJWbcELRp2jJZVFQgLw5ZdAZ6djX8dVFuxQU1ODsrIypmf4A8XOwiTO2xu49FKgtdW+zGktoKeIVT0UUmpsaRITIWKV5dXwkWD33ZMzIlpTWYSGAosXA21tjul2uMqCDaT2EVZVAR99BHz4oeiXdojhJnGentSasW+fIsMSFb1FrIaEhIh/8fZ2YMMG4MUXxb+2AwgtTXpI52E9YnUk2P1J5YxIRkYGAgICNKWyiImhFcadO+0rGhsbG3WhskhLS9OFyqKzs1MyF2pODnD55cB990lyebsQ0nmGK6SmT6cJU1mZAoMTEYvFwiNWXaW7G7j4YuBvfwMaG6W5xwgIrz16iFi1Wq1MtzTZAy8YdYqgstDiVklYGBAYCOzfb/t5A32ELJ9qKykpQWtrK/MqC7PZjOTkZMlWw4Ve/dJS6aMphyMjIwNBQUE203nOOou+/+XIXJeChoYGFBUV6WI1PCEhQbpJnJ8fEBREj4uLpbnHCOgpYpX11XB70PffXsdoXWVxyinAlCm02jIcXGXBDoLKQsp0noqKY4+VOFzS2NiI/Pz8EX2ERiOtsm/erL1DMHqZxAkRq5Img9XVHWvodrSxWwSESZxWWpqcRWhpYjli1V54wahDWFBZGAxAcDCwYwdQWHji57nKgh0ElYXUq+H/+Q/9fskldMhEToStvfHjx9uVzhMUBCxYABw6JP3YxKSsrAzNzc2YNGmS0kORDNkiVl99lU5BTZtGvQoyI7Q06SFileXVcEfgBaPOYE1lsXIl8N131P89EK6yYAfBRyilyiIvj84PAMBdd0l2m2GpqKhAQ0ODQ6vh8fHAnDniSO3loKenB2lpacxL5WWJWG1vP3bY5a67aAYtI3JN4pRELxGrjsALRp3BmsrC0xO47DKgpYV+AcdUFixHjQHkI9SLykLqE5jPP099i6efDsyYIemtTsCVSZybG/Drr9R3qXays7Ph6enJ/CROlojVDz6gHoqYGFoSlxkhYlWrLU32oIeIVUfhBaOOYFVl4eZGb/abNlFPl6CyYN1HWF5ezlUWIlBTA7z1Fj2++27JbjMsrqTzGAzAeecBR49KMDAREdJ5pk2bxvQkzmQyISoqStpJXG/vsf6Jv/+dkg1khIWWppHQS8Sqo7BTNXBGhGWVxZgx1NP188+N0qosVICwVcJVFuLwyivUCjZzJrBsmaS3OoH29nZkZGS4NInz8QFWrABSU9Ur9dZDOk91dTUqKyuln8Rt2QJkZlIj67XXSnuv4xgolWfZR6iHiFVn4AWjTmhoaEBhYSHThdT48Vb09v6O1tZkpn2EXGUhHm1twEsv0WMFWsFgsVgQFhaGsLAwl6/V3Q18/70IgxKZ2tpa5tN5Bk7iJI9YfeYZ+v2mmwCZe+t4xKq+4QWjDhBezOLi4phXWXR2tiEkJAYHDig9GmnQk8oiODhYcpXFe+9Rwsu4ccCaNZLe6gTq6+tRXFws2iRu5kyS2StgWBkWqdN51IJsEas//QT8/DM1b992m7T3Og4escph93+d04/eVBZLl7rBYHAsPlArZGZm6kZlIXU6T08P8Oyz9PiOOwA5NZaCRicuLg6+vr6iXXfJEkqsqa8X7ZIuUVRUhI6ODqZXw2WNWBVWF6+6CpA5oYtHrHJ4wcg4emneHaiyMBiAefOAAwcUC0CQhObmZuTm5jJ9+lsopORQWXzwAZCdDYweDfzlL5Le6gRKS0vR3NwsSTpPRASwdSttUSvJwNVwlqXyGRkZCAwMlD5i9eBBsrUbDMDatdLe6ziEliYesapv2P0p5gAglYUefIQ5OTlYsGDBoEJqxgzgs8+Ac8+lokDrCCoLKX2ESlNeXo6GhgbMnTtX0vscPgz89a/0+I47ABEX+UZkYDqPFJO44GBg/nzaaldyITorKwt+fn6IjIxUbhASI0SsLlq0SNpJXHk5cOGF9PjiiwEZVS8DV8NZbmmSMmI1NTUV3333HcLDwxEeHo6IiAhERETA399fU5N/XjAyjKCymD9/vqa+KR1lOJWFtzdw/vk0Ie/ulnfLUWwElcUyuY/xyohcq+Hl5fR90dZGp4vvuUeyWw1JTk4OvLy8EBMTI9k9EhKoYDx6lIJA5KalpQW5ublYuHAh0689aWlp0kesdnRQsVhcTIXia69Jd68hKCsrQ1NTE+bNmyfrfeVE6ojVaS78EJ599tnYvn27iKNxHg2/hXJGwmw2IyIiAiEhIUoPRTKqq6tRUVGB5cuXD/n5wECgqQn49FPy22qxaOQqC/E4/r3344/J4ykXwiTulFNOkbyQCgkBvvkGCAuTf6VRSOcJCgqS98YyUlFRgbq6OsyePVu6m1itwI03Avv3k0Zn61Z6UZMJvbQ0SRmx+sEHHwAAZs2ahcsvvxzl5eX9vyoqKvp/DceOHTtEH5OzaPDtk2MPgspi6dKlSg9FMoQTmImJiTZVFv7+wEknAbt20fa01tCTyuKkk06SrJA6/r13yxb6XU7k9BEajST1LiyUt2CsqqpCVVUV06vhskWsPv888O67NKv57DNAgu1SW+gpYvX4liaxuOqqqwAAP/74o+ZNAfzQC4MIhVRCQgLTzbuOqCwSEoDlyynVQ0twlYV4vPIKvfcajbTiLLc0oKamRnYf4ahRVGPs2CGPNWDgarjkPkIFkSVide/eY8Hmzz1HuZUyIkSssu4jlDJitXOA4+qbb77Bb7/91qd/U5H7ygHYfQfSMYLKIiEhQemhSIYzKgtvb+CPP4DffpN4cCLCVRbi8OuvlKIGAE8/DZxxhmS3GhIlfYRubkB4uDxSb9l8hAoiS8RqaSlw6aUU3XP11cCtt0pzHxukp6cz39IkRKxKNYm7+uqr+x+vXLkSc+fORUxMDLy8vGAwGEb89csvv0gyLmfhW9KMIagsUlJSuMpiCJYsoa3ISZMAKfvUxUBQWSxZskTpoUiGHCqLmhqScnd1Uf/iHXdIchubCOk8Sk3iZs2iNDkpEdJ5Zs6cyfxquKQRq11d1HBdWUknll55RfYIotraWpSWluqipUnKdJ6PP/4YAPD666+joqJiUN+i0MfY1NQ07NdnZmbi5JNPlmRszsBuRaFTsrKy4Ovry1UWw2AwUF9XTQ1QVqasdsQWA32EXGXhPL29wJVXUh9fQgLw9tvyx/8Jq+HTpk1TLJ3HYKBDPjt3knJHit7NjIwMBAUFSZ7OoyQNDQ0oKiqSdhJ3333Ajz/SjPbzzyksXEaE1x7WW5qkjlgtLy8HAPj5+eG6666T5B5yw+40UIcIKgvWe05MJpNLKguDgbx7e/YADQ0iD04kysrK0NjYiEQZfWtyI7XKAgCeeIKKJG9veu9VQmGZmZkJPz8/VaTznHyyNFLvxsZG5OfnMy+VlzxiddMm4D//ocfvvCP7IReAIlbb2tqYb2kym81ITk6WbBJ35ZVXAlDXKWdX4QUjQwg+QtZVFrW1tZg8ebJL1/HxoZXGnByRBiYigspCKrGzWpBSZQEAX38NPPggPX7lFWD6dEluY5Pm5mbk5eWpZhIXHEyHv8Q8ACOsSI0fP17ydB4lkTxiNTub+hUB6psQRN0yMjBileWWJiFiVcp0nq+//hoAcOqpp0p2D7nhBSMjCCqLKVOmKD0UyRBbZREcDMycSYVFT48IAxQJPakspCqkamuBK66gwuj//g+45hrRb2EXJpMJMTExqkrnGTuWhN6//y7O9SoqKtDQ0MD0anhPTw/S0tKk8xF2d9Mhl8ZGYMEC4Mknxb+HHQyMWGUVIWJVykncwYMHAQCnnHKKJNdXCl4wMgBXWTiPwQDExADbtsmjHRkJrrIQhzvvBCoqgClTgJdfluQWI1JZWYnq6mqXV8OlYOZMwGKhfyNXkM1HqDDZ2dnw9PSUbhL33/+SviEwEPjkE0CBnYWWlhbk5OQw/9ojRKxKmc5zzjnnAAA++eQTye6hBLxgZACusnCNxEQgKUkdq4zp6ekIDw/XhcpCqtXwr78m36LBALz1luxnBgAMLqTUmM4jSL0DAlzrZ5QjnUdphHQeyQqp3FzggQfo8bPPAhK1aIyEnlqapNyJs1qtqKqqAgBJ4z+VgBeMGkdQWUjqBFMBFotFUpXFxIm0TXfkiCSXt4u6ujqUlpZK6iNUmoEqCyl8hC0twPXX0+Obb6YTwUqQn58Pq9Wq6nSeUaOA1lY6Z+HM6np7ezsyMjKYf+2RNGLVagVuuIGCzZcsof4JBaiuruYtTSLx/vvvAwD++te/SnYPpWD3p1wnCD5C1lUWhYWFkhdSM2fSIZi+JD5Z0Us6j9Qqi4ceov+/mBg6Ia0EWprEhYQA48dTXKKjWCwWhIWFISwsTPRxqQUhYlWy15733qMlcW9v4PXX5Xc+QR4foRoQIlYlTefBMVn3f4TT7gyh7lczjk24ykJcDAbg/POBMWNopUpO9KKycDSdxxEOHqToXQB47TXKEFcCIZ1HK5O4OXPoBHlrq/1fU19fj+LiYl2shkuWzlNRccwi/69/kShUAfTS0iRHxGpHR0f/Y63nRg8FLxg1ykCVhZTNu0ojucriODw86Nfnn9OBRTnQk8rC399fEh9hVxdw7bUk6r7sMuCss0S/hV00NjaioKBAU4WUwUB9nvZ+zw+cxPn6+ko/QIUQIlalWg3HbbcBdXW0taFE/BBoNVzKSZxasFgsCAkJkTxi9d577wUA/O9//5P0PkrBC0aNwlUW0uHpCZx7LrB7tzz34yoL13nmGepBDQkBXnhB9MvbxcB0Hq35CI1G4JxzgB07Ru5nLC0tRUtLi2yTOCUQxM6STeK2bAE++4yCvt96C1BoouhsxKqWENJ55JjEPd+3xXG90EjNGLxg1CBcZSE9ISHARRcBBQXSnp5ubW1FTk4O020FAJ3AlEplkZEBPPIIPX7hBUCplrry8nJNT+KE7/m6uuGfI0c6jxqQNGK1oQG46SZ6vHYtrTAqQFNTky5amuSKWC0rKwMA+Pv7M/vvyQtGDZKbmwuj0chVFhJjNALNzRQtJ5WjUVBZSOUjVAOVlZWoqamRxEdotQK33AJ0dNA29OWXi34LuxDSeeReDRcbDw8yBRw9OvTnc3Jy4OXlxZwuZCCSR6w+/DBQWko9iw89JP717SQtLc2liFUtUFZWhqamJllWw6+44goAwM6dOyW/l1LwglFjCCoLqZt3lUZSlYUDTJ1KKy99Wi1Rqa6uRmVlJfMqi9TUVCQmJkriI9yyhQ6ZenkB69YpcsgUAFs+wiVLALP5xEMwapjEyYHJZEJ0dLQ0PsL09GMm+XXrlJGEglqa6urqVCmVFwu5J3F79+4FACxYsEDyeykFuxUHo3CVhfzMn08tRmazeNfUm8pCCh9hRwclugD0u1LKw/b2dqbSeYxG4OKLyRTQ3n7s4yaTCWPHjsXo0aOVG5zECBGrkhVSd9xBpvTzzgPOOEOae4yAMIljvaVJzojVAwcOAAAWLlwo+b2UhBeMGoKrLJQjKAhIS6OeRjHgKgvX+e9/yZs5dizQdzhREdLT0zFmzBiEhoYqNwiRMRqpIBciM4V0nqSkJKWHJhkDV8MlmcTt2AHs2kX7/go6+oSWJql9hEoid8SqEAX48ccfS34vJeEFo0YQmne5ykIZjEbggguoX91VpPYRqgXBRyiFyqK8HHj0UXr81FOAxP3sw1JXV4eSkhImJ3HR0UBsLJCTo85JnNgUFBSgt7dXmklcZyfw97/T49tvp2gpBRAmcVqQyrtCenq6bC1NVqsVNTU1AIBohWId5YLd7xjGKC0tRXNzMyYq9EIjB5KrLFzE0xOYNg3Yvp0OwziLHlQWjY2NKCwsRHJysiTXv+8++j846STlDroIk7j4+Hhm03nmzQO6uopQVmZkWioveTrPyy8DmZmUCnD//eJf307S09MljVhVA0LEqlyr4e+++y4A4Oabb5blfkrCC0YNMFBloeUTmCMhqcpCRObNo/zdzk7Hv7apqQl5eXnMqyykTOc5eBB45x16/N//0uqvEpSUlKC1tZX5SVx2djoqK1PQ0sLuanhGRgaCgoKkSeeprKQkFwD4978BhU4lNzQ06KalSc6I1f/ry/9mMQrweHjBqAG4ykJdhIUBZ55Jj3t7HftarrJwDasV+Nvf6PGVV9IKoxLoxUeYmZmJ0aP9cPnlQcOqdrSO5BGr999PETqzZwN9OcNyIxRScvgIlUTuiNWBUYAsH14U4AWjyuEqC3UyZgxQWEhpMPY6GrnKwnU+/hjYvx/w9aXFGqXIzs6Gj48P0z1LQjpPcnIyQkMNOOUU4PfflR6VuAyMWJUknefIEeDNN+mxgsvhQksTy+k8SkSsPtTn0Xz99ddluZ/S8IJR5ZjNZq6yUCkJCVS4HDky8nP1ks4jpcqipQX4xz/o8X33AUolKba2tiI7O1sXk7jY2FgEBgYCoFqnspJsAawgacSq1UoHXKxW4E9/AhTy87EilR8JJSJWX331VQDAtddeK9s9lYQXjCqmpqYGZWVlzKss0tLSpFNZSMypp5LceySxd15eHgwGA1dZuMDTTwPFxcD48aSzUwqz2YzIyEjm03mqq6tPmMQtX05Fo1TJR3Ii+STu88+B778nOfdTT4l/fTtRMmJVLoSIVSUmcQEBAUxPHAfCC0aVolYfodho3UdoMJBW7ZtvgKKioZ/T0dEh7QlMlSClyqKggApGgBR2Ss0t9OIjFAqp49N5jEZg6VLgt9/I06hlJE3naWujnGiAlsUVKtaElqZp06YxXdQIEatKtDTt2LFD9nsqBbvvXhqnsLAQnZ2dXGWhAYxGYNUq4Ndfh1554SoL17n7bkodWbwYuPBCSW4xInpJ58nPz4fVarWZzhMefkzqrUWEiFXJXnv+8x9qco6JAe66S/zr24keWpqUjlhlOQrweLT7Ls0wgtg5OTmZabGzpCoLmfHyAi66CMjKGpzB29DQgKKiIq6ycIHvvwc++4wK8xdeUC4vurCwEF1dXaqTyouJvZO42Fjq4T0+b1orpKenSxexWlwMPPkkPX7mGUAhR6cQscryarhSk7iDBw8CAE455RSHvzYvLw933HEHjEaj5qIEecGoQjIzM+Hn54exY8cqPRTJEFQWU6dOZWqrJCAA2LgR6OqS3keoFqRUWXR1AYIP97rrgOnTRb+FnePQVzqPPZO46dOpNsrPl35cYlJfXy9tOs/tt1MlvXAhhXIrAG9pkpbc3FwAwFtvvWXzeZ2dnfjggw8wa9YsGAwGGAwGxMXF4fnnn4fVasVPP/0kx3BFgxeMKkNQWbB8AnOgyoI1H2FEBDB/PkXXlZWVcZWFi/znP3QqNzQUePxx0S9vN5mZmfD392d+EldQUOBQITVhAvDdd0BTk4QDE5GBkzhJIla3bgW++AJwcwPWrVNsOVytEatiouQk7pJLLgGAE0ImUlNTce211/YXh15eXrjqqqtwZIBKY9myZdi6dSt6enpg1VhPB7vGWY1iMpkQExPTr7JgEUFlMWfOHKWHIgnx8UBDQw/eeKMEa9ZwlYWz5OQAjzxCj597DpAhFnZIhEncokWLmJ7ECWJnR3yEnp7A2WeTl1oKjaHYlJaWoqWlBSeffLL4F29uPrYcfuedlCOqAELEakpKCtNSebVErH799dc4/fTTh/xcSEgIbr/9dtxwww3StD/IDF9hVBGCykKp5l050IuPsLw8G0ajByoquMrCGaxW4K9/pYMuy5YBV1wh6uUdIi0tDbGxscythg+kvLwcjY2NTvkIw8KoWNy7V4KBiYjkEasPPUSqhPHjgQcfFP/6dpKVlQU/Pz/VR6y6gpoiVtesWdP/+MILL8QPP/yA3t5eWK1WVFdX4/7772eiWAT4CqNqsKWyYAlJVRYqQVBZXHXVfNTVGWC1KndQQ0qkVFl8/DGwZw8dJnr1VeX+/SorK1FbW4tly5YpMwAZEEPsHBBA/aYmE3lJ1Uh2drZ0EauHD9OJLAB45RUy+itAS0sLcnJycOqppypeSEmJmiJW6+vrAUBz28vOwFcYVUJ+fj56e3ttqiy0juQqC5VgNpsRERGB0NAQTJwI7NgBlJYqPSpxkVJlUVsL/P3v9Pj++4GJE0W/hV309vYiNTUViYmJfBJnB8uXkx9Tje+bbW1t0qXz9PQA119PwfKXXAKcdZa413cAoaVJKxGrzqDmiNXe3l5s27YNy5cv7+9jvO6665Qelmiw+66tIQSVRUpKCtOFlMVikU5loRIElcXAgwNLlwJffUV9XiwgtcrinnsoTWTKFPIvKkVeXh4AMD+JEyudx80NiIujMx+dnSINUCRMJpN0PsJ164BDh4DAwGOrjAqg1YhVRxAmcWpsaTIYDHBzc8PKlSvxzTff9H981apVCo5KXNitTjSExWJBcHAwEz7C4aivr0dxcbEufITHqyx8fIDVq2l7tb1dwQGKhJQqix9+AN54gx6//jodqlCCjo4OZGRkMD+JS09Px5gxYxAaGirK9QwGYO5cdUm9JU3nKSoC/vlPevzUU6RJUICBq+EsS+Xz8vJgNBpVG7FqNBpx5513Ii8vD1arFVarFWeffbbSwxIN3sPoIGK/CAoqi8WLF4t7YRUhucpCJdhSWfj6AhUVFCF48cWAVg8vCiqLGTNmiK6y6OwEbriBHl93HWnslMJisSAkJIT5dJ6SkhIsXbpU1OuOG0dxmWro3ZXcR3jbbXQ6ev58+qZViIKCAvT29mo2YtUehIjVefPmqW4SZzQa0dPTo/QwJEdd/+oaQMzvCcFH6KjKQmsIKouJSjWjyYCgsrDlIwwPB2bPBjTmah2ElCqLp58G0tOBMWOOBWUoQUNDAwoLC5lfDU9LS0N8fLwk6TyRkcDXX1M6npII6TySRKx++SX9cncHXnuNoogUoLOzsz8ZTG2FlJgIEatqamnq7u4GAExXKlFAZtj97pKI7dupKV8MysvL0dDQ4JTKQitIrrJQCVlZWfD19R1RZZGYCJx6KpCdLdPARERKlUVWFvDYY/T4+ecBpaJvhUKK9XSekpIStLa2SjqJW7QI+PZboKVFslvYRFKxc1MTcMst9HjtWiAlRdzrO0BGRgbzLU0NDQ0oLi5GcnKy0kMZhJD4orZxSQUvGB3ktNOAnTtd35oWQ2WhBXJycqRTWaiElpYWh9J5jEYgNxcYIP/XBCaTSRKVheBc7OgAzjgDuPRSUS/vEGVlZWhqamI+nUeYxEkpdvbyAlatou3p3l7JbjMskkasPvggUFJCp3weeED869uJELGqBh+hVAyUyqutpclkMgEAUhScMMgJLxgdJDiYrAmuFox68hGyHHMI0ItGdHS0QyqL00+nk8B9Oxqqp6KiArW1tZKcwNy4kbYvvbxIYafUt4peJnHZ2dnw8fFBdHS05PcKCAAKCqh3V04kjVg1mYCXXqLHr7wCSLClbw8DI1ZZbmlSc8Sq2WwGwAtGjg1Gj6ZTgM5uTYupslAzkqosVIKzKguDATjzTNqaLi+XaHAiIWU6T07OsbMCa9dSrKJS5OTkwMPDA7GxbKfzSOYjHIaJE6n3OzNTltsBoNee2NhY8SNWGxuBNWvoL3T++fRDrBBCxCrLLU09PT1IS0tTbUsTX2Hk2IWwNe3MVovYKgs1IqnKQiWIobKIjQV271a3ozEvLw8Gg0F0lUVzM3DBBUBdHTBvHkm6laKtrU03k7jIyEgEBwfLet/TT6fT03L0MwoRq6Kvhvf2AldeSSezoqIogkghhEJKjT5CMZE0nUcEhBVGlmMYB8ILRicJCqJkA0cRVBasn8CUVGWhEsRQWYwaBaxcSUWTGhFUFmKfwOztBf78ZyAtjdR1mzZRSohSpKenIyIiAiEhIcoNQmJqampQUVGhyCTOzY3aLz7/XFqpt6QRq//6F7BlC/VObNoESNEbaSd5eXm8pUkFCHJ/tY5PbHjB6ALh4bQ6VF1t3/OlVlmohcLCQnR2dkqjslAJQjqPGIXU6NH03rNxo7jaJjGwWCwIDQ0V3Uf4+OP09/X0pN+VnKDX1dWhtLSU6dVwqdN57MHXl3Zm9u6V7h75+fmwWq3ip/Ns3Ag88gg9fv11spMrhJ4iVllvadIa7H63ycQppwC7dtm3NS2HykJpBJVFcnKy+CoLFZGRkYGgoCDRVBaensDkyZQ7rZaEjIaGBhQVFYm+Gr55Mx0yBejMwPz5ol7eIYRCKiEhgflJXFdX15BSeTmZMIF2ZuydZDuCmJO4QaSmAlddRY9vv/3YY4VIT0/XTcQqy5M4LcILRhcJDAQWLx75TV4ulYXSSKqyUAlSqSySkqiXr6tLtEs6zUCVhZg+wl9+OabNuflm4C9/Ee3STlFcXIy2tjamV8MFqbxaJnFubsC+fZSqJyYWiwWjR48W10dYVERajJYWYNky4JlnxLu2E9TX1/OWJo5i8IJRBKKjge++A6qqhn+OnCoLpZBUZaESpFZZhIdTEszRo6Jf2iGkUFlkZADnngu0tdF78PPPi3Zpp+ju7h4xnYcFMjIyEBAQIEk6jzMYDPR98OOP4vkZhYhVUQup2lpgxQryLSYlARs2KJrpqbeIVZYncVqFF4wiMWfO8FvTSqgslMBkMiEmJkZ8lYWKkENlsWgRFVcVFZLdwibCCUwxfYRlZWQgqamh9q8NG0jorCRZWVkYNWoUoqKilB2IhDQ3NyMvL091rz3e3sCf/kS1mKtF48DVcNEmcW1tpM0xm+lE9K5dJOFVEL1FrKphNdwe1HqCWwp4wSgSAQHU0D2UiNlsNiuispATQWUxZcoUpYciGVL6CAdiNFJCRmCgeDGUjpCdnQ1PT0/RfIQNDbSiWFAAJCRQvKbSCyStra3IyclRXSElNmlpaYiNjRU9nUcMDAayA7h6CKa8vByNjY3iTeJ6eoDLLqMl0MBAKhYVLgr0FLHq5+enKU2NXhyMAC8YRWXcOODgQUrwEBB8hHoppERXWagIOdN53N1p8rF1K/kK5UJQWUybNk2UQqqjA7jwQuCPP45ZBdTQq28ymRAVFeVQOo/WENJ51PzaM20a1Wf19c59veir4VYrZUR/+SXpc7ZsAVSQE6x2H6EYCBGrWos55AUjx2mmTaM3xd7ewSoLlpt3JVNZqAglVBZ+fsDZZwMHDshyOwDiqix6e4Grr6YVJD8/OgHugrJSNKqrq1FZWanqQspV5FoNF4MzzyQ3ozOr6bm5uXB3dxdvEvf448D//kfLn+vX07aRwuippcnRiFU1wAtGjtP4+wMLFtDKilpUFlIimcpCZSilsggLo8OZR46Id0BgOMRWWdx1F/DJJ7RaunEjMGuWKJd1CTX4COVAEAqLnc4jFV5eFLfqiCFAmMSJVki98w7wwAP0+MUXgYsucv2aIqAHH6EQsarFSRwvGDkuERcHHD3ahZ9/ztFU864zWCwWBAcHi6uyUBlqUFm4u1MrlVSORrFVFhs3As89R4/feYei4dRAQUEBenp6XErnUTsdHR39hZRWJnGBgcDChY7lTaenpyM8PFyciNW0NODGG+nxvffStrQK0FvEqhZbmljO8j4ebbyaaBCjMRtmczTGjGHbR1hQUIBkFfT4SIVaVBYpKcCYMUB7uzTXF1QWYqyGV1Ude+/9xz+AK65w+ZKiIEjl9TCJCwkJET2dR2ri4uhXXzyvTUSNWO3qIhl3Zyf5fh5/3PVrioBefIRiRKwqiaNF7r333os777wTu3btQosc4eoiwgtGCWhubkZ5eTYuvHAs2trY7DmRRGWhQtSkspgzBygtBUwmca87UGXhqo/QaqVisaqKitx//UukQYpARkYGAgMDVeMjlAKp0nnkwtubFvuKi4d/jvDaI1rE6hNPUM/H6NHAG29Q/6IKEFqaWPYR6qWlSWD9+vV48skn8dxzz+Gss86Cn58fDAZD/6/AwECsXr0a//vf/5CTk6P0cE+A/f8hBRBUFjNn+qOgACgvV3pE4iO6ykKFqFFlMWECvaGKmZIhpsri449pO9rdHXjvPepNUwNNTU3Iy8vT3AlMRxCk8mKn88iJwQCcdx5QWDj8c0pKStDW1ibOJO7wYeCxx+jxunWASiYTelkNFztiVe1c0bfdsmvXLtx7772Ye1wmeWNjI7744gvcdNNNSEhIGFRMGgwG/Prrr0oMux9eMIpMZWUlamtrMXnyZADA+PHAnj2kjmCFnp4emEwmUcXOakSNKgujEbjgAnpjFeMQjJgqi9LSY61fDzwAzJzp+vjEIi0tDePGjVOlj1AsysrK0NTUJGo6jxJ4e1O++FBJMKJGrHZ00FZ0dzewZg1wySWuXU9EMjMz4e/vzyNWGWLfvn0AgISEBJx55pl44okn8Ouvv8JqtQ76lZOTg9deew2rV68+IQTjgw8+UGDkx+AFo4gM1bzr5wecfDLQ2Kjw4ERETh+hUrS1talWZeHlBURG0mqeqy0wYqksrFbguutIxDx7Np0bUAsVFRWoq6vrn8SxCGuTOIOBjBN977H9iBqx+tBD1N8xZgzwyiuq2YoWIlZZLqSkjlhVI0uWLAEATJo0CR9++CHKysqGfF5cXByuv/56bNiwAfX19YOKyZdeeknOIZ8ALxhFRFBZHO8jnDQJqK5mY2u6vb0dmZmZqiykxMRkMqlaZWE0AsuXk1/Y2ZVGQWUhRiH1zjvkWfT0pK1otdQsWvIRukJOTg48PDxES+dRA9On04Rb+P4W1Ue4fz/wzDP0+LXXADFOWouEyWRCbGwsj1jVAPYeRkpPT+9/vGPHDlx55ZWIjIwctN38wgsvSDRK8eAFo0iMpLKIjGRjazo9PR1jxowRR2WhUrSisggPp+3p5mbHdTtCIZWYmOiyj7CgALj9dnr82GOAms5b5OXlwWAwaMZH6AxtbW3MTuLmzaP0rLo6KqREiVhtbQX+/GeqRK+8kn6IVIIQscryajgLk7iOjg4AsPs9QnheRkYGjh49imeffRZnnXXWoLaK7777TvyBioyLTSAcAYvFgtGjRw+rsvD1BU46iVYatdrfK6gsli5dqvRQJENrKgtfX+DoUVq9PuMM+79OLB9hby/wf/8HNDUBp5wC3HGHS5cTlY6ODlgsFsybN4/pE5jp6emIiIhASEiI0kORhMmTgQ8/bEJUVCVWrFjm+gXvuw/IyqJZ/H//6/r1REJvEatansRlZWUBgF02goqKiv7HQn9xSkoK7lDTi6WdsPsqKiMNDQ0oLCwc0UeYmEh91sO0LqgaoedENJWFStGiymLaNNoKttfCIKbK4tVXKfrPxwd4911ATQc609PTERoaKns6j5zU1taitLRU9avhrhAQYEVISBpiYlxfDce+fceKxLfeAlxdrRQRvUWsank13NTnNrOnYDzppJMAAD/88IOkY5IDXjC6iFBIxcXF2aWyCA0FvvqKDuZpiZKSErS2tqrCRygVWlZZLFoEREUB+fkjP1cslUV2NnD33fT4qacANX1rNDQ0oLi4WLM+QnsQXnsSEhKYnsQVFBQgJKQZQUETcOiQCxdqagKuuYYeX3cdsGKFKOMTA734CJWKWBUbc59dfqQow5aWFhQUFAAAFi5cKPm4pIbd70yZKCsrQ2Njo90qi1GjaGtaSwdgRFVZqJjMzEz4+flpUmVhMNBBk/37gZKS4Z8nlsrCagX+8hdqB1uyBLj5ZqcvJToDpfJa9RHaQ3FxMdra2jS1Gu4oAydxcXFuyM62/f1tk3vuoRnV+PHAs8+KOErXEVqaWPYRqiFiVSwsFguAkVcYzzvvPADAp59+KvmY5IAXjC4gqCwcFTsnJpLYuLRUwsGJiKgqC5UiqCy0fHDAzQ1YtWr4PF4xVRaffgp8/z1NgN5+m05tq4WysjI0Nzdr3kdoi+7ubtHSedRMRkYGAgICMHbs2H6pt8HgRKb6H38A//sfPX7rLXL2qAQhYpWFQmo41BKxKhZPPPEEANg8/NnT04O9e/cCAC6++GJZxiU1KnqZ1x6uqCwCArSxNS2qykLFsKKy8PamFb/9+4G2tsGfE0tl0doK3HUXPb73XlqwUQs9PT1IS0tTVTqPFGRlZWHUqFGIiopSeiiSIaTzDHzt8fGhBL8vvnBAJ2W10jH+3l7g4osBFR3a01vEKiuTuPj4+BGfc+ONNwIAnnrqKamHIxu8YHQSV1UWwtZ0X3uDahFNZaFiWFRZjB9PEX3ChERMlcVTT1HW77hxwJ13uj5WMVFjOo/YtLS0ICcnRzeTuOPTeby9gfh4WuG2i48+osMu3t7A00+LPk5X0FPEKuur4cfz5ptvAgDuFhq9GYAXjE4ihspi8mQ6pKfWU9M1NTWoqKhg+gQmqyqLsWNJc9PWRgssYqXzHDgA9O3G4JlnaMVHLbS1tSErK4v5QspsNiMqKsrldB41U1FRMShi9XhmzqTXzxG9tu++S85FgE5oqSidSlgNZyWdZziys7Ph7e3NdEvT8Tz55JMAgBtuuEHhkYgLLxidoK6uTjSVhY8PCb27ukQYmIgIWyWTJk1yXWWhYlhWWUyYQAdDd+/u7FdZuHICs6EB+NOfaNXy4ouB1atFHKwImM1mVafziEF1dTUqKytHPJ2pZQZK5W1N4iIiaBW9rm6IT1qtwOOP06nonh7giiuA+++XbtBOkJubC3d3d11ErGpdo+Mo9/Zlo65bt07hkYgLLxgdRCikxFJZ+PgA8+eTR1ZNCD5Ce3o1tIoeVBaRkUB+fiFqasa5pLKwWoHrrz92yPT111UTvQuAfIRlZWVMr4brZRI3XMTqUJx+OrBt23ErjT09wC23HCsQ77kHeP999eRV4piPkPXVcLVHrErBJ598AgBYvny55vRsI8Hmu6SElJSUiK6ymDQJiIlRj2qnq6ur/wQma9/wA9GLyiIqyoJFiyagL83KKd56C/jsMzrd//HHgJrOBmktncdZxErnUTNCOs9wEavHExREJ6f7Dw+2tdHS9yuv0IzmpZeAf/9bXbMb0Gp4eHg4j1hlkEsvvRQAsHnzZoVHIj68YHQQi8UiSfOuhwewe7c6tqYHqixYRU8qi/j4OMTG+mLTJucmJWYzcNtt9Pixx4CTTxZ3nK5SVFSEjo4O3fgIWZ/EhYaGDhuxOhSBgcChQ8Af39YCy5cDX34JeHkBGzbQSqPKEFqa9PDaM2nSJKYncccjpLnExcUxKdPnBaODSKWy8PamQwppaaJf2iGam5tPUFmwhh5VFoLDztF+2bY24JJL6PfTTz+m01ELelkNz8jIQGBgICIiIpQeimQIEavOFFLzIwsw4YoFwM8/07LjV18BF10k/iBd5NgkTh8Rqyy3NA3FaaedBgDYv3+/wiORBl4wOsiUKVMkK6QmTqSTf5WVklzeLtLS0oZUWbCEnlQWA9N5Ro0CLruMDq+0t9t3nTvvpEnMmDHUBqa2Vs+srCz4+fkhMjJS6aFIhuAjZPnggKMRq4P44w8YTpmPgFILrFHR6PjmR+DUU6UZqIsILU08YpU9MjIy+h87skKuJVT28q9+pPYRGgzAzp3KbE2PpLJgAb2oLHJycob0Ebq7Ax0dwKZNIytJvvgCePVVevzBB3QqVU20tLQgNzeX6UIKoEncuHHjmJ7ElZWVoampyXGx8969VByWlQHJyajash9fZk11PAlGBvQUserv7898S9PxCO+bQmwgi/CCUWV4ewMLFlBPjpzYq7LQOnpRWdjyEUZFkccuPX34axQUANdeS4/vvhs44wyJBusCJpMJ0dHRzPsI6+rqmJ/EmUwmxydxn3wCrFhB7qhFi4AffsCYWdFISAB++0268TpLVlaWLiJW9bAann7ci2flgG1BlneueMGoQhISgNmzgepq+e7piMpCq3CVxTEmT6ZM8yNHTvxcdzdtXdfXUxrRY49JN1ZnqaqqQlVVFfM+wtTUVFHSedSMUxGrzz0HXHopbcWsWQPs2kW9iwBmzQJmzJD39XMkWltbdZPOExMTo/mIVVtUVFScsMI4f/58AMD3dscPaRNeMKqU3l5g+3ags1P6e3V0dPQXUqz6CAFK5+Eqi2N4eAAVFcAffwz++MMP09mBgABS6Kht514opFhfDc/Ly4PRaMR4NYV1i4zDEau9vcAddxzLpPzb32ilcYCXUrjMjh006VEDeolYrampYX41PC0tbVAPamtrK3JzcwEAp6q0d1Ys2K0ONI6XF7XmyHHYSvARstqoC5DKoqSkRBcqC0d8hGecAbS2or/na+/eY9F/r79OaTFqo6CgAL29vdxHyAAORax2dNDS9/PP05+feYYeD/Hv4+EBrFzpQN60hFRXV+smYpX1SdxQEasXXHABAOCjjz5SaFTywe4rEQPExVE/45DRVyIhqCySk5Olu4nC6E1l4YiP0GikpKGffwZMJuDyy6l4vO460umoDT2k8wBUSIWGhrqUzqN2amtr7Y9YbWigfsVPP6Vq8MMPgbVrbQq5g4OpaMzPF2/MjiKc/mY9nYfliFWB9vZ2ZGZmDurP7OnpwVdffQXgmLCbZdh9xWWEnh5gyxZptqZdUlloCK6yGJlp02jxprwcSEoCXnhB/DGKQUZGBoKCgphO52loaEBxcTHzk7i0tDT7IlZLSmi7Zd8+wN+f9povv9yu+xgMQG4u8PvvLg/ZKQoKCpj3EeppEhcWFjZoErd27VoAwBPCtgzjsPu/ywheXsBpp0mzteK0ykJDcJWFfXz8MXD0KLWCrV9Pzka10djYiPz8fOZPYApSeV9fX6WHIxnFxcX2Ray2twMLFwKpqeR1+v57SnNxgMWL6dR/f3ygTAiTuOTkZKZ9hHqJWB2qpentt98GANxzzz1KDEt2eMGoASZMoBe9pibxrum0ykJjZGdn60Jl4aqP8Ntv6fdbbwUyMuhsgZoQVqTGjx/PfDpPc3OzLiZxdkWs/v477SkHBlJD94wZDt/PaATOP5+KxrY2Z0bsHELEKsvpPELEKuur4ampqYiLixtyEnfttdcyO4E9Hl4wagSrFdi4kfq+xcAplYXGaG1tRXZ2ti5UFrGxsS6pLARR/LhxwNSpwNdfizQ4kaioqEBDQwPTjjNhEpeUlMT0JC4rKwu+vr72RawK35hjxgAunhb39ga2boUsUm8hnYfl156Bq+GstzQJEatD8b///U/mESkHLxg1gocHuWmFlSBXcFhloVH0orKorq52WmXR1AS89BKwezf9OTYWSE6mXUApD1s5gnACk3UfYXZ29pDpPCzR0tJiv4/QagXeeIMeizCxjYoix21FhcuXGhFhEsdyOo+eIlaPXw3fsWMHAMqOZrnd4Hh4wTgC69atQ1JSEubOnav0UDB+PLBkievbKg6pLDSKnlQWkydPdlhlkZMD3H47vYnedhvQ3ExF4jnn0OdHjaIdwLQ08cftKILKgnUfoa10HlYwmUyIioqyL53n2Wcpk9JgAP71L1HuP2sW4OYG9OUUSIIQscqyVF4vEavDtTQJk7pPPvlEiWEpBi8YR+Dmm2+G2WzGwYMHlR4KAMoC/uwz6gV3BodUFhqFqyyGxmoFvvkGOO88YOJE4L//pRXGSZOAl1+mVcaBhxxXrAAsFvI0KoWQzsPyQRcAMJvNI6bzaB2H0nk2bADuuoseP/cc+cVEIigI+OEHMvWIjV5Ww3Nzc+Hh4cF0xKrQ0jTUa09KSgoAMH0wbSh4wagx3NzoAIwzPWYOqSw0jOAj5CoLorWVJNwpKXTAVOjjWrEC2LmTMqVvvvnEk9FGI3DRRVRUKhWzNpTKgjVqa2tRVlbGJ3EC+/cDV15Jj2+9ldJcRMTDAzj3XDoEIzZCxCrLq+F8EqdfeMGoQcaNo61pR92MdqssNExXVxfMZrPTPkKtYK/K4qef6PvlhhtIzO3rC/z1r1Qk7txJRaOtetNgoEJy+3agpUXkv8QIDKeyYAln0nm0SEFBAXp6ekZO50lLoyXwjg6ybj//vE05t7OMHg1MmUI/H2Khl3Qes9nMI1Z1Crvf1Yzj40OhB/ZuTXd3d/cXUiz7CAWVhbM+Qi0gqCxGKqTKyoDVq2l1cPx4agkrLgbWrQMcOSPj7w+cdRaQleXauB1hJJUFKxQVFaGjo4PpSVxnZ6d9UvkDB0g6W10NzJ5NclAJJ30eHtQPfvSoONezWCwIDQ1lPmK1tLRUF5O4SZMmMT2JcwZeMGoUo5G2pvfsse/5WVlZGDVqlH0qC42iN5WFLR9hVxdF+5WX06nntDTgjjuof8sZxoyhNJi9e+VxNJaWltpUWbCAXlbDMzIyEBgYaNtH+M03wLJldDR//nzgq69oOVxili4VJ0VLiFjVQyGll4hVlluanIUXjBomJoYm5D09tp/nkMpCw3CVxTHuvZca+wMCyN8pxnuv0QiEhNg/SXEWvaTzZGVlwc/PD5GRkUoPRTKamppGTufZtAk4+2zqeTj9dCoWZVJhGY3AnDlUrzp7kJBHrLKDqxGrrMMLRo0TGEhb07ZUOw6pLDSKoLJw1keoBexN5/n8c9p+BoB336UT0WIxfTr1REq5yqgXH6Gr6TxaIC0tDePGjRt+Evfee9Q30dkJXHghnchSoAUhMdF5qbeeIlZZb2lyNWKVdXjBqHEMBlplFMTLx1NdXW2/ykKjCCqLxMREh32EWkLwEdpSWWRkAP/3f/T47ruBVavEH8eUKcDBg3RwRmza2tp0k84THR3N/CSurq5u+Enciy8CV19Ns49rrqGZr0I/v9HRNBlyNG9aLxGrWVlZ8PHxYbqlSYyIVbHIz8+HwWCAwWBAUVGRomMZCC8YGSA6mjRlx8+OBzbvsuwjFFQW9voItUh7e/uI6TyNjbRI09RE/a2PPy7deObMAf74AygpEfe6JpOJeZWFQz5CjdLb24vU1NShfYRWK4m4BV3O3/8OvPkmSWYVZNIk+p52ROqtl4hVPbU0uRKxKgaZmZmD3stiY2ORkJCA5uZmBUdF8IKREcLCaCtyoGTZbpWFhtGLyiI9PR1jxowZVmXR0wNcfjlgNgORkcAnn0j7/uvmRquXQUGuJw8J6EFlIRRSelgNNxqNJ/oIe3upQHz4YfrzI49Q/4RKfnanTaPe38bGkZ/LI1bZobKyEjU1NYq3NB09erS/P/2DDz7AgQMHANDExN/fH6tXr0avHKcOh0EdP6UcUTjllGNb03arLDSOXlQWI/kI778f2LYN8PYGNm8GRtAzioKXF73Pf/aZ62kwevIR9vb2Mj+Jy8jIOHES190N/OUvFDEE0O8PPCCJZ9FZPD1J6m21jtzPaDabecQqA6ilpengwYOYPn06AODZZ5/FFVdcgXnz5sFqteLTTz8FAHzxxRdwc3PDI488osgYecHIEFFRwLx59EJnl8pC4+hFZZGWlmZTZbF+PfDkk/T47bdpu1gufHyAM88Edu1y7TqCykIPPkJ70nm0THp6OkJDQwen83R0ABdfTKew3NzosMtttyk2RluMHk0npofrCwf0lc6TmJjIdEuToxGrUvD9999j3rx5/X++8847ERsbi8a+pe6LL74YVqsVDz30EADgoYcegsFgwIYNG2QdJ7uvWjolKgr49NM2ZGQUqaJ5Vyr0pLJobW0dVmXx66+0aAOQSufSS2UcXB8REcD55wOFhc6dMtWLyiIjIwPBwcEjpvNomYaGBhQXFw+exDU3U2rLpk20hPf558BVVyk3SDsID6e6NjX1xM/pJWK1oKAAXV1dzK+G2xuxKhW7d+/GokWLAAD79u3D4cOHAZDUPzAwECtXrkRPnzvv4YcfRnd3N1b1nWa8+OKLYTAY8Ntvv8kyVl4wMsioUSYUFiYx7SPUk8piOB9hSQlwwQW0eHPeecBjj8k/RgE3NwrocCbjXA8qi8bGxpF9hBpnoFS+fxJXV3fMrejrC+zYQd+0GmDZMmDs2BM9t3qJWBVWw1mexNkbsSoVX375JVasWAEAOHDgABYtWoSZM2fCarVi48aNAIBt27bB3d0d69evBwC4ublh48aNaGpq6peLz507FwaDAcXFxZKOlxeMjFFRUQF390qcc06kU6s9WkAvKovs7Gz4+PggOjr6hM+1tdH7blkZMHUq8OGHyp8bmDWL4tZqa+3/mubmZuTl5TFfSKWlpWH8+PE203m0TmlpKZqbm49N4srLgUWLgF9+IRG3kOaiEYxGOtT10Uc0KQP04yMUIlZZbmlqbGxEYWEhkpOTFbn/+vXr+1cK//jjj0Fb0gCwatUqWK1WPN6nu/jHP/4x6PN+fn7Izs5GQUFB/8ekdtfygpEhBqosEhM9sXs3hSewhl5UFsP5CK1W4Nprgd9+o+SVLVso71kNLF5MKzLZ2fY932QyISYmRnGVhZRUVFSgoaFhxHQeLSNM4pKSkmgSl58PLFxIe7oREcD33wMnnaT0MB3G3Z1q3u3b6c+ZmZnw9fVl2keot4hVJVqaXn/9dVxxxRUAaJVz2rRpwz73vvvug9VqHXb1MDY2FlarFfv378fTTz8tyXgFeMHIEMerLKZPd/0wgtrgKgvgqado1cPdndrB1NZiFBxMvZVlZbafV1lZierqasVVFlLS09ODtLS0oX2EDDEoncdsJjFsTg4wYQLw448UaK5RYmNpV72mhtJ59PDaYzOdhwHsjViVgueffx433HADAHIIizWGk08+GXfddZco1xoOXjAygqCyGNi8O3YskJIibYyb3KSnpzOvsqipqRlWZbFtG3DfffT4pZdoRU9tuLuTo7GqavjnCCqLyZMnM+0jzMvLg5ub24k+QoZoa2tDVlYWFVKHD1P0VGkpkJREUsO+Pist4+8PvPtuCQyG8cyn8+ghYjUtLU2RlqZHH30Ud9xxBwA60Ki11wVeMDKCoLI43kc4aRLw3Xd0UFHr1NbWorS0lHmVxXDpPHl5wJVX0pb0TTcBN96o0CDtwMeHJivbtpGi5HjUoLKQmvb29v5JHMsrUmazmdJ5MjKApUuBmhpg7lzahmZk67aqqgrx8dkoK5vU38/IGgMncSyvhgstTbYiVqXg7rvvxoMPPgiAdlciIyNlvb8Y8IKRAYZUWQxgyhTamtbyIRi9qCwEH2H8casyHR3AmjVAfT1w8snACy8oMjyHMBiAmTOBjRsHnzTt7OxUXGUhB+np6QgLCxvsI2QMwUeYXFsLnHEGRaQsXEjH5RnZBRAKqalTJ+LKKz3R1XXiyWkWyMvLg8Fg0NyqlyMIEatyT+JuuukmPPPMMwAoiEGrrwnsvlrrBHuadyMiaHdIyy9yelFZmM3mIVUWd9wBHDpE78GffUY6Oy0QFXXsIIwwYVFaZSEH9fX1I6bzaB3htWd6VRW8zj+ftjGWLaPZKUP9bwMjVr28gKIi5/RRamaoliYWMZvNCA8PHzZiVQouv/xy/O9//wNAB4q03NLA7neGTjhBZTEMSUl0EEGLW9Pd3d0wm826VVl88gnwyiv0+IMPAInNCaITGUmnpvftI5VFQUGBLgqpuLg4+Pr6Kj0cySgqKoL/998j+qabyPN01lnA1q3kW2QEYTV8oFR+yhRaPR9gM9E8FosFISEhzEeslpaWyvrac+655+Kjjz4CQOYLrYdM8IJRwzjqI4yPB3bu1N7WdFZWFkaNGsW0ykLwER5/AjMjA7juOnr8z3/Se7IWSUoCOjut2Lw5GxMmTGDeR9jS0sK0VL6rqwvVb7yBmY8+CkNHB0X9bNpEzasMMVzE6vLllAZTV6fQwERELxGrqampNiNWxWbhwoXY3udj6ujogA8DPxu8YNQw2dnZ8PT0tNtHGB4OTJ4MdHZKPDARaWlpQU5ODvMqi7S0NMTGxg5SWbS2AqtX06rw4sXAww8rNjxRSEkpR2BgFUJD2fUR6kXsXPHSS5j573/D0NUFXHIJsGEDwNhp96ampmHTeYxGoLubFlS19Hp6PHqJWBVamoaLWBWblJQU/PTTTwBocsXKISJeMGoUQWUxbdo0hwqplBQgLQ1oapJwcCJiMpkQFRWl6b6PkRBUFlOmTBn08Z076f/KzQ1Yv550NVqFVsPTkJSUiK+/9kBFhdIjkobs7Gx4e3sPmc7DCi11dQi//34YenooE3r9eor4YQihkLLlI/TzOxZko1X0ErEqZ0tTTEwM0tLSANDrHksTR14wapR+lcXo0Q5/bWysNramq6urUVVVdUIhxRK2VBannkpnB3p66P9Ly+Tm5sLDwwPx8eOwahW5nNX+/ecoQjoP6xqd/A0b4NHWBoSFAe+8QzMaxqioqEBdXd2IPsJx4+hQeF6eTAMTEb1ErMrZ0uTr69ufyNLb28vcASK2/jY6QVBZOOsjDAsjP2Nbm8gDExFbPkKWyOt7pxlKZTFmDPDQQ/T4vvuAhgYZByYix/sIfX2BCy8EMjPBlNPOlUmcVqiqqoJb31YbTjtN+QBzCXDUR2gwAIcPA4WFMgxORPQSsZqTkyP5JM5qtcJgMKC1tRVeXl79f2YN9n7aGUcopCZOnOhSE+2MGZTc1dgo3tjEZKDKglUElUVKSsqwM9FbbgESE4HKSuCxx2QeoEikp6efoLIwGIBRo+ichJZ1TwI1NTUoLy9nWiovZNXH5uTQB9QYMyQCx0esjoTBAJx7LnD0qLTjEhMesSoeVqu1//U7PDwc7UMlFTACLxg1RlFRETo6OkTxEUZEqHNrurOzE+np6YNUFixij8rC0xN4/nl6/N//0qqclqirqxvWRxgTA0ybRsWwlhm4Gs7CScjhKCgogLWzEz6//04fWLRI0fFIgT2TuKHw8qKi0WTSRhSrHiJWq6urh41YFYuenp7+75PJkyejvLxcsnupAV4waghB7CxWIRUWBiQkqO8AzHAqC5ZoaGhAUVGRXSqLs84Czj4b6OoigbdWsEdlkZREK41aPjgwXDoPSwiTuBk9PTC0tACjRwMMaliEiFVnkzisVvVLvfUSsZqWlobExERJW5qE9pOTTjoJ6enpkt1HLfCCUUNkZWXBz89P1AzK2bOB8nL19MfZUlmwgvBiZiud53iee45OSW/frp0DMCUlJXapLAICgNpaIDVVpoGJSFdXl25Ww4ODgzFa2HdlsH+xvr4excXFSE5Odvoaycm02qjW/nC9RKwWFBSgu7tbspamgdvOZ555Jn7R8ozXAdj6iWeYlpYW5ObmSlJIjR6tnq3pkVQWLOCMyiIxETjzTHrcFxygagQfYVJS0ohaCYMBWLGCtt/V8D3oCJmZmfD398fYsWOVHopkCOk8ycnJMOzYQR9krH9x4CTO1XSeRYuAkhKgulqkwYlIcXEx2tvbmY9YlXoS98MPPwAAVq1ahV27dklyDzXCC0aNYDKZEB0dLYmPMDSUtqZra0W/tEPYq7LQMs6qLA4fPrayeMUVEg1ORLKzs+Hj42O3j9BopKJ461Z1vtEOhZDOo4fV8PHjx8O/pIR8SEYjGeUZwt6IVXsZMwbYsUNdUm+9SOWHi1gVk+XLlwMA3n33XcnuoUZ4wagBqqqqJPcRzplDiSL19ZLdwibCCUx7VRZaxRmVRU8PcP311Ez/pz8dW2lUK4KP0JkTmEuX0rZ7a6tEgxMRk8mEmJgYBAYGKj0UyaioqEBDQwMSExOBt96iD55zDsBQTKcwiUtKShLNRxgQQLv2ajoDkZWVBV9fX1FbmtRGU1PTkBGrYsPqBHEkeMGocoRCKjExEV4SR2/5+Sm3Ne2oykKLOKuyWLcOOHQICAw8dmJazbiisvDzA1atIhe0mlZnjqeyshI1NTXMr4b3+wgB4L336BPXXqvksEQnOzsbXl5eiImJEfW648cD/v60O6A0eolYNZlMzLc0KQkvGFVOQUEBent7ZfERhoTQ1rTcsW3Oqiy0hjMqi+Ji4J//pMdPPkkqJDUjhsoiIACoqgI2b1anokQQO8sxiVOS3NxcuLm50SRuyxb6Txk7lo7sM4IQsSpVIRUUBOTmAkVFol/aIfQUscryJE5p2H13ZgBBZZGcnCxbITV3Lv0u59a0qyoLLeCsyuJvf6NWgZNPpm1pNSP0u4mRzhMdTT2Najx8mJ+fD6vVigkTJig9FMlob29HZmbmsf7MN9+kT1xzjbZDzY9D6nQeQeqtpIVCjpYmpXE0nYfjHLxgVDEZGRkIDg5GeHi4rPf19KSGbTm2phsaGlBcXGyXj1CrOKuy2LIF2LiR3p9ff139FpOCggJRfYTTpgEnnQTk54tyOVHo7OyExWKRdRKnBOnp6QgLC6NJXH4+sGcPfeIvf1F0XGLiasSqvXh7k2905075V8zl8hEqTV5eHgwGA9MtTWqA3Vc8jdPY2KiYj3D0aGDiROm3UQSxsyM+Qi1SXFyMtrY2h1QWzc0UCwiQrDslRaLBiYSgskhOThZVZWE0kp/RbBbtki5hsVgwevRo2SdxclJfXz84needd2j2uGwZwEhUp1gRq/ZiNNI5ob17Jb/VIPQSsaqHSZwa4P+6KmSQysLfX5ExzJ1LBxDq6qS7h9gqCzXS3d3dn87jiMri4YepYB8/HnjwQcmGJxpSqSwMBmqZy89Xvp9xoI+QVYRCKi4ujnyEPT3A22/TJ6+7TtnBiYiYEav2Mm0aFY1yHSpUoqVJCSwWC0JDQ21GrHLEgd3vIg0zSGWhIAaDdKempVBZqJGsrCyMGjUKUQ5oSI4cAV54gR6/8grgokdYcqRWWbi5UdFosSjnCtXLanhJSQlaWlqOTeJ276aTVyEhwAUXKDo2sRA7YtURpkyh6MCaGunvJUSssrwa7kjEKsd1eMGoMgapLBRu3g0Opq3pnBzxry2VykJNOKOy6OkBbriBfl+zhnKk1Y7JZEJsbKzkKovoaBJ7K+FoLC8vR2Njo+KTOCkZUuz8xhv0+1VXUeYdA2RmZooeseoIJ51ErtGuLunuwSNWOVLAC0aVkZeXd0xloQLmzCGVi5inpqVWWagFs9nssMrif/8DDh4ktYywyqhmBJWFHCcwAwJIWi7H6sxAhEmco+k8WiM7Oxve3t7H0nnKy6lCB5hxL7a0tCiezhMQAJxxBrVYSLU9LbQ0sewjdCZileMavGBUEe3t7cjIyFDVrNBgALq7aUYs1oub1CoLNVBdXY3KykqHCqniYuC+++jxv/8NqD2QQQmVRUQERVlu3SpfL1hubi48PDwwbtw4eW6oAEOm87z3Hi11n3IKHfNlgLS0NMkiVh0hIgLIygJ++038awsRqyyvhjsbscpxDV4wqohBKgsVERQETJ4szklVuVQWSiL0uzniI7RagZtuAhobacvqhhskHqQIKKWy8PGh7emvv5b+XmqcxEnBCZM4qxX44AN6fM01yg1MRCorK1FdXa0aH+HUqXSYq7hYvGsKyWBTpkxRvKVJSpyJWOW4Di8YVcIJKguVMWsWEB/vmoBWbpWFUjijsvj0U2DbNsDDgyJ7Ze7FdxghnUepE5gzZwLJydL2gQFUSIWHhyM0NFTaGylITU0NysvLB0/ijh4FTCbqW1y9WrnBiYQa03kMBmDlSpqQd3eLc00hYpXl1XBnI1Y5rsMLRhVwgspChRgMQEcHbQU6qzdRQmUhN874CKuqgFtvpcf3308rD2rHYrEgJCREUZXF2LHktcvIkOb6dXV1KC0tVe0kTgwGroYPmsR9+CH9LlQ0Gic/P1+2iFVH8Pam19MNG1zXRuklYtVsNjscscoRB3a/qzREaWnpYJWFSgkMpFamP/5w/GuVVFnIiTMqi9tvB6qrSc59zz3SjU0sGhoaUFhYqIpCavly4NAh8XU7QiEVHx/vUDqP1igsLDwxnaenB/joI3p8+eXKDExE1J7OExBAr6vff+/addTa0iQmemhpUjPq++nRGYLKIikpySGxs1LMnEkrYE1Njn1dVlaWoioLORB8hI70u23bRu/NRiNtRau97UhQWcTFxalCZeHmRjumo0aJm9dbUlKCtrY2TJw4UbyLqgxhNfyESdy+fUBpKXm1tOB1GgGLxaJIxKojTJ9ORoq2Nue+Xi8Rq6mpqQ5HrGqZ999/H++9957Sw+iHF4wKozUfocEAtLcDmzfbv4XS0tKC3Nxc5g8OpKWlYdy4cXarLBoagBtvpMd33knpOmpHjSoLT0/6nvzyS+ffcAcypI+QQTIzM+Hv74+xY8cO/oSwHX3xxZp3Lw5M51H7a4+vL2XHO7paroWWJjEoLi5mvqVpIOeffz7+/Oc/4+qrr4bBYEBBQYHSQ+IFo5IMqbLQAAEBtMporxJCLSoLKRFUFpMnT7b7a/7xD6CkBEhIoChAtaNmlUVQEHD66cAvv7h+raysLPj4+DiUzqM1mpubh57EtbUBX3xBjzW+Ha2GiFVHMBiAc891PF1LiFhleTVcL5M4gL5vAwMDsWXLFgDAhAkTAADjx4/HeeedB6tcPrEh4AWjgmjZRzhjBv0aKXWjqqpKVSoLKXBGZfHTT8Brr9HjN9+kLVW1o3aVRWQksGQJ9dg6+5ra2trqcDqPFhHSeQIDAwd/4ssvqd9k3DhgwQJFxiYW5eXlqohYdYTAQEp4qq+373tYLxGrmZmZ8PX1ZbqlCaAT4EajEY2NjQDo/zc3Nxe//vorAGDr1q0wGo3Yvn27IuPjBaNCDKmy0BAGA9DZSYsRw21NC4WUmlQWUpCXl+eQyqK3F7jtNnp87bXAokUSDk4ktKSy6OwEvv3Wua81mUyIjIxEcHCwuINSEYKPcMjV8Jdfpt+vvpoaazWKUEipIWLVUTw9gbQ04PDhkZ+rtZYmZxBamrTw2uMKpaWlJ/RmHjp0CAAwd+5cWK1W3Nqn0zj33HNhMBhQL2YEmx1o9xVBw7DiI/TzA6ZNG34bsKCgQJUqCzHp6OiAxWJxSGXx7rv0ZhAQADz+uLTjE4v09HTNqCzmziVdSWenY19XXV2NiooKzU7i7GFgOs8Jk7hDh4CffyYZqBbM8TbIzc1VVcSqoyxcCOTkkMh/OPQSsWoymRyOWNUav/76a38LzD333INzzjkHADBv3jwkJCSgo6MDAPDiiy+iZkA2anBwMO666y7ZxskLRgUQVBYsNO9Om0Ynp/u+n/vp7Ozs9xGqUWUhFunp6QgNDbVbZdHYCNx7Lz1+6CFAQY2h3dTW1qK0tFRThdQppwC5ufSmaw9Cv1tiYqLd6TxaJD8/H1artb8vahAvvUS/r1lDkkuN0t7ejszMTE0cdBkOg4FO//f0DN/2o+WWJnupqqpCVVUV0y1NH374IU466SQAwCeffIJ///vf2LZtG/Ly8gBQK5C3tzdeeeUVAMDo0aNhtVqxceNGAMB//vMfGAwGHDlyRPKxsvtOrlKGVVloFOH1+LPP6MVNQAsqC1cRVBbJycl2f82LLwKVlcCkScAtt0g4OJEQCiktqiwSEmj1u7x85OcWFBSgq6tLF6vhQ07irFb6IQaAm2+Wf3AiwoqP0GikifiWLSe2/ejBRzgwnYfVSdzatWtx5ZVXAqDt50suuaT/c+PHj4fVasVLfRO5m2++edBp6VWrVqGnpwenn346AGDWrFmYMmUKOh3dWnEAXjDKzLAqCw3j40MHYH7+mf6sJZWFszijsujqAl59lR4/+KD6nYsAqSza29s1uRru7g6sWkWxa7YOEDiTzqNFLBYLRo8ePfQkzmA4lrOo4Vg5tUesOkpEBJCYCFgsxz7GSkvTSDgTsaolTjnlFDz77LMASFc2a9asIZ93yy23oL29fdBp6ZUrV8JqtcJoNGLPnj3Izs4GQD/jUp4X4AWjjDQ3NzssdtYKyclUNHZ1aUtl4SxlZWUOqyy+/JJ8yOHhtOundrQmlR+KUaPoTffjj09smxDIyMhAQEAAIiIi5B2cjDQ2No6cziOs4oghs1QAVn2EM2cCcXFAURH9WQ8Rq2pP53GF3t5eGAwG7N+/HwC1UIz02uPl5TXotPS2bdsGnZaOj4+H1WrFq6++iueee06ysbP1P6FyTCYTYmJiTlRZMIDBQI7f//2vAbW12lJZOEpPTw/S0tIcVlkILWLXX6+N1cWsrCz4+vpq3kfo7g6cdhoV7MevNArpPCwfHBAKqQkTJtiexAmrVRotGEtKSjQRseoM7u4UwFNZySNWtUxjY2P//9uYMWPQ29vr0IrgSKelb7zxRvz9738XfdwCvGCUCZsqC0Zwc+uBt3c6mppmaE5l4QjOqCyysoAffqAoOy0cQG1paWHKRxgdDZx9NtDSMrhoNJlMDqXzaJHy8nI0NjaOPIkT3riGW4pVMayLnd3dgZUrgR07SnQRsZqfn8/cTlxOTk7/YtGaNWtQUVHh9N/v+NPScknbecEoAzZVFgyRm5uL+Ph2nHFGhN2xgVrDWZXFp5/S78uXA1pYsGNRZeHvD5jNVLgDlM5TW1vL9CROWA23K51HOLWmwYIrOzsbPj4+iI6OVnookuHh0YKQkDQA05kqpAYyMJ2HpUnc3r17+1sInnnmGXwmHDBzAeG09KFDh/D777+7fD174AWjDNhUWTCCoLJISUlGUJABH388+NQ0KzirsvjkE/r9T3+SYFAiw7LKYu5cWmUsKDg2iWN5NVxI57FLKt/dTb9rrGAUIlZZW5E6nrS0NMTERKO7298uqbcWESJWWWppevnll7Fs2TIAwI4dO7B27VpRrz9r1izZ2oZ4wSgxLDfvDmSgysLNjQ7AfP+90qMSF2dVFmlpgMlEfYsXXCDN2MRCmOFPmjSJSZWFwQCsWAE0N+ejutpbs2Jne3DYR6jRglEPPkKhpWnKlClYtAiorXU+/lKtCDtxjkSsqp1rrrmmv98wPT0dZ511lsIjcg1tvTJoEJsqC0YQVBZLlizp/9jUqUBICL2osTDpd0VlIWxHr1gBqH2Hl3WVBQB0dnYgJycD1dULUFNjhMZ1fcNiNpsRHh6O0NBQ+75AgwWjELEqrOCwyEAfodDStHw5cOQIMHnysbNKWic3N9ehiFW1Ex8fj9zcXAC02MBC3Ci7S14qQPARsuIEGwpbKosxY8gFLLwPaRlnVRZWq3a2owem87B8AtNisSA8fDT+/OcAmExKj0Ya6urqUFpa6thrj8Z6GIXXnkmTJjHvIxwqYjU8nKTeLKw0dnR0ICMjw6GIVbXS1dUFg8HQXyx2dXUxUSwCvGCUDLtVFhrHlsrCaARSUrS/Nd3V5bzK4vBhIDubVgFWrpRogCLBqspiIA0NDf0+Qj8/YPFiYP9+x3On1Yzw2hMfH+9YOo8ws9PIZEGIWI2Pj1d6KJIhTOKGKqQiI4GkJNt501qBlXSe6urq/u305ORkWK1Wpk7t84JRIuxWWWiY7u5umM1mm2LnpCSKaNMyWVlZTqsshNXFlSsBPz+RByYirKosBiL0Z8bFxcFvwH9GZCQ5Glk52V9cXIy2tjbHVRsa2pJmLWJ1OEaKWE1JoX7GvqAPTVJfX4/i4mLN78Slpqb2F7w33XQTUlNTFR6R+PCCUQIcUlloGHt9hDExwMaN2tyabmlpQW5urlOFVG/vsf5FtW9Hp6WlMe8jLCsrQ1NT0wmr4ePG0SEtjfqqB2HPJG5IenuPVcwaKBhZjFg9noERq7aIjqZY1j53s6YYOInTcjrP5s2bMW3aNADA66+/jldeeUXhEUkDLxglIDc3F+7u7sw07w6FoLKwx0doMNBK47598oxNTEwmE6Kjo53yEe7fT3Fe/v6Amg/HCSoL1n2EJpNp2EncpElAdfWxPHStkpWV5ZyPcKADS+UFY3Nzs9OTOK0w0Ec4UkuThwftYGixYCwtLXU4YlVtPPbYY7igT3/xww8/4LrrrlN2QBLCC0aRaW9v72/eZfXFDHBcZTF5Mq3kaAlXfYTCdvQFFxyL6VUbvb29SE1NZUplMRSCjzA2NnbY58TG0vaeVg/CtLa2Op/OM3D5X+UFo8lkQmxsLJMRqwIVFRVoaLA/YjU4mA4ZfvWVxAMTEWES52jEqpq4+OKL8cADDwAg3/LChQsVHpG08IJRZBxWWWgQQWXhqI9w4kRg2zagq0uigYmIUEgNVFk4Qnc3nRAH1L0dzZrKYija2tr6pPK2CymDgeIDx4zR5iEYk8mEyMhI505kaqRgrKysRE1NDfOr4c74CEeNov86mUI/XMaZiFW1YO07mr57924AtOrN8muoAC8YRcQplYXGcMVHCFDR+O23EgxMZIZTWdjLc88BlZU081++XOTBiQRLKgtbmM1mREREICQkZMTnGo1AaCiwYQMwIKpV9VRXV6OiosLhSVw/wg+lmxvtcaoQVydxWiE3Nxdubm5OFSCLFgFaaAV0NmJVLXz99dcAAKPRiJ6eHk33XzoCu+8SMuO0ykJjCCoLR32EAomJlKWsZnfYQB+hM4XUli3APffQ48ceo4QXNZKeno7Q0FDNqyxs4Uw6j8EAnHcesH27NuItXU7nSUsDrriCHt9wg2pXGPPz8wFAJxGrzhVSRiNZKTZtUvchLq2n8yxevBgALRKxPNk+Hv38TSWmpKTEOZWFhhBLZTF1KvD11+rdms7IyLCpsrDF0aPA5ZdTQXzjjcBNN0kwQBFoaGhAcXHxiCcwtYxQSCUkJDg8ifP3By69FKirU+/3qUBBQYHzPsKqKjox0dREUsoXXhB7eKLQ0dGhq4hVV1qaDAZg3jxg61Z1TsydjVhVE1rtuXQVdn/yZKS7u7u/eZclSefxiKmyGD9enVvTjY2NTvsIKyrovbe5GVi6FHjxRXXGItpK52GJ4uJitLe3O70a7uFBUuTNm9X5xgscm8Q5lc7T0QFceCGQnw/ExwOff67a7Wg9RayK0dIUFQUsWKA+t6irLU0cZeEFowg4rbLQEGKrLCZOpMMFanojdkRlcTzt7fTeW1hIf7cNG1T73suEymIkxJrExcXRFl9GhoiDE5GMjAwEBAQgIiLCsS8UlsB//BEIDKTTaHb0eCpBY2MjCgsLmV8NF1qaxJrERUUBP/wA5OSIcjlRcDZilaMOeMHoIi6pLDSEFCqLGTMoNlAtW36OqiwErFbg+uvJ4RcURFtBam3NYUFlYQ+ZmZnw9fVFVFSUy9eaMQOYMIFa/dREU1MT8vLynHvt+c9/gHffpUMun31G3isVMjBi1U/NUUkuUlJSgtbWVtEncQsWAD/9BDQ0iHpZp3AlYpWjDnjB6CIuqSw0QmVlJaqrqyVRWURFAd98I/plHUZQWUyePNlhH+FTTwEffEDvvRs20MEetaJllYW9COk8Yk7iPD1ppcZiEeVyoiBM4hxO59myBfjHP+jxCy8AZ5wh+tjEQi8Rq1K1NHl4kAfWx0f5A1yZmZlOR6xy1AEvGF3AZZWFBujt7e0vpKRQWSQk0E6Y0r02eXl5cHNzw/jx4x36ui+/BO69lx6/+KJ6FTqA9lUW9mIymRAVFeVUOs9wGAzAueeS2FsNVFRUoLa21nGp/NGjwGWX0bL4TTcBN98szQBFQE8Rq1K2NAUEAGVlQJ8yUBFaWlqcXw3nqAZeMDqJyyoLjZCfnw+r1SqpymLuXODXX5WTJQvpPI72Zx48eMxGcvPNwF//KtEARULrKgt7cDWdxxZubsApp1BfWF2d6Je3m4GTOIdWw4uK6FRWSwuwbBnw3/+q81RWH0I6D8tCZCFiVeqYw3HjAC8v5VKM0tLSEB0dzXQ6jx7gBaOTuKSy0AidnZ2yqSzCwki1owSCysJeH2FPD21DL1hA773Ll6vWRtIPCyqLkRAKKakncdOm0a6uUp67vLw8GAwGx1bDP/6YBl5YSMHZaj6VhWPpPCznRQM0iYuMjJRlErdkCR3iammR/FaDEFqapJjEceSFF4wjsG7dOiQlJWHu3Ln9H3NJZaEh5FRZxMfTgZGBCWVy4KjKIieH0hTuuYcO65x/Pr33qtmmpBeVRUFBAXp6epxO57GXwEBgxQqaOMjdSuGwj7CmhrIpL7sMqK8H5swBdu2iCCIVk56erpuIVbkKKaORFpQ//1y+g4bCJI71dB69wAvGEbj55pthNptx8ODB/o85rbLQEI2NjSgoKJA15vCUUwCzmRZB5MARH6HVCrz+OjB9Op069PcH3nmHEhVEbJWTBD2oLAauhssxiQsPJ5XSxo3yFo0WiwWhoaEYM2bMyE/euRNISQE+/ZT20//1LzrKr/KkFD1FrE6aNEnWSZy3Ny0wy/Uam5+f71LEKkdd8ILRQVxSWWiEgSoLR32ErpKYSD1ixcXS36u0tBQtLS2YNGmSzeeVlQHnnEOpaS0tFIiRmgpcfbWqW8AA6EdlkZGRgcDAQFnFzqGh9OYr1yn/hoYGFBYWjlxINTeTY/Hss+mbd/Jk4JdfgAcfVPU2NKC/iFUlWpqmTwdEyF4YEWESx3pWvZ7g/4sOYrFYnFNZaAglVRZeXsDq1fS+JuUhGEFlMXXqVJsqi88+A5KTabHGywt4/nkqELTSh5+VlcW8yqKpqcnpdB5XmTYNWLgQqK6W9j7CIbu4uDjbPsKffqKK4LXX6M+33w4cPkxb0RqguLiYR6xKzKhRwIED0t/HYrE4HbHKUSe8YHSQuro6ppt31aCy8PKiFJgNG4DycmnukZ2dDW9v72FVFrW11PZ1ySX0eNYset+9/XbqBdICUvgI1YZQSI0bN06xSZyPD/D778Bvv0l3j7KyMjQ1NQ2/Gt7RQX6n004DcnOBmBia2Tz/PA1QA3R3d/evhvOIVWmpqJC2j1FoaWI5nUePaOStTz1MnDjRYbGzlsjNzVWFysJgoKi9r78Wf6VxJJXFnj3U+vXxx9T69cADtKOntQPGelBZVFRUoK6uThKpvCMsW0aTm8ZG8a8tpPMMO4k7ehSYNw948klqqPzzn6lnYulS8QcjIVlZWRg1apQo6Txqpbm5GXl5eYqf/k5IoDNQUuBKxCpH3fCC0UGULqSkxFkfoVT4+Bw73FlVJd51h/MR9vYCf/sbcOaZQGkp9af99BPwyCOqb/06gaqqKuZVFsIJzClTpig+iRPE3h0dQH6+uNfOzs6Gh4cHYmNjB3/CagWefZa2m48epabKjRsp8k9jkwQhYlUtrz1SYTKZEBMTo/gkbvZs6Raey8vLnYpY1RI9SsfmKAQvGB2E5eZds9msOpWF0Ug9Nzt2kCHEVQSVxVA+wsceo7QWALj1VuDIEeCkk1y/p9z09vYiNTWVeZVFbm4ujEajqiZxQUHAjz+K10oxbDpPSwtw6aXA2rW0t3jeeRR2vWqVODeWGb1ErNbU1Ci+Gg7Q5HjLFvGvO3A1XOlJnJTk5uYqPQRFYLf64TiEmlUWfn60PV1Q4Np1bKkstmwBHnqIHr/5JhWOWj2kWVBQwLzKoqOjAxkZGao7genhAVx0kXgFo9lsRkREBEJCQo59MD+frPGffkoC0HXrKKNSo4cL9BSxqpZJnJsbrYqLvVCWm5sLNzc3VU3ixKatrQ05OTlKD0MR1PNKy1EMLags/P3p4MmuXc733gynsrBYBkf8/eUvro1VSTo7O5Genq66Qkps0tPTERoaanc6j5z4+AAzZtCqeHOz89cZMp1n717agv7jDzoZtncvZVJqdBtXeO1JTEzkEasys3ChuAVje3s7MjMzmT5kBxzbidMj7L6jcOympKREMyqLk08GNm92/HDBcCqLhgZKa2lqogOmzz8v8oBlRg8qi/r6ehQXF6v+BObcuSR27+hw/GuFQiohIYEmcVYrZT+fcQb1ZsyeTceyTz1V/IHLiFzpPEoipPOobRIXHEwH6sVCiFhVU0uT2NTU1KCsrEwVbQVKoJ7vXo4iCD7CpKQkTagsgoKACy6gxAJHMlGHUln09NDKYmYmEB2t+njdEdGDymKgj3CkdB6lCQujCEGDwfHIy0HpPO3twDXXkNOppwe48kqy28fESDJuuVDaRygXQsSqXek8MuLtTTooMairq3MoYlWL6CVi1Ra8YNQ5WVlZ8PHxGdZHqEYCA4G2NspEtWfLbziVxT/+AWzbRt7HTZtoh0+r6EVlUVpaiubmZk2shgNUNFZUUI+s1Wrf1wg+wqSkJLiXl9PS93vvUePZ88/TYwbesPQSsVpYWKjKSZy7Ox0qtPf7cjiE1574+HjVT+JcoaioCJ2dnUxHrI4ELxh1jKCy0GLPSWAgxfXt2zfyc4dSWbz2GhlJAODttzUThDEsFRUVulBZCKvhSknlnSEmBoiLo9PT9pCZmQlfX19E5efTN+bBg8Do0cDu3bTKqLGf1aHQW8SqzXQeBVmzxvWCsaSkBK2trZqZxDmDXiJWR4IXjDpG6yqL0FAqGo8eBVpbh37OUCqL3bvpcAtAjsXLLpNhsBIyMJ2HZZVFdnY2vLy8EKPBrdgZM4D580c+6S+k88z+7TcYli6l5clp06hfcdkyWcYqByaTSdF0HjlQMmLVXgoLKZTAWbTW0uQsmZmZzEes2gMvGHUKKyoLg4FsIp9/TtvUAxlKZZGWRrPqnh7gqquA++9XYNAioxeVxZA+Qg3h5kYn8g8fHv455t9/x8nvvotRd9xBfsU1a4CffwZUdLrWVSoqKlBbW8v0wQFhEqf21fCxY4GiIue/Pjs7W3MtTY7S3NzMfMSqvfCCUYcIPSeTJk1iQmURHg6cfjrpdgZurxyvsigvpxVJ4UT0669rf3dPUFmwnpAxXDqPljAY6JBzZeXQJ6er09IQf/31CP3iC3ryv/9NrkWG+sKESdzkyZOZXg3PyckZOp1HZXh6As4ugI4UscoKSqbzHD58GAaDARMmTECXlOHfdsILRh1SUFAwpI9Qy4wdC4SEAJ98Qm/GnZ2dsFgsSE5OhtFoRGsrhWEUFlLk36ZNdNhF6wgqCzX6CMViSB+hRjEY6OR0Scng7eneAwfgt2QJRpvN1KC7bRtwzz3an9EcR15eHgwGA8aPH6/0UCRDaz7CsWNJL+YoZrMZkZGRmp7EjURlZaViEasvvfQSZs+eDYAWPzw9PbFjxw7ZxzEQXjDqDEFlkZyczFzzrqcnaem++AJITyeVRXh4OKxW4IYb6OxASAiwfTudIdA69fX1XGWhUaKjge+/pxZFbNoELF4M7+pqWKdMAX79FTj7bKWHKDqCj1CYxLGKIHYelM6jYhobqVXCEYSIVT1k1Q+VzrNr1y4AFAYhBYsXL8Ztt90GADhy5Agee+wxAMA555yD2NhYxVYb2f2p5QwJ6yqL6Ghg6dJGpKWVYtIkUlm8/jrw4YfUQ/bFFwALVoSB6Tysqyz6fYQM4elJcZfGF1+A9aKLYGxvR/uyZTD88gstgTOIxWJBaGio6nyEYqLmiNXhiImhnRd7sRWxyhL5+fnDRqwKPt8FCxaIes+2tjYYDAZ89913AEjLNGPGDPzzn/9EVVUVAHpN9PT0xPbt20W9tz3wglFH6EVlkZOTirCwCdi92w8HDgB9EzX8+9/AokXKjk8sSkpK0NLSwlUWWqW3F77/vB1hT/wdBqsVxStXwWvnToDRU8MNDQ0oLCzUVCHlKCek82gEb2/g3HPtf/5wEassIbQ0DZfOM336dABU0NU7m1V7HBkZGf3fNykpKejt7R3k1A0NDYXVasXjjz8OADj33HMRExMj62ojLxh1hMlkQmxsrC5UFkuWxOGkk4C1a4HOTtrhW7tW6dGJg6CymDp1KtMqi6ysLHZVFh9/TFF/AA5d8hfsOOdD9BjUe5rWFQam86jVRygGxcXFaGtr0+Rq+B9/ANXVIz9PT+k89kasLhNBd/Xhhx/2WwMeffRRHD16dNhFnfvuu69/tbG4uBienp7Ytm2by2OwB14w6gRBZcFyz8lAH6GHhwfi4oBTTqHPWa3snB/Qg8pC8BEyuxr+xhsAgOI//xke992GS/40Cp2dpHtijbKyMjQ1NWESo1vtwLF0Hq1O4oKCgPz8kZ83VMQqazgasXr48GF0dnY6fb9LLrkEV155JQDghx9+wP12uN6E1cYnnngCALBy5UpER0dLvtrIC0YdoBeVRW5uLjw8PAb5CK+9ln7ftWtkabIW0IvKIi0tDdHR0YqoLCQnOxv47jtYDQZkLlmCyZMnIzAQKC0Ftm51PXlDTQjpPMIkjlWysrIwatQoREVFKT0Upxg3buTvO8FHyPJrj6MRqy+88AIA4PLLL3f4Xt3d3TAYDPjss88AAFVVVVi4cKFD17j33nv7VxtLSkrg6emJrVu3OjwWe+EFow7Qi8oiIyPjhBeziRPJuWi1AuvXA729Cg5SBLjKggFefx0AUDN7Niacdlr/JC4hAYiNBX7/XcGxiUx2drYmfISuIESsarmQ8vGhwy+2ikahpYnJSVwf5eXlDkWsXnPNNQCAzz//HFYHZnpFRUX9E6jQ0FD09vYiNDTU8QHj2Grjk08+CQA477zzsGfPHqeuNRK8YGScjo6O/kJKDyqLoX7o1qyh37dtAzZv1m7RqHeVBRM0NlKQOYCS888/IZ1n1ixKAkxPV2Jw4sJCOo89mEwmREVFaTZiVeDwYaCubujPDRWxyhoDV8Md2Ym75557ANBqnz1s3bq1fwJ12223oaqqSpSfj3/84x+orq7GkiVLMG/ePJevNxTsVhAcANS8GxISomuVxVln0e8HDwIREcC338o4OJHQi8qioKBgWJUFE7z5JtDYiOboaERed92QkzijkfrJtL7SaDabERERoRkfoTNUV1ejsrKSiUncuHFDt+309vYiNTWV3UlcH85GrAp9hE899dSIz7311ltx3nnnAQC2bduG//YdfBOLkJAQ7N27F0FBQaJeV4AXjAyjJ5VFfHz8sCqL+Hja7uvupnjARYuojUxLvWJ6UVmkp6cPq7LQPF1dQF/PU+WVVyJsmBOYQhpMfb12V8NZSucZjoGTOBYiVhMSho4sz8vLA4D+iFUWcSWdx2AwYE3fNtZrfbsHx9Pb24vg4GC8/PLLAGhL+pxzznFt0ArA4KsyB9CPyqKkpARtbW0j+giFVcZduwB3d9oZ3LFDG0UjV1kwwoYNQFER2oOCEH7nnTafajAAixcDqalAUZE8wxMLrfoIHaWgoAA9PT3MrIZ7eZFeZyBCSxOzk7g+hIhVZ/sIP/zwQwDAjTfeeMLnqqur4ebm1u9r7Orq0qzhgt3vAJ2jF5WFPT7C7GzqXQT6othAvWIREcP37KgJrrJgA2tfI3rTxRfD185t2smTgX37gMpKCQcmMqym8wyE1UlcYyOtbAtYLBSxynpLk6sRq56enpg1axYADMp7/v777xEWFgYAuPTSS2G1WjWpXRLgBSODcJXFMQoLgWXL6PdJk/pdyQCA2bMpLvDrr9W70shVFuzQ1deUGHzSSXZ/jZcXRQhardpwNGrdR2gvGRkZCAwMZC5iNT4eqK2lx42NjSgsLGR7Etf32iNGxOo333wDAP1bzY888ggW9UWLrV+/Hh999JFrg1UB7P5E65icnBzdqCwWLFgwbCFVUQGcfvqxYvH774HjdzsDAwFfX2DvXios1YYeVBYVFRVoaGjAnDlzlB6KZPSkp8Pzjz9gdXODu4O9S76+lD390UfARRcBat7lzczMhK+vL5vpPH0IEauLFi1ibhKXlAS0th5rK5gwYQLzLU2tra2iRKwGBQUhKCgI9fX1iIuL6+/9zMjIYGanj68wMkZbW5vTzbtawmQyITIycliVRV0dcOaZQGYmue2+/vrEYlFg/nwgOZleKNWEXlQWQjoPy1L5ur5md5xxxvDfiDbw8KDJz5dfqnc1nPl0nj5MJhPGjRvHbMTqxo3U0tTY2Gi3j1CLCC1NSUlJoq2G//jjjwCOHRRqa2tjplgEeMHIHHpRWVRUVAx7ArO5mbKj//iD3pu//pqktLYID6fnf/+9BAN2AuZ9hH04q7LQEm2trfDZuBEAYLjiCqevExFB29M1NercnhZ8hFIpPdSAELHK8iRu1KgeHDxoQVJSEtMtTWJHrB45cmTQ9n1BQQETp+cHwgtGhtCLykIopIb6YWxvBy64APjlFyA4GPjqK0p7sYf580m9k50t7pidIT8/H1arlassGKDg00/hW15Oe8vnn+/Stby9gaoqktCraaWxqqoKVVVVTPgIh0MvEatjxuTD05P9liYxI1Zffvnl/kMvd999NwBg5syZLl9XbfCCkRGEQkoPKovu7u4hVRZdXcCf/gR88w29N+/cCaSkOHb9JUtIYJuaKtKAnaCjowMWi4X5dB5XVRZaoKamBt5ffEF/WLWKvjFdZMoUICoKyMlx+VKiMHA1nLUVlYHoIWK1ra0NNTUW+PmxPYkTM2J12bJluPXWWwEAhw4d6hd419bWoqGhweXrqwl23410RnFxMdrb23WrsujtBf7v/0if4+UFbN0KOHAYtR+DgTyNpaXAgQMiDdxBBJUFsz5CAPX19S6rLNSO1WpF2pEjiP7pJ/qAC9vRxzNnDhAdfaI3TwlY8xEOhZ4mcWPHjkFBQZDSQ5EMMSNWAwMDsXfvXgAUlCGsMm7btg0AcPrpp7t8DzXB7ne+jpCieVeNZGRkICAgYEiVxd//Dnz4IRV7GzbQSqGzGAx0NsFgkD9pQy8qCyGdx1WVhZopKipCwM8/w72+nppkRT6G7+UFFBcDR4+KelmH6Ozs1EUhZbFYEBoayryPsLS0FMnJU+HnR+09rCFWxGpZWVn/4ylTpqC3t3fQIShBrXPw4EF0dXU5P2CVwe5PuESo8f9eUFnY8hFqHUFlMVS/248/Ai++SAXe++8DK1e6fj+DAZg3j7amjxxx/Xr2wFUW7NDV1QVzWhqm9h12wWWX0WxGRAwGSjBqb1eun1HwEbK8Gt7Q0ICioiLmV8MHpvOcfz5NSFhDrIjVjX0/1/fccw/MZvOQ2/evvvoqAODKK6906V5qgheMDvLVV0qPYDB6V1n09gK3306Pr70WuPRSce87bRqt4phM4l53KMrLy7nKghEyMzMR99NP8PzjD8DfH+hrhBcbo5EmNj/9RN+nctLY2Ij8/HxdSOVZn8QVFxejra2tv6Wpvh7oCyZiBjHTeW6++WYAwL333jvsc4SYwE8//RRWNZ1QcwFeMDrI4sWkbVELeldZvPcecOgQEBAAPPaY+Pc2GIBzzqGDMDU14l9fYKCPkKsstE1zczMK0tKQ8NZb9IH77ycnjoTMmUPy+epqSW/Tj9Vqhclkwvjx45n1EQL6iVg9Pp0nKIhO47OEEhGra9euBQDcf//9st1TSnjB6CCjRtELsxpOKOpdZdHYCAgTvAcfBKRqLzIa6XDr999Lt9IopPOw7CMUW2WhVkwmE2bv3g1jRQVlrf3tb5Lf09ubHI0+PkBHh+S3Q0VFBerq6pheDddzxKrBAEydqi51kysoFbH69NNPAwCeeOIJ2e4pJbxgdIKzzgL275fnhXk4hEJq0qRJulVZPP44xf9NnAj0WQ0kw2AghV5OjvjN4IKPkPVCSkyVhVqprKxES1oaxqxfTx947jnZmsGEHdNPPwXa2qS7j/Daw3o6T3Z2tm4iVod67YmLk3ZXRU6Uilg1GAy48MILAQBvvPGGrPeWAl4wOoGHB/XKNTcrVzTqRWWRkZEx5AnMrCzg+efp8fPPU9au1BiNwHnnAbW1FDkoFmazGeHh4cz7CMVSWagVoZCa9+mnMHR2UpafGCewHMDXF1i+nBykUpGbmwuj0cj0anhbWxuysrJ00RseFRU1ZMRqeztw+LACgxIZpSNWH330UQDA9ddfr8j9xYQXjE7i5kYF49at8i/bD1RZuNq8q2YsFgtCQkKGVFmsXUsn1lesoBhAORkzBvj9d3ESYQSVhR5OYLqqslA7+fn5CPztN/h99RW9QDz/PC1Ny0xkJK2GFxSIr4Vqb29HRkYGUlJSmNbo6CVitbKycthJ3Jgx2u9j7O3tRWpqqmIRq7/88sug1/bdu3fLPgYxYfcnXgbGjaNfckfJ6V1lsWcPsGULvSc/95z878nu7tQv1tvr2hvyQB8hy+k8Yqks1ExnZycyTCZMe+cd+sBNN1ETmEIIE9rt28Wd0FosFoSFhSEsLEy8i6oMIWJVL5O44VqaDAaKWdUyeXl5AKBIxOqXX36J+fPnAwDee+89AMCKFStkH4eY8ILRRebOpZiu/Hx57tfU1KRrlUVXF0m6AeCWWygmTQnc3YFJk4AdO5z/vxdUFqz7CMVSWagZi8WCxO++g4fFAoweDfzrX0oPCVOn0uHsykpxrldfX4/i4mJdFFITJ05kejXc3pamggKgr+bSHEJLkxKr4S+99BJWrVoFADhw4ACuuuqq/veyP9QQz+QkvGAUAU9PkkdLvXwvFFJD+QhZwpbK4t13AbMZCAkBHnpI/rEdz5lnAj//7LjOZCiVBYsoobKQm8bGRhRnZmLC22/TBx55hIpGFTB3Lp2gPnTItesIrz1xcXHMp/N0dHQwvRruyCQuKAjIzZVnXGIjRKzKnc5zxx134LbbbgNAB6fmzZsHAEhNTQUAzJgxQ9bxiAkvGEXA3Z16htLTpb2PoLJQqnlXDkZSWXz5Jf2+di0wRJ+27Hh4AGvW0AnV8nL7v24olQVrNDc3Iy8vTxer4VNqamCoq6PthhtuUHpYgwgIoGz0tDTnr1FaWorm5mamV8P1MokTWpqGilg9nogI0QOKZEHJiNXn+05jVldXD5p4DDR9FMtt2RcJXjCKhL8/cNppwC+/SJM/rBeVheAjHEpl0d0N/PADPT7zTJkHZgMPD+r3+fpremMeCVsqC5YwmUyIiYmRXWUhJ+Xl5WhoaECsIGZdvlx177CCfN5odK6fcWA6D8s+QiFiNTIyUumhSIYQsWrva4/RCKSk0GuvVlA6YjUvLw/d3d1DHpg6ePAgADoMo0V4wSgyXl7At9+Kf129qCwyMzOHVVkcOgQ0NdHK4vTpCgzQBl5ewOrVgMUy8nNNJhMiIyOHVFmwgtIqCzkYuBru9v339MElS5Qd1DAYjUBSErBrl32TmoHk5OTAy8sLMTEx0gxOBeg9YtUW6elAUZGEgxKZsrIyRSNWx48fP+xW/5w5c9DY2IjVq1fLPCpx4AWjyMycSS40MWdkSjbvyslIKguhEF+0iN4A1Ya3N7B0KfDrryQUH4rq6mpUVFQgKSlJ3sHJiNIqC7nIzc2Fm5sbxo0eDfz2G31QpQWjwOLFwFdfUVawPejJRxgdHa3biFVbjBtHh1+0gDCJU/NquL+/v9JDcBoVvu1qn5NPBlJThy8aHCU9PR2hoaG6UFnYKqSEglHl78lITgZ27z7xEJSwVZKYmMh0Ok9+37FxJVQWciGk86SkpMDw449ATw9FY6g8FcTHh1bCR40CWlpGfr7ZbMbYsWOZTucRIlZZXg23FbE6EmPHKmejcBRbLU1ax2q14sEHH4TFnm0sieAFo0QkJtL2T2ura9cRVBZKNO/KhXBwICEhYVgfYWcnnUQH1F8wjhoFXHQRufAGJgHpJZ3HYrEwvxqenp6OsLAwSufRykymD19fKha/+MJ2zGVNTc2IkzitIxRSrE/ibEWsjoSbG52U7ukRf1xiMlJLk5Z5//33YTQa8eijj2LKlCnYu3evIuNg9xVdYUaNooMZrhSMelFZFBcXo729HQkJCcM+5+BB+rcMDVXUh2w3vr50OvXTTylKUE8+QiVUFnJSV1eHkpKSYz5CjRWMAPUBL1sGfPfd0J/nPkJ2ECZxQ0Ws2ktXF1BSIvLARCY9PR3h4eFMpfOkp6fDYDDgz3/+MwDgzL7TnsuWLcPHH38s+3h4wSghERF0QvGrr5z7er2oLEwm04gqC+E9efFidfYvDoW7OyUl7NwJpKdnICAgwC6VhVZRUmUhF8IkLj4+niZx9fXAkSP0SQ0VjAAZgM44AzCZTjQ7FBYWorOz0+YkTusMjFhleTXcYrEgNDTUpUnchAk08VUrrEWstrS0YNy4cf2r+/Hx8WhtbcWuXbv6xd+XXXYZnn32WVnHxe5PiUoICaGi0VG5uxaad8XAXpWFBhdxANAq47nnNuG338oQE8PeVomA0ioLuSgpKUFra+uxSdz331O1NWkShThrDIOBthp37jym3NHLanhGRgaCgoKYj1gtLCx0uZCKiVFvH6Pw2mOrpUktlJaW4v7774efnx8MBsOQ7we33XYb/Pz8UFhYCIBWGbOzs/tX+qdNm9b/ubVr1+Jvf/ubbOPnBeMIrFu3DklJSZg7d67T11i6FAgLc8zPmJ2dzVUWfXR0UJoKoL2CEQDS002YNGksvv02AI2NSo9GGsrLyxVVWcjBQB9h/2q4VmcyA5g2jXZDmpvpz5mZmfDz82PeR5ifn4+pU6cyP4mLi4sTZRL3xRfSOIZdRYhYVdtqeE9PDzZu3IhTTz21vziMiorC448/jpa+E2cDs6W3bNkCg8GAl156CQDwwQcfwGq1DnkYKyYmBrV9S74vvvgizjvvPBn+RrxgHJGbb74ZZrO5X7jpDEYjnTT75JNjL8q20JPKIioqakSVxS+/UHN+RASgtYOMgspi3rxJWLkS6JsYMkVPTw/S0tKYXw0XZvnR0dHHPshAwQgAs2eT4/T771uZ9xEKbQXjx49nPmK1ubl5yIhVZxg7FigrE+VSoqGmdJ7s7Gzcdttt/cWhu7s7LrroIvwonNYEsGDBAmzYsAFdXV2wWq3YuXMnCgoKYDAYcP755wMArrjiCvT29uKKK66web/g4GC0tbUBALZu3YopMiwB84JRJgwGCoHYvHnkWZqeVBb2fJMP7F/U0nvY8SqL0aPpwM7mzfZNHLQCyyoLgdbWVmRnZw9OyKipOdZrsnixYmMTi7FjgQMHitHZmcB0Ok9FRQXq6+uZXg0fKWLVGVJSyDWrJtQQsfrCCy/AYDBg4sSJ/auDAODr64t//vOfKC4uhtVqhdVqxY8//ojVq1fD3d0dnZ2dmDNnTv/JdX9/f9TV1eGDDz6we7Lm7e2N7j7ps8VigcFggNWZOCc74QWjjIwZA6xcOVi1cjz2+Ai1jqMqC60u4gylsjAYgFNOATZuBPomh5pGUFmwHnNoNpsRGRk5eBInHDFOSgIY6IOrqqpEYmIWpk2LU71CxVlc8RFqiezsbNEncaGh6joprZaI1XvuuQcAcNZZZ2H37t3o7e2F1WpFc3MzHnvssSGL2UcffRReXl44dOgQAIoMbGxsdEoc7+bmht7e3v7kMKPR2F9Eig0vGGUmIIAi7vq+TwbBVRYn0tZGW9IA9YJqBVsqi7Aw4LzzqFVB60WjoLIIDQ1VeiiSUVNTg/Ly8hNXw4WZjJa+MYdBKKSSkhIxcaIXNm1S3/ajGPSn8zAesSpVS1Nqqnr6GIWWJqUjVjv6VoB27NiBM844Y9C/eWdn56Dn7tu3DwaDAQ8++CAA6j+0Wq2YM2eOS2MwGAx9rU/zAAAeHh79fZJiwgtGBViwgESoxyeBFBUVoaOjQ3XNu2LiqMpi3z6SdsfEAPHx0o9PLEZSWQQFAY2NwOef25YnqxnWVBZDIUziJk2adOIkbvdu+p2BgjE/Px+9vb39k7izzwb27HE9eEBNCBGrrGt0RopYdYXwcKC6WvTLOkx1dTUqKytl6duzF6vVim+++Qbnnntufx+jl5cX5s2bh8rKShgMBizp2yY788wz0d3djVtvvVXUMRw4cACXXXYZAEhiq1C2S1SnGAzAqlWUN93UBPj7k8rCbDYjJSWFeZVFYGCg3SqLbdvo93PO0U7/YkNDA4qKirB4hL62sDCSJ//4I/W3agktqSxcobCwEF1dXYg/fraSmQlkZQEeHtr7zzsOYRI3e/bs/kJq1CjgT3+iyVpzM8CCKUlI59FDxOqyZcskuf7Spcq/Dg+cxKkpnWeoSUhSUhJ8fX0Hvd+Vl5dLqnJav349Jk+ejBdffFH0a7M7zVI57u40e9+8mQpHPaks7O05sVqPFYznnivx4ERCOIFpr48wMpLqjd9+s93bqjbUqrIQE5s+QuEbc/FimvFpGIvFguDg4BPexLy8aPV70yZtfW8OhRCxqofVcClbmnp6gC+/lOTSdqPmdJ6//vWvsFgssFqtePnll2E2m7Fv3z4AwN69e2G1WmXxfj7wwAOoOn4LUwR4waggo0cDJ58M7NvXhry8PK6yOI60NNLQ+PhoZ9evrKwMTU1NDqssxowhz9lxLS+qRE0qCynJzMyEv78/xo4de+Int2+n3885R95BiUxjYyMKCgqGTecJC6OaeKiea62gl4hVoaXphNVwEfHwoBxyCQ/i2kStUnl/f39YrVasW7cOLS0tMBgMuOWWWwAADz30EKxWa/92tJZh99VeIyQkAJWVR9HeHqcLlcXs2bPt/hrhPXnpUioa1Y4rKovYWOptbWmhF2U1zxvUoLKQmubmZuTm5uK00047cRLX0EAJL4B2lr6HYOAkzt/GKmlMDBAdDRw4AMybp+7vzaEQIlZPOukkpYciGQNbmqSexE2bRhNbLy9JbzMkQkuTWiJWBQ9icnIyGhoaEBsbi8a+dIaZM2fil19+Yeo0Pl9hVJjKykrU1lajpWUi8vKUHo00OKuy0Np2tKsqi3HjqFj87DNqU1AjalFZSI3JZEJsbOzQk7g9e+g/KDFRWyexjqO8vBwNDQ12+QgNBnLw7dql3OqSM+glYjUrK8uuiFUxmDgRqKuT/DYn0NTUhLy8PFW99mRkZACgQzhBQUH9xWJeXh4OHz7MVLEI8IJRUY4VUolYtcoDZrO2XoztJTc3F0aj0SGVRXU1sH8/PdbCrp9YKgs/P0rd2LxZxMGJiFpUFlJSWVmJmpqaISO5ABxb+tbKTGYIBq6G2/umNn069dx2dUk8OBHhEavS8NNPstxmECaTCePGjVNVOs97770HgAp2ANi0aROsVusg9y5L8IJRQQaqLDw9qTBKTdVGH5u9CCqLlJQUh1QWO3aQ72v6dNoSUztiqiwSEuh7oaICqhIoq1FlITa9vb1ITU1FYmIivIbac+vspG9OQNMFo7M+wunTgbw84PBhiQYmInqKWI2OjnZK+uwMPj7kj5VzcUOIWB12EiczvX0yyrfffhsAcMEFF8BqteKCCy5QcFTSwwtGhRBUFscXUv7+tBXLykqjMyqLvDzgrrvocV+8pqoRVBZinsD09qZtn02b1CHKVavKQmzy+vpCJkyYcOInu7uByy8ngWpICDWdapD29nZkZmY6XUhNmkSH0fp241SLniJW5S6k5HxdVmM6j/CeLUwq33zzTSWHIxu8YFSI4VQWEyYA48eT1FnrOKOyqKsjaXBlJTBjBrB2rXTjE4OBPkKxVRaTJ1PqXHa2qJd1CjWrLMTC5mp4by9wzTVkWvf0BD76iBpONYgwiXM2ncdgoIjTsDD1Sudramp4xKqENDQAZrM89xoqYlUtCJMRKSTpaoQXjAowkspi1iz6gexri9AkzqgsOjuBiy4CLBYgKopWWtWuuJM6nScpCYiLA775RrmVRrWqLMTGYrFg9OjRJ6bzWK3AjTcCH35IAtUNG4AzzlBmkC5SV1eHkpISl1fD3dyA4GBSQVVUiDQ4keARq9ITHEzueqmxFbGqBspYzM+0gfr+BxjHXpVFZCRpLGpqZByciAgqi4kTJ9r1fKsVuO46iuf186NzBWq3tsjlI3R3B0JDlWtVUJvKQgoaGxtRWFh44iTOagX+/nfgjTco/PvDDykIXIMIrz3x8fGi+AiFxKqvvlLXqf6ioiJ0dnYyLZV3NGJVbHx9ATkscCNFrHLkhReMMmOvysLdnd6X6uvlGZeYOKOyePRR4P33aeViwwZqrlc7mZmZsqkspk8n/1lXl7xFoxpVFmIjrEgNmc5z//3Af/9Lj996C7jkEvkHKBIlJSVobW21exJnD6NGAZddRm2dLS2iXdZpBB9hcnIy06vhGRkZCAoKkiU1ZDjmzZO2JaGhoQGFhYWSp/N0aenYv8LwglFGHFVZBASQ0Flrh2AcVVm8/Tbw0EP0+JVXgBUrJBycSCihshg/ng4EyenCU6PKQmzKysrQ2Nh44iTuqaeAJ56gx+vWAVdfLfvYxKK7u7t/Eif2arjRSL82blTe8CBErA6ZzsMIjY2NDkWsSkVennQHn4RJXFxcnF0Rq85iMBhUc5BGC/CCUUacUVl4eND29HffSTgwEXFUZfHoo8Bf/kKP774buP56iQcoEoKPUC6VhUBiIh3QPXBA+nupTWUhBcOuhqemAv/8Jz1+5hngr39VZoAikZ2dDR8fH0RHR0ty/fBwYNEiefrahqO5uVlXEau2WprkYNw4oKBAmmuXlZWhubnZ4YhVR1jbd6Ly1FNPlewerMELRpkQVBbOzApnzaIfTi2sMjqisnjjDeDBB+nxP/4B/PvfEg9OJASVhVI+wnnzgLlz6c1Zqu8JNaospCAnJ+fEdJ6KCuoH6ekhf4jaj+qPQGtrK7KzsyVfkYqNBaZMoT5kJV6rTCYTYmJimI9YtTedR2oCAui9SWxciVi1l8rKSjz77LMAgH379rl0LSmLWrXBC0aZcMZHOJAJE+ggSGWlyAMTEcFHaI/KYvdu4Kab6PHDDwNPPknbWmpHSZXFQNzcqG/s22+lub6aVRZi0dbWduIkrrWVnDH5+WRQZ8CvZjabERkZKYuP0M2NDkPs2SNv0VhZWYnq6mqmV8PVOImrrQWamsS9pqsRq/Yg9H7u3r3b5UNDKSkpYgxJE2jgLVr71NfXi6KyWLyYQibU6D5zRGVx9CiwZg0t4Fx11bFVRi2gJh/hggV06EDswwZqV1mIRXp6OsLDw4/5CHt6gCuuAA4epH3/HTvoeLqGqampQXl5uayr4cKOiFwaqIGF1JDpPIzgbDqPlPT2irstLUc6z6uvvgoACAsLwxki6LF4wcgRDaGQEkNl4edHO2RGozrSPwZir4+wtJRi75qagCVLaFtaK+1GSqsshuLkk0ny/uOP4l1TDyqLuro6lJaWDp7E3X03Ret4egJffgmIeJpYCQam88jtI5w8meIDf/9d+nvl5+fDarUOnc7DCO3t7cjIyFDVaw9AE4PqavGuJ2bE6lC0trbir339yIWFhaJckxeMHNEoKSlBS0uLaCqL4GA6nfbNN6JcThTsVVk0N1P8bnExvaF88QW9N2sFwUeopMpiKCIiaNV5/37XryWXykJJBqbzjBo1ij64bh3w3HP0+L33gIULlRugSBQWFqKrqwvx8fGK3H/OHCA3l35JhRoncVJgsVhcammSiuBg8RIypYhYPR7BJfvmm2+K1lI0XAAHi7D7E6YCBJWF2GLnxERaYVRLlqs9KovubuBPfwKOHAHGjKHdvuBgGQfpIk1NTapQWQyFwQAsWwbEx7u2PT0wnUdKlYXSFBcXo62t7dhq+LZtwG230ePHH6dvVI2jhnQeg4HODo0dK51PVkjnUdskTkyciViVk23bXG+LkSOdZ9u2bWjqa7j8i6DmEAGlJmRKwAtGCZFSZXH66erInG5paRlRZWG1ArffTod2vL2BLVvoEI9WGKiyUKuP0GCgQvyXX6gFzxnKysrQ1NTE9Km/E9J5Dh+mArG3l/xO996r9BBFITMzE/7+/or7CN3d6dfWrXRIS0yEiFW1FlJiMNBHKEY6jxTExrrexyi0NElVfPX09GDlypUAgGox99ABpgXxx8MLRomQWmVhNFIhtmmTsgkLaWlpiI6OtqmyeOEF2vEzGID164GTTpJvfGJQUVGB+vp6VagsRmLpUjpJ72jEqRwqCzWQlZWFUaNGISoqinojzj2XfoCWLwdefVU7DbU2aG5uRm5urmpWwz08gAsvJJesWCenhUnchAkTFPcRSklpaamoLU1SMHEiKXacRWhpkjJidf78+QCAf/7zn5L1R+oBXjBKhBwqC29vSkXZu1eyW9hEUFnYOoG5dStw5530+D//oTcOLaFGlYUtDAbg7LNJbWI22/91cqgslKa1tRU5OTlUSLW0kD6nrAyYOhX4/HOqbBggLS0NsbGxqvIR+voCF10EZGWRuchV7I1Y1TID03nUPIkLCHCt5SArK0vSiNVDhw7hYN+2y2OPPSbJPfQCLxglQE6VRXg4nToW6cCX3dijsvjjD+DSS2lV4YYbgL//Xd4xikFubi6MRqOqVBYjYTAAPj705nz06MjPl0NloQaEdJ7ggADg8svpCO+YMdSEpaLiyhUqKytVm85jMFBx4WqEoF5Ww3NychyKWFUSiwVoa3P86+SIWJ0zZw4AmhRzXIMXjCKjhMrCaASys+lAiVzk5+ejt7d3WJVFeTkt4LS00IGMl17S3m5fR0cHMjIykJKSorkTmAYD/ft3do68DSi1ykINVFdXo7KykiZx995LjbReXqTPYURO3tvbi9TUVCQmJqrWRxgRQQfQHW2ZGIgafYRio7VJXGwsUFTk+NeZTCZER0dLFrH68ccfAwCCgoJ0dThFKrT1LqgBlFJZLFlCq4yuzNztRVBZDFdItbWRL7KoiE50b9igzd0+V9N5lMZoJLXJL78A6elDP0cOlYXSDJzEea9fT9nQAPDuu0BfbxML5OXlAYDqfYTjx9POyK5djvc0ChGrWimknMVkMtkdsaoGZs92XFsqRKxKuRq+atUqAHTSfPfu3aJfP1hLqg8R4AWjiCipsjAYqEgrKRE/qul4LBYLgoODh1VZ3HEH8OuvwOjRtNunxZ8ptassHGHePMBkOtGHJ4fKQg30p/M0NQF90l48/DAT+hwBra2Ge3tTiM7XXzv2denp6RgzZsyxdB4GEVqa7IlYVQtubnQA017kilj19vZGTk4OAGDFihXIz88X5brNzc0AwMT7gyOo/5VFQ6hBZeHvD2zeTN5DKRBUFsPJSjdvBv73P3r8yScUx6s1BvoI1aqycAQ3N2DVKvLhDTRKSK2yUAP9k7i4OLhdeSUtwZ93nrbyKO1A8BFqKZ1nzhzagbD3taqurk6UiFU1o+VJXE8P0NFh33PljFiNi4vD9u3bAdDqe7sI2boWiwUALxg5TqIWlUVoKDB3LhlDxGYklUVZGansAGDtWnJFapHS0lI0NzerWmXhKG5ulKrzzTe00niCj5BRhHSeiGefpWPjERHAW29pr6HWBo2NjSgsLNRk4kRsLPDTTyMfzhJee+Lj44+l8zBIYWEhOjs7R4xYVSPTptl38EWJdJ6zzz4bDzzwAACIUoibTCYAkDWjXQ3wglEkTCaTalQWiYm0HfzHH+Je15bKorcX+POfgZoaYMYMQKv2AuEEptpVFs7g5kZao9RUwGzOlFRloQaampqQl5eHGcXFMLzyCn3w/fdpVsUIworUhAkTNJvOc+qpQGYmtdMMR0lJCVpbW5maxB2PsBo+UsSqWrE3aSojIwNBQUGyp/M88sgjmDdvHgC4vN0vFIx8hZHjMJWVlaipqVGVysLfn05Ou2rgFxhJZfHII8BXX5HO5aOP6ACqFsnOztaMysIZPDyA5ctbcOBAOQIDpzF/cGCiwYBRQt/iHXdod9l7GMrKytDY2KhpH6HRCFxwAdXxQ6XBDPQRsrwabk/EqpoxGknObovGxkZFI1YPHDgAgHph165d6/R16vvEk2p6z5cDXjC6iFpVFoJWpbZWnOvZUlm8+y7wr3/R45dfBrS6Sq81lYWzmEwmzJgRgtTUQKdUGFqgoqICzXl5SPzb32jZe84c4IknlB6WqLC0Gu7uTiemd+4c3GcLSBuxqhaam5tHjFhVO0Yj7WJ0dQ39+YERq0qm83T0NVo+++yz2Lhxo1PXePLJJwFAtVGxUsELRhcRTl2pUWXh6Unbw7t3D/9DbA+2VBZffQVcdx09vu8+4P/+z/n7KI3ZbNaUysIZBJVFSkoiVq+mAwc9PUqPSlx6e3th/u03LHz6aRhyc8njsm2bdpe9hyEnJ4epdB5vbzqc9dtvxz4mRKxquZCyB5PJhJiYGFW0NLnCWWdR4TgUFRUVqkjn8fT0RHFfk/9FF12EjIwMh6/B8nuELXjB6AIdHR2yN+86isFAfqzt253PcR1OZfHHHxT31d0NXHaZdvsWAVJZlJWVaUpl4SjHqyy8vIAJE0iH4YpIWW3kZWdj6pNPwvv338nptHMnif8Yoq2tjUkfob8/xZ0eOkQHKISIVZZ9d0LEKgvbm7299H934sfVFbEaFRWFb7/9FgBtKwuaHI5t1FnlaARBZSF3866jxMUBycn0w+wo9fX1Q6osiospkrCpCVi8GHj7be0ePNWyysIRhlNZnHMO+fBYeM3saG+Hce1ajPnxR1pi37wZYOCN+HjS09MRHh7ObDrP2LHAe+81obi4QheTOFsRq1pC6J0/HjWm8yxevBhPP/00AMDf3x9WZ1dUdAQvGJ1EayqLhASSafc5TO1CKKSOV1k0NABnn02nGpOSKBtWy691RUVFmlVZ2IstlYWPzzGH9VCHDrRE9f33Y8LWrfSH99+nI7iMUVdXh9LSUqZPaI4da0VgoAmRkdKKnZUmPz8fVqtVlS1NzuDmBoSFDd7Nam9vR0ZGhip34u666y6c3ncQjmVjhFio639PI2hVZTFnDvDzz/YfhBlOZfGPf5CaJSIC2LFDm0kuAl1dXTCbzZpVWdjLSCoLDw9aId6x48RDB1qhaf9+jH3+efrD008Dl1yi7IAkQHjtSUhIYN5HGBrahPj4CS6106gZJXyEcnDaaYN9jBaLRdURq3v27AFA2rjrhIZ8zpCw810qI+Xl5ZpUWXh4UHygt/fIBx2GU1n8/jvw+uv0+NNPARXtMDiF1lUW9iCoLKZOnWqz383Xl3pSh8udVjPW3l703HILjL29dHLCBWWGmikuLkZbWxvTq+EDI1ZDQtwQFgb0tZsxhVZamhylvPzYwSWtRKx29Z0KffPNN/HBBx8oPBr1wgtGB+np6UFaWtqwPkK1ExBActUvv7Q9ax9OZfHPf9LXXXwxzSS1jJDOw9rBgYFYrVaYTCaMHz/eLgWEnx/t4n7/PVBXJ8MARaL2008RdPgwrF5ewLPPareh1gZ6Sec5PmJ13jxg+nSgtVXhgYmIELGq9kLKGaKiqF1JWA3XQsSqu7s7KisrAQBXXXUV/hA79YIReME4AuvWrUNSUhLmzp0LAMjLy4OHh4eqmncdJSyMIrl+/nnoz9tSWfw/e+cd3lZ9vfH3St5779jOThzbZO+EQBYhkBAIYba0UFpGWaWlpS2lpb8CLbMFCpSWAmWEbCBABpBFBmQQEku2vPfee9/fH8dXlm3J0pXutj7Pk8e2LN/7jS3de875nvO+GRn08f77RV6kBGhFymI0qqqq0NjYyLsafsklNC8yoE+raPr6+lB7+DAAgNmwgUa/NUhOTg78/PwQHx8v91JEw1YSFx5OSQx3/VEzli1NcuoRioWHB7BkCVmstrW1qcadJzIy0izsPXPmTLM4t5tB3AGjHe69914YjUacPn0aAFXe5PaLFoK5c0mjsalp5PdGk7LgtrLVPOQCDEpZaNkL1BUpi+Bgct/w9FR+ZSc3Nxce3PtR7S9MG7S3tyMvL08T157RyMjIQGJiotVq+Jo11C4hlBmBXKi1pYkPnZ29OH48W3Wi8vPnz8err74KAAgNDUW/M9IiGsYdMPIkMjJyhB6hGmEYwM+P5FSysgYfr6urQ2VlpdVAymCgrQa9niqUakVrUha2cFXKIiSE/tbbtyt3eppz5xnHNV4OkwzSCgaDAfHx8ZrXI6yvr7epR6jTAZs3k1qSWodg7FmsaoWsrBK0tQWq0mL1rrvuwvXXXw8AmpZZcwZ3wMgTLVWkGIaqSJmZVEXitkqmTJli9Y3y+uv0ceNGICpK2rUKidakLKwhlJSFjw8Nwhw+7JyOp9gYjUYkdXfD6+hRekGr2WrIBrW1taiurtbUtWc4jlqsMgxw7hyQnS3h4gREiXqEQtPR0YH6+jzExk5RbTV827Zt8PLyQnd3tzl4dOMOGHmjNSkLvZ6GSltagKNHy9HT04OJEyeOeF57O8naAcBdd0m8SAHRqpTFcISUsggIoMpOYSFQXOz62oSivr4eFRUVmHbsGD2wbp36x/aHYZnEaVmPsKCgAIBjFqsLFwKnTikzgRmN0SxWtYTBYEBaWiiuuELdPssdA9pAO3bsMG9Tc9SqVXvMRbR7x3TDi6CgHnz+eQ0CAtKt6hF++CH1O06YAKxcKcMCBSIrKwuhoaGak7KwRAwpC4YBEhKA48etOzlIjTmQSkqCJyeD8bOfybsoEbDlzqMlurq6YDKZkJaW5lAS5+VFOyNqi7lsWaxqicGWphRs2yb3alxDp9OhYUAq4p577sGpU6cAUDXcYDDIuTTZcAeMbgAA+fnZWLeuHUFBUVb7g157jT7+7Ge2zeWVDidloRZ3HmdgWRYZGRmiSFl4eQHXX09TkF1dgh6aNyUlJejq6sLE8+eBujqKZq+8Ut5FCYylHqGWReU5PcIoHn0uwcHAzp1Ad7eICxOQhoYGqxarWsLSYtXPzxe9vXKvyHVCQkLMEjuLFi1CdXU1ioqKxuwwjEpv/W6EpLW1FQUFBZg5cwZmzGDw+edDtx6/+45sBT09gR/9SLZlugQXSGlVyoKjvLwcra2toklZeHgAyckkpHz+vCinsAvnzjNjxgzo//1vevAnP6HFaQiTyYTg4GDExMTIvRTRcMVidcYM2ppWOty1Z7jFqtYoLi4eYrE6aZJ6h5MsSU9PN4t5R0dHmw0txiLugNHNCD3CVauAY8cGJ2MH/Nlx3XXqHXaprKxEU1OTpqUsLN15xJ7AXLuWJuZLS0U9jVVycnLg7++PuOJiEufT6ylg1BAtLS0oKCjQtIyOpbCzMxar06YBaugssWWxqiW4arilxeqECfLvRAjFrbfearYNvPrqq3lVw7WEO2Ac41RXV6Ourm6IlAW39RgUBOzdC2zdSv1Cjzwi40JdYKxIWeTl5cHb21sSKQuGoR3gqCjg9GnpKgltbW0k7DxjBpgHHqAHb7uN7CU0REZGBpKSkhxy51ErFRUVaGlpwZQpU5z6eYahGafjxwVemIDYsljVGtYsVnNzKanUCs8++6xZ1uqaa66RdzEy4Q4YxzCjSVl4eZFI93330dc/+Qkwa5YMixSAsSJlkZOTI+kEJsPQ66Szk/Q8pQgaDQYDEhISELJ3L0WqgYHAX/4i/oklpKqqCg0NDTb1CLWAUEmcjw9QXq5cG0tbFqtawpY7T2iocv8ufOHaCg4POEpxH8ca7oBxDFNYWAjAtpTFhx+SlIqfH/B//yfduoRkrEhZGI1GxMbGIiwsTPJzL1tGQu49PeJKndTU1KCmpgbT4uOB3/yGHvz97wEN9fi54s6jJvLy8uDp6YlEARwAVqygoFFpjGaxqiUMBgMSExNHWKwmJQFa2YWvqqpCU1MTpk2bhpaWFrmXIxvugHGM0tXVhaysLJtSFs3NwKOP0udPPAGUlAAD3uyqYqxIWVRUVMjaiD11Kt20P/po0D5SSLhAaurUqfB54QWgogKYOBHgtqU1QkFBARiGQXJystxLEY2Ojg5Bk7jISOplVNr1aTSLVa3AWaxaq4Z7eZE7mNoZnsQFBASgXIkZigS4A8Yxij0pi7/8BaiqogzxvvuowXzfPkBNeqVjTcpCbhur5GRg+nSaoBYasx4hADz3HD34/POa8o7mkjiti8pnZmYiJiYG4eHhgh3T2xv48kvlTOVyeoRanqa1Z7Gq09EOldqx1tIktGSZWtDuVcmNTexJWeTkAC+8QJ+/8AJliv7+wLXX0gW5p0fCxTrJWJWykJtp04DLLwcuXBBuQnKIO88jj5D43urVwNVXC3MChZCZmYmIiAhNT2A2NDSgvLxc8EAqMJA6E5RQZRwr7jyOWKyq/dIrlMWqVnD/BsYY3MVs/PjxNqUsfvlLCgrXrh2qhRwQAISFAR98ANTXS7RgJxmrUhZKQKejhvdt28hS0lVMJhNCQkIQbTAAu3eTjM4LL6jP6mMUmpqaUFJSMiaq4ZMmTRIliVuxgpJbuTWVi4uLbVqsagVHLVY3blRO1dcZMjMzBbNY1QLugHGMUVlZiebmZpt6hAcPAh9/bPuerNeTLddnn4nTqyYEY1nKQimMG0dFwOZm114nzc3NKCwsxIypU8E89BA9ePfdpNqsEVzVI1QLpaWl6OjoEK0azjBAdjZw8aIoh3eIIaLyCkrihIZrabJnsXr4MLU2qZHGxkbNtzTxxR0wjiH6+vqQkZFhU9i5txd48EH6/Oc/p340awQFATfdRBeCpibx1ussY0XKoqCgQNETmDExQEQE8P77zslrcG0FycnJCPrwQ4oEwsKAP/1J+MXKSEVFBVpbW53WI1QDvb295kBKzCRu7lxyIJIrmc3OzkZQUJAikzih4CxWHQmkQkLUKa1jmcSN1X5Fa7gDxjGEPSmLf/8bMBqB8HDg8cdHP5ZeD/j6Anv2UBVJKYwlKYuEhIQRUhZKw8MD2LCBBOD59r5yUhZT4+KAxx6jB594goJGjcAlcVoXlc/JyYGfnx/iRRZY1+vJdECOt74tPUItYdnS5IjFakICtTKpjfLycrS1tWk6iXMGd8A4RnBEyuKDD+jjb39LPWj2CA2luYOCAgEX6iJjScpiuq0SsMIIDgZuvpkqDRUVjv3MECmLI0eAujryGvvZz8RdrMTk5ubCy8tLED1CpdLe3o68vDzJAik/P2DnTqCjQ/RTDSEjIwOJiYmaduex19I0nNBQ9fUwjpWWJmdwB4xjhMzMTERHR9uUsmhrA06epM83bHD8uGFhwCWXUAWprU2AhboAJ2WhlkDKGexJWSgVvZ4mWb/8Eigutv/8IVIWX35JD155JZUsNYIc7jxyYDAYEB8fj5CQEMnOOXcu8PXXkp0OVVVVqK+vd7vzDEOnU7Z1ozVyc3Mls1hVG+6AcQzASVmM1nPy9de0ZZiYSHrIfFmwQJ6snsNSykJuPUIxcUTKQqn4+gJbttCE/WhVhxFSFlzAePnl0ixUIoxGo+B6hEqjtrYW1dXVkidx48cDUilNWYrKqymJ44szFqs6nboqjB0dHWOipclZ3AGjxnFUymLHDvq4cqVz/T+RkbQ9rdfLEzS6pSzUgZcXMHMmiXsbjdafk5WVNShlkZEBmEz0olyxQsqlikp9fT0qKio0PYEptx5hfPxgriEmBQM9OWpM4hzFFYvVK65w7dynT58GwzDo7e117UAOYDAYZLNYVQPqvOu4cRhHpCz27KGBFwC47TbnzxUaSgMwO3YAnZ3OH4cvnB7hWJCyCA0NtStloQYuvZQkUPLyhj7e2NiI0tJSCqRaW4Ebb6RvXHONY421KkBJ7jxiYnbnmTBBlvN7edFLqLJSvHN0dXXBZDLZtFjVCq5YrObn09/BWT777DMAwJ49e5w/iAOMBXceV9HuK9yNQ1IWRiPwgx/Q5/ffTzdyV4iIoCrlkSOuHYcP2dnZCAwMHBNSFrbcedSGXk+ivomJVEAEhklZ+PlR9mIwALGxwMsvy7tgASkpKUFXV5emq+FKSeJWrBDXZMCexaoWcNVitauLZtac5ac//SkA4AXOfkwExkoS5yrugFHD2JOyaGykm3ZrK3DZZcCzzwpz3rg4YM0a0kMTyh7OFpyURWpqqmZ7Tjg9QkelLNQCw9AMS0kJcPQoUFZGUhaTJ08GnnwS2LWLykS7dtGLSgNYCjtreQLTZDIhODgYMTExsq4jOBiIiqLXmNA0NTWNarGqBYSwWI2MdO0+wBUCTpw44fxB7MC1NCnFYlWpuANGjcJJWdgKpPr6SOokNxdISgI+/BAQUgaOYWiCescOsv4VC4PBgMTERMXrEbpCZWUl6RE6KGWhJhgGWLUK8PLqxfnzRkyfngLP/fsHdRdfeQVYuFDeRQpITk4O/P39EaeRANgaLS0tKCgoUEwS5+9PjiNCDl9wgZTW3XmEsFidPJmGkJSKUqrhasAdMGoUTsrClh7hY48Bn39Ok6u7d1MWKDSJicDSpdTXKMakXHV1Nerq6txSFhogNDQP3d0ByP20Hewtt9AL5p57gJ/8RO6lCUZbW5vmhZ0BuvYkJSUpRo/Q1xeYMkXYXsaKigq0tLRoWthZKD3Czk6SXXOFZcuWAaCefKEZCy1NQuEOGDWIPSmLbduAp56iz//zH2DWLPHWkpREQrrbtpH1oFD09/fj4sWLbikLDcDpEV42OxZLnrkGTHMzsGwZmZlrCM6dR0o9QqlRqh7hggXUNyvENWisJHFCWaz6+LiunPHggGftP//5T9cONIyx0NIkJO6AUWPYk7K4cAH48Y/p81/9ijyhxcbPj4R0d+8WrtLolrLQDgaDAbHR0Qi9/374FJrAxieg5Pnt6GG85F6aYNTU1KCmpkZxgZSQDHHn8VLe366yEjhzxvXj2LNY1QJCWqwyDJCe7tp6Nm7cCAB48cUXzY9lZmZi3759Lh13LLQ0CYk7YNQYo0lZ1NWROkl7Ow2lcFVGKZg4EVi/ntbQ1+fasdxSFtqBk7JI370b+OQTwNsbzJ7d6AmLxvbt4g9NSYGlsLMceoRSUVBQAIZhkJycLPdSrJKWBuTk8Pc0t8QRi1UtYDAYBLVY9fNzrbrL9RZ2WJQqU1JSsG7dOl7HYVkWDMPgpz/9qdliVctJnNBo9247Bhmtebe3lyTtCgrIkveDD2iLRkr8/EjiYtcu14JGt5SFNuCq4bMKC+HJZS//+hcwdy4mTACWL3fMRlDpyK1HKAVdXV2KF5VnGOCGG1w7RmZmpubdeerq6lBVVSWoHmFuLqlyCAE7sE119dVXAyDHJEe57777AAD+/v6qtFiVG2W+s904xWhSFr/5DfDFFzQxuGcPTTDLwZQpQGoqkJXl3M83Nze7pSw0QnFxMTyzsxH36KP0wIMPAj/8ofn7CQlk77ZjB9DSIs8aXUUL7jyOkJWVhYiICMUncV5ewEcf0SAeXziLVS0LO4vlzhMaCjQ0uHYMLtg7ePAggMG+xn/84x8O/XxfXx9eeeUVAMDPf/5z1Vqsyol2r2BjjNGkLDIzgeeeo8/ffpu2ZuRk+nT6d+gQ0N/v+M9ZCju7pSzUDVcNn/P++2BaW8kn+plnRjyPYUgjdNcuaqVQGyaTCSEhIZpw57FFU1MTSkpKVFMNX7KEv7GAoxarakcsi9X0dBqAdAUuYOT6GC+77DIAwOuvv+7Qz98wUF7+85//DJPJZN6Ju/POO11b2BjCHTBqhNGkLN54gz5u2ABcd53EC7OBTkeuMJ984njQWFFRgebmZreUhQbIzs5GeHMzfLg79xtvkIq3FcLDgeuvp89rayVaoAA0NzejsLBQ0xOYXCA1fvx41SRxsbHAnDn8fsYRi1W1YykqL7QeYXc3cO6ca8fgEujPP/8cAHi9pzo7O7Fz504AwIYNGxAWFoZnBhJU95a047gDRg0wmpRFZyfwzjv0+YDDkmJIS6N/vb32p6c5KYuUlBS3lIXK4aQs0k6fpgdWr6bG2lHw86PE4rPPgIoKCRbpIlxbQXJysqbceYZTUVGB1tZW1SVxUVHAp5869lxHLFa1gMlkQlBQkCh6hL6+QFGR4Ic1F0h67EwyrVq1CgDw8ssvo6ioCNOnT8fzzz8PAHjppZeEX5hGcQeMKseelMXu3TSZnJAAXHGFDAu0w4QJNNjw6aejB41uKQvtYDAYMC42Fj7vvUcPOJjJBARQpTEnR8TFCURVVZVm3Xk4+vr6kJGRoUo9Qg8PGvpzJIixZ7GqBVpbW1FQUCDatcfDAxBCfvSSSy4BQNVFhmHQPNCMmpycjGeeeQb79u1DaWmpeTAGoEr/8ePHAQAzZ87E+PHjcffddwMA/vSnP2n6Wis02k2XBOKVV17BK6+8gj5XtWBEwp6UBbcdfccd0k9FO8qkSTRBd/w4OcMMh5OyWLRokabf3EajUVApCyXCSVms6eigUmFkJPVKOIivL01PnzpFLQ1K3CFUuh6hUOTm5sLLy0u1SZwjU/icxerSpUs1fe3JyMhAYmKiqO48y5ZRUcCVX+P//vc/pFsRdSwvL8cjjzxi9+c3bdqE2bNnY//+/QBI37Grq8u9Le0g7oDRDvfeey/uvfdeNDc3K07ck5OymDdvntUJzJwcGizR6YDbb5dhgTyYO5e2pnNzSbPR8qIyVqQsKisrsXLlSrmXIhqWgZTn/ffTgz/+MY2u8oQTgu/vp8l7JTGW3HkWL16s2kDKz4+Sjrw8uuZYg7NYHQvuPGJfe/bvB9aupd+7s6SlpQ2pHgLUMpCbm4uLFy8O+ZeXlzfi52tqaszBIkAVR1v4+fkhLS3N/C81NRVpaWmIFMNHVyW4A0YVY0/K4s036eMVV5Cvs9Lx8ABqakgrctUqCho5KYvLL79c7uWJhqWUha+vr9zLEY3CwkKSsvDyAjiHBie9oj08gGuvpR7dykrAipKULHR2dsJkMmH+/PmaltExGo2IjY1FmFz6XAIRHEztMMnJI3dgOIvVsZDESWGxyknrCD1k7uHhgWnTpmHatGm4npuOGyAgIABtbW147733EBsbizlz5pgLP3//+9+HBJjtw2QY2tvb8c033+Cbb74RdsEqxh0wqpSmpiYUFxebpQWGw7KkXwcAt90m4cJcZNEi2m5saQECA91SFlqB0yOcM2cOdDt2UGlw8WLABekgvZ5uPkeO0CT1ggUCLthJsrKyEBkZqekqRH19PSoqKjQRSHl6ArNmUXeE5ZyZWHqESkNKi9Vp08hXWiry8/PR1tYGgIZj0tLSsHDhQgDAjh07cJ0DkiGcqxgXVGZkZODixYso1oKjgBO4A0YVwk1gjqZHaDTS9q63N8DTPUl2Fi4k+ZSdO2sQGKh9KYvMzEykp6cLLmWhJLKyshAaGkp6hLt304PXXuvycRmGXt9HjnBJhsuHdJrGxkaUlpbaTOK0ABdITZ48WTPV8PR0Chi7uwe7I8aKO4/JZMLcuXMlqYYHBtJ1XardfS4B37p1K6Kjo8GyLDIzMwHAoWARIMmd9PT0EX2TSmxRkwLt7plomIqKCrS0tIwqZbFnD31ctUrem6izhIT0Ij+/CG1tszQtZZGdnY3AwEBRpCyUQnNzM4qKisidp6EBOHyYvrFxoyDHZxhgxQrqgT140L5EkxhYisr7+/tLvwCJKCkpQVdXl+aq4S0twIkT9PloFqtaQmqL1f5+4MIFSU6F77//3vy5v78/ZsyYYVYs+OqrrwDQlvP8+fNRU1MjzaI0gDtgVBmcHqE9KQsuYLzmGkmWJTg5OTlYuLATixdHqtLhwxHMeoQaltGxFHYODAykhrG+PvKHFLhyHBpK1YvPPhP0sA5RXl6OtrY2zbvzaFWPcPLkwSrjaBarWoFraZLSYjUgQDqLz4ceeggAsGTJEkycOBE1NTVoGPAm5HYAFi9ejNOnT1sdjnFjHXfAqDJyc3Pt6hGWlABnzlDlZcCfXVVwUhZpaamIiWHw7bfU16g1pJCykJvKyko0NzcP6hGKnMnMm0etkQ0NFJdKgaU7j9r0CPmQk5ODgIAAxMXFyb0UwWEYYMsWoLHRtsWqVnCkpUkMGEaQLhSH+OSTTwAAx48fx4svvmiWnTs3YDdTX19vrkJyfY1u7OMOGFUEJ2WRnp4+6sXso4/o4+LFgBotbDkpC06P8NJLSaexpETedQlJdXW1TXcerTCiGt7RAQzYeolZ+g4NpWn7HTsAOwYQgpCXlwdvb2+MGzdO/JPJRFtbG/Lz8zUdSOn1wH/+U47g4AmaTuIcaWkSi8OHHbeCdQVvb2/sGUhO//Wvf5kfnzVrFgAgJSUFAHDgwAHxF6Mh3AGjijAajYiJibErZcEVcTZtEn9NQsNJWUyfPt38GMOQfldkJGAwyLg4gejv78fFixclkbKQkxF6hF98AbS3A+PGAbNni3ruKVOo2piRIeppzEmcltsKAEriEhISNK9HOH58MSoqFCbsKSCOtjSJRX8/MGDOIio5OTkIDQ1Fi8Ue+BUDVmelpaWoqqoCAKxevVr8xWgId8CoEjgpixkzZoz6PBFmCiRjNCkLhqGJ74IC4LvvZFqgQEgpZSEXnZ2dyM7OHhpIWW5HSxBcTZhAkikHDkC0PliDwaAJPcLRqKmpQU1Njaar4Zwe4fz5E7FypXbbCuS2WB03jvpExWSwpSkNAQEBaG1tBQDs27cPd999t3kn4NtvvxV3IRrEHTCqAD5SFu+9J9pMgejYk7JgGGD9etpmlGMSVgg4KYu0tDRNCztnZmYiKioKERER9EBzM7BrF30u8SRWejqwfTswcN8QDM6dh9ve0iKWws5a1yPkLFZDQ+mlqtZrjC04i1U5q+HTpgFiiwgYDIYhFqv+/v7moPG1114zP2/evHniLkSDaPeOpSEclbLo6gL++lf6fMBbXTU4KmXBMMD8+cDZs+JvN4qB1FIWctDQ0ICysrKh1fCXXqJG1GnTqClVQmJiyK7a01O47TAt6hFaY6zoEWZlZZmTOL2ehOCzs+VembAowWK1rg4Q0ziltrYWVVVVI5I4y6ARANasWSPeIjSMO2BUOL29vQ5LWbz5JlBaCsTHA3fcIdECBYKvlMXs2XRBV9NFvbm5WXIpC6nhJjAnTpw46M7T0gI8/zx9/thjIz3YJCA0lCrTu3fTQIyrFBcXo7u7W9Oi8pw7T2pqquar4REREUPceRYtArT0X66vr0d5ebns1XDOHlAMuGuPLXcey6DxwIEDuFttVRUFoKG3hDbJzs52SMqiqwt46in6/De/oX4/tdDSwl/KQqejnc34eMpalY6lsLOUUhZSU1ZWhvb29qF6hC+/DNTXA1OnAjfcINvaAgKA666jCocr241cNTw1NVXTws4mkwkhISHkzqNRmpqaUFpaOqI33MsLCAvTxpAdF0gpwWLV2xuYOVOcYxcVFdm1WB2+Pe0OGvnhDhgVDB8pi7feItmZuDjgJz+RZn1CYTAYkJSUxFvKQqcDfH2BQ4eUX2mUU8pCKiz1CM3V8NZW4Lnn6PPf/16W6qIlAQHAVVdRIFBU5NwxuCRO6+48hYWFmpbRsRSVt5bEhYSQnq0U0kxiUlpaio4O5VisDtg7CwqfJM4dNDqPO2BUMI5KWXR3A08+SZ//+tfSGry7SlVVlUt6hDodyQdlZoo/fecscktZSEVubi58fX2RkJAw+OArr1AJePJk4MYb5VvcMKZMISu43Fx+PzdW3HkyMjKQnJxM7jwapaKiAq2trTaTOL2etqYrKyVemIDwaWmSiuxs4a/VJpMJQUFBDrc0uYNG53AHjAqFj5TFW28BxcXU3H/nneKvTSi4Ccxp06bBy8vL6ePo9SQhVFkJ5OcLuECBkFvKQgra29uRm5s7NJBqbQWefZY+//3vAYXcsADacrz+evJZ5zM9bTAYkJiYiODgYPEWJzNVVVVoamoadOfRIH19fcjIyLDrzjNlCg3aqdWeNCcnB35+foiPj5d7KWZCQoTtY+Ramvgmce6gkT/ugFGB8JGy6O0Fnn6aPv/1r2mLVi1YSlkIQWws9acVFgpyOEFQgpSFFAyXsgAAvPEGUFtL+k433yzf4mzg4UFOSIcPO6btWV1djdra2jGhR+hqEqd0cnNzHXbn6e8Hjh6VYFEC09bWZtYjVNK157LLACFFIrgkzhl3HnfQyA93wMgTvltYzsBHymL3bhKzDg8HfvpT8dcmFJyUhZATmJ6ewObNFERLYT/lCEqQshCburo6VFVVDXHnQW8v8OKL9Pkjjyiqujic9eupOl1ba/s5loHUmHLn0SB83XkSE6nC2NkpweIExGg0Ij4+XnHuPBUVwICls8twLU1Drj08cQeNjuMOGHmSkUH3QrHgI2XBsoPzBHffDcg8AMeLrKwsRERECK5H6OlJBa2PP5bfe7qhoUERUhZiYunOM0SPcMcO6pOIjAR+8AP5FugADAOsW0fvnxMnrE9QFxYWgmVZzbvzmEwmzcvoGI1G3u48mzYpt0faGtYsVpWCvz9QXe36cYSshruDRsfQ7lVBJDZuJK1DMSa9AH5SFidO0Baslxdw773irEcMmpqaUFJSYtfm0BXWrQOOHCGtaDngAiklSFmISXFx8UgpC8tM5t57VTOF5edHSz9wYGjQOFb0CLOyshAZGTlEj1BrcBarfJM4hqFt6fJykRYmIKNZrCqBoCDqHXYVzmJVqJYmd9BoH+1e/USCYejGsmeP8JVGvlIWnBbyrbfSwIsasCdlIRTe3iT55+UFDPjMS4rSpCzEoKenxzyBOUTK4uuvSY/Exwe45x75FugES5aQGU1392BbA+fOo2U9wsbGRqt6hFrCVXeeSy+lJFTpKN2dR6+n95grDHfnEQp30Dg67oDRCaKiyJ6uuFi4Y7IsC4PB4LCURV4e9S8CwC9+Idw6xMaelIWQeHpSgH/ggLTSGEqUshADTspihB4hV1384Q9pS1plJCXRe3v3bqChoRlFRUVjIpCaMGEC/MU2+pURzmLV2SQuMJA0PJXsMe2oxarcDK/i80WslibAHTSOhjtgdJLJk2nC8vRpYY5XVVWFxsZGh6UsXnyR3nBXXAGo5V7GSVlIqUfo60vuHllZkpwOgDKlLISmtbXVupRFTg41kALAQw/JszgBmDwZmDGDxQcfFGH8+PGa1iMsLy9HW1ubpkXlbVbDeeLvD2zdqpyhuuHwtViVi4AA59u6mpqaUFxcLGoS5w4areMOGF3Az4+2OzMzXTsO3+bd+nryjQaAhx927dxSkpubCy8vL8n1CP38gBUrqOdTCB/h0Whvb1eklIXQZGRkWJeyeOEFymSuusr1fSeZCQ6uRHJyKRobp6GrS+7ViINVdx4NkpOT45DFqj10OmDCBODiRYEWJiDOWKzKxfz5tAPEF05UXkiL1R4bVj7uoHEk7oDRBbjpSlen5/hKWbz+Osk8pKcDK1e6dm6p4KQs0tPTZbuYpacDn30mrve0wWBQpJSFkNh056mrIxV5QF2ZjBUGhZ2nIznZA9u2qVe8eTTy8vIc1iNUK3wsVh1h7lxhhjaEJiMjwymLVTnQ6ZyblBbaYpVhmFGLNO6gcSjugNFF9HrgkkuAzz8HWlr4/zxfKYu+PnJbA6h3UeGJpBmj0YiYmBheUhZCExAAXHstZbZiaKopWcpCKCxF5UfoEf7nP0BHBzBrFk0IqJj8/Hx4eHggKSkJCQnAmjXkKawmaRV78NUjVCuOWqw6il5PbiVnzwpyOEGoqqpCQ0ODakTlu7tJP5gPQlus/vKXvwQALFu2bNTnuYPGQdwBo0DMm0eT03yN6vlKWXzxBVBWBoSFKcqad1Q4KQslDA4EBtLw7ocfCiu5o3QpC6HgpCxG6BGy7GCfxL33qieTsUJnZ+cId57oaJq8/+ADYW3N5MRgMPDWI1QbnMWq0ElcaChgNFJ+JDf9/f24ePGiqtx5QkP5X3+FtFitrq7GcwPDeYcPH7b7/OFB40Mq7s92BXfAKBAREcDq1XTfdHT6i6+UBcsC//43fX7zzXQDUzquSlmIgZcXcM01wL59wk08Kl3KQgi6urpgMpmsS1kcPw6YTNQwumWLPAsUiMzMTERFRSEiImLI4z4+g68bpQ49OEpdXR0qKys1LSrPBVJWq+EuwjDA8uXi90Q7QkFBAXQ6nWB6hFLg5wdcfbXjzxfaYpWTyNq/fz90Oh36+/vBMIy56mgNy6DxTS45HmO4A0YBiYmhMrsjWl2WzbuOSFlUV9O0744d9PWPf+ziYiWCk7IYIuysAIKDSaexqAhobnbtWGqRsnAVTo9wiJQFV1m88kr6evNmZTZ4OUhDQwPKyspsJnHBwVTZLylRh4izNZSYxIlBUVER+vv7RUviuJbzpiZRDu8QYlisSgHDDMrCOYKQFquvvvoqACAyMhJr1qwBAKxatQoA7FZoLYPGsYh6XmEy8corryAlJQXz5s1z6PlTp9I2hb3J6fLycrS2tmLy5Ml2j7lrF0nn7N5Nlrx/+xswe7ZDy5EVSykLJU5gMgy5Duze7Vz/KYdapCxcgZOySE1NHXywvJymoe+4g36BixYBTz8t3yJdhAukJk6cOKo7D8PQFvVXX1HCoTY4dx4ti8pL5c7j7Q04sKMpGpmZmaLpEYpNTw/15Nujvr5eMIvV9vZ23DNgJlA8IKR88eJFHDp0CADw5JNP2j2Gv78/6sScnFQw7oDRDvfeey+MRiNO8xBcXLsWSE623etkKWVhr3n3L3+hymJtLZCWRrqPv/oVj/+AjAglZSEmYWEU85SVObc9rSYpC2exKmVRUDA4du7lRVnMsWPAcBFvFVFWVoaOjg6HkjgfH9p57+pStpDzcMZKNZyPxaorREfTxK8YQ3T2aGpqUrU7z9Sp9ofIuGuPUBarXFL/n//8x9xrnp6eDoCCb0dRYgFECtwBowjodHQP3bfPegXCUSmL1tbBgs2vfkXB4syZwq9XDISWshCT8HCSDNy9m7/Ug8FgUI2UhbNYlbL4xz9IRiclBTh3jl6gKg5AnNEj9PICpkyhYTdnJELkIDs7G4GBgSPdeTQEX4tVV5HD/UUqi1UxmTDB/u9NSIvVvXv3omVgK+n2228HAPPE87p161QzYS4n7oBRJPR6qgyePTu07M5HymLrVgoaJ08G/vpXdQy5cAgtZSEFa9cC+/c7PgVrU49QQ1iVsujsBN5+mz5/9ln1WA2NQm5uLnx9fZGQkMD7Z9esIVktZ50rpKK1tVU1SZyzcBUpRy1WhTnnYG+5VEhpsSoWeXmjt3RwSZwQLU19fX24emDKhttOLi8vx2uvvQYA+PTTT106/ljBHTCKiJcX6f4VFg56GRuNRoelLP71L/r405+qS6WEk7JQWyDl70+DML6+9nvT+LrzqBWrUhY7d1JUnZhI0ZLKaW9vR25urtMTmP7+wPXX086CksW9DQYDEhMTERwcLPdSRKOqqgpNTU0OW6wKgU5HuxRSTUzLYbEqBoGBo/eO5+TkwN/fXxCL1UWLFgEAHnvsMfO9lzvukSNHNJtACY07YJSA2FgyWzeZSI/Qkebd776jLWhPT+C22yRYpEBYCjurUY/Qy4sGi06fBjIybD+voKAADMOoSsqCLzalLLhM5o47VL0NzWEwGBAXF4fQ0FCnj+HnR7sBO3dCkTaC1dXVqK2tVV0Sxwc5k7iFC+naIQVyWawKTXw8YGunua2tTTCL1bNnz5pnEJ544gkAMGswjh8/HsuXL3fp+GMJd8AoAX5+wKZNLE6fzsGkSY5JWbzxBn289lrAQU1vRaAFPUIPD/q9t7RY77FRq5QFX6xKWWRlAUePUllloA9IzdTW1qKqqkqQCczISDK4OXVKgIUJiGUgJbQeoZLgLFblSOLCwgCDQfxeRiVYrAqFXm97J0dIi9W5c+cCoN0SgAYVOb3FrKwsl48/ltDu3U5h1NcXIyqqGd9/P8mubldbG/Duu/T5T38q/tqEQiopCynQ6UglxmgkXU3LG4GapSwcxaaUBZfJrF8PONHvpyS4fjch3XkSEyloPHdOOeLehYWFYFl2pDuPhrC0WJUrkOrsBEpLxT0Hn5YmpePhQVr/wxHSneeDDz4AAISEhJiLGFxLxvvvv2+uRF9++eX49ttvXT6f1lH3XV0lcFIWqakzsGaNHnv2jC7DcPAgVbcmTABWrJBqla4jlZSFlMyYQRe248fpa7VLWTjCqFIW+/fTRzX1SdiA0yMUQ1RerxfWSchZtJTEjUZmZiYvi1UxSEsjeS6x4CxWteLOo9ON7M0XOonbtGkTAHJV27dvH3bs2AF24E150003AQB+8IMf4NChQ/jkk09cPp/WGZtiQhKTnZ2NgIAAxMbGgmHIDKOvjyqJ1kxezp+nj8uX05tKDXBSFitWrFD9VslwliwhvTCTiUVlpbqlLBxhVCkLrmdR5TJCnKj8JZdcIooe4SWXUIWxs5OGqOSCc+fRUhI3nMbGRpSVleGyyy6TdR2RkfS37usTvrVXq+48N9ww9GuhW5p8fHyQl5eHiRMnYt26debHGweMrIuKivDuwHYe19/oxjYqCUfUS2trKwoKCoY07/r70zTlzp3WzesvXKCPl1wi4UJdQA4pC6nx8gIqK2uwf38Axo9Xr5SFPXp7e0d35+EyHJXbY5lMJgQFBYmqRzhrFlBVBci109Xc3IyioiLNV8MvXrzosMWq2Hz/PZCfL/xxlWqx6io7dw5W4bu7u0URlZ8wYcIQ2ZzHHnvMvC3N9bueOnVKc4UOMXAHjCJjMBgwbty4EVIWkZHA6tXAmTMjf+b77+njgAC94pFDykJq+vr60NV1HldeGYmmJk/ZtxrFIicnB35+fralLLjKqtJFB0fBWhInFklJFDSONnEvBpbCzlpN4gDS0mtra1OMHmFamvB/a6VbrLqCXj9YNBHTYvXKK680b0//+c9/BjBYUUxLS8OCBQsEP6cWcQeMImJPyiI2Fli2DDh5knw1Aepd5DJUNQSMY0WPkJOyWLIkDpGRwAcfuOY/rUQckrLgqjgqDhgzMjKQmJgoiTsPw9B8UFSUtHI7lZWVaG5u1nQS54w7j9gEBQFCxx5qsFh1lkmTqHWjpaVFdHeeXbt2Yf78+QDIIvDxxx8HAJw7d06U82kRd8AoEnykLGJjqTTf2wtcvEiPxcUBERESLNRFOCmLpKQkuZciGsOlLDw8SK96167BQF8LGI1G+1IWKt+SlsOdR6ejHYWPPhJ3KILDqjuPBsnNzXXIYlVqWBbIzhbmWGqyWHUG7raRkZEhicXqN998A4CuAwCwc+dOxSQbasAdMIoEHymL5GTKSru6Bgde1NC/aClloeUJTGtSFhERwM03A83NtOWodmpra1FdXW1fykLFW9KWovJS6xEyDLBhA/DVV6MrJAjBWEniXHHnEZOwMDJeEAI1WqzyobgY+PbbOjQ0NEiWxHVZlPpZrfYWiYR27/Iy4oyUxfjxNAjz0Uf0tRq2o7OysmSXshCb0aQsPD1pKvLAAbrwqRWu380hKQsVVxgLCgoAQDY9Qh8fSjLa2mBXi9VZOjs7rbvzaAyDwaBYPUJfXwoa+/pcO45aLVb54OfXjwsX8iVtafLy8kLpgGDm5s2bYbImBunGKu6AUQSclbKIjASqq+lzpVcYGxsbx4QeoT0pCz8/YMsWoLZWfs09Z+ElZaHSHsauri6YTCakpaXJWg3X62mLes8ecXynMzMzERUVhQg19LM4SV1dHSorKxWtR3j55a4lBf39/bh48aJqLVYdpb29AElJHZK788THx+PQoUMAgGnTpqFVhQmwHLgDRoFxRcqivx/IzaXP4+KUG4AoTcpCLByVsvD2BmbPBo4dG5REUgucqLzDUhYq3ZLmkjgluPOEhgJr15KLkJA0NDSgrKxszCdxSqC/H/j8c+d/vqioCP39/aq2WLVHV1cX8vKyEBAgTxK3YsUK/O1vfwMABAYGurenHcAdMAoIp0forJRFYSHt9Hl50b8DB5QZNHJSFpMnT5Z7KaLhjJTF0qW0NZ2ZKfLiBIS3lIUKt6SbmppQXFyM1NRUuZdiJiYGmDMHOHTI9a1LYPDaM3HixJHuPBqCc+exKiqvIDw9Kbca0IfmxVhy54mKikBNTahsa/jVr36FNWvWAIAocj5aQ7uvRhmorKx0SY+QCzSmTiUf48BAoLJSwAUKgKWUhZYnMJ2RstDpSEJl0iTAYFBmsG9JS0sLCgoK+E1gclUdsSc3BIILpCZMmKA4dx6GoZ2Ejz92/bVSVlaG9vZ2zSdxYgg7i8Vllznn8qNFi9XhcBaraWmpkHtIef+A3Wl1dTV+8pOfyLsYheMOGAVCCCmLrCz6yA2qLl5MQeOpUwItUgDy8vIUKWUhJK5IWTAMVReam2lLSslBo1NSFlw/lTWLIgVSUVGBlpYWxQg7D2fqVBJ77ulx/rWiRD1CMcjOzkZgYKCo7jxCEhQEHDnC7+/KWaxqVUYHGCoq7+/vjy1b5F4RJSMA8J///AfvvPOOzKtRLu6AUSCEkLLgAkbLoTh/fxKIVkLQyOkRjoUJTFelLBYtAhITabBBiUFjVVWVc1IWKqowqkWPcNIkoKCAemCdITc3F76+vkhISBB2YQqCc+dRWyDV3++47NZYsFgFqKWptbXVnMTt3k0axHLi4eGB6oGJ09tuuw3fc3ZrbobgDhgFQCgpC25L2vIezjDAqlXUKN/f7+JCXUTJUhZCIaSURWoqVY62bQO6uwVYnEBwE5hOSVlwFUYVBIx5eXnw9PREYmKi3Euxy9Sp9CvldFgdpb29XbF6hEJiy2JV6cycCTQ0OPbcsWKxOrylydtbGS3RkZGRZmHvmTNnosHRP9wYwqmAsaenByUlJTCZTKivrxd6TapDKCmL4VvSHAxDN5Tjx+WbwlWDlIWrWAo7CyVlERICLFxI+ppKqTQWFBRAp9M5J2Whki3pjo4O1ekRrl4NTJnieIABUCAVFxeH0FD5BgfExp7FqpKJiaFrgL33/liyWB3e0iSTLKpV5s+fj1dffRUAEBYWhn65qzQKw+GAsbW1Fa+//jpWrFiB4OBgJCcnIyUlBZGRkUhKSsKdd96J06dPi7lWRSKUlEVNDVBXR8GhrXarJUuAvDzavpIStUhZuAovPUIeJCUBmzYBRUXU2ygnXV1drk1gqmRLOjMzEzExMQgPD5d7KQ7DMPTrPXhw0E9+NOrq6lBVVTUmkjhHLFaVSnY2vfdHY6y481hraRo3jvRJlcJdd92FLQONlWp9zYmFQ3eMF154AcnJyXjjjTdw+eWXY9euXTh//jxMJhNOnjyJxx9/HL29vVi9ejWuuOIK5OTkiL1uRSCklAVXXUxKIjFoa+h0wMaNQHy8NJ60HGqRsnAFsaUsPDxogGn3bkoM5CIzMxMRERHO6xGqYEu6vr4e5eXlqgykGIaSi3PnRu/r4uXOo2L4WKwqlbQ04OJF298fyxarAFBeDijNbOXDDz+El5cXent7sXnzZrmXoxgcenWeOHEChw4dwpkzZ/CHP/wBV1xxBdLS0jBp0iTMnz8ft99+O/773/+iqqoKGzZswJEjR8Ret2S88sorSElJwbx580Z8T0gpC2v9i9bQ6Sgb+/prx6oQrqI2KQtnkULKIjycgoHqann6UTkpC5eq4QrfkuaSuEmTJqlWj9DTE9i8mZLC2lrrz+GSOHui8mpGK3qEYWHA8uW2v5+ZmTmmLVYDA5XRwzicjoFr3M6dO/HPf/5T5tUoA4fehdu3b0daWprd53l7e+Oee+7RlJbRvffeC6PROGK7XWgpC1v9i9bQ64Frr6WsTOy+uOzsbAQEBKhGysIZpJSyCAqiv/Enn9jfphISSykLl/QIFb4lXVpaio6ODk1Uw8PCgE8/HdnGwInKp6amajqJc9ZiVYlUVtLW9HAaGxvHvDtPeDgNCCoNnU5nHny59957cUoJUiUyo960TWaElrKwJqkzGp6ewLp1JBAt1vZ0a2sr8vPzVTU4wBe5pCzWrSOpJEclN1yloqJiiJSF01huSStlimeA3t5e3u48SiYwELj66pHvb5PJhKCgIE07U7hisapE4uNHbkuPNYtVW0mcpyf15iuRkJAQs8TOokWLzNI7YxWnrqqnT5/G9u3bUVxcjO5heiG7du0SZGFKhpOyWLJkiWCBFLcl7UiF0ZJJk4Dt22nCUuj7h8FgQGJiouqkLPjASVnMnTtX0vN6edG2Y28vJQtiDoD29fUhIyNDGD1Cy365rq6hX8tMTk4O/Pz8EB8fL/dSBCMsjKZsP/qIkozubtIjvPTSSzWdxHHVcK3oEQYE0PWZZalPFRi0WF20aJG8ixMRrhqelpZmsxrOMNRetWCBxItzkPT0dPzvf//DD37wA0RHR5tFvscivCuMW7duxZIlS2A0GrF7927zC+Krr77SdGBhidFoFFTKor19cHuSb+Dg4wNcdx31xAkpfqpmKQtHkVvKQq+nwDE/Hzh5Urzz5ObmwsvLSxg9QsstJQVtS7e1tSEvL0+T1XCdDrjkEhqY+v77DCQmJvJz51EZlZWVaG5u1pwe4Zw5gzsKY8Wdx1GLVaX/Cm699VbceeedAKBoEwCx4R0wPvnkk3jhhRewd+9eeHl54e9//zsyMzOxZcsWVQjkukp9fb3geoTZ2ZR5hocDzvQ9+/lR9rp1KyCELKYWpCwcQQlSFgxDlSNvbwr4hd7l5aQs0tPThQmkPD0HSyQKChgNBgPi4+NdcudRMsnJQEpKDWprGzFtGs9tCBUhaDVcYTAMcPgwfW5Nj1Br8LFYvf56iRblAv/617/MbSBXX321zKuRB94BY15eHtavXw+Ahlza2trAMAweeugh/Otf/xJ8gUrDYDAILmXBt3/RGjodsGEDsHcvuYu4ghakLOyhJCkLhgFmzwaKi2nIQcgJaltSFk7DMIqblK6trUVNTQ2m8+3nUBH9/f2orr4AH58ZOHTIS2nto4KRn58PDw8PTeoRentTvlVT0zEm3HkyMjIctljdu5d22pROeXk5AODo0aMyr0QeeN8pw8LC0NLSAgCIj49HRkYGAJr2alfDX9xFxJCyECJgBGgC9+abgaYm8p92Bq1IWdgjKytLcVIWEyaQ//SXXwpzvNGkLFxCQVqMY0WPsKCgAAzDYPXqeAQEyOf4JCZcEqflQGr9eqCwcGxYrNbW1jqcxPn4AG1tIi9KABiGMcc/YxHeEcGyZctw8OBBAMCWLVvwwAMP4M4778RNN92ElStXCr5ApTF9+nTBpSwKC+mjEAYjHh5UBNq1y7k3oJakLGzR2Njouh6hSKSnA5dfTkNQrvhPi+rOw93MFVDmEsudR0l0dXUNqYYvWQKkpAxeN7SC0WhEdHS0yxarSqa1tQ67d0OVovKOwnnVT5061eGWpqQk2iVTAwEBASiQ2m5NIfD+E7388su48cYbAQCPPvoofvnLX6KqqgrXXnst/vOf/wi+QKUhhpQFN/Ai1C5MeDj1xXGT146iNSkLa6hBykKvB/z9gW3bnN+m4aQsRBF25gJFma/w3d3dY0JUPisrC+Hh4WZ3HoahxPD8ef7vcaXS0NCA8vJyzV97MjIuYty4GLS3a9titb+/n1cSFxen/MEXS5R67xAbXlf8oqIi7Ny5E3v27IHBYIBOp8MjjzyCjz/+GM8//7xgU8NKRoytkuJi+ijkzFBUFE3lHTxI6if20KKUhTU4KQsh3HnEJDGRpJLq6/n3NHLKBaLpEXIBo8zbhiaTCcHBwZrWI2xqakJJScmIQIphSKOxqEge1yAh4a49QlisKhnOnefqq2OV0v4rOFwSx7elqaaGNIXVgklpXoYS4fBf9OjRo5gxYwZ+9rOf4ec//zlmzZqFDz74QMy1jQn6+4GSEvpc6D5vhqG+yJ077Q/CaFXKwhJLKQs1TGBGR1Pm/cEHti3irOGolIXTcBGKjBXGlpYWydx55IITlbflzqPXA1dcQVXGigoZFigQZWVl6OjoUHwS5wqWFqsJCXp0dCiio0NwsrKyEBoayrulKSBAmfaA1mhqajIPv4w1HL7iP/bYY7jssstQWlqKuro63H777XjkkUfEXNuYgAvmPDwoOBCaceOAFStG12ns6+uDwWDQpJSFJXl5eaqTsuCm3z//3LEZEz5SFk5x7txgc6yMr5WMjAwkJSVpWo+woqICLS0tdt15JkygnYS6OokWJiBjRY8wOzsbgYGBZovVoiJAazEH19LkzLUnJASYOVOUZQkKVw3X4hS/IzgcMF68eBFPPfWUWbD6ueeeQ3l5udlr0Q1/vvgCuPVW+vzuu8Xr4YiLo63NXbuAvr6R31eCHqHYcHqEapzADAyk6feODsBer7XBYHBYyoI32dlU0urro8kcmV4vVVVVaGho0LSoPJ8kztcX2LQJqqxa5eTkCGqxqkQ4i1XLQCotDRgQGNEErlqseniQgYHSKS8vR2trqya86p3B4YCxsbHR3HQNUNOnn58fGhsbxViX5vnmG+Caa2gS9rrrgBdeEPd8sbE0gfvVV0Mf7+zsRHZ2tioDKT4YDOqWstDradvm229tDzrU1NSgpqZGnECqpISaKmtqSDRy925Zehi5CUy53HmkIi8vD56eng6bIQQGknj/Bx8oRh7TLu3t7Zp157HEmsVqVBTlXGoL8G3BWay60tKk9ICRS+LU0tIkBryakIxGIy5cuGD+x7IsMjMzhzzmxj5tbdSw3tYGrFoFvPceBQRiM20aXaRycwcvVJmZmYiKitK0lEVdXZ3g7jxy4OlJ/tPd3SMrxZZSFqLoEW7eTNNZU6bQ/rhMW8H5+fnQ6XRITk6W5fxS0NHR4VQS5+FB7Se7d6tjEMZgMAhqsapEbFmsMgxNuSs9SHIEzp3H1STOlfxPCm3EseDOYw9em6ArV64EOywluuqqq8AwDFiWBcMw6LO25+lmCJmZVKgJD6eLu5Tue3o9iXp/9hmwaFEDysrKcPnll0u3AIkRVY9QBvR68hX+9lvqfV2yhB53RsrCYTo76YQAWTJY7DRICadHOH/+fE2LymdmZiImJgbh4eG8fzYuDti4kd7jAQHSJKLOUFtbi6qqKqxatUrupYiGPYvVyZPJKlAM5Ssp4VqaXE3iNm927ud+/etf429/+xu6urpE23XgWpoWL16s6Wq4PRwOGMeqUKUYcDI3oaF0UZeaWbOA3l4WJ09mjRkpC631nMybBxw7RjMoqankzjNr1ixxAilLXSYZs+vMzExEREQoyp1HaOrr61FeXu5SEufvT+5RJhMNTCnt/sb1u2ndnceexWpICHmEqxmupWn+/PkuB1L79wMLFwIWO/cO8eqrrwKAOVisqqrCqVOnsHHjRpfWY4ngFqsqxeGAUcsDEVLDBYlyOgzFxpahqKgdFRXzoFULXk7KIj09XXPCzgwDLF9OW487dhQhPj5EPHceS5HalpZBa0AJaWpqQmlpKVasWCH5uaWCC6QmTZrkchI3bRq1vGRmkiuMkigqKhLFYlVJcBarc+bMGTWJS04GSksBtc78ZGZmCmax6uND0jp8A8bh29GJiYno7u4esRvqLJzF6lhwsrOHU3O5jY2N+Pbbb1FdXY3+Yc0yP/zhDwVZmJbhhsjkChg5KYsFC1KQl+eBY8eAZcvkWYuYZGdnIyAgwCxloUVaW5tRXV2Grq4FWLCAEWfS3sODRnE7OuhFK3GFz1JU3poeoVYoLS1FR0eHYNXwOXOobeHCBRp4UwJcEjdz5kzNJXGWOGqx6uUFnDwJXH+9RAsTkMbGRpSVleGyyy4T5HiJicIodXUP81T93//+h+LiYvzud7/jfSyttTS5Cu/byyeffIJbbrkFbW1tCAwMHFKGZhjGHTA6ABcwtrfT8ILU183c3FyzlEVCAumBdXVJ20spNpyUxfLlyzXbc8JVpC69NBx+fr5ob6dioCivp8DAwYBRYjgpiwULFkh+bqno7e0VxZ3Hw4Pe33191IoiNyaTCUFBQZp25+H0CB2phnOF5O5u14Y+pEYMi9XoaMdcyfjCxSTOBIycxarWWpqchXfD08MPP4zbb78dLS0taGxsRENDg/lffX29GGvUHJYyVVKr27e3tyM3N9c8gckwQHw8cOIEcPastGsRE2tSFlrDUspi4kQKFN9/f1BXW1BkKouPFSmLnJwc+Pn5IT4+XtDjMgywdi3NLckt4dLS0oKCggJNy+g4Y7F63XXKHU6yRVlZGdra2uyKyvOhsRH4/nt+P9M2cLGbN2/ekMeFqF5bWqxquRrOB94BY1lZGe6//35ND0qIjbf3oEi31AUbW1IWK1ZQJYKzKVQztqQstITlBCbX7O3vT8HBxx+LEBzIFDCOBSmLtrY2UfUIGQZYtAg4fRooLBT88A7DJXFadudxxmKVZYHt20VclMBwLU1CV8OdsQc8evQoAGD16tUAyB3J8muuj9GZirboFqsqhHfAuHbtWpw5c0aMtYwZGEae+y8nZWFNj5BhgPXrqT0tL0+6NQmNPSkLrWDLnScqCrjhBpJMrKkR8IQyvGDV7M7DB6PRiPj4eHHceSyYORP4+mugslLU01ilqqoK9fX1mK7VCTsM6hHytVjV66mI0NQk4uIExLKlSUgCAkj9gQ8HDx4EMBggfvHFF0O+NhqNQ752FNEtVlWKQ+nBxx9/bP58/fr1+NWvfgWj0Yi0tLQRb4wNGzYIu0KZeeWVV/DKK68Iri8ZFAQ0NEh3/3VEykKnoz6a776jnicBdxskw56UhRbo7OwcVY9QpyONz127SKhdkOs6VxWSMGAcC1IWtbW1qK6ulmQC08uLtj+7u6XtWbZWDdci+fn58PDwcEpRZNEi67atSoNraRJDj1CnI+tTPmIPXIC4aNGiIV9z+p5cQMlX7zMjI0M8i1UV41DAeM0114x47IknnhjxmBaFu++9917ce++9aG5uFrQfTuqCDadHaE/KQqcjy8ITJ0hYVk3JlaNSFmrHESmLgABgyxagqAjo7RXAp1ziF+xYkLLg+t2k1CP09aWK1gcf0GSuFJ1FBQUFYBhG0+48XBK3cOFCpwKpmBhK1JWeG4mdxOXnkxajo1y8eBEAzLtJXICYlpY25Gs+AWNNTQ1qa2s1LSrvLA7dVfv7+x36p7VgUUykvP/ybd718CCNv3PnSABYLTgqZaFmOCmLGTNm2H2ujw8wdSrwxRfAwHXVeSR8wY4VKYuioiL09fWJ484zCl5eZAt+4ID45+rq6kJWVhZSU1M1ncQZjUZER0e7ZLFaWCj9ECQfpLBYdbUAzfUwckE7FzA62odoabGq5ZYmZ9HuO1jhSBkwclIWfPUIZ84EjEYS/1U6nJSFI4GUWnFWymLNGqo0ujTwIOELdixIWXR3dyMzMxOpqamyTGDGxQFXXEHSXmKSlZWFiIgIRMlkJykFDQ0NKC8vd/naM2EC9R4rEctquJhJnLP2gLbo6enh9XxRLVY1gEMB49atWx0+YElJCY4fP+70gsYKUt1/W1tbnZay0Otpe3rcOKCqSpz1CYEzUhZqpLy83CkpC52OBpoSEsgS2qkJaolesGNFysJkMiE4OFjWari3N/DRR4BYamhNTU0oLi4eE0mcEBar6elQrOuWoy1NrrJvn+PDP9wENJ/30K233oqHH37Y6vcskzgtV8NdwaHfyquvvopp06bhr3/9KzKtlJuamprw2Wef4eabb8acOXPceowOIFXAmJGR4ZKUhU5Hci3ffUd9jUrEGSkLtcFJWaSkpDglZcEw1GrAMMAnn5ClIC8kesGOBSmLlpYWFBYWyj6ByTDAlVcCn38uvAwTN2Q3YcIETbvzlJWVoaOjA5MnT3b5WAwDfPih/HqZw+HceaRI4ry9Ha96Zw30S3ET0JzDy2iT+O+99x6ef/55m8cLDQ3VdEuTqzgUMB45cgTPPvssvvrqK6SmpiIoKAiTJ09GWloaEhISEB4ejjvuuAPJycnIyMjA1VdfLfa6VY8U919OysJVPUJO/Le7W3nSD85KWagNofQI580DZswgyzheuzUSvGDHipRFRkYGkpKSFKFHGBxMk9MdHcIet6KiAi0tLYIKOysNV5M4a4SEAHV1ghxKMLKzsxEYGCiJxSofe8BTp04BAN5991188cUX+OabbwAMBpANDQ0AgGXDfG+t7UJxLU1av/a4isOv8quuugpXXXUV6urq8PXXX6OwsBAdHR2IiIjArFmzMGvWLHcZlwfca7a5WZzjc1IWQjXvMgyJezc10RDFypXKmKB2RcpCLXR0dAgqZTFxImk07t9PwYJDLUliv2BBws5al7KoqqpCQ0MD5syZI/dSzPj4UNX5kkvohu0qnDuP1pO4nJwcwfUI09OdqP6LiNQWq9HRjssL3XTTTbjvvvvQ1tY2RGeR+/zQoUNDvi4oKAAwcmKaq4YnJydruqVJCHinReHh4di4caMYaxlTiF2w4d4cQusRBgfTv88+o+0sOYPGzs5OZGdnY8GCBZrOCg0Gg+BSFpGRFPQfPAg4JJ0q8gu2pqYGNTU1mpay4CYwp0+frjg9wjVrgK1bgVtucV2CKS8vD56enkgUIvpUKO3t7cjLy8OSJUsEvfbExQHZ2STArwSktlitrqZk1hHbeB8fH7S2tqKurg7Lly83i3RfffXV+MMf/oDq6moAgwHjl19+CWBkwMhZrM6dO1fA/4k2cZcEZYJz5huomgtKV1cXTCYT0tLSRKn6zptHb+iWFnnFZjMzMxEVFeWSlIXSEVPKIjYWuPpqICPDAVcYEV+wY0XKIj8/HzqdTpHVcG9vcgjiOVQ6go6ODmRnZ2venceWxaoQnD6tjCpjdXU16urqJLVY9fMDBuyhHSY8PBwGgwHt7e1YOCDi+MQTT+C1114DAMycORPASFcYYLClSeui8kLhDhhlgisWiTEflJWVhfDwcFGlLCIigIoKchPp7RXtNDZpaGhwWI9QrUihR8gwwPjxNJ04qo8494IVIWAcC1IWYidxQuDjQ8GKK5qdmZmZiImJQXh4uHALUxijWawKQXw8UFYmyqEdRuiWJkcJC6PWCGfw9fXFyZMn0dfXhwcffHDI44sXL8auXbsAYIhcF2exqmVReSFR5pVrDCDW/VdKKYupU0mr8fvvRT/VEISUslAynJSF2HqE/v7kCqPXjzKhyL1gGxsFLSuPFSmLzMxMREREjOrOowSWLqX3szMC0vX19SgvLxdV2FluHLFYdZXFiylolBO5LFY9PIDcXNeOodPp8MILL4BlWfz9738HAJw8eRK9A5WN8vJyAIMtTe5BF8fR7hVa4YhRYZRDymLyZGDOHOCrr4DOTklOKaiUhVKRUsoCoC3JuDjgyy9JQmkE3NYbywo6Km8ymTQvZdHU1ITS0lKkpqbKvRS76HQknuzhwW9blLv2TJo0SdNJXFFRkeh6hJ6eNIQkF3K68+h0QF6ecMe7//77wbIsdu/ebX4sISEBDMPgo48+smux6mYoTr8auru7YTKZzFG7G36IETDKKWUxZQqwfbv4zhFiSFkoESmlLCy56ioSaR/oFx/Ey4sMqgHBXrTNzc2K0CMUE2fdeeTExwfIyQH4+C+Ulpais7NT0+48XBIntjsPwwBdXSRjJgdyW6yKMVh/zTXXgGVZs/QOANx4441YsGCBubfRjX14B4zt7e2444474OfnhxkzZqB4wMvo/vvvx9NPPy34ArUKFzB2dgqjgSa3lEVCAlmN6XTiBo25ubmCS1koDU7KQo5AimHo7xgUBBw6NExEWMAsZ6xIWZSXl6O1tVV11fDUVEoaKivtP3esJHGcxWpMTIzo50pLk8dXurm5GcXFxbJWw6+/Xrxjz58/H/39/di6dau5L3zNmjVgGAZvvvmmeCfWCLwDxkcffRTff/89Dh8+PKSHY9WqVfjwww8FXZyWCQignjFAmIKNEqQsIiNpynL7dmp1E5r29nbk5uaOiQlMKaUsrOHjQyLCe/ZYtCwK2HjLSVlo2Z2HS+JSUlJUp0fIMDRBHxZmf3I6JycH/v7+iJe78U5EWlpanLZYdYapU6Vr8eGwtFiV051n+3bn3W6ys7NRZmdiqKysDMHBwWhubkZdXZ05OL7jjjvAMAx+//vfm20H3QyFd8C4Z88evPzyy1i6dOmQN05KSgryhGw+0DgMI1zBRklSFoGBwMaNwOHDwltciSlloRSqq6tRW1srqZSFLWbNAhYupK2xri4I9oIdK1IWQrnzyIWXF1UY9+2z/Zy2tjbk5eUp4tojJlwSJ5U7D8NQX7iUKMVi1cPD+WB56tSpo+4+cdXwGTNmwMPDA2FhYbh48SI6OzvN+tJ/+ctfoNPpcNNNN6HHVZ0pjcE7YKypqbEq19LW1ibKBePo0aO4+uqrERcXB4ZhsGfPniHfZ1kWf/zjHxEXFwdfX1+sWLECBoNhyHO6urpw3333ISIiAv7+/tiwYQNKS0sFXytfhAoYlSZlERICXHMNkJlJ/XBCILaUhRLgpCymTZumGD3C2FiqFm/bBvQGDgTqLr5gCwoKNC9l0dHRgZycHNUHUomJVG3Ozrb+fYPBgPj4eM2789TX14/qUSw0DEPqBVJtSyvJYnXSJOeKDU0Dw3iWPfwtw4wGbLU0eXt7Y8+ePejr68NDDz0EANi6dSu8vLywYMECNIvocKUmeAeM8+bNw6effmr+mrsYvvHGG1i0aJFwKxugra0Nl1xyCV5++WWr3//b3/6G559/Hi+//DJOnz6NmJgYrF69esgL5cEHH8Tu3buxdetWfP3112htbcVVV12FPjlVpyFMwKhkKYvkZODAAdc1xaSQslACcklZ2CM2lrzEq3tdf8F2dnbCZDJpetAFAIxGo+DuPHJx+eVAUtLIqg/nziNlICU1lkmc1NXwlSspWJcCrqVJCaLyzhbk//3vfwMAHn74YQCksRgUFIQXX3wRwGBL02jXHp1Oh+effx4sy+Kll14CAHz77bcIDg5GREQESkYVqx0DsDw5fvw4GxgYyN51112sj48P+8ADD7CrVq1i/f392TNnzvA9HC8AsLt37zZ/3d/fz8bExLBPP/20+bHOzk42ODiYfe2111iWZdnGxkbW09OT3bp1q/k5ZWVlrE6nY/ft2+fwuZuamlgAbFNTk+v/kQHWr2dZgGX/8x/nfr6/v589cuQIm5mZKdiahKajg2VLSli2q8v5YxQWFrIHDhxge3t7hVuYwujq6mI//fRTtrKyUu6l2ObXv2ZZgG2980GnD3Hu3Dn2m2++EXBRyqOuro795JNP2Pb2drmXIhh1dSz7/vss299PX/f397NfffUVm52dLe/CRCY3N5f94osv2L6+PsnP3d3NsocOiX+ejo4O9pNPPmFramrEYvlHkAABAABJREFUP5kDnDnDsllZ/H8uNjaWBWB+3/385z9nAbAHDhxgWZZlT58+7VSM8tFHH7EAhvw7duyY4PGAGuA90rZ48WKcOHECzzzzDCZOnIgDBw5g9uzZOHnyJNLS0gQMZe1TUFCAyspKrFmzxvyYt7c3Lr30Upw4cQI/+9nPcPbsWfT09Ax5TlxcHFJTU3HixAmsXbvW6rG7urrQ1dVl/porSff09AjW1xASogegw759/di0qQ98+4zLysrQ3t6OpKQkxfZa6PVkKL9rF4P0dBZ8VTd6enpgMBiQlpaG/v5+9CvBM0sEjEYjQkJCEBYWpti/pa6nB3oAFYZaMHk94DtfxekRLl++XLH/R1dhWRYXLlzAhAkT4OHhoZn/Z2AgkJzM4ORJYN48FsXFxejt7cW4ceM0838cDicqP3v2bPT19cmyI1VYyKC7m4WYxfiMjAxERkYiODhYEX9LT0+SeuW7lIqKCgAwv++4XclLL70UVVVVqKiowIoVK3j/H9etW4fu7m6cOXMGixcvBgAsW7aM3+I0Aq+AsaenBz/96U/x2GOP4e233xZrTQ5TOaD5MFwvKjo6GkVFRebneHl5jRiUiI6ONv+8NZ566in86U9/GvH4gQMHBBOm9fUdDyAd27fr8OWXXbjtNiOWLy/lfXE4cOCAIOsRE09PBv/9bywuuaQGAQH8L0rnzp0TYVXK47PPPpN7CSNhWUzavRsz3nkHANA+QQ/Dtwdw4oQOQUH8xeIOHz4s8AKVR1NTE3JycuRehqCwLNDTo0NpKeDtTYnb/v37ZV6V+Jw+fVq2c1dWhmHPniZ4e4sfrCrl2tPVpUdvL4OKCsc1nlmLpsfh/4/PP//c/PlXLk4S7dmzB1VVVXjggQfQKfUYuwLgFTB6enpi9+7deOyxx8Raj1MM70dgWdZuf5S95zz66KP4xS9+Yf66ubkZ48aNw5o1awSblFu3Dli7thePPKJHQYEvXnhhDkpKZuH99+1fHEwmE+rr67Fw4ULV9IJddRUZyxcWks6bPdra2nD06FEsXbpUs1p97ICYbHBwsGJ7wXTPPgv9QLDY9/OfY/ozz2CaTo+9exlERwNz5tjvUK+oqIDBYMCKFSs0q9XX09ODI0eOYMaMGZILrktFZyfw979XYOnSEixePE811x6+NDc34/jx41i+fLmsgutr19LgixgKWyzL4uTJkwgPD5d9MtqStjYgP5+0KB3l2LFjAIDbb78dV155pXl3MCwsDGlpacjNzcXy5csFE1y/7rrrEBERIcix1ATvK/emTZuwZ8+eIcGUXHACqpWVlUMu0NXV1eaqY0xMDLq7u9HQ0DCkylhdXW0uL1vD29vb6qSqp6enoFNkmzdTIPX008Cf/gR8/LEOHh66UauMbW1tKCwsxNKlS1UnS+LhQUMwvb3AvHmjPzcrKwtJSUmaGBywRUVFBVpbW7Fw4ULZpxOtwrLA66/T5//3f9D/7nfgLrmbNpG4d0cHCX3bore3F1lZWZgxY4ZZLFeL5OTkIDAwEOPGjdNsINXZ2YLIyFw0NCxQ3bXHUViWRVZWFiZOnCj79Hd/P8nrbNki/LFLSkrQ2dmJadOmKSqJ8/ICiouB2bMd/xnOM/rhhx+Gp6cn3n//fQA08JqdnY309HRBByYVea2WAN5T0pMmTcKf//xnbN68GU899RT+8Y9/DPknJePHj0dMTMwQa5/u7m4cOXLEHAzOmTMHnp6eQ55TUVGBjIyMUQNGKfHxAR55hD7v7gbsTfCrWcpCpwPWrwd8fS0Eoa0gh5SF1ChJysIm2dlAURFdxR98cMi3GIYmaAHg889tew+rXY/QEdra2mRz55GSjIwMLFoUgSuu8BfEoUqJyGmxOhxvb+rlE7p1u7e3F0aj0axHqCR8famgwIePP/4YAMxqIc8//zwAYOXKlbJYrGoV3q+Uf//73wgJCcHZs2dx9uzZId9jGAb333+/YIsDyCYtNzfX/HVBQQHOnz+PsLAwJCYm4sEHH8STTz6JyZMnY/LkyXjyySfh5+eHm2++GQAQHByMO+64Aw8//DDCw8MRFhaGX/7yl0hLS8OqVasEXasr+PmR+0trK1BTY3sLora2FjU1NVi5cqW0CxQQhqEt6fPnSaHlssswpKLKSVlMnTpVs1UMgGQfPDw8FCFlYROuR23ZMhKGs0JQEBAfD+zeDVx77dC/JSdlsXjxYk0HUgaDAQkJCapM4hylqqoKDQ0NmDNnDjw8gHffBa67zubLQpXIbbFqjZUrKWDU8S7v2CYnJwe+vr6KdOdhGNp5c4ULFy4AAOrq6rB8+XJNX3ukhHfAWFBQIMY6bHLmzBlcdtll5q+5rfDbbrsNb731Fh555BF0dHTgnnvuQUNDAxYsWIADBw4M6Xl74YUX4OHhgS1btqCjowMrV67EW2+9JaqBvDNERVHAWF0Nq9PE7IB1k1b0CGfOBE6cAE6fBubPH3yce40pTY9QSDg9QsX3oHIBow01AY70dNLdbGig5Id7eWpJj9AWnB6hkhJQoenv78fFixcxffp0cxK3di25wFx3ncyLExAlWKwOx98fMBrpPSYE7e3tyMvLw5IlSxR77dm+3XFP6ZqaGgDAJZdcMuJ7clusag0BcxZxWLFiBViWHfHvrbfeAkBVzT/+8Y+oqKhAZ2cnjhw5MsI43cfHBy+99BLq6urQ3t6OTz75RJHbY5GR9LG62vr3i4qK0NfXhwkTJki3KJFZvBiYOxe4cIGy6K6uLphMJqSlpUEnZEqtMIxGI6Kjo5XdON3VRR6PgN2AEaBKY2cnucK0tFB2X1lZqUhReaHgAqmpU6cqxp1HDPLz86HT6YZUw6OjgSuvhGa2ppVksWqJnx+QkSHc8dRgscpH+ea1114DMCjYnTHwy1q0aJEiLFa1BO8K4+233z7q9998802nFzPW4RwXrQWMnCbYzJkzFVcZdRUuLtyzB0hOzkJ4eLhV+0mt0NDQgPLyclzONQAqla+/BtrbyerFwZHFuDjqUc3MZNHefhGTJ0/W9KBLUVER+vv7NZXEDYdL4ubPnz8iifP1pQThsssGE161YjQaFWWxyqHXkw5mXx997gqcxarSq+ETJ9K8nSNxO9eveMMNNwz5+v7779d0EicHvEs4DQ0NQ/5VV1fjq6++wq5du9DY2CjCEpVFba14xx4tYDSZTAgODjZPhmuN9HQgMbEFOTkVSEmZIfdyRINrK5g4caJgep6iwW1Hr1nj2JV7gPBwIDq6GKdOBcLXl6dSu4rgkrjU1FRNV8MzMzMRERGBSBsR4bp1tDXtjP+vUqivr0dFRYViq+FXXTX6kKAjsAMWq1OnTlV8S9OECY4PvnBxB9cq8d///hcAcL2je9puHIZ3hXH37t0jHuvv78c999yj6Syb4+BBauwXI5vmAsaqqqGPt7S0oLCwEJdeeqmitkqEhGVZdHVdwPjxSdi7NwDXXUeDuVqjrKwMHR0dmDx5stxLsY+D/YvD6enpQWZmJrZsScexY3pceimQkCDC+mTGZDIhNDR0hHGAluDceSz7yIcTGEhDCp2dVHFUG1wgNWnSJMUmcTU1wHff8X4rDqGoqAg9PT2quE9fuECDkXzeWr6+vkNmLLS2E6cEBEmLdTodHnroIbzwwgtCHE7RbNgADBsOFwxu8r+8fOjjGRkZSEpKEkwwXIlwUhazZk3C4sU0cavmioU1ent7YTAYkJKSojgpixFUVNBVm2GA1at5/Wh2djYCAwMxfnwsbriBkqsB4yXN0NzcjMLCQk3L6HDV8AkTJtgVr/b1pXZXiWciBaG0tBQdHR2YxNe3VEIiIylodBYuiUtNTVVFIOXnR90wjlBcXAyABgk5+RwlTn9rAcH2UfLy8tDLVzxJhfj7A1dcAZw7R439QsLN4ZSWDj7GSVlouXl3uJRFUhJVccvKSPVfK3BSFglqKLdxdpNz5gA8BnNaW1tRUFBgDqQ8PMgb9uJF4NQpkdYqMVxFKjk5WbMORABQXl6O1tZWh6vhK1cCR4+Slqxa4JI4JeoRWsIwpCThbBJtMpkQFBSkmpamlJTBHTd7jBs3DizLYtu2bebHysrKFGFfrDV4v0OGO7ywLIuKigp8+umnuO222wRbmNJJSqIq2ObNlA0JARdHcAEjN4E5bdo0TesRWpOy8PSkLekdOyh4VPt9WQ1SFkNwcjvaYDBg3LhxQ6QsOLH2U6do8NrLi1dLpOKoqqpCU1MT5s6dK/dSRINL4lJSUhzWI/TyIkeSvj7HBxbkJjs7G/7+/qqoSIWHAyUlAF/Fn5aWFhQUFKiqpam7G6iro15GR2BZFnFxcbh48SKeeeYZvPPOO/jRj36EH/3oR+bXsRvX4V1h/O6774b84wQyn3vuObz44otCr0+xhIfTLEBbm3Bbp1yFsaKCZAU4KYvk5GRhTqBARpOyiIqiZu+iIvVvT6tBysJMfz816wK8Asbq6mrU1tZarYYzDLBoEdDYCHzyiesN/HLBufNoPYlz1p3H15d67c6fF2ddQsK58yhNRscWnp70u+WLwWBQXUtTdzcFx45SWVmJ5uZmTJ06FW+//Tba29sxceJEAMCMGTOQmJiINi1tV8kE7wrjoUOHxFiHKomJIQ2yDz+kSqOrOxqRkXRR6OkBCgu7kJ1tXcpCS2RmZo4qZREeTv8++ghYsoTX7qhiUIuUhZlz50gOIDAQWLjQoR/h3HmmTZs2qpRFdDSJ0u/dC2zcKNSCpaOgoAB6vV7zSVxOTo7T7jwLFwIffEDVISVrJqvNYjUoyPG+Pg7OYnU2H2NmBeDvT7sRjmDNYtXX1xe5ubnIysrC9OnTUVJSgoCAANx3332SWxhrCd6RSEdHB9otXrVFRUV48cUXcYDreRpj+PoC8+ZRQOMqOt3gtvTx48WjSllogfr6epSXlzu0XbByJfDZZ+Qkoia4fjdVufNw29ErV1IG4wCFhYVgWdYhd56UFJJiKSrifwOUE86dR8uDLoDr7jw6Hbm/+Pgot5LMufOozav+xhsd322xTOLUVg0PCaEdPEfgWpqsWaxOmzYNLMvi3XffBQC89NJLYBjG7D3thh+8A8aNGzfinXfeAUD6R/Pnz8dzzz2HjRs34tVXXxV8gWpg4kQahKmrc90kntsBysxsHuFYoyX4SlkEBFB/lJ8fUFkpwQIFgpOy4LZHVMG+ffTRwe3o7u5uZGVl8dIj9PICvL3JAqypydmFSktmZiYiIyM1n8QJoUfo4wPk59MQjNLgAilVJXED5OcDZ8449tyCggIwDKPaaviOHfaf09nZiezsbLtJ3C233IL+/n7ceuutACiOYRgGhYWFAq12bMA7YDx37hyWLVsGANixYwdiYmJQVFSEd955Z0yXev39aVjl889d67fz8KAf9vOLsStloWackbLgru1ffaUO+Q61SVkAAF56iRxeGIayIAfIyspCWFgYbz3CmBiSqaqoUH6PamNjI8rKyjBjhvZF5YVy55k+nZKBsjIBFicgarZYjY937NrX1dXFO4lTGo7YA/KxWGUYBv/73//Q0NBgVjcYP3485syZg241jfbLCO9XUnt7u/mXfeDAAVx77bXQ6XRYuHAhirQmtsaTSy6hHrv8fOd+vqsLOHGC7pwbNmjXGq+3txdGo9EpKQtvbzKlLyhQfpChNikLbNsGPPAAff6XvwAOVCaam5tRVFTkdCAVGgpMm0YtHXya3KWEjx6hmikpKUFXV5egeoRXXkm92Uq5H1tWw1WTxFng4wM4onKUlZWFiIgIVVus2utu4SxW+V57QkJC0NzcjNOnTwOgIpi3tzf+9Kc/ObvUMQPvgHHSpEnYs2cPSkpKsH//fqwZaDSorq5W1RSWWCxYQH2I587x/9n9+/vQ2alDVFQvZs50rHdMjeTk5MDPz89pKQtPT+Dyy0lX2mAQeHECwUlZqGUCE7t3AzffTFH43XcDv/mN3R/hAqnx48e7rEe4bh0VNq3ZYspNeXk52traMGXKFLmXIho9PT3mJE7IQMrLi+anPvtMsEO6BGexqmZ3noQEoL7e9vebmppQXFys+mp4UpLtooAQFqtz584Fy7LmndE//vGPYBgGhw8fdnLF2od3wPiHP/wBv/zlL5GcnIwFCxZg0aJFAKjaOGvWLMEXqEa4i+RAAuMwb77ZCgDYskWvCg0zZ2hra0NeXp4ggVRaGpCTQ6LQSsNgMCAxMVEdSdTevcANN9CEwq230ra0A38bSykLV/H2ph7V4GDAaHT5cIKhFmFnV8nJyUFAQADi4uIEP3ZcnDL+rpzFqtqHltrbgYwM69/jesMnTJiAgIAAaRcmMMeP296W5lqahLBYve+++9Db24u1Az3bl112GRiGQdVwj143/APGzZs3o7i4GGfOnME+rjkewMqVK8eENaAjcG5qer3j26YNDR04eJAypRtvVO/FzB5CSlnodCTNkpSkrD44TspCFROY+/bRSGtPD41g/ve/9MK1gzUpC1fR6ynZKiwEvv1WkEO6TG5uLnx8fNThzuMkUugRLl9OMjtyTU1zgZTa9AitkZAw0j6Wg7NY1UI13JY9oCstTbbQ6/XYt28fKi0mKmNiYnDFFVegT6mj/jLgVDdsTEwMZs2aBZ1Oh+bmZuzZsweBgYGatq/jC8MAs2eT0KojN7///rcM7e2eiI8ngWMtUltbK7iUBcOQPll+PqnByB00qkrK4osvgGuuoQaz664D3nnHYTHR/Px8eHh4WJWycAWGoe1pnc51xQFXaW9vR25uruorUvbIyMhAQkLCEHceodHrgaoq4MgR0U4xKlqyWNXrrWuYDrdYVTvz5ll3UXO1pWk0oqOjwbIsvvrqKwDA/v374eHhgZdfflnwc6kR3gHjli1bzL+8jo4OzJ07F1u2bEF6ejp27twp+ALVzqxZpB34/fe2n1NfX49PPqER4Ouvp5ul1uB6TsSSsliyBIiNlV9yp2BghFHxUhaHD9OIclcXfXz/fYc1Fzk9QrEqUgwDzJ0LZGXJK8viqh6hGqipqUFtba0k1fDEROpRbW4W/VRD4JK46dOnKz+Jc5Dvv6e2J0tyc3NHWKyqmba2kbq7nMWq2EncZZddBpZl8fjjjwOgbWuGYXD27FnRzqkGeIcmR48eNcvq7N69GyzLorGxEf/4xz/wf//3f4IvUO0wDAmQTptGW23DYVkWZ84Y8O231Dt0ww3Srk8qpJCy4KbUd+wAOjtFO41NOCmLtLQ0ZUtZfP01eS52dNAY67ZttBfsIHykLFyBkwI8eVLU01ilrq4OlZWVmvag5bzqp06dOqo7j1AwDEl7Sj2czFmsCl0Nl5PAwKGqApw7j2qG7ByguXlkUCy1xeof//hHdHV1mZ1y5s6di6CgIDSpRTxWYHjf1ZqamswZ9759+3DdddfBz88P69evR05OjuAL1AIMQ/fjvDzg2LGh3yspKcHx44Fob9chMZGmrLVGd3c3MjMzBZ/AtIanJ23pb9vmmI6XkKhCyuLiRQoS29ook9m5kyZOHMRZKQtnWb6cWjuklFGyrIYLoUeoVIqKitDf3y+pHmFoKA2/VFRIc76uri5zNVzRSRxPxo0b+n4wGo2jWqyqEV/fofaAnMWq1Emcl5cXzp49a949amlp0UwVly+830Hjxo3DyZMn0dbWhn379plldRoaGlSnmi8lDENSMAxD92pgUMqip4cEpyZMcGg4VXVwUhZS6RHGx9PWflsbUFMjySnVI2XxwQdASwtlJnv2DKqhO4AQUhbO4O1Nf0dXRfEdpbi4WH3uPDzhkjg5Aqlp04BDh6T5W2ZmZmrSYjUoaNAVTCh3HqUxeTIli8DgtWfq1KmyxRnJyclgWRa7d++W5fxKgPeV4sEHH8Qtt9yChIQExMbGYsWKFQBoqzotLU3o9WkKhgGWLqXJr8OHgexskrL48Y+DoNPRY999J/cqhUUuKQtfX5rf2LdPfEFoVUlZcNvISUn0S+JBWVmZYFIWfJk/n5xh6urEPQ/nziNFNVxOsrKyEBoaKoseYWAgkJ4u/g5AY2MjSktLNWuxevgw0NlJgZSjFqtqoqEB+PJL+lxJ7jzXXHONe0vaUe655x6cPHkSb775Jo4fP27OTidMmODuYXQQcj7owEcfNSE1NRWTJzPm3sWnnpJ3bUIjp5QF5z8ttuSOqqQsuGAvN5fXj3F6hCkpKbLpEc6eTTHu3r3iTVBnZ2cjMDAQsbGx4pxAAXDuPHIGUqmpwPnz4snsWCZxWnXniYsDzpwpF9ydRyl4e9NmyFhJ4tSAU3sRc+fOxfr161FWVobe3l4AwPr167FkyRJBF6dlQkIuYtGiAOh0IWBZ4NFH6fEdO2g6VAsoQcrC25uqU6dOAWIMuKlOyoK7seTk8Iqic3Jy4OvrK7seob8/ORbu2SN8EtDa2oqCggJNy+hwgVRycrLL7jyu4ukpznsSIHee1tZWWarhUpGS0ovqaqOsSZyY+PjQroLqLFY1jFNe0nfccQf8/PwwY8YMFBcXAwDuv/9+PP3004IvUIvU1NSgpqYGixdPgckEHDxIGfeGDXQT/Otf5V6h63ATmErRI1y4kOy0zp8X9rh5eXnqkrLgGmVbWhxu8OSkLJQygZmaSv3ATU3AQL4qCAaDAePGjRNVj1Buqqqq0NTUJIg7j6tccslI2RQh4JK4lJQUdSRxTlJeno3KykhR9AiVgE4HREa2qstiVePwDhgfffRRfP/99zh8+PCQ5tNVq1bhww8/FHRxWmS4lMW8eWSblZsL/Pa39Jx33wWKiuRdp6twUhZK0SPk3HdSU8mDWogtzY6ODmRnZ6vrYubtTYJ4AFUZHUBqKQtHCAmhfsYdO4TphauurkZdXZ0mhJ1tYenOo4QkTqejQf2B4VPByM3Nhbe3N8ZxUyEapK2tDQUF+fDwmAxAJdceJ3jvvQrBW5p27NiB7OxswY43luAdMO7Zswcvv/wyli5dOuQmmZKSgry8PEEXp0WsSVksWECFn+5uYOVKqpo884yMi3QRJUtZeHjQjUqIQEO1UhbcNp0DAaNcUhaOMHEitRtcuODacThhZ6n0COUiPz8fer1eUXqEDENOWI2NwhxPi3qE1uAsVseP9zerbmiNqqoqtLa2CprEZWVl4frrr8f69esFO+ZYgvfdvKamxqrOXFtbm6bfoELASVmkpqaOCKT0erJBuvxy+vrf/5bftcRZlC5lkZpKtlOtrc5vaapayoLrY7Qz+ML1u4nlziMEEybQMMyXXw7VbONDYWEhWJbF+PHjhV2cgujs7ER2drYi+zMvuwz45hthjjVW3Hk4i9VVq3gpY6kGLonbuDFM0Go452i0d+9ewY45luAdMM6bNw+ffvqp+Wvu4vPGG29gkVZNkAXCZDKNKmUxZw7pBy5YQDe/F16QeIEC0NTUpAopi/HjKUB//33+1Q0ukFKtlIWDFcaioiJV6BEyDDB1Kom1d3Tw+9nu7m5kZWVZTeK0RGZmJiIjIxWZxEVFAatWweVKmaqTOAfhAikuiWtooB54rVFQUACGYeDnNw7d3cIc85uBrIRhGHMP7549e9yGIzzgfYV86qmn8Lvf/Q533303ent78fe//x2rV6/GW2+9hb/85S9irFETNDc3O6RHOHky8JOf0Of//CcNaqgFTlx1/PjxqpCy8PamQaNPP+Un71FaWoqOjg71Slk4UGHkpCxSU1NVIWWRkEC2czodP1vIrKwshIWFyaJHKBWNjY0oKytTtKh8Z6drk+/ctWfy5Mmad+ex1CMMDVXXPcIROIvV1NRUVFbqBNtyX7hwIQByVwNI+WHTpk1YvXq1MCcYA/AOGBcvXowTJ06gvb0dEydOxIEDBxAdHY2TJ09izpw5YqxR9fCVsrjjDmDKFNoyffllCRYoEJyUhSr0CAcICQFuvpm2/x1pvuf0CGfMmKFeKQvLCqONO7QapSyioqjC+OGH9N6xhxL0CMXG0p1HyUmcvz85lzgrKVZSUqJZPUIOy2o4l8QxDE2bawlLi1VfX34JoC32798PAIiNjTVPlXP3qc8++8z1E4wReAWMPT09+PGPfww/Pz+8/fbbyMjIgNFoxLvvvut2eRkFvlIWDAM88QR9/vzzwjWEi4mapSwYhoKN06eBjIzRn5udnQ1/f391S1mMHz+qtE5LS4tqpSxCQsgqm3OIsIVlNVzx7jwuUFZWhra2NlXoES5aRBqbfKuMnMWq1oWdOYvV4dXwyEjtVBmbmppQUlJiroZfeikghIb+FVdcAYCMJADgrIUAKNfCsHfvXuTyNDQYa/AKGD09Pce0j6IzcFIWfPUIN2+mQlBTE/Dzn4vniCAUapey8PSk37mPj+2Mtq2tDfn5+aoMpIbg40N7uACQnz/i2waDAYmJibK48whBZCS1GhgMtpOtyspKNDc3K0KPUCzUVg339ATKymhqmg85OWSxGhcXJ87CFMBoFqttbYDJJNPCBITbibNM4rKyAKPRteN+8MEHAIBZs2aZh6Hmzp0LgLb4AVIQuPrqq81Wx26sw3tLetOmTdizZ48IS9EmBQUF0Ov1vPUI9Xrg97+nzz/9lPyQxbS3cwWtSFnodNTe9/331Eg+/PfNSVmEhITIsj5B4QL7srIhD1dVVaG+vt48TahWGAaIj6e+uOHVF0s9QrVVw/mQm5urCHcePkycCGRnO74NySVxSpz+FgoukLKlRxgXN+JtrEqsWax6ero+DHXzzTcDAL7++msAwJcD2w/h4eFmwwVusM+9PT06vNPOSZMm4c9//jNOnDiBOXPmjOiLuf/++wVbnNrp7OyEyWTC/PnznbqY3Xwz8H//R61mb78NzJgBXHMNaQkqCa1JWSxYAJw5Q/p+XH8QJ2WxcuVKeRcnFNyWemmp+SFuAlMp7jyuEhICXHstVemDgykJA6ia4OnpqSg9QqFpb29Hbm4uFi9erKpAihPYd1TuKiMjAwkJCdpI4mzAWazamhHw8QGuvlriRQmMLYvV0FDXdtf+8Y9/AADWrVtnVrRYtWoVAOqVBIDvv//e/Pz09HTnTzYG4B16/Pvf/0ZISAjOnj07pA8AoHF1d8A4iKtSFh4ewB/+APzgB8A//gF88QWwaxdJ7yjlHsBJWWgmkBpg7lyqMB46BCxc2K94PULecFUni9IEJ2WhFHceIQgKAgIDga1bSRQ/KIiSuIULF6oqkOKL0WhEXFycKpO4mBjalp48mQIGW1RXV6O2ttYcAGgRLomz585z8iTpkaq0iwS5ublWLVZddel84IEHAAAfffQRAGD79u0AgBkzZiAiIgIAMHPmTACUSLoZHd5b0gUFBTb/uX/hgwglZXHTTaQxV18PfPYZsH49WaIJYYfmKlqXsmAY2iL75z/r0NrKDnHnUT3DKoyWUhZa0yNkGGDjRmD/fuDcuUxER0ebbxZapK6uDpWVlapuKxg/npI1W4wldx6dTme3Gh4UpN5t6dFamnp6gKNHnTvu7373OwDAj3/8Y3PVcsuWLQCAU6dOAQCODhw8MDBQ08L9QuHSnYFlWbBKbayTES6QmjBhgstSFno9VRkB4LnnaKumpUU4D11XGAtSFjEx3YiP/x5paSloa9PQBCYXMA7cZSylLLSInx+wbl0DiourERqqfRmdKVOmqDqJi4ykIritrWlrFqtag4/FalKScnvc7TGaxepoQ4ijwbIsnnzySQC0KwoA//znPwEAK1euNA/VXHrppQDgno52EKcCxv/85z9ITU2Fj48PfHx8kJqaav6juCE9wra2NsH0CG+4AZg2DWhoAF56ibLvRYtoClQuxpKURWKiH6KiorFnj3qz+BFYbEk3NTWhuLhY0cLOrsKyLIzGi5g+PQnffOOL4mK5VyQOxcXFqnDncYT580nmanggNJrFqpbg09IUHk7/1IY9dx6GAZYu5X/cBx98EABw3333mV8j9957L4DBwRZueHfy5MmaTZSFhve77bHHHsMDDzyAq6++Gtu3b8f27dtx9dVX46GHHsLvubHeMYwYUhbDq4xNTaRXdsklwIEDznvousJYk7Lw82OwZQtw7hzQ3y/3ygRgoMLIlpYiY6AarnU9wo6ODsyYMQnXXw9UVam3ImMLzp1HS0lcayuQmTn0saysrFEtVrVAY2MjSktLeSVxX32lfPk1S7hquD2L1epq/sfmxPhfeukl1NfX449//CMA4JZbbjH3gm7atAkAcObMGf4nGKPwDhhfffVVvPHGG3jqqaewYcMGbNiwAU899RT+9a9/4bXXXhNjjaqC0yMUWspiyxZg+nTSlfv73+kxhqHHtm+XNmgcq1IW3DRiQQFJ76iagUCf6epCZ3m5qtx5+DI8ifPyAubNo94oLe1EZWdnIzAwELFCKB0rhAULhjowWbrzaP3aw7elKTqaEiG14GhLU3Y2/2Pfeeed5iAxPDwcf/rTnwAA77zzDoDBbeply5apVm9WDngHjH19fWbRS0vmzJmDXke1EDQKJ2Uhhh6hXg88/jh9bun+Mm4cyVAwjHRBo8FgGDNSFtOmTRvxvQkTgPJymkxULd7eYAe2uqYHBmpajzAnJwd+fn4j3HmWLKGKsSOWkEqntbVVk0mcpyewbh1QUcHfYlWtcBarfN155s4lKSk10Nvba25psrcTxzDO7QY8/vjj5qARoCCS256+8847AQAHDx7kf+AxDO+A8dZbb8Wrr7464vF//etfuOWWWwRZlFoRW4/w+utJi7GpCXjxxcHHo6NpEGbbNvLSFRNOj1DNE5j2sCdlwTDAFVdQX2l1tXq3qLsGJoVj1fofcID29nbk5eVZDaQ8PIDrrtOG8DHnzhPsqg6JAmEYkhQrLORnsapGXLFY9fcHzp8XZ11Cw1msOtLSdMMNzsvIPf7449i8eTMA4I033kB9fT3+8pe/AACuv/56TU/Yi4FLQy8/+clP8JOf/ASpqal44403oNPp8Itf/ML8byzBSVnYat4VAp1usMr44otDbc/Cw4FVq6iPRSz6+/tx8eJFt5QF6AIWGgpUVgK7dzsuNKwUOjo60DTQs8iUl8u8GvEwGAyIi4tDqA1BP72eqlinT6u3zaC6uhp1dXVWq+FagGGAJUv6sH17mWZE5W3hisWqXq+Oajlfi9XDh2ng01m2b98+ZHuam7XgLAPdOA7vgDEjIwOzZ89GZGQk8vLykJeXh8jISMyePRsZGRn47rvv8N133+G8WlIdAZBSyuK664C0NKoyvvDC0O/FxgJXXkkOJa7aKVnDLWUxkvR0Gj7Ky5NgcQJiNBrBcDclC7cXLVFbW4uqqiq7SZxOR97TtbXyS1XxZazoEfb15WPWrBbExibLvRTREMJiNTwc6O4WeGECw9diVacD2ttdO+fw7ekf/ehHmhkMkxLeY7yHRlNTHaNIKWXBVRk3b6Yq44MPDnVDYBhySti5k2zRhBp85aQsZs+erXkpi4iICF7uPJMmUY/Nnj3A5Zcr322Bk7JIS00l6yC178daget3mzp1qkPuPDodOcEUFdHgwPz5EixSAAoLC8GyrKZFhzs7O5GdnY2pUxfg008ZXHed3CsSByFamtauVfZuhzMWq7GxwtjhPv7448jIyMCOHTvw1ltv4bnnnlOlE5KcaPfOLxFySFls2kSVreZmGoAZTlQUNYo3NwvXX2cymcaMlAUnycAHhgGWL6ft6eZmERYnEFwgNWnSJHhxFoAarDAWFRWht7eXdzU8MZG2vwaMIBSNlt15LOH0CCdNioCfHzSpoVlXVzeqHqGjVFQAx44JtCiBsayG87FYHTeO+jOFYPj2dH19vTAHHiNo9yojEXJIWVj2Mv7972QVOJzISAoc33+fBmJcobm52axHqKUJTEuclbKwJCyM5I+8vJRbtCstLUVHRwdJWQxze9EKriRxDAOsWUM+xpY9wkokKysLYWFhmk/iLC1WV6wY3V9ajQhpsapkaZ2ioiL09fXxTuLKygCjUbh1WG5Pu4NGfrgDRhdobW1FQUGBLIHUNdcAM2dSMDgw9DUCDw+qNLoylOGWsuCHry8FHceOAVlZAi1OIEaIynNDPQUF6h31toLJZEJQUBBiYmKc+nmGoV6wjAzgyBGBFycQzc3NKC4udqoarhasWaz6+lJBXMgAQm5KSkrQ3d0tiMWqXk/3BaXR3d3tdDXcz8/1HsbhuING53AHjC5gMBgwbtw4WaQsdDrgb3+jz19+2bYAcXg4cNNNtM1WU8P/PFVVbikLvnh7kwRSba2y4jBOysKsRzhxIi22rU0d45UO0NLSgoKCAkG0UJcupSGYykqBFicQXCA1fvx4zbvzWLNYnTgROHtWG049Ylis+vu7vqskNCaTCcHBwU5Vw8PCyKBCaNxBI3/cAaOTVFdXo7a2VlYpi9WrSQ+wpwf47W9tP8/Tk7K0zz/n167W19eHjIwMt5SFE+j1FHDk5pJ9o9w3N6tSFh4eAHczvnBBvsUJiMFgGOLO4yqrVtEN2GQS5HCCUFlZiebmZk0ncaNZrHp5AbNmqW+i3RrZ2dmCW6zW1yurz9PSYtWZJM7DQ7ykzR008sMdMDoB17w7bdo02aUsuIlBe64j/v7UX1dd7XjwUlBQAL1ej2RuOEKDCCFlMRpTplA/6RdfCH5oXoyQsujoAO66C7h4cfBrlVNVVYX6+nrBkzh/f4qn8/MFPaxTcEnc9OnTNe3Ok5ubC19fX5sWq6mp6t+W5tx5hL72xMTQ8IsSsGxpcjaJ0+vF/Vu7g0bHcQeMTqAUKQuWpe1oALjjDvvP9/EBZs8mIVR7b8DOzk6YTCZND7oA4rvzAFQNuewy+p3LEZeNcOfJyiKT3tdfp4a93/6W7BRUjGUSJ3Q1XKejnmFrw2VSk5eXB09Pz1FF5dUOZ7Fq79pTUkIJsFoRq6UpKgq49FJBD+k0nMWqK9VwKW4/7qDRMdwBI09cad4Vms8+I3eKgADg/vsd/7nly8nQPSfH9nM4KQs+eoRqg9MjFNOdh8PDg3pxtm1zzbWAL1wgNWXKFJKyePttYM4cqixGRQH799PUlMpFbAsKCsAwjGjVcE9PYN48clKqrRXlFHbh9AjdSRyxaJF6q4xcS5MYFqs6HbBvn+CH5Y09i1U+3HijQIsaBXfQaB93wMiT7OxsRUhZsOzgdPTdd1Mw4ih6PbBxI5CcDGRmjvz+cCkLLSKklIWjxMRQpaq1VTo3BrOURVQUcNttwI9+RCOHK1dStrF6tTQLERHOnUeKJG7ePODTT+XR2jQajYiOjkbEgAe4FuFjsRoRQUGj2roppHDn6e+Xf/DFEYtVR/noIwEW5ADuoHF03AEjT0pKShQRSB05Qn2L3t7AQw/x/3mGoapXdTVw8OBgX6M1KQstUlJSgq6uLkGkLPgQHAwkJNAFMDtb3HNx1fCZDAP9ggXAO+9Q+eH//o8qi07KziiNrKwshIeHIyoqSvRzBQZSsuXlBXR1iX46Mw0NDSgvL1fEtUcsnLFYraoCvv5a5IUJTGFhoegWq1OmAJ2doh3eLnwtVu3R0SHd4KA7aLSNO2DkSVJSkiL0CLnq4h13kHWSMzAM9bpERtLFhWVJj9CalIWWEEPKgg8MQ249RiNNNIqFKSsLU7/8EuHr19OYb3w8cOgQ8LvfqX4LmqOpqUnyJC4khG5g27dLUynmAqmJEyfCz89P/BPKhDMWq4mJlPRKGby7ApfECRVI2WLyZHnf4kK3NCUlSStR5g4areMOGHniqrCzEHz7LU3dengAjzzi+vFmziQpvm3b+nDhgtGqlIWWyMnJEVzKgi8eHlSp8vUFjh4VPntuLSxE5J13YsJzz4Hp6gLWrwfOn6cGVo3ATWDKoUcYGkqySQcPin8uzp1HCdcesXDFnWf9evXkP1lZWZJYrPb1AV9+KeopbMJZrAqZxKWkSK9pO1rQyMqtkyYT7oCRJ0qQsnjySfp4yy2DZh2uEhEBBAcX4syZOJtSFlqA0yNUwuAAw1DA6OcH7NlDF3khYL/8El7z5iHm229p7/T554GPP6Y/soaoqKhAS0uLbNXw5GTSQS0oEG+7rLe311wN13IS54rFakgIDXkI9f4Ri+bmZhQVFUnizuPtLV2ftCVCWKxa4+xZcXdjbGEraCzlI2isIdwBo8q4eJH63xgGePRR4Y7b3t6O3t5M/PSnsSgqYgS3YlIKGRkZSEhIGNQjVABz5wILF9IF3qW+o54eelGsXg2v2lqwU6YAp05Rk6vME/1Cw7nzyK1HqNfT1LtY4uw5OTnw8/MbdOfRIJweoStJXEwMWTkqFTksVleskOQ0QxDKYnU4vr7yDTcNDxoZhsFBKbYWFIi27iJjgKeeoo+bNwNCGj1wUhbR0WHw9QV27JBnElRMxJSycJXYWPp9f/gh0NTkxAHy8oAlS4CnnwbDsmi+8UYw586RCKQG4fQIExMT5V4KZs+mYRih5ZLa29uRl5eniGq4mBgMBiQmJrqkR3jJJcqy4RxOZWWl5Bar3d3S2loKbbFqydSpZHMrF48//jiWW7TzaNn5bDTcAaOKyM2lgAIQtro4XMoiOhq46ipyC9BKq4YUUhauEh0NbNhA2y+8+N//qBH19Gn0BQXh4h/+gID33iOLEg3S0dGB7Oxs0dx5nGHxYgpYzp8X7pgGgwFxcXEIDQ0V7qAKo7q6GnV1dS6783h6UntOWZlACxMQy2q4lIFGXx9QWCjZ6USxWOXo7wcaGwU/rEOwLIvp06fj6NGj5sfuvfdeeRYjM+6AUUX87W/0xrnySuEKR7akLMLCKKvbvVs5NlOuUFRUJLqUhRCEhgKXXw588w0lCKPS3Azceivwwx8Cra3oX7oUh//+d8T8/Oeyi8qLidFoRExMDMLlLDlYITycbtDWtE35Ultbi6qqKklE5eWiv78fFy9eFCyJ8/GhATKlkZ+fD71eL7k7T2ysdEGW2BarbW3k7CM1ra2t0Ol0yMrKAgAcO3YMd911l/QLUQjavatojIYG4N136fPf/Ea449qTsli3jqbt1Kwq0N3djczMTEW48zjKnDmkq23TyeLUKaoqvvceNdI98QQuvPgiAqZPd7vzyATDAFdfTe2irlTmuSRu6tSp5M6jUQoHyl9CWaz6+VHCJVclyhqcO48c1XB/f2DNGmnOJbbFqhw9jAaDwdxvumzZMlRXV6OpqQnPP/+8pqv+o6GOu6cbvP02vWHS00nOQwgckbLw9SVbJj8/ID9fmPNKjVRSFkLi4QFcey1tsxUWWgQgfX00Jr90KY3nJicDR4+i8b77UFpRIckEplxwgwOTJk1SrB6hXk+V+b17na/Mm915FF4Nd4Wuri5RLFbXrqXtaaXA6RHK5c6zYwfQ2yvuOerq6kRP4qKiaOdFKt5++23ztfTZZ5/F4cOHkZGRgbi4OPj5+aFBSn9XBeEOGFVAfz/wz3/S5/fcI5wZu6NSFh4edBE+f56qXmrCUspCKf1ujsIwVCWoqiJVnL6iUmDVKhLe7uujSP78ebCLFokiZaE0SktL0dnZKbk7jzOsWkWT03wHx1zRI1QTWVlZolisMgyZGCmhytjQ0CC7xWpEBFBTI97xpbJY7esDPvtMtMMP4eabb8aPfvQjAMCJEyfw8MMPo6ioCJmZmZg9ezYAYI1UpVuF4Q4YVcBXXwE5OTSJecstwhyTr5SFXk8+yJ2dyp5GtEQOKQsxWLAAmF28B8ysS4DDhymKfOst4P33geBg0aQslERvby8MBoNq9Ah9fYHrryc9vNZWx3/OZDIhKCgIMRqxbbRGc3MziouLRauGL1xIHRtywl17Jk6cKGsSN3WquKLmJSUl6O7uFj2J0+udVI/gQV9fHxiGwQcffACA+ogXLVqE7u5uPPvss+ZBl3/+85/Yvn27uItRKO6AUQW8+ip9/OEPAaEMLZyRstDpKHgxmSiIVfoEdVVVleRSFoLT3g7cdRfG3b8JuoZ61I2fi9Zj3wG33QYwjKhSFkoiOzsb/v7+srrz8MXPj5r1d+1yTF+zpaUFBQUFipr+FhquIiWmO09cnPxqUmVlZWhvb5c9iYuJgWiaulJarDIMIKafRFVVlTkR9ff3R19fn3mobtWqVfjnwBbfuXPncPfdd5t/Ljg4GH/961/FW5jCcAeMCqe0lIS6AcDideoSnB6hs1IW06fTzfDYMWHWIwZ9fX3IyMjAtGnT1KuZdeECMG8e8PrrdMX89a+B48ex6+Jks4uDmFIWSoFz51FjIBUWRtvTx4/bf67BYEBSUhKCgoLEX5hMVFZWorm5WfQkzsNDviojVw1PSUmRvRqu0zn22nOG7OxsSS1WxWrPbmhoMFf077jjDvNkdE9PDxiGwbGBG11jYyNmDWQiL774ovnnFy5cKM7CFIg7YFQ477xD/RspKfTPVTg9wmnTprkkZbFwIbBoEZCVpUxLLk7KIjk5We6lOEdGBjB/Po1Jx8aSafHTTyM81gs33wy0tACZmZ2iSlkoBYPBgPj4eEW58/AhLg5YuRL47jvb7RxVVVWor693WY9QyXBJnBTuPGFhQHa2+AMf1sjNzYWvr68iLFYZhv4J3UbEtTRJee3Zv1+c4/Zb/HL+/e9/A6B+aa7QEBUVhf7+fvNu3NKlS/H4448DAE6dOoVLL71UnIUpEHfAqHC4e6TRCNx8M21xuUJhYSFYlhVEysLTky5GO3bI41tqC07KQo2DLmYqK4GuLmqG+/57ijgG8PAAgoKAjz8uQ2vrBNGkLJRATU0NampqFOnOwxcvL5qeHt7KYZnEqbYa7gCcO48UeoQMQ+0zYve9Dae9vR25ubmKuvZcfbVwg5IcBoMB48aNc8mdhy9iBL4Ahui5dnZ2Yt++feYdm2uuuQYlJSVgGAadnZ1gGAbHLUq2Wrgu8cEdMCqcu+8GXnmFgoStW8lRoqDAuWN1d3cLLmUxdSpdmOvqlNPTyElZqFqPcPFiijA6OqyKYLa01GP69ExMmTIB3d3K+d0LiaU7jxb0CGfMIJmk4UlfQUEBGIZRbzXcATh3HikDqalTgdpaad8bRqMRcXFxikriamsdMAHggVwWq4sWife3/O9//wsA8PX1xbp16wAAf/rTn/D888/Dy8sLeXl55inwGTNmoFEJY/gy4A4YFQ7DkJTOV1+RFtWFC8DcubRDyRexpCySk4HISBrabWkR9NC8aWxslF3KQhD8/AYFN4f9sQeFnSdj9mwfmEzAp5+qZ3rdUbSoR3jJJVT1OnGCvhZLj1BpZGZmIjo6WnI9wtpa2pqWAs5iVWlVJz8/oKhImGPJabHa3e3Y8JgzcDI6HIcOHcKyZcuQlJSEXbt2mafAf//73yMjI0Mx1WOp0e4VSmMsW0Yew/PmUcHpiitIjs/RNxCnRyhWIOXhQaK5u3cDPT2inMIuXCClGT3C1avp47CAsaSkBF1dXeaLWFoaMH68/FIiQiJGNVwpxMWRTuD585TERUREICoqSu5liUZDQwPKy8tlSeLmzKF2YLGxZbGqBCIihNuSLiwslM1itbxc3BYDbhfj448/RltbG1JTU3HffffhuuuuAwAcPHgQf/7zn8VbgArQ1pVY4yQkkFfq7bdTNenJJ6liYTKN/nOWUhZi6hFGRAA33URv6qoq0U5jk7KyMrS1tWHKlCnSn1wMuIDx0CFzFG5LymLGDNqyOX6cn+6fUjGZTAgODlaVO4+jMAxZbvr5NSM/v1T91fBR4K49EydOlMWdx8cH2LSJ2oHFxJ7Fqpzo9VRocHU7l0vi0tLSZEnifHzEtQcsGTCr3rBhAyIiIjB9+nSznE5ZWRlWrVol3slVgjtg5MmePfIOePj4AP/5D7BzJw3PZmcDf/jD6D8jlZQFQIMwfn7kciGlWbzahJ0dIi2NdDFaWkhfCaNLWTAM9W3t3ElbcWqlpaUFhYWFihocEB4WNTUXUVSUhvp6cfQIlUBpaSk6Ojpk1SNsawM++US846vBnefwYdcTSbktVufOBcQsbFq2SyxcuBB1dXUA6O+rJv1XMXEHjDyZMwfYvl1+KZlrr6XAEQAMBtvPk1LKgsPPD9iyhSyppGo4V5KUhWBwOiyhoUBSEtra2uwKO0dEANddRw4jarQ7tXTn0bIeYUVFBVpaWnDnnbE4elQ8cWU56e3tNVfD5UziAgOpZWbg/i84jlqsyklMjPPe5sBQi1W5KC2lHn6xYFnWLJcDAJs2bQLLstopQAiAO2DkybhxJFPQ1ib+Noc9uIJhbq7tADY/P18yKQtLvL2B2bNpC11s/2klSlkIwqFD9PHSSwGdDhkZGUhISLArZREQQO6BBw6MnkwokaqqKjQ2NqrbnccOnDvP9OnT4e/viZtuomuJFloJLMnJyYGfnx/i4+PlXgpWrKBrktDwtViVi6lTAQv1GF4oxWJVbHvA8vLyISLcu3btEu9kKsUdMDpBUBDtEm7bJm5PhT2Skkh5pavL+vZvZ2cnTCaTrBezZcuoWVnMwMVoNCI2NlZRUhaCwAWMl13GW8pCpyMv45ISeV+jfBgreoS5ubnw9PREYmIiALoR9vQAH38s/86FULS3tyMvL08xgVRICHDunPBC3s5YrMpBUJDzLUKVlZWKsFgNDKR/YmDpzrN27VoAwGeffSbOyVSMO2B0kvh4svz67jv51qDXA5znu7XBF6PRKIuUhSU6HU10T5tGF2yhpV84KYsUIWxwlER3N/D11wCA/ksvdUrKgvvdt7cDX3yhfK3G/Px86HQ6yavhUtLR0WHVnScqCpg5U30VYVsYDAbExcUhNDRU7qWY8fcHMjOFO151dTXq6upU4c7DMM69tiyr4XIncYGBpAYhBnl5eWaL1a1btwIA1q9fL87JVIw7YHSB2FjSVz58GGhulmcN3EDwcK0xOaUshsMwFNx6etJAhlCyO0qWsnCZ06cp0ouIQKG/v0tSFuHh1Ab58cfKDRq7urpgMplkm8CUCqPRiJiYmCHuEhwpKbR1mJcnw8IEpLa2FlVVVYpL4lJTSc5ICPr7+we0UKXXI3QWDw/+FWzOYlUJSRzLAvv2CX/c4UmcpQVpk9RWQQpHu1dmCUlPJ/1BOcTfuV0Cywqj3FIWtkhLI3mHzk5hgkYlS1m4zMB2dP/y5cjKznY5kJozB7jsMmr8l7v31hqacOexQ319PSoqKkZN4jw9KVdwZUBBTgZF5ZXnzuPtTTJkQvSKFgzYbQlhsSoV119PibujcBarSvGq1+vFMScwGAwjWpo++ugjAMAtt9wi/AlVjDtgFICwMOCaa6ifUOrGdWsVxrKyMtmlLGyRnEyZ7vvvuzbFqwYpC5cYCBgrpk0TTMoiKIiC9Q8/lN+Rx5LGxkaUlo4NPcJJkyaNWg3X6YANG4CsLAkXJyBKd+dpagK++ca1Y6i1Gp6dDRiNjj+fS+LkbGkazoIFwh7PVkvThg0bAACffvqpsCdUOep5tSuc4GC62O/cCVRXS3fe4RVGy+ZdpcoB+PpSgL1/v/MZoxqkLJymq8vsHZcdHy+olEVCAnDllUBOjjK2p7kJTM2489hguDvPaPj5UTX49Gl12T2qIYlLSADKylz7vXIWq2pz5wkOBiorHXtuQ0ODIi1Wh/uwuwKXxE2ePNlqErdp0yYAwM6dO4U7qcpxB4wC4uNDZf+vv5buQs9VGIuLaRo2JydHFXqEwcHADTeQtlZODr+fVYuUhdOcOgV0dqI7PBwRS5cKLmUREUGSR/v3Syuubo3y8nK0trYqshouFM7qEXp7k4e8WjCZTAgKCkJMTIzcS7EJw5Dzi7OXjebmZhQXF8uqR+gsERGOTRlzSdzEiRMVl8QJafNYXFyM7u5um0ncO++8AwDYvHmzcCdVOe6AUWD8/EhUOy+PgjixiYggyQgAuHixA3l5eYrpObEHw5Cv7sWL/KbN1SJl4TQD29G1qamYKuIE5mWXkZXggImM5HATmCkpKZKJystBdnY2/P39ebtFpKfTZK9c3ux8aGlpsSsqrxR8fYG9e/n/nKXFakCA+tx5PD1J3cMeZWVlaG9vV2QSp9cLIz3FVcNTU1NtVsMt/8b19fWun1QDuANGkUhMpEpjfr645+Hs4ADgq6/KFCdlYQ8PD8r4IyOpr87eNqmapCychR0oK3mtWSOqlIW3N1XEo6JGTtlLQW5urlnKQqu0tbUhPz/f6UBq0SKSgpGyzcUZDAYDkpKSVOHO4+FBqlV8+3grKioks1gVi6+/Ht3aVuktTddeS61frsJZrNpraTpw4AAAd5WRwx0wigR3M9brxfee5raljcZexUlZOALDUG9RTg5l/rYySE7YWU1SFrzp6AB76hQAIFyCixQnd1RcTIVNqfoabekRag2DwYD4+PghUh18mTAB+PxzGlhSIlVVVaivr1dVEjd/Pr+AUSvV8MjI0X3mlW6xevq065anra2tDlfDV69eDQA4xJkojHHcAaOIeHqSG8v+/fym0/gyZQrd5VtaYhUnZcGH2bOBiRNtC8wWFhaCZVlVSVnwpfvwYeh6etAXGwtGoi0hhiER+pAQmreRov9Ws+48FtTU1KCmpsZhdx5bBATQ30curdfRUKs7z7hxpGjhaIKUl5c3xJ1HrcyeTZqs1lCDxWpfn+u+6waDwSGLVQ5OWud///uf+bE6sYzJFY47YJSA9etpy0+sbaWwsBoAwPffB4lezRSblBTq3dq/f6hEUVdXF7KyspCamqoqKQu+1A7IOOhXrHC+M99JZs2i3/n27eJWxTk9QjVWwx3FshouRBIXH09bcUePCrA4ASkoKADDMEhOTpZ7KbypqAAKC+0/r6OjQ1F6hK7g6Wnb7cZoNCIuLk7RSVxkpGtb0nwtVgHgjTfeAAD88Ic/BAA8/vjjipWNEhvt3nkVhE4HbNxIE2oXLgh77J6eHkRHn0dkZB8KChj84x/CHl8uZs8miSJODJ2TshBCj1CpNDY2oonbJ5OpUhwRASxcCHzyiTjHtydloRXE0COMiKAqozUbUDlQexI3cyYN3NkjMzMT0dHRVt151IaPj/XXD6dH6Go1XGzGj7ddIbWHZTWcT0uT5XXK398fTzzxhHML0ADqe5erFIahN2t5OXDypHDHNZlMiInxx9NP05/yiSeAqirhji8XkZHAddfR1HleXotqpSwchQukQrktLxn3H5OSaBApNxcQejiQjx6hWunu7hYtkLriCuqPVoKGZlZWFiIiIlSnR8gRHEy7P6O1YCjJYlUIdDqaErdETRarJSWOBfnWcKWl6b333gNA2/YAtZuMRdwBo4QwDLB2LUll9PW5ftG3lLL40Y8YzJlDjdy/+50w65WbgAC6mP3vf+Vg2amqlLJwlLKyMrS1tSGSszmUuWFNp6Pp6b17KckRgp6eHhiNxlGlLLSAyWRCcHCwKNVwDw9SYNi2TV6Lx6amJhQXF6s+kMrPp0EKa1i68yjJYtVVNmwYGiSryWLV15f0hvniShL38ssvD7EIZFnW3K+bpVZLJidxB4wSwzDUo5eVBXz5pWtBI6dHGBQUBJ0O5u3oN98Ezp4VZr1yU19fiblz8+HtPUEQ/S0lwklZzJgxA3puv0UB3n1BQcCWLXSBFqKnMScnxyEpCzXT0tKCwsJCUQcHdLrBtgE5Ko2W7jxqT+ImTKD+cmu/x9LSUnR0dGiuGn7y5KBgvxrceSwJC6PBSL5kZWXxtlhlWRbTp0/HfffdBwDYuHEjAOD1119HxYDZ+4IFC8bUAIw7YJSJGTOogubs9jQnZWHZc7J4MXDLLXTxu/9+ZWxbuUJfXx8yMjKQmjoda9d6oLTU9SBbiQyRsuB07BQyEuvjQxfoL74Azp93/jiu6hGqAS6QSk5OFl2PMCkJWL5cGBFjvlRUVKClpQVTOD0vFaPXkz/x8G1pZ9151EBk5OAAptosVj09+efSzc3NKCoq4tXSVF5eDp1OZ64gtra2Ytu2bQCAu+66yywhde2112qit9VR3AGjjCxcSBcro5GflMloUhZPP019fydOAFu3CrxgieGkLJKSkgDQTTIoiCaotcIIKQvOu0shASPHunXkQ+use1FGRgYvKQs1UlVVhcbGRsmEnaOiSDszL0+S0wEY1COcPn26qvUILZk4Efj++6GP5eTkwM/PD/GOWKOojLg4qtSp0WJVpxv5txoNS3ceRy1WP/jgA/PffcuWLWBZFv7+/vDy8hrxe/rvf//r+GI0gDtglBm9HujtBT76yPFqwWhSFgkJwKOP0ue/+pWwZu1SwklZDL+YzZsHrFhBchhy9nAJxQgpC4VVGDm4/tu4OJJ24ZPgOCNloTbk0iNcsYKSQ6leLrm5uZrQI7REryepGa7tor29HXl5eaoKpPhAveGUxKnNYlWn43ftqays5OXOs3LlStx8880AgL179+LDDz8EQMNPDMOAHdje0kJ13RncAaMCSE8Hpk8Hmprsb7d2dXXBZDKN2rz78MNAcjJQVgb89a/Cr1cKOCmLiIiIEd/z8aGL/IcfKqLVz2msSllwAaMjPokSwzA0dBESQpJHjngcOytloTby8/Oh0+nM1XCp8PQkNQFvb/E9p7XszpOWNlg959x51GSxypeDB5tQV6cudx6O665z7Hl8quEsy4JhGHw1YMtaW1uL9evXAwD2799vTuiXLVsGgLbyxyLugFEhTJtGF/3t20e/8GdlZSE8PHxUKQtfX+DZZ+nzZ55xTJxWSTgiZTFuHEliVFZK40wiNDalLLiAkWUVWx5OT6d+WZa1P7FYWFiI/v5+TbvzcElcWlqaLHqEfn70Pti7V9wcw2g0IiYmRpM9W+npQEwMBQrV1dWar4bX1RUiIUGdSdxATGeX/Px86PV63kkcy7Lm1/gPfvADXHHFFQCAd955B0ePHsWDDz7I63hawh0wKgh/f9py3bnT+oWfj5TFtdfSdlVnJ21NqwUukJo4caJdKYvwcGDyZGDPHud76+TCppSFr++glYHCtqUtiY8nV5ht2wbF1YfDSVnIFUhJRWZmJiIjIxEZGSnbGpKSqKdRaGMAjrHgznP4MItjx7IwZcoUVVus2qOgoACzZtUjJSVZ7qU4ha3rjSWdnZ283Hksn9Pb24v29nYwDIN3330XAOnH/uAHPwAAPPPMM06tWwto9yquUsaPB665hqbYLKs3fKUsGAZ47jn6fMcOxRarRsBJWUzm4aN81VU0ba4WLVWbUhYsSyVhlZRMw8LIwejECevfd0bKQm00NjaitLRUEXqEixdTa4vQKh9a1SMcTmRkKUwmP03bvnHV8KSkVBgM6rz9x8TYv0RmZmYiKirKakuTLZ4d2Ja78sor4e/vDwCYOHEi+vv7ScFiAA8PD173Jy2hzleMxvHxoTfE9u2DgZ4rUhYhIbRtpXSclbLw8gKuv552c12RfpEKq1IWXV3Aj38M/PrX9PVDD9GEicIJCQGuvJImFwsKBh93RspCbVgmcdwNRk64Ismnn1I/tFCMBXeenp4e1NVlYM2aeFXoEToLZ7E6fnyk6lqVOObPH731oqGhAWVlZbyTuIceeggAcPDgQQDACy+8gNzcXDAMg56eniFT0t9++61zi1c57oBRocTGkg1YTo7zUhacg8G8eYM3EyXjipSFTkeBY2Mjye4otUhnVcqipgZYtQp4+22a5nn5ZeD55+VdKE9SUuj1lpk5GEjxkbJQI+Xl5WhtbVVUtcHLiyruR48Kczwt6xFaYjKZEBISjPDwKOTmyr0acWhubjZbrPr7UwuUGjlxwrZlKXftcaSlaTiWbTPHjx839yoajUZ4eXmhp6fHrEyi5Rab0Rib/2uVEBUFzJwJvPlmJdra/HhLWXBJ0Lx5wq9NaISQsmAY6tucMIGkisSeGnUGzp3HLGVhMJAY59dfU4n0s8+Ae++Vd5FO4OkJbN4MREcDWVlVaGpqkkyPUA64JC4lJUVxeoRhYRQ0DphRuER2djb8/f0Rp4Jqt7NwFqupqamIiGBUsUvBF0s9Qq6laeFCxQkxOMRo9oBlZWVob293OonbPyDy+9cBeZFnnnnGXKn8zW9+gwLLbZQxiDtgVDgdHR0ICbmA8vJ01NXxC6QsK4xKx2AwIC4uThApi8mTgYYGEi5vbRVgcQJRXV2Nurq6QSmLL7+kxrOCAopyT50C1qyRd5EuoNMBwcF92LOnHB0dMxUXSAlJbm4uvL29MW7cOLmXYpPjx13zAR8L7jwAXXuSkpIQFBQEf38gOFidgdRoVFRUjNAjPHJE0XN1Npk8mf5Gw+EsVlNSUpyuhq8ZuP5+/PHHiI+PxyOPPAKAtqCfeuopp9esFdwBo8IxGo0YPz4Sd9wRiKAgoLTUsZ9jWcBkos/T08VbnxDU1taiqqpK0AnM6Gja0hdqa85V+vv7cfHiRUydOpWkLPbvp+a/5mbyePvmG5pYUDn5+flYsKAJISExqhlC4osa9AgZhl5ex487fwxOjzAkJESwdSkNzmLVUo9wxQphe0DlxlY1PCICqK2VcWFO4uFhvcI4xGLVBdLS0gBQywlAu1/z1FB1kQB3wKhgLKUsvL2pgnPqFHDxov2f7e+nNxYAnDsn7jpdgdsqmTp1quBSFpGR1gcy5KBwoMPcrEf4xBNkLXHttcCBA3T1VjmclEV6ehouv5yBvz95UGutWmM0GhEbGzvozqNQ/PyoTYDzDeZDTU0NampqNK9HaM2dp7eX3pJagbNYHd7SNGUKDa2pjcbGkdrCnMWqEEnc+++/b/6cZdmhOrljHHfAqFC45l1LKQsPD4ov6uvt2wjq9eT4AgD336/cjLmoqAh9fX2iSlmkpABnzgAZGaKdYlS6urqQlZU16M7T1zc4zv2Xv5BiuwYYLmXh50f9dB99pJ2gsa6uTlV6hAxDxWs+E7FcICVGEqckbFmscvGBPVF6NcBZrFoLpIKCgKoqmRbmAr6+pC9sCWexKkRLk5aVHVzFHTAqlNLSUnR2do6QstDpgEsvJaHqr74a/Ub8299SFllRMegvrSRs6hEKDGeflpBAvwupgxdOysKsR5ibC7S3U0SloAlbV2hsbLQqZTF7NrBoEf13e3tlWpxAcNXwyZMnq6rqsGYNTZY6+rqXIomTmxFJ3DBWrx7coVEznMWqNXcevV4dMmTDiY6m1m8OqxarLvKjH/0IALBt2zbBjqkF3AGjAnGkeXf8eJJF+PJL28fx8QFef50+f+01ErdWEiaTCUFBQYiJiRH9XDodbb+UllLFS6rgxVLKwsx339HH9HS6aqsce+480dGkHLR9O+3Cq5WSkhJ0d3erTo/Q2xu48UbbUiSWcO48o3nVa4GsrCxERETYtFgNCQEOH5Z0SYJjz2JVoe23dunrA44do89tWqy6yEsvvQQAuOGGGwQ7phbQ7hVBxXBSFvb0CBcsAJYupe0mWwHQihWkB82ywE9/qpwbNidlIfXgwLx5tEVdWip+pdGalAWAwbR+5kxxFyARjkhZJCcDS5YMTu6rjZ6eHhiNRqSmpqpS2FmnozwlM3P055lMJgQHB2vanccRi1WGoXk0Jaks8MFRd54tWyRclEB4eg725dq0WHURy+t1jxL12WTCHTAqDL5SFj4+FCxu20ZmIdZ45hmaqcjIAAbcj2THUspCaqZMARIT6XfW0CDeeSorK0dIWQAYrDBqIGDkI2WRmEhB47FjQEuLRAsUiOzsbAQEBAx151EZK1YAZ8/a1idtbm5GYWGhS1qoSocLpByxWL3kEuFtFqWCs1i1Vw3//nugpESiRQkEw9BAI5fEidXS9PyAecIf//hHwY+tVtwBo8JwRspi0iRSZikrs141Cw8HXniBPn/iCXKPkRNrUhZSo9OR7M4nn4hTRejr60NGRsZIdx6WHQwYZ80S/sQS44yUxfTpwK5dNO2oBjh3HiXL6DiChwdw0030eh9+nWBZFgaDAcnJybIkcVJRUVGB1tZWhyxWJ01S5zwaH3cef3/npujlZuFCSuKCgoJES+IeeOABAMCTTz4pyvHViDtgVBCuSFkkJFBf4/bt1qtmt9xCjdxdXcBdd8k3tWpLykIOgoPpBsowg5qVQsFJWSQlJQ39RmUlNfTpdIDKp/GclbKIiACuuYYCGDVs+RkMBowbN27QnUfF6PWA0TiYs3BUVVWhoaFhTLjz8LFYPXVKuQoTtuBjsRoTo86gePv2TtGTOJ1OZw64a9UoWCkC7oBRIXCB1JQpU5yWsmAYYO1a4OOPgba2kd979VXawv7qK+B//xNg0U5gS8pCLjw96XeSnc1vknQ0OCkLq1t73J162jSaklYxrkhZBAeT7/GuXa65kYhNdXU1amtrNaVHuGgR9TK2t9PX3LVn+vTpsidxYpKbm2tVj3A0UlPJvVMt8LVYDQkhC1q1UVJSgnHjEkWvhu/btw8A8OMf/1jU86gFd8DIF+4qKzBCSVlwVTOWHdmbMnEi8Pjj9PkvfiG9yr89KQu50OvJezc4mPq7+vtdOx4nZRFhTYxbIwMvQkhZeHlR0/3Jk/Z1ReXAshrurcYyjA10OuCGG+h33t9P7jw6nW5kNVxDOOvOM348MMpsjOLgWpr4JHFffCHigkSgqqoKsbHlmDpV/JamlStXAgD27t0r+rnUgHLu2mphzx7Bg0ZLKQshmne9vOjf8eMjt1offhhIS6Nmbk7YWyrsSVnICcPQjaG83DX5F3tSFlroXxRSysLHhzQyS0qoyqskCgsLwbLsoDuPhvDwIDnQw4e7YDKZkJaWpqgkTmiMRiNiYmKs6hGOhl4PZGU5JkkkN7W1taiuruadxHl6Kkc9wx5cEjdpUjIYRpokbvbs2QCA74b3cYxBtHuFEIsrr6SriIBjnmJIWXh5AddfT4MFltusnp7AG29QgPTOO6PrOAqJI1IWSiA5mbbsnNFgs6dHCEATFUYxpCwSEoALFxyzvZSCsaBHOHMmcOZMBby8YhAZGSn3ckSDs1h19toTFSWfS5SjWCZxfFuali9XjyZjwYDHa2/vOMl6S7dv3w4A2LBhw4jvlZaWgmEY/POf/5RmMTKjzSuhmISEkC/Rrl2CaLK0tLSIJmWh15NW4/nzVG3kAscFC4B77qHP77pLfAsszubQESkLJZCYSO4YZ8/ys87ipCxs6hG2tFBZB1BtwCiWOw9nexkSIlrXBy+ysrIQGhqqcT3CRkyZYsCsWdNU78JjCyHceZKSlB9QudLSxLKksKF0uroGq+F+froR9oBiwf1OS0tLR3yPS0Ja1TC9JwDugNEZgoNpzPPbb106DBdIia1HOHMm9St9883gY08+CcTHU/zy4ouinRoASVm0tLQ4JGWhJKZPp/6e/Hz7z3VIyoLrno+Pp1FhFZKdnY3AwEBRpCx0OmDcOHpbHT8u+OEdprm5GUVFRZr2lOWuPVOmjEddnb/qXU1sUVJSgq6uLpeq4TodaTI2Nwu4MAFxNYljWceucXLDWaxGRUVh3jy6jErF7bffDgDYunUr8vLyhigmHDt2DI888oh0i5ERd8DoLMHBNJLMtwxlASdlIbYeIcPQtsPcuRSz9PWR8Tznx/naa+Kd2xkpC6Xg50fDAaGhpIQzGnalLOrradIIAFQq/tza2oqCggLRhZ0vvZTE6PPyRDuFTbhAavz48QgMDJR+ARJRXl6O1tZWTJ48GVOnkqqCkqfVncFS2NmeHqE9mpuBM2cEWpjAcC1NzlqsRkQoNxjm4FqauCSuomJws0YK/vGPfwAAbrrppiFi6I2NjVi6dKl0C5EZd8DoKtOnAwcO8K7pyyFl4eFB2fLOncC+fbSrDgDr1ol3TmekLJSEhwcFjBcvAgcPWpfdsStlcfAgTRqdPEkH5AJHlSGVHiHDUNCYnEyuMFJqhlZWVqKpqUnTeoSW7jxcErduHQUOahl+cIScnBz4+/sjLi7O5WPFx0tjJ8oXzmLVlSTO0xPYuFHghQmItZam/n5xXbqGU1xcPOTrQ4cOAQAYhkF/fz+uvPLKMeEI4w4YXcXPj6ZLvL15NV/JJWUxfToFjdddR5XGTZuAl18W51zOSlkokcsvJ8ecysqR3zMYDNb1CDs6gAceoIbI8nJg6lQKGm+6SZpFC0h1dTXq6uokdefR64HAQBImkEJ2R83VcD7k5eXB29sb48aNMz/m5UWv7QMHZFyYgPC1WLUHw9C1UmkIZbG6Y4cypa0A6y1NgYHSCI6zLIvNmzcjJSXF/Nivf/1r8+T04cOHodfr8fnnn+Pdd98Vf0Ey4w4YhcDHh6KJjz92aB/NsnlX6gnM774DfvITim3T0oDXX6eilxg4K2WhVGbPJg/TbdsGhdFra2tRVVU15IICADh3jn5gYCsD995Lj82dK+2iBaC/vx8XL17E1KlTJdcjnDmTFIj6+mx7IAtFfn4+9Hr9mNUjTEykapMcrQBCYzAYkJCQwMti1R4sCxw5ItjhXEZIi9WgIGkrdo5iK4kLCyPvAzH5/vvvodPpsHPnTvPXAPDXv/4VvQNTYhsHSrO/+tWvkCvlHrlMuANGoWAYKtudP2+30piZmYmIiAjJpSwyM6nY1dQELFsGfPopbU2LMSHpqpSFUvHwoO3SHTuAzk7WHEiZpSz6+miiaMECEnCLiQE+/5zKuCp1diksLAQA2fQIk5NJN9QVfUx7dHZ2Ijs7WxPV8NEwGo2IjY1FWFiY1e+vXEmDR2IH52LCWawKXQ0PDASKi5WxLS20xapSOzA4i9XhLU09PXRZFQOWZbF27VrMHFCyuPHGG8GyLNLT082/a8siSHl5Of72t7+JsxiF4Q4YhcTTk4LGjo5Bvb1hNDY2orS0VPIJzIICYNUqcneZMwf45BO6Mdx8M92Mh7VouAQnZTFp0iSXhZ2VSHQ07SpnZxejvNxzUMoiP5+mi373O4rCr72Wmh+vuELeBbsA584jt7BzbCywdCnZWopBZmYmoqKirLvzaIS6ujpUVFSMrIZb4OFB14P9+yVcmIBwgdSQJE4gGIZ2ZZQg+yS0xWpsrDiFA1fgLFatJXFeXuIljzqdDgcGejOysrLwwQcfACBtVn9//yHPbWpqMitG/Otf/8Kjjz4qzqIUgjtgFIOwMBrjGqYNYtm8O/yFJyZlZVQ5KC8nN5P9+2nIG6A+sZAQ8lE2GoU5HydlYTlNpjUYpgeFhZloa5uBjIs64M03SXvjxAkqRbz1FpUhVR6AWEpZyE1iIgkTXLwo7M2ioaEBZWVlmquGW8JHjzA2lqpoVmTnFI9QFqu2SE8nMwQ5EcNitbcXOHVKkEMJRmZmps2WJoYR3yyLZVnz8NvOnTvh7e2NBiv79vX19WAYBj/72c/w9NNPi7somXEHjGLAMFRVio+ndHRgD8NSykIqamqA1aupwjhxIg3sDn//eXvT3I5O5/qN2CE9Qg1gMpkQHh6IOzb0IPkX1wJ33AG0ttJe/4ULwG23KV/t1w7Nzc1DpCyUAMNQPL5jhzDbplwSN6o7jwYoLi5Gd3e3w0ncqlWU9yph+9VRpHDn0enEq3I7ihgWq35+g33ZSoCzWB2tGi4W119/PQDgxIkT6OjoQGBgIDZv3gwAePbZZzFv3jzzc59//nlzQBsWFoYOsV0wZMYdMIoFw1DzVX4+8PHH6OvuHiFlITZNTVSRycwk67UvvrAtAajXUxPxhQtUgXT2RpGdnS2YlIVS4aQsZpWVQX9JGoIP7QHr6YmMH/4VvQcP0d9d5XAVqfHjxyvOnSc5mTREGxpcD2jKysrQ3t4uaRInNc4IO/v6UoXx9GmRFycgJpMJISEhorrzMAwF0nV1op1iVMSyWOVqHErAsqVptCROLGtnrh9xyZIl8PPzM7u4NDQ04OGHH8a2bdvMz/3Tn/4EANi9ezfq6uoEb4NQGooOGJ966inMmzcPgYGBiIqKwjXXXAOTyTTkOSzL4o9//CPi4uLg6+uLFStWwMA5agzQ1dWF++67DxEREfD398eGDRus2vyIQmoqMHkySj/6aISUhZi0tQHr19ObKjKSgkVH4pi5c8k79exZZ84prJSFUjGeO4dF770HvxtuAKqrgRkzwHz7Lbx+9wiOnRDOLk9OKisr0dzcrFg9wuRkmuzcvt35SqOlHqGWq+HZ2dkICAjgncRNngxkZ1PhXOk0NzejsLAQM2bMEP3ac9llgy09UsIFUmJZrOblKaM/k7NYdaQaLkYFfHhf6KuvvgqWZc0T92+++ab5ewkJCeju7sY111wj/EIUiKIDxiNHjuDee+/FqVOncPDgQfT29mLNmjVos6id/+1vf8Pzzz+Pl19+GadPn0ZMTAxWr16NlpYW83MefPBB7N69G1u3bsXXX3+N1tZWXHXVVeiTSHiqY/x4XPT1xayWFjASGGB2dpJz4fHj1J948CC/KbhZs2gw5tgxfj7TBoMB8fHxgkpZKI3akycx7fbbEfHhh/TAQw+RBcTMmZgyBVixgiwY6+tlXaZL9PX1ISMjQ9JquDP4+ADz5pEAvTM3jtzcXPj6+iIhIUH4xSmE1tZWp5M4rurU3y/S4gSCaytITk4W1WKVw9dXnqGgiooKtLa2imax2tVFQ5FywqelacMG8ddTUVGBu+66CwDtRjAMgz//+c/m7xsMBkVfIwWHVRHV1dUsAPbIkSMsy7Jsf38/GxMTwz799NPm53R2drLBwcHsa6+9xrIsyzY2NrKenp7s1q1bzc8pKytjdTodu2/fPofP3dTUxAJgm5qaeK/7zJkz7JkzZ1i2vJxl33qLZZubeR/DUbq7WXbjRpYFWNbfn2VPnnT+WNxyGxvtP7e6uprdu3cv29HR4fwJFU7f+++zPX5+9MuNiGDZzz+3+rymJpZ9+22WLSmReIECYTKZ2EOHDrH9/f1yL8Uh2tpYtraWXvuO/0wb+8knn7D19fXiLUwBnDp1iv3uu+9cOsaFCyybny/MesSgoqKC/eyzz9iuri7JzrljB8u2tEh2Ora3t5fdv38/W1hYKNo5TCaWzcoS7fAOYTQa2aNHjzp07Tl5kq61YvDWW2+xANjf/va3LMuy7C9+8QsWAAuAnTFjBltfX+90PKBmVLUP09TUBABmDbGCggJUVlZizZo15ud4e3vj0ksvxYkTJ/Czn/0MZ8+eRU9Pz5DnxMXFITU1FSdOnMDatWutnqurqwtdXV3mr5sHzDa7u3vQw2MPjGveXfH/7J13fBv1/f9fp2Vb3tvxdrydOHvvRUJCmkAgjAAFCoWySoBvaWmBskv5lTLbskpbRsgiCUnInhBC9rLlveO995Kt+/3x9jmyLdk66e50Mn4+HnnEQ9KdZOlz7897vF4LFkDv7Hxty15XB4hQVnjmGQW+/VYJtZrFtm3dmDyZtbpk5+cHrFhBX1dVUbbSFJywc0xMDJRKJa/XxyHo7obid7+D8oMPoABgmD0b3V9+SUNNJp6riwsp6rS10bC8Iw1Kt7e3IzMzE9OmTesVp5U7ajVw9Sqwdy+DNWtYWLLhT01NRVBQENzc3Ibf+7UHTo9w4cKFNj3HyEhg82YGd97JwsIWSMng1p7Y2FgwDCPZ3zIpifoYpdKxz87OhlqtxqhRo0R7jpGRtJzZ6+PQ1taGnJwczJw506K1p6mJQX09CzGU226//Xbce++9eP311/H666/3/vzgwYOYP39+bzzwc8NhAkaWZfHUU09hzpw5vVOb5T0+bf2bnAMDA1FYWNh7G41GM8C2LTAwsPf+pvjLX/7S29BqzAcfnMXEiR0m7jE4R4xG6xR6PUJOnEDV+PFoNyOgay0nT04DMAp6PYPnnqvCfffpEBxs2/hbVxeDH38MQVxcHUaNMv9YGRkZyMjIsOlYckPZ3o7Jb72FUT3d/1m33IKMO+4Ae/ky0KP8bw6WBS5eDICTUzeSkmocamj6lNw0NiyguVmLjz9WISrK8sW8hKcHvCNy6NAhmx9Dr9di+/ZOaLXy3ETodLoBvetiU1PjDF9f8VuMjNkrllo1gO5uBj/9NApz5pSKdgxL+LGfHJ05Cgo8UFzcAR8f/tdjvsTFxeGNN95AS0sL9uzZg1Y5NHvaAYcJGB977DFcuXIFJ06cGPC7/r05LMsO2a8z1G2effZZPPXUU73fNzY2IiwsDA89NBUNDR6IiiKJhcEoLi5GVlYW5s+fP3A6cdkyMPv3g122DEJu22fPBl59tRv/+IcCZ8+OwqVLQdiwoRurV9vWHbxiBXDwIIMlS/pmcDo7O3H8+HGMGzdO1OlEu9DZCeWiRVCcPQuDkxOyn38eo595Bnz8Tm64AThzhsHo0azsM4319fU4deoU5s+f77CC6ywLHDnCYP581qTlJcuy+PHHHxEUFDSsdUILCgpQUFCAefPmCSYxc/kyEBFhvtIgNR0dHTh27BgmT55sF8H1TZtoPRTAaGVQLl26BJZlMVFs4UEAzc0MVqyYIPpx+lNTU4Nz585hwYIFFtuPdnVRsU6s13/MmDHQ6XR44403+sQCAEYyjHLm8ccfx86dO/H999/3aVAPCgoCQFnEUUZ6MZWVlb3BS1BQEDo7O1FXV9cny1hZWYlZs2aZPaaTk5PJN66rqxpVVWrs2UNNt+ZiPb1e3+sXbXLUXq0GbrmFBBJbW0lRWwD8/IB33gEefJAGV9rbGVy5okKPjJTVqNX0fMvLyfFu/nxqis/IyICXlxdCQkKG32T0u+8CZ87A4O2Nk88+iwkPP2xVg/Ps2dRQvn078ItfQJQSiq2wLIv09HTExsZKMjggJjExZOt+880DfdILCwvR1dWFuLg4iyVmHI3Ozk5kZ2dj8uTJgnp/R0QAx46RZqsc0Ol0CAgI6LP2S0lCAlBYSOVpsaitrUVFRQUWL14syXDFpEmwqKVDSLi1Jz4+ntf0d14eTfBPnizOee3duxfh4eHYsGEDfv/73/f53c9q0MUIWU9JsyyLxx57DNu2bcORI0cGeNlGRUUhKCgIBw8e7P0Zl/HigsHJkydDrVb3uU1ZWRlSU1MHDRgHY9w4IDGR+vrMTWdaLGUREUF6BufOWXUu5jh9mqalPTyARx8V7nGDgmg6de/ea1IWY8eOHX7BYkUF8PLLAIDchx+G94oVNklZODmRtZ0tMjBiwkfKQu7ExFCQbjD0tTuzRo/QEcnIyIC3t7fgGX9/f3LbkYM2MWexak93nuRkcSVXWR7uPELh5SW9gLe17jwuLuK+FzkJvCtXroh3EAdD1gHjo48+ii+//BIbNmyAu7s7ysvLUV5e3qumzjAM1q9fj9dffx3bt29Hamoq7r33Xmi1Wqxbtw4A4Onpifvvvx9PP/00Dh8+jIsXL+Kuu+5CcnIylixZYvW5JSQA3t4UAHT0a6FoaWlBfn6+ZVIWCgWlncLCSGlbAGGpq1cBztLy+efJ+1hIZswA5sxh8cMPWQgJiXL4jNQATp+mNEpTEzrHj0fu7NmCSFkEBwO33w40NdHfSC4MR3ee0FCSCNm27VrQmJWVBXd3d7tlpKSgsbERhYWFornzTJ9OmR17bnpYIz1CKS1W++PkBJw4IZ7sEGexGh0dLc4BTFBWRlayUmHLJs7Hhy6bYsJVJX+uJej+yDpg/Ne//oWGhgYsWLAAo0aN6v23idPAA/DMM89g/fr1eOSRRzBlyhSUlJTgwIEDcHd3773N22+/jRtvvBG33nprr3r7rl27bM4yODkBM2dS0Ggs6ZiamorQ0FB4WqruyjAU1WVmUurOhqCxqIi0ACsqKKj97W+tfqhBaW2tQHV1Ey5fTnAIYd8hoeY3Mt2eMQP44QewGg0u3XcfEseMEawEodEArq6kkSlxj75ZsrOzodVqERISYu9TEZTgYGDCBPqzcnqEwzIb3gNrpEdovP4JjUpFgZK9KC0tRUtLiyzceVxcqCwtNHq93i6bOF9faV1sMjMz4enp2dtexgdn574VBDF4//33AQCvvfaauAdyEBiWdSS3UPvR2NgIT09PNDQ0DMiotbXRP7UaaGurxNmzZ7FkyRLr+ocuXaJVyAqHjaIiciHIywNGj6Z+IzF2YAaDAUeOHEF0dDTc3aNQWkrlGYe8DhsMwO7dwOuvU2YRoCviXXch79ZbUeTigvnz5wseZBgMFDAmJNDh7PXatba24siRI5g9e/YAJYHhgsEAbN58GXFxwKRJ4+19OqJRVlaGS5cuYfHixdCIPInx3XdkOyp1QrqrqwtHjhxBQkICwsPDpT24CaqrKSuXnCzs46alpaGmpgZz5syRdIPT1UX/pHC4a2pqwrFjxzB//nyrqlRdXVRBuPVWEU6uB4PB0JtYMg6VBosHhjOyzjA6Ci4udFHautWAU6cyEB8fb32z+YQJQFwcZRo7Oy2+G5dZFDtYBIC8vDwoFApERETAz496OvfsoXNwGLq6gK+/ptd79WoKFp2dgcceA3Jy0PbPfyKtu1s0m0OFgi4ymZkUr0pkOjQAzp1nuAaLAFBdXYnGxnpkZCTZ7XUWm+7ubuh0OiQmJooeLAI0/V9cLI4122Dk5uZKarE6FH5+1Nsp5OtgT4tVlQr4/ntpjpWamoqIiAirAy6VSvx1UyiFgeHCyKshEH5+wMSJRSgqcubdvDsAhqGp6U2bLOrqLSykYDE/H4iOFjdY5ISdk5OT+3yYrrsO+OknuojImo4O4NNPKbW3bh2QkgK4uwO//z1QUAC8/z4QEYG0tDQEBQXB19dX1NMZO5aGNE6eFPUwJqmurkZlZSUSExOlP7hEcMLOixeHYvJktaTlNinJy8uDUqlERESEZMcsKgLS0iQ7HNra2pCdnS07r/qUFGoBEgqdTofQ0FC7WaxKYQ9YUVGBuro6JCQk2PQ4K1cKdEKDcNdddwHoq6X8c2UkYBSIzs5OlJamYe3aCBw5okBZmY0PGB5O23iFAhik4VbKYBGgCUx/f3/4+/v3+blGQ3MigYFAaqp4x7ealhaSyYmOBn79a5pM9/GhSejCQuCNN3qng2pra1FWVibZBGZiIk1QnzwJ1NdLcsjewYG4uDjTsk/DhPz8fACkqBAfT+ZK27fbL6MrBu3t7cjKypI8kJo1C7hyRboso06nw6hRo3qdvuRCfDxJjQkB585jayBlC0FB4n4+DAYDUlNTkZCQYHM2nOsiEpM33ngDAPBbsQYCHIiRgFEgjKUsZs8GDh+G7UGjj881Ab/KygG/5oLFggLKUh07RtOhYjGUlIVCQWWCmhpg3z7py1Umqa8HXnuN9C/Wr6cRwOBg4O9/pxfw+edp3L0HLpCKiYmRVLyaYUjP7dtvBXjfWIC1UhaOREdHx4BsuFZLAfq338rk/SkA6enp8Pf3l1y8WqWiqX8pNjk1NTUoLy9Hkpiih1YSGkptObbCBVLx8fF23cTNni1uwJifnw+GYRApgCZRVZXt5zMU3DCg1E5CcmQkYBSA/lIWLi6UbfP2JqFrm/DwIIHvixf7/Li4mAZcpAoWuQnMoaQsGIZEvcPDqQXTbnbElZXAH/9IOpfPPUd1ltGjgY8+okbPJ5806eXNSVnYQ4/Qywu47TaaohZzIfw56RH6+PggICCgz88TEoAlS0jFSixJFKmoq6tDSUmJ3fQIGQY4elTYkmx/7KFHyAeFggoWtgbOctnEZWUJlzHtT0dHBzIyMjB27FhB+gN9fKTZ+HEVtXqpSkAyZSRgtBFzUhZOTtfkJ1JSbDyIqyuNJF6+DKSno7KSLnjGZWixFVFKS0vR3NxssZRFUhKp8G/cKLEQ7NWrwBNPUEbxL3+hcv6YMcCXX9KEyYMP0h/HBHLQI3R2ppbKU6eoJ1SMxdAWKQtHobGxEUVFRWb1CD08gNJSmvZ11Ewjt/ZER0fbVY9wyRLg+HHxHr+oqAidnZ2yFpV3dweys62/f2dnp6CBlC2IKa2Tnp4OPz+/AZs4a1m4UJrPLyev88orr4h/MBkzEjDaSHl5ORoaGhBvQgZHpQLWrKFskSBCt2PHovZiIa6b04rMTOpVPHxY/GCxq6sLOp0OSUlJvPQIfX2BpUuB/fsl+FBnZwP3308R9Hvv0bDQ1KnAjh3UaHXnnUNqgGRlZcHV1XVodx6RYRhq5u7uHrR91SqampqQn58/7PUIOWHnwdx5kpKobTUrS8KTE5CSkhK0trbaXY/Qw4O8B8QoY3LZ8LFjx8o6Gz56tG2uI5mZmfDy8hLcncca/Pzo+QhNQ0OD4O48x44BdXWCPZxZbu3R7vn73/8u/sFkzEjAaAOWSFkoFMCiRVQhPXTItsCpsUWJ5e8uw5VsLYL8u3H4oAFSDEXaImUREADcdBPFcz3zB8Jy+TI1UiUkAJ99RpH5woXAwYPUEb16Nf0RhsCeUhamYBgahFGrgW++4aWwNCg6nc4mKQtHoKysDI2NjRa580ybBkRFCVAFkBjjTZwc3HnUaqomCL0x5CxW5e7Oo9FQH6M1LThys1jVaITfqHKbuKioKJssVvvj7CyNVaUc/i5yYCRgtAE+UhYhIYCnJw2DWENrK+3iz5xh4OsLHPxXDmJTtonu0SWElAXD0EX53DmK7wThp5/oBZkwgeSHDAZKy508SdYeS5bwUsPm9AjtJWVhDq0WmDwZ2LzZ9n67iooK1NbW2nUCU2y4TRyfbLhaTRIxjmQZm5OTAxcXF4SK2bjMA5WKslJCKiRw7jxy2cQNRVoa9ZTzQSp3Hr6kpAgb/JeVlaG5uVkQi1VjoqOpY0sK7r33XgDAgQMHpDmgDBkJGPnSE6BZI2UxdSoNhJSU8IvzOjqotP3991T+2b8fGHtzPDBxIjViiVjvTUtLE0TKQq0Gbr6ZJBtqaqw8ZZalNO3ChaTpsXs3BYW33UYOObt2kVcjTzgpC7nqEUZG0hBVTY31wzBCSlnImdzcXKjVal4uIAwDLF9OvbaO0M/Y2tqKnJwc2QVSU6f2ERywGZ1Oh7CwMMstVu1MbCyQk8PvPhUVFWZbmuyJVktJCiHo7u5GamoqEhMTBbNY5dBqpRusfP311wH8vOV1RgJGvlRUACxrtZSFVkvlxc2bLUul6/VUcd2/n+67Zw9lnADQ9iosjDJstbX8n8sQ1NTUoKysTDApC4WCesYKC6m10OIPusFAOigzZpBC+LFjFIHefz+N823cCIy3zvJNLlIWQ+HkRNP3+/bxz2IAwkpZyJW2tjar9QgVCtprnD5Nc1NyJi0tDcHBwbJz51GpqJx57pztj1VZWYnq6mrZbuJM4efHbxmS8yZu5Uq63ghBTk4ONBqNKFaOtbUkeiEFXFtEZmamNAeUISMBI19GjULLZ5+hPDvb6ubdqCjqaywoGDyj0d0N3HsvBVdOTsDOnaSR1QeFAlixgrJtAo4jiyllMWkSOZwMOVXY1QV89RU1B914I3DmDEVNv/0t6Vh8+inZKNqAXKQsLMHNjZKpDQ38BgyElrKQK+np6Ta780ycSPsRE7KnsoDTI5RrIOXvD6SnA+3t1j+GcSBltcWqHWAYqgBYOoRhD3ceSykqIq97W+FamsaNGydKNtzFRZoeRg4uaKwVKEHDOkJJw4jhe/UQCVahwJXAQIzPzYWrDc3mo0aRgPCOHabLjCwLPPwwsGED7dy3bgUWLzbzYB4eZHPHsoKNfIotZREbS3MqO3aYkHDo6AA+/pgsFO66i1YuDw/SVSwoIMcWAexs5CRlYSkaDWUxzp6lFgVL1puMjAxBpSzkSF1dHUpLS23Ohjs5UfuHs7Nwg0ZCYezOI0c9QuCaDqstcnUFBQVgWRZRUVGCnZdUODlZJq/DWazKde3RaoXR1hSqpckcAQE0uCYVnLwO5/7Ch9raWrzxxhsICgoCwzBgGEaWf/vBcKyzlQGlpaVoVKsR8MQTtI22UZn7uuuozGi8K2VZ0pX+5BNKIH71lQWemSoVbbfS0ykTZwNSSVkwDGVav/uuJ2hsaQHefpu65x96iGoNfn7k1FJYSP8LGPRweoRykLLgy4wZFDyePz/47RoaGlBUVGQ3YWcpMHbn0QpQR3N1pdf2668l1hAdgqKiIuj1ekRHR9v7VAYlPJw0WBsa+N/XETdxxkRFWfa8zVmsygUfH9tL0pzFqpjuPCwrTAuEpaxZswYA8NFHHw16O5ZlceDAASxfvrw3OPT19cWzzz6LCqNIfKjHkRuO94m0M+np6SRlodVSH92hQxTMWAlXZnRxudab9sILlEQDgH//G+iRgBoapRJYtYo+6Xq91R38UkpZeHgAty+rg+d7r6ArNAJ46ika5AkJAd55h16UP/6RbFAERG5SFtYwYwb1s548SUnZ/hi78wgpZSE3iouL0dbWJmg23NkZuP56+Qh7O5o7j5ubdWLexharjohGQ3JYg7WMDGWxKgc0GqoCWYtU7jwqFQ2RSoW5a0VJSQn++Mc/QqvV9mYOly1bhn1Gsijjx4/Hf/7zH7S1tYFlWbAsiwcffFCqUxeEkYCRJ32kLLRaiuZ6BmGsRaOhN/7582RS8uqr9PMPPqAeRl4wDDUIFhaSBzXPETJJpSwqKoA//AGa2AioXn4BqvoatIbEgP3kU+pRfOIJUTQTWJaFTqdDZGSkw+sRMgxldDZtGqidVlZWhqamJsGlLOSEmO48gYE02V9cbEeLyx6ysrLg7u4uez1CjqAgKs+a2siYo7/FqqNy6ZJ5zVljUXl7uvNYwoED1l/WOItVsbPhDENydVLywAMP9Pn+/vvvR2hoKP7yl7+gzaih8oknnkB2dnZvcHjp0iXce++9sh6uHIqRgJEniYmJfQMpjYaaKH76iVYKK1GpKLH23nv0/V//Cjz6qA0nGhNDwyI8t/mSSFkUFgKPP056MX/9K9DUBCQnA19/jZyd6dD/8n50q8Rrdq+oqEB9fb3spCysJTSUWhYUimtBo7GovNBSFnIiOzsbWq0WISLZHSmV1FS/c6f9Mo3cJs7RsuHLllluMWcs7CwnPUJriIkx38dYWlqKlpYWu7vzWIK7Oy3NfNHr9ZJarJrt7ReJV7mMTg+fffYZAGDbtm3o6urqDRDfeeedAVWP9PR0/OY3v+ktU7/22muSnbcQjASMPDHbvDtjBkV8VlpG/O9/NPwLAI88QnrUNl+gYmKoSfDsWYtG90SXsqivB+67j87rgw+oB3T6dLoa9zi2jJukQl0dZczEmH6Ts5SFLfj4UBl11y7SgsvJyeGtR+hotLa2Ijc3V/RAKi6OFKzsJbeTmpqK8PBwh9EjNCY11TIZqPLycjQ2Ng6LTZyfHw009sdai1V7MW0a5UP4kp2dDTc3N8ksVrdtk+QwvZhrl7jpppv6tIu0trbi448/7k0yMQyDpKSkPn2LjmaiMBIwCoVCQeq/CQmkDcgz2nvhBfo/NBR48UXyYT5yRIDzYhi64u3cSQGtGSSRsvjgA+C//6X63qJFZITNObYYXfADA0mbWwxB/by8PCgUCllKWdiKSkX9sFeudCAtLVd2ws5Cw7nzSKFHOH48BQI//ST6ofpQWVnp0O48c+cO/ZoNt2w4w1Apvv+kuC0Wq/ZAqQTKyvjdh7NYlTobLnX231TbxJkzZ7Bu3bre4NDV1RUPPfQQMjIyem+zevVqHD16FAaDASzL4uabb5bytG1mJGAUEoahQZjGRuqW5+Hl9uc/026uuJgqyVVVJE+Rni6AvIenJ0USzs5m9S4KCgpgMBjElbJYuZKiGgC4+24KGs0sKqNG0fxOWppwmR1OyiI5OdkhJzAtQaUCIiJS4eYWjEuXfGUxsCEG1dXVqKyslFSPUKul6d+zZ6U5nsFgQEpKCuLj4x1Kj9AYFxfgllsGX8PkrEdoC8b6zkJYrEoNy1omEWSMTqdDaGiopBar48fbbpvKh4qKCjz//PMDfj59+nR8/fXXvd+Hh4fj7bffRl1dXW+ZeseOHViwYIHDvAf6MzyvmvZm2jTSV2hqsnjr86tfkRpOUhIp9SxfTtI6CgW5wths0+TsTL5dx48P0CHgpCxED6QmTABeeYW+fvzxISX6GYZKgT/+SIGjrchdykIIOCmLOXPi4eVFieXhhrEeodQN5EuW0ByWFIF4fs/khCPqERqjVJIZk6nJYWssVh2BqKi+4u86nU5UPUIx8PYeOEg3GJzFqtTZcA8Pfla7tmDsDNafu+++G+fOnQPLsujs7MSKFSvw5JNPwtvbGzohVNBlwEjAKBZjxlxbKS0cFRw/nmI5rpfxgw9IRHjUKLJA4uPuYRKGobRdY2OfnkZJpSx+9zuqUzU3U5ZxiPFTJycaRPfzs8GDGo4hZWEr/aUsJk+mhvCKCmndEMTGnu48DEObuqNHxbUk6+joGDbZcIXi2trWn/T0dAQEBPC2WJU7Gg1t+ru7r7nziKlHKAYqFakEWIJxNlzqTVx2tuXuOrbCWaz2z4b7+/vj888/h5OTEzw9PaHRaPDhhx8CABYvXjxsrjuOvRLJHTc3EuXats3iSMfFhTQY9+0jaYq0NHL++/pr+mez+j6nlu3kBOzahcbaWmmlLJRK4PPPaVt48iRggWK+QkF63Tk55IDIN3A21iOUu5SFLZiSsnBzo7fe5s3SLapiIhc9Qq43Twg3DFNkZGTAx8dn2LjzJCeTKIIxdXV1KCkpGTYX0/6cOwfk5kqjRygW27ZZVu4tLCyEwWCwyyZOKntAUxarDT0q7e7u7mAYBsnJyWjsl5b95JNPxD85iRgJGMUmLIyaeEpKKE1oIcuWAVeuAKtXU//PM8+QdfKmTQK5T2i1YOPjUf7uu4gKD5dWyiIyEvjHP+jrF1+02Jlm+nQasOab2SktLUVzc7NDSFlYy2B6hEFBZMVdWCgPEWpb4Nx5goKC7HoeajVlX7y8hHeD4dx5HF2P0BiFgvaKP/5I33ObuOjoaEHceeRITAxw8mSlqBarYuPsPHRZ2t7uPOPH07Co2KSnpw+wWJ09ezYA6sM1xdq1axHZf6fkwIwEjFKgVpOo1e7dvGTp/f1Je/vjj6nh/vhxiq+2biW5Clspd3dHwYQJiB81yrShtZjceSdw++2ULrzrLouvuomJtBBv22ZZ/O1oUhbWkpWVBVdXV7NSFp6e1EJ64ABlah2RpqYm5Ofny0aP0NmZlKG++UY432kukIqKihp27jy+vrTZ6+ggZ4zW1tZhvYnz8NBDr88S3WJVTGJjh84wZmZmwsvLy27uPHV14raHALSJ41qavvjii16Jq6tGE5nu7u54/vnnUVpaCpZl0dbWBhcXFygUCtx1113inqBEjASMUuHpSc14DQ28bCMYBvj1r0kTfOpU+nDcey+wfj2wf7/1GSNOyiJu4kSotVp6sNxc6x7MGhgG+Oc/aWuYnQ08/TSvuy5ZQvH3UGVWR5OysAZOysKSwYHFi0ny0hJtPLmh0+kQEREhK3ceT09SMzh6VJjHKysrGzZ6hP1hGCrl19Vd28RJIexsL7Kzs+Dh4QJ3d8dw5zHFUMumHCxWu7v7DhgJDdcbXlNTA3d3d/zyl7/s/d3q1asBAKdPn0ZjYyNefvlllJSUQKlUwsXFBZ9//jkAYOnSpeKdoISMBIxS4uxMHfPHj5MPIA9iY6mc86c/UXnn8GHggQfooayRFOgjZcEZWvMMZm3G25v6GRkG+OgjXiO9Hh7AHXdQ5tXcBLUjSllYAx8pC5UKuOkmsupOTXWcEnVFRYVs9QgjIoDrrrPJUh7AtU3ccM6GR0YCZ88WQanUXrNYHYZw7jyhofHIy3PctaelxfSwEnAtGx4ZGWlXdx43N2p3EIuysjI0Nzdjz549AIBFixahvLwcAE2GAyTA/ac//QkMw2Dq1Kkw9FyU//Of/4Bl2T5BpiMzEjDag0WLqJ5qLNRlAWo1+UwfP04Lb3ExZYxuvZVfH5VJKQu1Gpg0CdDpaOJGKmGrhQuvZRfvv580hSxEraZ/xcUkct4/+ElLS3M4KQu+WCNloVBQ4FhfL+2f2locwZ1HoQCysmxyB0Vubu7Pwp2nuLgQev34Yb+JCw8Px/jx7jZvJOyJl5f5Kk5FRQUaGhrsng338iIlOzHo7u5GamoqEhMTMW7cOADA448/3jvAlNrTG+bp6YnXX38dAAWPRUVFYFkW9957rzgnZidGAkZ7wDCUkuDShjzHfufMoQvT3XfTxf6bb6hcbWlv2qBSFuPHA8HB17rTpeDVV0mtvLqagkYeaS+FAli6lKSH9Pprelw1NTUoKytzOCkLPhhrgvGVsmAYeh9FRFD/nc2STSLCSVnIvXl88WISmbdGE66trW1Y6hH2R6fTYdo0T3R0eDhMdpsvnMVqQkIC3NzIr8BRn6tKRS0X/ZHTJo5l6RooBjk5OdBoNAgPD0dycjIAICUlBZ9++ikA9JmIfuWVV2AwGJCent7bAtXS0oK1a9dizpw54pygxIwEjPZEoSAT4C1bLNZq5PD0pGruxo20w0pPp5jr3XcHX5wskrIYN46iiVOnzDrDCIqTE/DVV/T/nj1Aj34VHxIT6VQ3bgSamhxbysJShNAjTEoiUfhNm2iAQ26YkrKQKwoFuVwWFfGXMEpPT0dgYCB8fX3FOTkZUFNTg4qKCiQlJWL1al6iEQ6DKYvVY8eknykUkvz8gdcUObnzKBTiVEm4lqZx48b1SuYAwAsvvICn+/XcsyyL5557rnez9+OPP4JhGLi5uWHr1q34UcoEjIjIewX+OZCYSJ3gLGuVmBR5BwMLFtDd168n3caamoG35SVlwTBAfDzw7beDelALxtixwF//Sl8//TT5cfMkIIDEcrdsqXJoKQtLEFLKwseH3j+7d8svE5KRkTFAykLu+PoCu3ZZvgesq6tDaWnpsNUjBPq683CbuO++k86hQyoKCgrAsmwfd56wMPGneMWkpqavtA5nsSqnTZwYClT9W5qMg+P77rtvwO27urqwfv16MAzTJ6O4efNmsHJbWK1EHn/tnzshIbRybt5MZVmehIXREMybb1JP3759ZDRz4EDf2/GWsvD2pojU1VXcMTSOxx+n+nJbG8nuWKFV4umpR3DwBahUE5Cb65hSFpYgtJRFcDDpCubkyCcb0tDQgKtXrzpcIOXlRa25lihocYFUTEzMsNUjBICioiLo9fpeUXmGASZPNj9Q4YiY28RFRNAS6qgEBJDLLUd6errsLFaFfn05i1Xjlibjv+k777zT5/b+/v5Qq9V49913AQBTpkxBeXk5WJbF2rVrhT05OzISMMoFd3fyATxxwqo0j0JBrnunT1PSsqKCxL/Xr6dSo7EeIS8pC2dnGkm+cIFqK2LulBQK4D//oZTXhQvASy/xfoisrCy4ublh7lx/pKXxHkZ3CMSSsmAYChz37aOyqj3hAilH1SMMC6O+2uPHB79dcXEx2trahnU2XK/X94rKG+sRJiVR98swSb70uvP038RpNBTQyLlPeDCmTaN1ASCLVTm685w5I9z7qL/FqrnbGFPdk+j5+9//DoPBgLNnz9pNl1JMRgJGOeHuTpYcOTnUlGgFEyfSrv2RR+j7d9+lgZi9e4vg4uJinZQFwwDXX0+rXm2tuCt8cDDAWSn95S/ADz9YfFdOyiI5ORlqNYPVq0nku6RE/pPAlsKyLHQ6nWhSFq6ulFQ2GOzb08hJWcTFxdnvJGzExYWCBHOblsHceYYTmZmZ8PDwwKhRffUIGYY2tqdP2+nEBKSxsRGFhYVmA6niYvrniFRXUwWLC6TkaLGq0Qgnnm/KYrU/xhJmKpUKGRkZYFkWTz755LAeWhsJGOXI6NEkZm1lvUarJee9HTsoaZeaCvzud962T2BOnUqiVxs3As3N1j/OUFx/PU2Qsyzw8ssW302n0yEsLKxXhZ9haDiovp6q/XIc6uBLRUUF6uvrRZWy0GhItun4ceDsWdEOYxZOjzAxMdHh9QgXLqTPo6k9VnZ2NrRaLUJCQqQ/MYlobm5Gfn6+2bUnMpLUxaSUfxUa42y4uU1cdLS0vghCwknrlJaWoqWlRZabuCVLqB3LVoyz4ZZu4m6//Xa7SwtJxUjAKEeUShq3jIqi7Z0VGb3SUuD//b9rmbXoaAM8Pb1tPzcnJ9IP2bZNnI713Fxg1iwKmBUK6mW0AE7KIjExccDvxoyhuaLiYsfONEotZbF0KTW7S+0Kk5OTM2z0CBmGWkT27u07Fdza2orc3FzZ2ByKRWpqKsLDw8268ygUNHDFUyRCVpSXlw/pzjNqFC1rjohKBURFydudxxplAlNkZ2fDzc3NrMUqR0NDQ+/XycnJuHz5Mnx8fPCb3/zG9pOQMSMBo1xhGBq3vHqVUoU8tuDHj5MG948/Au7uBvzxj2fxxRda1NQIpJITEACsW0ed0EIaE+/aRZ3wly/TMQ4dIh/EITAlZdGfkBDa5W/bRi+pIyK1lAXD0N4gLIys76ToweovZTFcmDOH3t5cllun0yEkJATe3gJs4mSKpe48ERFASopjZhmNhZ0Hy4YrFMD33ztulaOxsRAajXwtVltayKjMtscgi9XBNnFBQUEDfvb73/8eEyZMQF1dHc6cOWPbScickYBR7kycSCkyC+sZx47RRb6iAkhOZvHPf57FPfd4wsfHBWo1qeSUlQlwXioVDcOkptrehFRTQ4bZq1bRp37mTBp6WbjQorubkrIwBcNQ4vbkSflMAluKPaUslEogMBDYulV8GZTh6s7j4UHvPYUCqKysRmVlpcls+HDBWFTe3CbOGBcX4OJFCU5MYPLy8qBSqSzaxHl7O6aHe1tbG44fr0FUlHxF5T09ba8eWWKxymkx9lcaGT16NPLy8nDhwgXbTkLmjASMjkBcHP3bsaOvIFY/WlvJX7q7m/yCN226isDAxt7mXS8vshEsKxOoNKtSAatX01RzWxv/BzUYgH//m/Qee5Tz8dvfUtRrYV8XXz1CJydg7VpaYE6dcpwJzYyMDLtKWSQlkeMDy9L7TAxMSVkMJ3x8gKIiFp99VoK4uDje7jyORH5+PgAMuYnjSE6WxiNASExarA5CTIxjTkrrdDpERHgAkO8mLiGBOrisxVKLVU6xodJIZq6rqwu5ubkWv9cdmZGA0VFgGGDePGD7drNB44svUiIyNBT45BM9CgsHSlm4uFC5+sQJgSRnGIYGVEpL+U2WXL5MdboHHqAMY3IyndS779LUhYVkZGTA29ubl4SBQkGHUCp5V/vtQn19PYqLi+0uZREURLNOW7YI0y9kjCVSFsMBlaoQanUXmpqsd+eROx0dHcjMzERycrLF2XCul1GQ6odEDGqxagJvb/rnSNTU1KC8vByrV0fARDVWNpSUWO9mazAYkJKSMqTFand3N/bv3z/g58bX1+HOSMDoSPj4UIrQyWlAbeP8eeCtt+jrf/0LKC/Pgru7+wApC465c+mif+WKQOcWHU0POlQPR2Mj8OSTFLX+9BNNXb/1Fj2B2bN5HZKTshhrpcz/1Kn0z2CgHhg5wrnzyEXKwseHlJ+ElkKxRMrC0dHr9UhPT8cddwRjzBjlYMUCh4bTI+TrzqNQkNmAIwymWWSxaoKzZwctEskK402cRuOC1FR7n5F5XFysMkoDQBarBoNhUItVrvWgtae8cs8991h3MAdnJGDkibHivV1wcaHU2IULvZonej1w//200N52G7BgQfOQzbsMQ1IEY8fSxV+Q3rSQEMqCnjxJU87GsCxlIBMTgXfeoZNdu5b0Jp96ircmAhdIDSZlYQmhoVRi3bpVGjMbvpSWlqK5udlydx4J8PQk5aOLF4XRlrNGysIRyczMhKenJ0aNolTN9u3ilfftRUNDA4qKiqzaxCmVVKzov3TIDS6QsshitR+RkY7Tx8i588TExMDZWd72hm5ugDWiCpa0NH344Ye9G9n7778fAG2Kfo6MBIxWIFhWzlpUKmpSZBigqwtv/c2Ay5cp+/Pee9ekLDg9wsFQKAA/P2DTJgGzbNOmUSDIvVBZWWQ7c9ttVLqOiSE7kc2bKWKzgvLycjQ0NAiif+XlBdxyCwVAcuppNHbnkaMeYWIiTX72tKtZjaVSFo5MU1MT8vPzezdxTk70kTh0yN5nJhzG2XBr3XmmTaNihZwpKSlBW1ubVZs4W3vtpILLhnMtTRoN5SrkipMTmZLxZTCLVZZlMW7cODz88MMAgGPHjuHTnl77tLS03tvV1NRYd9IOyEjAyBM3N4p5fvjBzsEFwwBTpiDrZDVe/DOdyNtvA0ClRVIWxkRHk+aewSCQHrdKRSOh4eHAb35D/YkHD9Kn+qWXSENj2TKrH14MYWdXVzql9HT5DMPk5ubCyUm+UhbOzpQk9vCwvsxmiZTFcCA1NRURERF99AiDgoAbbiBFg+FAWVkZmpqabBJ2VqmoQCFX6SurLVZ7cHKyjxg+X7KyBrY0LV0qj3XRHKdO8bv9YBar5eXlUCgUSElJ6b3t/Pnze3/fZFRq9PX1tf6kHYyRgJEnDGvAsmUkM9LZad9+G4MB+PXzQejQK7F0YiXuvPNa864lUhbGBARQALB9u+0ZIwCkVDxpEvDRR/RCLVkC6HTACy9YtxU0Qkw9wsREOt1jxwR/aF5weoQ2u/OIjFpNme2jR4FLl/jf3xIpC0enoqICdXV1JjdxSiW1/QopZ2oPhNzETZjA/+IvFTk5OdZbrPYghGagmHAWq/0DqT17hk8LBZcNN2WxunXr1t5AefXq1WBZtvc2N9xwQ5/bDueqiClGAka+bNkCprYGcXGkLr99u/2mbD/5hEqCrq7AR9/4o/TAfmhqa60e71ergdtvpwSg1c4LxcXAmjWUOsnPp5Lzf/8LfPklhBiz4ytlwRduGJ0zm7GX0K4j6RFy+pZlZfykUSyVsnBkLHHnuf56cgF1RMkVjtzcXMHceTw8gHHj5JfNam1tRU5Ojs1rT2xsX9cfuaHT6Uy2NPn4CK+OICR8ilYVFRUmW5qWL1+OtWvXAgB27NiBHTt2AKDeXIZhsGfPnj63T0pK6n2snwMjASNfli+nrVZ7O2JjaWGzdpzfFqqqgD/8gb5+7TVgVHAndG1tGFdVBYUN3clqNelnNzYCR47wWLRZliLYMWMoilapgN/9jmq899xDKcy9e61LQxnBV8rCWpycyAN40ybpF8mamhqH0yNUKOijoVRa1q5hLOw83PUIGYZBZGSk2duo1dfaex0xaGxraxN8ExcdLb/SrU6nQ3BwsM3uPAkJZOIlRziLVVObuNhYefcxpqZadr0ytYljWRYMw2Dfvn0A6HVYvXo1AODw4cO9FZBp06b1eazS0lIEBQXJaihRTEYCRr54eJC/cVsbkJOD2FjKSJ06Je0E9QsvUDZnwgTgscdoassrOBieDz4IuLvbHOX4+9NT3bnTgg9hQQE1uDz4IEWaM2bQFPebb1LTJ0BpqDVrSHPRyiZha6UsrCUkhCRkGhqoTC0Fjq5H6O5OweO+fYO/bwoLC9Hd3T2olIWj09HRYbGoPMNQqfLAAYlOTkDS09MRFBQkaC+XSkVTuXKRu6qurkZFRYVgm7idOwV5GEEZymLVy0s+fw9TVFdbVhkbqqXJYDD0GiTcf//9WLJkCQDg3//+N06fPt2n5YIbfjkrt92NSIwEjNagUNCV8fJl4PJlMAwN/m7bZnUsxIsrV4CPP6av330XaGlpvCZloVJRg2VqKl21bWiynDIFWLSIspkmFwqDAfjHP0ib59Ah6k186y0S4O6xUOqDQkG+he7uwDff8BLO4npOrJGysAVPT5LC2LeP/txiU1RUhM7OTsTExIh/MJGYPRsYP576nUy9/fi68zgq6enp8PPzs1iPMCGBBOUdaeiytrYWpaWlomTDp0+Xx/ALt/YI6c7j5SW/8q4lFqvnzkl4Qjzx8Rl6Y2/OYtU4M97d3Y329nYwDIPPPvsMAL02v/rVrwCgj1asr68vuru7RemnlyPDd7UWG07aRqUC9Hr4+bJYs4ZKcoJMGptBr6dEnsFAGt5z51JGaoCUxdy5QHCwzaJf7u6UKdq6lXZwvaSkUGTw2GMUTc6dS5HsU0/RizAYGg01CW7ebHGzZElJCVpbW+2W+l+5kqZZhdAdNAcnZTF27FiHdw8IDqYS6zffDOzxHUzKYrjQ0NCAq1ev8s6GL15Mn+0+nzWZwgVSMTExomzioqJI8kts//Kh4PQIhRSVnz6dt/SsqFiyiXNxsV9PtyXMm3etoGWO9PR0sxarb775JgDgpptu6q3uhISE9AkIn3vuuT4ajGlpacN609ufn88zFQOFgnr20tKA/fvh7sb2lnHFmnp89VUS2vbyomReWVkZGhsbTUtZjBtHq+62bTbZCwQGUjX56lXA0NxKzZOTJlEd3t0deP99GivmE8yNGgXccQcFjFlZg97UVikLIVAoqOo+ahRlG8W4iGVlZcHNzc2sO4+jERsLTJzYtxdtMCmL4QLXVmCtHqGzM7VJS9UGYS3FxcVoa2sTNRteWipNZt8cxqLyQm7ifH0BOWk/c+48Q23iVq2S6ISs4Pz5wcXF6+vrB21pevrppwEAu3fvBgD89a9/RXFxMRQKBbq6uuDi4oLXXnutz32Gc/+1KUYCRiEYP54mgE+dgkJBmT+dTvjd2MmTFDACwIcfAqNGdQ8t7MwwwPz5NIhiQ5OluzswsWIfOmLHAH/9K6WN1qyhYPmxxyii4otGQ5MlmZmDTkoIIWUhFEolEB8PbNxovRWVKZqbm5Gfny97GR2+xMQAM2fSNH9Li3kpi+FEWVkZmpubrdYjdHenhP0Q+yi70tXVJYk7z5gxtJbaa2I6MzMTHh4egm/iFAoKGOUwCc5ZrFqSDT9/3gYFDZFxcTEv+2O8iTNnsWqcKfz+++/xzDPPAKD3gFqtRnvPBf27774T9sQdiJGAUSgmTKBhj1OnoOpqx+rVVJo+eVKYh29qAu66i8pVd99NU5UWS1n4+pJejkoF5ObyP3hZGd1/+XK4lBegzT8MRe9/S/VGW4M4lYrqvUFBtBL1S90JJWUhJFFRtNNWKIQTXdbpdAgLC7PInccRiYsD/v3vBpSVtQjiziNXuru7kZqaarMeYVQUTQqnpwt4cgKSnZ0NrVaLkJAQUY+jVJI4vD0QexPn729/q1kukLLUYrW7W76SQEFB1MdoitLSUrS0tAy5ieOmpN8mFwy8++67vRPjTz/9NFiWxYQJEwQ7Z0djJGAUEoYBwsKoN6+pCb6+lIg7eND2h37qKZI1jIigCjBvKQsnJ2qaSU2lmrYl6PXk+5yYSPoyCgXw1FNwyUtD6COr8NNPAmlQMsw1cbKNG/uo2qalpQkiZSE0np4UvB8+bHtpaTApi+FCQIABoaGXkJAQC73etB7hcCAnJwcajUYQPUJnZ2oVLi0V4MQEpKWlBbm5uZJt4pydqYdaajiLVWN3HiFZtow0dO1JeXk5GhsbLd7EBQfbv6fUHG5uptvn+bQ0LesRc9y+fTuio6Oxfv16AMDJkyfxt7/9DQCGTcuQNYwEjEITEkKi1SwLpq0V8+ZR8rG+3nqNtTNngB4LS3z+OQUrVklZqFSUGnNyok/9YBPUP/xAk85PPkkB3JQp1Iz21luAmxsUCkpcbtokoPp/cDBlG3tG8WpqalBeXo7ExESBDiAsLi6U6a2uppfSmvLSUFIWw4W8vDx4e7OIigrH1q3Dxw7PGKHdeThBdEGclwQkLS0NISEhkrnzKBTUsy3lxHRFRQVvi1W+tLUB334r2sMPiTXZ8NhYGkSSI+3twMWLA3+ek5PDy2KVK83n9TREtrS0YObMmQCAr7766mc15NKfn+8zFxNfX4omtm4Fiorg70/SNDyGgvvwn//Q/3fcQZNgdXV11ktZMAxFsOXlwJYtphstu7pIgDAzkwS3P/mEBlwmTepzs7g4muoEBCyteHsDixeDvXABBVu2IE7meoRKJTBnDlBYCOzezX9TYImUhaNjLGWh1Sqwdi0pL9nTVlMM0tLSBNcjdHEhQYGffpJHv1t1dTUqKysl38RNny7d+8VYVF7MTRzXc2evv2teXh5UKhUvSZjWVlJQkyOmehjb2tp4tzRt2LCh92uWZXsVAObPn4+77rpLsPN1REYCRrHg7BvOnwc6OxEbS43sPV7mvOBk3DSaaz0nNktZhIWRLM7hwwN/l51N5WFXV+q8f+ABs1I5QUH0qx07hM2EFPn4wNDSguiSEuEeVESiomj3vX+/5ff5uegRZmRk9JGy0GqBm2+m94uYMkVSUltbi7KyMlFE5RmGgqULFwR/aF5wa4+QeoSW4uFBm20bxB4sJr9nIZNiEzd5sn3cfbhNHN9suJubuLJxtqDRAAsX9v2ZTqfjbbE6bty4Pt/X1taCYRh8//33AKjy9XNl+F6l5ICTE2k11tcDP/6I0BAWU6ZQTyOfktzUqfT/8eNAYaGAUhahoVQ+v3Klb7THbeVZ1qLpZycnmolJSxOmv0Wv1yM9IwMhd9wB5bx5FGU7gFdnQgL5AqemWtYYbqmUhSNTX1+P4uJik4FUaCipMclBnNkWpHDnmTWLLtT2zDLa253HyUl84eiOjo7eQEqKTVxoKBV7pCY9PR2BgYG8LVYZhrqT5AjD0EQ9B9fSZE0ljssk3n///b0VgwULFoBlWV7B53BjJGCUAn9/Wul7JrBmz6ag0dJm9vnzqYenoAD45JMa4aUsEhIofcH5PCcmUr25tRX45z8tegi1mmLPujqyN7OlfJSVlQV3d3dqLlapaFX99lubRcilQKEAwsOpPF1YaP52fKQsHJWhpCycnGgCVq8XaHjKTly9ehUdHR2CCjv3h1PHOnvWPhkpTlReaD1CPoSH075RzKCZ28RZ6s5jKwwjvXuKrRarBoN8P69cQcrWTdw/e657nNPLV199haNHjwp2no7KSMAoBQxDjW4zZgA1NdCqOnHbbdTqaEkZ190d+O1v6eutW6OFl7LQaEhTMSqK0j0sC/zpT/S7v/2Nl4FoQAAJfe/YYd3C3tzcjLy8vL7Czt7e1MCp1QKVlfJo5hoEDw/KuGo0pktonEOGpVIWjgonZTGYO4+TEzB6NLBrl/yGOyzBWNhZClF5V1eqNEhNZmYmPD09ERQUJP3Be2AY9MqViUFDQ8M1i1WJkLrEywVStlisFhZS0UyOcPtSzp3H2kqc8bpcWFiIdevW9fm9ECoIjshIwCgl3t6Utdu4Eer2JqjVNFfy/fdDx0APPNAKlaobWVnuSEkRQcqCYWj8uqmJpnNuuomE4KqrSSWcB+PHA8uXUwaVbyWZk7IYoEeoVlM0WlBAIuQyt8HQaMgV5tw54MiRvn/f8vJyNDQ0DGs9QmMpC0smMFeupLkquWq8mSM7Oxuurq4IDg6W5HhjxtBHQcosY1NTE/Lz82XhztPVJc5kMbeJs9adxxZuvVW6Y5WUlKCtrc0mi1UfH/n5YHOsXAl0dgqTDedkdP79738P+N3evXutflxHZiRglJqwMGDFCiArCwqGxbJllDhrbx88aCwv12HePBpF/uILEc8vKQlYsIAyec8+Sz/7f/+Pt3aOiws9rx07rpUJhqKysnJoKYtp02ha++pVhxizXbSI4nCuPN3dTe48tgo7y53c3FxeUhZqNV04nZwcJ9PY0tKCvLw8yUXlueE5qXx9U1NTERERIZoeIR80GurwEXoWrqysDE1NTVa789hCYSH1f4uNUBarEydSLkGOfPcdcOlSzrWWJht48sknAQAvv/zygN/JwXXMHowEjPbAz4/G4w4eBJOfhylTSJNr82bTiTNOyuKhh6iE8NVXImcYRo2iFcHVlfoHKypIWocn3t40KF5fP/QwjMFgQEpKimVSFpGRdH7bt8vbP62HyZOp/2r7diAlJR9KpZKXlIWjYa0eoVJJAeOZMw7xZ4VOp0NoaKhkeoTG+Pj0tkSLSkVFBerq6mQlKj97NvV0C4W9N3H+/oN7IAuFUBarra0kiyVHGKYNGRlFgmTDFQpF72P8nCejjRkJGO3JwoU0bJKXBx8f8tzt3/tnLGVx440a+PiQU9+uXRKc3y23kHIwQP7RVohIOjtTGe3UqcFL71ZJWaxeTTV9B9BmUSiAKVPa8fnnzYiKko/NoRhYI2XBoVKR5E5NjbxbVauqqlBVVWW3QCo8nPZ1gonmm4DbxCUkJECjkY87j5sbqZXxaK0eFIstVkXC05M212IipMWqqytdg+SIXp+JqKhgwSxWOavAX/3qV4I8nqMzEjDaE7Wahk3CwoArVxAexuLmm6lNr6qKbmIsZaHRAL/8Jf38l7+kTIyoqFTA22+T2GJZGWmgWMmcOZQ9unJl4O+slrJQqSigDQ6mdItUNTorqa5Ox5o1XQgK8nOYsitfbJGy4FCpaPN05ow0pTq+GAs7S61HaMz06UBRkXgDCPn5+VAoFIiMjBTnADYQHCyMLiVvi1URYBgSqrDG1MFSdDqdYBarSiUNNsqNyspK6PUViI0Vrq1g6dKlAICdO3cK9piOzEjAaG8UCgoc29uBnTuhRDf8/Sn+yckZ2Lz72mvUYtjURF6koov5OjkBS5bQ1x9+aHVQxjB0gRs3Djh6tG92wGYpC4UCGDuWfAqlUPa1Ak7KYtKkJKhUpGAkesAvMULrEU6ZQj7dcitP21uP0JiAAOrbErqdt6OjQ9ai8tHRtKbYilUWqyKQny9eWbq6uhoVFRU2beL6M368vCoA3CbOxycRxcXCuvNMmDABAHDFVLbjZ4b8VoKfK9Om0cBJezvcnPS47TYgKysfLi5efaQstFoqR8+eTZmF666zzj2GFwsW0P/l5bRKV1db/VAMQyXqrVtpIlYwKYvQUCqhOzsDOTm2PZbAcBOYnJSFSkXOi2r10JbejoStUhb9USrpdbKXuLEp5ObO4+NDlu9CT5enp6fDz89PMj1CvjAMDV/Y8r6ora213mJVYCIiKFssNNzaI7Q7z4kTAtrBCgBnsRoXF4q2NmEfe+vWrQCA1atXC/vADoj9V7wRrhEbS9u2DRvQUVmM7u5MNDWNw08/MX12c25uwJ49FGPW1pKfc3q6iOfFBYznz9MqsX8/9Q5aSUAA9am5uLA4dixTOCkLV1eKMnJySBldJpFYSUkJWltb+0hZGF/wtm4VtxwlBWIJOysUNHF/+vQ1XXl7kpmZCS8vL1m584wbR72MlhoBDEVDQ4NZdx45oVRStcIauEDKZotVgeDmIIWG28QJLSrv4yMfCSzjTVxQkALjxwv7+NxrV+AAxhFiMxIwyg03N2DVKpT997+ICAvDypWuMBgGluU8PKhsPXEi9TsuXkwW0KIwejSlefR6akK87TaanDYYrK5LuLkB1dVlOHdOhYYGAfUIlUry5+POV+jtJk+GkrIIC6N+vUOH7HByApKVlQU3NzebpSxMwTDAqlWk9GTPNtXGxkYUFBTIQo+wP35+tEeyVZ6UayuIioqSXI+QL87OZGpgzQBrcbGAFqsCwDC0xgu5ceRE5ceOHSu4O09ioviDOpZibLHKMOL0Pd9zzz0AgC1btgj/4A7ESMAoQyo6O5EzcSISXFzAZGdhzhxy6jt8uO8FwdubLhLJyTSTcscdIp0Qw1zLMn78MQVl8+aRFuK331plIN3d3Y2MDB3uv98XLKtCW5vAPTGJibT6bt4sXOrFCiyRsuCkOS9fFl5fTgo4dx4xBwcYBli6lASDz58X5RCDwmWkIiMjZenOo9WSPqOtb/WysjI0NzfbRY/QGq6/nn/g0tXVJak7j6UoFML6qmdmZsLDw0MUdx5nZ3m0ifS3WFWpxNFx/eCDDwAAt0qpsi5DRgJGmcE17yYkJkITHU215tOnwTDU6L1pU9+BEV9fyjQyDF1IRQs4HnqIAsVNm4A336SfRUTQsIkVqveclEVERDhmz6bYbtMmgTNIHh6kBn3xIglXStylzUfKgmGA+HiSHpLbkMdQ6HQ60+48IsAN7F++LPqh+lBRUSF7d57Ro6krw9peuO7ubqSmpjqUqLxKRS0dfDKr2dnZ0Gq1wlus2khkpHAze5w7j1ibOKVSgt75ITDOhnObOIahzZPQGGfbu+RqpC0Bsg4Y//Wvf2HcuHHw8PCAh4cHZs6c2ceSh2VZvPjiiwgODoaLiwsWLFgAnU7X5zE6Ojrw+OOPw8/PD66urli1ahWKZazbl5+fD4ZhSMpCpaJaXGQkUFODyLBu3HADDUsYl2GCg2miFBCxtDlnDvDee/T1s8+SYCQAxMSQtE16+jU7kyEwJWXh5UUZku3bBY7rXFyAG26guv3OnZJaCqalpfGSsnB2pvjWx4fmiuQ0hWiOyspKVFdXS6ZHyDCUjfXxke5P2buJk5keoSk8PKivz5rXJicnBxqNxuF8cuPjgX7LvllaWlqQm5trVxkdcwQFUSVJCLhNnFjuPE5O9ndnLS8vR2Nj44BNHCcdLDR///vfAQAvvfSSOAdwAGQdMIaGhuKNN97AuXPncO7cOSxatAirV6/uDQrffPNN/P3vf8cHH3yAs2fPIigoCNdddx2ajMa31q9fj+3bt2Pjxo04ceIEmpubsXLlSnRLacZqISalLBiGRK+qq4HNm+Hj0gaDgZPduXbfHrkoHDgg4gk+8gj9Y1ngrruupXkYhtIbZ89SNm8IzElZhIRQe2RxsQhlhaAgqt0LHpGaxlo9QqWS+tEyMuhvLJO5HZMYB1JDuvMIiEJBZfxDh+h1Epu8vDyHcedxciIFBQv3br1w7jzjxo2TXSA1FElJ1MtoCTqdDiEhIXZx57GEXbtsd/GqqKhAbW0tEhMThTkpM9x+u6gPPyiDZcM3bRLnmE888QQA4NVXXxXnAI4A62B4e3uzn376KWswGNigoCD2jTfe6P1de3s76+npyX744Ycsy7JsfX09q1ar2Y0bN/bepqSkhFUoFOy+fft4HbehoYEFwDY0NAjzRExw8eJF9tSpU+ZvUFLCshcvsqzBwOr1LHvwIMt2ddGvjh1jWYBlAwJYtrtbtFNk2c5Oll2yhA4WFMSyFy5c+53BwLLV1SxbWsqyer3Ju9fW1rK7du1iW1pazB6io4Nlt25l2XPnhD55ll6cggKW1elEeHDCYDCwR48eZTMzM216nCtX6FTlSm5uLnvo0CG2W9Q3nHm6ulh20yaWraoS7xhtbW3s7t272crKSvEOIgK1tbRcWMq5c+fYc6J84KQhP59lh/oTVVVVsbt372bb2tokOSdrOHKEZa9etf7+3d3d7KFDh9jc3FzhTsoM333HsvZ6KbOystgjR46wBoNhwO82brx2XRQapVLJAmDz8vJEjwfkiHw6foegu7sbW7ZsQUtLC2bOnIn8/HyUl5f3KrEDgJOTE+bPn4+TJ0/ioYcewvnz56HX6/vcJjg4GGPHjsXJkyexbNkys8fr6OhAh9HIWmNPc4ler4feiiGPoWhsbMTVq1cxd+5c84/v7w/4+4PZtQtsUhLmz49Afj6QlcVg3jwW7u4qVFYyeO+9bjz6qIipqa++gmrxYjCpqWDnzUP311+D5V5LDw8gKwvM/v1gV63qs/VnWRZXrlxBVFQU1Gq12efJMFRWKC6mxKq7O2WVBCMwEMzhw0BREdjFiwV8YOLq1avo7OxEeHi4Te+VhATKMG7cyGDpUtbiLIoUdHZ2Ij09HRMmTEB3d7fdMvarVlH/a14eZR2FJi0tDb6+vvDy8hLlcy8WSiWwdy+DdetYDDXXUVdXh9LSUixYsMChnqMxSiVw6hSD6683XT3g1p7o6GgolUrZPs/ERFrrrD29/Px8sCyLkJAQ0Z+jSsWgspKFCMIIg8JV4qZOnWqynzA2ltYEMdpwv/vuO1x//fV46KGHhH9wB4BhWXl3SqWkpGDmzJlob2+Hm5sbNmzYgBUrVuDkyZOYPXs2SkpKEBwc3Hv7Bx98EIWFhdi/fz82bNiA++67r0/gB5DdT1RUFD766COzx33xxRdN9ips2LDB7rpdjF6PUWfOoC42Fm0BAcjL80RtrTNKS13x2WfJUCoNeOWVH5GUJJ5QlqqlBdP++lf4X7kCg0KByw8/jKLrruv9vaaxEZrGRrSMGgXWBkmH4mI3FBR4YNq0cmg0wgbBquZmKPV6dDs5oUsGWmzmaGxU49y5IMyaVQpnZ/m1Utibri4GP/4YjKSkGvj7y9seUkqKi93AskBYWLO9T0USTp0ahenTywRxgLEXLAvk53ti9OgGe5/KkJSVaeHk1A0fH3mJyNbXa+Di0gUnJ3GSJjfeeGPv1w0NDaL1icoR2WcY4+PjcenSJdTX1+Obb77BPffcg+PHj/f+vn+/DcuyQ/bgWHKbZ599Fk899VTv942NjQgLC8PSpUsFf4OUl5cjNTUV8+fPt3w6cdUqoLsbzOXLYJdPQqee6fGVNWDbNgXee28OTp/uEnf3t3o1DL/5DRRffomJ//gHxnl6wvDnP/fx7GL27gUbFISu5GQcP34ciYmJfQJ8SyguBioqGEyeLMLepqYGzJ49YCdNoj5MG8nIyEB9fT2mT58uaC/YTTcB3d3JKC8X5DRtoqmpCSdOnMDcuXNlo9W3bBlw9iyDOXOEeY+wLItTp07B29tbsoEeMWhqIuUBf3/Tvy8uLkZWVhbmzZsnK4kZa1i+HGhpmYj+b8nOzk4cP34c48aNk5Xgujm++orB8uUs78A3NTUV7e3tmMJNQIpMZyfQ3EwDaFJRX1+PU6dOYf78+WbtR3/6icGoUSzEskCfOHEiLlrQqz8ckf0KodFoesVVp0yZgrNnz+Ldd9/F73//ewAUbBmLBVdWVvYuCkFBQejs7ERdXV2fSdXKykrMmjVr0OM6OTmZbORXq9WCSk50d3cjPT0dSUlJ1mUuNRpg506oV62Cn58Gy5bRwHJ6OoN169Q4coRuIgpqNfD550BUFPDKK1C+/jqUV68Cn3567aC/+AVw9CiKjh2Dq5sbwsPDeQdSUVH078ABmiIUdCEICgLuvptUz/V6mqq2MtBrbm5GQUEB5s+fL/g0rVoNdHXRNGhT07WpeKlhWRbp6ekYPXq0xdPfUqBWAwsXAj/+SIP7tsYFnDvPzJkzHUZixhROTsDu3cCdd1LZ1hi9Xo/MzEwkJycL4v1tbzo7yQHrzjv7/jwjIwNeXl4ICQlxiIGewEBy7uEzl9PQ0ICSkhIsWLBAsvdrWxtw5ox4U8n94daemJiYQZM2Hh60lIv1MmzdulVw5xxHQdZT0qZgWRYdHR2IiopCUFAQDh482Ps7bifJBYOTJ0+GWq3uc5uysjKkpqYOGTBKhc1SFpMmAVOnAt3d8Hdtxbp1pH7j6UkXz9/9TtjzHQDDAC+/DHzyCV2RvviCdE8aGnp/3zpjBtK7ujChogJMa6vVh1qwADh3DsjNFebUe1GradSyoICEvq10h0lNTRVVykKlokyjSkXBoz2aScxJWciFiRNputwGu/M+7jyOHCwCpMs4aZJp2Zns7Gy4ubnxzvjLFY2G1r2qqms/a2pqkq07jzmuv56eh6WwPaLyUrvzuLtL6yddUlKCtra2PharpoiLI4lgsRht7xKPHZF1wPjHP/4RP/zwAwoKCpCSkoI//elPOHbsGO68804wDIP169fj9ddfx/bt25Gamop7770XWq0W69atAwB4enri/vvvx9NPP43Dhw/j4sWLuOuuu5CcnIwlS5bY+dkJKGUREUHRw5YtcGsqw5IlQI8CAN57j5RkROeBByiV4eZGljRz5vTaFuh0OoSEhsJ93jxS2bXGywt0Qbj5ZiA8nNR7BJecSUoiMchLl3hHY5WVlaitrRW9fMkwwIQJJM68bZv1zfHW0N3dDZ1OJ2thZ62W3iNOTtaLwOfm5sLJyQlhYkzR2IExY2gQoK7u2s9aWlqQl5fnUIGUJcydS0UCjtTUVERERDhUn1lrK/Ddd5bfvqysDE1NTZK78zAMGX5JwVAWq8Z0dNDeX0w+/fRTcQ8gU2QdMFZUVODuu+9GfHw8Fi9ejNOnT2Pfvn24rme44plnnsH69evxyCOPYMqUKSgpKcGBAwf6WHe9/fbbuPHGG3Hrrbdi9uzZ0Gq12LVrl/Xemnl5Qjw1ADSBGRQUBB8hmkC0WlJ9PnMG6O7Giy/StwDwq1/x12WziuuvJ6uSoCAgNRWYORN1x46hsrKSNMECAuik3N37ikjygGEoIahQAFu2COu9CoBU0GfOpPTs+fMWBY4GgwEpKSmIj4+XTI9w9GgKHI8eleRwABxHj9DNjTYXmzYB9fX87stt4uQo7GwtDEMZ6d27r22ydDodQkNDZatHaC2enlSF6Oqi60ddXZ3D9aC6ulr+vrX3Jq683HbdSEvIzs4e0mKVg2Wp711M1q5dK+4BZIrsp6TlQmNjIzw9PVF/+Ag8F8y3WeeltrYWJ0+exOLFi4XvH7p6FSgqgn7qLMydx+D0aWD6dOCHH8Tr6+hDYSF1oKeno0urRcU//oGQe++99nuDgbKQBgNw3XVWv5bFxdTno1CIYAfFssCJExR5TJ8+6E1zc3NRUFCAhQsXXhNclwiWpWxreDgJfotFe3s7Dh8+jOnTp8NPzAMJSH09sH8/7VEsjf3OnTsHhmEwefJkUc/NHly6RP+HhFThzJkzWLx4MZydne16TmJw7hygVhtQVXUEo0ePdsgS4sWLwPjxQy+NWVlZKC0txfz58+2ywdm3D5g2TdzBl9bWVhw5cgSzZ8+2qG+6vR04dozyF2LBxQM/tylpWWcY5ci+qskwnL9I0ZeVsTbb44EZGxsrTrN5aCjAMFAf3oeNGymhd/o0OfpJQkQE8OOPaJ8+HarWVgT/+tfAf/977fcKBQWK4eGUIrQyTRgaSgHw1q0iZFAZhupb06YBP/1ktimuo6Ojd3BA6mARoNOMjSU7bzGzyOnp6QgICHCYYBGgzcStt5JrkLH/ujmsdedxFMaPBxISDDh9Og3x8fHDMlgEyNApPb0UCoWCLFYdkOhooHYIVTRTFqtS4+MjnP+1OXQ6HW+L1UEklkewgZGAkSeRkcDxpkmcUqxVj3H16lV0dHSIN2nFMMCsWcDcuYhUl+C/H1Iz11tv0UyHFOjd3HD8j39E2403gunqAu67D3jppb5BdmIi1TM2bgTKyqw6jpMTWVRdviyStynDUBPY/v00Sd2PjIwM+Pr6IiAgQISDW4a7O1kqurnxL8FaQl1dHUpKSjBmzBjhH1xkGIZen23bBt+XiL6JkwEMA2RmFuHkSR9ERTle1s1yOqBQ6BAVZZ9NnBC0tV3LCJvDnMWqlEybJrBqRT+qq6tRUVHBexO3caNIJ/QzxzE/TXYkMRFYsJDBOc0sNCVNBy5c4JUh0+v1SEtLw5gxY8TXPXNzA9RqrNFvwiP3UorlgQeoPU9sMjMz4e7nB+etW4E//IF++OKLwP33953UcHO71ntpQrXfEjQakqVsbCTpHcGHYTw8gDvuAEaNIs2invNvaGhAUVGRLAIpjQbw9aVk6MmTwk1QcxOY0dHRdhestxZ/f5qw75nBMklRURE6Ozt7JbyGI52dnSgtTceMGcHIzBy+S396ejo0mgAUFJgRn3QA/P2Bykrzv6+trUVpaands+E1NeTpLgbc2hMXF8c7Gz7SaCcOw3fVEBGGoV3Vth0KVCkCaTvDycgMgeRSFgEBwNq1eOu3RRg/zoCmJuCxx8Sdrm1qakJ+fj5NYCqVwF/+AvzrX1SK/s9/gJUr+9YxXFyA1atpjHP3bqsDRz8/0jDbtk2EBUOh6A3A8fXXYKuqkJqaitGjR8tGvBqgvp3u7r7SIrbA6REOJWUhd8LCqFNi796BGwq9Xo/09HSMHTvW+mE4ByAzMxNeXl5YscIHMTHSTthLRUNDA4qLi7F4cSyuXnXcwEGhMK9vyAVSMTExdt/EeXgMXTq3lsLCQuj1eqsqcTJV/XJ4RgJGK/HzI/kOJjQEzQt/QUHOEBqDdpOy0GrhPDERm585D1fnbly6BPz+9yRyK3g2DmakLH7zG+Dbb2k65cAB0mMoLe17R39/asjbutXqlX78eOCGG2h6z1hGRDBiYoAbb0RFaSnaS0okl7IYCq710tMT2LnTtqCAj5SFI6BW0xD8/v19315ZWVlwc3PrYwAw3GhsbOzVIyQPYPEyQ/aCayuIioqCu7sbbrrJ3mdkG3l5pjt1iouL0dbWJotsuFotTkna1k1cUJA009s/N0YCRhtwc6My4N7TPkgt8QZ27ACyssze3t5SFnF3TsWHz9JkxLvvUsljzx5hjzGolMXKlcDx45T1vHwZmDGD5HeMiY8HbrkFKCmhaQUrcHGhuHTXLnEGQbpdXZFSWYkxBgPU+/fLMlXj5ASMHUvSMlYmbJGTk2OxlIWjMH48yW1yF5Pm5mbk5eUNKxmd/nAZqcjIyF7JsdBQ6vntv2dzZEpLS9Hc3Ny7iVOraXPgqLi6Dly/urq6pGtpspDgYOEzuZmZmfDw8EBQUJBV97940bJBtxH4MRIw2gjDUKaxuFSBhmW3ApmZZLDZj6qqKlRVVdldE+yuF0bj3nsps/inPxowZQqdshDZOIPBgNTUVCQkJJi3xpsyhYaF4uOpqWzOHODIkb63UakoqLx0iRryrMDTk4ZhmpuFH4bJzc2FWq1G4G23AQkJdNW1NioTkdGjqdLf2sr/79va2oqcnJxhGUhFRABnz5LMpk6nQ3h4ODz5WGs4GBUVFWhoaBjgznPddYC3t+OWbY3h9AiN3Xmcnel9L7hWq0SEhg5cVrKzs6HVahESEmKfkzLBuXNWm2OZhGtpsmXt0WqHLPiNYAUjAaMAKBTUO6ZyVmG/5hcwdBmAgwd7671cICUXKYsPPgASYrtRWqbAr+7sQEAAZeOKimx73Pz8fDAMM7SURVQUBYJz5lDv5/XXA19+2fc2Gg1w441U77By1ddoaMD50iXKNAhRfh8gZRETQxHIt98CV67YfgCBcXengGDXLn7ZJL5SFo7GjBlASko9UlNb7L6JE5PBNnFaLX3mz52z08kJSE5Ojkl3nqlTpbWvExJnZ1q/OFpaWpCbmyu7TZy3t7B9jNwmzhZ9w8mT6bxGEJaRgFFAXF0pPb/1gAcMvv690xeFhYXo7u6WjYCsqyuw+RslnJ1Z7D3ihH+/WY3bbqNsqYnkqEV0dHQgIyMDY8eOtUzKwseHgupbb6WS7t13A6+91jfdwTD0gra00GCRlZMc06bRw5w/b9Xd+2BWyuKmm0ir0daoWwQ8PYG1a6m8ZUk2qaamxiopC0eCZQ0ICbmAWbMi0NAgjTuPPRjKnSc2FsjIsP5zLwcGc+eJiRGpl1kifvjh2nygTqdDSEiI7Nx5Jk6k1iwhqKioQG1tLTmD2UBTE/WxjyAsIwGjwCQnk2ho4+gJaJ55HTorK5F98aLlgZREJCcD775Li+uz/88Hl/71E8JCDDh7lirEfMtU6enp8PPz46dH6OwMfP018Lvf0ffPPQc89NDAOkxoKLBmDUU8VnYyJydTtuHoUet3w3V1dealLBQKYNEiGsfdvt2s0Le9cHEhx8PTp0kJyhzc4IA1UhaOREFBARQKFqNHR+HAgeF5cWlvb0dmZuaga49CQaZMjlyWTktLw6hRo8xarKanizfJKzZhYdS5U11djaqqKpsDKTEwGIDcXCEex4KWJgvp6Bien2l7I58IZhjh6UkxzzeHPHH2VA5GX7yIQBkFixy//jUl+Lq6Fbj9b5NRX9aGhXP08PTkZ/XMSVlYpUeoUABvvkl1coUC+OQTElXsn/Jwd6f+xwsX+pT7+TJpEin3lJTwux8XSA0pZcEwwJIlNAleUWHVOYrJ9OkUy5oLGouKiqyWsnAUOjs7e7PhTk4KrFlDZVlHDppMkZ6eDn9/f/j7D65H6OdH82UFBdKcl5DU1tairKxs0Gz4hAlASop05yQkcXFAYKC8N3FqtTABo8UtTRbg5jYyJS0G8otihgl+fsCSJY04mWVAwMOPgMnPl90ViWGAjz+m4YiCEg0eeMwJ7FcbMDmiGjExJMsyVP+PsZSFTXqEjz5KJXwXFxLLmz/ftKbE1KmkmfDTT1YdhhuG8fHhN4TNS8rC3Z0O4udHKU0ZTVEzDLB0KWVcU1P7LqrGovLDWY8wIyMDPj4+CAwMBEC9fCtXUgvqcJmsrK+v5+XOExcHfP+9Y11kLXXnCQsDZs+W3fJrEa6uwA8/lMmqpak/Wq3try3vlqYhCAykisoIwjISMIoEy7IoLEzF9dd74XLuKOjcpgMnTgzt9yQxnp4kvaJWA9/sUOFftbcBR4+C6e7CrFkUww1mN1dWVtZHysImVq+mAMvfn1JgM2cCaWkDb5ecTFeAEyeA4mLeh9FoqBpeUADs2zd0stIqKQuFguwjw8Op7G6hsLtUqNV0ilu3Xpsi56QshrseYWFhoclAKjh4aAtBR4ALpEaPHg1XV1eL7uPsTB8pR5os5SxWh9rEMQxlkB0xg9rZ2YnTpysRFyffTRzDUFHIFjIyMvi3NA1CVxetbSMIy0jAKBLGUhazZ1M2K9VzNpUpL1+29+n1YcoU4K9/pa+f+qMzLsWuBaqr4Zf5I25dy8LFhURk+9Pd3Y3U1FQkJib2SlnYzPTplD2MjaWexdmzSbvR3In/9BM1KfGEYYCFCyn70NQ0eGbFJimL6GgaiHFxIf0iGaU5kpIoJm9qAhoamm2WspA7fYWd3Qf8nrMQFMOPW0pKS0vR0tLC250nOppKizLb25iEbzY8MVF2y65FZGZmIjJSCZXKOj1Cqdi61XplMTEsVlUqWRV2hg0jAaMI9G/eVSjIfSQ+UYEro5bBkDiGRnZl9I5ev57Kch0dwG23Ac2ugYBSCZeDO6FSstDpKKFnHO/k5ORAo9EgPDxc2JOJjibZnZkz6eq9dKlpN3lnZxL5joqieqIVgotjxpDI9VdfmW6Mb21ttV3Kwt2dVrDychJ3l1EKKzycTu+tt8rh5RVlk5SF3CkvL0djY+MAPUJjwsKoxLZ3r6xie4sxduexZhMXHAwcPizCiQkMX4tVT09aVhyJpqYmFBQUYN26CAQFyXsT5+lp3UaLE5UXw2J1xB5QeEYCRhEwJWXBMFQGVCqBzdtU6NB6UxAkE5EwhgH++18aSM7KAh55lCGxusWLoayuwMrZdXB3pxi3q+ualMW4cePEyUj5+dGVa80aCgTvuIOGY/pfxRmGAkcPDyr9WiG94+xMko/79w/cJQsmZaFQUF/m5MlUA5fRFHVdXQWSk/OQm5sgR/1xQeCTDXd3pwuglZrxdsWcHqGlBARQi7DQYvdCYq3FaliYLFWvzMJZrDo7e2DbNnufzeDEx9O1jS9lZWVoamoSxWJVoOr2CEaMBIwCM5SUxZgxpFfdGjQanYuXUy1UJiJovr4UcymVwBdfAP/7H2jczNkZzO5dGO+eh/p6inPPnctAUFCQWSkLQXBxATZvpvQnQAbYjz5quvYRGdlj7s1YFTR6eNCcSm3tNb3G6upqVFZWCitlER5O2cajRykisXMai8uGT5oUjV/+UoWqKsfs9RqKvLw8qFQqs3qE/Zk5kxLXjhRAC+XOM2sWqSTINcOamppqlcWqs7PVs3KSY2yxqtHIqihhkoAA/psMzp1H0JYmI/pXxEawnZGAUWAyMjKGlLIIDaU4bOMhP5Q2udM4cmamhGdpnjlzgJdeoq8feaSnPdDLizJ8bW0I8GjHtKm12L+/C0lJwvWcmEWpBN5+m/4xDPCvf1HW0dQ4q5sbZSZTU4HvvuN9tWcY6mNrbAT27WNx5YpIUhZqNZXSNRp6HnZM5+T3jIpHRUVBoaBNw6lTJOY8XGhvb+/rzmMBnGb87t1WzVXZhaH0CPnQ2CjPnr+qqipUV1dbtYlzdqaPntyDL4PBgJSUlD56hOPHy3uCva2N/zwnZ7EqeEtTD87OwloWjjASMApKfX29xXqEajW5b/x4SomOG2+jbnOZaHr84Q8kJdjaSv2MbW2gEx4zBmxmJjq3/BN33+6CoiIX6QKL9euBLVtoFdi1iyZWzOkcLlxIQzPl5VYFjQsXAgEBV9HQwCA4WCQpC4ahoR21mtK6pqaKRKajowOZmZlITk7uzYZrNPS+ZBhZtdjaRHp6OgICAuDn58f7vtdfT50Rcp8erqmpQXl5uWDuPFOn0qCenDI0XCAVHx8PJyfr3Hluusm60qmU5OXlQaFQ9NEjDAuTVRfLAPj2MA6wWBWB+fNpPRtBOEYCRoGwRsrCxYUuzk2tSpzyWQG2q5syY3beSnIl6YAAErx98slrv7vq7Y268HBE19UhNpZKV6dOSXRiN99MV29fX+DsWaobmsvMxsUBISE0vscze6vX61FRoUNkZCK2blWK6xLh5ETZ2/R0ikokvEJnZGTA19d3gJSFUkk9SWfOkDWZnIIGvtTV1fHSI+yPszNtmlgWaG8X+OQEwlI9Qj4oldTXKyft+cLCQhgMBpv0CA0G6nKRK6Y2cQAVIeSY8eVQqWg20VLMWqwKSE2N4zr8yJWRgFEgrJWyACj+0euBfSc9wI6OphXNSicToQgKoslhhgE++ohOiZOyGL14MVRz50J54jhuSMxDYiI5p0jS7zVrFjUiRUdTCmTWLGpWMQXDUOk3N5fXlS8zMxOenp6YMCEAN91Edxc1aNJoaIxeoaBsowS6Lg0NDbh69eqggdSsWfQSpqaKfjqiwAVS0dHRg7vzDIGzM0nNbN9u972cSTh3HotE5XnAMKRoJQcv5s7OTqSnp9ss7KxU0lCTXAMJzmK1f0uTn59VrdmScvmyZetkbW2teYtVAWlupqBxBOEYCRgFwFYpC4YB5s6lMlB9UAI6lt9I73Q71yCWLAGefZa+/vWvgSNHCvpKWcyaBebKZXiWpKGtjYZhJJnfiY2lgZHp02nlX7KEytWmUKmAFStoxd2xY8ip9KamJuTn5/dOYHp40N/lxIlrwzCi4exMxr7ffSdqOouTshjKnYdhqKd17Fjgxx/lGSwNRklJCdra2qzaxPUnOJj6yER/D/BEr9cjPT1dNHeexYvJAcbeZGRkwNvbu9edxxZmzBDghESAs1gdO3bsgN8xDJXT5UxDw9BdVdzaM6TFqgBwqh4jCMdIwCgAubm5NklZcPj50Qdu004XNHY6kxicHXrbjHnpJdLObmwEHnvMH3FxRlIWajXVrWJiENN0EcsW6VFcLFFgERAAHDlC7jAdHWSK/dZb5re4SiU9kW3bBlUm5qQs+usRzplDd7t4UcgnYQJvb2DdOnoR9+wRZcXjK2XBMPTe3LJF3nIrxhhv4ix25xmCpCRSRZLJfBoAICsrC25ubqK58/j50X7LnoMinDsPXxkdc/j707Iqp1YLY1F5cy1NGRmm3VLlwqhRQ/f68rJYtZGYGDIFG0E4RgJGG+H0CIVq3g0NJQHtjBJ3sLfdThkxO26TVCqqknp4dCEnxwtvvOHV9wYMQyVVT0/4H96IhKB6fPedVeYr/NFqgW++AR57jL7/v/8DnnjCfG3c35+CMRcXatDrd8UwlrLoD8MAixZRlunUKZH72RiGTGTj44ENGwSN0qyVsoiPp6C5u1v+U6YA6RG6uLggNDRU0MdVKIDsbIne30PQ3NyMvLw80d15WNZ+XTJcRioyMtKkO4+11NUBpaWCPZzNlJaWDmmx6u4OXL0q4UnxZMoU2u+ag9vE8bJYtYG6OtLWlYKzZ8/io48+kuZgdmQkYLQRnU4nmJQFh48PMG0acPSEGpnO42nyxBLTY5Fwdq7CE09Qau2dd2j4eACjR1OkazDghtn1yM0lZz/RUSqB994D/vY3+v7996lEbW4rrlZfM1LevLk3+unvzmMOhYKC+k2bJOjtio4mccjOTqqFCpASsUXKIjSUYvGNG+VtHyeUHqEpGIa6BkpK7J+h0ul0CA8Ph6enp6jH0WiAhAT+silCYGyxKiTjxlELtBzgNnFDtTSFhNj/PTcYZWWDi91nZ2fD1dXVOotVK9BqxRceaWtrQ3BwMKZNm4bf/OY34h5MBowEjDYgtJRFf+bNozJEhnYSrRanT4tynMHgAqlf/tIb8fG0YF25YubG3t6AtzeU3x/FDd4nERbK4sgRCRKkDAM8/TRNRLu5Uaf+xIkkjm3u9lOmkHEwwwBlZcjPzwfDMH2kLMwRGkqVeKVSgqDRyYmyje3tlE214cUUQsrC3R1YtQo4dEi+Fy+dTofg4GB4D5busAGlkvYkFy9Sq4Y9qKysRHV1tclsuBhMngxYqHkuGJw7z1CbOGsIDKTeZDvPFgKw3J1Hq5W3vaG3t/lhopaWFtstVnmi0Yj/ng0KCkJZT3KiUJIMiX0ZCRitRAwpi/6oVHRxjokBLuiT0T1tJk1fSDj6VVhYiO7ubowePRrcQK1ON8gdGAa48UYwSgUUdTUID2OxcaNEEpM330yZuORkmopesgR49VXzV4XAQIBloT92DOXbtyOZxwSmpyfFpocOSdDXyDDUf7lgAaX4rEyNCCVl4e1N2ulZWfLrqaqurkZFRYXoE5gAmQt9+630HSPG2XBr9Qj5olBQO4KUAzCcxaolmzhrOHPG/q5GfFuavv9evpqgLi40j2gKwSxWecAwtMQLTVpaWp+s/qeffgqWZUUTIJcTIwGjlYglZdEfhqHA0dmZhg7a48bRMIQEpqidnZ3IyMjolbKwKGDkTnrGDMDLCzFnNuCGGTVQq4HKStFPmfQXT50C7ruPAsXnn6eufXMT505O0CUkwCMwEP5eXryaExUKUu2pr5fIEtzPj9JbqanAwYO8pouElrJgGHI5PHRIPn1VXL+bKO48JvDxob5Oqe3gCwoKwLIsoqKiJD2uvz+53kihhMC58wg16GKKMWMsWMtEhq87T0gItUPIEa6dvT9VVVWoqqoS1mLVQswprllDV1cXJk2a1EeKrKamBvfff3/v1ycd0YCeByMBoxWILWVhiqQkKlF3OnugbfXtJN5YUCBqXTAzMxNeXl69UhYWB4wcPSlSn7P7wTa34MgRiTT9tFrgs8/on4sLdT5PnGiywaahoQHFJSWIuukm6mfctIlXBMQ5wzAMVYxFnyLWaIBf/IJ6Rru7Lco2iyVl4eJCw+kGgzymp7lNXLSEdbuoKHrbSNUt0n8TJyXc4JcUAubp6elDWqzaio8PSUbZi9raWpSVlfHaxCUlkUCEXLl0qe/ModSbOFMIcYn89NNPoVarcbGnnHS65wPPDe88+OCD8PPzw+zZs20/mIwZCRitQGwpC3MEB9NFessONQqrtLTd37VLFMXsxsZGFBQU9NnhcwFjWhqPD6G7O3DHHXByZnCr/1HUVhvQ1SVR/9t999GVPC6OXqv584G//7334MZSFm5ubnSut91GQ0Y8T9LNjdoiJZsmjY6mczxwYMiBGDGlLJycqE9o7177+k9zovJSbuI4goJo4lYKBayMjAz4+PgIokdoDUFBVCkQsyumvr7eJncePmg0khRrBmBtS5ObG62/csXLq29ft3FLkz1YssS2+xcWFoJhGPz6178GALzxxhtgWba3d/jEiRNgGAaffPIJAGDPnj22HVDmjASMPJFKysIcajUNzl68xKBj6hwaX6yvFzRoNCdlERdHScPGRoq/LIZhAK0WigA/zCvbhOoyPbZulSgrlZwMnDtHgWBXFw3H3HwzUF+PsrKygVIWzs5Uwm5ooOiPR/NlRAQdprqa5+tjLVotvRlYlhrp2toG3KSrq6s3kBJTymLlSrqQ2cuNIjMzEx4eHpJv4gB6e69cSd0CYm6EOD1CKQKpwQgMBI4dE+exrbFYtQU3N+DCBdEPM4CrV6+io6OD9yaOYeSnIWnM3LmUuQX6uvNIvYnjKC+3rmXEYDBgxYoVvf2zISEhaG1txe9//3sAFAcAwA033AAAuP3222EwGLB8+XJBzluujASMPMnIyJBEymIwNBqa0m1uBg5fjQPr6UV6fQJNIJiTstBorjU1W9X7k5wMrFiBIJ9OTAsvx86dtp+rRbi7k5jkP/5BT2L7drCTJ6Nw+3bzUha+vpSR3LWLV8pQrQY8PKh3RpLyOzfx3dFBAW6/NFd2dja0Wq3oUhZKJTlRuLlJ73nb3NyM/Px8u23iAPq7h4XRn0CMjZBxNlxIPUJr8PWlsqgYepwlJSVoaWmxWFTeVjw9qRdZygDM1mx4YKD0fbOWUl9/LQPKWazaKxsO0L7fGqdVFxcX7N27FwBw6tQpFBcX92aCn3vuuT7raWlpKb7++mswDAODwYAGOWuO2chIwMiTmpoayaQshsLXlyZWt+9Sgb35FhqhM5Fl4sNQeoS8+xj74+kJKJWIKPoBN0ecQ3YWK41eI8MAjzxCHneRkWDy8jD9yScRtmeP+atFUBClDCsrgR9+sPiq4uxMvX0qFfV7SXIx6in9IzeXso3d3ZJLWTAMPffycnqZpSI1NRXh4eED3HmkRqEgt8qdO4X/m5eXl6OxsVFwPUJrmTuXSrlCPk8uGy6kO48lrFxp87LJi+zs7L4WqzxZsoSUtuSIkxMN5TQ1NQ1oabIHHh7WbeC4hFBLSwumT58OALh48SIYhsFrr73We7uGhobeqsZXX30FpVIp6SS41IwEjDyJjY2VTMrCEiZNApYuBapatGhafisFC8ePW72Sc1IWEWYErGwOGAGKKm65BYyTBhHBepw52SW+NA3HlClo+/FHlE+bBoVeD+bhh4G77jI/+slpM2i1pPNo4euqUFC3QG4uWVhLIr2i0QDXXUe6Gxs2IOvkSbtIWSxdSr1MUvSqVlRUoLa2VjabuMhISkwL2VbM6RHydecRm+JiICdHuMezVI9QaFpbqQdXClpaWpCXl2dTIFVbS63LcsTTkzbK5ixWpWbcOOu0K1988UUAwIcffoiOjg7ExsZi0qRJAICFCxeizqhRs7S0FAzD4K677gIAvPLKKzaft1wZCRh5EhERae9TGICbG5UEt21nUNbiQT/45hve0xft7e3IzMwcdAKTmypMSbHxpBkGGDcOmqYa3KL/GsHaelRXSzMwklZWhpJ//AN480164TZsoNSQuakNhiHl4l/8gvQdeYi3jRlDi9bZs8Kcu0V4eqJmzhwYjh5FojlhNBFhGHre2dk0oC5W0Mhlw+Pj42W1ifP3px6/rCxhHi8vLw8qlcrsJs5ezJolnPuLmO48Q+HmRlkoKXqqU1NTERoaatMmbjCBbHujVAKjR5u3WJWakhIqDvGFk8p5+umn4ezsjJyenVFOTg6OHDkCtmdRu+eee3rL056enmhqasJzzz0nzMnLkJGAkSdH3rwAVi/8VLKt+PpSGbSiAuieMJnqFk1NvBo4MjIyhpSyGD+e/k9NFSiLMmoUmFW/QGDhGVRWUg+YmOWhXimLMWOA3/2OruyjRlHjzdSpdALmcHamju5Ll6j8b2EkFB1NF9fjx83YKgoMy7K4UlAAj/vug3N3N2VG7aD2m5hIwZNY5en8HgFzqfUILWHhQhKGtqZ/yhhuE2fP/kxzODmRDqkQ/XR89QiFZtEi8bPhVVVVqK6utlmPkGGoHVyOGAwGfPppJRISEgV357EGa+0B+29AP/jgA7As2yvZ9cUXXwAAduzYAQA4fvw46uvrSW1jGDMSMPJkzHxftH7xDTpb5Rc0urgAEyaQbvWPOi+wBpYaqizIiNXX16O4uHjICczoaGqXa28XUEbFywtYuhRJTDrmqU4iJ8sgyuJtUspizhyyalmwgMrSt90GPPmk+RqyRgOsXk0vREMDr6vl1KnA4cPiu0v0kbLw9KRodds2UeSXhmLyZDp8SgovnfEh6ejoQEZGBpKTkyXXI7QElYqCKWdn24ZD0tLSEBgYCD8/P+FOTkAMBtvfWmJbrFpCQIC4VQCDwYCUlBTBsuFBQRLYklpBXl4etFoWvr7yyIa7uZEcnS3U19fj0UcfBQDU1dWBYRg88cQTAIB7770XLMti3rx5tp6qQyC/lVbmBM+KQv3sG7DpSz2aCqSz6OPDrFnUQ3chz4tkV6qrB20o4yNloVBQUAqIIEeRmIjgaBckl+7Hnj3C9kcBg0hZBAaSc0qPZALeeYdSROYsFRiGLBe6uoDt26n2agFaLcWjgYHk7idGUGxSVD44GLjzTtpq79snuZedQkEB1PbtwgWNGRkZ8PX1RYCMVYydnemjt3u3dX/ruro6lJaW2l1GZzCUStLEP3/euvtLYbFqCQxDPZliTH4DtIkzGAyC6RE2NAjX8iAUHR0dyMzMxMqVIVCr5RFaqNXXZH748v777wMAPvvsMwDAE088MSAD/u6779p0fo6GPP6qDkZIvBuWL+3GxU/OSaPWyxOGAWbOpIGYH05r0JwwBcjMNCvyXVpaipaWFsRa2O82cSL9L8qgysSJwLJlWBaqQ+qxasFe3iGlLFQq4I03KKrx8KA66qRJwNGj5h/Uz48mk1taKOVqQTTE2TxevUqN9kL3bHJSFkFBQX1/wTCUbYyOJokhiYPGxETq5WxosD1QbmhoQFFREcba06bDQkJDqeOBb88vF0hFR0cL6s4jBmPH0oCXNX9XqSxWLSEpiVp6hMZYj1CobHhICInFy4n09HT4+fkhPNzX5lYMIbHWHvCBBx4AADz11FNgGAbvvfceAJLVKRNIws7RGAkYrcQv0g3zXlyEk4fbkJMlhbUHfxgGiI+nFraqgDF01e7XAdzV1QWdTmdej9AEPcNi4gneKhRQxUdjtecxRNacx4kTtldTLZayuPFGSpeMG0dyOkuWUCBpLrJTqynlWllJwzMWdKMzDNk8RkRQACVU0NjU1IT8/PzBJzBjYynIbW+noFgSWxoiLo4q+lu2WP/35ETlR48e7TD9QjNnUkDFZ1ChpKQEbW1tFm/i7IlCQWL+p07xu589LFYHY9w46o4RmoyMDHh7ewuqR6jVAtdfL9jD2UxDQwOKi4sxduxYtLfLL/tpDf2tDFetWoVjx47hzjvvlP0mTixGAkZbUKsx7b4xSNlzFbqPpb34WkpAAA3DaLVAuXsslVpPn+71w8rNzeUtZcFlGC9dEvEpOzuDueVmKGJGI7C7FBu/0FvVvAxYIWUREwP89BPwy1/SE3z2WVKlHmzbHB4OrFpFqSQLX5QxY6jv9MsvbR+OAHhIWajV1Nyj1VK2UUIjaDc32nBs325dRqqsrAxNTU2SCTsLAcPQW2LXLstmj4w3cVLqEdpCaCi1kPAp6WZlZcHd3d0u7jzm+O47YT8OnDuPGHqEJ09K4+s9FP1bmry95dVfuXix7Y+RmZmJDz74AO3t7bLIhtuLkYDRRlQq4MYnIhA9wR2ZX56VpWWTVkuBydmzlJ5nx08ATp9G+7lzyM7O5j2BmZhIE5KNjSJX5BkG8PZG7OhuXN/yDZTVFVZ52Op0Ov5SFlot8N//Ah99RGmxnTvJUWUwHRFPTxLhy84Gvv3WoiuPszOp9Xz3nW1Z1IoKnlIWDEOR/+rVVJ6+fFkyu4uYGBJLrqzkVxnv7u6GTqeTnR6hJTg7A8uW0aT8UGRnZ8PFxQWhoaHin5hAMAzNjVkawHAWq/YWdu5PXJzFLclDYs5iVShcXORRli4tLUVzc3NvNpxzV5ULxcXWK29wZejdu3dDp9OJbrEqd0YCRgFgGMB52ji0JU/DN2/mQl8tP2sghYIu0hoN0NTpBPbmW5DW1obIzk748BRXVauvyTpIIrgdFga/+34BRUsTDuxs52W5V1VVhaqqKuukLBgGePBBKt1GRJAK98yZFEgORnw86Q8dOWLRYby9gXXrgJqaa7ZafOAmMM258wyKmxtdeRobSbtTomyjiwst4lu2WH7I3NxcqNVqhIeHi3tyIhEURGXEwXzGW1tbJXXnEZKwMMoyWhI06nQ6u1usmiIpiYbShMCcxapQREZK3oo8AG4TZ9zSxDCkBiEXamutl3769a9/DQB46aWX4OrqKrrFqtwZCRgFZMJEBpOX+qJ+4z50Fclg69cPhgGmTaOs6EcfNyO3vBkx0dHAxo28P1FcH6NkDi2urtAkxeC2+Euo+vYkOlv0QybEBBN2njKFGjaXL6er4X33USA52JUxMpKig9RUau4a4mQZhmZo8vL46xbm5+dDoVAgMjKS3x05FAryeps/n85TokGuyEhg9myaxxqKtrY2ZGVlOWQg1Z/z582/xDqdDsHBwfD29pb2pATCy4u6OQajsrIS1dXVshB27o+LCwW9tu6bOHceqzZxFhIcTPq79sScO09Li/2DWQ5PT+un37k+xsbGxmGx9tjKSMAoMFETveB972p8/Z0HKjNl1MhhhIsLi6CgKygomAD12PEU2DQ28srbc32Mog2+mEExawYW3haApvNZ2LqFHXQh6KNHaCs+PqSP8vLLFN198glFOz3i0WYZM4Zuv3//kIdQKoEbbqB2yKYmyyRoBNUj9Pen4DEzE9izR5IVPyKCpmz37h18UU9PT0dQUBB87X2FtBGGoXLdxYsD9xDV1dWoqKiwqx6hrYweTW8bc/sjY696ObnzGKNS2S7pxVmsWr2JsxALlhXRaGtrM9vSFBUlj/5KgPRvbenu4HrC5fp+lZKRgFEEVG7OWHO3Kw7/uwDth05I1htmKUVFRXB1bcX69QGorgYyqv1ou7p3r8URoPGktORPLyYGvvPGYHrbMWz/oMTk8Ts7O5GRkSGolAUUCuD550nL0NeXnvzkyRRcmYNhyHbwuuuo3jxEgMkwVNqrqLDM9YaTshjMnYcXajVlUpOS6A8rhs5IPzjnii1bTAeNtbW1KC0tdehAyhi1GlizhrKM3KaA63eLi4sbMJ3pSDAMvdV7ZuoGUFBQAJZlZenOw5GQQP211tLe3o6srCxJ+jPd3Wmvbw8Gc+dJTqYNsBzIzyfXJWuoqqrC7bffDgD45JNPBDwrx2QkYBQJVzcGt78xAa3dTjh/SD6ZRmMpC7VaCT8/2k2f+JGhSeCGBsACjSluQaiqsl/jdfhd83BrYgqKDmcPcE/JzMyEl5eXoFIWvSxdSsHitGk0DnjDDcALLwyeElQqadojJcWimnNMDFWIL182fxtjKQvBiYykgPHECbJBFFkBIDSUEt0M0zdI5gKpmJiYYSVlwTCUgeF6vQoLC6HX63utxxwZhqEJ3ubmvj8XZRMnAm5ulJWydggtPT19SItVoZg1i/rSpabXYtXMJq6kBLhyReKTMoO19oDc2vPYY48BAF588UVhT8wBke+n1gR/+ctfwDAM1q9f3/szlmXx4osvIjg4GC4uLliwYAF0Ol2f+3V0dODxxx+Hn58fXF1dsWrVKhQP1nkuEIyCgffSqWhgPXDgT8fBNlupCyMgWVlZcHNz65Wy4MqgkZFAYxMD/ZyFpMXzzTeD9jW6uNBOHJCwj7E/SiUUK67HqLkxOPefFJw7RleoxsZGFBQUiLvDDw+nQOqRR+j7V16hzFx1tfn7aDQkvTNuHG17h9CeCA4GZsyg2ZmrV/v+jpOyiIqKGtKdx2qcnCgV5uNDTV0iq/H6+VG2ZOvWa+Ws4uJitLW1DUspizFjKGldW6vvFXaWgx6hEMyZQ+pdxmRkZMDHx0ecTZzA6HTWlaXr6+tRUlIimTuPi4v0moeWuPPISVrHw4MuaXzhWpq4oLhOLk/IjjhMwHj27Fl8/PHHGDduXJ+fv/nmm/j73/+ODz74AGfPnkVQUBCuu+46NBkFO+vXr8f27duxceNGnDhxAs3NzVi5ciW6hTS3NQPDAIuWqpB8+xg0f7kDnY32a+zgpCz695wwDGV46upo/qWxRUnprW3bBg0aRRfwthCNE4ObfxuCUZf3oTalGJcviydl0QcnJ+Af/yAhRa2W7AUnTRp4peyPuzutqN99Z5EFyOzZlJQ0rmaXlZWhublZfD1ChqEmQ4ahloUzZ0TtQfDzAxYtIvmZrq6uXnee4SplsWQJcOFCHlQq74HuPA5MWBgtIVwbLKdHKGebQ2MSEoCMDH734WOxKhTOzhTcSolZi1UjPD1Jfk0OuLjQ+fDB2J1HqVT2TvO3y6Ux0044xCrc3NyMO++8E5988gleffXV3p+zLIt33nkHf/rTn7BmzRoAwP/+9z8EBgZiw4YNeOihh9DQ0IB///vf+OKLL7BkyRIAwJdffomwsDAcOnQIy5YtM3nMjo4OdBg1VDX2NIro9XrorRgG8EvwRLHzGhz9Uo9VE3LhOVV64eGUlBSEhoZCq9WafA7BwdR/dOUKg2nTPMGsXUtl1tOnacqlX7Zu3DgFACUOHTLg6ae77VIa6cXDHQEP3oCffqzC4S+b8NgbY636O1nFrbcCSUlQ3XYbmOxssHPnwvD66zA8/jilkEzh6gqsXQuUl5POiqcnrf4mUCjIgEavpzbIqKhupKSk9Mp1SPI8FQrg5pvBnD8PtqGBvhfJ+zcggPTld+wohLe3FgEBAdL9LSWmubkZZWX5aG+fA72+q/9HzKEpLgYyMhgsXmzA5cuXERERAWdnZ4f4W7q4kDIWn1Pl9AinTJki6XNUKBh0drKSvHf0en2vHqHBYIBhkFaVqiqyMJQDx44xuP12yze66enpcHd3h4+PD/R6PZ5//nn83//9Hz766CM88sgjDvEeFgOGZWU2kWGCe+65Bz4+Pnj77bexYMECTJgwAe+88w7y8vIQHR2NCxcuYCI3tgtg9erV8PLywv/+9z8cOXIEixcvRm1tbR+pivHjx+PGG2/ESy+9ZPKYL774osnfbdiwwaZeqqZ6BVqPliIxtga1Y5IGBGFyQafzhatrJyIjGuGdmQnn+nqUT5kC1ijTk5/vgaeeWgCWZRAZ2YAnnzyPiAgrBa8ERK+rQYeuDp4rRqHbTZqdPgCoWlsx8f33EdyjK1KVnIyLv/0t2oboZXKurob/lSuoSk5G+yC3ZVkgLc0HbW0qTJpUaTYWFRumqwshJ06gMTwcjVFRor2HKytdkJ7ug9mzS6FSyX6ZsoncXE94eHTA3394ZTCOHw/BjBnlcHISv5ojNBUVLlAoWNn/TViW/smtLfT770Mwd26JLC5xx4+HYP78Eqvv39HRgdtuuw3u7u744osv0NrainXr1qGhoWFoZ61hhOwzjBs3bsSFCxdw9uzZAb8rLy8HgAE9MYGBgSgsLOy9jUajGaBrFhgY2Ht/Uzz77LN46qmner9vbGxEWFgYli5davsb5A4WP24uRWSIP5LGMDQ2KSIGgwEnTpxAWFiYxdOJ118PHD7MwN+fxYQbbqDJFl9f8jYzei1DQrrx8MNKFBR44ne/W4iXXzbgiScMdpmQy8vLQ0lJCeb833IwdXU4+L0zIr3bET9z4BSfaNx8M7o/+QSKZ56Bf0oKrnv6aXS/8w7YO+8cPLBqb6eac2goZR/NrP6LF7fj88/PYdy4WQgN9bLfRWLlSjAnT4JNTqZyvMDv4fPnzyM0VI0FC8bBzW08fH1lu7eymsrKSly6dAkLFizAihUa1NRQq6iMnPJsZvLkbly8WI+kpCiHE1yvqQFOn2awYsXQm5WsrCxUV1dj5syZkmv1XblCy4UYs2/GtLa24vvvv8fMmTMtElxnWQZz546HHOKpKVOAgIDxFt32zJkzcHV1Ndk+0dTUhBUrVvRWHH9uyDpgvHr1Kp544gkcOHBgUKmJ/h9QlmWH/NAOdRsnJyeTuktqtVoQW7K5d0Ri31fVYA78hHGPz4eYn6q8HpXgmJgYXtOJK1ZQRfrCBWDcuAg46ZuBAwdoOrind27tWtJ8fuAB4LvvGPzhD0rs2aPE//5HgzRS0d7ejpycHEybNo2EcgMDsewmFntezYEqKxsJ982UTufh0Udpkvruu8GcPg3Vr35F/YoffkhNeqZQq2kYJiuLegVvuIFUkPtx5coVzJjhgaAgf2zeTKVqsVs1zbJwIY2Sfv01rcgCNS1VV1ejpqYGixcvhrOzGi0t5LR4002kkTccMBgMyMjIQGJiYm+/m6cnSSndfju1xw4H2toKkJvriyVLRkOtdqyIPyiI3m9DLfetra3Iz8/HrFmzRBPpHozwcFqjxXbLzMjIQFhYGPzMrWH9+MUv5COtU1pKMrND/Xk4d56pU6cOuM57eHigsbER3d3dDmdNKhQyS2L35fz586isrMTkyZOhUqmgUqlw/PhxvPfee1CpVL2Zxf6ZwsrKyt7fBQUFobOzc8CEk/Ft7IFSCay42w+J98/C5U0ZNvkID4atUhZKJS2cGzcCdXo3uppVVFAk2dPNEBQE7NoFfPwxJce+/55in/fft80fmQ8ZGRkDpCyUKgYr/zwZsdN98NOBJuhbpLG9AwDExpIkzSuv0FXnm29Ii+jEicHvFxdHkXp29oAGKmMpC1dXGsretUt0xZvBUamAO+4gHY3aWptPhhscMNYjdHUFJkwAduyQnaSp1eT3TDAZCzu7uJAfsyXON45Ae3s7MjMzMWtWBM6ccaxgkWPpUiqqDMZgeoRS4Ocnfla6qqoK1dXVvCxWCwosmumThOrqgTJP/eEsVhMTE00G/n/+858BAP/+97/FOEWHQNYB4+LFi5GSkoJLly71/psyZQruvPNOXLp0CaNHj0ZQUBAOHjzYe5/Ozk4cP34cs2bNAgBMnjwZarW6z23KysqQmpraext7wTCAOsgX2gXTsOkveWg5zcMk2UKEkLIIC6NMFsMA9c0qSimWl/dRlmYY4Ne/Jt3AWbNouPq3v6VZGQstla2mvr4excXFJksIDAMok5MQGOuBjf93Dk3nJdSgUKmA554ja8DERHrNFi8GNmwY/H7e3iQEl5ZGUVJHh0kpCz8/it9LS4c2nBEVlYrGfb28KNuYm2v1Q5lz54mNpQBZgJjU7gzmzhMRQRqctjqNyIG0tDQEBgZi6lQfh80M19QMvserqalBeXm5XUXlGYa6QsT6XHCBFF+LVa12cJUxKfHyGtoeMC8vDwqFAhERESZ//5vf/AYAzM49/ByQdcDo7u6OsWPH9vnn6uoKX1/fXo299evX4/XXX8f27duRmpqKe++9F1qtFuvWrQMAeHp64v7778fTTz+Nw4cP4+LFi7jrrruQnJzcOzVtb2Jjget+HYn2wgq0fT+wV9NahJSy8PSkf0eOAGfPgsbf5s4d4E0VHU0Zxn/+k+T7UlMpRlq7FuhpKxUUS6UsRscosOLFaVBcLURtXr3wJzIYkycD585RTbWzE7jzTso8DpUuGz++V6bnalGRSSkLhQIIDKSHH0zkWxIUCvpDZ2aSVQbPdCAnZTFmzBiTeoSurvSwO3Y4dtCYkZEBPz8/BJgRh3N2JmGC2lqJT0xA6urqUFpaijFjxvR62DtiEBwYSAUVU29l42y4OT1CqcjPFy84KywshMFg4G2x6uNDIuhyYOZMqoSZo6OjA5mZmYNarHLDrlVVVWKcokMg64DREp555hmsX78ejzzyCKZMmYKSkhIcOHCgjwbf22+/jRtvvBG33norZs+eDa1Wi127dslKJDcgSAGvmxdjW94E5O7LpsDCBoyFnYXSI2R6zGDa2kjDmR0VDKxeTX13RrL+SiXw8MNUVX30UYojtm4lbbMXXxy6xMOH0tJStLS0WKRH6BuogtPK63DwlDsuv7lfdCHqPmi19CL83//R9y+8ANx779Db3vBw6GfORPG332JiYyOUJvpu1Wrg5pspoG9psXPZVqOhkrq/P2Wg+yuOD0JmZiY8PT0H1SNMTKSqvaOWbRsaGlBUVDToJk6hAFauBNLTJTwxAeHWnujo6N6LrEpF7i82LmuSwzDUqmvqM1VUVCQbd57gYOoKERpjPUK+LU1OTtL2sQ9GdvbgesGWWqxy19KOodbt4Qo7gkU0NDSwANiGhgZRj9PZybLfflLBNn/8FcvW1lr9OKWlpeyePXvYzs5OAc/uGm1tLLtxI8u2tLAs293NsgcPsuyhQyZve/kyyy5YwIk/sGx4OMtu2cKyBoNt56DX69n9+/ezhYWFvO7X3c2yR75tZFs++Yo1NDTadhLW8K9/saxSSS/G/PksW1Mz6M11Oh37w/ffs4aLF1n28OFBb3vxIst++y3LdnUJdrbW09rKstu3s2xx8ZA3bWxsZHfu3Gnx56uri2V/+MH295CUGAwG9sSJE2xqaqpFt+/qYtmUFJFPSgSuXr3K7tu3j9Xr9X1+rtPR+9PRaGoaeN6dnZ3s3r172ZKSErucU386O1m2o0P4x718+TJ78uRJ1mDlB+2rrwQ+ISspLmbZY8dM/66+vp7dtWsX29zcPOTjvPXWWywA9m9/+5sk8YDccPgM43BDrQZWPRAAw/IbsPc7A7ob+dsJdnd3IzU1FYmJiaJNczk7k5PD1q2AvltBPWwzZ1JtpKGhz23HjaNS9ubN1A9ZVESVy0WLbGuKzs3NhZOTE8LCwnjdT6EAFq5yR9ctt2PLbhd0fHdIuukcAPjNb2hq2t2dLE1mzjRbr2tpaUFeXh7GJieDmTCB0h0XLpAfo4m0x4QJ1AMnCx9XFxdqfg0OBrZvHzQFkpqaioiICIslq5RK+qxwXsyOQFlZGZqamix251Eq6W3BI0lrd7q6uqDT6ZCUlDTAnScxkf5JYLAlKFottdYYk5WVBXd3916LVXsjxmeBa2myxWJVoxm6iCIFXl5U9OgPy9Odh+tj/Mtf/iLwGToGIwGjTHEP9UTEJF9sfjkDhpOneNUZ8/LyoFKpzDbvCkVQELBuHQ24pKeDVlZPT9JA6RcAMQwFiRkZwJ//TAHnsWMU4Dz+OP9+rba2NmRnZw+wOeSDh5cCs+apsDVjLAxfbhC2Vj4Uy5aR319YGJX0Z8yg7/uh0+kQGhoKL05ih2HoRWtuNjtNlJREw0aHDg09GSgJDEPP98wZGp3sR0VFBerq6pDAmZNbyPTpFIs6QgDS3d0NnU7HexN3/fXSewXbQnZ2NlxcXBAaGjrgdwxDc1yy2MzwgOsT5lzhOItVUb3qraC+XrjPAsuySE213WJ1zhx5CIprtablxzh3ntjYWAsfh1osampqeB0/PT0d8+bNA8MweOCBB3jdV07I4E85gjmSkoBVL05CfQODal2FRfdpb29HVlaWTYEUH1QqihHz8igAZL19SGZFpeppdOwb6Gq11MeYnk59dwYD8MEH1Jf24YeWL3g6nU4QKYvQUOD29UEon7sW+UVKSnlK1QSYnEzTDZMn0zjmokU0ZdxDVVUVqqqqBkpZKBQ0cLRgAV19zWQnx48nNR8pWzXNotVSA2xEBLBnD41249oEZkJCglUadklJ9BKcOyf0CQtLbm4u1Go1b/FqZ2d6W0jtF2wNra2tyM3NHXTtSU6mv5ejDS0tWXJtbdLpdAgPD7dIvFpKYmOph1kIOD1Czn7UWgwGGlSzNwwD/PBD359xm7ikpCRemzhLfcIPHz6M8PBwMAyDpKQk/NBzAmPFVlgXkZGAUea4ujFQz5mOvecDkPvBXkrnDUJ6ejoCAgIsFlcVAqWSdKajoihJ18mqqdu5uBjYtMlk5i4yksrZhw8DY8ZQvPTwwxQ79f9g90doKQulEvALc8GFFDXOntTTGK5U3fmjRlFZ+sYb6Zjr1gGvvgpDd/fQUhZKJdX4srLoMfrh7w+sWUOVYbnIW4BhqJfh1CkgO7tXyiLShu74CROAsjLKXsuRtrY2mzZxDENtHHKfMtbpdAgODh7gqmWMSkXySI5GVxewcyfp99bU1PDOhkvBeMuMTIaEa2mydhNnTGenOOoYQpCTk2NVS9OLL75o8ucsy+Kzzz4DwzBgGAZLlizB1Z5+kpkzZyIlJQUsy2L9+vU2nrn9GAkYHQB3d+D2dQo0jpkJ/ebtYJtM1xnr6upQUlIiiIyONUREUDZr48aerNbYsZQFy8oym1JYtAi4dAl47z3qM7l8GZg3j5KUpnq3WBN6hEKg0QBrblHAf9kkNI2ZQdmEQawjBcXVlaLnp5+m759/Hi233Qa2o2NoKQu1mqaSp0+n0eGysj6/dnengOPgQRmVNl1dgTVr0BEaiupNmzAuIMAqUXkOhqENS0QEbTzkRlpaGoKCguDr62v1YyxZQpOecqW6uhoVFRUWbeL8/YF9+xxLhF2tBhQKA86fT+OtRygVbW0m9428ycvLg1KptGkTx+HtDcjFRc9YRc+WlqaHH3649+v29na88MILYBgGCoUC999/f+/v7rjjDpSVlYFlWZw8edKhM4scIwGjg6BWAxMXeiF9wh3Yc1CN7ot9G4FYE1IW9iAkBFi1yqiyGxREKaCjR0nA0cRVQqWiPsasLOChhygA2LiRZHhefbVvso+TsuivRygEDEOZzwrFKEqMHjoJ/PSTNFc2pRL429+Af/4TrEIB92++wZxXX4XC0nqyszP1Q544QWVuIzQa4NZbqX1QytmeoUjPzIRy1iz4ZWTYrCGjUJCMx8GDJtsk7YaxO48tqNWUmZNjFpXrdzN25xkMhqGst13F5q0gKuoqWJZFVFSUvU/FJO7utgdnXEuTUP2ZHh7UhysHCgqumWfZ4s5jXJIODAzEK6+80vv9s88+i5aWFrAsiw0bNvSRCDt69CjGjh2LzZs3W/0c7M1IwOhgjJusRlS8BieP68lzuKexpqSkBG1tbRY374qJlxe12J09a9RbtmgRjcsNoi7t7099jOfPU7N0ayvw/PM0VAwAer1+UGFnoYiJARZdr8GV6JvoyqbX9zraiM7DD6Pg/ffRrdXC6eRJqtH3CwDNotUCt9xCzUxFRX2aF5VKsjkrK6PY3d7ZnYaGBhQXFyNx6lRqZuWsFCss69U1hUJBJfgLF+QxCMMFUjExMYJt4srKBk7s2pvCwkLeeoTTpg3ZXSMrOjs7UVWlAzDepmy4mDAMrbu2kJ6ePsBi1dZz2rJFkIeymepq6vEUYhNnrADw0Ucfobu7GyzL4vXXX+/9rPcvUS9atAg6nQ6ff/65zc/FXsjznT/CoCSNYTB3/WScbJ2A6vIudDU2mpWysCdTp9IH9KefQCvHnDnUaHPkyKBNdRMnklvM//5HQcB//kP9Q1JKWQQFATNmMjhaNwFZqZ2kCSRB6qqxsRGpYWFoP3SImkILCuh1+3//z7JJAYa5ZrGwe/eAkdSwMIor+xn0SAprJCrv5uZG56xSUSb6++9t0lrSaChoLCgA7G3IUFxcjLa2NkGz4fPm0YCZvQN+Dm4TN3bsWF6bOFdXmnCXw0CEJWRkZMDX1wf19T6yytL3p7vb+vd9fX29KC1NXV3yGHLy9gba2oRpaeJeo4aGBjz44IO9m4jBStRz5sxBUFAQ1q5da9sTsSMjAaMDk7x0FPbu1OPiq1/Ao7XVpJSFPeHmG6ZNo6xPS0vPD6dOpYhlkACMYYBf/vKaMcoDDxhw6VKx5FIWc+cCGcVuSJtwB/UIirj6GUtZuM6cSVqLa9fSMZ95huw/LL0a+PjQAI23N93HaPBo+nQKPIqL7eO8wUlZDNAjdHOjDGl8PKWnbYgmAgNpGNteE+KcHuGYMWME3cQpldTykZsrj6AxMzMTHh4eg7rzmEOtHnrATQ4Y6xHGxtqUBBcdvd66Uj9fPUI+JCbKw+Fn5kygs/OqSYtVvhhvjqqqqvDLX/4SDMPAxcWlT4l64cKFvV+fOHEC5eXl2Llzp03HticjAaMD4+4OrFqnQGFyCDwrnQEZXEBMoVRSb+PWrT1zJO7uwO2304TwpUuDNta99BJNUVdVKfDf/06Hh4e0UhYqFfCLXwBxYzS44L8MXfXNJH0jQiQyQMrC05OmzD/8kHoU9+6lLNyxY5Y9oEJBKcWuLqoLGU1NaLWUjdi8WVr5ySH1CBmG0oQJCdTBf/GiVcdxcyPXSntlGbOysuDq6oqQkBBRHr+y0uqXRjCampqQn59v9fS3lxd9vqR8//GlfzZ86lTAhtkl0QkOtk4RoaSkxGKLVb6MHn2td9CepKXpsXNnsSAtTZw1oKenJwICAvDFF1/0/m7BggW9Xx89erT36wcffBD/+c9/8M4779h0bHsyEjA6OFlZOoweE466scux6+MydO05II/8fz8CAylZplL1iHQrlTSl4OIyaADm7Ay8+24tlEoDDh3yMpYplAyuYuruDmza74XmeSuAAwcEnSAxGAympSwYhiaBzpyhIKq0FFi8mMQsLW3UGzWKso0GA3XF92z3IyJocrCwULpsVU5ODjQazdB6hO7ulG1MSKC+Vysm1r286GK1bZu0FyzOnUdMLdQZMyiTZM9eTU6P0FJ3HlOsWkVvcblSXl6OxsbGPnqEW7bII7trCjc3/rJFYmXDOcrK5KHQUFGRD8ANwcHBNj+WzkgY1d/fH9OmTev9/pjRhv7ll1/Gc889BwD4+OOPcd9992Hq1Kk2H99ejASMDoyxlMXs2UDComDUuoWje/dee5+aSbRawM+Pqo1HjvQsuvHxlMIDTJYgDQYDGOYSHn+8HgDw6KODOsyJSmwscN11QJe7N5pX3Epd+zt3CuJ9NaSURXIyTRDdey8Ffi+9RIGjpS+GWk2vdWMjBehFRQCoVzMhgZz7xM7GcVIW48aNsyyQ4sZpo6PJBcfS4R8jlErqid2+Xbp9lE6nQ0hIyDV3HhFQKGhWqKzMPsFLRUUFamtrB4rK84RhyBhKqpkyPpizWA0Kkk5xyxq++YbfBiknJ8esO48QeHsDdXWiPLTFtLS0oKYmF1OnRgqyiRtvJHpZVVWFM2fOAACcnJzw0Ucf4Z577gEAvPDCC3j11Vd7b7ts2TIcMePQ5QiMBIwOiikpi7g4wHd2AjbULUf58Uz7RVZDsGwZLSLl5T0XOy8vKr9evEi9jUZpk4KCArAsizfe8MKUKZSIfOAB++3wAwIo+bVzJ5BR4U1G2Vu22JTqaW9vR2Zm5tD9ma6uNAH0xRf09fHjVKLey2ODEBoK3HYb1a3a2oCuLjAMTVDv3Svuwm61lIWbG0VHY8eS/E6PS4ylREWRHKheL/77xqw7j0jk59vmx24NZrPhVjJ5sjydevLy8qBWqwdYrE6eTMURueLvb3mfZWtrK3JyckTtDffxoWXKnpBawSiEhFifDTcmNze39+v4+Hhs2LAB8+fPR0dHBx566CH873//6/29cYl6//79WLp0qSDnYA9GAkYHhdMj7C9loVQCN69V4FhhFFoO/SRb49aJEyn42rixR2yZ8xsOC6Mf6PXo7OxERkYGxo4dCycnBT7/nBbqffuATz6x37krlRRz5eUBLf6RVO6tr6csmBURCW8pi7vuoimiCRMo8FuxAvjd7yzvLHd2BiZNopTihg1ARQXc3Kit1MVFnGFwQfQIXV2pjn7mDO9piYAA8jEWQtjYHFwgZakeoRDMmkW2gVKWpvPz88EwjCDCzgDJWPFQ5JGEwTZxPj702ZcrcXG0RllCWloagoODbbZYHQyVyr4l6crKSlRXVyMxMVGwIStDT7kiLCwMmZmZWLduHY73LC6+vr6YPn16722NS9SvvfYa8h1NgNSIkYCRLwKUH21Fr9cjLS3NbPOuVgvcdrcGhhvX4PuCcLClZfIQpusHZym4Zw/QzJnXJCVR3XrzZuTt2wcfHx8EBgYCoGm711+nmz31lH0XbaWS4jSDAdj1nQJdHj4UiG3cyOu1tlrKIi6O9Ioee4y+/9vfaKSbz2IUHk4aNNnZgF4PjcoAlYqyPUJmrQR159FqyUZx4kR6A5iyAzLDxImUZczMtO0UzFFYWIju7u6h3XkERKmkQF+qkl9HR0fvJk4oPUKGoX2W1JnSwUhLS0NgYKBZi9XiYvk4mPQnKAhobx/6dpzFqhTZ8IIC+1SFuE2c0O48rT2TWpz1X1JSUu/AUE1NDU73tM+o1Wp89dVXMBgMYFkWf/zjH3n5VsuNkYCRL52ddreS4KQsBtMjZBjA3VMBbbAXvtligGHDRqOoTD54eAB33knne+ZMz6KiUKBx+XI0nD+PMf2e4/r1JAnT0nKtnc+euLtTD+DmLQwMEydTF39Tk0VRic1SFs7OwPvvU9OSlxe9gBMn0veW4uZGOo+lpcDXX0PVWIs1a+itItRre/UqSVnwEXYeEjc3Gua5cIEaYi1kyRIqURcXC3cqAHqz4WKLypuCYUjM26gPXzQyMjLg5+eHgIAAQR83MJA6UuQwTFJXV4fS0tJBN3Hx8bz2KpLCMMDJk4Pfhlt74uLiBLVYNYeXl31yLYWFhTAYDL2bOGN7QFvggk83NzcAtMHI6kmjxsbG4ocffgDLsujs7MS6desklYITk5GAkS/OzmRFcv68XQ7f3NzMS8piyhRg0d0haJl7PerTSuXlDdeDQkGJo64uaoDv6mKRkp4O17Vr4R4SQj2CPdt5hQL4738pXvjhB+Cf/7TvuQM0DLNmDVXSy5tc6eTy8yl1OkjUVVpaKoyUxZo1dLWdMQNoaKDp4kcesSzNwBERQene8+ehgAEzZ7DIygIOH7btIm6cDRd8AtPFhbRzJk+mCLCwcMi7MAxl5U6c6J37EYTMzEx4enpapUcoBHPnUuws5se7oaEBRUVFonjVq1Q019XSIvhD88JSi9XEREryyxW1evAOFXMtTWKxfLn0fZ+dnZ1IT09HcnJybza8sFAYTUhOVqe5Jwlz3XXXITs7GyzLIisrC3PmzLH9IDJkJGDki1pNF2iNht55Eqe4UlNTeUtZ+PgA3V6++DY9DkVf/UA1Rzls5Y1gGOrHmj4duHq1HOXlrSRloVIBCxcCO3b0ZkijooA33qD7/eEPdk/4AqB9hKsrJbsyclRkoDpxIg2WmOhAF1zKIjKSXFJ+/3v6/l//oheTj/mwlxeNgRcXA5s3IyGkCW5utvX9ZWdnw81NGCkLs3h6UhtDSgo1uA7x3lYqgZtuooycEB+DpqYmFBQUSC4qb4xSCdxxh3jTxtyQ3ejRo3uzKkIzcaL9p4/5WKxu2yYPQWpTrFhBS6cppLJYNSY1VXpLy4yMDHh7e/e2NAEk6SaEJSXXo5yfnw+WZXHgwAFBHZ3kykjAaA0MQ9vh0lJSPuaTybEBW6QsvLyo16k0bgG6m1rlIYxlgoCAbly6lIGCggmoqOjp9fDzo7q1Wk3Ri8GAhx+mrEpLC/Dgg/KIf7VaGobp6qLyCxvUU04/dgw4darPSebk5MDZ2VlYKQu1miLpvXtpVPLKFUox8/UuDQ+nIP3YMUyfxmL2LMo28m2D5fQIJQmknJ3JCWf6dBoEyskZ9OZOTpT1uHTJtk4NLpCKiIiwSY9QCFQqepsN8dStoqysDE1NTaIIOxuTmWk/JxW+m7jISOtcVaSgudl8gCalxSqHl5e00jrG7jz9z0OIyzWXsTQeFtq5cyd8fHx6vaOHIyMBoy1ERlLUIoG/lXHzrrVSFk5O5I+c7j8Pe/PiSa/R3gJZ/cjLy4OXF/Doo3597c84oW9fX+Drr6HobMenn1KccPAglanlgFJJ6i9ZWcCuXUC3sytw663UrNnZCTQ1oa2tTVwpi+uvp0ho4UKKqO+5h/7xiYwCAkgfs7QU6p3fgG1pxdat/PTdUlNTERoaKqoe4QC8vSnjmJtL/Q1DVABCQih5ba2wd0VFBerq6pCQkGDdAwjM/Pk0rC9kaXpIdx4B4WxE7UF2dja0Wq3F7jyJidR9Ikfc3ekj0J/m5mbpNnFG+PnRPykwtlh1d3fv87vp08kNRyg+/PDD3gBx9erVqOu5nv71r38V7iAyYiRgtJWQECrjnT8vzta+B24UPyoqyubHGjuWkkjHDXOB3bvtXwfqob29HVlZWUhOToazM4P58ynjsHevUXZr7FjKJAGIU+TgpZfox089RSLGciE5mRrjT50CZaSTkqheuH07cr/7zjo9Qj4EB1Mk/fLL1Pj5+eeUbbx8md/jhIQAs2cjPncPpk1lUVVlWTa3qqoK1dXV9gmkNBqSaJo3j4LkQWrPAQHA7NnU+skXofUIhUCjof2JkBn33NxcqNXqod15BMDfn5ZTqUUdWltbkZubyyuQ8vCgZLYcqhv9cXU1HaTrFfUAAP1jSURBVMxy7jyentJarLq4UAVGCgZYrBqRl0ezgbbCTUn/nmsBAvDAAw+gpqYGLMvimWeesf0gMmQkYBSK8eOpBiCCwWtHRwcyMzP7NO/aypgxwMJfuOFszB2o6PKlbb2dV7709HQEBAT0kbJISKDg9tAhoxt6elL9LTsbT409gMmTWdTX05yHnBbv+HgKRn74ocdFxcsLNcuWoSE/H0lxceI3QCmVwPPPA0ePUgCZmUlb7H/9i98LNWoUcMstiHKrgv+PO7Dx885B/X8NBgNSUlIQHx8vmR6hSby96cpZXU1G5mZe76goiun5GjDk5eVBoVAIpkcoFC4u1MopxD6wra2tdxMnVUbq6tWhp3yFRqfTITg4GN7e3rzuV1lpvxL6UMya1TfwrqysRE1Njd2y4VL8TY3deUxt4lxdhREL4VoW/vSnP6G9vR0sy+KTTz4RNwkgA0YCRqFQqWhiMy6OMo0C1oQyMjLg6+sruJQFwwBJ41Q4dFyN7KvO1I9pJ4+uuro6s3qEY8aQE8nly0aLs0oFLF8OVXw0PvuoCyoVix07aKBabkycSAY2hYU0/e2/ejVc9Hqy6JPCjWfePHrxbriBmisfeYSMvc34d5slIADqWVOxuG03tm42mH2L95eysCtKJdVplyyh8vSlSyaDZV9f+rWl4gdibOKEZOFCSjDbOpOXlpaGoKAg+Pr6CnNiFsD1BkqVZTS2WOVLbKx8+xjPn79miiSWHiEfVCrxPd05i9X+7jwcnp6kU2krXDD6zDPP2O31tAfyW+kcGYahLQzLkoCzAFuZhoYGXL16VRQpC4BO9/bbgYAFSbgavYCupbW1ohzLHJZIWTAMOUIcPtxP4jA6GuMSOvHHlaT6+9hjPc4xMsLNjYZhWluvorhYSVIWPj5UO0xJoSuj2NP2fn7UVPnWWzQc8803FMny9WcOCUHAQzfhtusb0LBxL2pL+3aQc1IWQgo7C4K3N9Vr29vps2kiRbp4MV1MLNnrpaenw8/Pz3J3Holxc6P9gS0I4s5jBQxDAa8UCmBcv5u12fCICEray5FRo64FjJzFqhAtTdaydCl1x4gF19I0WFuBszP1d45gHTJa0YcRsbHUQ1Vba1PZkVvMoqKiRJOyACgJ4+kJVDKB+GanGp17D4tSWjeHpVIWrq4UePn5GflQ9/zij1+NQVJkC6qqgPW/tbOat0n0KChIg7NzIg4cUFJ86OJCAyp1dZRt5Jvx4wvDULPniRNUhy0oINHuv/2NX8DKMHAK8oZ64ljsevE8KoqvpQ1MSVnIBoWCtCqXL6d0x/nzfZ43w1wbgqmsNP8w9fX1KC4uHjCBKTd8fKhF2Zr+TG4TFxMTM6geoViEhQnTazYUhYWF6OrqsjobzjC0D7O3fqQpwsLonxjuPNZQWytuQcVSi9UTJ8Q7h+HOSMAoFv7+9GndudNqCwappCw4Jk8Gps5UoWLOzehuaKbytMiZL07KIikpySIpC6WSyodlZdSWxrkHOGmV+GyjKxQKFl9uUGDP11ZcJUUkKysLHh7uuPlmX4SFUWzY+9L6+VEQc/iwNLqe06bRhmDtWkrj/O53NEhUVcXrYTzGhOGWt2aiKKcT7J69aKyu7pWykLWshJcXZVkVCuCrrwZEVMuXk+a6KWcK402cVe48EjNzJnDgAP/e3uLiYrS3t9tVW66tTXhHHmOE0iOMjBR13tFqnJ1pY52RkdHHYtVesOy1jKfQWG2xOgIvRgJGMWEYEvkuKuLdGS2llIUxERFAaLgCm8vmIj/XQBdUETNfOTk5cHFx4a1HOHEilYKKi6/FWNOnA+vXU6Dy0ONqNNbLI9PIufNwgdTYsZQt7fPS+vgAN99M2/Dt28XvJfX0BDZtAj78kK4se/cCEyaQZiQPXN0VmLrAFUdqx+P8i/9FVHDwACkLWcIw9Ca68UbK9J4921sD5TLZev3AnqvS0lI0NzdLtomzFX9//iVTwUXlrWTaNHHt9ziLVVvdeWJj6T0jR65caUVe3lVZZMN9fcXpYTRuabJkE3fddcKfw8+FkYBRbBQKSln4+lLtwkLVUCmlLPrDMBS7XMxyRe3sX9DIpQgNRa2trcjJybF6AjM8HIiOJseFvDz62Suv0M+Ka7R45okOqi/aw8TUCJ1Oh7CwsD5SFk5OJHO4e3e/RdTPD5g6lYJGsbv+GQZ46CGq/SUk0PZ/8WLgpZd4Hzt2ngL7XRbBxSWOJnzkaoHRH3d36m10c6MIvqcW7eJCCdfdu69l57hNXFJSkqSbOFsJD6f9gKV/kqysLLi6ulqsRygWXl408DbYRL61NDU18bJYHQzO1tTevvb9YVkWLS258PSMEbWlyVK8vKgjRGhKSkrQ0tJikTsPQJsQMd5TPwdGAkapUKkog7Np05DvVntIWfRHoyH7NLdQL+z3ug1dNQ2kOyLgqmitlEV/Vq+mIeCyMlq8P/2Ufv7R5y441j6DBjzstJoPJmXh5UUGNvX1QFqa0S9CQ8nnraGBgnWxRwuTk8ku8t576XV68UWaKrawftTd3Y2srFT86tfeCI12R5lnAvVkCqFfIRWJiZRWdHenbGN7O6KiSI2I6yjJycmBk5MTwsLC7HuuVhAbS86RQ8G589hz7TGmpkacXkadTieoO09Fhbjlc2soLy9HVFQx5s6Vxi/aEoRWsbAmG97QYF1f7wgjAaO0hIVR3xjDmJbh7yE9PV1yKQtTMAwFjlGjGWw86IsOdz+S3hEg+LJFyqI/ajVVFgMCqA1wzhxKnAHAA88FoXXV7bSi//STpEKNlkhZMAwln/Pz+zVjMwyVqUePpqlesUdGXV2B//wH+OIL+vrYMdIW3bt3yLtyUhaxsZFQqYATVyOQPnEdpVEPHXKcbKOzM6UWAwNpY1dYiGnTSCkrO7sd2dnZsgmk+BIbS5+PodDpdAgJCZHWnWcQIiOpo0fIZDtnsSqkHmFsrLz6GDk9wtGjk7B/v3yy4Qwj7N7dmpYmb2+7F50clpGAUWq0WopwdDpSdO4XwNTW1qK0tFRyKYvBiIuj8qlh7DiUTl1N2/6iIqsfjxsciIuLE0zYmWFoICY8nOKrl16iRF1uLvDMHxRo8wyiG2zdKlnQaKmUhUIBrFhB597c3O/iGBdH2cbmZnq/iJ0pvesuEnGfMIEEr1esoKEYM1nO/lIWSiW17V4tV6OLUVN/gBQT4EISHk6pXz8/MBfOQ9nSiE2byqDRhDm0MG9yMu0DzL39q6qqUFVVZZVXvVhwbeBCDfeK5c4zahTJfcoFrqUpPj5cVtm0iROFC/65lia+Q3YTJlCv/gj8GQkY7YFKRRGYjw9diHsyMFwgZS8pi8Hw9KTF+4dzLriU70klzJMnrQq+ioqKoNfrSY9QYGJjSX/O2xt4/XX62T/+AXh5M5j/u2n488UbcWx7HdrTxVXb7ezs5CVlwTAUp1RUUHKrz8yLSkV/AHd3Cr7EzjbGxVE29rHH6Pu//Y3keExgSspCqSTNtcJC4FJDFAW8bm4UrTjK1l6lokxrWBjaNm3AZNeD6OiQh1+0tXCbKlOiDVwgJeQmTii0WmpFFoL8/HwwDCO4Ow/DUDK9sVHQh7WK/pu42Fj5OGD5+QnXqZKWlobg4GDem7iSEtp7j8CfkYDRXjAMdXTX11NKrEfbra2tza5SFoPh7NyjxKLQQL/yJhgCR5EAmYWDPABJWaSlpWHs2LE2SVkMhrc3LZAaDfDEE7T77+ykHq6X/6LGwpt94DU+HAvG1+HFP7M4fpzXU7AIa6UsoqOBBQtMyGAyDG2Nb7qJokkzjiWC4ewMvP8+sGEDff/BByQRZcRQUhajR1OD+fkUDQVgERH0Xucp32NPWH9/nE9IQPSC/8/eecfHUV19/ze76t0qVrNlS3KRLbl3bGxjg42x6SF0EtJIeJIACQ+BPEkwCQ8BkvCSCim0AMbdYLl3uRdZLuq997pqu9oy5/3jaNW2zezOSnIefz8fJXh3yp2dmXvPPfec31mAu+PykHG0ddjrHCvJkiXW47fKy8thMplGR3WeIahU/RIxrmCuzuMuPcJx40bHsnROTg4iIyP7SqxOnjx6wombmvoTFF2hubkZdXV1TnnDAwKAjg7X2/B/kVFtMG7cuBGCIAz6GyiBQETYuHEjYmJi4Ovri5UrVyJ7yPS5p6cHP/rRjxAeHg5/f3/cc889qBpN0cljxwL33APTqVPIGQVSFo5QqYD584H6BgFbLsaju76DXWISe3OlpCwc4e3Nxu3DD7OnKy8P+Pvf2dkVHQ30GNRIuz4Gr/1awMqVnIBy2228lH3ypGuOsPb29j49QmeIieE6sCdOWFn59/Njz1dXFy+vuzsh5tFH+72LTz/dp7xrlrJISEiwKWUhCCzvOGFCr+clvtfbGBICnDlzQ3gbKysr0aPXI3HmTCA+Hn6ZF7D/jwWjxmMjFw8PzlS9fr3/s4HecHdN4lxl4ULXJ3XuKrFqJjGRo41GktbWVtTU1AyaxDU0cP83GggN5ToFrmDue6ZMmQJfX1/Z+wcEsHF/E/mMaoMRAJKTk1FbW9v3l5mZ2ffd22+/jXfeeQd/+ctfcOnSJURFReGOO+5Ax4Dpw/PPP49du3Zh8+bNOH36NDo7O7FhwwaYRpObICQEBZMmIayxEbGVlaNn/cAO48axgXU8L5ots5ISDk6x03azHuFwJQ6oVOxRaWpij92TT7LDrLqaywu+/z7wyAN6RAVr0dPDBtrGjRyLFBICrFrFMj2nTkm3bcydmRLVeZYs4ZVhi/wolQpYupQlcIxGoLDQpfM45I03gLlzWSPyyScBk6lPysKRHqEg8DJUejrbiPDy4lE1Npa9ja66jdyI2RveJ+wcFISk59YiamEctBm5PBO5AVGr+ZExV7PJz89HcHDwiAs72yMsjB91Z+VJ3V1iFegvOzdSQ4utEqsxMawgMRoIC+N+zRVcDWlSq7l/v4kT0Cjm1VdfpVmzZln9ThRFioqKojfffLPvM51OR8HBwfT+++8TEVFbWxt5enrS5s2b+7aprq4mlUpFBw4ckNUWjUZDAKi5WSP/QhzQ2dlJqamp1NrSQnT6NNGhQ4qfw51kZhJlZxP/z5dfEvX0WN3u3LlzdPXq1eFtXC/V1UQ7d1r/TjQYKe+rPHrvjz308ENGiowkYsu3/8/Hh2jVKqLf/Ibo1Ckinc76sWpqamjfvn2k1+sVabfJRKTVEhUUEImilQ0MBqKDB4m++opIoXNaJT+fyN+fCCDjb35DBw8epPLycsm7iyLR0aNENTUDPuzp4Yu7cIH/f5SRnZ1Np06dItHKD59/XUelHxwlOnJkBFrmOhoN0YkTRO3t7bR7927SaJTv15QmJ4fo3Dn5+4miSKdPn6asrCzlGzWEkyeJSkrcfhqrVFRU0IEDB8hgMAz6XBSJmppGpk3WcGV40+v1tH//fqqurnapDZ9/7tLu5OfnRwBuiPdGSUbv2mcvhYWFiImJgbe3NxYtWoQ33ngDCQkJKC0tRV1dHdasWdO3rbe3N1asWIGzZ8/imWeeweXLl2EwGAZtExMTg5SUFJw9exZr1661ed6enh70DHArtfdGM+t0Bmg0BiiZk5KZmYno6Gj4BwTAsHAhB9xlZbG8xw0wFZo0CTh8WEBT8BQsmeYB4dgx0OrVg7Yx6xGuXLkSBncvo1ohIoKTYbKy2Os11DGWsC4BCXV1+I7/IYhvrUZ+ZyzS0lRISxNw8qSAhgYBx46xFKWZwEBCWBgQGkoIDQUiIgi33lqKNWv44Epdp0oF1NYKyM4G1q0jy4zR225jt6lez2vY7hB7j4+H8Mc/wuM734Fq40YEf/ghomTey1tvZQnSc+cEzJ9P/VkYYWEQPv8cdNttLD01Cuju7kZxcTGWLFkCo5Uko9gEFbZcWo57pmoRnJfHF5aSwtd0A+DrC8ybRzh6NBcTJoyHr6/viLyXckhIAHbsEDBvnrwVmLq6OrS3t2POnDluv8aJE4GsLAHjxg3vKpFZj3DatGkgIovrvHZNwJIlhNEQ7VRbK0CvJ6delby8PPj7+yM8PNyle2kyOd8GgL25zpCeng5fX18kJSWN2vAPewjk7JUPA/v370d3dzemTJmC+vp6vP7668jLy0N2djby8/OxdOlSVFdXIyYmpm+f733veygvL8fBgwexadMmPP3004MMPwBYs2YN4uPj8fe//93muTdu3IjXXnvN4vMPPtiKa9cSMXduA0JC3BeD5dnZiahLl9A8bRq63RzvpxQ6nRqtrd4IC9MhorIQpFKh3YGkzHBjMgm4fDkSwcE9mDrVMphG1dODkKIitCYlgQQBUKlABFRVBSAzMxxZWeHIzg6HRmNdV/G22yrw3HNDM1aUobIyAGPG6ODnZ7QqMyIYDBh79SpIrUbjzJkghUcHVU8P7n74YQDAsT/9CR1OGKZEQGZmODw8REyf3tL3uWA0QmU0IqCmBp2xsTDZ0K0cTXR0eEKnUyMitAuheXnwbm9H7eLFN4zRaDIJSEsbh+XLq+DhMWqHgUEQAUajCp6eo6ysSi9EgF6vgrf36Grf9evhGDeuA6GhIx83nJkZhqSk1hG9h+3tnggMNDj9qn7961+HXq+HRqORLP7+1Vdf4b777rP5vYeHB+bOnYt58+Zh3rx5mDt3LpKTkxWVf3KVUW0wDqWrqwuJiYl46aWXsHjxYixduhQ1NTWIjo7u2+a73/0uKisrceDAAZsG4x133IHExES8//77Ns9lzcM4fvx4NDU1wcMjCMeOCbjrLiveHhkQEU6fPo2YmBjr8RgGA+us+Puzp/EGGIiqqsC/zZ0mROScBFQqlIwfj8rKSixbtswt2YlyIeLkdK2WPY9WA9UrKiCcOQNavx4Y0iEQcTgf/wloaQH+8Afg5EkP/PCHnXjnHfcZO1ote1nuuYeGNquf4mIOMm1rYy+1Uly9Cs+FC2EIDuYAOCefRyIOwp8yhR2Mg6ipgXD0KOiWWziLYARobGxERkYGbrvtNoeddVcXcPq0gLVriT28zc0QiotBS5ZYubjRgyiKOHnyJEymKQgKisWCBTfGMNDZCRw6JOCBB6S1t6ioCHV1dVi6dOmwCa6npQmYM8fO+6kwWq0WaWlpWLx4sU3B9aIilnAdDSXQzTr+cu2g9PR0+Pj4KFIXOyuLw6idLTIWHBwMrVYry2A0P3/f+MY3cOXKFVwfmHkmgb/+9a949tlnZbdVSUaBg1o6/v7+mDFjBgoLC/ss9bq6ukEGY0NDQ1/wdlRUFPR6PVpbWweVn2toaMAtt9xi91ze3t5Wq3N4enoiKMgT99/P1Tlqajij1Zm+qKysDKIoYvLkydbd056enFl6+TJnXtx9t/y3bJiJjwe+/nWgqckDhmV3QCV2of6TTzDztttsVjsZCcaO5TydHTu4tKDFO5+YyNqHFy8Cd95pcYOjovjPzK9/3QEgEIWFAdi9G1i+nI1RpfH05Pbu3w888ogNmyQpiXvlixe5R1y+XBHjpSMjA54AVCkpULv4HM6cyY+1VsuVefqYMAH4xjfYEsvL4zW+wECXziUHURSRl5eHpKQkm9nfAwkJ4eZdvw7Mm+fJWewaDWewP/roqDUai4qKoFarsWrVeIiiCkYjL1OPdsaM4Z9Up3P8WGi12r6wguH00kRHcz7U3LnDc76rV68iNjZ2kBbqUJKS+Dcb6SxugBMORZH7AKk0NDSgtbUVq1evVqSOu17P0jrOJszLnXxU96pLAMDHH39sczudTofMzExkZGTg8uXLuHz5MjIyMgBgVJQkHXl3jwx6enqQm5uL6OhoxMfHIyoqCocPH+77Xq/XIy0trc8YnDdvHjw9PQdtU1tbi6ysLIcGoxQmTmQ74uBB+fvq9Xrk5ub2Z2DaY9481rIpKrohMqgDA9lwPHUK+HxLLbynJiEiIwPIzR3ppg0iIYHjGqurbWhhh4cD69axZblnj80Sd62trfDw6ALAz8LXvsYd0fTpwPe/z1rbA/oLlwkNZVukvt5OhUkvLy6RMXYsp3i7WGmFiNDeWyZQPWeOS8cyM3cuN+3atSFf9GYkY+xYVmwexuemvLwcoijK0iNcvpzvCRG4Q5gxg29Qdzewb5/yIp8uYtYjnDFjBtRqFdraJFWAHDWsXCltgp6TkzMiJVYTEoavm5ZTYnXnzmFokARCQ3l1RipSSqzKJSTEtYqlcp8ps17kX/7yF+js9Ac+Pj5YsGABnnnmGfzjH//A5cuXQUQgItx9993ON1gpRirbRgo//elP6cSJE1RSUkLnz5+nDRs2UGBgIJWVlRER0ZtvvknBwcG0c+dOyszMpEcffZSio6Opvb297xjf//73ady4cXTkyBHKyMigVatW0axZs8hoNMpqizlL2lpWVHc3UVkZUWen9ONdv36dzpw5YzUD0y67d3PK7A1Aa2sb/eEPJ+nKlU5O921qIqqo4MzeUcbevUQZGXY2KCoi2rXL4mNRFCktLY0uX86lrVuJ/uu/iGbMsMyyBogSE4mefpro44+JSktdb7NeT7R9O9HlyxI23LKF6MwZvg9OUFZWRt3m9PHdu506hjVEkZtXWGhjA5OJqLWVKC+PqK1NsfNao6enh/bu3Uu1tbVO7b9tG1FHx5APy8qIPvmEO4lRwpUrV+j8+fODPtu3j0hG0vuIc/Kk/Ue5ubmZUlNTqaura/gaNYCaGiKZQ4xsRFGk48ePU4HE8WDTJve3SQo6nbxM8uLiYjpy5AiZnOy7bOHK4ebOnSs5S9poNBIAh38pKSn0jW98g/70pz/R6dOnqcOiMxl5RrXB+PDDD1N0dDR5enpSTEwMPfDAA5Sdnd33vSiK9Oqrr1JUVBR5e3vT8uXLKTMzc9AxtFot/fCHP6TQ0FDy9fWlDRs2UEVFhey22DMYiYjq64k++oiors7xsVySsjAYeMAuLpa/7zAyUMpCFFltp7mZ2DL45JPRpfNA3HkcOeLAFhdFNhzPnu3TuKmsrLQqZdHUxNf8wgtE8+YRqVSWBmRcHNGTTxL961/8s8idO5ibVFrKkxW7+4siW5YajWzjRa/X06EdO/obrrDhZpbcOXXKzkaNjUSffUbkRlmma9eu0dmzZ+VP4nppaOAmWgzKJhNbxTt2sPE7grS2tlJqaip1Dpnd6nSscuTkpQ87Z87wHMIa5klcbm7u8DZqACdO8FzBnZSWltLhw4clOz9KSmwqng07UhWOdDod7d27l+qkDKwyaG1lJ4GzyDEYX3zxRQJA8+fPpx/84Ae0cOFC8uAsM8l/o4UbKullJGlvb0dwcLDdINeuLk76mDiRK43Y4ty5c/D398dMOUEcQyFijZelS1kxdpRRU1OD69ev98WcaDRcWe7OO4EILw2raUdGsuz+KIKIa8IuW2YjpouIVairq2HcsAFHjx5FcnIyxjkoHaDRsHB1Whr/padbCvzGxvLy5ooVvOw2ZYr02Njr1zmmdsMGB2FzJhOwdStrIc2fL+kE2dnZ0F++jDnf+AYvFVurLeciRFyafN48O4+zOdtIo+F29JY+U4L29nakpaVh5cqVCHQhZrKpiZe7rCaoNzcDhw4Bd9yhaNulQkQ4c+YMQkNDrS5hZmZyaIZCEQdupbubY2BvvdXyu8rKSuTm5mLVqlUjVjWruppDcIeoiymGwWDAkSNHMHv27EEx/PZobeWkoVEQCodNm4DHHnO83bVr16DVarF48WJFz2808hL917/u3P7z5s1DRkaGpKQXc7yjKIp2Yx+NRiPy8/Mt4he/+93v4t1333WuoQpzQ8Uwjnb8/YGpU9kwOHXKehxLfX09WltbkZSU5NrJBIEjmbdskRcQMgyYTKY+TTBzgHJwMCdpBAcDV0uDQQmJHLyWmur+8nYyEASOPdy61YZdJAjAggXAhg0oO34cYfX1iI2NdXjc4GDgrruAt94Czp/nkMKDB4Gf/5yNU09PHmS++ILjHpOS2IB84gngo4/Y1rDHzJn87F296qAhajXfCFHkgzoI5Ons7ERJSQmmdnGMJmbNcnitziAIPPdpaAAuXbKzUVgY/x09ymVwFICIkJWVhYkTJ7pkLAJsB549ayPsMiyMf/uwMM62GuZKMTU1Nejs7MTkyZOtfj99Ok88XIntGi78/Li0enf34M/NeoQjXWI1Jsa9SS/OlFgl4uzg0YCXl+PqWe3t7aioqFAkK3ooHh5cY9vdHDlyBACwZMkSh4kyHh4eSE5OxpNPPol3330Xp06dQldX16gxFoGbBqNbuO02fiGGDhqiKCIzMxNJSUnKZO3FxnKGhb+/neyH4ae4uBienp6IG6LT5+nJf1ot5zIYFi7lUaqggA2YUUJsLOeL+Piwx9ga3Xo98rq7MTUwEMKBA7LPERAArFkD/O//8uRCo2GH8auvsnfR25vLeX3+OfCtb3FG9rp1wMcf285fSUpiD93Ro5wBaBNBABYt4ujzHTuAjAybUfrZ2dmIi4uDn7mEn5tTacePZ6OxNzHQOsHB7BqYMgWorGSpAheor6+HRqPB1KlTXTqOmaVL2ftl9T4JAv/ddReP3iUlw5IhYZ7ETZ8+3WaWqVoNrF07ql5FuzQ3sxDAQAoKCuDv7z9Im3ckEAQgJ4dXnZSmo6PDqRKrY8a4XsdZKRwJfpCCJVZt4aykjhzuuOMOAEBqaqr7TzYM3DQY3YB5PJ42DThwoH/wLikpgUqlwsSJE5U7mb8/W2FlZZyROcI1srVaLQoKCmx2ZoLAtUTnzuWBqWNsIpCczO62K1dGTRZ4YCAPoOnp7Mga2qzs7GzEjB+PwPvv53Wx6mo2XpzE15cnGhs3AsePs7Fx7Bjwi1+wU89o5Gfp6ad5Jf+ee9iYtGYYzprFyy0OHc8qFfDwwzzVr6uzeHYaGhrQ1NTE3vCvvuIP7VRHUgKzLTVunKX3yGJDLrMDXLjAVrITmEwmZGVlKTeJAz8399/PXjCr2fcA3/D16zmldu9etz/7RUVF8Pb2dijNERXFHt7ewlajmgkT2ElrNnC7urpQUlIybLXqHREQ4J55fHZ2NiZMmCBZ/8+MIDi/BKs05eVcz9wW5uo8Sk3irGGtX5fK7NmzHW7T2NjY99/DnanvLm4ajG7EvHq5cydQXd0vZaG4eLVKxcEyiYks4aHVKnt8GeTm5kqSspgwgQfTXbvY1sXatWz95OQMSzul4OHBmoceHrxMZ7anLKQsAgLYeElP5wBFBfDxYQPyN7/hZea8POC119ghq9fzSv4TT7DyzIMPcmSC2ZsRHs6f+fkBA/os66hUbMFHRbG38do1gKhPyiIpKQnera38uSAATz6pyPXZQxD4uo4dA7KzHWzs78/W2Zw5rDNUWirrXCUlJVCr1cpO4nqbVVvLRr5D7rqLjfbr193i3tNqtSgsLJRsSE2ZMrgE5mhFEID77usPw83OzkZsbKxN8erhJjHRwaTHCerr69HS0uJ0SNP58xxnO9L4+PBKgjXMk7iBIU3uwNfX+aHynXfecbjN+vXrAQDHjx937iSjkJsGo5sJC2MnTk1NHnQ6++KqLjN1Krs3tm3rtcKGl5aWFtTU1EjSBAN4UH3kETaGTKQC3bq839toXgIdYcxGf1cXsHkz0NFBfZpgPgOzM3x82HCZOpXXyhSOK506FfjVr9iAysoCfvlLHth1Op6QPPIIG1kPP8z/Vqv57+hRiTKGgsDhDR0dQEUFykpKQESIj4/nLCCA3cLufH6HcNdd/GxIWkYLDeVsk7w8tqYluA50Oh0KCgqQkpLiFo/UhAlstDucA6lUwOLF7Bo+fZp/bwXjenNychAdHY3Q0FBJ20dGsof3RliaDgjghZXGxkY0Njb26d2NBgIC+B1VynE8cBLnrDc8KMjlCA5FCAuzvSRtDmmaMGGCW9uwcqXzdTAc9RdEhEu9wdgrV6507iSjkJsG4zDQ06NBbW0lPDyScPSom1ddfXzYesjKchxVrCDmxIFJkybBz89P8n5eXpw53dDA47zRCM4CSUvj+K5RQmgoJ7f++9+N0OsNtoWdo6LYUtu/n5cZ3UByMvDrX7NtdOUK8PLLLJTe3c3JOg8+yMbjM8+w87CqSqL9oVIBy5ZBHx2N1o8+wmy1GipB6HeTrVnjluux15wHHuCfU9Kj4O3NgZ5Ll3JQqANLOTc3FxEREW6dxK1cyZ6mzk6JOyxfDsTFsbfa5nq2dFpaWlBbWyt5Emdm/nyOwxwlESI2UauB7m4RFy7kWk7iRgEZGez4VoLS0lIIguCSN3z8eBsZ/MOMv7/1MoXunsQNpLlZuXszlNdffx0A8PLLL7vnBCPETYPRzZiDdxMT43HvvT4YO5a9Qm5NDPbyYn0VLjw8LIZjVVUVdDodJk2a5NT+0dEc8/nllwD5+XOwTVwcp5yO4BL7QMaMMSA+/jKCg2chP9+Odk1ICFf68PdnS0HpdaleBIEzRX/7W46VunQJePFF/tk6Ozm7+uc/Z0O3sZEdV1IMgLy8PBjuugthgsDVhcxlQC5eHHYLQhDYS3fxoozV5tBQdu/U1nKJPisvW1tbG6qrq5GcnKxsg4egUnEow44dMrKPp0xhSz8nh9vvpIyRue+ZPHkyfJ1IVuru5jJuo53Y2Cp0dAiyqvMMF4mJ/Aq5Sk9PD/Ly8pCSkuJSSNOYMfx6jAb27bP8LCcnB5GRkQgfBtkpvd72srir/OpXvwIA/O///q97TjBC3DQY3YxZymJK73RqxgwevzZtGgY1nJAQXk/dvt2t60tGoxE5OTmYPn26S1IWkyfzqm5ZGVBZJfBUOC6OA/RGwRJ1fn4+goODMG9eBEpLefXQJioVD/zd3RwioMSoYQdBYK/Q737HhtXSpfy5ORMwJoaTix3F1LW3t6O8vBzJM2eyIOTkyZzSCPD69jPPKOL5koOHB3tNHcZjDt1p1SqO7TUaB2WCmw2phIQESfWiXcXPj39K2aFM5ntw/TpP+mQmtFVWVqKnp8fpSdwttwAVFU7tOmzo9XpoNNmYMCEJgjD6hrO4OGXkW/Ly8hAeHo6xzhY/HoDbV7kk4uExeC7X2tqKmpoat0/izAQHu6crO9cr9zV9+nTl8xVGmP+sqxll2JKyCAriYO1jx4YhTigujpeoGxt54HEDhYWF8PPzk6RH6Ai1mo2b8+d7pVXGjeP2Bwb2V60fAQZKWXh4CFi/nj2iDQ0OvMVjx7JCbVsbD/rDoDmpUvWHGg5MMlywgFc8a2qsN2OglMUgPcIPPgB+8hM+8D//ydbbMHt9PT2BhQv5nZHlFRgzhpeqjUaepXV3o7q6Gl1dXX2TuOFg4kS2X2WX9I6I4Cz8hgZOi5eo3WgwGJCTkyOtVr0NPD25zaMh5s0WPIkLhsEQPpoiWPpQq3kC7Iq2pUajQWVlpWKG1JgxLpeWV4Rbbun/7/6VuERZIU2u4C6tzFt6L8yswfifxE2DUS4O0zb7sSdlERzMOQbV1awK4tYZn1rNA09jI0t4KHiyrq4uFBcXKypl4e3Nv01UFMeZmDx9eHm3P/NEkfPIwZqURViYxCZ5erL7r7WVjZbqare3Ny+P/39oMqW/P9utW7ZY2nw2pSzUauAPf2BPtacnl+y5/fYREYxftIhXyGXpyalUbG3efTeMgoCqbduQPHXqsAs7e3jw6+dIhN0q48dzmIY5INVBUGRBQQECAgJc1iNUqYDDh0enmHdHRwfKysqQkpKCOXMEZGaOdIts42wOojk2XEk9wiVL3C6nKgkPj/6M7aqqKmi1Wpui8u5AFLlLUxLNgPARqRV4biRuGoxyiY9noWkHvmypUhbjxnH/bw4Tcxtm6Z3Fi3m0VWiK6S4pC0HgGWBzMxtknZ3g6eAdd/Do5dSo6xz2pCzi4znPorRUgvMzKooH/aIiXl50k2amXt+/Am5Nxiw+nh+F0tL+uYMkKYv77+fSdgEBHFs6AkajWUXHKUmMoCAUlZXBIywM49LShr3tgsChxYcPOzln8/HhWIPubg72vXTJ6kPX1dXllLCzNVQqNtLtCqmPAAOr8wQFBSEoiH/b0ZjZnZjofHdVW1uLjo4ORb3hnp79E8qRRKtlQ9oc0jTc1XlUKuWfl6997WsA/nOEuody02CUi58f9/Z9Vox1pEpZCAInBZuXCiVnUzpLWBi/Kamp9pVTJdDU1OR2KYspUzg5t6io9+WOiOCo7YsXWX7HzfF0UqQswsM53OzQIQkOaF9fjkurr2dvoxsM39xc/lmCg23XjY2OZk3Hr75ix3NJSQk8PDwcS1msXMnG4tixnKK9dOmwGu8Ah3QYDJwRLiefqLu7G0XFxUjYsAHCww9zmMOpU5yFNkwEBwMPPeSirRocDDz+OCe3GY0W8b1ZWVkYN24cgoODXWtsL1OncgWh0eRlNJdYHegNLy+3rPwyGggPd66iprUSq0rg6ytRasvNhIbye6BkSJNclBy6iKhvGXrDhg3KHXgUcdNgdIapU1loWqOxOtg4I2UREMAzvx07hiFmyJzF293N7XdimmWOOZkyZYrbpSwiIjgb+OjR3lrJgsBuvQkT2Npx40gmR8rijjt40CookHDgmBgu13LhAv/+CoYJmENVZ83qFzW2xe23A6mpeqSny6iQMWMGBxNGRLCrYunSYffWBQayHNOhQ9L3GTSJ8/XlF86cVDUMYQJmzBWEXMpAFoR+K+TiRV7r1un6qvMoOYkTBA6hdLKYjuKYJ3HTpk0bNImbOJHnwKMhoWMoR47IT3a3VWLVVdRq9nuMNEFBwIoV3SguLh4WGR1rhIQo52X885//DAD4wQ9+oMwBRyE3DUZniYjgQX/PHq6C0YsrUhYREbxi2do6DLN5Dw8ecKqrB5cJkUh5eTlMJtOwSlmsXs0xL1lZvR8kJfEy765dg+6BUvT0cHUeqVIWajWLTU+axI4rh/ktwcG8Q309u8sUis00/z4zZzreNiAASE7ORlxcGDo6ZEhZJCf3G435+RzqcOzYsI7WkZFciaegwPFv3dzcjLq6OstJ3IQJ7K0LDwfOnBm2mnirV7PR6HIOlJcXTzxmzIBoMqH4wAFMnTIF3t7eirTTTGwsdxEjELZqgbnE6lBvuFrNoaojXB3VKomJ8soEOiqx6ip33z3yv5MgAO+9V43Y2FiMGY7CzlbIylJuVe+5554DAPzxj39U5oCjkJsGoysIAisLNzT0KYC6KmXh68tjcXo6xzq5PSYnMZFTIS9dkjzY6/V65ObmIiUlxekMTGdQqdgjlpwMnDzZuxwpCLzG19rKunsKGix5eXkICwuTLWWhUvEA6yBqoZ/oaK4D6HRw22DMeoWJiY63bW1tRWNjNWbMmI6MDJmJ9CkpbCRGRrJr5+mnlY8id4DQq760a5ftd2WgN9zqJM7DgzOtpkzhUA1JLmLX8PBgJ39bm0LveFwcyurq4NHWhoTz590SJrB27ch7psyTOFslVidNGjChHEUkJvJrIpWcnBxJJVadJSPD7UpfDuGQpg5MmTJy1XkCA5WZp1/rdViMGzfOreUMR5qbBqOrqFS8FhkWBuO2bcjLyHBJysLMLbdwmNjVq8o00y6RkRyblpHBXhYHRotZyiJSTg+oIILAY/u2bb1ZdioVtz8qij11VVUun0Oj0aCiosJpKYuEBHYeenhIzOgdO7Z/8rFrl0uyNWbtPEfhiAOlLIKC/HD//WzgyjJgUlLYnTp+PJ/4pZc4izo9fdi8jQkJPImwVbWhoqICBoMBiY4s6IgIlkCaMIF1nWprlW/sAFQqoLKSQ0JdRa/XIy8/H3EPPwzVffex5/HaNUXjMwMDufrLSEqiOqrOo1ZzHPEwqFfJwseHn08p75Y5pMmdeoTR0W5/vO1i7ntuuSUcgjBy1XnmzVOm2umCBQsAACdPnnT9YKOYmwajUnh4oHjsWEy8eBExCgWbz5rFicFHjsgULXaWuXN5oLGjMDxQymIkYk7MREWxY9HfnwddAGxJ3nsvx3S5MKqZMzATEhJckrIw5xft3y8jKzEyktfVvvrKadeTWarPUehTdXX1ICkLlYonKgUFwIkTMuy9yZPZaJw0idMef/ADdl8cPOhU+50hOZmX14f21waDAbm5udIncYLA3saUFDYa09Pd0+Be5sxhQ8LVlfC8vDyMGTOGJ3GBgfwXHMwTKAVdSSkplr/xcNHW1oaqqiqHhtS0aaNTcLytzXG3ZDakJk2a5FR1HqmMHct96EhhDmlatSp2RDPbu7rkhQpYo7u7G4beGUp8fLwCrRq93DQYFaKrqwuFHR0Y+9xzEFQqWXqNjli8mIP73d4JCgKrO992G3sbrXjqsrKyLPQIRwo/Px7bs7M5IF8UwVP5++/nHnH3bqfKqikpZeHlBTz8MBu1kr0esbG8U2srJzPICGjt6ekflOx5GI1GY5+o/FApi6Qkzgc5dUryaflkJ0+y5VZTA/zoR3wPcnPZ8BqGUSEwkJOGL1zo/6ygoACBgYHyNdECAvg5mjWL3WpuqpEnCHwaUXQ+btlcnSclJWXwFxMncnxmVBRntCvgGgwO5uz64Y5/GziJc1SdZ+5cDi8fbSQkOF78qKqqcimkSSqeno4T4tzFwElcY6NayaFSNoLger7bk08+CQDYtGmTAi0a3dw0GBXCLGUREhnJRktNDXtYFBgoAwK42ElkJBtHbl/pEwQeFc6dG7QmbpaysKZHOFKoVJwtGxHBy6lGI7j9KhVn7+7eLcs96w4pC7Waoxba2rg5kgZbQWAX5fTp7CWSOEKbva2+vry7LQoLC+Hr64tx48ZZ/X7pUp6omCUjJREdDaSl8TpPUxPHxra08Og0TLpkt93Gz4LJBHR2dqKkpMQ1b7inJ2cPVVW5LU1YpeKfSU7Gt5mBeoSDqvOYUau5A5k0id9nBda/U1JkhTwrgrnEqlRh54MHnS7B7TYmTOBXwxbmSdxw6RHm5MjOdVQEc0hTVFRUn7TOSKGE32Pnzp0AgEcffdT1g41ybhqMCtDY2DhYysIc1zh5MruV5IjF2UCtZm+aVsvSO27Povbx4XIrkyYBhYUQu7uRmZlpIWUxWpg5k715mzYNsA/DwjgmLTSU11gl/GjukrIA2JCZMgXYuVPGYBsfz9fQ0cGxCQ50J81e6Lg42x6E7u5uSdV5vLz4J9u5U4bcZVgYG1bLlvGIvXYtW8p3383ZOKdOudU9JQjsyTl8GDh4sAhxcXGu6xF6enJa88qVPMpevKi4xzQhgX9vueG3dXV10Gg0ltV5hhIYyK7M+fN51nn1qksWn1br+lKeVGyVWLXHrFnDFP8tA0Hgd8lWN1RQUAB/f3+Xq/NIJTp6+ONRzSVWzZO44GDnNCqVwseHZXGd5fPPPwcAPPbYYwq1aHRz02B0EVEUkZmZialTp1pKWSQk8BRu2zbFIoznz+dVY51uGMr5CgJ7J3x80PiXv8Cnrc2xsPMI4uPDeSPHjg3olNVq/ouLA774wm4GirulLABe7r3vPjbszGWxHKJSsWDYuHFsEdtZ2zbHL9q7TdnZ2YiJiZEkZTF9OntF6utl2BfBwcCBAzxp6uoC1q/npfWJE/m7HTvc7p6aMaMB588D4eEKesPVag6QU6nYVawwt9/OcxupMh8DveGSJ3FeXvwQarUuXcOSJQNih92MvRKrtpg4kedao43x462XA+/q6kJJiQwtVAWYO9dxYpzSDC2xqlIpkqPoEq4IOzz77LMAgA8++MDudnV1dTh27Biys7PR1NQEcTSWJJLATYPRRcrLyyGKom09wtBQzs7IylJskJwwgZcct28fnll+z9ixyEhMxLTJk6Fqaxudyri9BARw+F9HB4fU9TU1IYE9pv7+rB1j5RrcLWVhxtOTH4v9+/slcCSRlMSxCT097Kmz0ukM9DBao6mpCfX19bJE5RMSOBxiyxYZznJ/f16Gvu8+bu8DD/DS+syZfB/q69myd0OlHlEUkZeXiaefDkR4uLeyS5OCwLO2e+7hH/vQIcXc/SoV29d79kh7xUpKSqBWq+VP4tRqtvjuvputvn37ZM8+fXw4QcrdHiqpJVaHIgj8aI20MTKUpCT+7YbirhKr9lCrh1eM3VaJ1ZKSkdWEJHJtSAsMDHRYvCI6OhqrV69GSkoKIiIioFarIQiCpL8f/vCHzjdOYW4ajC4wUI/QrrCznx97W0pK2EpQ4O3w9GTbITfX/Z7G3NxchI4bh7BZs1hvb9cuNgJGMeZiHrt2DegM/P35h9PrLUQSnanO4wqBgXz/jEaZyideXnwdwcHA559b3Ad7HkZzvJsz1Xk8PHhFdvt2GTaetzcbiY89xjs9+ijw4YdsGUVFcWbC5s2KjxZlZWUAgKSkePT0cNllBaJCBqNSsVWemMjrjAp5DCIi2DvmqHSbTqdDQUGBa/GZKhW7vJKT2dsos+KQSsX2sjudJVJLrFpjzBjOVxpNhIRY6v41Nja6vcSqNdRqGascLmKvxGpoqGI1C5xi5kzXDMbz58/b/f7LL78EAAQFBeHb3/421q9fj3nz5iE2NlZSrOpf//pX5xunNHQTSWg0GgJAGo2m77Nr167R2bNnSRRF6QfKySHavVvhthHt2kWk1yt6WCIiamtro9TUVOrs7Oz/sLycKC+PyGBQ/oQKo9EQNTYStbQM+aKhgai7m6i8nERRpLS0NMrNzR2RNp45Q3T4MJGcx4iIiLq6+BrOnSMymYiIaPVqni9/8onl5qWlpXTo0CEyGo1Ot1Wr5d+ytVXGTkYj0fe+Z57IE/3xj/3fmUxEbW1E+/YR6XROt8uMTqejvXv3Ul1dXd9ntbX8+7oNUeQfZMsWmT+M7cPpdETt7ba3ycjIoAsXLrh8rkG0txP9+99ElZWSdzl3jrs0d9Dc3EypqanU3d3t9DH27XPivXIzu3b131uTyUTHjh2jwsLCEWlLWhq/nu6mqKiIjh49SqbefmooI3mPamqIBg5vUmhsbCQAJMWEMm830Ha4UbnpYXSSgVIWsmb406ZxTFdOjmI6OUFBPEvaskXZ2T71aoJZSFnExXE97UOHOAFgFC9RBwWxdyw1dcjyb0QEe8AKCtD00Ufo6ehwu5SFLW65hWfZmZkyd/Tz4/Utc7ZPd3ffEtwHH3AYofl5MEtZuFqdx8eHl/u++kpGMRG1Gnj/feAnP+F/P/cc8Ktf8XOjUrG3NCmJH2AXPdd5eXkIDQ0dJCofFcXxgdeuuckbJgjsOlq1itNze3pceicEgVcNbElxtra2orq6Wnlh58BA4MEH+Yfq7JSkA7VgAefFKf27mvseZ0qsDuSOO0ZftnRCQn9fNBIlVgeyYIH7F4t6enqQl5dncyWutJSz7keKigr5oRX//ve/AQDvvvuu3e1MA1ZPmpqa0DUSaekKctNgdAJyJGXhCJWKl7IuXmS9QwVISOA61E1NMuPi7OBQymLdOl5qdJNGnVKEhPBqaHs7r0b3jeUqFYwrVyJHpcL0+Hh4jODLPHcuG/2HD8usbSoIvPM99wAeHnjgljoIAuHkSb4906YBf/kLkJFRiKCgIEQpoNYbEsIJt4WFMtv5+98DGzfyv3/zG+Db3+43SuLjgSee4JuTmurUGnJ7ezsqKios9Qh7IXJOukYy4eEcQCsIHC7gwoQwJITla4Z2D+a+JzEx0aEeoVP4+fGE1teXk/UcaGiq1RyeLaukpARcLbFqxmTiKKDRRHIy31u9Xm/XkBoOamqUv3dDycvLQ3h4uM0Sq8HBbqlkKZmgIPnC+ffeey8A4Omnn7a73cD4w8TERAQEBEiOXVSpVMjJyZF9Pe5k1BuM1dXVeOKJJxAWFgY/Pz/Mnj0blwcEphARNm7ciJiYGPj6+mLlypXIHqIE2tPTgx/96EcIDw+Hv78/7rnnHlS5EA1dX18vTcrCHt7ePJufOJGVQxWoZeXlxQPNlSvcz7uCJCkLQWD3WFISZ8HW1Lh2Ujfi6cnyDXl5bI+Y4/AKCgqgSkxEzNSpLFtjI5lkuJg9m5OIZWuTBQUBnp544weVKPxDKl74oQFBQVy15Uc/Am67bTI+/3w+iouVycAMCmKdxmPHZNx2QQBefRX4+9950vTRR1yZx2whq1Tswpw3j4MlZfTiZo9UfHy8zeo8s2ezJ1fxeMaheHnxu52ZyTfSyedp1iz+GxjfVV1dja6uLsl6hE6jVvMsy8eH3S927sXMmeyUVCoU1WAwICcnR5ESq97efAmjycuoVnNcbV7eyJZYBdxfIlCj0aCystKuNzwkhDX+R4qEBB7C5GCrNOVQ3n//fQDA888/j0cffRS33XYbpk+fLimxkohw7NgxeQ1zNyO4HO6QlpYWmjBhAn3zm9+kCxcuUGlpKR05coSKior6tnnzzTcpMDCQduzYQZmZmfTwww9TdHQ0tQ8IAPr+979PsbGxdPjwYcrIyKDbbruNZs2aJSuWyxzD2NLSQocPH6aSkhLlLrS4mIPOLALtnEMUiUpKiDo6nI9rzMvLoxMnTkiPz+zuJtq6lai01LkTDiMFBUSnThF1dnZSamoqtZrjzkSRKCODgx57ekasfZ2dHMNWXe3kAVpaiHp6qONiDv31LyLFxXX3hQ8KAtH69UQHDvSFPbqEVkv06adOtHX3biJfX27UvHlEA2IOiYgbZzQSffUVxzg6oKamhvbt20d6CQ98cTFRVpbM9jqLKBJ98QXRlStOBWp1dnLXYDAQGQwGOnDgAFVUVCjfTkccOUK0YwcHBVuhrk65kOasrCw6deqUvNhwO7S1KRIeqyg7d3bRp58eGBVxbeXl7jmuKIp0+vRpypLwsskIm1UcrZbjyOVgLadhKC0tLZLjHG8URvWV/OxnP6Nly5bZ/F4URYqKiqI333yz7zOdTkfBwcH0/vvvExEnbXh6etLmzZv7tqmuriaVSkUHDhyQ3BbzA5KRkUHHjh1TrDPro7WVE0kU7NnKyjiGXcJ4O4ju7m5KTU2l5uZmeTuKIg/yJ06wATnK+fvfs+nAgUzLL0wmos8/J7p2bcSisQ0GHp/T0508gMlEdPYstb7/Pu3bup327NHT+vVsMJqNx6lTiT76yPW29vRwp9vQIHPH8+eJwsO5MfHxRPn5lts0NhJ99pmlQTkAo9FIhw4dolKJkxWjkW24YbO7eu8FlZY6NRHJyeHkhNzcXEpLS1O+75FKfT1fQ02NVevwwAHXjUbzJK5NbqflgAMHRk/yiyiK9OWX6XT4sJuyhWSSkeGehMnq6mrav3+/pEncpk3KTGCdwWTi/kAOUgzGdevWEQB6/fXXqbq6mgw3QJKoIwSi0ZuxMH36dKxduxZVVVVIS0tDbGwsnn32WXz3u98FwDpkiYmJyMjIwJw5c/r2u/feexESEoJPPvkEx44dw+rVq9HS0jJIqHjWrFm477778Nprr1k9d09PD3oGRAO3t7dj/Pjx2LJlC2699VaEh4e75ZqF48cBQQAtX85LdC7S0gLk5QlYsoQk1w692lsiYfbs2c6dtKYGwpEjoLVrWcDPDZyqOIVb4251ev+mpiacO3cFHR2rMH++GhZlo0URwunToKQkjk0b5hij5u5m1HfVo7UgGQsWkFO1X0VRxPk9exA7dSomCAIweTKKigW8/74KH3+sQns7H3DXLiPWr3etGzAagR07BMybR6jzOo2l45dKSwYrLITH3XdDKCkBhYXB9OWXoEWLBm/T20UJe/eCFi60WL8qKipCXV0dli6VeE5woH99PavK2NrldMVpLItbJul4UhH27wc8Pfn9llExSaPR4vjx01ixYr5VwfUzlWewdPxSJZtqm4ICdJw9jpLkGMxacHffx1evAiYTPwPOkp6eDm9vb8yYMcOlJg79PY4cETBtGiE21qXDOkVBcwFCfEIw1p+f2/r6ely/fh3x8SsxaZIy5UcB4GL1RcyJmgNPtbxjpqUJmDRJ2d/GZDLh5MmTmDRpkiTB9QMHBCxcSHBCPUkR9u8XwPadNNrb2xEeHg6NRtMnQj4UKX3RKDa/rOL+gpUuUFJSgvfeew8/+clP8POf/xwXL17Ej3/8Y3h7e+Opp55CXW9q09AYkMjISJT3CtLV1dXBy8vLopONjIzs298av/3tb60akyaTCRcvXnT10uwSXFICMTcXHQrK8P/xj3z9kye3SjY8alyISVQFBwPnzsG/rg4d48YpanB1GDuQ2piKjmjXxLvUaiAo6CCys1VIS/NDdHSnZTMvXkTsqVNonToV3QokjEjlouYiPAVPzAkqw/btXsjNDcPChXVQq2V2MB4eaCsqQk1+PvwaG1E/bx5WrfLDkiUe+Oc/Z+DYsTj8/OcaAKdlG6RD8fMTsGnTWGRE/gHt46XHH3r/6ldY9PrrGFNUBKxejSvPP4/aW26xvJSeHkT86U/QJCai28pEZL/M7AaTCfjb32KxeHEtvLwGxxmKJOLD6g/RPk5mNLwE/MvLIXz0EbQRETB5e0uaCej1Kpw5Ewu1+rzFMyCSiI9qPoImdvgC9Qp9OtF4+QCac1ogenlBHxwMUQSKikJQX9/m8vErXSwj86+qf0Ezrv/30Gi8UFTkjbi44Rf829e0D7MCZiHWZ7BF9s9/5uDWW6sV6xo/rP4Q34z5JlSCvANWVwcgK0uF+Hjln/XMzExkSpB/6Oz0wKlTJnh6jowBZTCosG+f9FjjbgeB0APzKH7wgx+grq6u76++vh7d3d345je/6WxzR4xRbTCKooj58+fjjTfeAADMmTMH2dnZeO+99/DUU0/1bTfUkicih9a9o21eeeUV/MQsA4J+D+OyZcsUyTSVgrB/P2jWLBY4dpF164CzZwWoVMCSJdZfSiLC2bNnMXbsWGWC6omAq1ch5OeDNmzgMiwKsL9oPx7H41g3aZ1T+5eXl6O0tBS33nprX1D99evsib3nHrKsxLBmDXtM585ljZZh4NLJS/jBgh8g1Jen3EVFwPXrAu6+W1qHqtfrcfz4ccydO5cDtNev51RELy9OpZ84EUuWCJgyhZCbGwa1ej3uvNP1znrhbfX43bEFSEi4S14g+T33QHz8cXjs34+Fb78N03PPQXzjDc5WGsiDDwJEEA4dAk2dimsaDUwmE+bOnetUe+fOBU6fno177x3sgS9tK8WKghW4a+FdTh1XCkJ6OlBSAjLXBLRBS0sLLl68iCeemIq2tplYsWLwfarQVGBZ3jLctch9bR3KtpwuLAy6BUsCpkE4dgzw9gatXo2uLs6RSUyUdzxRFHH69GmMGzfOZYkZvUmPkydO4q7Vg3+P2lp2TruYRyObi2kX8fDihxHkHYSSkhJUVVVh2bJl8PdXIyFhFmRUPLTL8SPHseH2DbL3Mzu5lKpIqNPpcOLECSxcuFCy4HpjI3dPcpNPlGLbNgF33UUW3Y0t2h0k5N13330AgPz8fEyxWL66gRnJ9XBHxMXF0be//e1Bn/3tb3+jmJgYIiIqLi7uiyscyD333ENPPfUUEREdPXq0L1llIDNnzqRf/epXktsiJWZBcbq7iTZvVjSRxGQiunjRelxjeXk5HTx40CVhZ6s0NPAJZQe5WcdgMlCP0bmklJ6eHtq3bx/V1tZafFddzWFaNsNIRZFo2zZWgnYznT2WSrIGAydsSAktvXr1Kp0/f97yC1HkeLovviDSaOjFFzmEcPp0ZZIWTKKJ2ro7aPt2JxJLDAail17qD7JcupSoqsr6tlottW/eTCf+/Gfq6upyqc1tbayBPjDGzWAyUEdPh0vHlURzM1FmJjfCyg0QRZGOHz9O+b3xnd3dls+nwWSgdp0dlW830NHTMfgdbGsjqq0l48XL9PGHJtli0MXFxXT48GGbws5yMIkmau62fEnOnuUw8eGmsauRRFEknU5He/bsoYbefrC7W9ncusauRqf3HRDi7zLp6el06dIlWfs0N7PI+kixf7+0ftVMSUmJXXsA/2HJLmZGtazO0qVLkT9E46+goKCvdmp8fDyioqJw+PDhvu/1ej3S0tJwS++S1rx58+Dp6Tlom9raWmRlZfVtM2rx9WVxxXHjgLNnFZHeMUtAfvUVl5E1o6SUhQUREazDcvEiS9e4oL8hkoj/Pfm/8FJLj/8aSH6+bSmLmBgOV9yxw4bGoCCwq/bUKbdqUVS1V2Fr9laLzz08uH179gy+d0PRaDSoqKiwLmUhCFxH+I47AIMB//N0DUJDCTk5XLXPVf6V8S8YqQf33++EhI2HB/DWW1zPMSgIOHOGXYDHj1tsSt7euBIdjbGrVsHvwgUWwncyHig4mD3MA6Wo/n3t3+gxDkP5y9BQFuVrbmbtxiHF4SsqKmAwGJDY67JTq1nffGB5xp25O9Gma3N/Wwfwz8v/HPwOBgcDY8dCDRNmVu9HaaH0GuFmPcIZM2Yookd4te4qshuyLT6fMYM1I4ebTZmbIAgCcnNzERER0SfJ4uPDslRKYDAZsD1nu9P7i6IyskjmEqtyReVDQtxSVl4y06Zx9yMFIrKQ7hvIrl27AACPPfaYEk0bVYxqg/GFF17A+fPn8cYbb6CoqAibNm3CP/7xD/zXf/0XAF6Kfv755/HGG29g165dyMrKwje/+U34+fn13azg4GB8+9vfxk9/+lMcPXoUV65cwRNPPIEZM2bg9ttvH8nLk4Yg8JM8dizwxReKCIqFhnId48BAloAkAgoLCxEQEIAYBZa/rSIIvCwaHQ20tjpdXiCvKa8veFwuHR0dKCsrs1udR6ViGz0/38ZP7e8PfO1rvDS9dy/Q1uZUW+xxqfoSJoRYj18NCmJt6J4e6z8h9Qo7JyQk2NQjBACEhQFhYQhpr8Crd7M69C9/6XpN16yGLIT6hkKl4ludlsbJELK47z4uAjxrFtDQwGVafvvbQXqGVVVV0Gq1mDxlCnDrrbzdhQtOt3vRIl4Wq67mf1+vv44xvpbJJW4jIYF1D3t6+MFrb++rzjNwEuflBcyfD5w82b/r5ZrLiPCXpgunFOWacssPVSpgwQLMfmkNIkMNMO38SpKWZl5eHsaMGaOYHmF+U77VCWVAALBmjSKnkIxIIsraytDW1oaqqqpBhpQg8K3W610/T7O2GRqd82PDrFmut4N6tVAnTZokuzqPSgXcNXwRFRYEBwM6nbRty8vLYbRj3T7wwAMAgPfee0+Jpo0qRrXBuGDBAuzatQtffPEFUlJS8Jvf/AbvvvsuHn/88b5tXnrpJTz//PN49tlnMX/+fFRXV+PQoUODKrD8v//3/3Dffffh61//OpYuXQo/Pz+kpqYq70lzJ5MmcTUPL6/+Uc0FzCLf5eXAli06FBSUYsaMGfLKHDpDcjJbrNu3OzXd1xq0WJ2wWvZ+ZkNqwoQJNrPazHh4ABs28G+0Z48Vx64g9Hvq9uxR3NuoElSYG207Js/bmx+H06ctBdpra2vR0dEhPW5m8WJ8/40JmJxgREMD8NabzscxiiRidtTsQc/QnXeyN7SxUebBJk0Czp0Dnn6aDcWf/5xFvltbYTQa+7zhHh4efMNWrmSr7/x5NhxlimULAt/z0FAO8UwKT5KdPOAyXl7A9OnsatmzB5WbNyMwIADR0dGDNps+nY1Gs0coLjgOPh5DA2/dR4+xB9Mjptv8XvDyREGlL64HLuX3o63Npvd3YIlVpVAJKsQFx1n9rrnZiQmMC3TqOzEtfFrfJG5odZ7p05URFe82dGNymPNx5xMmuD5ZdLU6z7Ztyom/y6W9nYscOMI8iZs+3frzP9CQdDTO3JCM7Ir4jcOIxDBaw2Qi2ruX6PBhxYSrtm+/QgcPZikmvCsJo5HFgJuaZAmkZdRkON7ICrW1tbR3717qkRk0VFjIWpY2fxuzwPSRI/Ir2FtBFEXKaZCmzyaKLHlZUMD/NusRlpWVyT7vzp0cNujjaaDKzFbZ+xNxDFWr1nJfUeSfJtOK5KUk/vUvIm/vPr3Gku3bbesRiiKLVx454tSpurqI3vuwnSqblBHRd5aO9nY6/I9/UFt1NavwD0GvZ3lKnV7vUuyaM3T2dFqNsR2I0Uj08cdEJqPI92TzZqLs7EHvuiiKdObMGbp+/bqi7bMWv2imp4clVocLnUFHRWVFNvUITSaWGnWVbn2303HdRNwN79/v/PkNBgPt37+fqmzFHEtg/35ux0jQ1ka0Z4/j7TIzM+nMmTPU1tZm1R7YuHEjAaC33nrL6v56vb4vvnHMmDH00EMP0T/+8Q/JGrIjzaj2MN7ECmbffVQUl1RzcR2hsbERPj7VWL58ErZtA0pKFGqnI9RqYPVqdnN+8YWk6u/tPe3YlrNN9qlEUURWVhamTZsGLxnadwA7uh58EOjqsuHYVan4WqZP5+BHF72NFZoK7C3cK2lbQQBWrOCY1GPHgPz8Ynh6eiIuzrp3xR733ccruzqDB/7nVQ92s8mMCfwy70uUt1kuVQoClyguLXXSu/Ptb3MMb3w8UFqKuEcfxbyMDFj1hQsClxZcvZo92IcOyXpH/PyAgOQ0bDpxyYmGKkd2Tg4iFi5EcFgYx0fs2jXoOjw92Vm/7XgBdubuHNa2HSo+hIvV9qXF1Gp2CAuqXm/8gw+ye6+kpO866urqXC+xaoVfp/3a5ndeXvy+DFf1z+Olx7Hp/CabJVYFAThwwPXzpBakIr0m3en9Q0OdKEc6gIKCAvj7+7sU0jRt2vBnsJsJDOS+1B4dHR0oLS21G9K0ceNGAMCLL75o9ftvfOMbff/d2tqKbdu24Xvf+x7i4+MtakkvXrwYv/zlL3Hy5EnolYhbUICbBuONSkoKR01v3gyUlTl1CFEUkZmZialTp8LHxxtf+xoH/7vSccjGPLKkpXFsox0uVF3AothFdrexRklJCVQqVV+ylFz8/HgZ+PRpLg9sleho4LHHODbw/HmnYzTTa9IxP2a+rH1UKmDsWB0+/LALkyc7F1YgCMAf/sD//emuAGQcbgY2beJBXiK5jbmYFjHN5vE39Cp+OJWbMncucPkyWm+9FWqDAf4vvMDL1fayalJSODbw8GFZJ60x5ODR26fj+nWn82hcoqGhAc3NzUhKSuIH78472ZoHgEuX+tbtZs0CjEGFSBzj3BKgs5S2lSJhjGPpm+BgYOfO3t/Qw4OvITEROHUKpq++Qm56ulOTOHuIJDoMJZgzR5GoHklcL76OKP8om+LVgsC5ja7WN2/qbkKEn/NxrOYQc2fo6upCSUmJyyFNERGAVuv07i6hUlmG9wwlOzvbbkhTy4CB01ryFhHhiy++6PtvURRRWFiIv/3tb7j//vsHhdEBwIULF/D6669jxYoV8Pb2hiAIeP3112VembLcNBhvZLy8OHvl+nWnepzy8nKIotine+bpyZ6mwEDO5xi2SY2/P2eaBAYCu3fbvJYl45fgjsQ7ZB26p6cH+fn5Lmdg+vgADz3Engm93oYh4eHB9yQqig15CV7Todw64VanjOKenmysWSMgIiJMSp6BVRYsYJuXCHjxn1NBd63n2UNrqySXzPfmfc9u9rogALNnc4ihM57GJpMJZ158EYZf/5p7+E8+4TjSoiLbO02axCNheTlbL52dDs9z56Q7MS4oFu3tLuXROMXASZy3t3f/F+Hh/IJ6eXE2dSsL8C+KT0HFxTnDatgui1uG2CDHZUEEgedReXlDvli9GhWhoQhoaMCE4GBFA9eMohGPpDxidxsPD+DECcVOaROtVgvvdm/cPu92u4bUypWue9bmRs9FTKBrCYtFRQ7n7FbJzs5GbGwsQkJCXDq/Xg9cueLSIVyiocH2d/X19WhpaeFJnA2+853vAAD27dtn9ftf/epXANCn7ywIAiZNmoQf/OAH2LlzJ9rb20FcrhlEhI6ODuzduxcvvPBCX4yv09XXFOKmwXij4+XFyTBEvCQqcYqm1+uRm5tr1ZAyL3dt3iw9c8xlzNngCxZw9POQSHAiwvvp78PP00/WYYdKWbiCSsVencpKztmx6UScOJFTmYOCeFlUol4EEWFn7k74esrLMDRLWSxbNgV6Pa9eOrsy/sYb7NQ6fhzYeyYEmDwZqKlhb6OdzJUKTQWqO6S5bRYtAioqrBgSdqDeDMyp06bB85e/ZHmmsWN5sjRvHl+0PSZOBG65hfczKz1awSSaUNhcCEEQsHQpv07DGYhfWloKgCXDLBAEfgDNk6tjx1BQk45pE8cM60Db1N0ED5U0DZL5VpzlOp0OOe3tSLj3XgiNjcBnn9k3+mVQ11mHYO9gu9uoVOzNsmcgKEFOTg58gn0wMWqi3e0CA103lPQmPfy9/B1vaAe1Wr7ntbGxEY2NjZg2zfrKghyCgpRJAHKW8HDr82JzSFNSUpJdb7hZTmfdOusFJczewXfeeQeCIGD16tV48803cfnyZYhWThwQEIC77roL77zzDjIzM0FE2LBBvjC7ktw0GGUyklpRdvH3BxYvZmNLgl6jIymLiRM57EgUhzGuEehf2vXz4zXg3tG6qKUInip5NVKtSVkoQWIi/9SnT9vZyMeHr0GtZmNLwuhU2laKboM8TzENkLLw8/NDQADbE1euOLecOmEC8Pzz/N///d+9j1JyMk9KGho4ndCKBZVekw7BelShBYIA3H03hyRKHaDMUhZ9VUBuu40vctkybtMDD3CD7b2gUVHsQm9utnlPSttK+wxfQeDTZGfLWpl3GrM3PCUlxb433McH8PAATZuGo2kfYuHYsmGrwas1aHGy/KTjDXvx8uIojfIBoa3mSVx4eDgwZQrLCYki/8iy0+kHk16TjrpOx579VavYaHQX5klcpiHT4TKtl5fr9vKuXAcTJgnExsqLpDEbUhzS5HqW/khL66xcab3PLC0thSAImDhxos19zeUPbWX7f/DBBxafHTt2DK+88grmz58PtVo9KH5x8uTJePbZZ7Fz5060OuP2dRM3DUaZ7NihiH62e4iNBR5/nDM0Ll1yWcrC35+9jVlZrFU9bMtenp78N2YMJ8R0dqJZ24zb4m+TfAgaoEc4VMpCCcaP57yKixcHD4YWTJvGlreXF1vedpZ2aztqcct4eWLyVVVV0Ol0g6QsfH25483LYwecXF55hWfbeXnAP//Z+2FQEBuO9fW8JDrEhVnXWYdZUbMkn0MQ+BZfvOhYXcksZZGSkjJYCismhrN9fvpT/vfvf8+WgCP3ang4W6znz/PLPMAALm8rR3LE4AnGxImsDuNkWKpk8vLyEBoaKlmPsDXEGxFzlkEVNw4x+cex70P5IRByqdBUYEKwvFjgoCCeXBHxJK66unrwJM7Liw1HDw/uaPbvdzorpbq9GuOCxjnczsuL+3J39GnmSdzkyZNZ9kkCUVEjF79nJiICkJN/VF5eDpPJ5HIpx4FcuTJyTpn0dMuCCD09PcjLy3M4iTOXAty503oCmnm5WqfT9S05NzY2YsuWLfjud79rYYwWFRXhvffew4MPPojQ0FBF43xdYiRSs29EzLI6VVUa6ujgMnKjFlEkOn2aaMcOC+kdZ6QsRJEoJ4clKWyWzXMXGg1RTw8VXtgnS36nqqrKppSFkvT0EG3dKrEM3tWrRJ9+alM7or6zXta5zVIWlZWVVr83mVgq4uJFWYclIqK//IXXbcPDiVpbh3zZ2cnX0tHRpzfUpXeuPJ/JxHIa9m5TZmYmnT592rqMjpnt24kCA7nRkZGsNySF7m7Wf+nVJjKJ1qWqKiqI6uqkHdIZNBoN7d69mzo65JUj7GuvVkuH37hIBTuUlagZiiiKZDDJ1986cYKopUWkkydPUk6OA9mohgai9nai8+dJbo1BrUFr8x4O5fhxovJyWYeXxMASq21aKzVYrWAyEWm1zp/TnpSQHD77TFo3a6/EqiscPKhYBVnZZGVxtzYQWyVWh8rswU4pwIMHDxIAmjFjhuS2GAwGOn/+PP3mN7+hFStW0Pbt26VfiBu56WGUSWAgrzKePOmc92ZYEARg6VL2sXd1sVeol/r6etlSFoLAjjKNhuMam5rc0GZbBAWhm/T4R9a/OU5NgpvHZDIhOzvbppSFknh5ceGXCRMcOhA5/uzuu9mjVVMzyL0hkojXT8rLgDNLWcTGWk9AMC/xTJnCTjc53pTvfY+9DU1NwFNPDZn1+/vztfSWs2spvI63Tr8lq+0D23jnnRzTaE041yxl4TAD88EH2UUwYwY/76tXA++84/iifX15SbS8HGhvx4v7XwBZ2Wf8eHaA2Q1DcBLq9UjFx8fbr84zhM1Zm5HV0Oue9fHBihcXwDQthT2np065xVXzybVPUN0uP8V4xQqgoqIW3d3dmDzZgcB0RASXZfH25vhGCYlKZv54/o+SBddnzlQ+PtVcYjUlJQX13fXYX7Rf0n7d3exYdYbGrkYcKFJAmwfsDZaSNGevxKorxMQMY9z8EGJjB4cp2C2xOgCzV/GJJ56w+v3atWsB8LK1ecl59uzZ+O///m8cOnQIOisX7OHhgUWLFuEXv/gFTpw4gQcffNDJq1KWmwajE5hLPJtMvKI1XJpesgkN5RH5+HEgIwMmo9FpPUKAX6YHHuBxeTizMtPrMjB/0f2cLQE4zD4uKiqCt7e3TSkLpREEHt86OzmE1G6H11tzF7W1vNzeW1qwtLUU8SFWEh1sIFXKQhD4lHV1wJdfSh8gPT2BTz/lMTs1lWM2r10bstGECcDDDyOz9Dxmjklyac12wgTOnB4ay+VIymIQU6awsfTEE3yhP/0pYCV2yAIvL+D222Hy8wUKCyFcumT1pQ4N5SxSKRUh5FBbW4v29nbZeoR5TXkYH9T/jHt6AhMmCjhjXMThHGlpindOeU15iAyQbyQYjUbs3l2LsLAUacu05pT6Rx/lWOCvvnIYB0xEqO2Unu0VGmoRkeAyBQUFCOitzlPdXg2RpP3+AQE8t3emX63vqpcd+2yL+fMd11Rub293WGLVWaZPd29sqT0CAvoFOsyTOIclVoE+Y+6vf/2rxXfXbXiVrl27ht///vdYu3at7DKKI8lNg9FJVKp+Pa+tW0c+/sQm/v6csevpidL8fHiIotN6hAB7WO+8EygsZDt0OAzH6RHTsTZxLU8BzYJZJ05YHQy1Wi0KCwuHp8zhEGbOZMduc7ME5868ecDatTydb2lBoFcAHpwufRYpV8pizhzujCsqJJ8CCxYAW7awtvrlyzyY/PKXQ+xCHx+MnXMrlgb1ptU7Gb3v4cGTEW/v/hhhKVIWFvj5Af/+N9ArYYEf/5izViTQbdJhw90/5SWE+noLeSdBANat47Yq9dybveHTpk2T7Q2fGjbVot61ry/Q0CigNiyFvaxFRTyLUShwflr4NKfKEBYVFWHuXB3KymRKv3h58Tu/ciVw5gxrztr48fUmPWZHzZZ1+OZmoLhYXpNs0dXVNcgbTiAkjkmUvP/Spc7Z9ybRJEkXUwrBwfYT0YgI2dnZmDhxoltK33V2smzqSKBSceg/wJO4zs5OhyVWHZUCnDWL47qLi4sHSeZotVocPXoUr7zyCr788kvFrsHtjNxq+I2FvdKA1dVEBw6MQKNkoNVq6fCnn5LmT39SLEgkI4OrFLoTURTpvUvvWX5x/TrXcRtSji89PZ3S09Pd2ygHiCLRpk1Ekqs9XbhA2//5ExIllp1saGigPXv2kNaJoCeTiWjbNg4/lEptLdEDD5i1aIimTyc6d67/+4NFB/k/enqILlzg/+9yLqaRiMMRS0tNdOTIESouLnbuICYT0Zo13ODkZI5VdEBBUwE1dQ2IL92zhwMshwTuiiLRli3KxPPm5+fT8ePH7cdnWsEkmmyWkOzoILp2bcAHjY3cQRmN9oNFHWA0GamkxbJMoSO6urooNTWVmpubqaNDViiyJaLInc7ZsxbxjR09HZJjBs1oNERffulCewZw/vx5unLlSt+/W7WtsuI929qIiorkn7ezp5P0RmVitfV6ruJoi9raWtq3b5/sEqtSEcXhLd04lM8/l1Zi1WwP/OxnPyMA9Pbbb1tsU1VVZTe28UbkpodRAWJi2Fl05Yo8bbnhJDc3F0FTpiDo6ae5XIkCS1Vz5vB15+a6T9Ossr0SGp0Vca4ZM9jVs2sXzCU5zFIWtgrDDxfmSmiXL0vTFRMXzEdaqAZCXR3Q0WHXfWWWspgyZYpTUhYqFceTyZDsRFQUb799OxAZCeTksKThCy8Abe2G/vgpLy9g4UJ2E2zfzunPTrji7r4b2LGjETqdh10pC7uoVOxpjIxkD+MLLzjcZVfeLmiNA36U9et5mbu6mkMHeq9FEHiJfs8e1zyNWq0WBQUFTi3tVbVX2YyPCwjgAjc5Ob0fhIfzi9rWxnJCOTlONby6oxq78uTLt+Tk5CAmJgahoaEgAmzoGkvD7Ob19+cYCZ2u71rOVp7Fmcozsg4XFMQViFz1GDc0NKCpqWmQHuHfLv0NLVrpZbO8vYGMDPnn/vT6pyhuVcZN6ulpe4leqh6hKwgCjysjxb33sjdcaonVt97i2O2fmpUaBjBv3jwAXLHlP4WbBqNc0m3X65w5k5c3LtovszrsDJKyCAhg6ZGSEo4LcrGci1oNxMWxHnLfAKUglZpKrJhoo8inlxdrNra1gTo7kXnlCiZPnjwqYkK8vHiJ1cuLl+7t2efV7dVIGj+XjZPcXLbOurqsbquElEVEBMfgiqI8Q//BB/keP/UUD7DvvgvMmEGgklWDNwwNZXmn7m5em5dZeoaoB5MnpyMpaTqam13ooiIjOWlCEIC//52XZu1Q3V6N2MAhCUQJCfyXl8fr873lv+LiWALSlXlXbm4uIiMjWY9QJkUtRZgUarskoL8/Gx+D8kXCwvi+tLXxur9MccnS1lJMDJkoa5/m5mbU1dX1GVKBgdymjg5ZhxmMIHBnO3cuB5R+8QVQW4uq9ipJkjpDyc6WHLVglYGG1MDqPE3dTQj3k35vfXz4eZJrvMo9jyMesVEox9USq1Lx8Bg56brTp3uQk1MsO6RpqOROR0cH6nuTTRcuXKhoG0eUkXZx3ij0LUm3trLcg53lw+5uovz8EZCgsYIo2pGyKCkhSk1V5DwmE8uO1NdbKPm4RF2HNC2T8sJCuv7ii2R0Zk3HzVy5wkuYBhurUwaTYfCSZG0tL7kPWXJWWsqiq4vo3/92Tlpk/36iuLj+ZervfMeK/A4Rr49+9hlr+0hcizRLWXR2suJNs6uKIa+8wo0MDuZn3gYOZY2am1l+p7Gx72YePCgj9GAALS0tlJqaSl1OLt03dTVRq7bV7jY1NZYyIX309LDs1v79kvVc6jrqqLGrUXIbRVGk48ePU35+vkW7FJVOaW8nysig7JIL1NlUI3v3ri6WxnKW4uJiOnLkCJmGdHynyk/JPpYoyl+yTytLI6NJnvyQPTIyiIZGgmi1WtqzZw81DIPmzZEj3AWOBH/5Sz4dOnTF4XZmewAAHbASj3bLLbcQANq1a5fyjRxBbnoY5aJScX3aXbssVT578fXl2eLmzcNTIcIe1dXV6Orqsi5lER/Py245OeyOcGFdRqVih05jIztibDjIZKE36fHWGcdyLQaDATlFRQj9wQ+gzs1lF8ZwpnE7YPZsdurq9daXqH957JeDl0KjonjJPTOT6x/3Jl8oLWXh58eexooK+T/XnXfyivOi+9nj/q9/sa737t1DNgwIYC+wWs0/gIPki4FSFv7+wP33s9PVJV57jWtOazScdWvFfVHWVoazlWftHyc0lEsltrayeHlJCVauZIktGcovfRmYiYmJ8POTV+rSTGpBKoK87ScdREfzK15TY+VLsws8KYm9wMXFDh+CM5VnHJ5zIBUVFTAYDEhMHJz4ER3NbVJMCD0wEJgzB8XNhfA/dMJmQpwt/PzkCVYPRK/X2xR21hnl68NUVHBOnxyICGqVi8WoBzBmjKX2fV5enmIlVh0RFtbnyB9WWlpaANQiIUHew2CWzTFjMBhw9iz3JWZB7/8UbhqMzhAWxgNPcDAbjVY62rg4Huy6uiySLYcNo9GInJwcJCcn25ayEAQeNBRKT0tOZuOoosJ1uYqrdVcxK9Jx9ZDCwkIEBAQgJj6eA5K8vHiZalgFI+0THs720pdfAlVV/Z+LJKLL0GW9RvaCBSwllJODjpYWt0hZeHvz0mp6uhXZHAcEBBAWfvffOHmyv+T0vffyktagCm+CwMuHAD9jJ09afThoQHUes5RFUBBnj544Ic8oG4SnJ8fuhYQAFy5wqvcQshqypNcpnzyZL5IIXppGPLCmE15e0p/3qqoqaLVax3qEdrhSe0WS3qCXF//kNts2cSKvXzc38/L9AM3WoaSVpUkuz2muzpOcnDy4Ok8v3t52o3uc4mjTJb4vCQkc23jtmuSZ0MSJnIAtF1slVrsN3ThWekz28WJi5CkZAMCXeV/KPo89oqLY6WHGXSVWbZGczNE5w4l5ErdyZRRiYx2HNGX1lqey9pt861vfAgD88Y9/VLaRo4CbBqOzeHnxaFZVxVaAlVjAoCA2HNPShrm0Xi9FRUXw8fHBuHEO4npUKmD5cpauKChwqHPoiMhIFvo+eJC19ZxlXNA4rJtsvZC7Gat6hF5ebDgeOeKClaE8ISGscFRa2v8s6Iw6PDjNjpxObCxo3jyUfvUVZhQXI8hNQuTz5nFuhxyjUWfUYcWEFbj1Vt7v5ZfZkbhlC5CSwq/FILy9gYceYk+dVmvhfq+trUVHR4dVKYvkZHa2Oi1fNXFivybjW28Bhw4N+rrH2GNREtAu3t5cVJwIAUe+ROXe60MPaRVJkzgHmESTZC1EHx+21fPz7WwkCJys9MADvMO1a1aDDP29/CVPVgoKChAYGIjo6Gir30+dqqwXyWAywEvtxdcSF8f3R6djI1hCwKS3t3zPnr0Sq/Wd9Yj0l78S4Okpz9spkqi4fJiPD/fhgPtLrFqDiCeIw0llZSV6enoQFJSIsw4WGgDgww8/BAB8+umngz4nInz22WcAgB//+MeKt3PEGcn18BsJe7I6VFrKgTk2pAZEkdVG7IRPKc5AKQtZdHayrsLlyy63wWQiOnqU4zmd4fPrjvUVhkpZDEIU+Z7s3ClPR2YYuHqVKC2N6ErNVWrpbrG7bW1tLe3du5d6iou55KPMcmlSEUUOZyspkRZHVdFWYSFjkp5OlJLSH9v45JM2YhtNJqKvviLat49Ip5MkZVFXx/FmtmJBJfHss9ywsWMHBUrJLcs4CFEkKi+ng9s1lJ9mP/gqJyeHTp48KVtGZyB6o15y+TszHR0yXoGaGo47HVA+VBRFyW3u6Oig1NRUamuzL3FjNCoQnzrweNbi+Lq7+Vnbu5djT+2wY4f08nzmEquZmZlWvzeJJqfLZTY0SP9dRFF02H84w9atHIM/XCVWBzLc0jp6vZ72799PVVVV1NVFJCXssLW11ao98OqrrxIA+vGPf+zwGN3d3XTkyBH6+c9/TosXL6YNGzY4eQXDx02DUSJ2DUaifvG93FybxxBF7pSU7CRtcenSJbrsrNEnipy9Ul3tWoHTAYc7cIBj06XS0NlAG49vtLtNfX097dmzh3SOsovq6og++cRuotJwI4qsZfjoBz+jzp5Om9uZTCY6fPgwlQycbVy7xr2aBG1BZzhzhu04R/bB26ffpvI2y4wZnY7o5ZeJVCq2zWJj7eiUlpQQNTVR4dmzkvQIGxt5PuO0zazVEs2cyQ27/XYik4lMoome3/+8kwfsx9jeRbode6hz2z6rmV/mSVxLi2sD/J78Pf3alxKpr2d9S8mIIlvnV64Q5eVRetUl2nR9k6Rdz58/T1dtZtv0YzDwa+mSLmMvF6ou0N4CO6KwLS38AxQV2TyhyST9uaqpqaF9+/bZNKSOFB+h9Grn9GDLyohOnpS2bXlbOe3M2enUeexx8iRRUZGBDh48SOXuKLjtgKNHh+9c2dnZfZM4USTKy3O8jy17AL2JMCaTiUwmE2VkZNDvf/97uuuuu8jHx6fve1t/o52bS9JKIQicQVBSYjPTRRC4+MLeve5NhhkqZSEbQeDydUS8vjgw6M7Jw82bx0uKg2Lb7JDfnI+lcUttfm+Wspg6deogKQurREaynIivLy9FuiglpASCACxcJCIsqhtFuf4241ytSlnMnMllV86fd0tdyltu4Tim3qqFNqlsrxxUms6Mtzfw299y3eXJk3mp+847gWeesbI6GB8Pra8vGo8dw7yyMggOQgjCw7mMtZTlX6uYs9H8/Dhk4e23UdZWhgkhrkuFqAP9YFizHjvql8HQrrVIJMvOzkZMTAzGjBlj5yiOcSSpY42xYzn/SPKrLAj8G02fDtTUoCztS0mSNQ0NDWhubpZUncfDgyMFnCwONIjytnKE+ITY3mDMGNaFSkjgoM7Tpy3KMRFx1S5HSKnOU9JaAl9P5+S9YmOl36fajlroTcr3Z7NnAx0dJcNaYnUgCxa4pRS6BUNDmgTB+dj7jz/+uO+/1Wo11Go15s6dixdffBH79u2zqBk98Lv29narNexHHSNtsTpiwoQJVi3xZ599lojYJf/qq69SdHQ0+fj40IoVKygrK2vQMXQ6Hf3whz+ksLAw8vPzo7vvvpsqKytltcOhh3EgBgO7Ejute44MBl4pvXRJmdn1QGxJWTiNVstTrvZ2lxur0/F15+Q4PpSj5ZySkhI6fPiwhZSFQ0pKWKtllHgbu/RdVFvLTWpqGvydTqdzLGWRk+M2b2NnJztlbC0Bl7XaXj4209VF9OMf9y9RT5xIdOLE4G3S09Pp0qVL7AmuqeGlYgcPSE8PUVWVC4/khx9yg9Rqaj22j4pbnKwoY4WiIqLDB00sv/Xpp0RdXdTY2EipqalOVecZypHiI7IqiJgxGPgddMY7e6o0jeqzLrCr2MY1mExcnadIhrSVTqfIIgYdLDpI1e3V0jYWRaKsLI4T0moHPUQ7djjuGgoKCujYsWN2veGbrm+i5m7nl5Kk/ibnKs/R2YqzTp/HFu3t3fT226flhzQpRFoakcwh2ikuXLhgEdK0aZPjfsWaPTDURpk4cSJ961vfos8++4yqqyU+m6OcUe9hvHTpEmpra/v+Dvdm8j700EMAgLfffhvvvPMO/vKXv+DSpUuIiorCHXfcgY4Broznn38eu3btwubNm3H69Gl0dnZiw4YNMClZdX4gHh6c2rl9u1V9GQ8PDm4WRfa6KenwsiVl4TQ+PhyFXVbG028X9HK8vfm6m5qA1FTbM0iRRLx85GWbx9Hr9cjNzcWMGTMspCwcEh/PmSe+vsC5c27x0EllZ+5OFLUUISqK8w2MxsE/b25uLsLDw+1LWUybxt7GtDTFs6r8/dmbt2OH5aFzGnNQoXGczunnB/zxj8DRo8CECfwYrVzJhVe0WgyuzhMZyZorlZUOs9y9vDib1Ong+G9+k+V+TCZ4P/FNRBkceKllkJgIrFylQvOkRcD994M8PVH5ySdImjjRqeo8Q/H28IaHSn7CjIcH57Q5U1jA3zsQY5MXcvqqucTNkIeirDfNOD4+XvJxzdVNrEr/yGBS6CTEBEqsUy0InEW1cCE/kJ9/3peavHixfQ+TTqdDQUGBQ2HnVfGrEOobKuMKBpOXJy1bOjkiGQtiFzh9HlsUFOSgp4er84wEYWHul6RrbGxEY2OjhTfc31/+MHf06NFB/yYilJaW4oMPPsDjjz+OmBiZNdRHKyNtscrlueeeo8TExL4g7KioKHrzzTf7vtfpdBQcHEzvv/8+ERG1tbWRp6cnbR5QILO6uppUKpVVwU1byPIwmjHX1M3IsDllqarizawmBsjEHLzrttlMXR1nNSiQdFFUZLUUNBERZdVn0d8u/s3mvteuXaOzZxWYVV+/zh4gOcGVCvKzw4PjF80xrleucFB1amoqddrwUlulqMgt3sauLg7EH3jYj658RJdr5MXIajQs8G22NqZMEWnjxixKT7cSNNTWRlRRwR5HO1kux4+7EBOs0RAlJhIBJD5wv5MHsY7JxJ6Khgai0tJSOvXpp2T66CMOJnSBdl07/fzIz53eXxQ5n0XuI//c/ucGf9DWxqrvvUlKOp2O9u7dS/VOXF9LCz/3rmDRPjmY++iODqKmJrKVQ0dElJGRQRcvXnR4SFdjYisriY4dc7zdH87+wWocsSs0NTVRamoqbd+uU7QIgxw6Olx+VexiMpno2LFjVFhYaPGdTue4+MRQewADPIt+fn7uaPKowDldhxFCr9fjs88+w09+8hMIgoCSkhLU1dVhzZo1fdt4e3tjxYoVOHv2LJ555hlcvnwZBoNh0DYxMTFISUnB2bNnLUQ3zfT09KBngLJse295M4PBAIPUukWCAHh4QGhrA3bsAK1fz9P8AYwdy7OZXbsELFpEcEGaDXl5efD390d4eLj0NsohNBQIDYVw5gyg1YJWrmRJHieIi2PVi23bBCxbRhjolPBWeWNN/Bqr19DR0YGysjLceuutrl9jUhJ7tFQqLgSenMz3bJiYGjoVXoLXoOtYv55D6yorczBx4gR4eXlJv864OEClgrB/P2jDBsWuxdOTvYGpqQIeeIDg7w+0drdicshkWffA1xf429+Au+8W8P3vq1FQIGDjxmS8+SZh9WoR998vYv16QlgY2DXp5wfk5UHYt4+fNSu1XZcuZUfktWscbicLX1/gs8+gWnoL1Dt3wVBQAMjwjjli7Vpg714RoaE5mLVyJUzh4TABEPbuBc2a1a9dIoP8xnzEB8e79OyvWyev/JrOqIOH4DH4nH5+wL33Qjh1ChQSgtycHISEhGDMmDGy2xYQAIwfzystzjyyRARRFJ3/TTw9WQdKo4Fw5AhKMhMQGzkDIeGD+2qzHuGKFSscnsul9oBjdUtKBBgM9lcNGjobEOwZrFh/T0S4fv06EhISkJioQk+PYeiQNSx4ebFgv4vhvjYpLy+H0WjE+PHjLX674t6y3PbG4oH7mDUZvby8oNfr8dhjjyne3tGCQHQjRFoyW7duxWOPPYaKigrExMTg7NmzWLp0Kaqrqwe5fL/3ve+hvLwcBw8exKZNm/D0008PMv4AYM2aNYiPj8ff//53q+fauHEjXnvtNYvPN23a5FR1Bp+WFugDA6HW6WAIDLT43mQSkJ0dhuTkJqhUw2q3OEVgWRk8dDq0Sghut4fBIODatQjMmtUIT09+FC9qLmJh8DDW3yTCmIIC+DY2on7+fJgUWDZ0RIexAwYyINTT+pKPXq/C9evhmDOnEWq1/FfUp6kJYwoK0DB3rmLX09bmheZmXyQktKHL1IUAjwCnj9XR4YmdOyfj7NkY1Nf367upVCKSk5txxx3lWL68mj/T6+Hd1gbRwwMGf3+IQ5KcRBE4dy4Gkya1ITJShko+Efxra7HixRfh2d2NY3/6EzqsGKWuIIpAe7s3QkL6+x+P7m5EXLuGjvHj0elII3UIBtEAE5ngo3btnmZmhiE6ugvh4Y6rkZjIBI1RY/NZhcmEmHPnoA8KQvO0aSAntEJNJgGVlQGYOFF+kWmRRFTqKjHBV5kax825BrQJIZiPy2ibNAkk02IiIhR0F2Cqv5PlY3rRaLzg72+Ah4ft9z+zIxMpAcqK+ZupqgqATqfGpElWylMNA2lpsVixonrYz1tf74vWVh8kJdmuStXd3Y3HHnsMGo0GwcHBAIAnn3wSn376KY4fP46VK1cOU2uHlxvKw/jBBx9g3bp1FvEAQ18WInL4Ajna5pVXXsFPfvKTvn+3t7dj/PjxWLNmDYKCpJfHGkRnJ4Tdu0Hx8Rx7NoS77+aSTGfPCtiwgeAo+Xcg6enp8PHxsSoi606E06dBY8awd85J7r2XRXxPnhRw6+3tOH3pNO667S6L7err63H9+nWsWLECXl5erjTbkvXrOYU7MJCFyydOVPb4Q9iasxXxgfFYOn5wJrjJZEJaWhpmzpyC6dPHIT1dwNe/Ts7N8mtrIZw9C1rXK36u0KDyaWolygO24herfur0MfLy8hAXV4svvpiArCwDvvpKha++UuH6dRUyMyOQmRkBP785+OUvxf5mV1dDOHYMNGWKxfO2di2LUzt0EtfXQzhyBKrjxyEcPw5hQHnPW9euVdTD2NnZiVOnTiEw8BbExfli0Kv5ta8BRBBOnACFhXEpSAn35+NrH+PeKfdijK9rrpcVK4AvvxSwbh05PO2lmksYrx6P2ZGzLb4jIly4cAHeTzyB2R4eXP1KFDnNXubz9vnnAlavltfvAUCFpgIRnRFYFLtI3o42oHWAyUjwKIyAkJ4OWrcONb2Va1asWOFQcL2puwmRbZGYHzPfpXacOycgMpKQkGB7G/9yf6yYsMKl85gxGAxIS0tDSkoKoqKi0NYGnDkj4K67Rsan1N4uYN26WYo7T3JyctDZ2YkFCxZYtQE0GqCoSMC8ebav27ziWDughuLevXsBAMuXL1e2waOJkVsNl0dZWRmpVCr68ssv+z4rLi4mAJSRkTFo23vuuYeeeuopIiI6evQoAbDQPps5cyb96le/knx+p2IYrWE0stCdwWAzFrC8nGjbNukZoPX19bR3717HeoTuwGgkOnSIMw5dpKSE6Ff/Ok3bsy0DmoxGIx0+fJhKS0tdPo9dzGrjO3e6TeeQiOjlwy9TR4+lknJeXh6dOHGiLwNTo+F4M5eSFRsbWYlXoVjNLVf20E/fO0DOygl2dnZSamoqtVoJ3C0uJnrxxf44x/nzif75zwGxrkYjxzbW1ZG1BuzebfVjJi+PyNe3/+AAGT3U1L10EdFf/+rcxdjh3LlzdO3aNTIaib74gsiqZJ+5Pzh3TtIL//z+52WLdtuirEyaCPo/0v9BWfVZVr+zqkd44QLHN8qMpc7O5j+5HCo6RHvy98jf0Q6pqb3PkdFIBp2O0l97jaoliiNeqLogqeiAI6qriY4csb+NEvqhZrKysujUqVN9fY8oOnc/lMId8ZMajYZ2797tcBx3oDnfZw9ERUURADp37twNo6XoCqM+S9rMRx99hLFjx2L9+vV9n8XHxyMqKqovcxrgOMe0tDTccsstAIB58+bB09Nz0Da1tbXIysrq22ZYUatZ6K6pifXgrJStiotjybDiYgclvSBTj9AdqNXAHXdwpu6FC3Zr0ToiPh74n6eWYFHwfSgsHPxdSUkJ1Gr1YD1Cd6BScTHsBQs4yEuqcKRMfrDgBwjwGrykq9VqUVhYOCgDMyiILZs9ezh52CnCw7n04969ioibzYhNwI8fXAB/f+fKu2VnZyM2NhYhISEW3yUkAL/7HfCnP3EcU3o68N3vcqjps88C9U1qDnjz8gIOHADOnBm0//LlwO7dNuq3+/tz1r+Zu+7CnrMfw/vUWT64gtTX16OlpQVJSUlQqzkxv6nJSgauuT9YvBi4fJmvSWd7mTgxNFFSDWkpTJjAyfVDonUs0Bq1VnUqTSYTsrKyMH369MF6hOYyg2o1iyz2emMcMX06931yhQsauxulZ0hLZNo0IDsbgFqNotJSdC9ZgmidDrh+3aFQX0NXA8b6j3W5DVFRrIdoC4PJ4FS2vDU6OztRWlo6qO8RBL6FIyUkce0al1FVCuotczhx4kSHq4S9zkKH1PWW0V28eLGrzbsxGGmLVQomk4ni4uLoZz/7mcV3b775JgUHB9POnTspMzOTHn30UYqOjqb2Ad6U73//+zRu3Dg6cuQIZWRk0KpVq2jWrFlklJHtq5iHcSCNjVwezYZnwWgk2rPHvup/cXExHTlyRL4eoTvo6GBXSpZ1b4QjRFGkFw68QAYD/yzm69ZqtbRnzx5qdFDaS3FMJr4B+/bZcA85R2lrqdWqFOnp6ZSebr06hE5HdPasArqd7e1EW7Y4nkLbITU/lYjYASvXkdTQ0EB79uyRpEfY0ED09ttEkyb1OwWXLRuwgSjyyZua2OvYS2srKw9YrdRZVUV05519B+xcOJuooED6BUjArEdYXDxY2zEnx07FGzMlJezhNhgsbrbOoFO8DFxREdHhw/a36dZb97Tn5+c7rs5TV8fp4ufPS2rPuXPOebVcKbVoDZOJS5parc5z5gx3UDbGAoPJQHqjMv3F6dP87ltto2iyKM3pLLZKrB465N5sZXvk5xNJSEiXTG1tLe3bt496bJTwHYij0oRmewAA7dixg7q6uggAJSUlKdTa0ckNYTAePHiQAFgVozYLd0dFRZG3tzctX77cor6nVqulH/7whxQaGkq+vr60YcMGqhgwwEjBLQajmaIito5sdHotLTwuDl0h7enpob1791JdXZ3ybXIWUeT1w8xMlquQQWlrKf3uzO/6DlNdzYP/+fNX6IICS95OU1jIxr1C935L1hZKK0sb9FlzczOlpqZSt4Nl8EuXeFB1icZGHsSdUEzu0nfRzw73T9y0Wi7TK2W8NktZFMg00EwmHri8vNjOO3NmyAbd3byGmJrat45VVcV2sdV5lCgS/fOfZAoM4AP6+hL96U+KrYEVFRXR0aNHrU7i9u6VGF5QWsr6NwPqXV+oukCfXvtUkTYO5MIF2/dPFEWrkjXd3d2UmppKTUPV5q0fhN+dwkIua2nnYdHp+LLl8MqRVxQ3GIk4POLYsQzrJVZra9kI7uiweI/eu/SeS6LdAzl3jn82axQ1F9FXeV+5fA57JVYzM7nu/UjQ1sbnVwKrJVbtYKeCJBFxf40BS9CbN28mAPTrX/9aieaOWm6IJek1a9aAiDBlyhSL7wRBwMaNG1FbWwudTtcXtDsQHx8f/PnPf0ZzczO6u7uRmpo6IuWObJKQwDIVe/ZY/dosLbB16+AV37y8PISGhiLSCXkOtyEIvPQXFgZs2waUl0veVSQR6yev7ztMTAxQXa3B5s1AZKTzSTUuM2kSX8/x48CxY87XjupFo9NgTtScvn8TETIzMzF58mT4+tovJzZvHi8hXrjgQgPCw4FHHuEfecsWWQq5eU15SI7ovxc+PsBddwFZWY6FhsvLy2EymZBgL4rfCioVRz08+ST/+/XXh2zg6wts2MDLut3dQGYmYmMI06dbrFgzggB85zs4v+8faFw8kzWDfvxjYM0al8tg9vT0IC8vDykpKVZF5detY9emQ2HgiROBe+4BcnI4jECrRXFLseySgFJYsICX/q3R2N1odXk1NzcXkZGRCAsLc3wCQeDYivh4vvDt222KzHt7872Wo93Rbeh2S5Zwa2srLl7stl5iNSoKWLSIQ4q2buUynb2NLmopQrB3sCJtSEiwvaJf21kLg8k1OR1zSFNSUpLVkKakJJfyGV0iOBiwV7NADnJDmtRqq9FifWzatAkA8Nvf/nbQvx999FHXGjrKuSEMxv94zMWW77yTY36sDFoxMZxY2dzMBkN7ezvKy8uHPStaMtHRwKOPsiFcWSnJyKrUVGJaRH/nTERoabmOxx7zRUOD/0gWZeF7dO+9PFDU19uNM7MHEeHepHsR6N0vrVRZWYmenh5MmuTYGBAEznCdN49jfJyWXxMEHp3XruXauhpp0hlzoubg8ZmPW3w+dSqX5+0t9mGBXq/vM6TUarVTTX7pJdYP3L8fOHjQygbh4Ww8ajTA5s1ImaTDLbfYbtO0eXfC+1ga8Je/8H5Hj3KdbikFhW2Ql5eH8PBwjB1rPYZNENj+MxdLsUtgIMfTdnYC27ZhdrMnpoe5JmNlq03NzdbndipBhXWT1g36rLW1FTU1NUiWa0mo1cCSJRzf2NrKZa6sFCwPCWEtUqksHqd8/BgRQaO5Bl/fePuTuOhonsmEh/PEIysLU0InQ61y7hkfytixtvUAVYIK44Ndc3yUlZWBiGxW51GrOax2pBhSQMUpdDod8vPzbU7irNHYaD8c/667WMXj2d7Y5927dwOApD78RuamwTia8PQExo3jknWXLll87e/PgeHp6YQPPqjEhAnxCAhwXgvP7Xh58RSxowPYtMluhoTepMdX+V8N+qy6uhrd3d2YMycRCxbwT3LihOIV8OQxfToPEvv3s/tKphVb1laGz65/1vdvg8GAnJwcJCcnyzKkPDzYntiyxUaCh1RCQjgjIyDA0oVthV8e/yVEsrxmLy/goYfY7tJqLffLz89HcHCwS97wKVOAH/2I//uFF2wYy2o1sGwZyySpVFCdO4OcTBMyMy033ZazDYE+wcB//RcLt8+fz4bMww8DTz0l2Yg2o9FoUFFR4dCQioxkB2JJicQDh4QATzyBou4qBKn9WPZJYVassN6ehq6GQUaJ2Rs+adIkp/RoAfA9Cg0Fbr0VOHSIJ18DJpReXmxH2vPwmOnSd2HJuCXOtcMOFRUVMJkMePbZSMd5YoLAqxBeXkB7OzZk9khrvERs5UGljE3B3Oi5Th934CTOliElCOzhHKk+V612PU8vLy8PERER9kusDiE42P7rHx4e7lqjblBuGoyjDR8fdiVOmMCDt5UUxoSEOvj4tECnc00YdtiYPp1FJtvb+S200vtcrbuK2VGz+/5tNBqRnZ2N6dOn9+meLVrEK1vnzw9Xw20gCMB997H3tKJCVo92ufYy5kXP6/t3QUEBAgICnKo1mpDAy3ddXS7WIzenQ65bB5w6ZdNoJCK097TbzMz09GSPyN69GJTl3t7ejrKyMqSkuC4w/KtfsTMnNxd47z07GwYFAZ6eEELH4M6mz1CV2zHoNhERshuy+9szdSpw9izwi1/wGvinn3Ih7VOnJLXLbEglJCRImsQtXMiGo51y2YOPLwg4qirje5WebicV3Dl8fblqztDFjb0Fe6Ez9lsrVVVV0Gq1ynhSIiKAr3+dZz+bNrHR3jsBW7KEbXdH5DfnI608zfW2DMDQq7mYnJyMykq19P7GwwOGRQvwblQZz+737nVJNcJMXJz1cI9/XP4H6judP35eXh7GjBnjcBI3aZLTCyou46r+tbk6j1xveGIiMGeO4+3+r3HTYByNCAKPvHo9S+8M8CiYpSzWrRuPhQs9cfgwUD38YvjyCQlht0pODvDllxY90PyY+Xg4+eG+fxcVFcHX1xfjhlTCmDuXQ9XOnHGb4o00BIF7lIkTgdRU4OJFSdPwlLEpmBfDBmNXVxdKSkpcMqQiI9lZs2WLAs9BYCDrOY0dy8uFQ3R8tEYt7px0p91DmG3pq1fZyUJEyM7OxoQJE5wXvB9ASEh/DOOrrzowuAQBmD4dqscewboH/VD8+Xk0lXUCADr1nZgaPmTC5ekJ/OY3wMmTHG9XXs6ut1decWiR19bWorOz02qcta2mCQKwb5+0+UZTdxPHEnp6crzm/Pn8vOXluRxTa0at5iXAgZ7b2s7aPskao9HY5w13JF4tCw8P4LHH+MR1dYBGg3Hj+Hdx9NtUt1crLqlTUFCAwMBAREdHY8IE2yEN1mjqbkJ4UBRPOpYt49ltQYFLLrrp0/kdH0qLtgWhvjaq7zhATkjTrFmKqHE5hcHAxSycYeAkzt/f3/EOg/Zl57cUqnpnWQPLD/+nctNgHM2MH8/rfM3NvM5HhJKSEnh6evYF7956KxtP5vqXo54lS3iwKy0dNDJtPLER3h4cdN3d3Y2ioiKbhpQgcCd26JCMZT13ct99/P9FRXaXqIkIWQ1ZffqLWVlZGD9+vFU9Qjmo1fyYnD6tgCfAbMmsW8cenwFCaHWddbhlvGPtUg8PdpIbjcC5c01obW1FkoslJAfyne9wqGFbGxuNDvH2BtRqxC6diL1vXENXfhXUKjW+N+971rdfupQt3qef5pHjzTd5lpKba3Vzk8mE7OxsTJs2bbAeoQP8/fmwV6863jbCPwIvL3u5/4OYGPZw63TAZ58BNTWSz2sLtZq9+Feu9H/2y+W/7NN9LCwshJ+fH2JjY10+l9WTL1zI15WRAWzdCk15G3rL9NpkYexCLIhZoFgzzHqE5r5HpeLfRKq95+/lj3um3sP/CA7muOfJkzmW5tAhp7zCgYHW9QjXJq6Fr6f9JDlrUK8eYXx8PAKtlKkdSlubi0l2LmAyycqbHERNTQ26urow2V5RaBt4eEjzcAPAli1bAOA/uoa0mZsG42jHz4/T1HJzod+6FQVZWYMMKR8fNhbi4jjGb6RmgrIYP56VcU+eBI4dQ1NH/SAx4pycHMTExCDU2rS6l4AATvSNjOTlzxGNaxQEHuwmT+ZlqIwMqw2q0FSgtJV7/oaGBjQ1NVnPwHQCHx9e3evqGjzgO42vL2fpTpzIGRpFRdictRlag5UARStwsryI/ftr4e09Q9FSjmo18Mc/8n+//z6sxidaI2BSFNb9egmaPKLw+dZfIjf3pO2Ng4KADz/kjN7QUP5R584F/vpXi3tbVFQET09PxDlRh3rKFK4K6CgscUvWFmQ3ZA/+UBBY2fmRR9iqyMiwmkQih6lT2XGu0wE9xh58kfUFAJ7EFRcXKxJW4JDbbgNuvx0zJrQj70yTXSMrrTzNKaPJFtnZ2Rg/fnxffWCAQ5YdFVAwU9NRA0/VkEmDIPA1TZnCauAdHbKz1crLLSeD1mKJpVBXVweNRoOpU6WFNIWHj9xqTni4c+GgA0Oa5EziBiJ1XvT5558DAO6//36nznMjcdNgvFGYOxcFAQGI12gQPkTKQhB4pSo4GPjiC8mFFUae1auBiAhoMtNxV28mZnNzM+rq6iQZUmo1e2k6OzlfY6TibAaxfj03JCfHwrDIb87H/Jj5bqvOIwhs2zQ0cAUPxQ66Zg1QXIy6imxEBURJ3rWiogTLlzchNDRWcYN+5UpePRdF4PnnpU8YxkapEBnrgQOthEm5jVy5wx4PPsgW6Zo1fF9/+EPWEepdJ7NWnUcugsBZ3/acT3lNeYgNsjGCeXuzwRgXxxkSLswYBIGX+Y8cASrbK/uMEnN1njFmjS93ExoKj4Q4PLReC+PWnVwFxwrnKs9ZGmhO0tDQgObmZgtvuK+vzdNbkFGbgRatjeS+iRNZw6i1lWM2bUwsbe06dGk2tSBVWqMG4Iw3XK3mlayRwN+fxUPkUlxcDG9vb5fk82bNkpbTeKX3fVMi5Ga0c9NgvEFobW1FGREmfv3rbA1Y6WymTGF7xdzp3xDMmIH2+BgsyGoFXbmCzOvXMWXKFId6hAOZM4fDhTSaUWA0qlRc6i05ma2AzMy++7Q6fjVWTlyJsrIyiKIoW49QCoLASjkJCextVESKyMsLWLsWL9/9NoSjRwddky3MUhazZ8/AnDkqnDgh3Usjld/9jm2lY8eAr75yvL0ZHx/gzin34eyYh4GUFF7Lz862fU0xMZwV/6c/8c4HDrBbcNcu5OTkICoqSpoeoQ28vDh5yd6y36TQSY7j1cLDOcN72jRe57YyaZFCdDSvVFTWd2PG2BloampCQ0ODYt5wOegixuOrgMfZYior47CAAdcU6B2oiMdTFEVkZmZancSp1ayFK2U1uaGrARH+DrJx4+KAJ55gI7+zk+NQHdynefN4NzNG0Qi1IF+6x9kSqxqNoonfsuhd8ZWMEpM4gMNPXXTY/8dx02C8ATAH7yYmJrKUxfLl/PZaUdsNDeVZ2alTHNs4oku1EhBJxEdXP4KwZg3qCwrgnZ+PxMRE2ceJjeVcjV27bIaaDT933MHehGvXQET4ycGfwGAwOJSyUILx4zkJZvt2F7QaB3C9/joKW4p4aa211bbScy9mPUKzlMXy5ezMczYeyRrx8cCLL/J///Snjmsim2nvaUfyNA9MmQKYSMWBhM3N9jOiVSrW9ElP52Xg5mbggQcQ8corSHZiKXooMTH8G1kLRRRJxPyY+dIOJAhs1Kak8KzRSRG9NWuAaTHjcMv4W5CZmYkpU6bAZ2Ad7mHC3x8QVAI0HmH8kjc2ckEArlKG11a+psh5SnuDBG3pEa5bx3FtjvjRwh8hLljC86BWcwiLtzcvCWza5NAiHWg4qQQVfrH8F47PMwCdToeCggKnDCmtVpEwWafw9pYX+pmdnY3o6OhBIU11dXUQZc6eQ0IcG4zUO8A6LTF1g3HTYLwBqK6uhlar7Q/eVak4e3P+fPaODJFuUKk4D8PTk5enR1Tw2gEFzQWYEjYFBpMJV4ODMeHuu6FOS3Oq6rwgcBxfWZn0gGW3olazFTB7NqoObEFMtwp5ubmSpCyUYMoUfkSkLqfZ41L1JQT7BPdf04IF/OxduGDxgJmlLAZmYKrVrNccFaXswPPyy+wRKylhO0IKuY25KG0txfjxnIdQXu3B13Trrbyce/y4bSs7ORk4fx700ksgQUDc4cPwXbKEtVNdRBDYWzpU/62usw678nbJO5hH7zWtXcvv0r591gUybeDnB/x897s4crLQqeo8SrJ8ee9/eHryP+6/H2hvR9XWf+H/HX/D5eP39PQgPz8fM2bMsDmJE0Vpz9dvT/92UDy2Q7y8+JoeeIAN/d27rUrxCAJvar6F5W3lOF52XPp5wNV5xo4d65SGYHS0XRldt5KcLD023xzSNH369L7PjEYjoqOjMX++xElXL1OncoEve1zu7Vz/LyS8ADcNxlGPOXjXqpSFWdrl+HGL9T5zHoaPD/D556N3iTo+JB5PzXqqX8oiJobXl7OyuJSJTMxygn5+7G0c8SXqXmjRIqyiydAcOTI8iQO9JCSwA+3ECddiW3tMPZgWPmRJculSNkxOn+5zZZszMK1JWajV/HfqlHJZ/QEBrLsNcD6KFPKb85EUznFqq1dzhEd7O/qTSKKjOYjPlnve2xuV//VfSH/7bVBcHFury5axSKQL7lyVip/doeUMS1pLkDhGvte976Dx8exx3LePr0niDNInuA1H9xowfbo8UXmlCQ/vr5AIoC9gu3b6eEQV1/OyrguzYnOJVVvVeQB+bv38HL9Dzd3Sy2wOwte33xFw/jw/U0Ouaf78/sertrMWepN08dXW1lZUV1fLr87TS2wsZ4uPBLGx0lYPbJVYfffddwEADz/8sI09rePl5TgZbWtvVaj/KwYjhrd09Y2LRqMhAKTRaIb1vDk5OXTy5EkS7VVCF0Wi7m6uEm+lgHx7O9GmTURarRsb6iS/P/N7am9vp9TUVGpraxv8pdFIdPo0UUODU8eurCT6+GOrP8mwc6L0BJ06fYquX7tGdOoUUVbWsJ6/uZl/i6Ym+fuKokj1nfX2N7p8mejoUaoqK6P9+/eTXq+3uanBQLRvH5HJJL8t1qirI/L0JAKIzp93vL3BZCCjydj3764ufkYsnpOSEqJt24iGPJd6vZ72799PVVVV/N0TT/DJAaL584kyM126HpOJqLa2/99NXU3U3N3s0jH7aGsj+uQTotJSh5t+euJT2ro1nXp67PQ9w0RGBtGVK4M/y2nIoZyGHP7BPv+c6OJF7jNkoNFoaPfu3dTR0eFw27o6Ikfd/z8v/1PW+e1y+DC/KJ2dRMTvTUEBf3Wu8hydr5TwsBO/vydPnqScnByXmrNpk0u7O019PdGhQ463Kysro4MHD5JxyDMAgADY7ZOs0d1NtHOn9e/M9kBoaCgBsDjnfyo3PYyjGMlSFoLAM9QxYyyEvgGOrX7kEdYePnp09CxRdxu6UddZh5ycHAspCwA8rZ85kxvtRGDiuHH91610woVc/p3+b3S0d2BqUhJrUTY0WLqS3EhoKCf8+vnJX1qqbK/EJ1c/sb/R3Lkwjh2Lus8/x3QHGZgeHuxJy8uTJ4psi8hILlsOAN//vmMn3xun3hhU69fPj0MSd+0a8m7Ex7PH5+RJ/qJXILuwsBD+/v5cnSc4mKvCfPEFBz2lp7P8zmuvOV1+RxB40cC8KnC45HCfdqfLBAdz3EZBAQeG2QgOq26qRnVNNdaunYxz54QRl+syh2QORBAETAiZwJ65Rx7hB6uqigPPJARvk8zqPJGR/LPZQm/SY/3k9Q6PI5nbb+cLLygA2tqgNvb0JUYlRyRLLgtoLrHqjB7hQHx9OZFuuAkNddxnFRUVYeLEifjOd74z6HMa8BzIldfx8XEcxdHS27CR9MAPJzcNxlFMdnY2YmJipEtZxMWxKKOnJweKDXhZBIGl5SIiWIJGoeIQLlHfWY8FYQusSln0ERjImZ/x8RxfJjNVz9ubDYKiopGrQ13VVgXqICQlJbEeoVrNySNLlrB4Zk7OsLQjIIAfjYMHB5fuc0RmfSZmRs50uF2xpyc6ly7FeJ2OtRsd9LaTJ3M1PiUSYd56iweWq1f5v23Rbei2qiUZE8OxUhaZyhERXNayrQ347DN0Z2ejpKTEMnHgkUc4jOLuu9li3biR1xAdJAdZQxBYuedkr0zk+arz8FIrp2MJHx/OavH25ipFx49bGLdHM45CH6BHUFAQxoxx6jIUxdOTIyAGxnd+dv0zmMTejkyl4vCcCRN4crl5s8MSIbW1tWhvb5dcnQfgEn2dnda/q9RUYkfuDsnHksT48XxdHR0Qtm6Bb1UhtFrgo6sfoaq9yuHu1kqsOsvMmSOj8+vhwbazPbS9fU1lZSU8PDxw8eJFAMBnn30GAHjhhRdkn1cQ+LW+ST83DcZRSlNTE+rr6wcF70rCz48jdSsqgB07LAbtmTO5slhHx8iXFDSJJoS2hTrWIzRnfsbGshuoqEjWedRqlhsaN45jYaRm0ypFd0M3Hhr/ECZOnDj4C/MgV1fHg/Yw4OHBc4rCQunhdlPDp2Jh7EK72wySspg6lR80cxygDSvd05Mrwnh5uZ7JHRUF/PnP/N+//rVtMe/2nnasnLjS6nczZnDc79B6ygDYGn34YVQcP45xEREIsSZEHhvL+j6bNnHgXWYmB3699JKshBOAHYH33Qc0NhKCvYMdbu8UajV7G2NjOUusthYgQn19PYoai7BwKt/zGTOUybR3FZ1u8GvSqe9EoLeVSiVLlnAnp9dzecuhWUTo1yOUK+yclGS9rjPQK6nj50BSx1nGjweeeAJ3f80bPtpWtJTmINQ7xOFutkqsOkNMzMhJ6+Tk2HZydHZ2oqysDG1tbXjppZcAAIsWLcJDDz2Ep556CgDwm9/8xqnz7tnj2LkiVQD9P4GbBuMohHoTB6ZOneq8lMXixdxxNjVZDFYBAWx/nTmjTAats/z68K8Bsi1lYcHYscDjj/NgXFAg2/KbNInHjs2beQlyONDpdPj96d9j6rSp1sMKPDyAVav6dWfs6QEqhIcHe7Dq6qSV/Lpefx1jfO17uXNycgZLWcTFsbettpZd2jb0Kby82Njbvt1xgLkjHn2Ui9MYDFzVz5o3xCgacesE2yrEKhV7PYeU0QYANHZ0oDg+HknTpvHE5dw5y9FEELghOTnsnhBFFoycNcu+bI8VBAE4eozwg+lS6h86iSBwOn1kJFBRAfHTT1GQloanFj+F1ZNW922yZIn95djhYMwYfuXNy6IvLLbjNQoMZG+jjw+71Ico2RcXFztVnWf6dO5HrBE/Jh7L4pbJOp4sVCroxsbh+OUgrAqZg8CtX9rVmzGXWHVVj9CMICgiBuAU3d22lS8GVud56623UNi7fLJ9+/a+beTWkjbj6Wl1vjGIxx9/3Klj34iMaoPRaDTiF7/4BeLj4+Hr64uEhAT8+te/HqSnRETYuHEjYmJi4Ovri5UrVyI7e3AJrZ6eHvzoRz9CeHg4/P39cc899/QVDB+NlJeXw2g0ui5lERvLM9MjRwZlsgL9JQV9fXnmPtxLDWXNZUAnMHPmTHl6hGo1x4p5e7PlZ21kt0NkJKtyXL06PMvTubm50Kg0SIh1cC/Val4TbWyUXvXeRcaN48HXXlUYrUGL81Xn7R6nubkZtbW11r3hMTG8nnTiBBtPVgJoBYG9aYcPu+b9FQQuFRgSwhOhv/3NcpsPr3yIboPtQVYQuPzvlSuDn4+B1Xl8goKAxx7rT5u1FmAVEcFxjV99xVnXhYUcD/nyy5JjGwUBCJ11Fm/vlimp4yyLFqFszhxApcKW638b5E5Sq3lZeiRi2Aayfj33WXqTHifL7ZR2NBMRwV7U2bN5SeX8eWg7O53WIwT4llpzGJe0ligbOmCFwECgpl4N09QpUD3+BHfk27ZZlSEzl1hVqjqPt7fTYbkuExNj/dmzVmJ10qRJEEURtw9Yx3bWwxgf7zjm/1FzAPX/BUY258Y+r7/+OoWFhdGePXuotLSUtm3bRgEBAfTuu+/2bfPmm29SYGAg7dixgzIzM+nhhx+m6Ohoam9v79vm+9//PsXGxtLhw4cpIyODbrvtNpo1a5aszKbhypLW6/W0b98+qqmpUe6gokh06RJnfVrJtq6sJPr3v4laW5U7pSPOpZ+j1BOprh1Ep+N00qoq2dmRRETmhGV7Ceiu0NLSQju/2kkfXvpQ3o4GA1FeHtH16+5r3ABaWjh72lrWcmZ9Jn185WOb+4qiSMePH6e8vDzHJ2pr4wfNxrNtNHI7ml1MCH7vPV4Hj4mxVAb48b4fSz5OVhaRObGypKSEDh8+TKahP5IoEu3fT7RrF5GtTNvWVqJvfas/k3rePKL8fElt+OTqJ3Sh4rLD7Fwl0Ol0tGfPHqqvr6fntn+nP/O4l8pKFi0YaXbtIiptKac/nP2DvB1FkejqVSr99a/p0rlzTp//6lXLjG0iot+e+i3VddQ5fVypnD1L9Pz+F/o/6O7mNOLi4r5U/6amJkpNTaXu7m5Fzz1gWB1WRJGop2fwZyaTiY4ePUpFRUU29ztx4kRfljSAQXaBFLRaC5EEIuq3B0a5CaU4AtHorQWyYcMGREZG4oMPPuj77MEHH4Sfnx8+/fRTEBFiYmLw/PPP42c/+xkA9iZGRkbirbfewjPPPAONRoOIiAh8+umnfTpMNTU1GD9+PPbt24e1a9daPXdPTw96Brg72tvbMX78eDQ1Nbm1ZmRubi40Gg0WLVqkvFYfEYSdO0Fz5rBA3wC4IImAFSsI7pYI7OjowMavNuLVe19FUKACv2VuLoT0dNCdd7JHQSJEwMWLArq6gFWrlH0NiAjnz59Hj3cP5ibPRZC3zOs0mSCcOQN0dIDWK5h5aYPMTKCoSMA99xAGJvyZuwdbz2JlZSUKCwuxYsUKaZmCXV0Qjh8H3XEHr40P2ae9HfjyS25HSIhz19LTA0yb5oGqKgF//rMJzzzT7yLIa8rr02B0REkJvxN33dWDkyfTMHPmTNuC63V17BLU69mzb8VrLuzaBfX3vw+htRXk5wfTO++Ann4a9l64UxWnMCtyFg7vCcayZQR36r1nZWVBp9Nh/vz5+Pjax/jmzG/wDWls5OuaNg16gwCDgSuwjBTnzgloVF0HhZTg3qn3ytq3ra0N58+exYpbboHf/v2gpUsH19yTgE7HIgdDd3v56Mt4/bbX4aFyLbnEEV1dhJ8d/2/8ZcPvLb4TTp4ENTXhgrc3wqZOxSRb6+dOkpPDXk4XSjQ7RVcXcOSIgHvv7e+ny8rKUF5ejltvvdXuKpXBYMD48eP7Mpo///xzPPTQQ5LOW1cH5OYKuO22weNDe3t7nwD6KDahFGdUG4xvvvkm3n//fRw6dAhTpkzBtWvXsGbNGrz77rt49NFHUVJSgsTERGRkZGDOnDl9+917770ICQnBJ598gmPHjmH16tVoaWkZ5JqfNWsW7rvvPrz2mvXSUhs3brT63aefbkJg4I1bBkgwGDD2yhVo4uOhs2JclZYGobvbE9OnN7vNcDSRCR9Wf4jvjvuuYsf00GrhpdHA4O8PQ0CA3UHYoj0moLIyEBERWvj7K7s2v71+O1aFrkKop4M6wDYQDAb4tLTAs7sb7RMnyrouuVRXB0AUgfHj+9NAP6v9DA9HPgxPlTxJCkeoDAbEnjqF1qlT0RkbO+i7zk4P1NYGYPLkNqePv2dPPP71r5mIiOjG3/52BJ6ehEZ9Ixr0DUgOkC5eXFQUjKioLgQESHsugsrKEFxaisaUFKvvl09TE+b+8Y+I6M3KqVmyBNefeQY9Nqzj/K58TPWfCq3WAxcvRmH58iq3T+h6xB5oTVqEeHKbBJMJY/Ly4K3RIG/6CuTmhWHxYhcDTl1pX48KNXXemBjX7dKkWt3Tg7DsbLQlJMDo5wfRWiKTDcrKAhEb2wVPz/7JiIlMTtV3lotG44nsYg/cMtd6IpVnRwe8NRoYAgJg8vCAUYJkkFTq6vzQ1uaNpKThLaVFBJw8OQ4rVjgfSnb06FH8uTczLjIyEn/7298cTnL1ehUuX47EkiWDM+67u7v7xLpHsQmlOKPaYCQi/PznP8dbb70FtVoNk8mE//3f/8Urr7wCADh79iyWLl2K6upq1kTr5Xvf+x7Ky8tx8OBBbNq0CU8//fQgbyEArFmzBvHx8fj73/9u9dy2PIzvvdeMxx8PhDvKql66dAl+fn5Oq/HLggjCvn08wx4wWBEBGRkCNBrlvW4AUF9fj2Ppx2AaZ8ITs55Q/Pi4dg1CTg7orrs41VQira3Anj3sYXW1NLDRaERaWhqSkpLw++zf4/+t+X+uHVAUIZw/D9TXg+67z61GIxGwf7+AVasI3t6Enxz+ic325+XlobW1FYsXL3Zu4DYYIJw+DZo9u1/zZwBHjghYupQwoGiDZLRaYNw4D3R0CDh50ojFiwl7CvfA18MXq+NXSz5OR0cHvvwyHbNmLcTMmRLdajodR8p3dnKiVuCQTF6TCap33oHq1VchGI2gwECI//M/EH/4Q84C6kUkES8deQm/v4M9ST09HE/lzO9hDyLChQsXEBISgqSkJJyvOo9yTTkeTh5SGcNkAlpbsfvdMiz+VhLGJihniMjlzaPv447EVZg3UbokTnV1NfLy8rBixQoLiRlh715AEEDLl/Oz6ICMDI7pG9hVv37qdfziVnn1nZ2hpqMWb35xCn/63tctvjMYDEhLS0NKSgqi1GoIaWlAcDDo9tsV6Te6u4ErV/i9HG6ysliWEuBEl66uLixcaF+9YSitra2DVgnOnDmDBQsW2N2nqorjvQdiLiW5cuVKHB8mhYvRgHt95y6yZcsWfPbZZ9i0aROSk5Nx9epVPP/884iJicE3vvGNvu2GDlZE5HAAc7SNt7e3VamX9es94Onpifp6y4fIFerr69HW1ob58+fLFhh1mhUrgL17OSkhKqrv48WLeWC6fp3j9ZVaBjOZTMjNzcXMaTMxc8pMeTVXpTJ/Pkcq19VxUoKvr6SOcuxY4Ikn2HDs6GAVFWcpLi6Gn58fJkyYgJ8G/1SZ+7liBVsMLS0cvD93rtsMx/nzOQn43gf0uGvKXVbbb5ayWL58OWtLOoOnJ+sBiiJnUsfHc43q3uWlOXO4tO5DD/HgLIeWlv6cjalTPeDpCTTrmrE2ca3k+0FEyMvLw+zZ0cjODkFCAmfqSrquwEB+BvfvZy2WefMGf//zn3Od52eegXD5MtQvvwz1v/4F/OlPrGoOoKajBjFBMX3t9fTk/IbbbmOhAKWoqalBV1cXFi9eDE9PT9R01SAxLNHyd/L0BKKjcdczgOe5Q/CYeB9/JidpTSGaexpQVxQHz8nS7qXRaER+fj5SUlIGlY3r4777+L1qa+PZRnj4ION9KCkpnCw2ezb/WyQRHYaOYem7NYY2TJ+pt3qugoICBAUFYdy4cTy+PfooX1NXF1u5S5fCFW9HcDC/l8M1RA0kNJTnLHp9OyorK7Fy5UrZv/fYsWNBRHjppZfwu9/9DkuXLsXXvvY1bLNTKLypibumgaSmpgIAvv51S6P9P5lRnSX93//933j55ZfxyCOPYMaMGXjyySfxwgsv4Le//S0AIKrXyKkbosfR0NDQN4uIioqCXq9H65Cc/IHbyCHY3wiBRJw7x5rLSvhnzRmYfcLOw8WYMdyhhIez5McAsTWVioWVjx1TTlfaLGXxYcmHEMmN5WbCwnjqn5vLWpQSUzu9vNg4zsmRpr9lDbOURUpKCi5WX0Sbrk3+QWzh7c2WrcEAbNnitpI9sbGsiFPTVYVpQdZn8AOlLFxGpWJxdg8PFpzvLQAeFdUv2Cs3i//YMf7/2bP5JwOAb8z6BsYHSw++qq+vh0ajQUrKVNxzD4fyySIqirOpExI4ILKkZPD38+YBFy8CH37ID15REesdff/7QFcXwv3C8b153xu0y5o1rBKj1LqQWY9w2oDqPAtjFyJ5rO1VDt+EaJyOfRjVtSrgs8+GRQpqKHdMWwJtW6DkV6CwsBB+fn6IHRL+MIjYWLYMtFpWYLBTy97fn+198/l1Rh0WxQ5fseUwj4kWj1NnZ6d1UfmQEP6Lj2f9qs5Ol+7XwYMjky1dWQnU1XF1nvj4eAQO9dzL4O233x4kvyMIAipsCGyWllr2P2Yllg0bNjjdhhuRUW0wdnd3WwSzqtXqPlmd+Ph4REVF4fDhw33f6/V6pKWl4ZZbbgEAzJs3D56enoO2qa2tRVZWVt82stBo4P3lFnxtXRfUan6QXJWkKS0thSAIlsLOw4FazQN1TAwLDg8wrP39eRyPjmaxWleqw+h0OhQUFCB+ajx8PXzdHhgOgAfkpUu5Bp0M5eFly1hrrbxcfr86UI/wVMUphPmFyWy0A1QqdgHfdx8ve1644BbDccwYYGfOl9iR2mWhWWlNysJlBIHv17hxbO31jkpRUfxI7twp7/k7coT/32xwiiTivw//t+T9h07igoN5vD1wQOYzIQj8Y8bGsrROr2eiD5WKRSMLCoDnnuPP/v53YO5cXNr6Llp1gye6wcEs+6NUpaaioiILPcL0mnSHSVrz5gEnz3myQdzayt7UYdTcifAPxyOPSPsdJJdYNZOYyMsN0dFcuzI31+pNT0/vryEgkojVCdJDHVwhcUwiVsQvtdDFzMrKQlxcnPWkTEHgicvjj3PHvnkz9x1ODF5RUa5rpjpDeDiQn9+E9vZ2RcSyzfI7d9xxBwBgwoQJeP311y22GzOGc78G8s477wCAMhPmG4lhz8uWwTe+8Q2KjY3tk9XZuXMnhYeH00svvdS3zZtvvknBwcG0c+dOyszMpEcffdSqrM64cePoyJEjlJGRQatWrXJNVqeujmjLFiJRpLo6VgqxlnovBZ1OR3v37qX6+nrnDqAkHR0sy5CTYyHnkpND9OmnzssqXL58mS5evEjtunbKa5QgwaI0Fy8S7d7dJzshBVEk2rqVlXukMFTK4ndnfkeiO2VxzHJJn37ar/+iID/e92Nq05jowIH+z8xSFoWFhYqfbxBFRUSFhX0PXE4O0eHD0ndPTmYFm9Re5aZKTSW9ffptyfsXFhbS0aNHLWR0zp7lP6fRavmBSktj+aShHD5MFBvbJ8Gj/c43rXYu27axHJIrdHd3U2pqKjU1NQ36/Ln9z0nav7BwiBTTgQOseeNu6TGjnn568KdkMBB99pnj7S9evEgZGRnOnaynh+jkSaLNmy36xNZWoi+/5P8+VX6Ktmdvd+4cMvkg4wO6Wntt0HtZX19Pe/fuJZ3U/s1kYn2g4mKixkbrmlo2aG4eXgk2M1qtkfbtO0KlpaWKH9ue/I61Lny4ZPZGG6PaYGxvb6fnnnuO4uLiyMfHhxISEuh//ud/qGeAIJMoivTqq69SVFQUeXt70/LlyykzM3PQcbRaLf3whz+k0NBQ8vX1pQ0bNlBFRYWstlg8IKLIwmRnz1Jzk0ipqc5J5l29epXOnz8vf0d3IYpE586xQdzVNeirxsZBUl+SaWlpodTUVOrq6qIvc78krUHreCd3UFrKo72MzrGri+XoGhvtb2fWI8zv1dfrMfZQu26YRMu6u7mhp045pUdpi/rO/knM5ctE1dVExcXF1vUI3cXZs2y1t7aSwUBUVub4PTMaiby92eYqLubPqtur6VrdNUmn1Gq1tGfPHmpoaLD4ThRZItMlRJEoO5tnmtaMxpaWwbqNMTFsiA2guZnoiy9ck+lMT0+nS5cuDfrMYDLQK0dekbS/KBIdPz6kDXV1/J5VV1sK5ylEpaaSfnfmd0REtG+f/QldY2Mj7dmzh7RDBTnlYjDw5GXrVqIBz4X5WdiZs5PSytJcO4dEfn/m91TRVkFdXTxPNJlMdOTIEbt6hHa5fp3o44+JcnMlbW40sq053OTnF9Bbb1112yRcr9dTaGhon9G4detWIuI+JD198LY3Dcab2MXqA2I2rno78/x8ojNnpHfibW1tlJqaSh22BH9Hkpoa9jha8Xzu3cvjuJTrFEWR0tLSKLe3M/qvvf+ldEvlc+kSe0MkeuVMJh777F1zWVkZHTp0qM9rfbLsJG3J2qJUix0jitzxf/KJhaHvDHmNebSvYF/fv7Vaoo8+MtDHHx+lujr3ixMPorGRXYwtLXQ6zUhpDsbl8vJ+W2vWLKJvf5voZ2+U04nTWpKiY3zlyhW6cOGC3W327FHAkWYysbG/dSsrlg9AFEVq3/8V0aRJ/Rfz6quDtmlsdN5gbG5utinsLGdAPnaMPY0WFBWxETJk8q4EPcYeauri36u11bbQuyiKdOzYMSooKFDu5C0tRDt3ste3p4eqq7mrLGsto+ZuFxXnJXK24ixpDVq6eJEN1qKiIjpy5IhrkziDgS+ktJQP6uAZkOLZVRLzJO6999w/Cf/www/7jMaEhASqrTXSoUODt/m/ajCO6hjGUY8gcDzZ2rVAdTUmB9ZBpeLwK0dQb73o+Ph4BCiok6UY0dGcZXzhAgeEDQgWWreOL31o0LU1qqqqoNVqMWnSJLRoW5AwxsVyh0pgzqQ+c0ZSQJpKxQkxXl4cMz40HNJgMCA3NxfJycl9ul4ZtRmYGz3XHa23jiAAM2ZwSrGnJ3DypKy4zaFcqbuCYJ/++BwfH2DGjFxERgbC39+N6tHWCA8Hpk0DGhqwtOxziHUNA6vWWRAZ2S+/ce0a8MEHwFs/j8PKZT4IDARmzgS++U3gz3/mR2Bg6F1bWxuqqqocSlstXszhiC7FEqpUnMV/++0ct9nW1vc8NnQ14M/+WSxV0FuUAK+9xnHGvYSHcza73NBBIk4cmDx5skXG8Mnyk9hftF/ysZYsYRFrC8xxgBERHAdYViavkXa4UHUBtZ2sixcSwnGE1kpKlpeXw2QyuV5idSBjxnBt0aAgYPdueJ5Nw9WLeuQ358PHww1aa1boMfXAx8MHEyYAhYX6PokXWSVWh+LhwX1+TAxQX89JdXb6Rk9P5eJopZCbm4uxY8di8mTpiU7O8vTTT/eJfJeUlCA62gM1NRfde9IbhJsGoxL4+gJjxkBIO4HF3lewahXHtw9NFhhIbW0tOjo6MGWKdB2xYUel4nTZ6GiO+u0toGq2kxMSgC+/ZNkBaxiNRuTk5CA5ORkeHh4I8ArAT5b8ZPjab48pU4CVK7lo8PHjknq/efM4IYZocEH6goICBAYGIjo6uu+zJeOXjIxx7OvLvfnYsWxctLU5dRi9SY+UsSl9/25vb0dNTRluuSUJ+/fDIuB+WJg6FXjoIayc0Yyu6jZkX9ZZ3czbm+2ssjJOkv+f/wEmzM/G2LF8mzMzgU8+AX78Y76fgYHA9OnAk08SfvnLZrS0pMBksq+5GBYGrFqlUHLwmDFs6AcHczJCZiZKWor5+fH1Bd58s99o/Na3eBLXy5Il0iaoA6msrERPTw8SExMtvitrK0OkjAmBjw8waxYr0ligVrP1HhkJ5OdzZ6HAD5bTmDNIksvXl+/pQKxN4hRFEICvfQ0Rc8ejs1qD/9/eeYc3dWVr/z2SZVm2bLn3Cja2wZhQQieG0BNCSAOSCSGZTAqTxp2UmUzuHchkUoa5EyZfcnNTZm6SCQlOMsGhBWMglFDMUGxs3G1sXJAL7lWypfX9sZFs2ZIsyXJl/55HD/icrXP21pHOWXvttd6VcmkXpDT4ot0AsDt3NwBmi4tEhfD09ISvTgpgoDg6Arfdxr6Pra3sHmIke/iBB/oUaRo06uvrUVFRgUmTJmHevIEnmVqCh4cHiAgvv8wS5R59dNZNJ6FjDG4w2gtnZ1bk3tMTjm0N8PNQm3ywGpOyGNFMmsRm1ElJQHq6/qYvCMDixeyBVVXV9229pSy2HN2CVvXQZVJaxLRp7M575IhFzQMCmDdj926WRa2TsuiZgdnW2Ya69rrB0Zm0lJgYluIulzPBOGMuGDMsGbdEnymr84aHh4fDzc0V997LlFSGMCm2G5kMiI2Fr2s7sv7vLK7sM675JAhAWBhw773An/4EXDwRgMpKJsK7ezewZQuwahVzqBCxRNgdOwR88MF4bNwYDoWCzSkefBD4y1+YA7CXMhcCApi03eXLdhqbILAncVMTAhs0mOffQ1D4rbeA1avZdbz7bqYxcqMP06dbbof1nsT1JkAegAiPCCPvNI1Ewn4+Jvsgk7FVmBUrmEBmcrJ+8mkrga7dhRpiY9lhe5KXlweFQqGXXhs0xo3D/Zt80NXeAfHORPtpkFlAc3MTCgurERkZ139jaxGL2b3j7rvZj6OuziBV+MoV4MIF+5+2N7p7z/jx4+Hs7Iy8POaMGSp6yu989913EAQBZTd+ezcj3GC0JyIRe0o1NcHtx0SsX3Idzs7st9bTja7TIwwdaEmRoUQsBtavZzeNHgNydWWbvbyAM2e6x9lbykKj1aCtsw0ujsNYhNYUcXFM4C4zEzh5sl+ZGt2YCwuBy5ezEBoaaiCvkFmViettJtyuQ4mTE1tqCgtjnitjVr0R6tvr8fH57gpIlZWVaGxs1EtZiMVsVa693Y7GkpWIggJwz1/no8vRGdTQaGJdlHFReRHplekQBKZus3o1sHUrW1KuqACUSmDPHg02bizA8uVt+ko/BQXsY3vlFTYx8vQE3nvPUINuxgzmzTTlZbcYImaBV1cDnp6oKbwE/4+/Bn73O+CDD4C//rVbPbiqii333iAsjOmGWqKNl5+fDxcXF4PKWD0JcA2Ap8w61XpHR7YC3e+qs5MTu1HExjLXb0eHTR7Hh+MfhruTu/5vBwfmFNOFKTQ3N6O4uNhyGZ0BolQCd/r9X/cSfFER86gOkjblHxL+oA8r8PUNRV3dIIY06QQnPT3ZDf6774CaGvj4MMnUwaaiogJtbW2IiooCwMIwrNZDHSCRkZH47jstbr+daXSFhoZi27ZtQ9uJkcJwBlCOJqwOcm1qYskVnZ2UkcFUGdraTEtZjCq6upiUy9WrBpszMlhGcWtrXymLFlULnSk7M9Q9tQ6tligtjWU0WEBVVRX9/e8/0Z49KoPE6/+7+H+UVZ01OH20FbWavU6cIGppMdv0RMkJ+i7rOyIi6urqokOHDhmVstBomKxIWtog9NcKdn3VRrWf7WaSNEYC/79I/4IuXLtg9hi5ubl07NgxfcJHdTXRwYNEb73VnXOie4nFRDExpJc1aWlhSUHGEp7N8umnROPGEXl5ETk49D2RudfKlQaHKiggA5kVY7S0tNDevXup3owmiqWSOr3R5e9YnC+j1XbfR4zIeJnDWB+vX2eqWUREZ86coUuXLMuItwddGg3d+97r3RtUKqJjx1gyk50zelvVrfTx+Y+poqKCDhw4QOXl6n6TwOxKfT2RUknanFw6mzxAXad+6OzspOTkZANFE5Wqz2NnSKipYb/v3vI7N1vSy4guDTiqcXVl7oe0NEy+dg1ec5ajsNABHR3Z8Pf3h5eXnQWdhxKxmC2dJSezZYsbdfQmT8YNoeXryMtrwP33L9C/Jb0yHfF+8cPVY8sQBFYaZMoU5iGorwdmzTJagk+r1SIzMxMLF4ajvd0RP/7IljgBYOMtGyFg8D0bVqELfYiMZCrYt93GXFNGCHcPR4x3DAAW9C0WixFmpK1IxLx1BQUsrsjICueQsHiVDElJq7E2rBwylYrFXPUS9o30jDT5/vb2dhQUFGDu3Ll6j5SPD3M6L1vGtN83bWJ1dHUrc7m53TWdXVyYkPGZM0xP3WKnVnt738wxkQikUKDOUQMv/wgW16ir9d7WxsJD7r8f6FV0IDKy/6iDrKwsBAcHw71H7XiD7nS2Q+ZgW6FqkYglGMnl3QlHZhEEdh9Zt459cK6u7D7i7Gz2bVrSGg318PJiBUxKS6tQV1eHadOGLuGsUdWAoGC2MCESgblcExJYwGxDA0saTEjoLjk0AOra69DY0agPaQoKkmCwV90NuPHdESQSBJ1MhSbFEeJlgyNYXlhYCJlMhuAeNXgdHdlteagX59rb2c8vISEBarUa/v7++sSYmwm+JD3YTJ0KTJiAwKtnEBRUh/37u6DRDELMyVAjlbL4FoWCpQ7fCPDy9iZkZV1GXV0cMjOd9Ksy32Z9C2eJ+YfBiEEQWACbgwMrZmyE4uJiAKzaUFwcyxzPzQWU1Wr8/sjvh2QpzCYCAli1B39/4PTpvoF5AM5WnIWPi4++Ok+fUmM90H1UZ86wKnfDgZsbi1UUQoKh0jiwdeZvv9WXGOwZj2mMrKwsfXUeY9x2G4vZLC5mz/+yMjZX6mmT+PszI/PiRSs6fu+9LATi8mV20KYmoKsLQl0d5OXVLF74+HEWdLl7N1tD//WvWXxq79ITYLbk4cPGIypqampQU1ODmJgYk90Ri8TYdOsmKwZgyPTpLK7NqixWiYR9wMHBLGU9KclsolanphNrYtYY3bdihRa5uUNfYrVL24WFUTP0VV/0iMUsoWnpUvYDaWnRfydtpVPTCReVi0FIU1KS1SHKA8fLC7kRK1ETs4BN0PbtM8wEHCC6EqvG7j1ZWYNWFdUkGg2LfwYAiUSiv//fbHCDcSiIigLNn4/SxEQ8PLUaLS1OyMkZ7k7ZCbGYyYL8+CNQV4erV69CJOrCr3/tC62WxVU1t7dDJpFBLBqitDp7IAjMQ7xqFbMUehQOV6lUyMvLQ1xcnF7KQixmCRR/35MFD+0IznwHmBtEKmWGx4ED6Pll1JIWJ0tPAmBSFj4+PvD29u73kPPnM+/bsGRPgzmoamuBpH0SaBJuZ99JsRgdp47jb6ffNfm+2tpaVFZWYuLEiRadRxCYbbN8OfOm9WTePPaRWmwTBAWxN02axA7q6goIAtIr03HoyqG+7Z2cmHUuCMxiPXq0T5ychwf7qvZEV+YwOjoaTk6mpV8uV18eUO1ziQS4806b384Mq3nz2IVUKo1+kPUd9QiQBxh5M1BbW4xz57yHvMSqRCTBbRFz+nzuetzd2eTaxYUZVgcPMneVDSjECvi3+BsYUsHBRhOZB52AAEBZ68jcfTNmsMywri6bx9aT7OxsBAYGwsPDo88+d3e72qYW4eEx4DytMQE3GIeI8vJyVEdEIEIqwWKXVMTEMG+AEUfB6MPdHXjwQXQ6O+P6P/+JSePGwcFBjFmz2D1/17dOeHFq3xqdowKxGAgPZ1PaXbsAIuTm5sLT0xN+fobyI25uwF13OGJByMIhv6HZhKcnSwOOiGDuwcpKXGu+hvEe4w2kLCxBEJgRFRExpImiBgQFsWiCs2fBxubggELUIbKg1qjGFZnRI7QFQWBG0zffDMzjU1BbAA+nvg9KPV5ebCk3JoY9OTMz9YbjtGl9l8Qt1SNMr0wHDTBRw8uLOUJt9gD5+rIMGrWaeYl7uWwvVV5CYV1vV55uEpeLyMgwVFYO7WPt59KfkVGTBrm8H6PihhQPYmOZF7WkxOovyhcnv0CVY5VBSFN0NJtLDDXjxwM3clGYi/2ee9j3cO9eNqGxUUZBN4kzVat++XJmwA0lCgWT0brZ4QbjENDV1YWsrCxMio+HeMUKYMYMCBcvYGp4PZKShqeQu90RiZBXWAhMmQL/Eyf0S50KBVAW8i72HKob8mUEuyEILJZx9Wo05+Wh8aefEGfCkGrTNGJu7DhcvsycdyN+zILAnjYTJwKnTyMwtwLP3PqMXsrCxcXyrHZBYKv4FRVsdXE4iI1lGqG5uaxDvrfMw4q1v2fW/NGj6Kn4XVpaCrVajchI0/GN1uLoCCxaZL02Yk9kEhmivKLMNxIE5uKRy9ms8+uvAZUKggDceiuQmsqaqdVq5ObmGnjDTdGibkGIIsT2jt/olp+fHSYNYWEs6zgoiC3X5+QARFC2KOEv7xu0l5ubC29vbyxe7I6WlgGe20qut12Ht7M3Vq9m179fQkPZckRXF5tdZGRYdJ76+nqU1ZQhPtowFtzDY3gkrqTSvt5sSCRsMjNpEjP6rdTf0k3iJkyYYHISV1lp5LxDwDffDP05RxrcYBwC+khZODgAkZHwSt2PB2cUwMOD3WAHSYVhSNBJWUxYtAjCQw+x5bVTpwCNBpUdxfjlOh9UVQHHjo3ecZKDAzJqahDk4wN5cnKfgWi0Gnyb9S0AtrIWGoq+cU0jFbkcuPdevNN6EDk/fge6ckUvZWENgsBWgx0chkZg1xgiEbMxLlwAzl87D1/PEPYgmziRxaReuaIXdo6Li7O7sHNoKEuWsdVwmeQzCb4uFiZIODiwL9s997CBJydDaGtFczNLRsrLy4O7u3sfb7gxfn3rr62W1DHG9Ol2miiJRMz69PdnWirffIN7o9dgkq/hZK2xsRFlZWWYNGkSvL3Z/GcoY/oSwhIwzmMcurpYOLfFREYyozg0lCXZXbpk8oPTGVK3TbgNsf59PW8ZGZbJKtmbykoTXQ4JYZasXM7ib9PSLDpeaWkpOjs7jYrK63BzYxELQw3RKHAADDLcYBxkWltbceXKlb7BuwoF8OCDcAz2hWNZEZrqurBr1zAEL9uJrKwshIWFwc3NjU2zHRwAT0+od3yB5QHzIQgCAgLYj/3Gyu6oQ6lUoqmlBaHr1rEKONevsyWzG4PJq81DtFd3du6kSWzJ5ocf+goLj1SutVWjXCtDrCDA4eefbTqGziFbUsJyOoaDJUvYau2BgmRIxVK20c8PeOghICQE5Tt2wKu11aA6jz1xcmIeZltWD947+571b3J2Zkbx5MlAUhISYqpQUNCKkpISTJo0yaIkrJdTXrb+vEaQSJi9YEnpUIsPeNttwH334Ytzf4dk9z79CobOkOpZYrWhgTm2horM6kw4S5whkbDvvlX3cJGIhfTo0ty//75bPKkHuhKrngGekDv21V0MCRmeOMbQUJgt04mwMBb2MnEis2qPHjUZ5NvZ2akXlTc3iZPLWejDUBMXN3yT4JHCiDcYm5ubsXnzZoSFhUEmk2Hu3Lk418MfTUTYunUrAgMDIZPJsHDhQmT1uluoVCo899xz8Pb2houLC1avXo1yXcrTIJOVlYWgoCDjUhZiMaBQQNBqMLt4J26NrGdJIuZ+gCOQqiomZdEnAzM2FkUJ8Vgw/nZ9nNW0aSww/tq10bUU36c6j06EuKODxVppNJjgNQGPTHnE4H2CwJYo9+0b+UYjEWGi00TI3N3hvWED81zl5rIbvQ0W/vjx7BmoWx4dStjnTmhucERlpWCwo0WlQrarKyZqtRDOnx+0PtxxB3DokHVeiWZVs1GDwGKCgoBf/AKSIB+EZXwIhzJnuLm69vu2ts42yCQDj+PUIZezyYJdJ4YSCYrayiEsWMA+2IYGKMvL0dLSYlBiNTb2RkjCEHG85Lhe6mf2bBs9fWIxMHMmi3FsbAS++ool28GwOs/uvN1wEPXVr5oxg5VqHWrmzGFL02YRBNZo8mRm2R4+zNKOexmO+fn5cHNz63cSJwjMvh5qp0Nw8ICT3Ec9I95g/NWvfoVDhw7hyy+/RGZmJpYtW4YlS5ag4kbx0m3btuHdd9/FBx98gHPnzsHf3x9Lly5Fcw+ra/PmzUhKSkJiYiJOnjyJlpYWrFq1CppBrp6uk7IwFbyrZ8IE4O67EerVCqeOBuzZM7Qz5IGgy8A0JWXxZdEuiBylLHPum2+A1lY4ObHViqNH2SrMaEBXncdAj1AkYnp4q1YBLS3Y/q+XIBX3/QwUClYZxsUFIzo7vqi6CLJGWXeFDEdH5iJtamKB7FYiCCxQfNIkO1RCsQFBEPDhmr8gJcUwqzIrKwtBkZFweeABtn569ix72Xm9ycWFXXdrJoBikRgbp2wc2IkFAVXV1SiNjUZdhQ9qT+X2WytdrVHjjqg7BnbeHkgk7LZm70lhqCKU6RetXQuNXI7rH32EW9raIOnhQZVIWJXWoVo+7Om9DQnR23m2Hox5HO+7j1WMaWlB0fnz+hKrpnQoHRxs+okOmPp6dh+3CJ2lt2oV+1F89x1w4gSgVhstsWqO1NShj9usrGSX5KZmGEXD+6WtrY3EYjHt61V5Y8qUKfTaa6+RVqslf39/euedd/T7Ojo6SKFQ0EcffURERA0NDSSRSCgxMVHfpqKigkQiESX3VxqhB9ZWetFoNPTTTz9RQUGBxecgIqLjx6kraQ8dOtBJLS12LxRgdwoLC+nIkSOkMVJhQ6PV0HM/Pte9oaqKlYO4IdWv0RBduULU2MiKPoxUdNV5ampqTLbRdHXSc/93P9HOnawcgRG0WqKUFFaQZCRe161JW+nLI18a39nZSVRSQnTypE0X6/BholOnBthBKzlUdIhSClOoro6ovJx95lVVVbRv3z7q6OjobqjVEl24MGgX5uhRovR0y9qeqzhHV+quDOh8Go2GDh06RFeuXKG6OvbZ0/HjRPv3szJMRiipL6HK5soBndcYNTX2+0i7NF3U1NGk/zs3N5eO/vQTaTMyiAoLiWpr9SerrSU6cMA+5+0Pba8B7thhv/tZa0sLnd2yhVo+/5yotpZq22pNtk1MNHnrGTS0Wlbdy+Y35+YSdXTQpc8/p0vnzln81pMniYwUnxpUlMobvyWyofLbGGFEV3rp6uqCRqPpox0mk8lw8uRJFBcXo7KyEsuWLdPvk0qlSEhIwOnTp/HUU0/hwoUL6OzsNGgTGBiIuLg4nD59GsuXLzd6bpVKBVWPYJSmG/o3nZ2d6Ozs7LfvV69eRVdXF0JCQixqr2fOHKCoCAnafLSpxmHHLgfceSfBglWlIUetViMnJwfTpk2DRqPp47ElImxZsKV7/B4egFYLISsLuHABtHQpgoOlKCoCUlMF3HUXwc20vvKwkZWVBR8fHygUCpPXsqGjAXOm34vOoKVs3SI9nVWN6TVbXriQeRnb2rplWEYCdXV1yKzMxNO3PW36+xoQANTUQNi5E7R2rRUlTYAFC4CjRwVUVRFM6GPbneyqbCyOWAy5vBMSCasL7eXFZHREIpHhOCdPZv9evgyhoAB0++3MRWgH5swBvvlGQFgY9XvIE8UnsGrCKuvuGb24cuUKRCIRAgMDIRJ1Yu5coLx2DvxUpRDS00GTJrElwh5xYimFKZgWMA2eUvtenMxMAd7eBDN64RZTUFeAw1cOY9OMTXpR+VmzZqFLp7GSlgYhKwu0YAFcw8JQWSmgvZ0GtQJRq7oVH174EC/P6Y7/DA4WUFxMpgopWUXm5ctwuOsuOAYHo1OlwhdHt+PZ217urv7Tg+ho5kk3Uchn0IiPB2z+uo4bh+qqKtS3t2N2Who65XIWy9IP0dHs6zuAn4nVKBTdYx3I73M0IxCN7PSDuXPnwtHREV9//TX8/Pywc+dOPPLII4iKisJnn32GefPmoaKiojsDGcCTTz6Jq1ev4uDBg/j666/x2GOPGRh/ALBs2TJERETg448/NnrerVu34vXXX++z/euvv4ZzP+Wr7IX/v/8NpVMIjtXeigULKuDgMKIvVR9+rv8ZUc5R8Jf2lcGQVVWhUy6HoNWi09UVTU0SVFbKERVVb40dMmKoVdfC1cEVjiJHQKuFR0EBnKuroZw5E1ojQT5NTY64cMEXs2dXQiYbGZHUTV1NcHOwwGLXaCBpbYVHQQGux8dDa4XV29rqAKXSBZGRgy9UmdqQihmKGXAQmMVQVuaKykpn3Hprldn3OdXWQlFcjCpdKZd+5GgsQaMRoFKJIZVqIBab/h3vUO7Aev/1+j7bA41GwPHjwViwoBwSCcG5shJe2dmoi4lB6437ZmJlIlZ5r4LcYQDxk0bo7BTh5MlALFxYPuDfdVZLFhq7GjHXfa7JNiKVCtKmJhCAygZ3OIU4wclp8EKPatQ1ON1wGnf73q3fpstZscPXxgANafBV8af4nXIy2r28UN/LCtdoBDQ1OcLDY2gzJ6urZXBx6YSLywDvY0QQurrgUVAAEonQMH48yMS9Ra0WobzcFePGDa3gbVaWFyZNqkVbWxseeughNDY2skTPm4QR7WEEgC+//BK//OUvERQUBLFYjGnTpuGhhx7CxR6Crr1jHoio3ziI/tq8+uqr+M1vfqP/u6mpCSEhIVi2bFm/X5Ds7Gw0Nzdj5syZAysRt2IFhFOncIefDPXeK1FQIGDmTBoRBlVTUxNOnz6NBQsWmNTqO3LoCDbcvgESsQmDQquFsG8f4OQEWp4AiMU4fVqASATMmjX84yQinDlzBl5eXojuVZu4N3849ge8OPtFKJwU3RsbGjDF2ZlpJk2Z0scjt3QpcOrUFKxcObxjLSsrw/mc81AHqXHHFCvi2IqLIZw6BVq3zmJXKRFw8KAAHx9g+vTBnQAFVwcj3pdp1qnVahw7dgwJCbGIiJjef6A+AFRXQzh4EJSQYJfitbm5QFmZgKVLTY97Ja0c0D0jMzMTarUa06dPN9geEwNUV8dj3rwb51arWYfGjwfa2jBVNhX+Lv6DUtJy8WLAxSV+wN/xmPoYOIgc4Kp1xdmzZ7Fw4ULTlWsaGyEcP46Lpa6Y+qxpA3OglDaWIqw+DAvDFxps37lTwPr1tv+uiQgnT55EYGCgXmKmRd2C6qxq3DL1cXb9ioshlJeD5s4FZDJotUBiooA77hhax4JONz4+vv+2vSkuLkZpaSkWLFjQrRNKBOTkQKipAc2axVyJve4vWi3z2g/1WBsb2TmbxkTFDesZ8Qbj+PHjcfz4cbS2tqKpqQkBAQFYt24dIiIi4H+j6nplZaVBZlV1dbVed8zf3x9qtRr19fUGZYaqq6sxd67pG4lUKoXUyFNFIpGwLFkTNDc3o7S0FAkJCfapZ3pDXt53z15cwWzs2+eDNWvsP3u1BrpR7WTcuHHGs79vtJkaMBXOTv14Y++7jxlULS2Aiwtuu02G1FSmVjN7tv37bg1lZWXo6OhATEwMHMysaxERWrta4e3aq4Sej0+3u+Ff/wJWrzaoJ+fvz4afk8PuiT0SPYeMzs5O5OfnQ/AT4OHiYfa73YcJE1hSTEcH0zdcsoSt2/TDqlVMI1AkMlgVtSsNHQ3Ynb8b04OY4ZSTkwNPT09MnhyAgweZ2ke/y6RBQUwS5ORJ9ga1msnX2MjkyUz6pKaG6Tb3RtWlwp9+/hPeuP0Nm47f0NCAa9euYdGiRX2u48SJ7FJ1dt4YgkTCEn6am4HUVOxvOoJNv/jboMRIuLkxtZi1awd2nMbORsR6x+Ji6kVMmDABrubidLy9gfvug/KbDkRdbYJHSRqrX2nnkigKZwVmymf2+bwDA1mil7HrbAklJSXQarWIiorSS8y4iFzwyNRH2LkkEqbz4uICHDnCSg9SF6RS1o+hDHUJDWWap9aeU6VSobCwEDNmzOj7rJ0yhf2rVLKM+KgolkXe44ahU5IaSnxvyKNadZ8cQ4z4LGkdLi4uCAgIQH19PQ4ePIi7775bbzQeOtRdd1WtVuP48eN6Y3D69OmQSCQGbZRKJS5fvmzWYLQFIsLly5cRHh5udze1sGQx5qiO4fbIUjQ2sofOcKFUKtHc3GwgZdGnTYsS98TeY9kBJ07U1xQTzqZizmzCrFlM99tIRbchoaeUhTljEQAIhOdmPmd8pyCwG90dd7CsYyMSNVFRzGgcRIUXk+Tn58PV1RXObs64xf8W6w8gCIBMxnTy9u+3qNalIDBb8+TJwcuSz6/N12tiNjU14erVq4iLiwPA7NqLF/VSfuaRyZgruLOTCYimpg4o/XbFChbKa6zc7tXGq0armFiC7t4zbtw4kx7/1lZm1xt8/Vxd0XbXCpR5iNmOc+f6zai2FrGYVWq8enVgx9mduxsV5RVQqVRmhZ17MnWOEwrqvFjNyu++Y5MbO0ZhHb5yGLnX+2r4GFlQsBidqHxvPcLL1Zfxr+xeyuAREUy0vbUVSEzEcs9zEGmHNsTFy4v9pqxFV2LV19eMSH1AALBhA/sCabWshOmN+MH77ht6aZ1ly4bXWTPcjPihHzx4EMnJySguLsahQ4ewaNEiREdH47HHHoMgCNi8eTPeeustJCUl4fLly3j00Ufh7OyMhx56CACgUCjw+OOP48UXX8SRI0eQlpaGhx9+GJMnT8YSW77lZqiqqkJDQ0O/y5c24ewM3H8/3OOCITlzAil7VcMivdNHj9AEiZcTUdduhfCgIAAPPMCeLlVVEDRdmDyZiR8PSKbCRgoKCvRSFv2RWp4KLfVjRLi7s+mwWs3KuDU06Hc5ODDn4/jxbEI9VHIgPaUspgZMxTiPAQi5+fgwb5yLC9OlvHat37csWMCubUmJ7ac1RYx3DO6IusNA2FnnkRKL2VdNKrVC8kYmA37xC+aham21ecYmFnerFPV+2IkFMeaEzLHpuNeuXUNLS4vZ6jzu7syrnZdnuL2+vR5x42az76ejI7Bjh91FQ+fYNiwDmlXNKCkosWgSpyMkhC2VaiPGs6oqEgnTOLRRW7Q3tW21Rqvj+PjY/hHm5eVBoVDoV9B0NHY0wt3J3fibXF2BDRsguDjj0jk1kJ9vd8PfFILAdGat+TgbGxtRWlqqn8T1e4LoaHajdHZm90+lEqdOAUMkp6wnI2NoNT5HGiPeYGxsbMQzzzyDmJgYPPLII5g/fz5SUlL0xsorr7yCzZs349e//jVmzJiBiooKpKSkGCxXbN++HWvWrMHatWsxb948ODs7Y+/evXYtCdafHqFdEARAJIJ8ahTWC99AU12Ljo4huy8AAAoLCyGRSBDaT0xXcX0xItwjrDu4rhCunx/w/fdwK76E9esIPj6sxN5QzSbb2tpQVFRksSbYkStH4CHz6LcdBIEp7K5axayVzEy9dSgIzPNUW8tWr4eizNfly5cRGhoKVzdX/OXUXwZ+QEFgFtGddzJPwLVrZi+aSMQM5cBA+9/4d+XsgoujCyorK9HU1NRnEieRAO3trAqPxQmPgsAy3+Vy5qLctcsij2pv/PzYMl7vessa0iDWux/NViPoatVPnDix36WyefPY6nrPSYmnzBNrJ93Iep8yhVXDUSiA5GS7CSm6uLBzDqSk28NBD0MulxskOPaHILDl0qIidH8/169nLt6yMpuuX0+Wjl+KYLdgo/uKiiz0YvdAV2LV2L0nzD0M8X5mAgUFAa6zJyGvVMYmNTt2DM5szAhSqeUGck9vuFxuRZKVILBl+EceAXx94ZX9M64fuTSkqdKentZf07HEiDcY165di6KiIqhUKiiVSnzwwQdQ9IiTEgQBW7duhVKpREdHB44fP95n1uLk5IT3338ftbUsu2nv3r0ICQmxaz91UhZh9tBS6I+AAIh/sR7xc+WoOpqNnV9pB3rfs4j29nYUFBT0LXNohJfmvmR7AL3O29jYCIfKcshdCM3NzHHV3m7bIa0hKysLgYGBBjGv5hAJIstr/wLsYezkxJ6gX31loGodF9ddVm8wDeTq6mp9dZ7i+mJEeFhp3JvDxQVYs4ZZgklJZgul6+IYT52yryhumjINYojNesO9vFhYW4/CUZYhCMDy5ezNnZ2sBp6VNcNmz2ahCD0FxT9P/xwE6y96UVERpFKpRfc0iQSoqjIs2fhN1jfIqs4ybCQWM1H6s2ftVuje09P2UpFNzU349PynFk/iehIf3yv0wcGBXYDQUOYy2rnTZsP4cvVlkxVyYmKsryVvUGK1F63qVrhJzYc6icWAh6cAumUq84j7+Nj1GpoiKsrySa5SqURTU5PZkCaz3DD8A9fOh6ufM7u4TU1DMsv28WETvpuVEW8wjgZUKhXy8vIwefLk7kyvwcbREZBKERbUhRVtu3D+eOuge+Cys7Ph7+8Pr34KeR4vOY5m9QDrG4pELC4uOBj4178w1SUfCxaw+8Jglme6fv06qqqqMHHiRIvaqzVqvDT3JetPpPPm3HMPm57n5OiNjrAwdgPetYs93O2NVqtFZmYmoqOjIZVK4e7kjjUxa+x/IoC5EKur2RKZiS+oWNxd2MIe32EtaRHoGogrV65ALBabncRFRDDbobe3zyJ8fbvLQ371lVVBerqaw7t3d9uarepWOEusS6qxZhKnIywMqKjoNlbLGsuMe8nc3FgyRWwscOwYq8oxAG+OQsGMRlt+v6fST8HJ1clkkp05XF1ZGLFR5s9nHn+VimUkWek++vmq6XrrkZEsr8hSTJZYvcGR4iNoUvXvGVi8+EY9awcHNnmbNo2N6/BhNkkdhAdFeLhlsX26kCZLvOH9oXAX4BAbxVZtGhqY0Orp04NqGMtktsemjgW4wWgHcnJy4OPjAx8fn6E/eXw8vNfejtsXapF+qBqnTg3O76Wurg5KpRKTJk3qt+2R4iMIdLUxPbA3gsC8VcXFCFSXwNeXPWQzM+1z+J7o4t2io6NNy3X04mTpSRwoPGD7SeVy9kQjYrE5NzwdggCsXMnu8fZO/Cm+ERQaEcG8iqfKTsHPZZCmzQ4OTK08OhpISWGuRCMxFA4OLKA8I4MZMwOhU9OJTVM3IT8/3yJDSiRitsLlyzaecOJEFr8plzPD38K1OVdXFoFx9iz7+z/m/IfVp87OzkZAQAA8rVBD1zlIdR/LvNB5RuPwDN6wcCFzr/z738yTY+NNZvFi65f0ampqoKxRYuHEhTadE2CXxuQ9w9WVWdHOzuwH99NPFh9XLDId1iQSsVhVS1ZFLAlpauxohELavwrBtWvsMumRSFgswtKlbBn+66/tHhguCCxZuz90JVb7C2mylFOnbvwnNJQlx4SEsMDkkycHzeNo8NneZHCDcYA0NDSgvLzcIkNq0PD0BORy3ELpkJw9iaOH7JslpzOkoqKiIJMZX34x6I7M0/wDyFokEvaECw+HsPsHPDDzKior7W9IXb16FRqNBuPGWZ78cVF5EVP9pw785BMndmdi5OcDajWcnYF169jDzmZjphfGvOGHrxyGo5Ea2HZn2TL2cL50yeQSbnQ0e14PxLN66Moh7Di5A76+vvD29u7/DTe6plQOYLLl6Mi8jX5+zOg4c8ait8XGshCE/IoqXK627iLX1tZCqVRa7A3viacnsxmuXmUhFf16JwWBdXbePPamr75iVrYNnD5tudGoM6SmxU7DnTF32nQ+gHk309P7ub7e3uw3eOut7Mtw7NgNV51p/rLUfOxvWBiTkOqP4uJiCIKA8PBwk22em/Wcoc6rCYKCzOSchYWxVY3ycvYbtFPwcE8JRVO0t7dbPImzFEfHHnahIDCD0dWV/Ra/+YZ5Hu3sQXFwsDoCZczADcYBYImUxZAhCBCWL8PMuwOwcGoj0s+02205s6yszGIpi2ZVM3417Vf2ObExVq6EKPMSlo4rgpsbSxBpaRn4YU1JWfTHzKCZCFXYZ7YMmYxlvohELK6qtBQODuymqFQyQ2qg977eUhZqjRoKqWJQBJv7IAgsoGzaNJaJsGdPH30ZJyfg3nvZ/229KaeXpcOpxcmqSZxIxBww6ekD/D55ejLBwfh4ZvjrVI3NoNEAX+wrQGOb5QG61k7ijDFhAnDoaAcOFCRb98aoKHaRlEq2vmyly3DuXIvtaf0kLr0jHdk1tsQNMMRiFn7Q2mpBY1dXlk4eGMikeEx4VBs6GrA9dbvZQ02YgH5F4lUqFXJzcxEXF2c2pGlHxg6IhP4f2Q4ObBJiEmdnJlGg1QJZWd2G1QBZssT8Vz0nJ8eikCZrWLbMiJarbnLz8MNsprBrFwunsFMs0x133LzSOjfpsO2DJVIWQ8748RB5eSCq4Ef89Ekhsi4PzMKwRo8QAPbm70Vm1SCsF+uQSllc3LhxkBxJxm0TKvH99wNPhsnLy4Obm1sfKQtztKpbLaoqZDWRkSyT09kZKCqCoOrA0qVMkqyz03ZDqqmpqY+UhYPIAX9c9Ec7ddwKZs1ihuOlS8yL0+NJ4+LCnD07dxomhVgCEUHRqsCs2Fk2lfAMDmaZ0wP2ILi4MJ2kpiaW+GMGqRSIjGtEw5VIiw9fWloKtVqNyEjL39MbmQwIi6uAj1P/0lF9cHZm11CtZh7VlBSL4xsDAlg9gv4mP2q1Wm9IVbdVDzhsYt48K+4TOrHQX/yC/X/Hjj7Gf21bbb+eeWdnZlyYU7LIzc2Ft7e3eT1CMOUJSxGJLFB+cnRkKzcrV7KZ2vHjA3Ltd3aaTsqur6/HtWvXbPKGm6O5meWcGUUQ2Ovee9mX7upVFvIzwIeFUslW9m9GuMFoI/YM3rU7IhFcNtyLdYuvI0h6HSVXtDY/APPz8+Hi4mKxlEWaMg1TA+ywRNsfggDcdht8C07hoRn50GqZd8gWdFIW1i6VXKq6hIrmAQbcmUIqZVaToyPzABQUIDaWLcPbki3eU4+wp5TF15lfI60yzc6dt5DgYCbQd/Uqi6uqrtbvEotZLsKePdbJRpWXl6O1oxXRE2zTQvXxYV2y1lA1iljMrJS772YP4v37jSt2A3ho1hI8tXqqRY4enTc8Li5uwNJgi6aFYY70l7Y7X9zc2DKuLlHj4kWLLlhjY/8xb3l5eXB3d4efnx8Whi+0TonACIIAHDxo5WRAEFhIzIMPMtezUsk8qkQQi8TmZW5uUFNj2pBqbGxEWVmZRd7wEIXlyh5aLXNwW4SbGzMYp0xhAbUXLti0lCGRGM8K1917IiMjbZrE9XfOfnPNBIF5xaOj2eT0++9tT9cH+1n3uFXdVHCD0UYKCwstlrIYFgQBormz4T7eC51J+7Dzb1VWrzq0trbiypUrVhlSG6ZsgJODfctvmcTZGbj3XkhixsP57FE0FNdj3z7rdSnNSVmYI7Mq0z7xi+YICWFeDjc3oKQEAa4tWLjQqrh8AN1SFr31CLNrsjHBaxhqEvZkwgTgrrtYsJdKpQ9K8vBgjtbaWstWk7q6unD60mnUymotFnY2xvjxrAt2C24Xi1lsY3w8y9jq7OzzQH7l0CsACHv29L8knp+fD7lcblAO1VZ+LPgRHdIKnDgxwAOFhrK1UJGIeeP6cW/5+jJnj6nr2tTUhJKSEr2MTkNHg+ma9FYQE2Oj8LKDA5tJBAayZdydO+FS24wpflP6fWt0dF+xdMD0JM4YRIQnpj1hcXeDg20watzd2erNtGlAWhpztVuhPu7tbTzks7y8HO3t7QPyhpvCy8vK+31YGLufTprEvoCHD1sYp2B4zqGuMDNS4AajDdgiZTFsiESIem4FVgWno76w1pSDwyhZWVkIDg62WMoipyYHXUNclkqnySXcOgML1Sm4RV6Izk7LK3j0J2VhjiemP4Fo70Go6tMbBwdmcMhkQFISAq9n4I472GquJfJx5rzhs4NnQ+5ohXjuYOHmxrxxDQ1sLTonByDSF8fZtav/Fc/CwkLUUi1mRMwYcHf8/Vk+gF2TSUNCmKdKq2VGVY+DC4IABwcBy5ezZ5gpWlpabPKGmyK7JhuTxrtBLLZDhSGdsPlDDzHj4/Bhk9kXggAsWmT8mvYssaorwPBjwY8D7BwjPp5JwAyI+fOB1auRUnEc+Zd+6tc49vJi8bG9USqVaGlpsUiPsFndjL+ctlxcXyK5UV7aFsNGEJjROG8eM47b2y2KcRSJWOnLnue0NqTJWhwcgIQEK9+kq5Lg78/Cf/buZTOXfhKcdCgUTC/3ZoQbjDZgi5TFsOLoCI/1yxExzQOn3j6Ooz809vtwqKmpQU1NjVWG1NGSo0PnXeyNqyuwdi2C54Wh/dhZ7PpnS79JnAOpzqPWqLH12FaLgtDthp8fmx37+kKoKEeUVx0OHzYTw3MDU1IWTaomjPewrCbvkOHnxwyO5ma2dlhfj+BgppVozjPU1taGwsJCrJ271i6akoLAlsQFYRC8CVIpW8bNzwdqa6HpaMeqCasAsOHfeadpL6NuEtezeMFAcJO6wdfFF4sXWy8ybRKJhL1mz2ZL1JcuGf0Qg4KY/mXvJeKqqio0NjbqveGqLpXdsvgdHVnoyoALHcjlqJVq4eUXzpY3Dx0y2/zsWcPJnUajweXLl/stsaqjSdVkkaROT06cGFhlHfj4sOQYXZzq/v39GlWHDxvmQFlTYtVW9uwZgDxoeDhbxnB0ZAc6cMAib8O+fTaeb5TDDUYr0ekR2jt4d0gQibD05anwyD6FwnP1Jh+EOkPKGj1CALjedh0x3tZ76uzGjXgjj9nRWO+6H8XHrprVqbVEysIUOTU5CFMMQVWf3ohEbGbs4gLnnw9iXfhZuLqadgDopCyMVci4VHkJWTXDUJC8PyQSprSsUrGgsxMnMC60C5Mmsbh8Y9czOzsbgYGB+CLvC7t1w9GRrbR+++0gVB9zcmIJB56eqPphB8blVumX4h0c2Mp172taXV2N69evIzbW+vKBprh/4v36SU9xsZ09qnI5s7rj41la9OHDfdagpVLDKizGJnGOYkdsXbjVbt0KCOhV+cVGVkSuQGBwLJOpWbCACYgePGg0TjUkxHDCU1hYCEdHR4v1CJ0lzlgUsciq/oWEWKUlbxqFArj/fqZCLhazeBgTRlVgYLdT2doSq7bi7W1QLMs2RCI2iYuPZ0vUeXlmvao8S3oYOHHiBO666y4EBgZCEAT88MMPBvuJCFu3bkVgYCBkMhkWLlyIrCzDB5xKpcJzzz0Hb29vuLi4YPXq1SjvpS1VX1+PDRs2QKFQQKFQYMOGDWiwUUYgOzt7QFIWw46bG255dSUmzHDD7j9cQHlB3+wJW/QIOzWdeHX+q0PrcTOFuzukG9Yi4QFfXNmbhX2JLX28GJZKWZhjQdgCO3TWRm4E+Ekiw+CjrcK/D9Ti5Mm+xlROTg78/PyM6hFm12QjzncEr63I5UyI0scH0GohKi+FXM4ScnuOs7a2FpWVlYiNjUVpYymkDv3omFiBSMRs1337BiluSRDw7yneuCrvYk/aujoIIKxcycapo6chJe1Pp8VCurRd2HZqm/7vhATbE8fMIghMSyciggWGqlT6wLPJkw31VI1V58mszsSxkmN2605EhH2qdWRWZXavqDg5MZdpTEy3y6vHTUcnDwh0hzTFx8dbbEi1d7bD3cndqv6FhLDIALvh789mMxMmAD/+yJY2ev0owsOZfQkwb3hQUJDFJVZtZeJE9vHbhaAgNk6Fgk1wjh832mzaNDudb5QxrE/31tZWTJkyBR988IHR/du2bcO7776LDz74AOfOnYO/vz+WLl2K5h6zm82bNyMpKQmJiYk4efIkWlpasGrVKmh6RMI+9NBDSE9PR3JyMpKTk5Geno4NGzbY1GeVSjUowbtDyo24vxWPBeDM386iPLN7DaGnlIU1htTPpT9jb/7eweitbQgCIJMhckEAYq79hJS/G65PWyplYQoNaYY/WUQQ9N7GpY7HgfPnUKnsvoHrpCxMZWCui1uHaK8hiMEcCDpNNZEIyM3F9Ku7EOLVpg+p0CUOTJgwAU5OThZlrVpLRASzdwYc42eCksarCJ98G3vaFhUBX38NT5USd9/dnQ1fUlICItJX57EHymYlAuTdiTNOTqyokrWVWCxm/HhW7rO6msVw5uRALCIsXMg8RB0dHcjLy+tz7ylrLINEZD8lCpGIOZKsyOcwyqmyU303hoWxJU6AxeKmpgJdXRCJmPettdW2kKaMqgwU1lkXM+DoyByCdp/oBAeziVxEBPM2pqToE0cUCvbf69evo7q62q7ecFN4eAz8WvbB3595VefOZSnuSUkGsao64/+mg0YIACgpKUn/t1arJX9/f3rnnXf02zo6OkihUNBHH31EREQNDQ0kkUgoMTFR36aiooJEIhElJycTEVF2djYBoNTUVH2bM2fOEADKzc21uH+NjY1Wv2c0oO1QkUbVSUfeyyRVWxdlZGTQ6dOnSavVWnWct39+m8oaywaplwNEqyVtYxNl7CqgkoxGamhooD179lBzc7NNh9NoNfT8j8/buZN2oKqK1FV1tPdTJanVWjp+/Djl5OQYbarVaumvp/86xB20A5WVRK2tdP7bIrp4rotKSkooJSWFurq6qLGjkWrbagft1AcOEBUX2/+49e311KXp6t7Q3MxOVF5OOz9rJ6VSRfv376fKykq7nre2rZZyawzvZ11dRJ9/TqRS2fVUfVGric6fJ1KpqKOwjL78kujixTQ6e/Zsn6aHig5R/vV8u57++nWiPXsGdowXD75ovoFWS5SRwb6z5eWUlamhw4cbaO/evdTW1mbVuRIzE+l06Wmr+5iSQqRUWv026ygpITp3jqihgai1lXbs0NKRIz9Rfr59r5kpOjuJepgAg8P160T797OTVVfTxYvMHmhsbBzkE48s7J+2ZCeKi4tRWVmJZcuW6bdJpVIkJCTg9OnTeOqpp3DhwgV0dnYatAkMDERcXBxOnz6N5cuX48yZM1AoFJjVQ/p+9uzZUCgUOH36dB+ZER0qlQqqHgG+jTeE2RwdHVFr75p0IwCPoHb87y9/hPu8eiSsug11Vk7ZJrpMhKxTNqI/G69ILQ7+vxPo8mlF3F2hfa6xpRTVF8HfwX/kjVUsBlTtCGi7gP/3OBCyUoXo6Gij/SxvLkdjQ+PIG0N/ODgAbW0I8y7Fvo8y0BHRhtvuuQUNDQ1ILkqGzEGGhDBr0yYtY8oUYNcuAatWEfpRQbGKjy58hKenP2240dUVqKrCzNpk/OO1IMxY6wAHBwe7Xq+M6gz4OvuiVjA8ZkwMcOCAgPnzB1k7JDwcqKmBcO4kxGclSK3WYtUDs/uMMUgcBHdyt/t3taJCQGUly8S3hd9N+13/fdLp12ZlwePSbnydOx6rH/dFW1sb2qyQrJjlOQsSscTqz0ChADIyBEgkg3gt5XL2qqiA8PPPaMsOQMV0EeLiFEN2f2loEFBbO8jf11mzgOvXIfz0E7TFzA1PN5u+znBbrDrQy8N46tQpAkAVFRUG7Z544glatmwZERF99dVX5Ojo2OdYS5cupSeffJKIiN58802Kiorq0yYqKoreeustk/3ZsmULAeAv/uIv/uIv/uIv/urzKioqssXcGbWMWA+jjt5BwWRBKbbebYy17+84r776Kn7zm9/o/25oaEBYWBhKS0vtJmkx0mhqakJISAjKysqsFrEeTdwM4+RjHDvcDOO8GcYI3BzjvBnG2NjYiNDQ0NEjrWcnRqzBqKvpW1lZaVDRoLq6Gn5+fvo2arUa9fX1BplY1dXVmDt3rr5NlZH6mDU1NfrjGEMqlRrNRlQoFGP2R6DDzc1tzI8RuDnGycc4drgZxnkzjBG4OcZ5M4zRVoWN0cqIHW1ERAT8/f1xqIcgqlqtxvHjx/XG4PTp0yGRSAzaKJVKXL58Wd9mzpw5aGxsxL971Pk6e/YsGhsb9W04HA6Hw+FwOKYZVg9jS0sLCnuUFyguLkZ6ejo8PT0RGhqKzZs346233kJUVBSioqLw1ltvwdnZGQ899BAA5u17/PHH8eKLL8LLywuenp546aWXMHnyZCxZsgQAEBsbixUrVuCJJ57Axx9/DAB48sknsWrVKpMJLxwOh8PhcDicbobVYDx//jwWLepWr9fFDG7cuBGff/45XnnlFbS3t+PXv/416uvrMWvWLKSkpOjriwLA9u3b4eDggLVr16K9vR2LFy/G559/DrFYrG/z1Vdf4fnnn9dnU69evdqk9qMppFIptmzZYjfR3JHIzTBG4OYYJx/j2OFmGOfNMEbg5hgnH+PYRSC62fLCORwOh8PhcDjWMGJjGDkcDofD4XA4IwNuMHI4HA6Hw+FwzMINRg6Hw+FwOByOWbjByOFwOBwOh8MxCzcYORwOh8PhcDhm4QajFahUKtxyyy0QBAHp6ekG+0pLS3HXXXfBxcUF3t7eeP7556FWq4enozawevVqhIaGwsnJCQEBAdiwYQOuXbtm0GY0j7GkpASPP/44IiIiIJPJMH78eGzZsqVP/0fzGHW8+eabmDt3LpydneHu7m60zVgY54cffoiIiAg4OTlh+vTp+Pnnn4e7SzZz4sQJ3HXXXQgMDIQgCPjhhx8M9hMRtm7disDAQMhkMixcuBBZWVnD01kbefvtt3HrrbfC1dUVvr6+WLNmDfLy8gzajIVx/u///i/i4+P1lU7mzJmDAwcO6PePhTH25u2334YgCNi8ebN+22gf59atWyEIgsFLV4EOGP3jswVuMFrBK6+8gsDAwD7bNRoN7rzzTrS2tuLkyZNITEzE999/jxdffHEYemkbixYtwrfffou8vDx8//33KCoqwv3336/fP9rHmJubC61Wi48//hhZWVnYvn07PvroI/z+97/XtxntY9ShVqvxwAMPYNOmTUb3j4VxfvPNN9i8eTNee+01pKWlYcGCBVi5ciVKS0uHu2s20draiilTppjUh922bRveffddfPDBBzh37hz8/f2xdOlSNDc3D3FPbef48eN45plnkJqaikOHDqGrqwvLli1Da2urvs1YGGdwcDDeeecdnD9/HufPn8ftt9+Ou+++W29MjIUx9uTcuXP45JNPEB8fb7B9LIxz0qRJUCqV+ldmZqZ+31gYn9UQxyJ+/PFHiomJoaysLAJAaWlpBvtEIhFVVFTot+3cuZOkUik1NjYOQ28Hzu7du0kQBFKr1UQ0Nse4bds2ioiI0P891sb42WefkUKh6LN9LIxz5syZ9PTTTxtsi4mJod/97nfD1CP7AYCSkpL0f2u1WvL396d33nlHv62jo4MUCgV99NFHw9BD+1BdXU0A6Pjx40Q0dsdJROTh4UF///vfx9wYm5ubKSoqig4dOkQJCQn0wgsvENHYuJZbtmyhKVOmGN03FsZnC9zDaAFVVVV44okn8OWXX8LZ2bnP/jNnziAuLs7A+7h8+XKoVCpcuHBhKLtqF+rq6vDVV19h7ty5kEgkAMbeGAGgsbERnp6e+r/H4hiNMdrHqVarceHCBX3lJh3Lli3D6dOnh6lXg0dxcTEqKysNxiuVSpGQkDCqx9vY2AgA+t/gWBynRqNBYmIiWltbMWfOnDE3xmeeeQZ33nmnvhSvjrEyzoKCAgQGBiIiIgLr16/HlStXAIyd8VkLNxj7gYjw6KOP4umnn8aMGTOMtqmsrISfn5/BNg8PDzg6OqKysnIoumkXfvvb38LFxQVeXl4oLS3F7t279fvGyhh1FBUV4f3338fTTz+t3zbWxmiK0T7O69evQ6PR9BmDn5/fqOi/tejGNJbGS0T4zW9+g/nz5yMuLg7A2BpnZmYm5HI5pFIpnn76aSQlJWHixIljaoyJiYm4ePEi3n777T77xsI4Z82ahX/+8584ePAgPv30U1RWVmLu3Lmora0dE+OzhZvWYDQW0Nr7df78ebz//vtoamrCq6++avZ4giD02UZERrcPFZaOUcfLL7+MtLQ0pKSkQCwW45FHHgH1qBw5FsYIANeuXcOKFSvwwAMP4Fe/+pXBvpE4RsC2cZpjpI7TGnr3dbT131rG0nifffZZZGRkYOfOnX32jYVxRkdHIz09Hampqdi0aRM2btyI7Oxs/f7RPsaysjK88MIL2LFjB5ycnEy2G83jXLlyJe677z5MnjwZS5Yswf79+wEAX3zxhb7NaB6fLTgMdweGi2effRbr16832yY8PBx/+tOfkJqa2qfI+IwZM/CLX/wCX3zxBfz9/XH27FmD/fX19ejs7OwzAxlKLB2jDm9vb3h7e2PChAmIjY1FSEgIUlNTMWfOnDEzxmvXrmHRokWYM2cOPvnkE4N2I3WMgPXjNMdIHqcleHt7QywW95nJV1dXj4r+W4suM7OyshIBAQH67aN1vM899xz27NmDEydOIDg4WL99LI3T0dERkZGRANiz4ty5c3jvvffw29/+FsDoH+OFCxdQXV2N6dOn67dpNBqcOHECH3zwgT77fbSPsycuLi6YPHkyCgoKsGbNGgBja3wWMSyRk6OIq1evUmZmpv518OBBAkD/+te/qKysjIi6kwiuXbumf19iYuKoSiLoTWlpKQGgo0ePEtHYGGN5eTlFRUXR+vXrqaurq8/+sTDGnvSX9DKaxzlz5kzatGmTwbbY2NgxnfTy5z//Wb9NpVKNugB7rVZLzzzzDAUGBlJ+fr7R/WNhnMa4/fbbaePGjWNmjE1NTQbPxczMTJoxYwY9/PDDlJmZOWbG2ZOOjg4KCgqi119/fUyOzxK4wWglxcXFfbKku7q6KC4ujhYvXkwXL16kw4cPU3BwMD377LPD11ErOHv2LL3//vuUlpZGJSUl9NNPP9H8+fNp/Pjx1NHRQUSjf4wVFRUUGRlJt99+O5WXl5NSqdS/dIz2Meq4evUqpaWl0euvv05yuZzS0tIoLS2NmpubiWhsjDMxMZEkEgn94x//oOzsbNq8eTO5uLhQSUnJcHfNJpqbm/XXCQC9++67lJaWRlevXiUionfeeYcUCgXt2rWLMjMz6cEHH6SAgABqamoa5p5bzqZNm0ihUNCxY8cMfn9tbW36NmNhnK+++iqdOHGCiouLKSMjg37/+9+TSCSilJQUIhobYzRGzyxpotE/zhdffJGOHTtGV65codTUVFq1ahW5urrq7zGjfXy2wA1GKzFmMBKxh/Sdd95JMpmMPD096dlnn9UbWyOdjIwMWrRoEXl6epJUKqXw8HB6+umnqby83KDdaB7jZ599RgCMvnoymseoY+PGjUbHqfMWE42Ncf7P//wPhYWFkaOjI02bNk0vzzIaOXr0qNFrtnHjRiJi3rctW7aQv78/SaVSuu222ygzM3N4O20lpn5/n332mb7NWBjnL3/5S/330sfHhxYvXqw3FonGxhiN0dtgHO3jXLduHQUEBJBEIqHAwEC69957KSsrS79/tI/PFgSiHlkNHA6Hw+FwOBxOL27aLGkOh8PhcDgcjmVwg5HD4XA4HA6HYxZuMHI4HA6Hw+FwzMINRg6Hw+FwOByOWbjByOFwOBwOh8MxCzcYORwOh8PhcDhm4QYjh8PhcDgcDscs3GDkcDicEUZeXh78/f3R3Nxsss3nn38Od3f3oetUD/bt24epU6dCq9UOy/k5HM7Qww1GDodjloULF2Lz5s3D3Y0hYevWrbjllluGuxt47bXX8Mwzz8DV1XVYzn/06FHccccd8PLygrOzMyZOnIgXX3wRFRUVAIBVq1ZBEAR8/fXXw9I/Docz9HCDkcPhjHnUavWQno+I0NXVZdN7y8vLsWfPHjz22GN27pVlfPzxx1iyZAn8/f3x/fffIzs7Gx999BEaGxvx17/+Vd/usccew/vvvz8sfeRwOMPAMJcm5HA4IxhjdamLi4uJiCgrK4tWrlxJLi4u5OvrSw8//DDV1NTo35uQkEDPPvssvfDCC+Tu7k6+vr708ccfU0tLCz366KMkl8tp3Lhx9OOPP+rfo6upvG/fPoqPjyepVEozZ86kjIwMg36dOnWKFixYQE5OThQcHEzPPfcctbS06PeHhYXRG2+8QRs3biQ3Nzd65JFHiIjolVdeoaioKJLJZBQREUH/+Z//SWq1moiM1xv/7LPPjNaPr6+vN6jPret3cnIyTZ8+nSQSCf3000+k1Wrpz3/+M0VERJCTkxPFx8fTd999Z/Yz/+tf/0ozZszos/2zzz6jkJAQkslktGbNGvrv//5vUigUBm327NlD06ZNI6lUShEREbR161bq7OzU78/JyaF58+aRVCql2NhYOnToEAGgpKQkIiIqKysjR0dH2rx5s9G+1dfX6/9fUlJCAKioqMjseDgcztiAG4wcDsckDQ0NNGfOHHriiSdIqVSSUqmkrq4uunbtGnl7e9Orr75KOTk5dPHiRVq6dCktWrRI/96EhARydXWlN954g/Lz8+mNN94gkUhEK1eupE8++YTy8/Np06ZN5OXlRa2trUTUbXjFxsZSSkoKZWRk0KpVqyg8PFxv2GVkZJBcLqft27dTfn4+nTp1iqZOnUqPPvqo/txhYWHk5uZGf/nLX6igoIAKCgqIiOiNN96gU6dOUXFxMe3Zs4f8/Pzoz3/+MxERtbW10YsvvkiTJk3Sj7Wtrc0qgzE+Pp5SUlKosLCQrl+/Tr///e8pJiaGkpOTqaioiD777DOSSqV07Ngxk5/53XffTU8//bTBttTUVBIEgd5++23Ky8uj9957j9zd3Q0MxuTkZHJzc6PPP/+cioqKKCUlhcLDw2nr1q1ERKTRaCg6OpqWLl1K6enp9PPPP9PMmTMNDMZ3332XANC1a9cs+n74+vrS559/blFbDoczuuEGI4fDMUtCQgK98MILBtv+67/+i5YtW2awraysjABQXl6e/n3z58/X7+/q6iIXFxfasGGDfptSqSQAdObMGSLqNrwSExP1bWpra0kmk9E333xDREQbNmygJ5980uDcP//8M4lEImpvbyciZjCuWbOm37Ft27aNpk+frv97y5YtNGXKFIM21hiMP/zwg75NS0sLOTk50enTpw2O9/jjj9ODDz5osk9TpkyhP/7xjwbbHnzwQVqxYoXBtnXr1hkYjAsWLKC33nrLoM2XX35JAQEBRER04MABcnBwIKVSqd/f28O4adMmcnNzM9m33kydOlVvkHI4nLGNwxCtfHM4nDHEhQsXcPToUcjl8j77ioqKMGHCBABAfHy8frtYLIaXlxcmT56s3+bn5wcAqK6uNjjGnDlz9P/39PREdHQ0cnJy9OcuLCzEV199pW9DRNBqtSguLkZsbCwAYMaMGX369q9//Qt/+9vfUFhYiJaWFnR1dcHNzc3q8Zui5zmzs7PR0dGBpUuXGrRRq9WYOnWqyWO0t7fDycnJYFtOTg7uueceg21z5sxBcnKy/u8LFy7g3LlzePPNN/XbNBoNOjo60NbWhry8PISEhMDf31+/f+bMmQbHJCIIgmDBSBkymQxtbW0Wt+dwOKMXbjByOByr0Wq1uOuuu/DnP/+5z76AgAD9/yUSicE+QRAMtumME0vkWXq2feqpp/D888/3aRMaGqr/v4uLi8G+1NRUrF+/Hq+//jqWL18OhUKBxMREg0QOY4hELDeQiPTbOjs7jbbteU7dmPbv34+goCCDdlKp1OT5vL29UV9fb7Ct57lNodVq8frrr+Pee+/ts8/JyckiY3DChAlobGyEUqk0uI6mqKurg4+PT7/tOBzO6IcbjBwOxyyOjo7QaDQG26ZNm4bvv/8e4eHhcHCw/20kNTVVb/zV19cjPz8fMTEx+nNnZWUhMjLSqmOeOnUKYWFheO211/Tbrl69atDG2Fh1BpFSqdR7BtPT0/s938SJEyGVSlFaWoqEhASL+zl16lRkZ2f3OVZqaqrBtt5/T5s2DXl5eSY/l5iYGJSWlqKqqkrv2T137pxBm/vvvx+/+93vsG3bNmzfvr3PMRoaGvTajx0dHSgqKjLrLeVwOGMHbjByOByzhIeH4+zZsygpKYFcLoenpyeeeeYZfPrpp3jwwQfx8ssvw9vbG4WFhUhMTMSnn34KsVg8oHP+8Y9/hJeXF/z8/PDaa6/B29sba9asAQD89re/xezZs/HMM8/giSeegIuLC3JycnDo0CGzMi+RkZEoLS1FYmIibr31Vuzfvx9JSUl9xlpcXIz09HQEBwfD1dUVMpkMs2fPxjvvvIPw8HBcv34d//mf/9nvGFxdXfHSSy/hP/7jP6DVajF//nw0NTXh9OnTkMvl2Lhxo9H3LV++HL/61a+g0Wj0n+Pzzz+PuXPnYtu2bVizZg1SUlIMlqMB4A9/+ANWrVqFkJAQPPDAAxCJRMjIyEBmZib+9Kc/YenSpRg/fjw2btyIbdu2obm5WW886zyPISEh2L59O5599lk0NTXhkUceQXh4OMrLy/HPf/4Tcrlc75FNTU2FVCo1CB/gcDhjmGGNoORwOCOevLw8mj17NslkMgNZnfz8fLrnnnvI3d2dZDIZxcTE0ObNm0mr1RKR8WSZsLAw2r59u8E29Ei60CWP7N27lyZNmkSOjo506623Unp6usF7/v3vf9PSpUtJLpeTi4sLxcfH05tvvmn2PEREL7/8Mnl5eZFcLqd169bR9u3bDRJHOjo66L777iN3d3e9rA4RUXZ2tv4zuOWWWyglJcVo0ktP2RkiIq1WS++99x5FR0eTRCIhHx8fWr58OR0/ftzk593V1UVBQUGUnJxssP0f//gHBQcHk0wmo7vuusuorE5ycjLNnTuXZDIZubm50cyZM+mTTz7R79fJ6jg6OlJMTAzt3btXLwfUk0OHDtHy5cvJw8ODnJycKCYmhl566SWD7Oknn3ySnnrqKZPj4HA4YwuByILgGA6HwxkCjh07hkWLFqG+vn7Yyt6NBD788EPs3r0bBw8eHNTznDp1CvPnz0dhYSHGjx9v8ftqamoQExOD8+fPIyIiYhB7yOFwRgp8SZrD4XBGGE8++STq6+vR3Nxs1/KASUlJkMvliIqKQmFhIV544QXMmzfPKmMRAIqLi/Hhhx9yY5HDuYngBiOHw+GMMBwcHAySc+xFc3MzXnnlFZSVlcHb2xtLlizpN0vcGDNnzuwjycPhcMY2fEmaw+FwOBwOh2MW0XB3gMPhcDgcDoczsuEGI4fD4XA4HA7HLNxg5HA4HA6Hw+GYhRuMHA6Hw+FwOByzcIORw+FwOBwOh2MWbjByOBwOh8PhcMzCDUYOh8PhcDgcjlm4wcjhcDgcDofDMQs3GDkcDofD4XA4ZuEGI4fD4XA4HA7HLNxg5HA4HA6Hw+GYhRuMHA6Hw+FwOByzcIORw+FwOBwOh2MWbjByOBwOh8PhcMzCDUYOh8PhcDgcjlm4wcjhcDgcDofDMQs3GDkcDofD4XA4ZuEGI4fD4XA4HA7HLNxg5HA4HA6Hw+GYhRuMHA6Hw+FwOByzcIORw+FwOBwOh2MWbjByOBwOh8PhcMzCDUYOh8PhcDgcjlm4wcjhcDgcDofDMQs3GDkcDofD4XA4ZuEGI4fD4XA4HA7HLNxg5HA4HA6Hw+GYhRuMHA6Hw+FwOByzcIORw+FwOBwOh2MWbjByOBwOh8PhcMzCDUYOh8PhcDgcjlm4wcjhcDgcDofDMQs3GDkcDofD4XA4ZuEGI4fD4XA4HA7HLNxg5HA4HA6Hw+GYhRuMHA6Hw+FwOByzcIORw+FwOBwOh2MWbjByOBwOh8PhcMzCDUYOh8PhcDgcjln+P/0YiPjGkXxxAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# make figure and `SkewT` object\n", - "fig = plt.figure(figsize=(8,12))\n", - "skewt = SkewT(fig=fig)\n", - "skewt.ax.set_ylim(1000, 10)\n", - "\n", - "# plot sounding data\n", - "skewt.plot(p, T, 'r') # air temperature\n", - "skewt.plot(p, Td, 'b') # dew point\n", - "skewt.plot_barbs(p[::5], u[::5], v[::5]) # add a wind barb every fifth level\n", - "\n", - "# add dry adiabats, moist adiabats, and mixing ratio lines\n", - "skewt.plot_dry_adiabats(linewidth=0.5)\n", - "skewt.plot_moist_adiabats(linewidth=0.5)\n", - "skewt.plot_mixing_lines(linewidth=0.5)\n", - "\n", - "# add axis and figure titles\n", - "plt.title(df['station'][0] + ' ' + df['time'][0])\n", - "plt.xlabel('temperature (degC)')\n", - "plt.ylabel('pressure (hPa)')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Here, we've made the following changes:\n", - "- changed the figsize to `figsize=(8,12)`\n", - "- removed the `rotation` kwarg from the `SkewT` object to allow the upper air temp and dew point lines to be seen without being cut off or expanding the x-axis limits\n", - "- `skewt.ax.set_ylim(1000, 10)`: sets the y-axis limits to 1000 hPa at the bottom and 10 hPa at the top to include the entire sounding\n", - "- `skewt.plot_barbs(p[::5], u[::5], v[::5])`: plots every fifth wind barb to reduce clutter\n", - "- reduced the linewidth of the dry adiabats, moist adiabats, and mixing ratio lines to 0.5\n", - "- added axes labels\n", - "- added a title including the station name and date of the sounding pulled from the data" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Summary\n", - "Skew-T plots are effective thermodynamic diagrams used in meteorology. MetPy's `SkewT` module provides a convenient way to make Skew-T plots in Python.\n", - "\n", - "### What's next?\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Resources and references\n", - "\n", - "- [Wyoming Upper Air](https://weather.uwyo.edu/upperair/)\n", - "- [Siphon](https://unidata.github.io/siphon/latest/examples/upperair/Wyoming_Request.html)\n", - "- [MetPy's SkewT documentation](https://unidata.github.io/MetPy/latest/api/generated/metpy.plots.SkewT.html)\n", - "- [NOAA's JetStream](https://www.noaa.gov/jetstream) [Skew-T Plot](https://www.noaa.gov/jetstream/upperair/skew-t-plots) Section" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "advanced-viz-cookbook", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.6" - }, - "orig_nbformat": 4 - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/_preview/21/_sources/notebooks/spagetti.ipynb b/_preview/21/_sources/notebooks/spagetti.ipynb deleted file mode 100644 index 57909ae..0000000 --- a/_preview/21/_sources/notebooks/spagetti.ipynb +++ /dev/null @@ -1,857 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Spagetti Plots" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Overview\n", - "Spagetti Plots are a tool typically used to visualize movement. Essentially they are many line plots displayed on the same axes. By drawing the same path at different times or from different forecasts, we can see the patterns and chaos associated with the plotted variable.\n", - "\n", - "1. Spagetti Hurricane Plot\n", - "1. Spagetti Contour Plot\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Prerequisites\n", - "\n", - "| Concepts | Importance | Notes |\n", - "| --- | --- | --- |\n", - "| [Matplotlib](https://foundations.projectpythia.org/core/matplotlib.html) | Necessary | |\n", - "| [Cartopy](https://foundations.projectpythia.org/core/cartopy.html) | Necessary | |\n", - "\n", - "- **Time to learn**: 50 minutes" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "---" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false, - "jupyter": { - "outputs_hidden": false - } - }, - "outputs": [], - "source": [ - "import numpy as np\n", - "import xarray as xr\n", - "import datetime\n", - "\n", - "import matplotlib as mpl\n", - "import matplotlib.pyplot as plt\n", - "import matplotlib.ticker as mticker\n", - "import matplotlib.pylab as pl\n", - "\n", - "import cartopy.crs as ccrs\n", - "import cartopy.feature as cfeature\n", - "\n", - "import geocat.viz as gv\n", - "import geocat.datafiles as gdf\n", - "\n", - "import tropycal.tracks as tracks\n", - "\n", - "import warnings\n", - "warnings.filterwarnings('ignore')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Spagetti Hurricane Plot\n", - "\n", - "Visualizing the predicted path of an incoming hurricane is both complicated and important. There are many plots that meteorologists are trained to read, but when shared with the public can be confusing or alarming. There are strengths and weaknesses to each hurricane visualization approach. The cone of uncertainty, for example, is often misinterpreted to suggest the hurricane growth in time rather than widening of path possibilities. Spagetti plots on the other hand, clearly show hurricane paths but show them as equal to each other.\n", - "\n", - "In this example we will plot some forecasted paths from the 2012 North-Atlantic storm Hurricane Sandy. Each forecast is from the Global Ensemble Forecast System (GEFS) provided by the National Centers for Environmental Prediction at NOAA.\n", - "\n", - "We'll use the package [`tropycal`](tropycal.github.io/tropycal/) to easily access HURDAT2 and IBTrACS reanalysis data and operational National Hurricane Center (NHC) Best Track data. `tropycal` has a lot of great features for real time hurricane visualization, but since this Cookbook is comparatively static we're using a past hurricane and only using this package to access the data. Our plotting will be done with `matplotlib` and `cartopy`." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Read in Data\n", - "\n", - "First, to grab our hurricane data from tropycal we need to specify a basin:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "basin = tracks.TrackDataset(basin='north_atlantic')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Find your storm by name and year:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "storm = basin.get_storm(('sandy',2012))\n", - "\n", - "sandy_ds = storm.to_xarray()\n", - "sandy_ds" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "And we can grab any of a number of forecasts:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "forecasts = storm.get_operational_forecasts()\n", - "print(forecasts.keys())" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Each key represents a forecast model, we'll select the GFS AP01 forecast which has many initializations. These initializations are named by time in YYYYMMDDHH format:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "forecasts_AP01 = forecasts['AP01']\n", - "print(forecasts_AP01.keys())" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Spagetti Plot of One Esemble Member\n", - "\n", - "Looking at GFS Ensemble Member Forecast AP01, we can make a spagetti plot of each of these initializations. The crux of the plot is that we need a for loop through each initialization:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Set up Cartopy Projection with land features\n", - "ax = plt.axes(projection=ccrs.PlateCarree())\n", - "ax.add_feature(cfeature.LAND, facecolor='lightgray')\n", - "\n", - "# Add Gridlines to right and bottom\n", - "gl = ax.gridlines(crs=ccrs.PlateCarree(), draw_labels=True,\n", - " linewidth=.25, color='gray', alpha=0.5, linestyle='--')\n", - "gl.xlabels_top = False\n", - "gl.ylabels_left = False\n", - "gl.xlabel_style = {'size': 8,}\n", - "gl.ylabel_style = {'size': 8,}\n", - "\n", - "# Spagetti Plot of AP01 forecasts\n", - "forecasts_AP01 = forecasts['AP01']\n", - "for i in forecasts_AP01:\n", - " # We're naming this line even though it is over-written each loop,\n", - " # so that we can reference the last line in the legend\n", - " # (as they all share the same formatting)\n", - " forecast_path = plt.plot(forecasts_AP01[i]['lon'],\n", - " forecasts_AP01[i]['lat'],\n", - " color='cornflowerblue',\n", - " linewidth=0.5)\n", - "\n", - "# Plot the real storm path in a thicker black line\n", - "true_path = plt.plot(sandy_ds.lon,\n", - " sandy_ds.lat,\n", - " color='k',\n", - " linewidth=1) # Make it thicker than the ensemble paths\n", - "\n", - "# Add a legend with only one forecast_path and the true_path\n", - "plt.legend([true_path[0], forecast_path[0]], ['True Path', 'GFS AP01 Forecasts'])\n", - "\n", - "plt.title('Hurricane Sandy (2012)');" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This plot is a great example of a spagetti plot, but is it super useful? Is it confusing? Each line looks like it carries the same weight, when some of these possible paths are from hours before Sandy hit the NorthEast and others are from days before.\n", - "\n", - "Maybe it is better to show the user some indication of how the forecast for this ensemble converged on the true path with later and later initialization times." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Spagetti Plot of One Esemble Member with Temporal Colormapping" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Set up Cartopy Projection with land features\n", - "ax = plt.axes(projection=ccrs.PlateCarree())\n", - "ax.add_feature(cfeature.LAND, facecolor='lightgray')\n", - "\n", - "# Add Gridlines to right and bottom\n", - "gl = ax.gridlines(crs=ccrs.PlateCarree(), draw_labels=True,\n", - " linewidth=.25, color='gray', alpha=0.5, linestyle='--')\n", - "gl.xlabels_top = False\n", - "gl.ylabels_left = False\n", - "gl.xlabel_style = {'size': 8,}\n", - "gl.ylabel_style = {'size': 8,}\n", - "\n", - "# Spagetti Plot of AP01 forecasts\n", - "forecasts_AP01 = forecasts['AP01']\n", - "\n", - "# Get time information from initialization name\n", - "format = '%Y%m%d%H'\n", - "times = [datetime.datetime.strptime(i, format) for i in list(forecasts_AP01.keys())]\n", - "normalized_times = [(i - times[0]) / (times[-1] - times[0]) for i in times]\n", - "\n", - "# Create a color list for forecast iteration\n", - "cmap = mpl.colors.ListedColormap(plt.cm.autumn_r(normalized_times))\n", - "\n", - "c = 0\n", - "for i in forecasts_AP01:\n", - " plt.plot(forecasts_AP01[i]['lon'],\n", - " forecasts_AP01[i]['lat'],\n", - " color=cmap(c),\n", - " linewidth=0.5)\n", - " c += 1\n", - "\n", - "# Plot the real storm path\n", - "true_path = plt.plot(sandy_ds.lon,\n", - " sandy_ds.lat,\n", - " color='red', # Selecting a color matching one of the cmap extremes\n", - " linewidth=1,\n", - " label='True Path') # The easiest way to add a plot to the legend is with the label kwarg\n", - "\n", - "# Add a legend with only one the true_path\n", - "# Forecasted paths will be shown in a colorbar\n", - "plt.legend()\n", - "\n", - "plt.title('Hurricane Sandy')\n", - "\n", - "# Add colorbar\n", - "cbar = plt.colorbar(plt.cm.ScalarMappable(cmap=cmap), ax=ax, orientation='horizontal', shrink=0.8, pad=0.075)\n", - "cbar.set_label('GFS AP01 Forecasts', labelpad=6)\n", - "\n", - "# Set tick locations and labels for every 4th tick\n", - "# i.e. once a day (a new initialiation every 6 hours)\n", - "tick_indices = range(0, len(times), 4)\n", - "cbar.set_ticks([normalized_times[i] for i in tick_indices])\n", - "cbar.set_ticklabels([times[i].strftime('%d') for i in tick_indices], fontsize=8)\n", - "cbar.ax.text(1.02, 0.5, 'OCT-2012', va='top', ha='left', transform=cbar.ax.transAxes);" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now we can see that as the storm progressed, the AP01 GFS Forecast Ensemble Member converges on Sandy's true path as the storm progresses through October, 2012." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Alternatively, we may want to plot the possible hurricane paths from multiple GFS Forecast Ensemble members from the same iteration timestamp as a spagetti plot." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Spagetti Plot of All Esemble Members at One Point in Time\n", - "\n", - "First, we need to grab all of the relevant forecast keys to GFS models (the ones that are titled `AP##` from 0 to 20):" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# List of valid AP## keys from 0 to 20\n", - "GFS_keys = ['AP' + str(i).zfill(2) for i in range(1, 21)]\n", - "\n", - "# Arbitrarily selected midnight on October 27, 2012 to plot all forecasts at\n", - "time = '2012102700'\n", - "\n", - "# Set up Cartopy Projection with land features\n", - "ax = plt.axes(projection=ccrs.PlateCarree())\n", - "ax.add_feature(cfeature.LAND, facecolor='lightgray')\n", - "\n", - "# Add Gridlines to right and bottom\n", - "gl = ax.gridlines(crs=ccrs.PlateCarree(), draw_labels=True,\n", - " linewidth=.25, color='gray', alpha=0.5, linestyle='--')\n", - "gl.xlabels_top = False\n", - "gl.ylabels_left = False\n", - "gl.xlabel_style = {'size': 8,}\n", - "gl.ylabel_style = {'size': 8,}\n", - "\n", - "# Spagetti Plot of forecasts\n", - "for i in range(20):\n", - " ap = forecasts[GFS_keys[i]]\n", - " forecast_path = plt.plot(ap[time]['lon'],\n", - " ap[time]['lat'],\n", - " color='cornflowerblue',\n", - " linewidth=0.5)\n", - "\n", - "# Plot the real storm path in a thicker black line\n", - "true_path = plt.plot(sandy_ds.lon, sandy_ds.lat, color='k', linewidth=1)\n", - "\n", - "# Add a legend with only one forecast_path and the true_path\n", - "plt.legend([true_path[0], forecast_path[0]],\n", - " ['True Path', 'AP01 - AP20'],\n", - " loc='lower right')\n", - "\n", - "plt.title('Hurricane Sandy - GFS Forecasts from Oct-27-2012');" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Hurricane Sandy hit the NorthEast on October 29, 2012. From this spagetti plot we can see that by the 27th most ensemble members of the GFS forecast predicted a similar behavior for the storm.\n", - "\n", - "There is more analysis that could be done on hurriane trajectories. We have covered some plotting customization that might be useful for your analysis and data visualization." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Spagetti Contour Plot" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In this example we will read in the geopotential height datafile `HGT500_MON_1958-1997.nc` from using geocat-datafiles. Then we will look at different timesteps of the `HGT` geopotential height variable at the 5500 gpm level, plotting this contour's locations through time. This example is adapted from [GeoCAT](https://geocat.ucar.edu/)'s [NCL_conOncon_5](https://geocat-examples.readthedocs.io/en/latest/gallery/Contours/NCL_conOncon_5.html) script." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Read in data:\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false, - "jupyter": { - "outputs_hidden": false - } - }, - "outputs": [], - "source": [ - "ds = xr.open_dataset(gdf.get(\"netcdf_files/HGT500_MON_1958-1997.nc\"),\n", - " decode_times=False)\n", - "\n", - "ds" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Initial Spagetti Plot on North Polar Stereographic Projection" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Set up Cartopy Map Projection\n", - "fig = plt.figure(figsize=(8, 8))\n", - "ax = plt.axes(projection=ccrs.NorthPolarStereo())\n", - "\n", - "gv.set_map_boundary(ax, [-180, 180], [0, 40], south_pad=1)\n", - "ax.add_feature(cfeature.LAND, facecolor='lightgray')\n", - "\n", - "# Set draw_labels to False so that we can manually manipulate it\n", - "gl = ax.gridlines(ccrs.PlateCarree(),\n", - " draw_labels=False,\n", - " linestyle=\"--\",\n", - " linewidth=1,\n", - " color='darkgray',\n", - " zorder=2)\n", - "\n", - "# Iterate through the 19 timesteps, plotting the data\n", - "n = 19\n", - "for x in range(n):\n", - "\n", - " # Get a slice of data at the 12*x timestep\n", - " p = ds.HGT.isel(time=12*x)\n", - "\n", - " # Use geocat-viz utility function to handle the no-shown-data artifact\n", - " # of 0 and 360-degree longitudes\n", - " slon = gv.xr_add_cyclic_longitudes(p, \"lon\")\n", - "\n", - " # Plot contour data at pressure level 5500 for the 12*x timestep\n", - " p = slon.plot.contour(ax=ax,\n", - " transform=ccrs.PlateCarree(),\n", - " linewidths=0.5,\n", - " levels=[5500],\n", - " colors='blue',\n", - " add_labels=False)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Adding Directional Labels to Polar Stereographic Projection\n", - "\n", - "Adding labels to a map projection that aren't lat/lon coordinates is less than intuitive. In this example we manually add labels and select their locations so that you can see NESW labels." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Generate a figure\n", - "fig = plt.figure(figsize=(8, 8))\n", - "\n", - "# Create an axis with a polar stereographic projection\n", - "ax = plt.axes(projection=ccrs.NorthPolarStereo())\n", - "\n", - "# Add land feature to map\n", - "ax.add_feature(cfeature.LAND, facecolor='lightgray')\n", - "\n", - "# Set map boundary to include latitudes between 0 and 40 and longitudes\n", - "# between -180 and 180 only\n", - "gv.set_map_boundary(ax, [-180, 180], [0, 40], south_pad=1)\n", - "\n", - "# Set draw_labels to False so that you can manually manipulate it later\n", - "gl = ax.gridlines(ccrs.PlateCarree(),\n", - " draw_labels=False,\n", - " linestyle=\"--\",\n", - " linewidth=1,\n", - " color='darkgray',\n", - " zorder=2)\n", - "\n", - "# Manipulate latitude and longitude gridline numbers and spacing\n", - "gl.ylocator = mticker.FixedLocator(np.arange(0, 90, 15))\n", - "gl.xlocator = mticker.FixedLocator(np.arange(-180, 180, 30))\n", - "\n", - "# Manipulate longitude labels (0, 30 E, 60 E, ..., 30 W, etc.)\n", - "ticks = np.arange(0, 210, 30)\n", - "etick = ['0'] + [\n", - " r'%dE' % tick for tick in ticks if (tick != 0) & (tick != 180)\n", - "] + ['180']\n", - "wtick = [r'%dW' % tick for tick in ticks if (tick != 0) & (tick != 180)]\n", - "labels = etick + wtick\n", - "xticks = np.arange(0, 360, 30)\n", - "yticks = np.full_like(xticks, -5) # Latitude where the labels will be drawn\n", - "for xtick, ytick, label in zip(xticks, yticks, labels):\n", - " if label == '180':\n", - " ax.text(xtick,\n", - " ytick,\n", - " label,\n", - " fontsize=12,\n", - " horizontalalignment='center',\n", - " verticalalignment='top',\n", - " transform=ccrs.Geodetic())\n", - " elif label == '0':\n", - " ax.text(xtick,\n", - " ytick,\n", - " label,\n", - " fontsize=12,\n", - " horizontalalignment='center',\n", - " verticalalignment='bottom',\n", - " transform=ccrs.Geodetic())\n", - " else:\n", - " ax.text(xtick,\n", - " ytick,\n", - " label,\n", - " fontsize=12,\n", - " horizontalalignment='center',\n", - " verticalalignment='center',\n", - " transform=ccrs.Geodetic())\n", - "\n", - "# Iterate through 18 different timesteps\n", - "for x in range(19):\n", - "\n", - " # Get a slice of data at the 12*x+1 timestep\n", - " p = ds.HGT.isel(time=12 * x + 1)\n", - "\n", - " # Use geocat-viz utility function to handle the no-shown-data artifact\n", - " # of 0 and 360-degree longitudes\n", - " slon = gv.xr_add_cyclic_longitudes(p, \"lon\")\n", - "\n", - " # Plot contour data at pressure level 5500 for the 12*x+1 timestep\n", - " p = slon.plot.contour(ax=ax,\n", - " transform=ccrs.PlateCarree(),\n", - " linewidths=0.5,\n", - " levels=[5500],\n", - " colors='blue',\n", - " add_labels=False)\n", - "\n", - "# Use geocat.viz.util convenience function to add titles\n", - "gv.set_titles_and_labels(ax,\n", - " maintitle=r\"$\\bf{Spaghetti}$\" + \" \" + r\"$\\bf{Plot}$\",\n", - " lefttitle=slon.long_name,\n", - " righttitle='5500 '+slon.units)\n", - "\n", - "# Make tight layout\n", - "plt.tight_layout()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now in this example, there isn't necessarily a temporal progression of geopotential height, but to be sure let's add a colormap component to each of our loops. \n", - "\n", - "This is also useful because for your data visualization application there might be, and the commands are slightly different for a contour plot as for a line plot in the above example." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Contour Spagetti Plot Temporal Colorbar Manipulation\n", - "\n", - "Let's update add a discrete colorbar that has yearly ticklabels. One challenge addressed in this example is setting the ticklabels to be in the center of each discrete color box." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Set up Cartopy Map Projection\n", - "fig = plt.figure(figsize=(8, 8))\n", - "ax = plt.axes(projection=ccrs.NorthPolarStereo())\n", - "\n", - "gv.set_map_boundary(ax, [-180, 180], [0, 40], south_pad=1)\n", - "ax.add_feature(cfeature.LAND, facecolor='lightgray')\n", - "\n", - "# Set draw_labels to False so that we can manually manipulate it\n", - "gl = ax.gridlines(ccrs.PlateCarree(),\n", - " draw_labels=False,\n", - " linestyle=\"--\",\n", - " linewidth=1,\n", - " color='darkgray',\n", - " zorder=2)\n", - "\n", - "# Manipulate latitude and longitude gridline numbers and spacing\n", - "gl.ylocator = mticker.FixedLocator(np.arange(0, 90, 15))\n", - "gl.xlocator = mticker.FixedLocator(np.arange(-180, 180, 30))\n", - "\n", - "# Manipulate longitude labels (0, 30 E, 60 E, ..., 30 W, etc.)\n", - "ticks = np.arange(0, 210, 30)\n", - "etick = ['0'] + [\n", - " r'%dE' % tick for tick in ticks if (tick != 0) & (tick != 180)\n", - "] + ['180']\n", - "wtick = [r'%dW' % tick for tick in ticks if (tick != 0) & (tick != 180)]\n", - "labels = etick + wtick\n", - "xticks = np.arange(0, 360, 30)\n", - "yticks = np.full_like(xticks, -5) # Latitude where the labels will be drawn\n", - "for xtick, ytick, label in zip(xticks, yticks, labels):\n", - " if label == '180':\n", - " ax.text(xtick,\n", - " ytick,\n", - " label,\n", - " fontsize=12,\n", - " horizontalalignment='center',\n", - " verticalalignment='top',\n", - " transform=ccrs.Geodetic())\n", - " elif label == '0':\n", - " ax.text(xtick,\n", - " ytick,\n", - " label,\n", - " fontsize=12,\n", - " horizontalalignment='center',\n", - " verticalalignment='bottom',\n", - " transform=ccrs.Geodetic())\n", - " else:\n", - " ax.text(xtick,\n", - " ytick,\n", - " label,\n", - " fontsize=12,\n", - " horizontalalignment='center',\n", - " verticalalignment='center',\n", - " transform=ccrs.Geodetic())\n", - "\n", - "# Create a color list for each of the 19 contours\n", - "n = 19\n", - "cmap = plt.get_cmap('winter_r', n) # the `, n` makes the colormap display discretized\n", - "bounds = np.linspace(0, 1, n)\n", - "\n", - "# Iterate through the timesteps\n", - "for x in range(n):\n", - "\n", - " # Get a slice of data at the 12*x timestep\n", - " p = ds.HGT.isel(time=12*x)\n", - "\n", - " # Handle wrapping artifacts\n", - " slon = gv.xr_add_cyclic_longitudes(p, \"lon\")\n", - "\n", - " # Plot contour data at pressure level 5500 for the 12*x timestep\n", - " p = slon.plot.contour(ax=ax,\n", - " transform=ccrs.PlateCarree(),\n", - " linewidths=0.5,\n", - " levels=[5500],\n", - " colors=[cmap(bounds)[x]], # set colors to use our new cmap\n", - " add_labels=False)\n", - "\n", - "# Add a colorbar\n", - "# The default time unit is in months since 1958, years is more intuitive\n", - "year_0 = 1958\n", - "year_n = (ds.time.isel(time=12*n) / 12).astype(int) + year_0\n", - "\n", - "norm = plt.Normalize(vmin=year_0, vmax=year_n)\n", - "cbar = plt.colorbar(plt.cm.ScalarMappable(cmap=cmap, norm=norm),\n", - " ax=ax,\n", - " orientation='vertical',\n", - " shrink=0.8, # Shrink to the approximate size of the map\n", - " pad = 0.1) # Pad so colorbar doesn't overlap with directional label\n", - "\n", - "cbar.set_ticks(np.arange(year_0+0.5, year_n)) # Set tick locations to be at color midpoints\n", - "cbar.set_ticklabels(np.arange(year_0, year_n)) # Set tick labels to be years (despite their location value being year + 0.5)\n", - "cbar.set_label('Time (years)')\n", - "\n", - "# Use geocat.viz.util convenience function to add titles\n", - "gv.set_titles_and_labels(ax,\n", - " maintitle=r\"$\\bf{Spaghetti}$\" + \" \" + r\"$\\bf{Plot}$\",\n", - " lefttitle=slon.long_name,\n", - " righttitle='5500 '+slon.units)\n", - "\n", - "# Make tight layout\n", - "plt.tight_layout();" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Contour Spagetti Plot with Hand-Picked Colors\n", - "\n", - "If you want your plot to be visually appealing it might be worth selecting different colors for each contour plot in the for-loop, however these do not have to be sequentially ordered or time-aware. It is actually simplest to hand-pick colors for each loop. In this iteration of the plot we hand pick colors and plot the first time step on its own to demonstrate plotting one loop unlike the others." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Generate a figure\n", - "fig = plt.figure(figsize=(8, 8))\n", - "\n", - "# Create an axis with a polar stereographic projection\n", - "ax = plt.axes(projection=ccrs.NorthPolarStereo())\n", - "\n", - "# Add land feature to map\n", - "ax.add_feature(cfeature.LAND, facecolor='lightgray')\n", - "\n", - "# Set map boundary to include latitudes between 0 and 40 and longitudes\n", - "# between -180 and 180 only\n", - "gv.set_map_boundary(ax, [-180, 180], [0, 40], south_pad=1)\n", - "\n", - "# Set draw_labels to False so that you can manually manipulate it later\n", - "gl = ax.gridlines(ccrs.PlateCarree(),\n", - " draw_labels=False,\n", - " linestyle=\"--\",\n", - " linewidth=1,\n", - " color='darkgray',\n", - " zorder=2)\n", - "\n", - "# Manipulate latitude and longitude gridline numbers and spacing\n", - "gl.ylocator = mticker.FixedLocator(np.arange(0, 90, 15))\n", - "gl.xlocator = mticker.FixedLocator(np.arange(-180, 180, 30))\n", - "\n", - "# Manipulate longitude labels (0, 30 E, 60 E, ..., 30 W, etc.)\n", - "ticks = np.arange(0, 210, 30)\n", - "etick = ['0'] + [\n", - " r'%dE' % tick for tick in ticks if (tick != 0) & (tick != 180)\n", - "] + ['180']\n", - "wtick = [r'%dW' % tick for tick in ticks if (tick != 0) & (tick != 180)]\n", - "labels = etick + wtick\n", - "xticks = np.arange(0, 360, 30)\n", - "yticks = np.full_like(xticks, -5) # Latitude where the labels will be drawn\n", - "for xtick, ytick, label in zip(xticks, yticks, labels):\n", - " if label == '180':\n", - " ax.text(xtick,\n", - " ytick,\n", - " label,\n", - " fontsize=12,\n", - " horizontalalignment='center',\n", - " verticalalignment='top',\n", - " transform=ccrs.Geodetic())\n", - " elif label == '0':\n", - " ax.text(xtick,\n", - " ytick,\n", - " label,\n", - " fontsize=12,\n", - " horizontalalignment='center',\n", - " verticalalignment='bottom',\n", - " transform=ccrs.Geodetic())\n", - " else:\n", - " ax.text(xtick,\n", - " ytick,\n", - " label,\n", - " fontsize=12,\n", - " horizontalalignment='center',\n", - " verticalalignment='center',\n", - " transform=ccrs.Geodetic())\n", - "\n", - "# Get slice of data at the 0th timestep - plot this contour line separately\n", - "# because it will be thicker than the other contour lines\n", - "p = ds.HGT.isel(time=0)\n", - "\n", - "# Use geocat-viz utility function to handle the no-shown-data\n", - "# artifact of 0 and 360-degree longitudes\n", - "slon = gv.xr_add_cyclic_longitudes(p, \"lon\")\n", - "\n", - "# Plot contour data at pressure level 5500 at the first timestep\n", - "p = slon.plot.contour(ax=ax,\n", - " transform=ccrs.PlateCarree(),\n", - " linewidths=1.5,\n", - " levels=[5500],\n", - " colors='black',\n", - " add_labels=False)\n", - "\n", - "# Create a color list for each of the next 18 contours\n", - "colorlist = [\n", - " \"crimson\", \"green\", \"blue\", \"yellow\", \"cyan\", \"hotpink\", \"crimson\",\n", - " \"skyblue\", \"navy\", \"lightyellow\", \"mediumorchid\", \"orange\", \"slateblue\",\n", - " \"palegreen\", \"magenta\", \"springgreen\", \"pink\", \"forestgreen\", \"violet\"\n", - "]\n", - "\n", - "# Iterate through 18 different timesteps\n", - "for x in range(18):\n", - "\n", - " # Get a slice of data at the 12*x+1 timestep\n", - " p = ds.HGT.isel(time=12 * x + 1)\n", - "\n", - " # Use geocat-viz utility function to handle the no-shown-data artifact\n", - " # of 0 and 360-degree longitudes\n", - " slon = gv.xr_add_cyclic_longitudes(p, \"lon\")\n", - "\n", - " # Plot contour data at pressure level 5500 for the 12*x+1 timestep\n", - " p = slon.plot.contour(ax=ax,\n", - " transform=ccrs.PlateCarree(),\n", - " linewidths=0.5,\n", - " levels=[5500],\n", - " colors=colorlist[x],\n", - " add_labels=False)\n", - "\n", - "# Use geocat.viz.util convenience function to add titles\n", - "gv.set_titles_and_labels(ax,\n", - " maintitle=r\"$\\bf{Spaghetti}$\" + \" \" + r\"$\\bf{Plot}$\",\n", - " lefttitle=slon.long_name,\n", - " righttitle='5500 '+slon.units)\n", - "\n", - "# Make tight layout\n", - "plt.tight_layout()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "---" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Summary\n", - "\n", - "Spagetti Plots are many lines drawn on the same figure. They have pros and cons. They are visually stunning but can be confusing, so it is important to make sure your data visualization conveys accurate information either by manipulating color or linewidth. Since the manipulation of spagetti plots have their own considerations, this chapter shows several design choices that you can use to jumpstart your visualization needs.\n", - "\n", - "\n", - "### What's next?\n", - "\n", - "Next up let's discuss elements of [Visualization of Unstructured Grids](uxarray)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Resources and references\n", - "\n", - "- [Tropycal documentation](https://tropycal.github.io/tropycal/)\n", - "- [GeoCat-examples Visualization Gallery](https://geocat-examples.readthedocs.io/en/latest/)\n", - "- [GeoCAT-Viz documentation](https://geocat-viz.readthedocs.io/en/latest/)\n" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.12" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/_preview/21/_sources/notebooks/taylor-diagrams.ipynb b/_preview/21/_sources/notebooks/taylor-diagrams.ipynb deleted file mode 100644 index f73c473..0000000 --- a/_preview/21/_sources/notebooks/taylor-diagrams.ipynb +++ /dev/null @@ -1,320 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Taylor Diagrams" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Overview\n", - "\n", - "Taylor diagrams are a \"concise statistical summary of how well patterns match each other in terms of their correlation, their root-mean-square difference and the ratio of their variances\". Taylor diagrams plot the weighted centered pattern correlations, the ratios of the normalized root-mean-squared differences between the test and reference data sets, and optionally a bias statistic. This notebook explores how to create and customize Taylor diagrams using `geocat-viz`.\n", - "\n", - "1. Creating a Simple Taylor Diagram\n", - "1. Displaying Distinct Datasets\n", - "1. Finishing Touches\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Prerequisites\n", - "\n", - "| Concepts | Importance | Notes |\n", - "| --- | --- | --- |\n", - "| [Matplotlib](https://foundations.projectpythia.org/core/matplotlib.html) | Necessary | |\n", - "\n", - "- **Time to learn**: 50 minutes" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "---" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "collapsed": false, - "jupyter": { - "outputs_hidden": false - } - }, - "outputs": [], - "source": [ - "import matplotlib.pyplot as plt\n", - "import numpy as np\n", - "\n", - "import geocat.viz as gv" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\"Generally, the plotted values are derived from climatological monthly, seasonal or annual means. Because the different variables (eg: precipitation, temperature) may have widely varying numerical values, the results are normalized by the reference variables. The ratio of the normalized variances indicates the relative amplitude of the model and observed variations.\" - from NCL" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Creating a Simple Taylor Diagram" - ] - }, - { - "cell_type": "code", - "execution_count": 39, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm4AAAIoCAYAAADQqWdiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzddViU6dcH8O8zdHeKYrcgoqBgYIu1oK66YHfu2rF2167drrGuwdqdKIKigh0rtiIqJd0wM+f9w3fmJ4qBDjPE+VzXXOIzT5wZEc7cz32fIxARgTHGGGOMFXoiVQfAGGOMMca+DSdujDHGGGNFBCdujDHGGGNFBCdujDHGGGNFBCdujDHGGGNFBCdujDHGGGNFBCdujDHGGGNFBCdujDHGGGNFBCdujDHGGGNFBCdujDHGGGNFBCdujDHGGGNFBCdujDHGGGNFBCdujDHGGGNFhLqqA2DfLjY2FocPH0ZISAiePHmChIQEZGRkQEdHByYmJqhUqRJcXV3RsWNHWFpaqjpcxhhjjCmYQESk6iDYl2VmZmLChAnYuHEjcnJy8KV/MkEQoKGhgYEDB2Lx4sXQ0dFRYqSMMcYYK0icuBVyWVlZaNKkCa5duwYiQtWqVeHu7o7y5cvDxMQEWlpayMrKQkJCAp4/f47g4GA8fPgQgiCgbt26uHjxIjQ1NVX9MhhjjDGmAHyrtJBbsmQJQkNDUaVKFWzZsgUNGjT46jGXL19Gv379cP36dSxevBhTp05VQqSfIiIQEQRBAAD5n187RhAEXL9+HbGxsWjYsCEMDAwKOlTGGGOsSOARt0KuRo0aePbsGZ48eYLSpUt/83Hh4eGoXLkyKlSogAcPHhRghN9PltjJCIIAsVgMDQ0NNGzYEJcvX8Z///2HatWqqTBKxhhjrPDgEbdC7sWLF6hZs2a+kjYAsLe3R82aNREWFlZAkX3dli1bYGpqCgsLC5iYmMDIyAgGBgbQ09ODmpoaBEH4ZBROQ0MDAJCYmAgAvMiCMcYY+wCPuBVylpaW0NbWxqtXr/J9bOnSpZGZmYnY2NgCiOzLEhMTYWtrCwsLCwCAgYEBjIyMYGJiAlNTU5iamsLMzAzm5uYwMzOTbzMxMYG+vj6qVq2KxMRESCQSpcfOGGOMFVY84lbINWjQAMeOHcPSpUsxZsyYbz7ujz/+wJs3b9ChQ4cCjO7zIiMjkZmZiZiYGJQtWxYJCQl48+YNMjIy5CtjBUGAuro6tLW1oaurC319fRgbG0NPTw8JCQnypI8xxhhj7/GIWyF35coVNG7cGFKpFK1bt0a/fv3g7u4OGxubT/aNjIxEcHAwNm/ejDNnzkAkEuHixYuoX7++0uO+du0aXF1dUbNmTfzxxx8QBAHx8fFITExEfHx8rkdCQgISExORlJSEtLQ0pKenIz09HbVq1cKdO3eUHvuHPlxcIfs78G0LLRhjjDFF4xG3Qq5BgwbYtm0bBgwYgFOnTuH06dMAAC0tLRgbG0NTUxPZ2dlITExEVlYWgPfJhaamJjZt2qSSpA14n9iUKlUKGhoaqFy5MsqWLZvreYlEgoyMDKSnpyM1NRUpKSmIj4+HVCqFv78/Fi1ahDJlyqgk9g/JVrjm5OSgWrVqMDY2VnVIjDHGSjBO3IoAX19fNGzYEIsXL8ahQ4fktyGjoqI+2dfa2hre3t4YP378J8mSMhkaGsLMzAz379/Hw4cPUbZsWYjFYqirv/+WU1NTg76+PvT19T9ZgBAXFwcAKo0fAG7fvo3ly5fj4sWLePHiBQDA1dUVo0ePRteuXb94rFQqBQCIRNxVjjHGmOJw4lZE2NvbY82aNVizZg1evXolb3mVmZkJbW1tecurwjBKBQClSpWCl5eXfNEB8PkkRnb7MScnB5qamnj06BEA1SZu9+/fx9ixYxEQEAANDQ2UL18ekZGRCAkJwaRJk5CSkoJ+/fp99pYpJ2yMMcYKAiduRVCZMmUKTYL2OXp6ehg5ciS6d+8uj/VzyYws+ZGNxmVnZwNAvkugKNLixYsREBCA5s2bo0+fPqhcuTISEhKwYcMGHDx4EKNHj4a1tTXatWsHiUQCNTU1+Z+7d+/GH3/8gYULF6Jly5Yqew2MMcaKH16cwAqd7OxsxMXFwdTUFFpaWkq/flJSEqytrWFkZIT79+/D3Nxc/ty7d+/w559/YtGiRbCxsUFoaChKlSolLyYsEokwZswYLF++HIcPH1bZql7GGGPFE9/PYYWOpqYmbGxsVJK0Ae9XxGZlZaFTp04wNzeXjwACgLm5OcaNG4eOHTsiMjISAwYMAPB+1FA2oijrVNGwYUPlB88YY6xY48StmPLx8UGzZs3QvHlzVYdS5Ny/fx/A+3ZjwPuFFB8yMzPD0qVLYW9vD39/fyxdulT+XFRUFMLCwmBrawsTExPlBc0YY6xE4MStmLpy5QouXLiACxcuqDqUIiclJQUAYGVlBeDTmm0SiQTly5fHokWLQERYunQpQkNDAQCPHj1CREQE6tWrp9ygGWOMlQi8OKGYGjVqlLzfZ1GRnZ2NN2/ewMjICMbGxipbmWlpaQlBEOStwj6OQ01NDWKxGF27dkVAQAA2bNiAWbNm4fjx47h37x4AwMPDQ9lhM8YYKwF4cQJTOVl3gps3b6Jz584gIrRt2xZr165VSTyXLl1C48aN4eTkhBs3bnx2PyJCSkoKWrRogevXr2P79u0IDAzE5s2bce3aNTg7OysxasYYYyUBj7ixQuPdu3fyDgqy25Wq4ObmhqtXr8pj+LjtlYwgCDA0NMTcuXPh4+ODXr16yUuY1K5dW5khM8YYKyF4xK0IkUgkCAgIQEhIiLwAb0ZGBnR0dOQFeF1dXeHh4SGviaZqstpmH5OVzwDeJ0CCIODVq1cIDg7GmzdvULdu3UJxu/FzSdvHpk6dikWLFkEikcDR0RG3bt1SQnTfTvZ+y95rxhhjRVPh+O3Ovmrp0qVYuHChvB1UXvm27BeymZkZJk6ciDFjxqjsl7RUKoVIJJInbYmJiRAEAbq6utDQ0PgkgSCiQllY+GvvnywZGj16NO7du4ejR4/C0dFRSdF9OSYAePv2LQRBgI2NDSdsjDFWDPCIWyFHROjUqROOHDkCIoKhoSHq1auH8uXLw8TEBFpaWsjKykJCQgKeP3+Oa9euITk5GYIgoH379jh06JDSf2HLRtlevnyJoKAgvHz5EuHh4YiOjoZYLJbXaStfvjxq1KgBR0dH+S3Gbx3hKkxkSeq7d+9w/vx5ODo6okqVKqoOC6NHj0ZQUBBu3bqFWrVqoW/fvhg0aBB0dXU/OxLKGGOscOPErZBbvXo1fv31V1hZWWHp0qX4+eefv3gbVCwWY8+ePRg7dixiYmKwYsUKjBgxQokRv7dp0yb8888/uHTpknybmpoaiEjegF1dXR3W1taoXbs22rRpg3bt2sHe3l7psSqCWCwuNLeno6KiMGPGDGzatAmampoQiUTIzMwEAPz5558YNWoUBEFAZmYmMjIykJiYCDMzMxgaGqo4csYYY1/DiVsh5+zsjLt37+LmzZuoVavWNx93584dODs7w8HBATdv3izACD91+PBh9O7dG8nJyWjZsiXKlCkDMzMz6OrqgoiQlpaG6OhovHz5Eg8ePJDf/m3fvj3+/PNPVKpUSanxFjfLli3D2LFj4erqiqFDh8LT0xOXLl3C2LFjAbxfNXvz5k1Mnz4dCQkJKF26NJycnODr6wsXFxcVR88YY+xLOHEr5PT19VGpUqXvmuxeu3ZtPHv2TKkrNNPS0tCoUSPcuXMHy5YtQ7du3eSFbGWkUinS09ORmJiIV69eISQkBAcOHEBwcDCcnZ1x6dIllbW7yg/Zbd2YmBjExcWhfPnyhSLuSpUq4dmzZ7h161au+XYLFizAtm3bULt2bZw9exaJiYnQ1NSErq4uEhMTUbZsWcyfPx/du3dXYfSMMca+hDsnFHJaWlpITU39rmNTU1OhoaGh4Ii+LCIiArdv30bbtm3lt3jFYjGkUql8QYVIJIK+vj7s7Ozg5uaG0aNHY9WqVXB3d8etW7ewbds2pcb8vWS3fLdu3YrmzZujVq1aOHjwoEpjunfvHp49e4aOHTt+skiiY8eOSElJwd69e+Hi4oLg4GD8999/WLt2LZo2bYqXL1/izz//REJCQp6LXxhjjKkeJ26FnJOTE54/f449e/bk6zg/Pz88f/5c6UVgIyMjAQCVK1cGAGRmZkJdXR0ikSjPRQdSqRRSqRS1a9fGggULIJVKERgYqNSY8yJLyj7e9uF2WUeFN2/eICsrC0+fPoWenp7SYszLuXPnAADu7u4A3i8UkcWckZGBqKgolCtXDgcOHECDBg1QoUIFdO/eHefOnUOjRo1w48YNXLlypcgtEGGMsZKCE7dCbsyYMSAi+Pr6YtiwYbh+/XqeSQXwPrG4fv06hg4dip49e8rLVChTdnY2gPfJDABoa2vnqtn2MZFIBIlEIt8XAHJycpQQaW4fxycSiRAVFYU3b97IJ/aLRKJc7a9kyU3v3r2xcuVKTJkyBY0aNVJe0HkICwsDADRr1gzA+xhl3y+HDx8GAAwdOhS6uroQi8UgIvn7365dOwDA48ePlR02Y4yxb1Q4lsGxz2rbti3mz5+PKVOmYMOGDdiwYQO0tbVRpkwZmJiYQFNTE9nZ2UhISMCrV6/kSQYAzJ07F23btlVqvDVq1ICrqyv27NkDR0dH9O/fH5aWlp/s9+GtU9ntXNkiiooVKyovYPxvrlpaWhquX7+Ov/76C69fv4aOjg5ycnKgqakJKysrVKtWDc7OzqhevTqsra3lr8PZ2blQtLdKT0+HSCSCnp4e9PX1AeRONk+cOAENDQ20bt1a/pwgCPJ/B1NTUwDv5ykyxhgrnDhxKwImTZqEJk2aYO7cuTh37hwyMjLw6NGjPPfV0NBAixYtMGXKFLi5uSk1TiKCnZ0dhg0bhpCQEEyZMgX379/HTz/9BEdHR1hZWcHIyAiCIOQauXr16hXOnz+PhQsXwtDQEI0bN1Zq3IIgIC4uDuPGjcPff/+d6zkNDY1ctxutra3h5OSEn376CT4+PvIESVbLTZU0NDTQrFkzCIIgH0WTkUgkmDdvHpKTk+Wrk2Xxyv4MCQkBAJUXEGaMMfZ5vKq0iElJScGtW7fkLa8yMzOhra0tb3nl5OQEAwMDlcaYnZ2N3bt3Y/78+Xjy5Il8e7ly5WBrawsTExP5XDB1dXVEREQgKCgIwPuVj7/99pv8tqmyDB06FBs2bICVlRUGDx4MR0dHxMfHIykpCXFxcYiMjMTTp0/x9OlTREVFQU1NDY6Ojpg4cSJ+/vlnpcb6NdnZ2RAEIc+FKZ8rvCtbDXzv3j0kJydDR0dHGaEyxhjLJ07cWIEJCgrCkSNHEBoaihcvXiA+Ph6ZmZl5znerXbs2evXqhcGDBys9aXj16hXKly+P8uXL4+LFi7CwsPhk9Cw5ORlv377Ff//9h/Pnz2PHjh1ISUlBxYoVsXr1arRq1UqpMX9OfjtPyBK5AwcOoEuXLujSpUu+F8IwxhhTHk7cWIFLTk7GkydP8PTpUzx79gypqamQSqXQ19eHoaEhjI2N0aJFC9ja2qokvr1796Jbt26YOnUqZs+eLe/uIOunmlcilJiYiNmzZ2P58uWoWrUqbt68qfRRQkVJSkpCx44dceXKFRw9elQ+B44xxljhw3PcWIEzNDTMNYFftso0r0bzqihD8fTpUwCQJ46yBQkf+3B1rLGxMSZMmICnT5/i9OnTOHLkCLp27aq8oBUkIyMDo0ePxsWLFzF48GD5alTGGGOFE5cDYUonW5zwcZKmqtphsppzly5dQmZmJjQ1NXMtSJCRxS0SiSCVSmFtbQ1PT0/k5OTg1atXqgj9h2lpaWHcuHHYtm0bxo4dq/SCzYwxxvKHR9xYiefh4YGaNWti165d0NPTw7Rp02BnZ5drH1n5ElnCKRaLoampKa9XV7ZsWRVE/uNEIhGqV6+O6tWrqzoUxhhj34DnuDEGYM+ePRg8eDDS09Ph4OCADh06oGXLlqhZs+ZnV+m+efMGLVu2xMOHDxEeHo7SpUsrOWrFkHWEUFcvXJ/jVHXrnDHGCjNO3Bj7f4cPH8bIkSPx+vVrAO9LlVSpUgXVqlVDlSpVULlyZVSoUAHJyckICAjAyZMncf/+fQwYMAAbN25UcfTfTlZzLjo6GgYGBtDV1VV1SJ8l+/HECRxjjL3HiRtjH0hISMDBgwdx+PBh3Lp1C1FRURCLxZ/dv1evXli4cKG8k4IqfDgy9fHXstu7H5Ilbr1798bjx49Ru3ZtTJs2TWWrej8mlUpx5MgRNG7cWN7NQbZd1UWOGWNM1ThxYywPCQkJePz4MUJCQvDkyRNERUUhMTERr1+/RnZ2Ntq0aYPmzZujadOmMDExUfltveTkZGhra8vbn5mZmeUaSfs4iUtNTYW7uzvu3bsH4H1JEFUXbpZZuXIlpk+fjnbt2qFVq1Zo2bJlrqQyrwSOkzrGWEnBiVsxMHHiRERFRUFbWxtqamrylY+yh6amJrS0tD75U0tLC7q6utDT05P/KftaX18fRkZGeZbFKGmkUikyMzMhFothaGgIiUQCsVgMLS0tVYeGpKQkrFmzBjdu3EBAQADKlSsHS0tLGBgYoEqVKnBzc0ODBg1gbGyc67iUlBScPn0aly5dgoaGBpYsWaKaF5AHY2NjJCcnQ11dHbq6unBzc0Pbtm3RunVrVKpUSb7f57pAMMZYccaJWzEwd+5cTJs2DaNGjYKOjo58srlUKoVYLEZOTg6ys7ORlZWV68/MzEykp6cjLS0NaWlpub6WlcLQ1taGkZGR/GFoaAgTExOYm5vDzMwMZmZmub62tLSElZVVoZ43VVxcu3YNCxcuxMGDB3NtF4lE8hE2Q0NDODo6ok2bNujQoQOqVauWqxSL7PvA0NBQFS/hE4mJiejSpQsCAgLg5eWFt2/f4tq1a9DW1kadOnXQpk0btG3bFg4ODhCJRAgNDcWIESOwYMECNG/eXNXhM8ZYgePErRh4/fo1SpcujYiIiE/KWHwPIkJmZiaSkpLyfCQkJCAuLi7X4927d4iLi0NsbCwkEgkMDAxgZWUFa2tr+Z+lSpWCnZ2d/FGqVClO8H5Ax44dcezYMXh5eaF9+/Zo1KgRXr58iQcPHuDZs2d49OgRwsLC8ObNG+jo6KBx48YYMWIE2rZtC6DwrtoMCgpCu3btUK9ePYwdOxZXrlzB2bNncefOHRARatasiRYtWsDX1xd//PEHduzYgdmzZ2Pq1Kk8CscYK/Y4cSsGFJ24/QipVIr4+HhERUUhOjpa/mdkZCTevn2L8PBwPHjwAOnp6cjKyoKJiQns7OxQtmxZ+aNcuXLyr42NjQtlcqFqz58/R8WKFVG/fn1cunTpk/ldYrEY4eHhuHv3Ls6fP48zZ87gyZMnAIAxY8Zg1qxZ0NPTU0Xo32TMmDFYs2YN/Pz84O3tjZCQEAQFBeHUqVO4du0a0tPTYW9vj5cvX0JbWxsvXryApaWlqsNmjLECx4lbMVCYErevCQsLQ506dZCWlob4+Hi8fv0aERERCA8Px8uXL/HixQu8fPkSL1++RHx8PIyMjFCxYkVUqlQJFStWzPW1hYVFiU3q1q1bh+HDh2PevHmYPHkycnJyoKGhkavHqoxYLMb169exbt067Ny5E3p6elizZg169OhRaCf1Z2RkoEWLFnj06BGuXr2KihUrgogQFhaGgIAABAUF4dixY8jMzIS+vj66d+8ODw8PtGjRAhYWFqoOnzHGCkzhqrjJir2oqCjY2NhAJBLB3Nwc5ubmqF27dp77Jicn48WLF3j69Km8SX1QUBCePn2Kt2/fwsjICNWqVUO1atVQtWpV+dflypUr9rfL0tPTAUA+N01WPPfDJEz2mUxdXR3169dH/fr1UadOHYwePRqzZs1Cly5doK2treTIv04qlUJHRwdTp05Fp06dMHr0aOzcuROGhobyLg+urq44duwYiAj6+vrYtGkTjh07hgoVKmD58uWoU6eOql8GY4wVCE7cmFJFRUV9c80z2cR6R0fHT55LS0vDkydPEBYWhrCwMFy7dg3bt2/H48ePIRKJUK1aNdSqVSvXw9bWttiM0Lm4uAAA/vnnHzRr1gzVqlWDRCKR91MF8Mmom7q6OgYNGoTTp08jODgYly9fLpRN5WXxe3p6YsSIEfjzzz9x9OhR+Pr6Ijs7G5qamrhw4QIyMjLQuXNnjBw5Ert378aZM2dw+fJlVKxYUcWvgDHGCg4nbkypIiMjYWNj88Pn0dPTQ+3atT8ZrROLxXj+/Dnu37+Pe/fuISQkBJs2bcLTp09hYmKCWrVqwcnJCU5OTqhTpw6qVq1a6Fo9fYvq1aujcePGCAoKwqxZs7BgwQKUK1dO/rxsVbAsCVJXV0dOTg50dHRQqlQppKSkIDMzUyWxfwvZwonp06fj4sWL+PXXX1GhQgXUr18fGRkZWLVqFQBg4cKFqFChAqpXr4527drJS7YwxlhxxXPcioGiNMdtwoQJSE9Px+rVq5V63fT0dDx48AB3797FrVu3cPPmTdy5cwcSiQSOjo5wcnKCs7MzXFxcUL169UKdzMmSmjt37qBPnz64c+cOjIyM0LdvX/j6+sLZ2TnX/h+vtKxXrx5u3LiBd+/e5epMUNjIXueBAwfQo0cPNG3aFMePH8fGjRsxZMgQtGrVCqdOneKVpIyxEoUTt2KgKCVuPXv2RJUqVTB16lRVhwKJRIInT57IE7nr16/jxo0bkEgk8iRO9rC3ty+Ut1mPHz+OmTNn4saNGwAAIyMjNGjQAB4eHmjatCnq1asH4P18wbS0NGzduhVTp06Fp6cnjh8/rsrQ82XixIlYsmQJNm3ahLVr1+LWrVsICAhAkyZNIJFIctWmY4yx4owTt2KgKCVuLVu2RPfu3dG/f39Vh5IniUSCR48eITQ0FBcvXsTJkycRGxsLMzMzuLm5wc3NDe7u7qhTp06h6JwAvI/577//xp49e3D9+nXEx8cDANTU1GBmZgYXFxcIgoDr168jMjISVatWxapVq4pEwVrZqFtcXBzatGmDe/fuITs7G7Vr18bNmzdVHR5jjCld4b0fxIqlyMhIlTZk/xo1NTX5ykU7OzucP38eKSkpuHHjBoKDg3Hp0iUsWrQIKSkpqFu3Ltzc3NCoUSM0atTok7ZSyoy5b9++aN++PYKDg+Hv748HDx7g6dOnePPmDY4dOwY1NTVIJBJ4enpizpw5cHJyUkms+SUbRTMzM8PYsWMxe/ZsPHz4EJMnTwbwv0UXjDFWUvCIWzFQlEbczM3NcebMmSJRrmHJkiW4evUq9u/fn2s7EeHp06cIDg5GcHCwvESJg4MDmjRpgiZNmqBx48YwMzNTSdxSqRRxcXF4/fo1kpOT8fjxY2hpacHFxQXW1tYwNjYutF0TviYiIgJHjhzB8OHDVR0KY4ypBCduxUBRSdyys7OhpaWFN2/ewNbWVtXhfNUvv/yCmjVrYsqUKV/dNzIyEkFBQQgMDERgYCDCwsJQs2ZNNG/eHM2bN0eTJk1gYGCghKi/rigmbbIfUx/GXRRfB2OM/ShO3IqBopK4RUREwN7eHtnZ2UXi9laVKlWwbNkyeW/P/IiJiUFgYCDOnTuHc+fO4eXLl3BxcUGLFi3QokULuLq6QlNTswCiLt5knR7ySuQYY6wk4MStGIiNjYWlpSViYmIKdbufa9euoX379oiOjlZ1KF+VkpICIyMjvH37ViFz8sLDw+VJnL+/P9LT09G8eXO0adMGbdq0QdmyZX886CLkS622PvecbPuH89p41I0xVtIUviaFLN9kqxsLyyrHz1FU8V1luHPnDqytrRW2kMLe3h79+vXDzp07ERUVhUuXLqFBgwbw8/NDpUqVULVqVYwaNQqnTp0q1IVxFUWWmD158gTZ2dlISUlBWlparudkRYQ/Pmb8+PFYvnw5Xr16xUkbY6zE4RG3YiA5ORlGRkZISkoq1FXjX79+jcePHxfKNksfW7lyJc6cOYNjx44V+LWSk5Nx/vx5nDp1CidPnkRcXBxatmyJ9u3bo127doV6Fe73iIqKwubNm3Hq1ClEREQgISEBjRo1gr29PWrUqIGWLVuiUqVK8v2lUikEQYAgCLh27RoaNmyInJwcODs74+rVq1x8lzFWohT+iUas2LCzsyvUc/A+dPPmTaWtfDU0NISXlxe8vLxARLh//z6OHj2KzZs3Y/DgwXB2dkb79u3RsWNHODg4FOlRprdv32LAgAE4deoUAMjbb504cQIAoKOjg3LlyqF169bo0aMHnJycPrlt2q9fP+zbtw/NmjXjpI0xVuLwiFsxUFRG3IoSR0dHzJw5E97e3iqNIyYmBidPnsTRo0dx6tQpWFpawtvbG97e3mjQoEGRS1xGjBiBtWvXokuXLujbty+qVq2K9PR0nDlzBjdu3MCdO3fkt09r1qyJHj16wMfHB3Z2dvI5bgkJCQgNDUXDhg2hp6en6pfEGGNKxYlbMcCJm2JlZmZCX18fz549g729varDkcvMzIS/vz8OHDiAI0eOQF1dHT/99BO8vb3RrFmzQr9KNT4+HqVLl4adnR2CgoJgZWWV63lZoeMLFy7g5MmTuHXrFgwMDNC3b1/Mnz+/0L8+xhhTBl6cwNhH7t27ByMjI5QpU0bVoeSira2N9u3bY8uWLYiKioKfnx+0tLQwcOBAWFtbo3///jh9+jRycnJUHWqezp8/j4yMDHh4eMDKygpZWVkA3s9hIyIYGBjAw8MDU6dOxbJlyzBgwAAkJydj6dKlaNeuHSIiIgD8r6ZbYSZbaMEYY4rGiRtjH5HNbyvMc8nU1dXh4eGBlStXIjw8HDt27MCDBw8wYMAAWFtbY8CAAThz5kyhSuI+7iQhWwX9YYN4IoK6ujrc3Nywdu1a/PPPPyhdujTOnTsnXyjy8WrTwiYsLAyurq7w9/dXdSiMsWKIEzfGPnLr1q0i0ZJLRiQSISoqCsD7enFHjx6Fvr4++vbtC1tbWwwfPhyXL19W+UiVnZ0djIyMsH37dhw8eBDA+yTsw0RMlsDJtnXv3h0LFiwAACxevBgpKSmFfl7fb7/9hgcPHuDhw4eqDoV9QCKRqDoExhSC57gVAzzHTbESEhKQk5MDS0tLVYfyzTp16gRnZ+dc7bmkUikuXbqEnTt3Yu/evTAyMoKPjw98fX1RvXp1pcZHRJBIJBg3bhxWrlyJRo0aYdmyZfIEmYhARLlWkMqK60okEjRt2hTPnj3DqVOnUKtWLaXGnh9+fn7w8fFBx44dsWfPHmhqakIikRT6ZLM4uX37NmJiYhAdHQ01NTWULl0a7u7u8pIyXLSZFXWcuBUDnLiVbJmZmTA3N8fly5fh4OCQ5z5ZWVk4deoUdu7ciaNHj6JKlSro1asXfH19P1kkUJAiIiLQtWtXhISEAADGjBmD4cOHo1y5cvJ9ZInOh8lcw4YNERoaipCQEDg5OSkt3vwQi8UoVaoUMjMzcejQITRt2jRXF4iHDx/ixYsXiIiIgJubG2xtbWFsbPzZDhLs20mlUty+fRsrVqzAiRMnEBcXl+t5FxcXdO3aFV27ds21QpmxIolYkZeUlEQAKCkpSdWhMBU4efIklSlThqRS6Tftn5SURFu3bqWmTZuShoYGtW/fnvbu3UuZmZkFHOl7T58+pZ9//pkEQSBBEKhixYo0adIkunPnTp77X716lbS1talGjRpKie97jRo1igRBoLFjx+ba/vTpUxo6dCgZGhrKX7MgCNStWzfat28fJSQkEBF9878fyy07O5v+/PNPcnJyIkEQSCQSkSAI5ODgQOXLlydra2v5dnd3d3ry5AkREUkkEhVHztj3UfqIW3h4ON6+fYvY2FhkZmbCzMwMFhYWqFSpEnR0dJQZSrHBI24l24gRI0BEWLNmTb6PffnyJf755x/8/fffiI+Pxy+//IK+ffvC2dm5QG8npaWlYfPmzdi1axdu3LgBiUQCc3NzNGjQAD4+PqhSpQoSExPx7t07LFiwALdu3cLmzZvRt2/fAovpR9y7dw+Ojo6oVasWzp07B3Nzc/n2iRMn4tSpUzAwMEDp0qVhYmKC4OBgAIC1tTXGjx+P0aNHqzL8IisrKwvTpk3Dv//+i4iICGhqamL48OFo0KABOnfujMzMTCQnJ+PChQvYuHEjAgICUK5cOfj7+6NcuXI88saKpoLODDMyMmjbtm3UvXt3srGxIZFIlOdDU1OTGjRoQJMmTaK7d+8WdFjFCo+4lVxSqZTKlClDJ0+e/OHzXLx4kQYMGEAGBgbk6OhIq1atovj4eAVF+imJREIPHz6kadOmUaNGjUhfX18+GmVmZkZaWlryvw8ePLjA4lAENzc3EgSBevToQe/evZNv79mzJwmCQD4+PhQQECAf1QwJCaGWLVvKX9/s2bNJLBbzKFA+ZGdn05w5c6hUqVIkCAIZGhrS6dOnc40ci8Vi+dcSiYS6du1KgiBQjRo1KCYmhoh4pJMVPQWWuD179oxGjhxJJiYm8qHrb3nIEjk3NzfasWMH/6f6Bpy4lVx37twhPT09ysjIUNg5U1JSaMuWLeTm5kba2trUo0cPunDhQoH9X5RKpfT69Wvy8/OjSZMmUc2aNalUqVLk4OBAbdq0oX///ZeSk5ML5NqKEBERQd7e3mRjY0P6+vrUrVs3OnHiBO3fv58MDAzIyckpV0L2YTIxceJEEolE5OzszP9/8ykwMJAqVapEgiCQpaUl3b59O9fzH36/fviet23blgRBoH79+in0/w1jyqLwxC0+Pp5GjRqV69Ny5cqVacCAAbRp0ya6fv06vXz5kpKTkyknJ4eio6MpLCyMTpw4QTNmzKA2bdqQjo6OPIlzcHCgU6dOKTrMYoUTt5Jr3rx55OXlVWDnv3//Po0ePZrMzMyoUqVKtGTJklwjSgXlxYsXlJqaSllZWQV+LUV48eIFbdiwgRo2bEhqampkb29PLi4uJAgCnT59mohyJw+yrx8+fEhlypQhQRDo0KFDKom9KMrIyKD69euTIAhkbW1NV69eJaIvz1uTvefR0dFUqVIlsrGxocuXLxMRj7qxokXhiZupqSkJgkAWFhY0atQoun79er7PkZycTFu2bKGmTZvKE7iVK1cqOtRigxO3kqt+/fq0efPmAr9OZmYm7d69mxo3bkza2trUq1cvunLlilJ+4RWlX6rXrl2jiRMnykeCXFxcKD09/YvHtG/fngRBoDNnzigpyqIvICCATExMSF9fnxYsWEBisfibvk8kEgmJxWKaOXMmCYJAU6dOVUK0jCmWwmdlikQiLFiwAC9evMCyZcvg7Oyc73PI+hOeP38eV69eRevWrZGYmPhd8bx48QKbNm3CwIED4ejoCHV1dQiCgLlz537X+WbOnCmvB/S5x5cKb4aFhcHX1xc2NjbQ1tZGhQoVMG7cuO9+fazkiomJwbVr19CuXbsCv5aWlha6d++OwMBAXL9+HQYGBmjVqhXq1KmDjRs3IjU1tcCuXRRqbtH/r/GqW7cupkyZgsWLF6NHjx5wdXX9bOFX2facnBzo6empvEByURISEoLExEQIgoDmzZtDTU3tm75PRCIR1NTU0LZtWwDAkSNHPikdwlhhp67oE758+RJ6enoKO5+LiwtOnDjx3b3/VqxYgRUrVigsHpnSpUt/tpelrq5untsDAgLQrl07ZGRkwMLCAjVq1MDDhw/x559/4uDBg7h8+bJSa2qxou3EiRNwdnZW+vdMjRo1sHr1aixcuBC7du3C2rVrMWHCBAwYMOCTmmwlxYctuwwMDODl5YWaNWsiLS0N+vr6nxR9ldWqu3PnDs6dO4fSpUujbt26qgq/yJElW61atUK9evXyfXypUqVgbW2NSZMmfdKKjbHCTuEjbopM2hRxXnNzc7Rv3x6zZ8/GyZMn0blzZ4XE069fP1y6dCnPR14JXUpKCrp164aMjAz8+uuvePPmDW7cuIFXr17B3d0dz58/R//+/RUSGysZjh49ig4dOqjs+vr6+hg0aBBu3bqFY8eO4dWrV6hatSq8vLxw/vz5EjmCJKvMDwAVK1aEo6OjfLsMEck7Kfz555+QSCQYMWIETE1NlR9wEaWhoQHgfc9eIP/trGxtbXHkyBH88ssvCo+NsYKm8BG3wmbq1Km5/u7n56eSONavX4/Y2FhUq1YNS5culf/gNjMzw65du1ChQgUcP35c3uCcsS8hIsTFxak0cZMRBAENGzZEw4YNERERgXXr1qFr166wsbHBr7/+ih49epSoGo1fu2Une37FihXYsWMH6tatizFjxigjtGLDwMAAAPDmzRuIxWJ5AvctZLXbeISTFVVceVBJDhw4AADo06fPJ30Ly5QpgxYtWgAA9u3bp/TYWNEjCAIuXLggH9EpLEqXLo358+cjIiICo0ePxsqVK2Fvb49Zs2YhNjZW1eEVChEREfjtt98wevRolCpV6rsKJ5d0P//8M0qXLo03b97gyZMnAN4nZN+CC+6yok7hI26zZ89W2LmmT5+usHMpWkBAAP777z/ExcXB1NQULi4u6NWrF6ytrT/ZVywW48aNGwAAd3f3PM/n7u6OU6dOyXs4MlaU6ejooF+/fujbty/Onj2LP//8E4sWLULPnj0xZswYVKlSRdUhqkxaWhpevXqFSpUqYfr06d81R6ukMzY2RuPGjbFz505s374dCxYsgEgk+monhB99nrHCQOGJm2zV5Y+QTeQtzIlbUFBQrr/v378fM2fOxNq1a9GnT59cz718+RI5OTkAgPLly+d5Ptl22adHxooDQRDQqlUrtGrVCvfu3cPSpUvh6OiIli1bYuLEiWjYsKGqQ8wX2aICGdkv+o8XH3xJ1apV8c8//yAmJuazC5zYl5mZmWHQoEE4dOgQFi1ahIoVK6J///5fTbpEIhEiIiJw6tQpXLlyBTk5OTAyMkLbtm3RsGFDGBoafvJvzFhho/DErXHjxp/9AXb79m0kJSUBeL+qx87ODsD7eQqvX78G8P6TVGG7/fMhGxsb/P777/D29kb58uWho6ODW7duYe7cuTh58iT69esHMzOzXHOPEhIS5F+bmJjkeV7Z9g/3Zaw4qVWrFrZu3Yphw4Zh7NixaNeuHWrVqoXJkyejbdu2RaLsh1gshlQqRUREBMqXLy9PFD5clPDx6/g4qZNKpdDX14e+vr7yAi+GGjVqhE2bNsHHxwcDBw6EVCrFwIED5c9LJBKIRCL5e5+dnY0zZ85g0KBBePfuHcRisfzfbceOHWjUqBF27NgBIyOjfM+bY0yplFUwbtKkSfKefY8fP/7k+SdPnlCPHj1IEASaPHlygcXRu3dvAkBz5sxR6HmlUil5e3sTAKpQoUKuYpBBQUEEgAB8trL3uXPnCACpqanl+9pcgJcVJb///jt5eXlRYmIiLVq0iKysrKhWrVq0Y8cOysnJUXV4ecrIyKD9+/dT69atqUaNGmRra0v16tWjWbNm0f79++V9L4k+X70/NDRUWeGWKBs2bJB36Rk0aBAdOHCAiIhSU1Pl+6SmptKqVatIU1OTBEGgqlWrUpMmTWjBggXUv39/qlmzJgmCQK6urpSWlkZEX+7CwJgqKSVx27dvH4lEIho+fPhX9x0+fDiJRCLav39/gcRSUIkbEdGjR4/kCdqHffNCQ0Pl2z/XG+/EiRMEgPT19fN9XVniFhERQUlJSfl6fNiQmbGClpmZSZaWlrm6BGRkZND69eupfPnyVLZsWVq3bl2h+76cNGkSqaurkyAIpKWlRWZmZvJkwcbGhtq1a0e7du3K9YFNKpXK/x4YGEjW1tbUvXt3Cg4OVtXLKLb8/Pyobt268r7YFhYWNHbsWMrOziYiovXr18v/vTp06ECBgYEUFxcnPz45OZkaN25MgiCQr68vJ22sUFNK4ubh4UFqamoUGxv71X1jY2NJJBJR06ZNCySWgkzciN63/AJA+/btk2978uSJPHF7+/Ztnsft3LmTAFDp0qXzfU1Z4vY9jxkzZnzvS2Us33bu3EmVK1fO8xdjTk4O7d69m2rUqEGlSpWiFStWfLVdlDJcuHCBBEEge3t78vf3pxs3btCrV69o1apV5OnpSba2tiQIAhkbG1Pfvn0/aXZORDRnzhx5sjdhwgQVvIriLywsjHbs2EEODg7k6elJUVFRRER09uxZedLm4+OTa3RUKpXKR3mjo6OpdOnSZG1tzck1K9SUkriZmpqSqalpge2fHwWduFlZWREA8vPzk2/LyckhDQ0NAkCXLl3K87g5c+YQAGrWrFm+r8kjbqyocHd3p2XLln1xH4lEQvv37ydHR0eysrKiP/74I9dtL2Vr1aoVCYKQ512A2NhY2rFjB3Xt2pVMTU1JJBJRkyZN6OjRo5STkyMfcXv+/Dn98ccf1KpVK0pOTlb2SyhR3r17J28on5SURO3atSNBEKht27b04sWLPI/JycmhnJwcatGiBQmCQOvWrVNixIzlj1JmX2ZlZSErKwupqalfnZCbmpqK5ORkaGlpKSM0hXr37h1iYmIAQL7wAnhf3btOnToICQlBcHBwniVBgoODAQCurq7ffX1DQ0MYGhp+9/GMFaQ7d+7g1q1bOHr06Bf3E4lE6NSpE7y9vXHs2DHMnj0bCxcuxLhx4zBixIgC686Slzdv3iAiIgIVK1ZEx44dAfyvXpggCDA3N4evry8aNGiAunXr4p9//kFQUBAkEglsbGzkvZrLlSuH0aNHo2fPnvLisaxgfNjCKjU1FdeuXQMAtG7dGqVLl87zGNlCBAsLC/lxjBVWSilYU6VKFUilUqxevfqr+65evRoSiaRI1nlaunQpiAhGRkaf1Gbq1KkTAGDbtm2ftGd59eoV/P39AUBhLbkYK2zWrl0LHx+fz66s/pggCOjQoQNCQ0Oxfft27N+/H+XKlcPSpUuRkZFRwNG+Z2BggJycHCQlJSE8PBzA+8RStlqR/n8lafny5TFu3DjMnTsXtWvXRnBwMLp06YJ79+4BeL8aVSQSwdLSUilxs/eio6Px7t07lC5dGr1794aamtpnW7Hdu3cPZ8+eBQBoa2srM0zG8kUpiVvfvn1BRJg6dSpmzZqV56eZtLQ0zJ49G1OnToUgCOjbt68yQsvT8uXLUbZsWXTv3j3X9v/++w/Dhg3Df//9l2t7ZmYm5s+fj0WLFgEAJk6cCE1NzVz7DBkyBObm5ggLC8OYMWPkdd3i4uLg4+MDsVgMT09P+Sd0xoqTpKQk7NixA0OHDs33sYIgwNPTEyEhIdiyZQt27NiBChUqYPXq1cjKyiqAaP9HQ0MD1apVQ2xsLDZt2oTs7GwQUa5RN+B/JT86duyIvXv3on79+ggPD8ehQ4cAgEtLqIhYLAYRITk5GUlJSZBIJHmWnRGLxQgKCkJWVhZKly79xfqC+e2LypjCKeN+rEQiodatW5MgCCQSiUhPT4+aNGlCPj4+5OvrS02aNCE9PT35iqBWrVopbFXPpUuXyMzMTP7Q0tIiAKSrq5tr+6tXr+THzJgxgwBQkyZNcp3r1q1b8kn9FhYW5OzsTM7OzqSrqyvf3r9//1wryz7k7+9P2trauY6XHVu2bFmKjIz8rtfI5UBYYbdixQqqX7++Qs4llUpp//79VLNmTbKzs6P169fLVw8WhDNnzpCRkRHZ2trS3r175ds//hkllUrl206ePEmCIFDp0qW/+/81+3FJSUnk5uZGBgYGdOvWLSIiys7O/uRn9OnTp8na2poEQaCffvopz7I0Fy9elH/9uZ/xjCmD0uq4ZWVl0ejRo0lDQ0O+wkckEsmTNUEQSENDg3777TeFTpgPCAj4ptWVH05a/VzilpCQQHPmzCFPT08qV64c6evrk6amJtnZ2VGXLl3o1KlTX43n/v371L17d7K0tCRNTU0qV64cjRkzhuLj47/7NXLixgozqVRKVapUoX/++Ueh55VIJOTn50eVK1emihUrkp+fX4GUcUhMTKTu3bvLf06NHz+eEhMT5c/LJsJ/KDs7m5ycnKhMmTL05s0bhcfEvt24ceNIEARydnamlJSUXM9FR0fTv//+K1/x6+rqStHR0USU+991/vz5JAgC/frrr0qNnbG8CESfueFfQCIjI7Fv3z5cv35dPpHf0tISdevWRefOnWFra6vMcIqF5ORkGBkZISkpiRcnsELn3Llz6N69OyIiIgpk7pBYLMa2bdswc+ZMWFpaYsGCBWjVqpXCOzGMGTMGK1euhFQqRZMmTTBmzBh5hxTZj1GpVAo1NTVkZ2ejRo0aSE1Nxfnz51GtWjWFxsK+nVgsRqtWrXDhwgU4OTnh119/hb29Pf777z+EhoZi//79SE9Ph5ubG5YtW4Z69erJ215JJBLMmDED8+fPBwCMGDECK1eulJ+b8tHqjDGFUW3eyBSBR9xYYdapUyeaOHFigV8nPT2dlixZQiYmJuTh4UFXrlxR6PkTExNp/vz5VKlSJRIEgUxMTKhnz5508+bNT/ZdvXo1CYJAHTt2VGgM7PukpaVRy5Ytc93dEQSB1NTU5EV5Hzx4kOsWaFZWlny0TjZit3v3brpy5QpFRETI9+PbpkzZlD7ixhSPR9xYYfX69WuUL18ejx8/RtmyZZVyzcTERPzxxx9YtmwZ2rVrhwULFqBChQoKObdYLIa/vz82bNiAgIAAJCcnAwC6d++OevXqQRAEREVFYfny5QCAmzdvonr16gq5NvsxKSkp2LhxIwIDA3H37l2kpaWhbdu2cHBwwNixY3Ptm5GRgYkTJ8orIaipqcHY2Bjx8fEgItSsWROzZs2Ct7c3AB55Y8ql9MTt3bt3CAgIQHh4ONLT0zF9+nRlXr5Y4sSNFVaJiYk4e/Ysfv75Z6Vf++3bt5g+fTp27tyJIUOGYOrUqblqfP2I+Ph4HDhwACdOnJCvHP2wPEiVKlUwZsyYXE3PixIiQmZmJnR0dFQdSoFITk6GWCyGqampfJussXxKSgrGjBmDzZs3AwCGDx8Od3d3dOjQAY8fP8aJEycwbdo0AMDu3bvRrVs3lbwGVnIpLXETi8WYOHEi1q5di+zsbPn2D5dWJyQkoEKFCkhPT8eLFy9gY2OjjNCKPE7cGPu8e/fuYcKECbh69Sp+//13jBw5UmFz7ZKTk/H8+XNs374dOTk5SEtLQ82aNeHl5YXy5csr5BqqsG3bNpw5cwZDhgxB48aNVR1OgZNKpRCJREhMTMSIESOwa9cuAMCaNWvQo0ePT4omr1mzBiNHjkSDBg1w4cIFaGhoqCJsVlIp656sl5eXfBVprVq1SFNTk0Qi0Sf7DR8+nFuO5BPPcWPs686ePUu1a9cme3t72rNnj8LnJhWXuU5//PEHiUQiMjAwoF27dlFWVpaqQ1KKmJgY6ty5s7ziwfbt23M9/2G5F6lUSitWrJCvLn758iURfVoihrGCoJTEzc/PjwRBIGtra/lEXmtr6zwTN1lD53bt2ikjtGKBEzfGvo1EIqGtW7eStbU1NWrUKM+FBT+qKCdwBw8elP+sDgwM/OK+Rfl1fuzt27fynqba2tq0Z8+ez+774evOzMykKVOmkEgkorNnzyojVMZIKZ0Ttm7dCkEQsGTJEjg5OX1xXxcXFwiCIG8VwxhjiiISidCnTx88fvwYDRs2hLu7O/r374+oqCiFXaOoTlKPjIzEuHHjoK2tjXXr1uV5izQzM1P+tSAI8g4SRVl4eDi8vb1x4sQJGBgYYM+ePV+ckyn7942JicG8efOwcOFCEBFOnDihrJBZCaeUxO3mzZsAvq0Pp46ODoyMjBAbG1vQYTHGSigDAwPMnz8f//33H5KSklC5cmUsXrw41/zbksbf3x/Pnz9H//794eXlJd/+7NkzbNu2Da1bt0bdunUxdOhQLF++HFFRURCJlPIrpEBFRUUhNDQU2traOHDggLw235dERkZi6dKlmDt3LqRSKZo2bYphw4YhOTlZ3keXW2OxAqOMYT1NTU0yMTHJte1zt0qJiIyMjEhHR0cZoRULfKuUsR8TEBBADg4OVLlyZTp9+rSqw1GJ2bNnkyAIFBwcLN928+ZN8vT0JC0tLXk9M0EQSFNTk+rWrUvnz59XYcSKc/LkSQoICPimfSMiImjMmDG5OgAZGxuTlpYWGRkZka+vr7xbRl5dNRj7UUrpfGxiYoLY2FhkZmZ+dTXX69evkZycjDJlyigjNMYYg4eHB27cuIF169aha9euaNasGZYuXaq02nOqJOsS8ObNG/nfASA2NhZTp07FqVOn0L17dzRo0AAmJiY4efIkrl+/jhs3buCXX37BihUrinxJjDZt2nzTfi9fvsSSJUuwbt06AEDfvn1Rr149uLi44PHjx9iyZQt27dqF69evIzAwEFZWVgUZNiuplJEdtmrVikQiUa5enp8bcZs6dSoJgkBdu3ZVRmjFAo+4MaY40dHR1LdvX9LV1aXZs2dTRkaGqkNSiuXLl5MgCDR16lSSSCS0f/9+EgSBunXrlmu/+Ph42rt3L7Vq1YoEQaBGjRrl6vVcXD19+pT69+8vH2lbtmwZEX26klS2yGHo0KHFagEHKzyUkrht3bqVBEGgevXqUVpaGhHlnbj9+++/pKGhQSKRiI4ePaqM0IoFTtwYU7wrV65QnTp1qEKFCrk+dBZXt27dIiMjI3JxcaHMzEx526779+8T0fvbfh+Wwzhx4gSVLl06VxJTXD18+JB69OghT9q2bt36yT45OTlERBQVFUW//fYbPXv2TMlRspJCKTNLe/XqBRcXF9y4cQMNGjTA+vXrkZOTAwC4fv06tmzZglatWuGXX36BWCxGs2bN0L59e2WExhhjeapfvz62b9+OatWqoVu3bujWrRvevn2r6rAKBBGhatWq6NChA65duwZfX1+8fPkSpqam8uktIpEIIpFI3t7J09NT3hni6tWrqgy/wBAR/vvvP0ydOhU7d+4EAPj5+aFPnz4AkGtVrbq6OsRiMaysrLBgwQJ5AebisPKWFS5KSdxEIhGOHDkCZ2dn3Lt3D8OHD0dCQgIAwNXVFQMHDsS5c+dARHB1dcW///6rjLAYY+yLpkyZgtKlSyMsLAxqamqoVq0aVq9eXexWDAqCAG1tbYwZMwZmZmY4cOAAtm/fjvj4eBw7dky+j+xP2et3c3MDgGKb0F6/fh2TJk3C/v37AQBHjhxB165dAbxP6j5cVSuVSqGu/n7auFgsxrNnz/DkyRM8evQo1zmL2/cOUz6lreW2tLREcHAwVq1aBQcHB3lfP9mjWrVqWL58OQIDA3P1j2OMMVW4ePEizp8/jxkzZsDGxga7du3Cvn37sGLFCri6uuL69euqDlGhiAhOTk7Yu3cvKlWqJC/JdPz4cdy8eVPehxX43yiSrK5btWrVIJVKc+1THNy4cQPHjx+HIAg4d+4c2rdvL/+d9XG9PlkSt2TJEnTp0gW1a9dGnTp14ODggJ9//hkbNmwA8L5hPSdv7Ieo5AYtEaWkpNCTJ0/o4cOHlJCQoKowigWe48aYYkmlUnJxcaE5c+Z88lxGRgZNnz6ddHR0aMyYMZSamqqCCAtOVlYWHTt2jBo2bCif09WxY0e6dOmSvMUT0fsWUW5ubiQIAvn5+akw4oI1fPhwunDhAhG9/7743IKDiIgI8vLykpcIKVeuHDVp0oTs7e3l5VSGDBki359LhbDvpbQm86zgcJN5xhRrz549GDVqFJ48eQI9Pb0893nw4AEGDhyIt2/fYsOGDWjVqpWSoyw4OTk5uHbtGrZt24a//voLAFC1alXUr18fzs7OEIlE2LZtG65du4YePXpg+/btKo644Mka0X9IVkolJiYGPXv2xNmzZyEIApydnbFt2zZUr14d4eHhePDgAXx8fJCUlIRhw4Zh9erVAJDnyB1jX6WM7DAwMJACAwMpLi7um/a/cuXKV/vksf/hETfGFCczM5PKly9Pf/3111f3lUgktGbNGjIwMKBevXrRu3fvlBCh8kRGRpKfnx9VrFgxVwFeQRDIwMCAyzb9P1kJEH19fTIyMiJBEGj48OG59rl9+zYZGhqSIAjf9L3F2OcoZcRNJBJBEATY29vj2LFjqF69+hf3t7GxQWxsLMRicUGHVizwiBtjirN8+XJs3rwZt2/fhpqa2jcdExERgWHDhiEkJAQrV65Et27dCs1IChFBKpVCTU1NPmqU1+jRl2RkZGD37t149+4dwsLCYGtri44dO6J69eowMDAowOgLL/r/0bK//voLgwYNgp6eHjZt2oQqVarAw8MDKSkpGDt2LJYsWSI/Zt++fejatSu6d++Ov//+G+rq6p98n8hG8Rj7LKVkhx98SjMyMvpqTaQvtcNin+IRN8YUIyEhgUxNTenEiRP5PlYqlZKfnx9ZWFiQt7c3RUZGFkCE30c2Lys5OTnfx348F4uLyuY2fPhwEgSBnJ2d5TXvrl27Jp/XNmPGDPm+d+/eJUNDQ7Kxscnz++PDYr63b98u8NhZ0aS0VaUmJiZo0qQJkpOT0aFDB6xdu1ZZl2aMsW+yYMEC1K5d+5tbIH1IEAR069YN//33HzQ1NVGjRg3s2rVLpSsto6KisHr1arRt2xYNGjSAl5cXpk6dips3byI+Pl6+35dqjampqeV6DYVlJFHVpFIpsrKyEBgYCADw8vJCjRo1IJVKUbduXZw5cwYAMHv2bCxYsADA+9W3xsbG0NLSgoaGRq7zSSQS+SjovHnzUKdOHWzbtk15L4gVHcrIDgVBIBsbG8rOzqbevXvLV92MHDkyz09vPOKWPzzixtiPe/nyJeno6NCNGzcUcr59+/aRpaUl/fTTT/T27VuFnDM/srKyqHHjxp/MTRMEgSpWrEiDBw/O1Vj949ZNH/+dV0HmJpFIKCsri+rUqZNr3lpOTo78vTt16pT8Pf/rr79oz549JAgC1apVi2JjY+X7ffjezpw5k0xNTUkQBPL29v7mueGs5FBq4iYzZ84cEolEJBKJqG3btpSSkpJrf07c8ocTN8Z+XM+ePalHjx4KPWdsbCz5+PiQiYkJ7dixQ6m3GX19fUkQBPLy8qLbt2/ThQsX6NChQ+Tq6kp6enqkpqZGNWrUoBUrVsiPkcX3YWurnTt3UnZ2dq7n2f8MGDCABEGg6dOnE9H/Wl/J3qsDBw7IkzdjY2MSBIGWL18uP172XkskEpo0aRLp6uqSlpYW9evXj0JCQpT8alhRoJLEjYho9+7dpKOjQyKRiBwcHOjVq1fy5zhxyx9O3Bj7MTdv3iQdHR16+fJlgZz/wIEDZGFhQV26dKHY2NgCucaHzp49S4IgkJOT0yc/F1JSUmjVqlXk7u5OampqZGhoSGPHjs1zZGfcuHGkqalJ3bt3L7D3pqiSJWY7d+4kbW1tcnNzk28Ti8W5ktwdO3bIkzcfHx+KiIggIpInxJmZmTR69GjS1tYmXV1dGjBgQK45bpwwsw8pbY7bx7p37w5/f3+Ym5vj3r17cHV1RWhoqKrCYYyVYA8ePMDEiRNhb29fIOf39vbG/fv3IRaLUbNmTXkbKUWj/5+LFh0dDQD45ZdfYGhoKO9wIJFIoK+vjxEjRmDBggXo1asXiAgbNmzArFmzcrWuiouLQ05ODvT19fHvv/9+0rqppJPN9WvVqhXq1q2LK1euYMiQIQAgXxUqmzvo6+uLdevWoXHjxujbty/s7OxARNDQ0EBqaipGjx6N1atXQ0NDA3369MHo0aPh6OgIgGu9sTwoIzvMa8RN5vnz51StWjUSBIF0dXXJz8+PR9zyiUfcGCsapFIp/f3332RoaEgDBgz4rlWe32Lt2rUkCAKNGDHik+c+nLv2+PFjGjVqFBkbG5OZmRmtXr06176vXr2i33//nebNm1cgcRYXDx8+JDMzMxIEgQYPHpzrPZaNqhFRrjtLRETx8fHUr18/UlNTI2NjYxo1ahQ9evRIaXGzoknliRsRUWJiIjVv3ly+aEFNTY0Tt3zgxI2xoiU8PJyaNWtGZcuWpUuXLin8/P7+/iQIAtWsWZMePnxIRLknwH946y06OppGjBhBgiCQoaEhXblyJde5MjIyFB5fcXTjxg2ytrYmQRCodevWtHfvXoqKiiKivG91RkdHy+chmpmZ0fjx4+n58+fKDpsVQYUicSN6P6Gzf//+8nkAnLh9O07cGCt6JBIJLVu2jHR1dWn69OnySe2KkJycTB4eHiQIAo0ZM0a+/XM12XJycqhz587yOVgSiYQkEgnPrcqnW7dukaenp7x7QuPGjSkrK0v+vGwkLiIigrp06UKCIJCVlRVNmTIl12jcxyt6GfuQUjon/P3339DR0UHXrl2/uu+SJUtw4sQJAEBAQEBBh1YscOcExoquu3fvwsfHBwYGBtixYwcqVKigkPNu374dffr0AQAMGTIEy5cvh6am5iddE2SV+m/fvo2mTZvC1NQUly9fhpWVlULiKGnevn2LGzduYNWqVVi0aBGcnJwA/G+u2vPnzzFq1CgcO3YMNjY2GDx4MAYOHAgbGxsA/+uJmpmZCUEQoKWllWs7Y9xkvhjgxI2xoi0jIwMTJ07Etm3bsGrVKvTq1UshE9JXr16NyZMnIy0tDd26dcPChQvlCzA+TgTS09Ph6uqKly9f4vbt2wpLIEsq2fubk5Mjb2318OFD/Pbbbzh79ixKly6NIUOGYMCAAbCwsMh1bHJyMn7//Xe8ffsWHTp0gLe3N4yNjbkdFgMAcPrOGGMqpqOjg5UrV8LPzw8TJkzAL7/8gqSkpB8+b58+fTBhwgRYWlri33//ha+vL/z9/QG87yFNRPKe0GpqakhPT4elpeUXOymwbyN7fzU0NCAIAu7cuYOhQ4fi7NmzKF++PH799VcMHjwYFhYWn3TXyMrKgoaGBi5cuID+/ftjwIABiI+Ph5qaGvfwZpy4McZYYdG2bVvcu3cPSUlJcHJyQkhIyA+dT19fHxMmTMDvv/+OqlWr4vLly+jcuTOmT5+O1NRU+WgQACxcuBAvXryAk5MTKlWqpIiXU+LJRk1DQkIwcuRIBAYGonLlyvjtt98wcOBAmJqa5nmchYUFpk+fjnPnzqFevXo4cOAAPD09kZycDHV1dUgkEmW+DFbIKPxWabNmzQAA9vb22Lp1a65t+QpMEHDu3DlFhlZs8a1SxooXqVSKpUuXYsaMGZg5cybGjh37Q/ObpFIp/P39sXbtWhw5cgQA4OjoCEdHR9ja2uLly5fw8/ODubk5bt68CTs7O0W9lBLvzZs38PDwwLNnz+Dg4IChQ4eiR48e0NPTk+8jlUrx4sULZGRkoFKlSlBXV5ffEk1LS8NPP/2E8+fPo3nz5jh+/Dg0NTVV9XJYYaDw1Q7/vyq0WrVqn2zLz4NXlX47XlXKWPEUEhJC5cqVozZt2lB0dPQPn+/t27f0119/kb29/Sc/c+vWrUtBQUEKiJp9bObMmVSmTBnavHnzJ+VVDh48SP369SMNDQ3S0NCgxo0b07x58yg1NVW+T0pKCtWoUYMEQaDFixcrO3xWyCh8xG3WrFkAAHNzcwwfPjzXtvyaMWOGwuIqznjEjbHiKykpCQMHDsTFixexa9cuNG3a9IfPmZKSglOnTiExMRHv3r1DnTp1UKNGDR5pK0C3b99G9erVoampKV9humfPHixcuBB3796FVCqFtbU1EhISkJWVhfbt22PPnj3Q1tYGAOzZswc9evSAl5cX9uzZo+JXw1SJV5UWA5y4MVa8ERE2bdqE0aNHY/Lkyfj999+5NEQRJVttmpaWhr59+2Lfvn1wdnbGmDFj0KBBA9y8eRNTpkzBo0eP0KhRI/j7+0NDQwOXL19GixYtULp0aYSGhsLIyCjXeYlbY5UY/D+fMcYKOUEQMGjQIFy6dAnbtm1Du3bt8O7dO1WHxb6DLOG+ceMG9u3bBwAYN24cfvnlF5QtWxadOnVCYGAgnJ2dcfHiRbRr1w4AEBkZiczMTOjo6EBDQyPXOT9M2h48eIC4uDglviKmbJy4McZYEeHk5IQbN25AR0cHderUwdWrV1UdEvtOspIrpUqVQoMGDeTbJBIJLC0tcfjwYdStWxf+/v5o2rQptm/fDg0NDfTr1w+6urry86Snp8uTtm3btmHUqFFYt24dEhMTlf6amHKoqzoAxhhj387IyAj79+/H8uXL0bx5c8ybNw+//fYb3yYrYoyNjVGmTBnEx8cjJiYGZcqUgVQqhbq6OrKysmBraws/Pz+0aNECgYGBAN6vBJYlecD7+Y9LlixBRkYG3NzcsHz5cty9exfa2tqIiYmBsbGxil4dK0gFVg7kR3E5kG/Hc9wYK5muXLmCn3/+GQ0bNsTmzZtzlZhghV/fvn3x999/w8HBAf7+/jA3N5c/l5GRgdu3b2Py5MkICgqChYUF1q9fD29vbwDvb48mJCSgatWqePfuHSwsLBAXF4cGDRpg9OjR6NSpk6peFitgCk/cFDVhVhAELjL4jThxY6zkio6ORvfu3fHu3TscOHCAi+cWMW3atMGZM2dQqVIlzJo1C1ZWVtDX18fmzZtx9epV3L17F0ZGRti0aRO6dOkCAMjJyZHPcxs5ciQ2bdqE7OxslC1bFn5+fnBxcQHACxaKK4XfKuUSHowxpjxWVlY4e/YsJk2ahHr16uGff/5Bhw4dVB0W+0ZHjx7Fr7/+iiNHjsDX1xdEBDU1NfnAhYWFBbZu3Yq2bdsC+F/SlpWVhVWrVuHkyZMQi8UQiUR4+fIlQkND80zcOIkrPrgcSDHAI26MlWxEhEuXLmHNmjU4fvw4Ro0ahZkzZ3JD8iIiJycHiYmJuHDhAm7duoW1a9ciOTkZpUqVwt9//y2fgiQWi6Guro6MjAwsX74ca9euRVRUFDp06AAXFxdMnToVUqkUa9euxZAhQ+Tnl5UgAYCoqChYW1ur5HUyxeBVpYwxVsS9evUKvXv3Ru3atXH16lX8+++/6Nixo0Ia1RdlRWW6jYaGBiwsLKCvr48jR44gOTlZftuzWbNmICJ50paSkoJFixZh1apViImJQbt27TB58mRMmjQJO3fuBAAMGzYMO3bskJ9flrTt3bsX9evXx7Fjx1TyOplicOLGGGNFWGZmJsaPH48yZcpg/PjxqFGjBkJDQ0FEcHV1xaNHj1QdokqcPHkShw4dUnUY+eLk5ISnT5/CwsICBw4cgLu7O4hIvto0ISEBCxYswLp16xAfH4+ffvoJs2bNQr169QAA3bp1w/r16wEAMTExyMnJkZ87KCgIkydPxqtXr7Bo0SKuA1iE8a3SYoBvlTJWMkmlUqxbtw7Tpk3DnTt3ULp0aflzEokEU6ZMwfr167F79254enqqMFLl2r59O/r06QM3NzdcunRJ1eHkS3h4OLKyslC5cmV5rTeRSIR3795h0aJF2Lp1K9LT09GpUydMmTIF1apVA/D+31t2a/zBgwewsbGBiYmJ/LwJCQno0qUL1NTUMHToUPnqVFb0KDVxi4qKwpYtW3Dp0iW8fv0aaWlp+NzlBUHAs2fPlBVakcaJG2Ml0/Xr19GyZctcKw4/tnv3bgwcOBDTp0/H+PHji/0E9Y0bN+aa37V+/XoMGjRIhRF9nw/npSUnJ2PZsmVYtWoVMjMz0bVrV/z++++oWLFinsd8uBBhzZo1qFmzJpo0aYK4uDg8e/aMV50WdcroZE9EdODAATIwMCCRSESCIOT5+PA5kUikrNCKvKSkJAJASUlJqg6FMaYkaWlp1KBBA+rXr99X971x4waVLl2afvnlF0pPT1dCdKqxcuVKEgSBSpUqRe3btyeRSES+vr6UnZ1NUqlU1eF9t/v371P16tVJJBLRgAED6OXLl5/dVywWy79esWIFaWpqkrq6Oj148CDXfkX5/SjplDLH7cGDB/Dx8UFqairatm2LtWvXAnhfAfyvv/7C3Llz4eHhASKCubk5Vq9ejS1btigjNMYYK5JWrFiBd+/eYcWKFV/dt06dOrh27RrCw8PRtGlTREVFKSFC5frzzz/x22+/wd7eHps2bcKkSZNARNi1axdCQ0OL9MjSrl27EBYWhqpVq2LatGmwt7fP827Vh7dLFy5cKF9Z3Lx5c8THx+fatyi/HyWeMrLDAQMGkCAI1LNnT/k2QRDIxsYm134nTpwgPT09cnFxoezsbGWEVizwiBtjJUtoaCjp6OhQaGhovo7LyMigHj16UOnSpen27dsFFJ3yzZ8/nwRBoAoVKtCJEyfk2319fUkQBOrWrVuR/vm4ZcsW0tLSom7dusm3fTiy9vHfZ8yYQYaGhqShoUG//PILXb16VWmxsoKnlMStYsWKJBKJcg3V5pW4ERGtX7+eBEGgxYsXKyO0YoETN8ZKjsjISKpUqRLNnz//u46XSqU0b948MjAwoMOHDys4OuWbNm0aCYJAVapUIX9/fyIikkgkRER09OhRMjU1papVq9KzZ89yPVeUhIaGkrm5OQmCQJs3b5Zvl93ulCVtEomEJk6cSLq6uqStrU29e/em69evf7I/K9qUkrjp6OiQpqZmrm0ikYhMTU0/2TctLY3U1dWpTp06Crn28+fPaePGjTRgwABycHAgNTU1AkBz5sz5rvPdvHmTpk2bRo0bNyYzMzNSV1cnCwsLatOmDR04cOCzx23dupUAfPFx8uTJ74qJEzfGSoaMjAzq2rUrNWnS5JMRl/zat28f6enp0aJFi4rkL3SpVEqXLl0iQRCocuXKFBQUJH9OlpzFxsaSo6MjCYJAw4YNU1WoCvHvv/+SIAikqalJ//zzj3y77PsgMzOTRo0aRdra2qSrq0sDBgygO3fuyPfLycmRfy17f4rivzsjUnjLq7xoamp+cj9dX18fSUlJ8qKCMrq6ujAwMFDYitIVK1Z80xyQb/Hs2TPUqVNH/vdy5cqhbNmyeP78OU6dOoVTp06hd+/e2LJly2d7tlpaWn62l+CHS7cZY+xDUqkUmzdvxtmzZ3Hnzp0f7orQuXNnlC1bFh07dsTTp0+xZs0aef/LokAQBLi7u+Ovv/5ChQoV0KhRIwDvV0qKRCJIpVKYm5tj9uzZ6NatGwICAnD//n3UrFlTxZF/n65duyIhIQFDhw7Fli1b0K5dOxgZGUFNTQ2pqakYP348Nm/eDG1tbfTs2RPDhw9H9erV5cfLfs+KxWKkpaXByMhI/nv5w7lxrPBTSuJma2uLR48eISMjAzo6OgCAsmXL4v79+7hz5w6cnZ3l+yYkJCAxMRHa2toKuba5uTnat28PFxcX1KtXD3/99Rf279//XeciItjY2GDUqFHo2bMnbGxsAEDeYuTXX3/F33//jbp162LEiBF5nsPT0xPbtm373pfDGCuhoqKisHv3bmzcuDFXvbYf4ezsjJCQELRr1w4dOnTAnj17ikxJIVmy0a9fP/k2+qC8hezDc9WqVVGzZk3cuHEDISEhRTZxA4DBgwfD1NQUdnZ20NfXh0gkQkJCAsaOHYvt27fDwMAAffr0wbBhw3INELx58wbPnz/H6tWrERMTg5iYGLi7u6NRo0b45ZdfoK6u/skgCivElDGs16lTJxKJRLmGbYcOHUqCIFD37t1z7Tts2DASBIFq165dILH07t37u2+VZmRkUFpa2mefHzJkCAEgBweHT56T3Srt3bt3vq/7NXyrlLHiLTk5md68eVNgi7aSkpKoVatW5ODgQBEREQVyDVWSLV6wt7eXz3UrymS3OiMjI6lHjx4kCAKZmZnRhAkT6Pnz57n2vXr1Kvn4+JCdnV2eZbe6du36yVw5VrgppRxIu3btQES5RrqGDBkCkUiEPXv2oGbNmvD19YWDgwPWr18PQRByfYoqLLS1taGrq/vZ51u1agUAePz4sbJCYowVc0SE5ORkWFtbF9itTENDQxw7dgwuLi5wdXXF7du3C+Q6ykb/XzJjwIABcHFxQXx8PG7cuAGg6PQxzYtIJEJSUhJ8fX2xc+dO2NjYYMiQIRgxYgTKlSsn3y8gIAC//vor9uzZgzdv3sDBwQErVqzAxo0bsXjxYpQpUwZ79+6Vd1FQU1P7bFF8VngoJXHr0KEDevfunWsY1sHBAcuXL4dIJMKDBw+we/du3L9/H0SE7t27Y+TIkcoITaEyMzMBQH47OC937tyBj48PmjVrBi8vL8yaNYs7RDDGPksQBJQqVeqz82YVRUNDAxs3bsSIESPQuHFjnD59ukCvpwyy26aGhoaoXbs2UlNTsWnTJgAo8nO6jIyMUK1aNaipqWHw4MEYMWJErlvooaGhmDlzJq5duwYbGxtMmDABwcHBGDFiBAYMGIBx48YhODgYVapUwZEjRzBjxgwAXN+tSFDpeB8RhYWF0Zw5c2jQoEE0fvx4OnfuXIFe70dulX6Nl5cXAaD27dt/8tyXVpWqqanR3Llzv/u6fKuUMaZIO3fuJF1dXdq+fbuqQ/lhstuAjx8/JhMTExIEIdeqzKLu+PHjFBUVJf+77Hbn77//Trq6umRpaUmLFi2S32b/+M/g4GDS0dGhhg0b5joPK7xUnrgpW0ElbqdPn5YnYoGBgZ88f/DgQRo5ciQFBwdTdHQ0ZWZm0q1bt6hnz57y41atWvVd1+bEjbHi52tzaguav78/GRoa0sKFC1VaNkIRddckEglJJBIaMWIECYJAI0eOVEBkhVdYWBjp6+uTIAg0dOjQXHXePhYREUF2dnYkEokoJCRE2aGy76CUW6XF3atXr+Dr6wsAGDZsGBo3bvzJPl5eXli5ciXc3NxgaWkJLS0t1K5dG9u3b8eoUaMAAFOnTkVKSooyQ2eMFUJSqRSRkZEqLc/RvHlzBAYGYvny5fjtt99UNidMEbeIRSIRRCIRmjdvDgBYvXo1AgMDf/i8hQ39//y0gIAApKWlwcHBAYsXL4aamlqupvUfSk9Ph1gsBvC/6T6scOPE7QfFx8fD09MT7969g4eHB5YuXZrvc8yaNQtaWlpISkrC+fPnvzuW5OTkfD+ysrK++3qMsYIRHR0NMzMzlddVq127Ni5fvozTp0+je/fuSv3F/u+//2L+/Pno3bs3NmzYgODg4FzP03dMovfy8kKPHj0AAI8ePVJInIWRrBetra0t9PX1IZFIPknaZO/fs2fPkJSUBAMDgyJTCqakU2rRlqdPn2LPnj24e/cuEhISkJOT89l9BUHAuXPnlBhd/qWmpqJt27Z48OABnJ2dceTIEWhpaeX7PIaGhqhRowZu3ryJp0+ffnc831PbacaMGZg5c+Z3X5MxplgpKSkgokLzS7RcuXIIDg5Ghw4d4OnpicOHDxdobBKJBJ06dcLRo0fl2/755x8AwKRJk/DTTz/B1dUVgiB8dhQpL/T/Nd7q1KkDe3t7DBo0qEDiVyXZwgIrKysAkP8+yivJFQQBjx49wvjx45GZmYkmTZqgdu3a8v0/XqSQn/eaFSylJW6///47lixZAqlU+k2flAr7ypasrCz89NNPCAkJQfXq1XHq1CkYGBh89/lkn6xlQ9bfIyIiIt8/UL8n0WSMFQyxWIx3797B3t5e1aHkYm5uDn9/f3Tu3BlNmzbFyZMnYWlpqfDriMVieHt74/jx42jSpAmGDx+O58+f48mTJ9i8eTMWLlyIixcvYuDAgejVq5e8Q8K3JBSy3ynDhw9X+UhmQXN0dISFhQXu3buH5ORkGBoaIjs7W/66ZUnbzJkz8ejRI5QtWxaDBw8GAOTk5Mj3O3bsGNLT09G1a1dO2goRpSRua9euxcKFCwG875jQokULWFlZFdkqzWKxGF27dsX58+dRvnx5nD17Fubm5t99PolEIh+2t7Oz++7zGBoaFppP6Yyx/EtJSYG1tXWh/CWpp6eHI0eOoFevXmjUqBHOnj2LMmXKKPQae/bswfHjx+Hh4YFDhw7l+nnm7u6OFStW4PLly3j9+jVSUlIwfPjwT5K3j9s3fZzYFfekDXjfEcPd3R2HDh1Cr169cODAAWhqasqfv3z5MhYsWIDz589DQ0MDbdu2lc/N/jBpmzVrFm7cuAGxWAwfHx+VvBb2KaVkTuvWrYMgCOjTpw82bdpUKH8ofSsiQp8+fXDkyBHY2trC398ftra2P3TOzZs3IzExEWpqavDw8FBMoIyxIqew9yvW1NTEzp07MWLECLi7u+PMmTOoVq2aws5/69YtAMCoUaNgaGiIrKwsaGhoQCQSoU+fPrCzs8OKFStw8uRJzJkzB1paWhgwYABEIhHofZUE+UT8CxcuoFmzZvkalSsutLW1sXHjRvz33384cuQIGjZsiNatW0NDQwNxcXFYtWoVxGIxDA0N0blzZ8ycOROmpqby4/fu3Ytly5bh7t27cHZ25kULhY0ylq5qa2uTSCSixMREZVzui76lHMiyZcvI3t6eunXr9slzI0eOJABkbm5ODx48+KZrJiUlUffu3T9Zai0Wi2njxo2kra1NAGjQoEH5ezEfnB9cDoQxpiRSqZSmTp1KZmZmFBoaqpDzZWdnU/fu3UkQBNq6desnz8sEBwfL2yhWq1aNDh8+nGtfsVhMP//8M1lbW9PGjRt/OLaiLCIigtzd3UlDQ0Pe5kr2aNCgAc2cOfOT38s7d+4kV1dXEolEJBKJyNXVlRYvXkyBgYH04sULIiKVlodhREoZcTMxMUFmZiaMjIyUcblcgoOD8dNPP8n/npqaCgBYsGABli9fLt9+69Yt+eT+xMREhIeHo2zZsrnOdeXKFaxatQrA++4IAwcO/Ox1L126JP9aKpXCz88Pfn5+MDY2Rrly5aCuro4nT54gMTERwPvm8ytWrPiRl8oYK4KkUikSEhJgZmam6lC+mSAImDNnDkxNTdGiRQscPXo0zzJI+TmfhoYGqlevDgC4ffu2vPyImpoaBEGQT5h3c3NDdnY2EhISEBgYiB07dqBWrVryVk+PHj1CZmYmoqOjMXr0aDRs2FCho4JFiZ2dHQ4cOICzZ8/C398f4eHhMDExQf369eHl5YWyZcvmunW8bds2LF26FPfv3wcA1KtXD3FxcdiwYQMmTpyI6tWrY/Xq1fDw8Chxo5iFijKyw59++onU1NQoNjZWGZfLJSAg4LMdCz58yD5JEBHNmDGDAFCTJk2+61wfv63Z2dm0ePFi8vLyoooVK5KhoSFpaGiQtbU1tWvXjv79998f+gTDI26MFV1v374t0v93N23aRPr6+nT69OkfPtfevXtJEASytramx48fE1Huxucf/pzcs2cPWVlZkYaGBu3atSvXefz9/alJkya0Zs2aH46puMnJyclz+4YNG6hq1aokEomoTp06tG7dOpJIJJScnEyxsbE0YcIEEgSBtLS06MqVK0TEI2+qopTE7dKlS6Surk6jRo1SxuVKHE7cGCuakpOT6c2bN6oO44fJWmQdOnToh8/VvHlzEgSBXF1dKT4+nog+n7xNnDiRBEGgypUrU0xMTK7zFIf3VVE+fM9k3RNkCZxEIqGVK1dSxYoVSSQSkYeHB506dSrP84wbN44EQaB69epRZGRkwQfO8qS0llebNm0iTU1NGjx4cK7RLfbjOHFjrOjJycmh58+fK6SlU2Fw8OBB0tXV/WT0K7+uXbtGVapUIUEQyMfHh1JSUogod/Ime88SEhKoVq1aZG1tTU+ePMn1HPs82XuUnZ1Nf/zxB5UtW5bU1NSoZcuWFBAQIN9PlvDJ3vtHjx6RlZUVWVhY0M2bN5UeN3tPafU4BgwYgLi4OEyePBmbNm2CqanpF+ueCYKAZ8+eKSs8xhhTGiLC27dvC23pj+/h5eWFAwcOoHPnzkhPT0f//v2/6zxOTk4YMWIE5s6di927d0NXVxcrVqyArq6uvNSHbBWpuro6tLW1ER0djYcPH6JixYrF5v0sSCKRCBkZGVi5ciXWrFmDyMhItG7dGlOmTIGbmxuA3EV4Ze+pjo4ORCIRYmJi8Pr1azg5OansNZRkSkncJBIJevXqBT8/PwDvvyHi4uIQFxf32WMKewFexhj7XmKxGAYGBtDR0VF1KArVunVrHD9+HB06dIBYLJYXdc0PNTU1DBgwANHR0Vi7di02b96MzMxM/PXXX/KC4WKxGOrq6tDX14eWlhasra3lCxvY10kkEsyePRvr169HdnY22rdvjylTpqBu3boAPu2cIAgCsrKy8M8//yAqKgrW1tZwcHBQVfglnlISt+XLl2P37t0AgEaNGqF169ZFugAvY4z9CA0NjUJfs+17NWnSBCdPnkTbtm0hFosxfPjwfJ9DW1sbkydPhkgkwrp167Bz506Eh4dj7dq1KFu2LPT19QEAK1euRHBwMJo0aSLfxr5OTU0Njo6OSEpKwk8//YRZs2bJE7GPkzbgfaJ8/vx5HD16FCKRCN7e3rC0tMxzX1bwBKLv6NSbT9WrV8ejR48wefJkzJ07t6AvV+IkJyfDyMgISUlJ3DmBMVYoXLlyBZ6enpg9ezZ+/fXX7zpHRkYGtm/fjvnz5yMiIgLlypVD9erV4eLigkePHmHXrl3Q1tbGmTNn0LBhQwW/guLP398f1tbWqFmz5mf3yc7Ohr+/P5YsWYLAwEBUqVIFW7duRf369ZUYKfuQUhI3XV1dZGdnIykpCXp6egV9uRKHEzfGiobY2FiYmprmaslUnIWGhqJ169aYPn06Ro8e/V3nICKEhYVh2LBhCAsLQ2xsrPy5KlWqYNOmTZy0FZDMzEycPn0aixcvxpUrV1CqVCns2LEDTZo0UXVoJZrSCvBmZGRw0sYYK7FSUlKQk5NTYpI2AHBxcYG/vz9atmwJsViM8ePH5/scgiCgevXqOHbsGF6+fImrV68iMzMTlSpVQvXq1eWF05lipaen48SJE1i0aBFu3LiBsmXLYufOnWjQoIGqQyvxlJK4NW7cGHv27MGbN29QqlQpZVySMcYKDbFYjHfv3sHe3l7VoSids7Mzzp07h+bNm0NNTQ1jxoz5rvPo6+ujZs2aX7ytxxQjNTUVR48exaJFi3D37l1UrlwZu3fvhpOTE89rKwSUsm568uTJ0NLSwoQJE5RxOcYYKzSKY+mP/HJycsLZs2cxZ84crFy5UiHnVMIsnxIpMTER+/fvx7x583D37l3UqlULBw8ehJOTE6RSKSdthYBSfoo4ODjgwIEDOHnyJDw9PREQEIC0tDRlXJoxxlQqPj4eurq6xa70R345Ozvj9OnTmD59OtauXfvD5+MEomDcuXMHI0aMwIMHD+Di4oKDBw+iWrVq3Ju0EFHK4oTvmdMhCALEYnEBRFP88OIExgqv+Ph4mJiYcKLx/65cuYI2bdpgyZIlGDRokKrDYXnw9PREeHg4/P39YWtry0lbIaOUxO17/sEFQYBEIimAaIofTtwYY0XJpUuX0KpVK7Rp0wYHDhxQdTgsD8nJyTA0NOSkrRBSyuKEgIAAZVyGMcZYEUDv+2TjxIkT2L17N3755RdVh8Q+wklb4aWUxI1rvjDGSpKUlBRIpVIYGRmpOpRC59atW+jQoQNWrlyJMmXKoFOnTtDT00PHjh1VHRr7CCdthZNS/lXKlSuHChUq4OnTp8q4HGOMqYys9IeBgYGqQyl0Hj16hNatW+P333/HwIED0bp1a+zYsQM+Pj7w9/dXdXiMFQlKSdwiIyMRGxuLihUrKuNyjDGmElz64/NevXqFli1bon///rlKQ3l7e2P9+vXw9vbGpUuXVBghY0WDUm6V2tra5mpTwhhjxRGX/shbTEwMWrZsiXbt2mH+/PmfPN+jRw+kp6ejXbt2OHfuHOrWrauCKBkrGpTykbBFixZIT0/HrVu3lHE5xhhTuszMTKSmpsLMzEzVoRQqSUlJaNOmDerUqYPVq1d/tizKoEGDMH36dHh6euLhw4dKjpKxokMp5UCeP3+O2rVro1atWjh79ix0dXUL+pIlCpcDYUz10tLSoKmpCQ0NDVWHUmikp6ejdevWMDQ0xKFDh77pvfn999+xY8cOBAcHcx9SxvKglMTt1atXCA4OxuDBg2Fubo6RI0fCzc0NlpaWXyzOW6ZMmYIOrVjgxI0xVthkZ2fDy8sLqampOHXq1Dd/YCciDBkyBEFBQbh48SLMzc0LOFLGihbunFAMcOLGGCtMJBIJevTogUePHiEgICDfZVEkEgm6d++O8PBwnDt3jlfoMvYBpcxxkxVbzM9DKpUqIzTGGPtuYrEYb9++VXUYhc6LFy8QHh6OU6dOfVctOzU1NezYsQNGRkbw9vZGVlZWAUTJWNGklBG38PDw7zrO3t5ewZEUTzzixpjyEREiIiJgYWHBq0jzQEQ/3J81NTUVzZs3R9myZbF7924uscIYlJS4sYLFiRtjyhcfHw+pVMpzsApYbGws3N3d0bZtWyxbtuyHk0HGijr++MIYY/mUmZmJlJQULv2hBBYWFjh16hT8/Pzw559/qjocxlROKQV48xIeHo6YmBgIggALCwu+LcoYKxKkUikiIyNhZ2fHoz9KUr58eZw4cQIeHh6wsbGBr6+vqkNiTGWUOuIWGRmJX3/9FZaWlihfvjzq168PV1dXlC9fHpaWlhg1ahQiIyOVGRJjjOULEcHKyorrtSlZnTp1sG/fPgwaNIj7mrISTWlz3IKDg+Hl5YX4+Hh87pKCIMDMzAyHDh2Cm5ubMsIqFniOG2OspPjnn38wYsQIBAUFwdHRUdXhMKZ0SkncYmJiUK1aNSQkJMDQ0BBDhgxBy5YtYWdnBwB4/fo1/P39sWHDBiQmJsLU1BQPHjyApaVlQYdWLHDixljBU8QqSaYY8+bNw7p16xASEoJSpUqpOhzGlEopidvEiROxZMkSVK1aFWfPnv3sf7S3b9+iRYsWePToEcaPH4+FCxcWdGjFAidujBUsIsLr169hY2MDdXWVTQ1m/4+IMGDAANy8eRNBQUFcoJeVKEqZ43b8+HEIgoBNmzZ98dORra0tNm3aBCLCsWPHlBEaY4x9VUJCAnR0dDhpKyQEQcD69ethbm6Obt26cZcdVqIoZcRNX18fIpEIycnJ37S/7NNTSkpKQYZVbPCIG2MFJzMzE9HR0ShTpgzfKi1kkpKS4O7ujkaNGmHt2rXF4t8nNTUVcXFxSE9Ph4mJCaytrVUdEitklDLiJgjCZxckfA7XBWaMqZqs9IetrW2xSAqKGyMjIxw/fhyHDh3C0qVLVR3ODzt69Chat24NDw8P1KhRA66urti0adM3D3qwkkEpiZu9vT3S09Nx9erVr+575coVpKWloWzZsgUfGGOMfUF0dDTMzMy49EchZm9vj6NHj2LGjBk4evSoqsP5LkSE4cOH46effsKVK1dgYGCASpUqISIiAmPGjIGfnx/fDmZySkncPD09QUQYNGgQYmNjP7tfTEwMBg0aBEEQ0LZtW2WExhhjn2VsbMzTD4qAunXrYtu2bfD19cXdu3dVHU6+xMfHo2/fvli3bh1q1aqFw4cP4+7du7h+/TpGjhyJtLQ0rFu3Djk5OaoOlRUSSpnjFh0djWrVqiEpKQkmJiYYOnQomjdvjlKlSkEQBERERODcuXPYsGED4uLiYGxsjIcPH3I5kG/Ec9wYYwyYO3cuNm3ahNDQUFhZWak6nG9y6dIleHt7w9raGkePHkXZsmXlpWfS0tLQsGFD3LlzB5cvX0b9+vVVHS4rBJSyRMrKygoHDx6Et7c34uPjMX/+fMyfP/+T/YgIxsbGOHToECdtjDGVICIQEUQibuVc1EyZMgVhYWHw9vbG+fPnoa2treqQvmrdunWIi4vD0KFDUbZsWUgkEohEIkgkEujp6aF8+fKIiYmBjY0NgP/N/+Y5lyWX0n4yNWnSBHfv3sXgwYNhYmIi/+Eoe8hG4u7du4fGjRsrKyzGGMslISEBiYmJqg6DfQdBELB582Z5nbfCvMhNFpuRkREEQYCRkREAQE1NDRKJBGpqaoiNjcWbN2/g6emJyMhIREZGQhAEedJWmF8fKzhKa3n1sRcvXiAmJgYAYGlpiXLlyqkijGKBb5Uyphhc+qN4iI6ORr169TB8+HBMnDhR1eF80bRp0zBv3jw0aNAAu3btgr29PQAgKysLI0aMwObNm+WJXVJSEjw9PdGrVy907dpVxZEzVVFZ4sYUhxM3xn6cVCpFeHg47OzseBVpMXDz5k00btwYe/bsKZSL3aRSKUQiEdLT0+Hk5IQnT56gUaNGqFWrFuzt7bF582Y8fvwY5ubm6Ny5M5KTk3H69GnEx8ejYsWKmDt3LidvJRQnbsUAJ26M/bjIyEjo6enx/6FiZPfu3Rg6dChCQkJQpUoVVYfzCbFYDHV1dYSGhmLOnDk4fvw47OzskJSUhJSUFHTq1AlLliyR35EKDg7G7NmzcfbsWTRu3Bjbtm3j0lklECduxQAnboz9mNTUVCQnJ8PW1lbVoTAFmzRpEg4dOoSQkBD5PLLCKD09HREREYiKisKYMWNgZWWFEydOAPhfggcAu3btwsiRI6GpqYl///2X54SXQAWSuJUvX/6HzyEIAp49e6aAaIo/TtwY+zFisRgikYhXkhZDEokEHTp0gEgkwuHDh6GmpqaU68pKeuTX1atX0aZNG/Tt2xfLli2TL1SQnU8qlaJmzZp4+PAhtm7dit69exdA9KwwK5ByIC9fvvzhc/DEYMaYsnDz+OJLTU0Nu3btgqurK6ZPn4558+YV2LWICDdv3oSuri40NDRQsWLFfB0rCAJu3bqF5ORkefkPqVQqT9ykUilSU1Plvx9lfb1ZyVIgP61mzJjxXcfduHEDx44dU3A0jDGWN9loBiveZPVBXV1dUa9ePXh5eSn8GtevX8fYsWPx33//IT09HYaGhmjdujUGDRoEd3f3rx4vS8Zkd02WLVuG/v37w8zMLNf36dmzZ/Hs2TM0aNAAHh4eCn8drAigQuDZs2fUrVs3UlNTI0EQSBAE8vLyUnVYRUZSUhIBoKSkJFWHwliRkZGRQeHh4aoOgynRvn37yNDQkB4+fKjQ827dupXU1dVJEARycXGhxo0bk5mZGQmCQIaGhrR161aKi4sjIiKJRPLFc71+/ZoaNGhAgiBQu3btKCoqirKzs0kikdCSJUtIS0uLBEGgVatWkVQqVejrYEWDShO36OhoGj58OGlqapJIJCJBEKhRo0Z0+fJlVYZV5HDixlj+SCQSev78OWVnZ6s6FKZkEyZMoOrVq1NycrJCzvf06VOqXLkyaWpq0l9//UVERGKxmO7du0deXl4kCALZ2dnRnDlzKCcnh4i+nLxlZGTQX3/9RcbGxiQIAlWpUoUaNmxIlSpVIkEQSF1dnbZs2aKQ2FnRpJLELSUlhaZPn04GBgbyhK1WrVp09OhRVYRT5HHixlj+REZG8v+XEionJ4eaNWtGXbp0UciI1ZYtW0gQBBozZswnz6WlpVHPnj1JW1ubrK2tafXq1d90ztTUVNq+fTsZGRnJ70IZGxtT+/btFT5ayIoepc7IzcnJwdq1azFv3jzExcWBiFCmTBnMnj0bPXv25AUJjLECl5qaCqlUyiuwSyh1dXX4+fnB2dkZf/75J8aNG/dD57t37x4AwNzcHMD/5k1KJBLo6upi6tSpEIvF2LNnD5YtW4YaNWrAw8NDXoD3Q/T/CxT09PTQs2dPNGrUCGFhYdDV1QXwvnUkY0pL3Hbs2IHp06cjPDwcRAQzMzP8/vvvGD58ODQ1NZUVBmOsBJNIJIiNjZW3FWIlk4WFBfbv3w8PDw+4uLh8Vy00WZJlZWUFAEhMTIRUKpUPQMgWE1SuXBlDhgxBVFQULly4gJUrV8LBwQGmpqafNIwXi8XQ0NBATk4ONDQ0ULZsWS6wyz5R4EWLTpw4AUdHR/Tu3RsvX76Ejo4OpkyZgufPn2P06NEqTdrKli0rb9gre2hra6NcuXLo0aMHrl27ludxffr0+eS4vB59+vTJ93EFsdqJMfaempoaypQpw/XaGOrVq4c//vgD3bt3R3R0dL6PlyVb2traAIBLly7JawHKEjLZn40bN4aPjw9sbW0RGBiIffv2yc8hO8+OHTswZswYZGdnQ0NDA1Kp9IdfIyueCmzE7erVq5g0aRIuXrwIIoK6ujoGDBiAGTNmyD+hFBaVKlWCpaUlACApKQlPnz7Fzp074efnh61bt6Jnz555HmdpaYlKlSp99ryVK1fO93HVq1fPZ/SMsfzg8h9MZsiQIQgKCoKPjw/OnDnzXd8bvr6+mDt3Lq5cuYKNGzdi0KBB8ucEQZCPzHl5eSEoKAg7duxAYGAgOnXqJL+9ev78eUyaNAnv3r2DhYUFpk+fzh8u2OcVxMQ5b29vEolE8ke3bt3o6dOnBXGpH2Jvb08AaOvWrbm2x8fHU5cuXQgAGRgYUHx8fK7ne/fuTQCod+/e+bre9x73Nbw4gbEvk5VTYOxjycnJVKVKFZo2bdp3n2PGjBkkCAJVqlSJnjx5QkTvV5bKyBZBnDhxggRBIAMDA/l+REQRERE0ePBgEgSB2rZtS2lpad8dCyv+CmTE7dChQwDef9po164dqlevjp07d+b7PNOnT1dwZN/GxMQEmzdvxsmTJ5GSkoIzZ86gW7duKomFMfZjpFIpXr9+DTs7Ox7FYJ8wMDDAvn370KBBA7i7u6N169b5PkenTp1w8uRJXLt2DfPmzcPWrVuhpqYmX4Agux3q6ekJT09PnDx5EgcPHsT48eMBAHZ2dvDx8YGTkxMGDx6s0NfHip8Cu1Uq+0Y9fvw4jh8//l3nUFXiBryvXl25cmXcunVLIS28GGOqERMTAzMzM2hoaKg6FFZI1axZE2vWrIGvry9u374NOzu7fB1fq1Yt9OzZE0+fPoWfnx8cHBwwevToXB8UZEmcg4MDTp48KZ/fLVuF2rhxY24Yz75JgSRuZcqUKRalPdLT0wFAvhSbMVa0pKamQiKRcOkP9lW9evVCYGAgfHx8cP78+Xz1r5UtRvvvv/+wYcMGzJw5E9WqVUObNm1A7+ulyhcqyH6vpKamAuA5lyz/Cm2TeVV78uQJnj17BgCoXbu2aoNhjOWbWCzm0h8sX1auXIl69ephzpw5mDVrVr6O1dfXx4QJExAXF4d9+/ahe/fu8luwenp6AICwsDAcO3YMtra26Ny5c0G8BFYC8ISPjyQnJ8Pf3x9eXl4Qi8Vwd3dHo0aN8tz377///mJpD9lcv/wcxxhTjOjoaFhbW/O8NvbN9PT08O+//+KPP/5AQEBAvo8vV64c5s+fj1atWiE5ORn9+vVDv379sHfvXixfvhxeXl548eIFvL29Ubp0afkoHGP5odTOCYVV37590bdv31zbRCIRunXrhnXr1n32uK+VAzEzM/uu4xhjP87GxoaTNpZvtWrVwp9//glfX1/cuXMHFhYW+Tq+YsWK8PPzw/Dhw+Hv74+9e/di79698ucnTZqE+fPnKzpsVoJw4ob/1XEjIkRFReH58+fQ0NBAvXr1YGJi8tnjPD09sW3btnxf73uP+5y4uDgAwOHDh2FgYAB1dXWoq6tDQ0MDampqUFdXh5aWFgwMDKCvrw99fX35LzQtLS1oaWkpLBbGCgtO2tj3Gjx4MM6dO4fevXvj2LFj+f5eMjY2xqZNm/D8+XMcPXoUKSkp0NfXR7NmzVC/fv0CipqVFApP3Pbt24cuXboo9Jxv3rzBq1ev0KBBA4WeV+b333/P1eUgODgYXl5eGDduHKysrNCjR48Cua6iPHjwAMD7ybX5NWPGDMycOTPXts2bNyMrKwuWlpawsLCApaUlLC0tYWpqyrdzWaEmlUqRnZ0tr2bP2PcQBAGbNm2Ck5MTli9fjjFjxuT7HDo6OqhZsyZq1qxZABGykkzhiVvXrl3h4OCAGTNmwMvL64d+0UdERGDRokXYvHkzJk+eXGCJ28fc3d2xadMmeHt747fffkPHjh0L9ao0V1dXAMD169ehpaUFsVgMiUSCnJwciMViiMViZGZmIjU1FSkpKUhNTUWbNm1gZWWV52jbli1bEBoaCrFYnGu7trY2SpcuDXt7e5QpU0b+cHJy4gUcrFCIiYmBrq4uJ27shxkbG2Pnzp1o0aIFmjVrlu+fcbLfffT/nRMYUxSFJ24+Pj7YvXs3unTpAisrK/j4+OCXX35BnTp1vumbNzY2FkeOHMHOnTsRFBQEqVSKMmXKwMPDQ9GhfpGXlxfq16+Pq1evYunSpZ+MShUmsnpAlSpVUkiCGRwcDCJCYmIiYmJiEBsbi+joaLx58wbh4eF49eoV7t+/jxMnTiAqKgoDBw7Exo0b8zxXdHQ0pFIprK2t+YcXK1Bc+oMpmpubGyZMmAAfHx9cv379u0pD8c89pmgKT9x27NiBUaNGYezYsbh48SKWLVuGZcuWQU9PD3Xq1IGjoyMsLCxgamoKLS0tJCQkID4+Hs+fP0doaCjCw8MBvP+UYmhoiEmTJmH06NEqmYc1adIkeHl5YeXKlRg3bhz09fWVHoOqCIIAExMTmJiYoEqVKp/dLzMzE5mZmZ99ftmyZVi0aBEMDQ1RtWpVODo6onbt2nB0dISDgwMMDAwKInxWwnDpD1ZQpkyZgu3bt6NZs2a4evWqqsNhrGAWJ9StWxeBgYEICQnBunXrsHfvXqSmpiIoKAgXL17M85gPl0U7Ojpi8ODB6NGjh0qTpY4dO6JatWoICwvDunXr5O1J2P9oa2t/8bbUsGHDUL9+fTx69AhhYWG4du0atm3bhpycHADvV2DVrl1b/nBxccn3Ki5WshERIiMjufQHU7j09HQMHjwYqampiImJwdGjR9GhQwdVh8VKuAJdVerq6gpXV1esWrUKgYGBCAoKQkhICN6+fYvY2FhkZmbCzMwMFhYWqF69Oho3bgwPDw9UrVq1IMP6ZoIgYNy4cejfvz+WLl2KkSNH5kpSTp48iYYNG372+EqVKmHr1q3KCLXQks2D+1B2djbCwsJw+/Zt3L59G3fu3MGff/6JhIQE1KpVC3fv3lVRtKwoSk1Nhba2NnR0dFQdCitGnj9/jk6dOsHAwAB37tzBuXPn0K9fP9y7dw/W1taqDo+VYEopB2JgYID27dujffv2yricQvXo0QPTpk3D27dvsWXLFgwbNkz+XExMDGJiYj57rKylCctNU1MTjo6OcHR0RO/evQG8HzUJDw9HbGzsZ48LCwvDixcv0KhRI77FyuRkJW4YU5STJ0/C19cXPXv2xB9//AENDQ306NEDJ06cQL9+/XD8+HGeu8ZURiAu3VzkJScnw8jICElJScV6Yva8efMwdepUqKmpwcXFBc2aNUOzZs3QoEEDHm1hjP0wqVSK+fPnY+HChVi/fv0npaBkdwWmT5+OQYMGqShKVtJx4lYMlJTEjYjw5MkTnD9/HufPn0dAQADevXsHLS0tuLm5oVmzZmjZsiXq1q3LjZtLgNTUVOjp6fHIB1OIpKQk9OrVC/fu3cPBgwfh6OiY535nz55Fp06dcPv2bVSoUEHJUTLGiVuxUFISt49JpVLcv39fnsRduHABycnJsLCwgKenJ7p164a2bduqOkxWAFJTU5GUlIRSpUqpOhRWDPz333/w9vZGhQoVsHPnTpiamn5x/5EjR+LmzZsICgriD4lM6XgJFiuyRCIRHBwcMGrUKBw+fBhxcXG4ePEi+vfvj1u3buHgwYOqDpEVAFnpDxsbG1WHwoqBPXv2oH79+ujevTuOHTv21aQNABYtWoR3795hyZIlSoiQsdx4xK0YKKkjbl+Tk5MDDQ2NPJ9LSEiAsbEx32YrYogIr1+/hrm5Oc9rZD9s+fLlmDlzJv755598l/kIDQ2Fh4cHrly58tnbqowVBE7cigFO3PLPw8MDERER6NKlC7p06YK6detyElcExMfHQyKRcK0/phCPHz+GIAioVKnSdx0/ffp0HDlyBKGhofIONowVNE7cigFO3PLv/Pnz2LNnDw4cOCCvuN+lSxd069aNk7hCSiqV4u3btyhVqhT/+7BCITs7G/Xq1YO3t3ehbovIihdO3IoBTty+n1gsRlBQEPbt24f9+/cjJiYGVatWRa9evdCjRw+ULl1a1SEyxgqxW7duwd3dHZcvX853I3rGvgcnbsUAJ26KIZFIcO7cOWzfvh0HDhxAZmYmmjZtil69euHnn3/+rgbTjLHij2+ZMmXixK0Y4MRN8VJSUrB//35s374dQUFBePnyJezs7FQdVomUnp4OdXV1/oXICi2+ZcqUiRO3YoATt4IVGxvLk+FVRCwWIyIiAmXKlOF6WaxQ41umTFmUmrg9e/YMe/bswd27dxEfH4+cnJzPByYIOHfunLJCK9I4cVOdhw8fIi4uDm5ubjxhXsG49AcraqZNm4YTJ04gJCQE6upKaQXOSiClJW6zZs3C3LlzIZVK8S2XFAQBEolECZEVfZy4qc7YsWOxdOlS1KxZE0OGDEHPnj3530BBuPQHK2qysrJQu3Zt9OvXD+PHj1d1OKyYUkritnPnTvTs2RMAYGtri9atW8PW1varn0hmzJhR0KEVC5y4qY5UKoW/vz/Wr1+PI0eOQE9PDwMHDsSvv/6KMmXKqDq8IisrKwtRUVEoU6YMj2SyIiU4OBitWrXCnTt3ULFiRVWHw4ohpSRubm5uuHr1Kjp27Ig9e/bwJGMF48StcHj9+jVWr16NDRs2ICUlBV26dMGYMWPg4uKi6tCKnJiYGJiYmHy28wVjhdmIESPw4MEDnDt3jj94MIVTSuJmaGiItLQ0REREwNbWtqAvV+Jw4la4pKamYtu2bVi+fDmePXsGd3d3jBkzBj/99BNPsGesBEhJSUH16tUxY8YMDBgwQNXhsGJGKU3mBUGAoaEhJ22sRNDX18eIESPw6NEjHDx4EGpqaujcuTMqVaqEN2/eqDo8xlgBMzAwwPr16zFu3Di8fftW1eGwYkYpiVvVqlWRnp6OrKwsZVyOsUJBTU0NXl5eCAwMxLVr19C1a1f+8PIFYrEYiYmJqg6DMYVo164dPD09MXr0aFWHwooZpSRuAwYMQE5ODvbu3auMyzFW6NStWxcLFy7k+S6fQUSIjIyElpaWqkNhTGGWLVuG06dP4+TJk6oOhRUjSkncBg4ciI4dO+LXX39FUFCQMi7JWJFy5cqVEj3alJCQAG1tba7XxooVa2trLFy4EMOGDUN6erqqw2HFhFIWJ8yePRsSiQSrV69GYmIi3N3d4erqCgMDgy8eN3369IIOrVjgxQlFm1QqRcWKFZGQkIAJEybg119/hZ6enqrDUhou/cGKM6lUCnd3dzRp0gQLFy5UdTisGFBK4iYSieQ/kGWX+5Yf0FyA99tw4lb0RUVFYf78+Vi/fj1MTU0xdepUDBo0qNiXzpFKpQgPD4ednR2X/mDF1t27d1G/fn2EhISgVq1aqg6HFXFKSdw8PDy+65N0QEBAAURT/HDiVny8fPkSM2fOxD///IMyZcpg1qxZ8PX1LbZlRNLT0yEWi/n7lhV7EydOxMWLF3Hp0iWIREqZpcSKKW4yXwxw4lb8PHjwAFOnTsXBgwdRvXp1zJ07F15eXnwrkbEiKi0tTV7brV+/fqoOhxVhnPYzVghVr14dBw4cQGhoKGxtbdGpUyc0btwYN27cUHVojLHvoKenh+XLl2PixImIj49XdTisCOPEjbFCrF69ejh79izOnDmDhIQE1KtXD7t27VJ1WD+EiBATEwMe7GcljZeXF+rWrYtp06apOhRWhCn9Vml2djbOnj2L69evIyYmBoIgwMLCAvXq1UOLFi2K/WTsgsC3SksGsViMzZs34+eff4apqamqw/lu8fHxkEgksLCwUHUojCndkydP4OjoiIsXL8LZ2VnV4bAiSKmJ28aNGzFt2jS8e/cuz+fNzc0xd+5cDBw4UFkhFQucuLGigkt/MAZMmzYNZ8+exeXLl3mhAss3pX3HTJw4EUOHDkVsbCyICLa2tnBxcYGLiwtsbW1BRIiNjcWQIUMwadIkZYXFWLEhlUpVHcIXSaVSREZGwtbWlpM2VqJNnjwZUVFR2Lp1q6pDYUWQUhK3wMBALFmyBESEzp0748GDB4iIiMCVK1dw5coVREREICwsDF26dAERYcmSJbh48aIyQmOsWCAidOjQARMnTkRaWpqqw8lTTEwMTExMuF4bK/F0dXWxbNkyTJ48uUR3TGHfRymJ25o1awAA/fv3x969e1G1atVP9qlSpQr27NmD/v37g4iwevVqZYTGWLEglUrh5uaGlStXonr16jh8+LCqQ8qFiKChoQEjIyNVh8JYoeDl5QUHBwfMnj1b1aGwIkYpc9zs7OwQFRWFt2/fwtLS8ov7RkdHw9bWFjY2Nnj9+nVBh1Ys8Bw3JvP8+XOMGDECJ0+eRIcOHbBq1SrY29urOizGWB7u37+PevXq4datW3kOaDCWF6WMuL179w5GRkZfTdoAwMrKCsbGxp9dwMAY+7zy5cvj+PHj2LdvH27evIlq1aph8eLFEIvFqg6NMfaRmjVrYsCAARg9ejSXx2HfTCmJm4GBAVJSUpCZmfnVfTMyMpCSkgJ9fX0lRMZY8SMIAjp37oywsDAMGTIEkydPRoMGDXD//n2lx5KQkICMjAylX5exomLWrFkIDQ3FiRMnVB0KKyKUkrg5ODhAIpFgy5YtX913y5YtEIvFcHR0VEJkjBVfBgYGWLp0KS5fvoz09HTUqVMHc+bMQU5OjlKun5WVheTkZGhrayvleowVRaamppgzZw5Gjx6NrKwsVYfDigClJG6+vr4gIowdOxabN2/+7H5//fUXxo4dC0EQ0LNnT2WExlix5+rqips3b2L8+PGYNWsWXFxcCnzlqVQqxdu3b2FjY8OlPxj7ikGDBkFLS0u+kI+xL1HK4gSpVIrmzZsjMDAQgiDAzs4OTZs2RalSpSAIAiIiIhAQEIA3b96AiODh4YFz587xD/xvxIsT2Le6ceMGjh07hhkzZhTodaKioqCjo8OrSP+vvfuOb6ps/wf+OWnTvdNBWzoZZUMLBaEICIhskC2rDAcogvp1oCBDeJShgPr4iCBQQBBkg+wKCBRllCW7ULpoS3fTmXn//ugvkdCVtElOkl7v16sv8cwrp6fnXLnPua+bEC2dOHECY8eOxcOHDyESifgOh5gwo42cIBaLMW3aNOzdu7dix88lZaowRo4ciQ0bNlACogNK3IgpKS4uRmFhIfz9/fkOhRCzMmDAAISFhWHNmjV8h0JMmNHHKr18+TJ27NihHqsUALy9vdGpUyeMGzcOkZGRxgzHIlDiRkxJYWEhnJycYGVlxXcohJiV27dvo1OnTrh58yaaNWvGdzjERBk9cSP6R4kb0YesrCzI5XL4+fnxHQohDdaMGTOQlZWlfjpFyPNodFtCCADg448/Rtu2bbFv3z6+QyGkwVq8eDFiY2Px559/8h0KMVGUuBFCAABff/01evbsiREjRuCNN95AcXGx1utKJBL1qw+EkLrz8fHB3Llz8eGHH1JRXlIlvT8q3bJlCwDA1dUVw4YN05imq8mTJ+stLktGj0qJvjDGsGHDBsyZMwf+/v7YtWtXrTUVlUolUlJS4OfnBxsbGyNFSojlKi0tRbNmzbBmzRqMHj2a73CIidF74iYQCMBxHMLCwnDnzh2NaToFxnE0TI+WKHEj+vbgwQOMGTMG9+/fx3//+19Mmzat2r9hKv1BiP79/PPPWL58Oe7cuQOhUMh3OHXCGKOyXgag98QtODgYHMehSZMmiI2N1Zimq8ePH+szNItFiRsxhLKyMrz33ntYt24dJk+ejP/9739wdHTUWIZKfxBiGHK5HG3btsXs2bMxc+ZMvsPRiVQqpdZ3A6JepRaAEjdiSL/88gveeustBAcHY/fu3WjZsiWAihtLamoqAgMDqfQHIQawf/9+zJgxAw8fPjT58buVSiU2bdqE48ePw8nJCX5+fhg2bJi6xJdSqYRAQK/V6wMlbhaAEjdiaHfu3MHo0aORnJyMn376CRMmTIBUKoVCoYC9vT3f4RFikRhj6N69O1555RUsWLCA73AqYYxBqVRix44d+Oyzz5CamgoAsLKygkKhgK+vL6ZPn44vvviC50gti1HS35SUFDx58kTr5dPT05GSkmLAiAghumjVqhUuXbqEESNG4PfffwdjDDY2NpS0EWJAHMdhxYoVWLlyJbKzs/kOpxKO43Dp0iV10jZz5kycO3cOiYmJ+PDDD6FUKrF06VKsWrUKZWVlAEA9ZfXAKC1uAoEAvr6+WidvISEhSE1Npc4JWqIWN2IsjDHIZDJ6f4UQIxo8eDDCwsLwzTff8B2KBplMhq5du+Lq1av43//+hxkzZmjMj4mJwbRp0+Dr64uvvvqKKkXoidEeOOuaH1JWTojpYYwhMzMTSqWS71AIaTCWLl2KH3/8UacnV8bw4MEDpKWloVGjRujevTsAaDS4TJkyBR06dEBGRga2bt2Kq1evAqD7e32Z5JuC5eXlsLa25jsMQshzsrKy4OrqSi8ZE2JEHTp0wODBg7F06VK+QwHwb+IlFouRlZUFmUyGJk2aAID63q1K4CZOnAgAuHr1Kn777TcAoBIh9WRyV9/09HRkZ2dDJBLxHQoh5BnFxcVQKBRV1mtjjGHbtm1QKBQ8REaI5fviiy8QExODxMREvkNRJ14eHh4IDAxEbm4u/vjjDwBQXwNUPc1VpYLy8/MRGxuL27dvA6BWt/owSLPW2bNncebMGY1pxcXFNfYsYYyhoKAAR44cAWMMXbp00WtMR44cwapVq3D16lVIJBKEhYVh6tSpeOedd3RqPdD2m0JMTAyio6M1/n/q1Kk1rnP06FH0799f61gIMRa5XI7s7GwEBgZWOT8+Ph7R0dHYsmULdu7cCTc3N+MGSIiFa9GiBcaOHYvFixdj8+bNBt2XtqU7bG1tER4ejpSUFGzevBmDBw9W9yhVJW5nz55V13a9d+8ezp07h9atW1OrWz0YJHE7ffo0Fi9erPGLKSkpweLFi2tdlzEGOzs7fPrpp3qLZ9myZerthYaGwsnJCTdu3MDs2bMRGxuLffv2aZ28RUVFVTsvPz9fPVrECy+8UOUy3t7eaNasWZXz3N3dtYqBEGNijCEjIwM+Pj7V1mvr1KkTjh8/jtGjR6Nbt244cuQIgoODjRsoIRZu4cKFaNWqFebOnauup6gPKSkpOHbsGOzt7REUFIQePXpotV5wcDD69u2Ls2fPYs+ePdi8eTNGjRqlLtS9Z88ebN++Hd27d0eTJk0QExODe/fuobS0FA4ODnqLv8FhBhATE8N69eql/uE4jtna2mpMe/6nd+/ebPjw4Wz+/PksISFBb7FcuHCBcRzHBAIB2759u3r69evXmY+PDwPAVq5cqZd9zZs3jwFgnTt3rjRv06ZNDACLjo7Wy76eVVhYyACwwsJCvW+bEKVSyUpKSrRa9t69eyw0NJR5e3uzixcvGjgyQhqeGTNmsHHjxullW4mJiWzatGmM4ziNn4kTJ7LY2FjGGGMKhaLKdZVKJWOMsZSUFDZr1izGcRxzd3dn3bt3ZwsWLGC9e/dmHMcxDw8P9vjxYxYTE8M4jmODBg2qcbukdgZJ3J7HcRzz9fU1xq4qGThwIAPA3nzzzUrztm3bxgAwkUjEpFJpvfajVCpZcHAwA8C+//77SvMpcSMNRVZWFnvhhReYvb0927dvH9/hEGJRkpOTmZ2dHbt9+3a9tpOXl8eGDRvGOI5jbdu2ZfPnz2eLFy9m/v7+6iTsxo0b6gStJsXFxWzUqFHM2dlZIwEMDw9nBw8eZIwxdv/+fcZxHGvUqBErKiqqV+wNnVESt5iYGLZz505j7EpDYWEhs7GxYQCq/PYvlUqZi4sLA8COHz9er339+eefDAATCoUsOzu70nxK3Ii5USqVWl20q1JaWspGjRrFOI5ja9as0XNkhDRs9Wl1U/1N/+9//2Mcx7ERI0YwsVisnn/v3j02YMAAxnEcGzhwILt06ZLGes+Ty+Xqf1+6dInt2bOHrVy5kp0/f15juatXrzJPT08WFRXFioqK6nxtIYwZpebGsy/pG9O1a9cglUphZ2eHiIiISvOFQiEiIyPxxx9/4OLFi+jXr1+d9/XLL78AAPr37w9PT89ql7tx4wbGjx+PzMxMuLi4IDw8HBMnTlR3pSbEVGRlZcHR0bFOYyTa29tj586d+PTTT/Hee+/h0aNHWL16NY1pSogefPrppwgLC8OdO3fQqlUrndblOA6MMezbtw8AMH78eDg7O0MikUAoFCIsLAwrV67EgwcPcPLkSfj5+aFNmzawt7cHY6xSp4Jn/6YjIyPVY5OqqN5nS0xMRG5uLuzt7U1+3FVTZ3LlQPQpISEBABAYGFhtXbjQ0FCNZetCIpFg165dAIBJkybVuOz169fx66+/4vTp0zhw4AAWLVqEsLAw/Oc//6nz/gnRt5KSEsjl8npdYAUCAZYvX44ff/wRP/zwA0aOHKke9oYQUneBgYGYMmUKlixZUqf1i4qKUFxcDGdnZ/VoO7a2tupOeq1bt8Y777wDZ2dnHDp0CEeOHAGgXQkPVXFuiUQCxpi6E8LWrVsBAG+88UadYib/MmqVW4lEgj179uD8+fNIS0tDSUlJtScCx3HqujB1lZ+fD6Dm3pqqeapl6+LQoUMoKCiAq6srhgwZUuUybm5uePfddzFu3Dg0bdoUrq6uuHv3LlatWoWtW7di/vz5cHV1xaxZs+ocByH6oFAokJWVVW3pD13NmDEDgYGBGDVqFKZPn47t27frZbuENGT1aXVTKBR48uQJioqK1F/OVK1pqlIgw4cPx7lz57B//35s3boVr776qlbVF1TL2NraAqgYXWHFihU4ePAghg0bhmHDhlXZcke0Z7TE7cKFCxg7dizS09M1fmmqxO3ZX6K+fqnl5eUAUOO4iqqTqz4tAarHpKNHj4adnV2VywwfPhzDhw/XmNahQwds2bIFIpEIa9aswfz58xEdHQ1nZ+c6x0JIfTDGkJ6eXmPpj7oYOHAgTp48SfXdCNETVavb0qVLdf4y5O7ujvDwcKSmpuLkyZPo2rUrlEolrKys1IlXSEgIBg0ahHPnzuHSpUs4c+YMevfurVHjrap7tVgsxo0bN3Dz5k2cP38ef/75JzIzMxEREYEPPvhAfc8ldWeUR6WpqakYNGgQnjx5grZt2+Ljjz8GYwyOjo6YP38+Xn/9dYSEhIAxBpFIhPnz52PBggX13q8qiZJKpdUuI5FIAFS8k1MXubm56mbkug6gu3jxYtja2qKwsBCnTp2q0zaAij8YXX9Un58QACgoKICtra1BaixFRUWhdevWet8uIQ3VJ598gr179+Lhw4c6r/vSSy8BAPbv3w+ZTKbxRU3VoBIVFYU2bdogKysLp0+fBlDRosYqOjZWanABKt55++OPP/Duu+9i586dAIAFCxbg1KlTePHFF+v2QYkGoyRuq1atQmFhIQYMGIBr165h2bJlAAAnJyd88cUXWLduHR4+fIgffvgB+fn5uHHjBhYuXFjv/WrzGFSbx6k12blzJ2QyGYKDg9WD7OrKxcVFfUOryx+gSkBAAFxdXXX6+eqrr+q8P2J5HBwc4OXlxXcYhBAtBAcHY9y4cep7qi4iIiIQEBCA27dv4/DhwwD+Ha5KlZC1aNECHTt2hFKpxMOHD5Gdna2ez3EcHj58qE7OVJ0eHB0dMX78eGzcuBGHDh1CamoqFi1apH6XjtSfUR6VnjhxAhzHVRpN4XkzZ85Efn4+Pv/8c6xfv77eLzGqRihISUmBXC6vsoOCaty36kYzqI3qMenEiRPr9XhXKBQC+Hdg3rpITU3V+Y+Dmq3Js+h8IMS8fPrpp2jfvj0WLFig03up4eHh6NKlC3bv3o3t27dj+PDhGq1uqkeiXbt2BQDcv39fo2fpiRMnMH36dCgUCoSEhKBz585QKBSwtrZG8+bN0bx5c71/VlLBKC1uKSkpEAgElUpyVPUI85133gHHcYiJian3fsPDwyEUClFeXo6rV69Wmi+TyXD58mUAqNPYqI8ePcJff/0FoCJxqyuFQoH79+8DABo3blzn7bi4uOj8QzdqAoDXweGvXr2Ks2fP8rZ/QsxZWFgYhg4dipUrV+q0npOTE4YMGQJ3d3ccPXoUJ06cAFC51a1Pnz5wcHDA9evXkZubq57u5eWF0NBQZGZmYv369QBQbfUGol9GSdwYY3B2dtbokeLo6AixWFypV6nqEd69e/fqvV8XFxf07dsXALBhw4ZK83ft2gWxWAyRSIRevXrpvH1V9+bOnTsjLCysznFu2LABBQUFsLKyqlMchNRHSUkJnj59ytv+ly1bhgEDBqjfoSGE6GbevHnYsGGDzn/HgwcPRp8+fVBSUoLly5cDQKVOSU+fPoVIJEKTJk0gk8nU9+w2bdqgR48eGDNmDN577z29fA6iJWNU+W3evDkTCASsvLxcPa1FixZMIBBUGrajpKSECQQCZmdnp5d9nz9/vtaxSpcvX66xzurVq1lQUBAbO3Zsjdtu2rRptUNcPauwsJCNGzeu0ugNcrmcrVu3jtnZ2VU7LJc2aOQEUldyuZwlJiZqVD83ttLSUtavXz9mb2/PTp48yVschJizwYMHs48//ljn9Y4fP858fHwYx3Hsp59+qjQucWxsLOM4jnXo0EE9TTXqwbP3dGI8RkncBg0axAQCAbt37556WnR0NBMIBOzdd9/VWHbJkiWM4zjWokULve1/6dKlDAADwEJDQ1m7du2YQCBgANigQYMq3bQWLlzIALCePXtWu80LFy7UOMTVs/Lz89X7d3NzY+Hh4SwyMpK5ubmppw8YMICVlZXV6fNR4kbqQqlUspSUFK0HkDeksrIyNmDAAGZnZ8eOHTvGdziEmJ24uDjm4uLCCgoKdF53xYoVjOM45u/vzz7++GP1Pe3kyZOsXbt2zMbGhsXExDDGGK9f8kgFoyRu//3vfxnHcWzlypXqaefOnVO3hA0YMIB99tln6gRPIBCwxYsX6zWGQ4cOsd69ezNXV1fm4ODA2rdvz9asWVPlSahN4jZz5kwGgA0ZMqTWfUulUrZixQo2fPhw1rRpU+bi4sKEQiFr1KgRGzRoENu5c2e9xm2jxI3URV5eHnv69CnfYaiVl5ezwYMHMxsbG3b48GG+wyHE7ERFRVV6gqQNhULB5syZw+zs7BjHcaxZs2asZcuW6sHip06dyrKysgwQMakLjjEtxrCop9TUVEyePBlt27bFd999p57+ySefqF+oVHUlBoAePXrgxIkTNRbOJf8Si8VwdXVFYWEhdbkmWpFKpcjIyEBgYKBJVTCXSCQYO3Ysjhw5gj179lQ7EgkhpLJDhw7hrbfewuPHj3XueCaXy3Ho0CGsX78eCQkJEIvFaNasGebMmYPRo0cbKGJSF0ZJ3GoSGxuLHTt2IDU1Fa6urujfvz8mT55MvVN0QIkb0RVjTN1139RIpVK89tprOHToEPbt24dBgwbxHRIhJo8xhgcPHuCFF15Ar1691IPI60oulyMnJwelpaXqsbyJaeE9cSP1R4kbsTQymQxjxozB0aNHceTIEfTu3ZvvkAgxSYwx3LlzB0uXLsW+ffvQsWNHZGZmIiEhQauxRZ/flim1wJOqGaUcCCHENDzbnd+UCYVC7NixAz179sTQoUPV9RIJIf+6f/8+Jk+ejE6dOgEAbty4gdOnT0MikeDgwYM6b4+SNvNAiRshDYRCoUBaWppZJG5AxSgO+/btQ0REhHpIHkIIkJaWhqlTp6JDhw4oLy/HlStX8OuvvyIsLAw2NjZ477338PXXX/MdJjEQvT8q3bJlC4CKQrrDhg3TmKarug7a3tDQo1JSG8YY0tLSIBKJDDKAvCGVl5fD1taWWgNIg5eVlYXly5fjxx9/xCuvvILFixejXbt2lZYrKChAQEAA/vjjD3Tu3JmHSIkh6T1xEwgE4DgOYWFhuHPnjsY0nQLjuHqN29mQUOJGapOfnw+ZTAZvb2++QyGE6CglJQXLly9HTEwMevfujcWLF1caQvJ57733Hp4+fYpff/3VSFESY9F7lzJVeQE/P79K0wghxieRSFBYWIigoCC+QyGE6KCsrAxPnjxBVFQUwsPDcfr0aa1b0GbPno2WLVsiJSVFp8HniemjXqUWgFrcSHUYY0hJSYGvry/VRSTETJSXlyM7OxtWVlbw9PREVlYWGjdurPN2Ro4ciSZNmmDFihUGiJLwhTonEGLBOI5DQECAxSVtCoUC3377LSQSCd+hEKJ3ZWVl8PHxgZ+fH2xsbOqUtAHA+++/j3Xr1qGoqEjPERI+UeJGiIXTtZaTObh9+zY++eQTTJ06FUqlku9wCKkXiUQChUKh/n93d3e9fNmKiopC8+bNsWnTpnpvi5gOo1zRmzdvjqVLlyIpKckYuyOkwVMoFJDJZHyHYTDt2rXDtm3bsGPHDnz88cd8h0NInUilUqSlpSErK8sgX0A4jsOcOXPw3//+l77gWBCjvOP2bK/SF198EZMmTcLo0aPpfSw9oXfcyLPMufSHrv773//i3XffxapVq/D+++/zHQ4hWpFKpcjOzoZSqYSXlxfs7OwMuq/AwEDExMSgf//+BtsPMR6jtLjNmzcPwcHBYIzh7NmzePPNN9GoUSO89tprOHLkCH0TIESPCgoKYGtra/FJGwDMmjULn3zyCT744APs2LGD73AIqVVRUREyMzMhEokQEBBg0KQNAGxsbPDWW2/h+++/N+h+iPEYtVdpXFwctmzZgl27dqGgoEDdCufl5YXx48dj0qRJCA8PN1Y4FoNa3IiKRCJBRkYGgoKCGkwJHsYYoqOjsXPnTpw5cwZdu3blOyRCqsXHeKDp6ekICQnB7du30bRpU6Pum+gfL+VApFIpfv/9d2zZsgVHjx6FTCZTn8gtW7ZEdHQ0JkyYoFELjlSPEjcCVNwQkpOT1T3RGhKJRIKXX34Z9+/fx6VLl6hmHTEJcrkc2dnZsLGxgUgk4jWW1157Db6+vli1ahWvcZD6472OW15eHnbs2IGtW7fi4sWLFUFxHKysrCCVSvkMzWxQ4kYAIDc3F1ZWVnBzc+M7FF5kZ2ejS5cucHJyQlxcHJydnfkOiTRQcrkcOTk5kEgk8PT0hKOjI98h4cKFCxg4cCDS0tLg5OTEdzikHnhP3J519+5dREdH48qVK+A4TqN7NKkeJW4E4OcRjKm5ffs2unbtip49e2L//v2wsrLiOyTSgCiVSmRnZ6O8vNxkEjYVxhg6duyIGTNm4M033+Q7HFIPJlHg6dKlS3j33XfRs2dPxMfH8x0OqYdffvkFb731Fjp16qQeGDwmJobvsBqEhp60AUDr1q2xc+dOHDlyBEuWLOE7HNLAcBwHJycnBAYGmlTSBlTENnPmTKxduxYm1F5D6kDvY5VqKzk5Gb/88gu2bt2KhIQEABXfCGxsbDB48GBMnjyZr9BIPcyfPx/Jycnw9PSEr68vkpOT+Q7JojHGUFpaanI3CT4NGDAAmzdvRvfu3fkOhVg4hUIBsVgMNzc3cBwHjuNM+m/xtddew4cffohLly6hS5cufIdD6sioiZtYLMZvv/2GrVu3Ii4uDowxdebftWtXTJ48GWPHjm2w7+hYgp9//hnNmjVDUFAQli1bhk8//ZTvkCxaQUEBZDKZSd8s+DBx4kS+QyAWTKFQIC8vD8XFxbx3OtCFk5MTJk2ahLVr11LiZsaMkrj9/vvv2Lp1Kw4dOgSJRKJO1kJCQjBx4kRMnjwZTZo0MUYoxMD69u3LdwgNhkQiQWFhIfWgJMRIlEol8vLyUFRUBJFIBE9PT7N7RWHGjBmIjIzEN998Aw8PD77DIXVglMRt6NCh4DgOjDG4urpi9OjRmDx5Mj3KIKSOGGPIyMiAn5+f2d04CDFX2dnZsLOzQ3BwsNn+3bVp0wadOnXCli1b8N577/EdDqkDo3ROsLKywsCBA7Fz505kZmZi3bp1lLQRUg9ZWVlwc3NrcPXaCDEmpVKp8SK/j48PXF1dzTZpU5kxYwZ1UjBjRknc0tPTcejQIYwePRq2trbG2CUhFksmk0Eul9O7oDo6fvw4du3axXcYxAyoHokmJydbZD3RUaNGITs7G+fPn+c7FFIHRkncvLy8jLEbQhoEoVBIo4rUwY4dOxAdHY2bN2/yHQoxUYwx5OfnIzk5GRzHITg42CIbG2xtbTFp0iT8/PPPfIdC6sDoddxu3ryJlStXYtasWZg+fbrGPJlMhvT0dGRkZBg7LELMirk/quHDDz/8gObNm2PEiBEoKCjgOxxiYkpLS5GUlATGGIKCguDu7m7Rf2fTp0/Hrl27UFhYyHcoREdGS9wKCwsxcuRIhIeHY+7cufjf//5XqTCrTCZD+/btERAQgMTERGOFRohZKC4uptFE6sHBwQF79+5FXl4eoqOj6f0eosHW1hZBQUHw8PCAQGAStekNqm3btmjbti1+/fVXvkMhOjLK2SmXyzFw4EDs378fDg4OGDRoEOzs7Cot5+DggGnTpkGpVGL//v3GCI0QsyCRSJCTk9MgbiiGFBoaii1btuDgwYP4/vvv+Q6H8IQxhsLCQuTn56unWVlZNbi/r9dff50el5oho5ylGzZswF9//YXQ0FDcv38fBw8ehKura5XLjhw5EgBw9OhRY4RGiMmj0h/6NXjwYLz33nv46KOPcPXqVb7DIUbEGINYLEZSUhJkMlm196GGYty4cbh37x6uX7/OdyhEB0YZZL5nz544f/48Dhw4gMGDBwMAfH19kZWVVenRj0wmg729PXx8fPDkyRNDh2YRTGmQ+Z9//lndU+mff/7B1atXERUVhaZNmwIAhg8fjuHDh/MYofl5+vQpbG1tqRepHkkkEnTr1g1FRUWIj4+Hs7Mz3yERA2KMobi4GLm5uXB0dISHhwesrKz4DsskTJ8+HQ4ODtQCbUaMkrh5eHhALBajtLRUXXequsQNAEQiEUpKSlBeXm7o0CyCKSVuU6ZMwebNm6udv3DhQixatMh4AZm5kpIS5Ofno3HjxnyHYnESEhIQERGBV199FVu2bOE7HGJASqUSubm5lLBV4dy5cxg+fDjS09Mtsgft865fv47Q0FDe75X1YZRHpSUlJXB2dta6WKhUKoW1tVGHUSV6EhMTox6DtqofStp0U1hYCF9fX77DsEjNmjXD2rVrsXXrVkrcLAxjTOOLv0AggJeXFyVtVejevTvc3Nxw+PBhvkMxiPLycuzatQujRo2CtbU1IiIicOvWLb7DqhejZEeenp7IzMxESUlJrYNhJyQkoKSkhMYuJQSgem0GNmHCBMTGxuLtt99Gly5dEBYWxndIpJ5KSkqQk5MDOzs72Nra0nuhteA4DtHR0di8eTNGjBjBdzh6kZ2djQMHDmD79u04c+aMenrr1q0RGRkJHx8f/oLTA6MkbpGRkTh06BAOHz6MMWPG1Ljs6tWrAQBRUVHGCI0YgELJcOlxHrKKyuHtbIfOIR6wEtDFk5im77//Hrdu3UJCQgIlbmastLQU2dnZsLW1hb+/Pz210cHkyZOxdOlSZGVlwdvbm+9w6uX06dPo378/ZDIZBAIBOnfujO7du6Nv377o0qUL3N3d+Q6x3oxyZk+ZMgUHDx7EggUL0KNHDzRq1KjK5VauXIm1a9eC4zhMmzbNGKERPTt2KwOLD91BRuG/jyl8Xe2wcEgr9G9Dj/y0IZFIIJPJ4OTkxHcoDYKTkxMuXrzY4EpBWJLMzEwwxuDn5wehUMh3OGYnODgY3bp1w/bt28124HnGGDiOg6enJzp16oTr169j6dKleP/99ystp1AozDqxN8qVavjw4Rg0aBAePHiATp06Ye7cuer3D3bt2oUFCxagZcuWmDt3LoCKLso9evQwRmhEj47dysDMX65qJG0AkFlYjpm/XMWxWzQiRm1UpT9o8HjjoqTNvPn4+MDX15eStnqorWOZqbh69SrOnTsHsVisnqZUKtWPxIOCgtCxY0eUlZVVOc4sx3FmnbQBRupVClS8dzBx4kQcOHCgyncOVGG8+uqr2LZtW5UFeknVTKFXqULJ0H35qUpJmwoHoJGrHc5/0psem9aASn8QUrPy8nJkZ2fDy8uL7hN6VFRUBB8fH1y8eBFt27blOxwA/7aiXbt2DevXr8fOnTuRn58PW1tbNGvWDKNGjcLHH39c6TzYtm0bpk2bhldeeQW7d++GUqnE33//jcePHyMoKAhubm4ICwur9Z17U2W0xE3l8OHD+PnnnxEXF4ecnBwAgKurK6KiovDmm29i6NChxgzHIphC4vbXo1y8tv7vWpf79Y0X0LWJyAgRmR8q/UFI9VQJm6qHKLVK699rr72GoKAgLFu2jO9Q1B48eIDo6GhcvHgRwcHBCA8Ph5OTE3bu3AmpVIrx48fjxx9/hLOzM5RKJQQCAa5fv45JkyYhPz8fY8eOxbVr13D+/Hn1Y1IAGDt2LN59911069ZNnSCaC6Mnbs+Sy+VQKBQNonaMIZlC4nbg+hPM2XG91uW+HdcBwzr4Gz4gM6NQKJCSkoLAwEAqWWAizO1ibqmkUimysrIAAF5eXnS/MKDff/8db7/9NpKSkkzi9QGlUonIyEhcu3YNc+bMwbx58+Dp6QkAOHbsGBYuXIjLly9j6dKl+PTTT9V/r7m5uZg7dy42bNgAABAKhejbty/at2+Pf/75B3///Tdyc3MhEolw7tw5tGjRgrfPWBe8/masra3pj9BCeDtr98hC2+UamuLiYvj4+FDSZiIuXbqEqKgojbEsCT8YY/Dy8kLjxo3pfmFgr7zyCkpLS9Wj3/Dt999/x4MHDxAYGIiZM2fC09MTcrkcjDH0798fH3/8MQBg8+bN+OOPP9TreXh4oEuXLggMDMQXX3yBpKQkHD58GF9++SUOHTqEHTt2oGvXrsjNzcXKlSuRmpoK4N9Xtkwd/yk1sQidQzzg62qH6tonOFT0Lu0c4mHMsMyGq6srHBwc+A6D/H++vr64c+cO5syZw3coDY5UKkVxcbH6/21tbSlhMxKhUIgxY8Zg+/btvMahVCoBAKmpqSgpKUGLFi3QvHlzdW9QVcva4MGDIRKJkJCQgF27dqGkpARARQeEiIgILF++HO+88w58fX2hVCrVj0n79OmDBQsWAABOnDiBK1euqNczB3rvWnH27Fm9bYt6lpoPKwGHhUNaYeYvV8EBePZ7i+pPYeGQVtQxgZiFgIAArF69GtOmTcP48ePRv39/vkOyeFKpFDk5OVAoFPDy8uI7nAZrwoQJGDp0KL777ju9vEcok8lw4cIFFBYWolu3bupHnar30aqimq7qdJCUlAQAGk8k5HI5bG1t0a5dO5w+fRqXLl3C9evX1TVgIyIiEBERUWmbqlcgXnzxRbzwwgv4+++/cfv2bQwZMsRsepvqPcpevXrpJWvlOA5yuVwPERFj6d/GFz9OjKhUx60R1XGrEmMMubm56gsZMS1TpkzB9u3bMWPGDNy6dYvq6hmITCZDdnY25HI5vLy8YG9vz3dIDVrXrl3h7OyMY8eO1auz4J07d7B69Wr8+uuvKC0tBcdxCAwMxMiRIzF//ny4ubnV+h6pg4MDPD09kZ2djStXrqBTp07q1jhra2v1cJpARXJ39uxZREVFaWz3+X1wHAelUgkHBwc0a9ZM/b6bubS2AQYqwKuP58Tm8qyZaOrfxhcvt2pEIydoISsrix4BmTCO4/DTTz+hTZs2+Pzzz9WjuhD9USqVyMjIgKenJ70qYCIEAgFee+017Nixo86JW05ODubPn4/9+/cjODgYPXv2hJWVFTZu3IhVq1bh3r172LNnT7XXP1Wy1apVK7Ru3Rp//vknYmJi0KlTJ41Wurt37+Lo0aMICAhAamoq7ty5A5lMplHPr6byYwEBAQCAjIwMWFlZ1dgKaEr0HqFSqazy58CBA3Bzc0OTJk3w008/ISEhAWVlZSgvL8fDhw/x008/oVmzZnBzc8PBgwfVWTUxP1YCDl2biDCsgz+6NhFR0laFkpISyGQyqtdm4kJDQ7FkyRJ8++23uHjxIt/hWIRnr+0CgQCBgYGUtJmYMWPG4ODBgygtLa3T+j/88AP279+PsWPHIj4+Hps2bcLPP/+MvXv3onXr1jhy5AhWr16t3v7zDTWqZCssLAxjx44FAGzatAkfffQRcnJy8OTJE8TExGDixIlwdHTE0KFD4ejoiPT0dGRkaBZ6f3bbjDHI5XJYWVnhyZMnOH78OACgffv2AMyoEDczgvj4eGZnZ8d69uzJSktLq12urKyM9ezZk9nZ2bFr164ZIzSLUFhYyACwwsJCvkMhWpDL5SwxMZHJ5XK+QyFakMlkrGPHjqxNmzZMIpHwHY7ZkslkLDMzkyUnJzOlUsl3OKQGSqWSNWvWjO3evVvndSUSCYuIiGAcx7FDhw4xxhgrLy9Xz4+JiWEcx7GwsDD2+++/q/dXk8GDBzMbGxvGcRwTiUTqf9va2rKjR4+yP//8kwmFQhYZGcmePHmiVZxfffWVenuJiYk6f04+GSW9XLZsGaRSKdauXVvj+wt2dnb48ccfIZFITKoAICH6wv7/kFZU+sN8WFtbY8OGDbh79y5WrFjBdzhmR6FQ4OnTp0hLS4OjoyMCAgLM6n2ihojjOIwZMwY7d+7Ued1bt24hPT0dzZs3R3BwMICKnsHsmdGR+vTpo+4JKpfLqz0fVK2zu3btwnfffYdXX30V3t7eCA4OxrRp03Dy5En0798fgYGBkMvlSExMhLe3t8Y2bt68iUePHgEAbt++jZ9++gk9evTAZ599hqZNm2Ljxo0ICQlR9zg1C8bIDn19fZmbm5vWy7u5uTFfX18DRmRZqMXNfMhkMpabm8t3GKQOPv30U2ZjY8Pu3r3LdyhmIycnhz1+/JiJxWJqZTMzN2/eZPb29qy4uFin9R48eKBuyRKLxVUu89133zFXV1cWGhrK4uPjGWOMKRQKrbaflpZWadrVq1eZm5sba9u2LcvMzNSY99FHHzEHBwfm4+PDOI5T/0RFRbHdu3czqVSq0+czBUZpccvPz0d5eblW760plUqUl5dT4UtikaytreHhQbXszNHnn3+OwMBAvPPOO9R5SkvOzs4ICgqCs7MztbKZmTZt2iAoKAi///67Tuu5u7vD19cXeXl5SE5OBvBvy5nq7yYqKgotWrTA48ePcerUKa23rVQq4e9fMfKOVCpV1207efKkutyIj48PlEqlel9Dhw5FSEgIGjdujJdffhkLFy7E1atXcf78eYwcOVKjI4O5MEri5u/vD6lUiv3799e67P79+yGRSNS/HEIIMQX29vb47rvv8Pfff+PBgwd8h2NylEolcnJyUF7+bykgGxsbStjMFMdxGDt2LH777Ted1wsLCwPwb11XVRKlOheaNWuGdu3aAYC6+K02HQMEAoF6WzY2NnB0dERqaio2bdoEjuMwfvx49XKqfXXv3h0HDx7EyZMncfz4cSxcuBAdOnTQ6TOZGqMkbq+++ioYY3jzzTdx5syZapc7e/Ys3nzzTXAch1dffdUYoRFiFDk5OZDJZHyHQeppwIABSEpKUt+YyL8JW3JyMoRCIZW4sSCjRo3C0aNH1S1b2nBxcUGTJk0AABcuXACASu/zOjs7o0WLFrCzs0NycrK6ZU6VlFX3vllxcbH6i0FKSgpiYmLQv39/PHr0CG+99Za6+O7zQkND4e7urvVnMHVGSdzmzZuHwMBA5OXloU+fPujRowcWLVqE9evX4+eff8aiRYvQs2dPvPTSS8jLy0NAQADmzZun1xiOHDmCvn37wsPDA46OjoiIiMD333+vc9mRRYsWgeO4Gn/u3btX7fp3797FhAkT4OvrCzs7OzRp0gQffvghCgoK6vkJiakqKSlBeXm5WTbJk8qoqn8FpVKJ3NxcJCcnw9raGsHBwXB1daUWNgvSunVrNG7cWF02QxtCoRBt27aFjY0N4uPj1eU5VEmZ6p7btGlT2NnZobi4GDk5OQD+bZGrruPWn3/+iREjRqBJkybo0KEDpk2bhrt37+KNN97AN99802A6fBllfAc3NzecOXMGo0ePRnx8PM6fP4+4uDiNZVS/1IiICOzatUuv9a2WLVuGTz/9FEBF5u3k5IQbN25g9uzZiI2Nxb59+3Su3xIQEIDAwMAq51VXk+j06dMYNGgQysrK4OXlhdatW+PevXv45ptvsG/fPly4cAE+Pj66fThi0hQKBbKysqo9VwgxV6WlpRAIBAgODqZkzUJxHIcRI0Zg7969GDFihNbr9e7dG6Ghobh37x5OnTqFCRMmQKlUwsrKSn2utG7dGmKxGDY2NnBxcVGvW15ejgMHDuDatWv46KOPIBKJoFAoYGVlBS8vLzDGUFxcDH9/f4wfPx4TJkxA165d9f7ZTZoxe0IoFAr222+/sREjRrDAwEBmZ2fH7OzsWGBgIBsxYgTbuXOn3mtbXbhwgXEcxwQCAdu+fbt6+vXr15mPjw8DwFauXKn19hYuXMgAsIULF+oUh1gsZl5eXgwAmz17tronS05ODouKimIA2KBBg3Tapgr1KjVdqamprKSkhO8wCKk3pVJJdewaoEuXLjEXFxedfvdlZWXs9ddfZxzHsf79+zPGKvcaLSkpYV5eXozjOJaUlKSeHhsby0JDQ5m9vT07cOAAY6yiN77qv48fP2YpKSn1/VhmzahlggUCAUaPHo09e/YgOTkZZWVlKCsrQ3JyMvbs2YMxY8bovalz6dKlYIzh9ddfx2uvvaae3r59e6xatQpARYucod8/Wrt2LbKzs9GyZUusWrVK/dhMJBJh+/btsLa2xuHDh3H16lWDxkGMp6CgADY2NlQVnpg1xhjy8/ORlJSk0fGANAydOnWCi4uLTr0/7ezsMGbMGFhbW+P48eP4+++/1U+1pFIpgIr338rLy9GhQweNXtqhoaEICAhAeXm5+hGtavB31SN51VBVDZWZjO9QN2KxGLGxsQCA6dOnV5o/evRouLi4IDc3F6dPnzZoLHv37gVQMXD188lpYGAg+vbtCwDYvXu3QeMgxqNUKul9qAbgwoULKCsr4zsMvWOMoaCgAElJSVAqlQgKCtJ4pEUaBtXj0j179ui03ssvv6zuZLhgwQJ1RwUbGxsAwLFjx1BcXIwOHTogODhY/e5bYGAgoqOjsW7dOvznP//R4yexHEZ5x40v165dg1QqhZ2dHSIiIirNFwqFiIyMxB9//IGLFy+iX79+Wm/79OnTuH37NnJzc+Hh4YHOnTtj8uTJaNSoUaVl5XI54uPjAaDaXi9RUVE4duwYjYdoQahem+XLyMhAr169sHjxYvV7tJZAqVQiOTlZXYfNbMZwJHqVm5uLPXv24OzZs0hISMDatWt1eir20UcfISsrC7GxsUhLS8PMmTMBAMePH8eRI0fQpUsXfPzxxwD+LQdiZWWFqVOn6v/DWBJ+n9Qa1vr16xkA1rx582qXeeONNxgANmnSJK22qXrHraofe3t7tmnTpkrrJCQkqJdJT0+vcrvbtm1jAFhAQIBWcTyL3nEjhD+zZ89mzs7O7OnTp3yHolfaVrInlqWwsJBt2bKFDRw4kAmFQta1a1e2atUq5u7uzuLi4nTeXmJiIhs0aJDGqAUcx7EuXbqww4cPG+ATWD6L/hqlGn2hpvotqnnajtTg6+uLzz77DJcvX0Zubi5KS0sRFxeHAQMGoKysDNOmTcOhQ4eqjKOmWHSNg5imkpIS+h02MAsWLIBAIMDixYv5DqVOGGMoKipCWlqaxrtG1MrWcJSVlWH37t0YNWoUfHx88M0336BHjx548OABLly4gPfffx+DBw/GwYMHddouYwwhISH45ZdfEBcXh5UrV2LFihW4cuUK/v77bwwcONBAn8iyWfSjUtWLtKpn6lVRFYvU9h2Vt956q9K0bt264fDhwxg5ciT27dunPslV3Z6frySujziI6aHSHw2TSCTC/PnzMXfuXMyaNQstW7bkOyStsP9fViE3NxcODg7w9fWlsh4NiFQqxcmTJ7Fjxw7s378fvr6+eO2117BkyZIqz+GhQ4diwYIFWLZsmdb74DgOjDG4ubmha9euDa9sh4FY9FcqOzs7AP/2YqmKRCIBUDGcTX1wHKc+oR89eoSbN29WiqOmWPQRh1gs1vlHtV9SfxkZGfDx8WkwRSDJv959910EBATgk08+4TsUrRQXFyM5ORmlpaUICAiAt7c3nbcNyFdffQVfX1/MnDkTvr6+OHv2LO7fv4/FixdX+8XjlVdewaNHj5CQkKDTvujLgP5ZdOKmzeNHbR6naqt58+bqF9IfPnxYKY6aYtFHHAEBAXB1ddXp56uvvqrz/si/qPRHw2Zra4tly5bh0KFDBu+hrg+MMTRu3Ji+aDRQnTp1wsGDB5GUlIQVK1YgPDy81gTL2dkZL730UqVXgYjxWfSj0mbNmgGoGNNMLpera8E8KzExUWPZ+lLVZ5PL5eppwcHBEAqFkMlkSExMhK+vr0HiSE1N1bm7Po0rWH9SqRQFBQUICgriOxTCozFjxmD16tX4v//7P1y5csWk3hErLS2FUChUX5+cnZ15jojw6eWXX67TekOHDsVvv/2GDz74QM8REV2YzpXFAMLDwyEUClFeXl5lYVuZTIbLly8DALp06VLv/eXk5CArKwsA0LhxY/V0a2trdTmS54f6UlFNr08cLi4uOv9Q4lZ/CoUCfn5+9EiggeM4Dl9//TWuXbuGXbt28R0OgIqELTk5GYWFhXR+knobMmQIzp8/Tx2weGbRiZuLi4u6sO2GDRsqzd+1axfEYjFEIhF69epV7/2tWrUKjDG4uroiMjJSY55qnLeYmBgoFAqNeSkpKepCwSNHjqx3HMS47O3ta+wAQxqO7t27Y8CAAVi4cKFGq7uxlZWVISUlBQUFBfDz84Ovr2+VTxwI0UVAQABatWqFkydP8h1Kg8axZ/t/68GWLVv0tq3JkyfXextxcXF48cUXwXEcfvnlF/WwVzdu3MArr7yCp0+fYvny5eoigACwZs0arFmzBi+88AJ27Nihnn779m388MMPeOedd9C6dWv19PLycqxatQqff/45lEolvvzyy0rFOMViMZo0aYKcnBzMnj0bX3/9NYRCIXJzczFs2DB1SZEjR47o/BnFYjFcXV1RWFhIlc0J4Vl8fDw6deqEmJgYREdHG33/RUVFKCoqgqenJ32hIHr3ySef4OnTp4iJieE7lIZL34XhVAO61/fHyspKbzEtXbpUXQA3NDSUtWvXjgkEAvXA7s8PbK8qstuzZ0+N6deuXVNvx8vLi3Xs2JF17NiROTg4qKdPnz6dKZXKKuOIjY1ldnZ2Guur1g0ODmYZGRl1+nxUgNf45HI5S01N5TsMYqJGjBjBoqOjjba/6q45hOjbmTNnmI+PDxVo5pHe284DAwOrfZciOzsbpaWlACre+xKJRAAqhtVQPVZwdHSEp6enXmOaN28e2rdvj9WrVyM+Ph6ZmZlo27Ytpk6dilmzZmndqyo4OBhLlizBhQsXcO/ePdy/fx9SqRTe3t4YOHAgXn/9dbzyyivVrt+nTx9cuXIFS5cuxalTp/DPP//A398fr776KubPn6+Xnq3EODIyMuj3Raq1detWo/QwlkgkyM7Ohr29vfp6SoghdevWDWVlZbh27Ro6duzIdzgNkt4flVZn7dq1mDNnDrp06YLPP/8cPXr0UL8YL5VK8eeff2Lp0qW4ePEi1qxZgxkzZhgjLItAj0qNq6CgABKJBD4+PnyHQhooVcIGAF5eXtTJiBjVqFGj0L59e3z++ed8h9IgGSVxO3XqFPr164fhw4fjt99+q7abPGMMY8aMwb59+xAbG6uXDgMNASVuxiOVSpGeno6goCDqpUeMTqlUIiMjA0qlEl5eXhrFvQkxlo0bN+Lnn3/GhQsX+A6lQTJK4jZo0CAcO3YMSUlJCAgIqHHZlJQUBAcHY+DAgfj9998NHZpFoMTNOBhjSE5Ohp+fH730TXjBGINUKqUWNsKr9PR0BAQEIDs7W110nhiPUcqBXLlyBW5ubrUmbUDFO3Jubm7q+mqEmArGGLy9vSlpI0Yjk8mQlZWlHvyd4zhK2gjv/Pz80KpVK5w6dYrvUBokoyRuRUVFKC4urnHMUBWpVIqSkhIUFRUZITJCtCcQCGhIK1InYrFYq+ufikwmQ0ZGBtLT0+Hk5ESP5YnJefnll6meG0+MkriFhIRALpdrVeNty5YtkMlkCAkJMUJkhNTOSP13iIUqKChAcHAwtm7dWuuycrkcmZmZSE9Ph6urK4KCgujLAjFJ/fr1w4kTJ+j6yAOjJG6vvfYaGGOYPXs2Nm/eXO1yW7ZswezZs8FxnLpQLiF8e/LkiU6tJYQ8y83NDS+99BKWLVtW62gKBQUFcHZ2poSNmLwePXogPT0djx494juUBsconRPKy8vRrVs3XL9+HRzHISAgAL169YK/vz84jkNaWhr+/PNPpKSkgDGGDh064MKFC9RjSkvUOcFwqPQH0QfVaAq//vorxo0bp56uUCjAcZxJDUhPiLb69OmDkSNH4u233+Y7lAbFaHXc8vPzMX36dOzfv79ix8+9s6EKY+jQodi4cSP1VNEBJW6GQaU/iD71798f6enpuHHjBpRKJXJzc1FaWgpfX1/qcEDM0rJly3Dx4kXs27eP71AaFKMlbiqXL1/Gjh07cOXKFWRlZQEAvL290alTJ4wdOxadO3c2ZjgWgRI3/aPSH0Tfzp49i/79++P48eNo3LgxPD09qeMBMWvx8fHo3bs3cnNzYW2t94GYSDWMkrilpKQAqEjQ6PGn/lHipn9ZWVkQCoU0rBXRm+LiYhw9ehSnT5/GDz/8QAkbMXsKhQKenp44ceIEIiMj+Q6nwTDKixXBwcEIDQ1FXl6eMXZHSL25uLjAzc2N7zCIBXFwcICtrS1+/PFHXLx4ke9wCKk3Kysr9OzZE6dPn+Y7lAbFKImbk5MTXF1d4efnZ4zdEVJvdnZ21CJC6kz1Dltubq56mkAgwODBg9GkSROsWbOGv+AI0aOXXnqJEjcjM1qLW2lpKRQKhTF2R0idKZVKvkMgZkypVCIvLw/JycmwsrKq1MlKIBBgzpw52L17t/oVEkLM2UsvvYRz585BJpPxHUqDYZTEbfjw4ZBKpTh8+LAxdkdInRQUFNDjfFInjDHk5+cjOTkZHMchODgYbm5uVbbaTp06FU5OTvjhhx94iJQQ/WrTpg3s7e1pmEojMkri9sknn6Bp06aYOXMmbt68aYxdEqITqVSKgoICiEQivkMhZkjVxysoKAju7u41PmZ3cnLC66+/jnXr1qG4uNhYIRJiEAKBAL169aLHpUZklP67e/bswVtvvYVFixahU6dO6N+/P6KiouDt7Q0rK6tq15s8ebIxwiMNHGMM6enp8PPzo/faiFYYYygpKYGTkxOAipuXLj2Q3333XfqSQCxGr169sH//fsybN4/vUBoEo5QDEQgE6hsiY0yrmyPHcbUOD0MqUDmQ+qHSH0RbjDGIxWLk5eXBxcUFHh4elOyTBu+ff/5B165dUVBQQPXcjMAoRzgwMJAubsQklZaWQiqVwsvLi+9QiAljjKGoqAi5ubnqsURpmCpCKrRu3Ro2Nja4du0a1XMzAqMkbklJScbYDSE6s7W1ha+vL32xIDV6+vQprKysEBgYWOPrHYQ0RAKBAFFRUTh37hwlbkZAXxlJg2ZlZUU3YlIJYwzPvkXSqFEjeHl50blCSDVefPFFnDt3ju8wGgRK3EiDRO9PkqowxlBcXIzk5GRIJBK+wyHEbKgSNyMPf94gUeJGGhypVIq0tDS6wBANJSUlSElJQUlJCRo3bmy0cZWVSiVOnz5NXyaIWevYsSNKS0tx9+5dvkOxeEbv/nHhwgWcP38eaWlpKCkpqfbmyXEcNmzYYOToiKWj0h/keeXl5Xj69ClsbW3h7+9v9F5xt2/fRu/evbFv3z4MHz7cqPsmRF9sbGzQuXNnxMXFoVWrVnyHY9GMUg4EABISEjB+/HhcvXpVY3pV5UFU02iILO1QORDtUekP8jyZTAaO43gtY9ClSxe4u7vj2LFjvMVASH19+umnePr0KTZu3Mh3KBbNKI9Kc3Nz0bt3b8THx8Pb2xujR48GYwx2dnaYOHEi+vTpAycnJzDGIBKJEB0dTcV3id6pSn+4ubnxHQrhUVlZGQoLC9X/LxQKea899dZbb+HEiRN4/Pgxr3EQUh9du3bFX3/9xXcYFs8oiduaNWvw5MkTdOnSBY8ePcKOHTsAAK6urtiyZQtOnDiB9PR0fPTRR8jJyYG9vT02bdpkjNBIA6FUKvH06VMq/dGAlZeXIyUlBfn5+bC3t+c7HA1jx46Fi4sL1q9fz3cohNTZCy+8gPv379OYzwZmlMTt8OHD4DgOX375JRwcHKpcxtHREcuXL8ecOXPw008/YdeuXcYIjTQQAoGAanA1UOXl5UhNTUVubi4aNWoEPz8/2NjY8B2WBkdHR4wfPx5bt26lV0SI2fL29kZoaCguXrzIdygWzSiJ26NHj8BxHF588UWN6VKptNKyc+fOBQCsW7fOGKGRBoSStoZHqVQiLy8P3t7e8Pf3N7mE7VmTJ09GWloazpw5w3cohNQZPS41PKMkbjKZDK6urhrvkTg4OKCoqKjSsj4+PnB1dcXNmzeNERqxcDKZDEqlku8wiBE9W1ZDIBDAz88Ptra2PEaknS5duqBZs2bYsmUL36EQUmeUuBmeURI3Pz8/FBYWalxQfXx8IJfLkZiYqLGsTCaDWCzWeHmYkLpgjOHJkydUH6uBkEqlePLkCTIzM82yRh/HcZg8eTL27NmD4uJivsMhpE5eeOEFXLp0ib4wG5BREreQkBAwxpCamqqephrP7JdfftFYNiYmBkqlEv7+/sYIjViw7OxsuLq6mvTjMVJ/UqkU6enpePr0KUQiERo3bmy2HVAmTpyIkpIS7Nu3j+9QCKmTtm3bQiKRICEhge9QLJZRErd+/foBgEaNokmTJoExhqVLl+Kdd97B+vXrMWvWLMyaNQscx1EhSlIvpaWlkEgkVPrDwmVnZyMzMxPu7u4ICAgw2mgHhhIcHIxevXrR41JitoRCITp06IDLly/zHYrFMkoB3gcPHqBfv37o1q0btm/frp4+fvx47NixQ+PbMWMMLVu2xIULF+Dq6mro0CwCFeDVpFAokJKSQr1IGwCFQmFxv+NNmzZh+vTpSElJQePGjfkOhxCdvfvuuxAIBPj222/5DsUiGaXqZPPmzZGUlFRp+rZt2/DSSy9h586dSE1NhaurK/r374//+7//o6SN1FlWVha8vb0t7obe0MnlcuTk5MDV1VVdh80Sf8cjR47E5cuX6R0hYrYiIyOxdu1avsOwWEYb8ooYDrW4aVIqlRAIjPIWADECVcImkUjg6ekJR0dHvkMihNTg7t27iIiIgFgshlAo5Dsci0N3N2JxKGmzDAqFAk+fPkVaWhqcnJwQGBhISRshZiAsLAxCoRC3b9/mOxSLRHc4YhEYYygrK+M7DKJHUqkUDg4OCAoKgpOTk9n2FCWkoREIBIiIiEB8fDzfoVgkvb/jps/eUDTQPNFWdnY2hEKhyY1BSbSnUCggk8nUPUPpd0mI+QoPD8e1a9f4DsMi6T1xmzJlil6+GauKURJSG1XpDy8vL75DIXWgGpaqqKiIfoeEWIjw8HD89NNPfIdhkfSeuAUGBlabuGVnZ6O0tLRix9bWEIlEAIDc3Fx1dXtHR0d4enrqOyxioVTvQdV03hHT9GzC5uHhgeDgYPodVkEikZjFkF2EPCs8PBw3btywyJI9fNP7O25JSUl4/PhxpZ9PPvkEMpkM3bt3x/Hjx1FUVISMjAxkZGSguLgYx48fx4svvgiZTIZPPvkEjx8/1ndoxAJlZGRQ6Q8zpFQqkZKSAmtrawQHB8PV1ZWStiosWrQIXbt25TsMQnTWokULyOVyPHz4kO9QLI5ROiecOnUKs2bNwpAhQ3DmzBm8/PLLGt8gbWxs8PLLL+PMmTMYMmQIZs2ahTNnzhgjNGLGSktLIRQKqaehmXi28pBAIEBQUBDc3NwoYatBu3btcO3aNRo+iJgdoVCItm3b0ntuBmCUxO2bb74BYwyrV6+usVQDx3H45ptvoFQq8fXXXxsjNGLGHBwc4O3tzXcYpBaMMeTn5yM1NVUjeaOErXYDBgyAg4MD9u7dy3cohOiMOigYhlEStytXrsDNzQ0BAQG1LhsYGAg3Nzca54xohW7+pkuVsCUlJYExZtaDv/PF3t4eL7/8Mg4dOsR3KITorEOHDrhx4wbfYVgcoyRuRUVFKC4uhlQqrXVZqVSKkpISFBUVGSEyYo6Ki4tBA36YNrFYjKSkJCiVSgQFBcHDw4MKI9fRkCFD8NdffyEnJ4fvUAjRSdu2bfHPP//wHYbFMcqVNCQkBHK5XKsab1u2bIFMJkNISIgRIiPmprS0FPn5+XyHQWphbW2NoKAgiEQiStjqadCgQVAqlTh69CjfoRCikzZt2iA9PR15eXl8h2JRjHJFfe2118AYw+zZs7F58+Zql9uyZQtmz54NjuPw2muvGSM0YkZUpT/8/PzokZsJYYxBLBZDIpGopzk4OFDCpieNGjVCZGQkPS4lZsfd3R2NGze2+FY3Yz8BMsog8+Xl5ejWrRuuX78OjuMQEBCAXr16wd/fHxzHIS0tDX/++SdSUlLAGEOHDh1w4cIFdQV1UrOGMsh8Wloa3N3dqRepiWCMoaioCLm5uXBycoKHhweVZTGQJUuWYOXKlcjJyYGNjQ3f4RCitYEDB2LgwIGYNWsW36HUC2NM3WCQnZ2Nx48fIy8vD56enujUqZNRYzFK4gYA+fn5mD59Ovbv31+x4+daTFRhDB06FBs3boSHh4cxwrIIDSFxKygogEQigY+PD9+hNHiMMRQXFyM3NxcODg4QiUSUsBnY9evXER4ejtjYWPTp04fvcAjR2ieffIKCggKzGEXh2eTsWaoiwn///Tf+85//4MiRI+qcJSAgAP3798fcuXMREhJS7Tb0Se8jJ1TH3d0de/fuxeXLl7Fjxw5cuXIFWVlZAABvb2906tQJY8eORefOnY0VEjETqkTB39+f71AIgJKSEpSWliIgIIASNiNp3749GjdujEOHDlHiRsxK27Zt8b///Y/vMNRUiVVZWRkeP36M+/fvIz8/HyEhIXjppZeqXN7Kygq///47Zs+ejaSkJLRt2xbdu3eHUCjE6dOnsX79euTk5ODLL79EWFgYlEqlYV8VYQ3E4cOHWZ8+fZi7uztzcHBg4eHh7LvvvmMKhUKn7Vy9epV9/vnnrEePHkwkEjFra2vm5eXF+vfvz/bu3Vvteps2bWIAavw5evRonT5bYWEhA8AKCwvrtD4htZHL5XyH0ODNmDGDNWnShO8wCNHJtWvXmLOzM1MqlXyHor7f//HHH6xbt26M4zj1j7OzMxs9ejSLj49njDGNeDMzM9mgQYMYx3Hs9ddf19jmw4cP2ZAhQxjHcWzWrFmV1jUEo7W48WnZsmX49NNPAQChoaFwcnLCjRs3MHv2bMTGxmLfvn1aZcePHj1CRESE+v9DQkIQHByMxMREHDt2DMeOHUN0dDQ2btxY7fa8vb3RrFmzKue5u7vX4dMRYjglJSXIycmBs7Mzvb7As/79+2Pt2rVIS0tD48aN+Q6HEK2EhYWhuLgY6enpBntqwrR4PMkYg0AgwP79+zF58mSUlJTgpZdeQo8ePWBvb4/Y2Fjs3r0bubm5+O6779C6dWvI5XJYW1vj1q1bOHLkCJo1a4a3334bACCTySAQCNCkSRN89tln+P3333Hs2DHEx8ejY8eOBvmcz34Yi3bhwgXGcRwTCARs+/bt6unXr19nPj4+DABbuXKlVttKSEhgvr6+bPny5Sw9PV09XaFQsO+//55xHMcAsO+//77SuqoWt+jo6Hp/pudZaotbaWkpKy8v5zuMBqmkpIQlJSWx9PR0JpPJ+A6HMMbKyspYVlYW32EQorOQkBB28uTJem0jMTGR/fjjj2zSpEns5ZdfZjNmzGDnzp1Tt6Jp08qVlpbGunTpwjiOY2+//bbGvPT0dDZ+/HjGcRwbM2YMY+zfFrpdu3YxjuNYWFiYxnSVgoIC1qRJE2ZnZ8f+85//1OtzasOoLW5FRUX4/fffcfPmTeTl5UEmk1W7LMdx2LBhQ733uXTpUjDG8MYbb2iUGGnfvj1WrVqFCRMmYNmyZZgzZw6EQmGN22rcuDEePnwIBwcHjekCgQCzZs3C7du3sXbtWqxfv97se9DwTaFQIDMzE4GBgXyH0qAolUqkpaVBKBTCz8+v1r8JYjx2dnbU056YpZYtW+Lu3bvo27dvnda/c+cOPvroI41ahrGxsYiJicGbb76Jb7/9VqsOAcnJybh06RL8/Pzw2WefAQDkcjkEAgF8fX2xcOFC/Prrr4iNjcWtW7fQpk0bde95oKJCBoBKT9RcXV1ha2sLiUSCc+fOqVvqDMVoiVtMTAzmzJmD4uJi9TRWRYdWjuPUzZ71TdzEYjFiY2MBANOnT680f/To0Zg5cyZyc3Nx+vRp9OvXr8bt1XbR7NevH9auXYsHDx7UPWgCAMjIyIC3tze9/G5kAoEAfn5+Br3oEEIallatWuHu3bt1Wjc3NxfvvPMO/vzzT0yYMAHTp0+Hj48Prl69iunTp2PdunVwcXHBkiVLan1kmpCQAACwsbFRP7Z99lrXvHlz+Pv748mTJzh8+DBatWoFgUAALy8vODk5ISUlBbm5uRCJRGCMqXMYgUCgrmOZlJSE7Oxs+Pr61unzasMoV+fjx49j+vTpYIzBzs4OXbt2NcrN4dq1a5BKpbCzs9N4N01FKBQiMjISf/zxBy5evFhr4lYbVTZub29f7TI3btzA+PHjkZmZCRcXF4SHh2PixIlo0qRJvfZtSQoLCyEUCqlemxGUl5cjPz8fjRo1Ul/wKGkjhOhTy5YtsXXr1jqte/78efz5559o06YNvv32W/W7ti1btgQATJo0CV9//TVmzpwJPz+/GrdVUlICW1tb2NraoqioCM7Ozup5qpIfqmmXLl1Cfn4+RCIRIiMj4evri4SEBGzZsgVvvfUWHBwc1NfMjRs3Ii0tDQCQlZWFtLQ080/cVqxYAcYYunbtigMHDsDT09MYu1Vn14GBgdXejEJDQ/HHH3+ol62P3377DQAQFRVV7TLXr1/H9evX1f9/4MABLFmyBIsXL8a8efPqHYO5k0qlyM/PR1BQEN+hWDSJRIKsrCxwHAdvb28aiYIQYjCqR6V18fPPPwMAxowZAw8PD3UrF8dx6ledbt++je3bt1f7ypOqJc7Hxwdubm64f/8+UlJS0Lp1aygUCjDGYG1tjcLCQnXDS0pKCp4+fQqRSAQfHx8MGTIEq1evxty5c1FcXIxx48ZBLBbj0qVL+PTTT+Hv7w9ra2ukpKQgOztbY7/6ZpQxaeLj48FxHGJiYoyWtAFQj2lZU29N1bz6jn954sQJdXHhjz76qNJ8Nzc3vPvuu4iLi8PTp09RXl6Oa9euYdKkSVAoFJg/fz7++9//1isGSyAWi+Hr60uJhIFIJBKkpaUhOzsb3t7eaNy4MVXiJ4QYVIsWLfD06VMUFBTovG5iYiKAfxtEOI4Dx3FQKpUAKor2AxXvvKlqwz5PdT+JiIhA06ZNAQC7du1CaWkprKys1A07GzduxM2bNwFUtJxlZGSotzFv3jzMnDkTMpkMCxcuRFhYGCIjI/HOO++gTZs2WLx4MXx8fGBlZYXS0lKdP6cujNLiJpfL4eTkVG0ZDENRPbqs6cZka2sLACgrK6vzflJSUjBhwgQAwNtvv40ePXpUWmb48OEYPny4xrQOHTpgy5YtEIlEWLNmDebPn4/o6GiN5tuGxpiJfUNUWloKT09PesndjJWVleHs2bPo2bMn/R6JWXB3d4dIJEJCQgIiIyO1Xq+wsFB9P1S1tD1f3LZjx47w8fHBnTt3kJycDH9//yoL4DLGEBISgiFDhiAuLg5Lly5FdnY2Jk6ciIKCApw7dw7ff/89GjduDBcXF6SmpkIsFgOoyGHc3d2xcuVKDB8+HFu2bEFiYiJcXV3RsWNHTJkyBRzHYenSpXB1dYVIJAJQeYQofTFK4takSRPcv39f/QzZWFQXNalUWu0yqhcKa3ovrSZ5eXkYMGAAcnJy0KtXL6xatUrnbSxevBg//vgjCgsLcerUKQwbNqxOsahOMl2onvcTyySVSmFlZaX+u6Nagebv/v376N+/P86cOYOePXvyHQ4hWmnWrJnOiZtUKlU/+lQ9flRRJUVBQUHw9fXFnTt38PjxY3Tr1q3Gbb7zzjuQSCRYuHAhfvzxR/z444/qeYMHD8bbb7+NefPmqTtKAlBfP+3t7dG3b98qe8cmJyfjwYMH8Pf3N3gdN6M8Kp04cSJkMplGV15j0OYxqDaPU6tTXFyMgQMH4s6dO+jYsSMOHjxYpyTIxcUFrVu3BgA8fPhQ5/VVAgIC4OrqqtPPV199Vef96YtCoaj3o2qiSSaTIT09HZmZmVAoFHyHQ/Sobdu2cHFxQVxcHN+hEKI1VeKmC1tbW3X5rczMTACVq1F4eXnBx8cHUqkUqamp1W5Lleg5Ojris88+w40bNzBnzhyMHDkSb7zxBn766Sf89NNP6NKlC5KTkyEQCBASEqKx7rMUCgWkUqm6YejIkSMAKnqmGnrMcKO0uL333nvYs2cP3n77bYSFhRntkalqPykpKdXWVVE9P9c1JolEgmHDhuHixYto1aoVjh07Vq9HnKpvFXK5vM7bSE1N1fmEMYXWtoyMDGoJ0hOZTIacnBzIZDJ4enpWqjlIzJ+VlRW6du2K8+fP8x0KIVpr1qwZ7t+/r9M6dnZ2cHV1BQB1r01VEqX6r7Ozs7oCgeodutoeUVpZWaFt27ZYvXp1pXmpqanIy8uDi4sLWrVqVeM2VC1xN2/exHfffQcA+Pzzz7X9eHVmlMTt119/xaRJk7BgwQK0b98eo0aNQpcuXWpNdCZPnlyv/YaHh0MoFKK8vBxXr16tNIC9TCbD5cuXAQBdunTRertyuRxjxozBqVOnEBoaipMnT9br3SyFQqE+oeszlI2Li4vBM319o9If+lNcXIzc3Fx4eXlRwmbhunfvjq+//trwg1kToifNmjXD77//rtM6QqEQAQEBAP6tEvF8Uubo6AiBQKDxd6Dtu2WMMcjlciiVSnW5so0bN4LjOAwYMKBS615WVhYePHiA9u3bgzGG9PR0/PPPP1i9ejXu37+P9957r9ZHtXph8LEZGFMPOSUQCDT+XdOPlZWVXvY9YMAABoC9+eableZt27aNAWAikYhJJBKttqdUKtmECRMYAObn58cSExPrHeNPP/3EADArKyuWlpam8/rmOuSVRCJhjx8/NonBhy0BHceG4/Tp0wwAu3nzJt+hEKKVK1euMHd3d53XW7duHeM4jgUFBVW7zMsvv8w4jmOrVq2qNByVLuLi4ljTpk0Zx3Hs7NmzjDHN6+rdu3dZZGQk4ziOubm5MWdnZ8ZxHHNycmLz5s1j+fn5dd63LozS4hYYGMhbeYd58+bh2LFj+Pnnn9GrVy/1sFc3btzABx98AAD4+OOPNXqerlmzBmvWrMELL7yAHTt2aGxvzpw52LZtGzw9PREbG6t+Bl4TsViMt956C++//75Gq59CocDGjRsxZ84cABWjOxhqEF5Tw/7/txUq/VE3CoUCOTk5sLKyUrf20nFsODp37gxra2ucP38ebdu25TscQmrVrFkz5OfnIzs7G15eXlqv9+KLL8LT0xMpKSm4c+eOxuNLVYuz6h3p5s2bQyAQaNRPy8nJgbOzs8ZrQcnJyXj48CGCg4NhZWWFtLQ0XL16Ff/73//w6NEjzJ8/Hy+++CIAzeuqv78/Ro4cCWtraxQXF8PZ2Rnh4eHo27cv+vXrZ7wnHUZJD3m2dOlSBoABYKGhoaxdu3ZMIBAwAGzQoEFMLpdrLL9w4UIGgPXs2VNj+oULF9TbCQgIYFFRUdX+PCs/P1+9npubGwsPD2eRkZHMzc1NPX3AgAGsrKysTp/PHFvcysrKjPbtxJLI5XL29OlT9vjxYyYWi6mVrQHr0qULGz9+PN9hEFJJeXk5u3XrFtu7dy9btmwZmzp1KouKimIcx7E33nhD5+317duXcRzH5s6dy0pKShhjTP2U7MqVK6xJkyZMKBSyS5cuqde5cuUK69GjB/Pz82OnT59mjDEmk8kYY4xdu3aNvfDCC4zjOGZlZcU4jmMcxzEvLy+2evVqJpVKq41FIpFUyhmMrUGMbTNv3jy0b98eq1evRnx8PDIzM9G2bVtMnToVs2bN0rpEiap0CFDxAmNNPVie5ejoiBUrVuDChQu4desWHj16hLKyMohEIgwaNAiTJ0/G6NGjG1SLCQ2YrRulUonc3FyUlJRAJBLBy8urQZ0vpLKoqCjs3r2b7zBIA6VUKpGWloYHDx7g/v37Gv9NTk6GnZ0dmjdvrv7p3bs3cnNz0b17d533NXnyZFy/fh2rV69G06ZNMX36dPVTsrVr1yIxMRHTp09H27Zt1a1t1tbWKCsrQ0ZGBh49eoRevXqptxcaGqoe81R1Te3QoQNefPFFdOrUqcrRF1RMoWA5x1gVI70TsyIWi+Hq6orCwkKz65xAtMMYQ3FxMZycnChhIwCAffv2YcSIEUhNTa1XpyZC6uLPP/9Enz59EBISok7OwsLC1P/29/evdK0aPXo0OnfuXOXoQjVRKBRYtmwZPv/8c9jY2GDIkCFwcXHB9evXce3aNbRq1Qo//PADevbsqa4Xm5SUhBkzZiA+Ph4rVqzA1KlTNR6hMgMNR2UMDaLFjZiOrKwseHp6Uk+4WiiVSnVCrhripSGPqEEqU/WEv3z5MiVuxOiioqJQWlqqUwtUSEgIHj9+rPO+rKysMHv2bLi5uWHTpk3Ys2cPgIr3zwYNGoQFCxYgMjJSo8h/UFAQjh49qpGcVfdvc2P0xO3ChQs4f/480tLSUFJSUqm7rQrHcdiwYYORoyOGVFhYSOULaqFUKpGfnw+xWAwPDw++wyEmzM/PD76+vrhy5QpeffVVvsMhDUxVdVFrExISgoMHD9Zpf87OznjnnXcwZMgQJCYmws3NDYGBgerrJGNM47Unc07MamO0xC0hIQHjx4/H1atXNaZX1VypmkaJm+WQSqXIz89HUFAQ36GYJKVSiYKCAhQWFsLd3R3BwcEWfeEh+tGpUyekpKTwHQYhWqlri5sKYwyBgYEIDAysNK8hXS+Nkrjl5uaid+/eePLkCXx8fNCzZ0/89ttvsLe3x8iRI5GZmYmLFy+iqKgInp6eGDRokDHCIkbCqPRHrXJyciAUCilhIzrZvXu3SbwsTYg2QkJCkJSUVOcnL3RtrGCUZ1Zr1qzBkydP0KVLFzx69EhdG83V1RVbtmzBiRMnkJ6ejo8++gg5OTmwt7fHpk2bjBEaMYLs7Gy4urqaxPBapoIxpvGagLe3N9zd3enCRHRCSRsxJwEBAZBIJJUGjCe6MUridvjwYXAchy+//LLaAnWOjo5Yvnw55syZg59++gm7du0yRmjEwFTvHbi5ufEdiklgjKGgoABJSUka5WUIIcTSOTg4QCQSaV1Ki1TNKInbo0ePwHGcuhKxilQqrbTs3LlzAQDr1q0zRmjEwDiOg0gkavAtSYwxFBYWIikpCQqFAkFBQVTHjhDS4AQEBFDiVk9GecdNJpPB1dVVoxeKg4MDioqKKi3r4+MDV1dX3Lx50xihEWJwZWVlyMzMhLOzM4KCgqhXLSGkwaLErf6Mcgfx8/NDYWEh5HK5epqPjw/kcjkSExM1lpXJZBCLxSgsLDRGaMRACgsLUVxczHcYJsHGxgaBgYFUv44Q0uAFBgZS4lZPRrmLhISEgDGm8cuKjIwEAPzyyy8ay8bExECpVDaYwdYtkar0h6OjI9+hGB1jDEVFRcjLy1NPs7Ky0npYNUJ0VVZWhnPnzlX5BIMQU0MtbvVnlMStX79+AIBjx46pp02aNAmMMSxduhTvvPMO1q9fj1mzZmHWrFngOA7Dhw83RmhEzxhjyMjIaHClP1RDUiUnJ6O0tBSurq58h0QaiNTUVPTo0QOXLl3iOxRCakWJW/0ZJXEbNmwYAgICcO7cOfW0QYMGYdy4cZDL5Vi7di1mzJiBH3/8ETKZDC1atMCCBQuMERrRs+zsbLi4uDSo0h8lJSVISUlBSUkJGjduDB8fH2phI0bTpEkT2Nra4tatW3yHQkit/Pz8kJ6ezncYZs0onROaN2+OpKSkStO3bduGl156CTt37kRqaipcXV3Rv39//N///R+1WJih0tJSSCQSeHl58R2K0SiVShQXF8Pf379OQ8AQUl9WVlZo2bIlbt++zXcohNTK19cXGRkZZj3IO984Vt1gocRsqAYjLywshIuLC29xFBUVwd7e3uITGIlE0qBaFInpmzhxIh4/foy4uDi+QyGkRkVFRXBxcUFeXh7c3d35DscsURc3ojfOzs4WnbSVlZUhJSUFeXl5oO87xJS0adMGt27dovOSmDxnZ2c4OjrS49J6MEriJhAIdOolGhISYtEJADEvqoQtPz8fvr6+Da7jBTF9rVu3hlgsxpMnT/gOhZBaqR6XkroxWoubrt8E6ZujeZBKpcjMzOQ7DIPJyspCXl4eGjVqBD8/PwiFQr5DIqSSNm3aAAB1UCBmgRK3+jHJR6VSqZQKlZoBVekPS35PwcvLC/7+/jSYNzFpqiHUHjx4wHcohNTK19eXHpXWg8llRwUFBcjKyqJByc1ATk6ORZX+kEgkSEtLQ1lZmXoaPRIl5kAgECA0NBQPHz7kOxRCauXj44OsrCy+wzBbBnmR7ObNm7h+/brGtLKyMmzZsqXadRhjKCgowO7du6FUKhEREWGI0IielJaWory8HI0bN+Y7lHqTSqXIysoCYwxeXl40+DsxS02aNMGjR4/4DoOQWnl7e1PrcD0YJHHbt28fvvjiC41pYrEYU6dOrXVdVW2XDz74wBChET1QKBR4+vQpAgMDzbpFSiaTISsrC0qlkhI2YvaaNm2Kw4cP8x0GIbXy8vKi0jX1YJDEzc3NDYGBger/T05OhkAgqLF1RiAQwMXFBW3atMGbb76JF1980RChET1gjKFRo0ZmPzqAUqmEh4cH7O3t+Q6FkHpr0qQJHj9+DIVCYfZ/m8SyeXt706PSejBKAV6BQIBGjRrRy4gGYioFeE2dTCaDRCKBk5MT36EQonf5+fkoKyujcjXE5J0/fx7jx49HSkoK36GYJaMUS1u4cCHdLC2AuQ5RIpfLkZ2dDalU2qCG4yINi7u7u0X38CaWw8vLC9nZ2WZ7T+EbDXllAYzR4sYYQ2pqKvz9/c3mMYxcLkdOTg4kEgk8PT3h6OjId0iEENLg5efnw8PDA0VFRdSoUwe8Dk8glUpx7Ngx3L9/H7a2toiIiED37t35DIlUIycnB05OTmaTtCmVSqSnp8PDwwONGjXiOxxCCCH/n5ubGwQCAXJzcylxqwODJG5FRUXYt28fAGDs2LFV1vm6cuUKRo4cibS0NI3pXbp0wd69e+lma0LMpfTHs83uAoFAo4MMIYQQ08BxHNzd3ZGXl4egoCC+wzE7BinA+8cff2DKlClYs2ZNlUlbVlYWBg4ciLS0NDDGNH4uXryIoUOHGiIsUgeq0h+m/MKzQqFAVlYWUlJSaKg0QggxA+7u7sjPz+c7DLNkkMTt3LlzAIDx48dXOX/58uXIyckBAERHRyMuLg43btzA+++/D8YY4uPjsXv3bkOERnSUmZkJLy8vWFvz+lS9SkqlEtnZ2UhJSYGdnZ3Z15UjRB9kMhnfIRBSKw8PD+Tl5fEdhlkySOJ26dIlcByH/v37Vzl/27Zt4DgOQ4YMwaZNm9C1a1e0bdsW33zzDaKjo8EYw549ewwRGtGRu7u7Sb6DkJ+fj+TkZNjY2CA4OBguLi6UtJEGb/369XBxcaGWZ2LyqMWt7gySuGVkZMDa2hqtWrWqNO/27dvqwnuzZ8+uNH/OnDkAgGvXrhkiNKIjBwcHvkOokoODA4KDg+Hq6koJGyH/n6enJ8rLy9VPNAgxVR4eHpS41ZFBErenT5/CxcUFAkHlzV+6dAkAYGNjU2UP0jZt2oDjOCrWyyPV+4amQqlUIi8vT2Pwd1tbW0rYCHmOv78/AODJkyc8R0JIzVSdE4juDJK4KRQKiMXiKufFx8cDAFq2bAkbG5tK862treHu7q5xkybGlZOTg6KiIr7DAGMMeXl5SE5OBsdxNJYoIbVQ9fx+vrc+IabGzc0NBQUFfIdhlgySuHl7e0Mul+PRo0eV5v3111/gOA6RkZHVrl9cXEzFUnmiKv3h7OzMWwyMMeTn5yMpKQkAEBwcDHd3d2phI6QWPj4+sLKyohY3YvJcXFxMooHAHBkkcYuIiAAArFu3TmN6QkICrl+/DgDo2bNnlesmJydDKpWafM0wS2QqpT9KS0uhVCoRFBQEDw8PStgI0ZKVlRUaNWpEiRsxec7OztU+mSM1M0ji9tprr4ExhtWrV2PlypW4f/8+/vjjD4wePRqMMTg6OmLIkCFVrnv27FkAFe+6EePiq/QHY0yjhIGjoyNEIlGV70gSQmrm5eVFnROIyXNxcaHErY4McmccPXo0evToAblcjrlz56JVq1bo168f/vnnH3Achw8++KDaR3E7d+4Ex3E09JWRFRYWwsrKyqilPxhjKCwsRFJSEkpKSoy2X0IsmUgkosSNmDx6VFp3BmvSOHDgAAYPHqwxKgIAvP7661iwYEGV6yQkJODYsWMAgIEDBxoqNFIFe3t7eHt7G2VfjDGIxWIkJSVBKpUiKCgIbm5uRtk3IZbO09MTubm5fIdBSI3oUWndGeyZmKurKw4ePIiHDx+q32uLjIyscVwyoVCIAwcOQCgUIjQ01FChkSpU1cPXEJRKJVJSUuDg4IDAwECzGbSeEHMhEolw9+5dvsMgpEb0qLTuDP4yU9OmTdG0aVOtlg0ODkZwcLBhAyIaFAqFUZMn1eDv9P4aIYZBLW7EHDg7O9Oj0jqiu2cDVlZWhoyMDIPuo6SkBGlpaRoFfSlpI8RwPD09kZOTY1JFtAl5nr29PcrLy6FUKvkOxezQHbSBUigUyMzMRKNGjQyy/ZKSEiQnJ6OoqAiNGjWikh6EGEmPHj3w5Zdf0g2RmDTVcIrl5eU8R2J+OEZfy8yeWCyGq6srCgsL4eLiotU6T548gaurq957kZaWliI7Oxs2Nja8lBYhhBBi+kpLS+Ho6IicnByIRCK+wzErdFdtgAxZ+kMul8PPzw9CoVDv2yaEEGIZVEMYlpaWUuKmI3pU2sDI5XLk5eXprfRHWVmZRvFcFxcXStoIIYTUSCAQwN7eHqWlpXyHYnaoxa2BsbKyQkBAQL07CJSXlyM7OxsCgcBo9d8IIYRYDnt7e5SVlfEdhtmhxK2B4TiuXu+dSSQSZGVlgeM4+Pj4GK3+GyGEEMtCLW51Q49KLYBEItH4b1VkMlm9ywOUlJQgOzsb3t7eaNy4sUklbRKJBIsWLarxGFg6OgYV6DjQMQDoGKiY8nGwtbXVeNWGaId6lVqAtLQ0BAQEIDU1FY0bN640X6FQICUlpU4jFTDGzKKUR1161loaOgYV6DgAb775JtavX9+gjwGdBxVM+Ti0bNkS3333HV5++WW+QzEr1OLWAGRmZsLLy0unpE0qleLJkyc0WDUhZmj37t18h0BIrWxsbCCVSvkOw+zQO24WTtfSHzKZDNnZ2ZDL5fDy8oK9vb2BIySE6JujoyPy8/P5DoOQGlHiVjcNpsXtyJEj6Nu3Lzw8PODo6IiIiAh8//33da4u/tdff2HYsGHq5KZVq1ZYsmRJrVWg7969iwkTJsDX1xd2dnZo0qQJPvzwQxQUFNQpjprIZDKtS38olUpkZGQgIyMD7u7uCAwMpKSNEDOlqkpPiCkTCoV1StweP36M9evX44033kD79u1hbW0NjuOwdOnSesVT1/u60bEG4KuvvmIAGAAWGhrK2rVrxwQCAQPAhg4dyhQKhU7b++WXX5iVlRUDwPz9/Vl4eDgTCoUMAIuMjGQlJSVVrnfq1Clmb2/PADAvLy8WERHBHBwc1HFlZmbW6fOlpqYyACw1NVVjekpKCisvL9dqG0qlkpWWltZp/6agsLCQAWCFhYV8h8IbOgYV6Dgw1r59+wZ/DOg8qGDKx6Fnz55sy5YtOq83Z84c9T392Z8lS5bUOZa63tf5YPEtbn/99Rc+++wzCAQCbN++HY8ePcKNGzdw9epV+Pj44ODBg1i1apXW20tKSsL06dOhUCiwYsUKpKam4urVq0hISEBYWBguX76Mjz/+uNJ6RUVFGDt2LMrKyjB79mw8efIE8fHxSElJQVRUFBITEzF9+nR9fnT4+/vD1ta2ynlyuRzZ2dnqnqYcx1ELGyEWgoaaI+agro9KPT09MXjwYHzxxRc4evQoRo4cWa846npf5w3fmaOhDRw4kAFgb775ZqV527ZtYwCYSCRiUqlUq+29/fbbDADr169fpXlxcXEMABMKhZVaz1asWMEAsJYtWzK5XK4xLzk5mVlbWzMALD4+XodPV6G6FreqyOVylpmZyR4/fsyKiop03pepMuVvlcZCx6ACHQfGOnfu3OCPAZ0HFUz5OPTv35+tW7eu3tuJjo6uV4tbXe/rfLHoFjexWIzY2FgAqLI1a/To0XBxcUFubi5Onz5d6/YYY9i3b1+12+vWrRtatGgBmUyGAwcOaMzbu3cvAGDKlCmVencGBgaib9++AOrfG0ypVFb5DUahUCArKwupqalwdHREUFCQQcYqJYTwj1rciDkQCAR1fs9cX+pzX+eLRSdu165dg1QqhZ2dHSIiIirNFwqFiIyMBABcvHix1u2lpKQgIyMDABAVFVXlMqrpz25PLpcjPj5e5/XqIiMjo8rELT8/H/b29uqEzRxqsxFC6kbXeo2E8MEUEre63tf5ZNGJW0JCAoCKFq3qvoGGhoZqLKvN9mxtbeHn56f19pKSktTVoVXz6xNHdcRisbr0h1Kp1PiD8PT0hLOzMyVshDQA1OJGzIEpJG51va/zyaITN1UdI3d392qXUc3TpuaRahk3N7dqE6Cqtvfsv6uLRZc4qlNQUABPT0/k5OQgOTmZ6uMQ0kBRixsxB6aQuNX1vs4ni07cVLVXahpTU9XrsqyszGDbe7YGTHXr6hLH89j/7xlqb2+P1NRUCIVCBAcHw87OTudtEULMH7W4EXNgCombvvMEY7Dov25V4lJTy5Nq4F1tSmHUdXvPJlCqd+7qE8fzVMNS5efnw9PTE0VFRSgqKtJqXVtb22pLhpgTsVis8d+GiI5BBToOgKurK4CGfQzoPKhgrOMgkUh0Hsi+vLwcYrGY1zGx9Z0nGINFJ27aNG9q8zj1+e0VFBRUe6JVtb1n/52fnw9fX996xfE8Ve/QPn366LyupQkICOA7BN7RMahAx4GOAUDHQMVUj8ORI0cwZ84cuLi48LL/ut7X+WTRiVuzZs0AVPQakcvlVT4+SExM1FhWm+1JJBKkp6fD399fq+0FBwdDKBRCJpMhMTGxysRNlzie16RJEzx69AhCoVDnby2W0uJGCCGEP3VpcQMq7kHOzs4GiEg7db2v88miE7fw8HAIhUKUl5fj6tWr6Ny5s8Z8mUyGy5cvAwC6dOlS6/YCAwPRqFEjZGZmIi4uDmPGjKm0TFxcXKXtWVtbIyIiAhcvXkRcXFyVXY6rWk9bAoGg2t6qhBBCCKlaXe/rfLLozgkuLi7qwrYbNmyoNH/Xrl0Qi8UQiUTo1atXrdvjOA6vvvpqtdu7cOEC7t27B6FQiKFDh2rMGzFiBAAgJiYGCoVCY15KSoq6UHB9h+4ghBBCiHbqc1/ni0UnbgAwb948cByHn3/+Gb/++qt6+o0bN/DBBx8AAD7++GONHiVr1qxBcHAwxo0bV2l7H330EWxsbHDixAmsXLlS3aMzOTkZ06ZNAwC8/vrraNSokcZ6M2bMgKenJ+7evYsPPvhAXdctNzcX48ePh1wux4ABA9CxY0f9HgBCCCGkgTPEfZ03/I22ZTxLly5lABgAFhoaytq1a8cEAgEDwAYNGlRp7NCFCxcyAKxnz55Vbm/z5s3q9f39/Vl4eDgTCoUMAOvYsSMrLi6ucr3Y2FhmZ2fHADAvLy/WsWNH5uDgwACw4OBglpGRoe+PTgghhFiU8+fPM5FIpP6xtbVlAJiDg4PG9JSUFPU6hrqv88HiW9yAila3Q4cOoXfv3sjNzcXDhw/Rtm1brFmzBgcOHNC5WOXkyZNx7tw5DB48GGVlZbhz5w5CQ0OxaNEinD9/Ho6OjlWu16dPH1y5cgXjxo0Dx3H4559/4OPjgw8++ABXr141nWyeEEIIMVEymQy5ubnqH1WniNLSUo3pz7+WVJO63tf5wDH2/9sECSGEEEKISWsQLW6EEEIIIZaAEjdCCCGEEDNBiRshhBBCiJmgxI0nR44cQd++feHh4QFHR0dERETg+++/r/OAu3/99ReGDRsGLy8v2Nvbo1WrVliyZInGAPdVuXv3LiZMmABfX1/Y2dmhSZMm+PDDD1FQUFCnOHShr2Nw7do1LFiwAD179oSnpyeEQiG8vb0xYMAA7Nu3r9r1YmJiwHFcjT/Hjh2r78eskb6OwaJFi2r9LPfu3at2fT7PA0B/x6G2Y6D62bx5s8Z6pnAuABWjrDy/Xzs7O4SEhGDixInqguHPmzJlilafe8qUKTqvN3z4cIN/7sePH2P9+vV444030L59e1hbW4PjOCxdurRO2zPHa4K+j4G5XxNI9Sx65ARTtWzZMnz66acAgNDQUDg5OeHGjRuYPXs2YmNjsW/fPggE2ufU27ZtQ3R0NBQKBfz9/REQEIBbt25hwYIFOHToEM6cOQMHB4dK650+fRqDBg1CWVkZvLy80Lp1a9y7dw/ffPMN9u3bhwsXLsDHx0dvn/tZ+joGjx49QkREhPr/Q0JCEBwcjMTERBw7dgzHjh1DdHQ0Nm7cWO32vL29qx3KxJBj0+n7PAAqxiMMDAyscl5V5wDA73kA6Pc4VDUqiUp+fj7u3LkDAHjhhReqXIavc+F5zZo1g7e3NwCgsLAQDx8+xLZt27Bjxw5s2rQJkyZNqnK9muIHgObNm+u8XqtWrXSMXnfffvstvv32W71sy1yvCfo8Bs8yx2sCqQXf9UgamgsXLjCO45hAIGDbt29XT79+/Trz8fFhANjKlSu13t7jx4/VNWxWrFjBlEolY4yxpKQkFhYWxgCwd955p9J6YrGYeXl5MQBs9uzZTCqVMsYYy8nJYVFRUeoad4agz2OQkJDAfH192fLly1l6erp6ukKhYN9//z3jOI4BYN9//32ldTdt2sQAsOjo6Hp/Jl3p+zxQ1ShauHChTnHweR4wpv/jUJN58+YxAKxz586V5vF5LjwrKCiIAWCbNm3SmJ6Xl8dGjRrFADBnZ2eWl5enMT86OrpO8dd1PX1bsmQJGzx4MPviiy/Y0aNH2ciRIxkAtmTJEp23Za7XBH0eA8bM95pAakeJm5ENHDiQAWBvvvlmpXnbtm1jAJhIJFL/sdTm7bffZgBYv379Ks2Li4tjAJhQKGSZmZka81asWMEAsJYtW1YqQJycnMysra0ZABYfH6/Dp9OOPo9BWVkZKykpqXb+jBkzGADWrl27SvP4vEjr+zyo60Waz/OAMf0fh+oolUoWHBxskjfsZ1WXuDHGWGFhIXN0dGQA2I4dOzTmmXvi9jxVXHVJWsz1mvC8+hwDxsz3mkBqR++4GZFYLFaPSTp9+vRK80ePHg0XFxfk5ubi9OnTtW6PMaZ+X6Oq7XXr1g0tWrSATCbDgQMHNObt3bsXQMU7Ls8XIA4MDFSP8bp7924tPpn29H0M7Ozsqm3uB4B+/foBAB48eFDHiPVP38egPvg6DwDjHodz584hKSkJQqGwyiFvzIGLi4v6UWdSUhK/wZgwc7wmmBI+rwlEO5S4GdG1a9cglUphZ2en8Q6GilAoRGRkJADg4sWLtW4vJSUFGRkZAKp/t0c1/dntyeVyxMfH67yePuj7GNRG1TnD3t6+2mVu3LiB8ePHo3fv3hg+fDgWL16MR48e1Xvf1THkMTh9+jRGjx6N3r17Y9SoUVixYgUyMzOrXJbP8wAw7rnwyy+/AAD69+8PT0/Papcz9rmgq9LSUgDVv5tEameK1wRDMqdrAtEOJW5GlJCQAKDiW4u1ddX9QkJDQzWW1WZ7tra28PPz03p7SUlJ6kHuVfPrE4cu9H0MavPbb78BqPml9evXr+PXX3/F6dOnceDAASxatAhhYWH4z3/+U+/9V8WQx+Ds2bPYvXs3Tp8+jT179uCTTz5BaGgoYmJiKi3L53nw7DYNfS5IJBLs2rULAKp9qV/F2OeCLhISEtTJQ4cOHfgNxoyZ4jXBkMzpmkC0Q4mbEeXn5wOouVeSap5qWW225+bmBo7jtN7es/+uLhZd4tCFvo9BTU6cOIH9+/cDAD766KNK893c3PDuu+8iLi4OT58+RXl5Oa5du4ZJkyZBoVBg/vz5+O9//1uvGKpiiGPg6+uLzz77DJcvX0Zubi5KS0sRFxeHAQMGoKysDNOmTcOhQ4eqjKOmWAx1Hjy7TUOfC4cOHUJBQQFcXV0xZMiQKpfh61zQhuqR8vDhwyGXyxEVFYUXX3yxymU3b95cY/kH1d+DLutZElO9JhiCOV4TiHaoHIgRqZrobWxsql3G1tYWAFBWVmaw7T1b2626dXWJQxf6PgbVSUlJwYQJEwAAb7/9Nnr06FFpmeHDh1eqUdWhQwds2bIFIpEIa9aswfz58xEdHQ1nZ+c6x/I8QxyDt956q9K0bt264fDhwxg5ciT27duH999/H4MHD1bfjPk8D57dv6HPBdVj0tGjR8POzq7KZfg6F6ozdepUTJ06VWOaQCDA2LFj8eOPP1a7Xm3lQEQiUZ3WswSmfE0wBHO8JhDtUIubEaluGlKptNplJBIJgJrfv6jv9p69eVW3ri5x6ELfx6AqeXl5GDBgAHJyctCrVy+sWrVK520sXrwYtra2KCwsxKlTp+oUR3WMcQxUOI7DsmXLAFTUt7p582alOGqKxVDnwbP7N+RxyM3NxZEjRwAAkydPrtM2DHkuVKdZs2aIiopCt27d1I+mVO/81dRCOWDAAJw/f77an+pa6mpazxKY+jXBmEz5mkC0Q4mbEWnTxKzN46Pnt1dQUADGmNbbe/bf1cWiSxy60PcxeF5xcTEGDhyIO3fuoGPHjjh48KD6G6IuXFxc0Lp1awDAw4cPdV6/JoY+Bs9r3rw5PDw8AGh+Fj7Pg2e3acjjsHPnTshkMgQHB6N79+512oYhz4XqfPbZZzh//jzi4uLw6NEjnD9/Hs7Ozvjwww/VLYhEO+ZwTTA2U70mEO1Q4mZEqkcRKSkpkMvlVS6TmJiosaw225NIJEhPT9d6e8HBwRAKhRrz6xOHLvR9DJ4lkUgwbNgwXLx4Ea1atcKxY8fq9ThDdYyqi7OuDHkMqlPVZ+HzPHh2m4Y8DqokZ+LEifV6X8tQ54K2oqKisH79egDAnDlzIBaLeYnD3JjLNYEPpnhNINqhxM2IwsPDIRQKUV5ejqtXr1aaL5PJ1GMRdunSpdbtBQYGolGjRgCAuLi4KpdRTX92e9bW1uryC7qspw/6PgYqcrkcY8aMwalTpxAaGoqTJ0/WWPahNgqFAvfv3wcANG7cuM7bqYqhjkF1cnJykJWVBUDzs/B5HgCGPw6PHj3CX3/9BaAicasrQ54Luhg+OvTKLgAABDRJREFUfDheeOEF5OXl1elRX0NjTtcEYzPVawLRDiVuRuTi4qIuXrhhw4ZK83ft2gWxWAyRSIRevXrVuj2O4/Dqq69Wu70LFy7g3r17EAqFGDp0qMa8ESNGAKgYVFmhUGjMS0lJURdGHTlyZO0fTAf6PgZARSHiKVOm4ODBg/Dz80NsbGy15VG0tWHDBhQUFMDKykrrOLRliGNQk1WrVoExBldXV3VdNBW+zgPA8Mdh69atAIDOnTsjLCysznEa8lzQ1dy5cwEA3333HYqLi3mNxZSZ2zXB2Ez1mkC0xOewDQ3R+fPnax2bcfny5RrrrF69mgUFBbGxY8dW2l5iYiKzsbGpcazSmTNnVlqvsLCQeXp61jge3YABA/T50dX0fQzeffddBoB5enqyO3fuaBVDYWEhGzduHLt48aLGdLlcztatW8fs7OyqHYpJH/R5DG7dusVmzpzJbt26pTG9rKyM/ec//2ECgYABYF9++WWlOPg8DxjT/7nwrKZNm1Y7xNWz+D4XnlXTkFeMVQzd1bJlS/Xfu0pDHPLK0q4Jz6vPMTDnawKpHSVuPFi6dCkDwACw0NBQ1q5dO/Uf0qBBgyqND6cac65nz55Vbm/z5s3q9f39/Vl4eDgTCoUMAOvYsSMrLi6ucr3Y2Fj1xcjLy4t17NiROTg4MAAsODiYZWRk6Pujq+nrGFy4cEG9nYCAABYVFVXtz7Py8/PV67m5ubHw8HAWGRnJ3Nzc1NMHDBjAysrKTP4YXLt2Tb0d1e/x2d8lADZ9+nR1Uv88Ps8DxvT/98DYv+eFUChk2dnZNe7fFM4FldoSN8YY27BhAwPAGjVqpI5JdZP39vau8W9gypQpGtsylcTt/PnzTCQSqX9sbW0ZAObg4KAxPSUlRb2OpV0T9HkMzP2aQGpGiRtPDh06xHr37s1cXV2Zg4MDa9++PVuzZk2lmxRj2t2o4uLi2ODBg5mHhweztbVlYWFhbNGiRbVeZG7dusXGjRvHvL29mY2NDQsJCWEffPABy8vLq+9HrJU+jsHp06fVF6Lafp4llUrZihUr2PDhw1nTpk2Zi4sLEwqFrFGjRmzQoEFs586d1V7U9EkfxyA/P58tWbKEDRgwgIWEhDAnJydmY2PDGjduzEaNGsWOHTtWaxx8ngeM6f/vYebMmQwAGzJkSK37NpVzgTHtEjeJRML8/PwYAPbDDz8wxv5NwGr7ad++vca2TCVx0/bv+PHjx+p1LO2aoM9jYAnXBFI9jrFq6kgQQgghhBCTQp0TCCGEEELMBCVuhBBCCCFmghI3QgghhBAzQYkbIYQQQoiZoMSNEEIIIcRMUOJGCCGEEGImKHEjhBBCCDETlLgRQgghhJgJStwIIYQQQswEJW6EEEIIIWaCEjdCCCGEEDNBiRshhBBCiJmgxI0QQgghxExQ4kYIIYQQYib+H0V5/2XqlDHZAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Create figure and Taylor Diagram instance\n", - "fig = plt.figure(figsize=(6, 6))\n", - "taylor = gv.TaylorDiagram(fig=fig, label='REF')\n", - "\n", - "# Draw diagonal dashed lines from origin to correlation values\n", - "# Also enforces proper X-Y ratio\n", - "taylor.add_xgrid(np.array([0.6, 0.9]))\n", - "\n", - "# Add a model dataset of one point\n", - "taylor.add_model_set(stddev=[.6], corrcoef=[.24]);" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Displaying Distinct Datasets\n", - "\n", - "When working with data, you'll want to make two datasets distinct by providing different kwargs for how to draw them.\n", - "\n", - "First let's creat two sets of dummy data:" - ] - }, - { - "cell_type": "code", - "execution_count": 50, - "metadata": {}, - "outputs": [], - "source": [ - "# Case A\n", - "a_std = [1.230, 0.988, 1.092, 1.172, 1.064, 0.966, 1.079, 0.781] # standard deviation\n", - "a_cc = [0.958, 0.973, 0.740, 0.743, 0.922, 0.982, 0.952, 0.433] # correlation coefficient\n", - "\n", - "# Case B\n", - "b_std = [1.129, 0.996, 1.016, 1.134, 1.023, 0.962, 1.048, 0.852] # standard deviation\n", - "b_cc = [0.963, 0.975, 0.801, 0.814, 0.946, 0.984, 0.968, 0.647] # correlation coefficient" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "And let's plot it:" - ] - }, - { - "cell_type": "code", - "execution_count": 51, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABC8AAAQhCAYAAAANu6VNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdZXRU1/v28e9MFIgAgaCBQHF3LVaKBC1SvMUpTilQg7ZQWrRFCxRrcShtgeLF3d3dgoRAiBOfeV7wZP7khxRJMpHrs9YsMmeO3IcgmWvuvbfBbDabERERERERERFJoozWLkBERERERERE5GUUXoiIiIiIiIhIkqbwQkRERERERESSNIUXIiIiIiIiIpKkKbwQERERERERkSRN4YWIiIiIiIiIJGkKL0REREREREQkSVN4ISIiIiIiIiJJmsILEREREREREUnSFF6IiIiIJLDhw4djMBgwGAzUrFnT2uWIiIgkOwovRERErOTpN7Rv+rhx44a1b0NEREQkwSm8EBEREREREZEkzdbaBYiIiMgT9erVe+1j0qRJkwCViIiIiCQtCi9ERESSiI0bN1q7BBEREZEkScNGRERERERERCRJU3ghIiIiIiIiIkmawgsREZEU4uDBg9jb21tWIunYseMrHde5c2fLMfb29hw8ePC5+5lMJnbv3s2IESNo2LAh77zzDs7OztjZ2ZE5c2ZKlixJz5492bp16yvX3KlTJ8u1O3XqZNm+f/9+unXrRqFChXB2diZt2rSUKFGCb7/9Fn9//+fWtmzZMho1akS2bNmwt7cnU6ZM1KxZkzlz5mAymf6zlhctZ3ry5En69etHsWLFSJ8+Pc7OzhQuXJj+/ftz6tSpV77XN3Hu3Dm+++47qlatSo4cOXBwcCBDhgwUKVKEXr16sXPnzgS9voiISJJhFhEREav47rvvzIDlER/GjRsX55zz589/6f6LFi2Ks//YsWOfu9/hw4fNWbNmjbPvyx7vvvuu+fbt2/9Zb8eOHS3HdOzY0RwREWHu27fvS8/t4eFhvnr1quUc3t7e5ooVK770mBo1apiDg4NfWsvT348aNWqYY2JizN9++63ZaDS+8Lw2Njbmr776ymwymV7r3P/F39/f3LFjx5deO/bh5eVlfvDgwX+eU0REJDlT54WIiEgKMnjwYOrXr2953qdPHy5duvTcfa9cuUKvXr0sz+vVq8eQIUOeu6+Pjw8+Pj6W52nTpqVkyZLUqFGDWrVqUaRIEWxsbCyv79mzh0qVKvHgwYPXqr979+788ssvAGTKlImqVatSrVo10qdPb9nH29ub9957j9DQUB48eED16tUt3SKenp7UqFGDChUqYG9vbzlm586ddO7c+bVq+fbbb/n+++8xmUw4ODhQtmxZatSoQa5cuSz7xMTEMHr06Di/j2/r1q1bVKlShfnz51s6RoxGI0WKFKFWrVpUqlQJJycny/4bNmygSpUqcb4/IiIiKY3CCxERkRTEYDCwYMECsmXLBkBISAht2rQhIiIizn6RkZG0bt2a4OBgALJmzcqCBQswGAwvPHeBAgUYM2YMp06dIjg4mBMnTrBjxw62bdvG2bNnefDgAePGjSNdunQA3L59m08++eSVa1+7di0LFiwgZ86crFq1ivv377Nnzx527dqFr68vI0aMsOx78+ZNpk2bRseOHbl+/TpVqlTh6NGjXL9+nR07dnDw4EHu3r1LkyZNLMf89ddf7N69+5VqOXPmDKNGjcJoNPLVV19x//59jhw5wo4dO7h58ya7du2icOHClv1nzpzJ4sWLX/leXyQiIoKmTZty/vx5ABwdHfnhhx948OABZ8+eZdu2bezfv59Hjx4xd+5cXFxcALh8+TIdOnR4peExIiIiyZK1Wz9ERERSq4QYNhJr27ZtcYYc9OvXL87r/fv3t7xmMBjMmzdvfun5QkND/3NoRKzdu3ebbWxsLOe+ePHiC/d9etgIYHZ3dzffvHnzhft36NDBsq+9vb1lGEZ4ePhz9w8PDzfnyZPHckznzp1feO7//X4A5smTJ79w/wcPHpjz589v2Tdz5szmsLCw/zz3y4aNfPnll5b9nJyczAcPHnzhvmaz2Xz8+HFz2rRpLcf8/fffL91fREQkuVLnhYiISBIRO1nkqz6enuDyf9WqVYthw4ZZnk+dOpXVq1cDsHr1aqZMmWJ57YsvvuD9999/aW1p06Z9aVfG0959911at24NgNlsZuXKla90HMD48ePjDMv4X08Pz4iMjMTGxobff/8dBweH5+7v4OBA165dLc/37NnzyrW8++679O/f/4WvZ8qUienTp1ueP3jwgOXLl7/y+f9XUFBQnPONGzeOChUqvPSYUqVK8eWXX1qeP/19FRERSUkUXoiIiKRQ3377LdWrV7c879y5M/v3748z90PlypUZOXJkvF+7cuXKlq8PHTr0Sse4uLjQtm3bl+5Trly5OHNr1KlThzx58rz0mEqVKlm+vnLlCpGRka9Uz4ABA/5zn/fff58iRYpYnv/999+vdO7nWbFiBUFBQQCkT58+TujyMk+HWPv27ePx48dvXIOIiEhSZWvtAkREROSJevXqvdb+xYsXf+nrNjY2LFmyhJIlS+Ln58ejR4949913LfMipE+fnqVLl2Jr+3o/DgQFBbF582ZOnDjBzZs3CQ4OJjw8HLPZbNnnzp07lq9v3779SuctW7YsdnZ2L93H3t6ejBkzWiYCfTokeZHY+T/gSSdIYGAgmTNnfukxBoMhzsSnL9OgQQPOnTsH8MJlZl/F08ueVq9ePc6Eoy/j4eFB+vTpCQgIICoqipMnT77S74uIiEhyovBCREQkidi4cWO8nzNHjhzMmzePxo0bA8SZ0HH27Nnkzp37lc/l5+fH119/zYIFCwgPD3/l4wICAl5pv6xZs77SfmnTpn2tY57eH3ilzoQ8efLEWdHjZZ4Oke7fv09QUJBlIs3XcerUKcvXx48ff+XwBIjz/XjdFV5ERESSA4UXIiIiKVyjRo2oX79+nHCkffv2tGzZ8pXPce3aNWrVqsWtW7de+/r/u9LJi7xqp8HbHvN0h8iLuLm5vfL5/ndff3//Nwov/Pz8LF97e3vj7e392ueAVw+LREREkhPNeSEiIpLC7dixg02bNsXZtn379lf+hN5kMtGqVStLcGEwGGjatCnz5s3jxIkTPHz4kLCwMMxms+Xx+++/x/t9JKbXCUX+d7LQVw1r/ldoaOgbHfe/tFyqiIikROq8EBERScEePnxI+/btn3lDe/fuXTp16sTatWv/cxWR9evXc/ToUcvzRYsW0a5du5ceExwc/OZFJwGvU3/sJJuxXF1d3+ia6dOn5+HDhwAMHTqUH3744Y3OIyIikhKp80JERCQF69SpE3fv3gXAyckpzvKp69evZ+LEif95jqeHm1SvXv0/gwvgjYc8JBU3btx4peEl8GRITSxbW1syZsz4Rtd8ev6OS5cuvdE5REREUiqFFyIiIinUxIkTWbduneX59OnTGTlyZJzw4auvvorTVfE8N2/etHxdoUKFV7r2nj17XrPapCUoKIjz58+/0r5PrzBSokSJ/1wx5UWqVKli+Xrr1q3ExMS80XlERERSIoUXIiIiKdCxY8f48ssvLc8/+ugjPvroIwB+/fVX3nnnHQAiIyNp06bNS4dJREVFvda1z507x/79+9+g6qRlyZIl/7lPYGBgnICoRo0ab3y9Bg0aWL5+9OjRK11fREQktVB4ISIiksKEhITQpk0bIiMjAciXLx/Tp0+3vO7s7MyyZcssHQJXrlyhV69eLzxf9uzZLV/v2rXrpdc2mUz06dPnbcpPMiZPnszt27dfus/w4cMJCwuzPO/SpcsbX69GjRpxOls+//zz/7y+iIhIaqHwQkREJIXp1asXly9fBp6smrFs2TKcnJzi7FOuXDlGjRpleb548WLmz5//3PO99957lq8PHTrEjBkznrvf48eP6dChAzt27HjLO0gaQkJCaNSoET4+Ps99ffr06UyaNMny/IMPPqBYsWJvdc2JEydaQiUfHx9q1KjB4cOH//O4W7duMWzYMAYNGvRW1xcREUmqtNqIiIhIElG/fv3XPqZnz5588MEHlufz589n0aJFluejR4+mbNmyzz120KBBbN261TIhZ58+fahcuTIFChSIs9+HH37I119/bZmEs3fv3mzatIlWrVqRM2dOgoODOXToEL/99hve3t7Y2dnx8ccfM3fu3Ne+n6SibNmyhISEcPLkSYoWLUqPHj149913cXJy4tq1ayxevJitW7da9ndzc2PatGlvfd0qVaowbdo0PvnkE8xmM9euXaNChQrUqVMHLy8vChUqhLOzM6Ghody/f59Tp06xc+dOjhw5AkDHjh3fugYREZGkSOGFiIhIEvHvv/++9jFPBx6XLl2ib9++ludeXl4MHDjwhccaDAbmz59PyZIl8fHxITQ0lNatW3PgwAEcHBws+zk4OLB8+XJq167N48ePAVi1ahWrVq165py2trbMmDEDGxubZB1eODk5MW/ePGrXro2vry9jxox54b4ZM2Zk8+bNcYbXvI3u3buTKVMmOnbsaJmLZPPmzWzevDlezi8iIpIcadiIiIhIChAREUGbNm0ICQkBniy7OX/+fAwGw0uPc3d3Z+HChRiNT34kOHHiBEOGDHlmv0qVKnHgwIE4K2I8b5+9e/fStWvXt7iTpKNYsWIcP36cJk2aYGNj88zrNjY2tGjRglOnTlG6dOl4vXazZs24fPkyQ4YMIVOmTC/d18HBgffee49p06YxYcKEeK1DREQkqTCYX3URcxERERHg/Pnz7Nu3D19fX9KkSUO2bNmoUKECefLksXZpb2X48OGMGDECeDJ55tNzd9y7d4/du3dz584dYmJiyJEjB++99x5ZsmRJ8LrMZjMnT57k9OnT+Pn5ERISQrp06XB3d6dAgQIUL14cR0fHBK9DRETEmjRsRERERF5L4cKFKVy4sLXLSFTZsmWjVatWVrm2wWCgVKlSlCpVyirXFxERSQo0bEREREREREREkjSFFyIiIiIiIiKSpCm8EBEREREREZEkTeGFiIiIiIiIiCRpCi9EREREREREJEnTUqkiIiIiIiIikqSp80JEREREREREkjSFFyIiIiIiIiKSpCm8EBEREREREZEkTeGFiIiIiIiIiCRpCi9EREREREREJElTeCEiIiIiIiIiSZrCCxERERERERFJ0hReiIiIiIiIiEiSpvBCRERERERERJI0hRciIiIiIiIikqQpvBARERERERGRJE3hhYiIiIiIiIgkaQovRERERERERCRJU3ghIiIiIiIiIkmawgsRERERERERSdIUXoiIiIiIiIhIkqbwQkRERERERESSNIUXIiIiIiIiIpKkKbwQERERERERkSRN4YWIiIiIiIiIJGkKL0REREREREQkSbO1dgGSMB48eMA///zDwYMHuXz5Mv7+/oSFhZEmTRoyZMhA/vz5qVixIk2aNMHd3d3a5YqIiIiIiIi8kMFsNputXYTEn/DwcD7//HNmzZpFVFQUL/v2GgwG7Ozs6N69O+PGjSNNmjSJWKmIiIiIiIjIq1F4kYJERERQo0YNDh8+jNlsplChQlStWpW8efOSIUMGHBwciIiIwN/fn2vXrrF3714uXLiAwWCgXLly7N69G3t7e2vfhoiIiIiIiEgcGjaSgowfP55Dhw5RsGBBfvvtNypXrvyfx+zbt48uXbpw5MgRxo0bx7BhwxKhUhEREREREZFXp86LFKRo0aJcvXqVy5cv4+Hh8crH3bx5kwIFCvDOO+9w7ty5BKxQRERERERE5PUpvEhB0qZNS5EiRThy5MhrH1u2bFnOnz/P48ePE6AyERERERERkTenpVJTECcnJ3x9fd/oWF9fX9KlSxfPFaVMZrMZk8mE2Wx+6YSo/3sMwJEjR9iwYQPBwcEJWaKIiIiIiEiKovAiBalcuTJ37txhwoQJr3XcTz/9xJ07d6hSpUoCVZayGAwGjEYjBoMBg8HwzOux4Ubsw2w2Ex0dDcCnn35Kw4YNuX37dmKXLSIiIiIikmxp2EgKsn//fqpXr47JZKJevXp06dKFqlWrki1btmf2vXfvHnv37mXu3Lls2rQJo9HI7t27qVSpkhUqT15+++03MmbMSObMmcmQIQOurq44OzuTLl06bGxsXnpssWLFOHfuHA8ePMDNzS2RKhYREREREUneFF6kMIsXL6Zbt25ERERYugIcHBxInz499vb2REZGEhAQQEREBPCkS8De3p7Zs2fz0UcfWbP0ZCEgIIDs2bOTOXNmAJydnXF1dSVDhgxkzJiRjBkz4ubmRqZMmXBzc7Nsy5AhA05OThQqVIiAgABiYmKsfCciIiIiIiLJh8KLFOjmzZuMGzeOVatWce/evRfulzVrVpo1a8aQIUPw9PRMvAKTsfPnz1O0aFEcHBzw9PQkKCiIx48fExYWRlRUFGazGYPBgK2tLY6OjqRNmxYnJyfSp09PunTp2LVrF5kzZ+b+/fvWvhUREREREZFkQ+FFCnfr1i0uX76Mv78/4eHhODo6kiFDBvLnz0+uXLmsXV6yc/jwYSpWrEixYsX46aefMBgMPHr0iICAAB49ehTn4e/vT0BAAIGBgYSGhvL48WMeP35M8eLFOXnypLVvRUREREREJNmwtXYBkrBy5cqlkCIeGQwGcuTIgZ2dHQUKFHimYyUmJoawsDAeP35MSEgIwcHBPHr0CJPJxJYtWxg7dqy+HyIiIiIiIq9J4YXIa3BxccHNzY0zZ85w4cIFPD09iY6Oxtb2yV8lGxsbnJyccHJywt3dPc6xfn5+ABqiIyIiIiIi8poUXoi8hhw5cvDBBx9YJuIEMBqfv+Jw7IisqKgo7O3tuXjxIqDwQkRERERE5HUpvBDatWuHj48PBoOBrVu3WrucJC1dunT069ePNm3aWIZ/vCi8iF3tJbYrIzIyEgAPD49EqFRERERERCTl0ISdQp48ebh58yYGg0FLeCagyMhI/Pz8yJgxIw4ODtYuR0REREREJNlQ54Xw6aefEhAQYO0yUjx7e3uyZctm7TKSndjlZ59+DsTZJiIiIiIiKZs6L0QkyTty5AhRUVEULlyY9OnTW7scERERERFJZM8frC8ikgScOHGCTp060bp1a6pWrUrGjBmpXLkyy5cv/89jTSYTJpMpEaoUEREREZGEps6LFComJobt27dz8OBBLl++jL+/P2FhYaRJk4YMGTKQP39+KlasSM2aNS0TSkrCiIyM5M6dO7i6upI+ffoXTvApcZ05c4YBAwawfft27Ozs8PDw4N69e4SFheHp6cnQoUPp0qWLho+IiIiIiKQCCi9SoAkTJjBmzBj8/PyA/5sj4Gmxb/jc3Nz44osv+Oyzz/QmMJ7FztVw7NgxWrRogdlspkGDBkyfPt3apSULH3/8MYsWLaJ27dp06tSJAgUK4O/vz8yZM1m5ciVOTk4sXbqUhg0bEhMTg42NjeXXpUuX8tNPPzFmzBjq1Klj7VsREREREZG3pI/cUxCz2Uzz5s1ZvXo1ZrMZFxcXypcvT968ecmQIQMODg5ERETg7+/PtWvXOHz4MA8fPuTzzz9n165drFq1SgFGAnj48CHBwcE8evSI4OBga5eTLAQGBvLnn3/i7u7O0qVLyZQpk+W1MmXKUKBAAcaOHUuPHj04dOgQOXLkiDOx5+HDhzl+/Djh4eHWugUREREREYlHCi9SkGnTpvHPP/+QJUsWJkyYwIcffvjSISHR0dEsX76cQYMGsXbtWqZNm0bfvn0TseLkK/YT/v9lNpufWQ2jUKFCTJ06lTt37lCuXLlErTO5Onz4MBERETRv3pxMmTIRGRmJvb09AJkyZWLw4MGcP3+e1atX061bNzZs2IDBYLD8np87dw6Ad99912r3ICIiIiIi8UfDRlKQsmXLcurUKY4dO0bx4sVf+biTJ09StmxZSpQowbFjxxKwwuTPZDLFmbMiICAAg8FA2rRpsbOze2b//13mU17NpEmT+Oyzz5g6dSp9+vR5blh07do1ateuze3btxk7diyfffYZAD4+PlSsWJGYmBhu375tjfJFRERERCSeqfMiBbl48SLFihV7reACoGTJkhQrVozLly8nUGUpQ+wb6Bs3brBr1y5u3LjBzZs3uX//PtHR0djb25MtWzby5s1L0aJFKVmyJB4eHoBCjNcVO7wmS5YsAM/83sXExJA3b17Gjh1Lu3btmDBhAu+++y4VKlTg4sWLeHt707Rp00SvW0REREREEobCixTEwcGBkJCQNzo2JCTkuZ0D8n9sbGyYPXs2CxcuZM+ePXG2m81my7Kctra2ZM2alVKlSlG/fn0aNmxI7ty5rVV2suTu7o7BYODBgwcAz6zQYmNjQ3R0NK1atWL79u3MnDmTESNGsG7dOk6fPg1AzZo1E7tsERERERFJIAovUpDSpUuzfft2li9fTqtWrV75uGXLllla8OXF/vnnH4YMGUJQUBB16tQhV65cuLm5kTZtWsxmM6Ghody/f58bN25w7tw51q5dy9q1a9m4cSM///wz+fPnt/YtJBtFixbFbDYzZ84cevXq9dx9bG1tMZvNjB07lqNHj7JhwwYWLVrEyZMnAc13ISIiIiKSkmjOixRk/fr1NGrUCBsbG7p3706XLl0oU6bMM59aw5O5G44dO8bcuXOZM2cOJpOJNWvW0KBBAytUnvSFhoZSrVo1Tp48ycSJE2ndurVlSEMsk8nE48ePCQgI4NatWxw8eJAVK1awd+9eypYty549e3BwcLDSHSQvJpOJI0eOEBwcTO3atf9z2M2mTZto164djx49wsPDA29vb6Kiop47qaqIiIiIiCQ/Ci9SmDFjxjB06FDLc0dHR3LlykWGDBmwt7cnMjISf39/bt26FWcZyR9++IGvvvrKGiUnCxcuXKBIkSI0bNiQNWvWAE9WazEajXFWufhfJ06coF+/fuzfv59p06bxySefJGbZKcKrzhcybNgwxo4dS0xMDCVLluT48eOJUJ2IiIiIiCSGZz+Sl2Ttyy+/ZM+ePdSvXx87OzvCwsK4ePEiBw4cYNeuXRw4cICLFy8SFhaGra0t9evXZ/fu3Qou/sO9e/cAKFCgAADh4eHY2tpawov/ZTKZMJlMlCpVitGjR2Mymdi5c2ei1pxS/FdwEZu/Dhw40NI5VLJkyQSvS0REREREEo/mvEiBKleuzLp16wgODub48eNcvnwZf39/wsPDcXR0JEOGDOTPn5/SpUvj7Oxs7XKThcjISADu3LkDPOloiX3T/Lw310ajkaioKIxGI46OjgBERUUlUrWpi8FgwGQy4ebmxty5c9m2bZvCCxERERGRFEbhRQrm7OxM9erVqV69urVLSfaKFi1KxYoVWb58OSVLlqRr1664u7s/s5/JZLKEGrGrtxw7dgyAfPnyJV7BqYzRaCQ6OppMmTK91mS1IiIiIiKSPCi8EPkPZrOZnDlz0rt3bw4ePMjQoUM5c+YMTZs2pWTJkmTJkgVXV1cMBkOcyVFv3brFtm3bGDNmDC4uLgqREpitrf45ExERERFJqTRhp8grioyMZOnSpYwaNYrLly9btufJk4fs2bOTIUMG0qVLBzx5I+3t7c2uXbsAGD16NAMGDLAMIZH4ETuZp6+vL35+fuTNm1cruoiIiIiIpEAKL0Re065du1i9ejWHDh3i+vXrPHr0iPDwcJ73V6lUqVJ8/PHHfPLJJ6RJk8YK1aZsMTEx2NjYMHbsWCZPnoyTkxNjx46lWbNm1i5NRERERETikfqsRV5T7DwiQUFBXL58mStXrnD16lVCQkIwmUw4OTnh4uJC+vTpef/998mePbu1S06WTCZTnGE4sdsAy/bYX+/cuUNERAQ+Pj6W7hcREREREUk51HkhEk/MZrNlGMPTK5DEbpOXe97vk4+PDzExMbi5ub10yM3Ro0e5cOECFy5c4Ouvv1aXi4iIiIhICqPwQkSsLja4CA0N5ciRI8yZM4fbt2+TJk0aoqKisLe3J0uWLBQuXJiyZctSpEgRsmbNCjy/Q0NERERERFIWDRsREaszGAz4+fkxePBg5s+fH+c1Ozs7YmJiLENGsmbNSunSpWnatCnt2rXDyckJUIghIiIiIpKSqfNCRJKEXr16MXPmTLJkycInn3xCyZIlefToEYGBgfj5+XHv3j2uXLnClStX8PHxwcbGhpIlS/LFF1/w4YcfWrt8ERERERFJQAovUplBgwYRFRWFo6MjNjY2GI1GjEZjnK+ffsRut7Gxwd7eHgcHB+zt7V/pawcHBxwdHUmXLh0ODg6a90Fe6NatW+TNm5e8efOye/duMmfO/EwXRVBQEHfv3uXs2bNs27aNRYsWERwcTL58+fjll1+oW7eulapPeV40f4uIiIiIiLVo2EgqExISwqxZs+jSpQsODg6YTKZnHrEt+k8/oqOjiYyMJDIykoiIiDi/Pm9bREQEMTExlusajUbSpk1LunTpSJcu3X9+7eLigqur6wsfLi4u2NjYWPF3UuLTwYMHMZlMtGnThixZsmA2m4mJibG8eTYYDLi4uODi4kKhQoVo0aIFP/74I99//z2TJk3i008/5dixYy+d1FOe7+mJUu/evYvBYCBbtmwKLUREREQkSVF4kcp88803zJo1ixEjRpAzZ84EvVZMTAzh4eGEhoby+PFjQkND43z9om1BQUHcvn2bwMDAZx5BQUGWuQ+cnJziBBrp06fHzc0NNzc3MmXKZPn6f7dpJYqk58qVKwCWZWVjJ+n8X7EdAQDp06fn888/58qVK/z777+sXr2aVq1aJV7RKURsSDFw4EB27drF8ePHKV68OJ07d6ZHjx6kTZuWmJgYhYUiIiIiYlUKLyTB2NjYWDoq4ovZbCY0NPS5wUZAQAB+fn48fPiQy5cvc+DAAR4+fIifnx9+fn74+/sDkCZNmjihhru7O1mzZiVLlizP/Oru7o6trf6aJLQCBQoAsGfPHjp16oSjo6Ol8+Lp4SNPD2MwmUxkzZoVLy8v1q5dy61bt6xSe3Ln4+PDd999x+zZs7G3t8fR0ZHTp0/z2WefYTab+fTTT7GxsSE8PJywsDACAgJwc3PDxcXF2qWLiIiISCqid2WSrBgMBpycnHByciJHjhyvdWx0dDT+/v6WMCM22PD19eX+/fucPHmSTZs24ePjw/3793n06BEGgwE3N7c4oUbsI0eOHOTMmZMcOXKQI0cOHBwcEuiuU76aNWtSrFgxlixZQrp06fjmm2+e6QwymUyYzWaMRiMGg4Ho6Gjs7e25c+cOAJ6enlaoPPlbunQps2fPpmLFivTq1QsvLy/27NnDoEGDmDp1Kq1bt+bYsWN8++23+Pv74+HhQenSpWnfvj0VKlSwdvkiIiIikkpows5U5vbt23h4eODt7Z3gw0aSu8jISHx9fS1hxtO/+vj4cOfOHW7fvs3du3eJjo4mc+bM5MyZ0xJoxH799LbYZT3lWcuXL+eTTz7h8ePHlChRgsaNG1OnTh2KFSuGs7Pzc4+5c+cOderU4cKFC9y8eRMPD49Erjr5y58/P1evXuX48eOULFnSsn306NHMmzePUqVKsXnzZgICArC3tydt2rQEBATg6enJqFGjaNOmjRWrFxEREZHUQuFFKqPwIv7FxMRw/fp1xo4dS/369bl37x63b99+5hEREUGGDBnw9PR85pEnTx48PT1f+CY9tfjnn3/o168ft2/fBsDW1paCBQtSuHBhChYsSIECBXjnnXcICgpi+/btbNiwgTNnztCtWzdmzZpl5eqTn9OnT1OyZEmaNGnCqlWr4rx29uxZ6tSpg4+PD3Xr1uW7777D3d2dw4cPM3v2bLZv307ZsmXZtGkT6dOn1wSfIiIiIpKgNGxE5C3Z2NgQFRXFokWLmDVr1nPfxJnNZh49esTNmze5efMmN27c4MaNG2zZsoUbN25w/fp1QkJCyJgx43ODjXfeeYc8efKk+NU0mjZtSvXq1Vm5ciX//PMPx48f5+LFi5w9e/aFx3z88cd8//33iVhlyrF161YAqlatChBnnpGwsDB8fHzIkycPK1asIG3atAC88847tGnThho1arB79272799PgwYNrHYPIiIiIpI6KLwQiQc+Pj4vXV4ydu4MNzc3ypQp88zrZrMZf39/S6gR+9i8eTPXr1/n6tWrhIeHkytXLvLly0f+/Pktv+bPnz9FBRsZMmSgS5cuNGvWjEuXLnHw4EEuX76Mj48PAQEB3L59m8jISOrXr0/t2rWpVasWGTJkiLPkp7ya8+fPA/Dee+8BT/6cmkwmjEYj//zzDwC9evUibdq0REdHY2Njg8lkwsbGhoYNG7J7924uXbqk8EJEREREEpzCC5F44OPjQ9asWd/4eIPBQMaMGcmYMeMLw427d+9y+fJlrly5wuXLl9m3bx/z58/nypUrzw02ChQoQKFChciTJ0+yXDElQ4YMVKxYkYoVK2IymQgPDyc6OhoXFxdiYmKIjo6OM0mqgovX8/jxY4xGI+nSpbPMxWI0Gi2ru6xfvx47Ozvq1atnec1gMFiWqs2YMSMAoaGhVqheRERERFKb5PeORiQJunfvHtmyZUuw8xsMBsuqJjVr1ozzWmywERtqXLlyhX379jFv3jwuXboEYAkyChcubHkUKFDAMhQgqTMajXFqtbGxwcbGxooVJX92dna89957GAwGYmJi4rwWExPDjz/+SFBQEMWLFwewhBqxvx48eBAgziSfIiIiIiIJRRN2pjKasDNhfP755zx+/JhffvnF2qXEER0dzY0bNzh//vwzj+DgYHLnzm0JM2LDjaJFi5IhQwZrly6JJDIyEoPBgJ2d3TOvxcTEPDckCg0NpVq1apw+fZqgoCDSpEmTGKWKiIiISCqmzguReHDv3j0KFixo7TKeYWtrS758+ciXLx+NGze2bDebzfj4+MQJM5YtW8b58+e5d+8eOXPmpHjx4hQvXpwSJUpQvHhxChUqhL29vRXvRuKb2Wx+6ff0f4OL2DDj33//5cSJE7Rs2VLBhYiIiIgkCoUXIvHAx8fnmeEcSZnBYCBbtmxky5bNMlljrEePHnH69GlOnz7NqVOn+OWXXzhz5gzh4eEULFjQEmbEPnLlyqX5JpKp1/2+2djYEBgYyOTJk7G1taVr164JVJmIiIiISFwKL0Tiwb17995qws6kJGPGjNSoUYMaNWpYtplMJm7evMmpU6c4ffo0J06cYOHChVy6dAknJyeKFy9O6dKlKVOmDKVLl6ZIkSLPHYYgyVtYWBgDBw5k9+7dfPLJJ88EXyIiIiIiCUVzXqQyDx48wN3dHV9fXzJnzmztclKMTJkysWnTpueuFJKShYeHc/78eU6dOsXx48c5duwYx48fJyoq6plAo0SJEhpikMyZTCYuXLjAkSNHqFKlCvny5bN2SSIiIiKSSii8SGWCgoJwdXUlMDAQFxcXa5eTIkRGRuLg4MCdO3fInj27tcuxOpPJxNWrVzl27JglzDh27BgBAQEULlw4TqBRpkwZnJ2drV2yiIiIiIgkcQovUhmFF/HP29ub3LlzExkZia2tRmI9j9ls5vbt23ECjaNHj3Lv3j2KFClChQoVLI/ixYtryEkSZjKZMJlM+rMuIiIiIolK4UUqo/Ai/h0+fJhGjRpx//59a5eS7Ny9e5fDhw9z6NAhDh06xOHDh4mIiKB06dJUrFjREmjkzZtXk4Jaiclkwmg0cv/+fZydnUmbNq21SxIRERGRVEgfnYm8pXv37pEtWzZrl5EsZc+enaZNm9K0aVPgyRvly5cvW8KMn376iZMnT+Lq6moJMipWrEilSpXImDGjlatPnsxmsyUI+t+vzWYzRqPxucd9/vnnXLp0iVKlSvHNN99oiJSIiIiIJCp1XqQy6ryIf7dv3+bSpUtaeSEBbNmyhW7duvHnn39aAo39+/dz5coVChcuTJUqVahatSpVqlQhf/786s54RUFBQTg6OhIZGYm/vz9ubm5xOir+N8gICQmhatWqnD59GoDAwEDNVSIiIiIiiUrhRSqj8EKSk/Hjx3PgwAH+/vvvONsfPHjA/v372bt3L/v27ePw4cM4OztTpUoVS6BRrlw5HB0drVR50hQYGMi0adM4evQo27dvJ0+ePLi7u+Ps7EzBggWpUqUKlStXJn369HGOCw4O5t9//2XPnj3Y2dkxfvx469yAiIiIiKRaCi9SGYUXkpy0bduWYsWKMXTo0JfuFxERwfHjxy1hxt69e3n06BFly5a1hBnvvvsu7u7uiVR50nP48GHGjBnDypUr42w3Go2WTgsXFxdKlixJ/fr1ady4MYULF8ZoNFo6WiIjIwkPD9e/HSIiIiKS6BRepDIKLyQ5KViwIBMnTqRBgwavdZzZbOb69euWMGPPnj2cPXuWwoULU6NGDcsja9asCVR50tOkSRPWrl3LBx98QKNGjahWrRo3btzg3LlzXL16lYsXL3L+/Hnu3LlDmjRpqF69On379rX83j89P4aIiIiISGJTeJHKKLyQ5CI4OBhXV1fu3r0bLyHDw4cP2b17Nzt37mTnzp2cOnWKfPnyxQkzcubMGQ+VJz3Xrl0jX758VKpUiT179jwzKWd0dDQ3b97k1KlTbNu2jU2bNnH58mUAPvvsM0aMGEG6dOmsUbqIiIiICKDwItVReCHJxZ49e2jVqhV3795NkPP7+/uzZ88eS5hx7NgxPD0944QZnp6eCXLtxDZjxgz69OnDjz/+yFdffUVUVBR2dnaYTCYMBkOcjoro6GiOHDnCjBkzWLx4MenSpWPatGl06NDBsmyqiIiIiEhi00+hIpIkHTt2jDJlyiTY+TNkyEDjxo356aefOHz4MP7+/vzyyy+4u7vz66+/kj9/fvLkyUO3bt1YtmwZvr6+CVZLQnv8+DGAJbC0tX2ySvbT81nEzntha2tLpUqVmD9/Pj///DPBwcGMGDGC8PBwBRciIiIiYjX6SVREkqSEDi/+l4uLC15eXowZM4b9+/fj7+/PjBkzyJAhA2PHjiVbtmyULFmSzz77jPXr1xMSEpJotb2tChUqALBw4ULOnz+PwWAgJiYGk8lk2efpDozo6GgAevToQf369fH19WXfvn2JX7iIiIiIyP+n8EJEkqTjx49TunRpq13fycmJ+vXrM378eI4fP46Pjw9Dhw4lNDSUfv36kSFDBqpVq8bw4cPZs2cPUVFRVqv1vxQpUoTq1atz6NAhRowYwfXr17GxsbF0UphMpjhBhq2tLVFRUaRJk4YcOXIQHBxMeHi4tcoXEREREdGcF6mN5ryQ5CA8PBwnJyeuXr1K7ty5rV3Oc12/fp2tW7daHo8fP6Z69erUqVOH+vXrU6hQoSSxOkfsKiEnT56kU6dOnDx5EldXVzp37kz79u0pW7ZsnP1jYmKwsbGxPC9fvjxHjx7l4cOHZMyYMbHLFxEREREBFF6kOgovJDk4fPgw9evX5+HDh0kiAPgvJpOJM2fOsGXLFjZt2sTOnTtxd3enfv361K9fn9q1ayeJv2/r1q1j+PDhHD16FABXV1cqV65MzZo1qVWrFuXLlwee/DsRGhrK77//zrBhw/Dy8mLdunXWLF1EREREUjmFF6mMwgtJDmbOnMlff/3F5s2brV3KGwkLC2PXrl1s3LiRjRs3cuXKFapWrWoJM0qWLGm1UCYmJob58+ezfPlyjhw5wqNHjwCwsbHBzc2NChUqYDAYOHLkCPfu3aNQoUJMnTqV2rVrW6VeERERERFQeJHqKLyQ5KBnz564uroyduxYa5cSL27cuMG///7Lxo0b2bJlC05OTtSrV4/69etTp04d3NzcErUes9nMgwcP2Lt3L1u2bOHcuXNcuXKFO3fuAE+CjJiYGLy8vBg5ciSlS5dOFh0wIiIiIpJyKbxIZRReSHLg7+9PVFQU7u7u1i4l3kVGRrJ//35LV8apU6coX748jRo1onHjxpQoUSJRgwKTyYSfnx+3b98mKCiIS5cu4eDgQIUKFciaNSvp06e3zJshIiIiImItCi9SGYUXIknLvXv32LhxI2vXruXff/8lY8aMliCjVq1aODo6WrU+BRcJQ7+vIiIiIq9H4UUqo/BCJOmKiIhgx44drF27ljVr1vDgwQPq1KlD48aNadiwIVmzZrV2iRKPYv/7VYghIiIi8t8UXqQyCi9Ekgez2cyZM2csQcahQ4coW7aspSvDmpN+ypszmUysXr2a6tWrx1l61mQyYTQarViZiIiISNKm8CKVUXghkjz5+vqyYcMG1qxZw7///kuGDBlo2rQpzZo1o3r16tja2lq7RHkFU6ZM4dtvv6Vhw4bUrVuXOnXqkD17dsvrzwsxFGyIiIiIKLxIdRReiCR/scNLVq1axapVq4iKiqJx48Y0a9aMOnXqkCZNGmuXKC+QPn16goKCsLW1JW3atFSpUoUGDRpQr1498ufPb9kvJiYGGxsbK1YqIiIikrTooxwRkWTGwcGBevXqMWPGDO7cucPq1avJlCkTAwcOJHPmzHz44YcsWbKEwMBAa5cqTwkICKBcuXIYDAYaN25M4cKF2bRpE19++SVdu3Zl1KhRnDhxApPJhI2NDYcOHaJChQps3brV2qWLiIiIWJ06L1IZdV6IpFxms5nTp0+zcuVKVqxYwfnz53nvvfdo3rw5TZs2JUuWLNYuMdXbtWsXDRs2pHz58gwaNIj9+/ezefNmTp48idlsplixYrz//vu0b9+en376iUWLFvH9998zbNgwdWOIiIhIqqbwIpVReCGSely7do2VK1eycuVKDhw4QKVKlfjwww9p2bIlOXLksHZ5qdZnn33GtGnTWLZsGc2aNePgwYPs2rWLjRs3cvjwYR4/fkzu3Lm5ceMGjo6OXL9+HXd3d2uXLSIiImJVCi9SGYUXIqmTj48Pq1at4s8//2TXrl1UqlSJVq1a0aJFizgTRkrCCwsL4/333+fixYscOHCAfPnyYTabOX/+PNu3b2fXrl2sXbuW8PBwnJycaNOmDTVr1uT9998nc+bM1i5fRERExCoUXqQyCi9E5MyZM3z55ZeEhoayZ88eqlSpYgkysmbNau3yUrTYlUM2bNhA8+bNef/991m8eHGcf4+PHDlCjRo1CAsLI1u2bNy7d49s2bLxzjvvMGnSJMqUKWPFOxARERGxDk3YKSKSyhw6dAg/Pz+2b9+Ot7c3rVq1Yvny5Xh4eFCrVi1mzJjB/fv3rV1mihS75KmXlxd9+/Zl3bp1rFmzBoDIyEgAduzYQVhYGC1atGDp0qV88sknODo6sm/fPvLly2e12kVERESsSZ0XqYw6L0SkefPmlC1blqFDh8bZfvfuXf7++2+WL1/OgQMHqFatGq1ataJly5ZkypTJStWmPGazGYPBQHBwMHXq1OHy5cusW7eOSpUqERYWRqFChfD29uby5cu88847PHz4kAMHDhAdHc0HH3xg7fJFRERErELhRSqj8EIkdQsPDydTpkzs27ePEiVKvHC/O3fu8Ndff/HHH39w5MgR6tatS/v27WnSpAnp0qVLxIpTptgAY8WKFXTo0IFatWqxbt06Zs2aRc+ePalbty4bN27UCiMiIiIi/5+GjYiIpCI7duzAzc2N4sWLv3S/HDlyMGDAAPbt28fFixepXLkyI0eOJEuWLHTo0IENGzYQFRWVSFWnPAaDAXjSBdOvXz82bNjA3LlzmTlzJgBfffWVZV99xiAiIiKizotUR50XIqlb3759MZvNTJs27bWPNZvNnDx5ksWLF7N06VIiIyNp1aoV7du3p1KlSpY35PJqYrsv/Pz8qF+/PqdPnyYyMpJSpUpx7Ngxa5cnIiIikqSo80JEJJUwm82sWbOGxo0bv9HxBoOBUqVKMX78eG7dusXy5cuJiIigQYMG5MuXj2+++Ybz58/Hc9UpV2zY4+bmxqBBg8ibNy/wf10X0dHRVqtNREREJKlR50Uqo84LkdTr1KlTVKlShYcPH+Lo6Bhv542IiGDDhg0sXryYNWvWUKRIET7++GPatWuHu7t7vF0npfP29mb16tX06dPH2qWIiIiIJDkKL1IZhRciqdeoUaM4fPgwK1euTLBrBAYGsmLFCubPn8++ffvw8vKiY8eONGrUCHt7+wS7bnIW+9/w08NuYoeUiIiIiMgTGjYiIpJKvM2QkVfl6upK586d2bFjBxcvXqRMmTIMHjyYbNmy0a9fP44cOaIJKP+HwWDAYDBgMpkATdApIiIi8jzqvEhl1Hkhkjr5+vqSPXt27ty5Q5YsWRL12iaTiT179jB//nyWL19O7ty56dixIx06dCBbtmyJWktiMJlMGI3P/2zgRa/Fbo+OjsbW1hZQ94WIiIjI09R5ISKSCqxfv56yZcsmenABYDQaqV69OnPnzsXHx4cvv/ySTZs2kStXLho0aMAff/xBeHh4oteVUGLDicuXLxMZGUlwcDChoaFxXovtsvjfY4YMGcKkSZO4deuWggsRERGRp6jzIpVR54VI6tSiRQtKly7NsGHDrF2Khbe3NwsXLmTevHk8ePCA9u3b061bN0qVKmXt0t6Yj48Pc+fOZePGjXh7e+Pv70+1atXInTs3RYsWpU6dOuTPn9+yv8lksgwbOXz4MO+++y5RUVGULVuWAwcOYGNjY8W7EREREUk6bK1dgIiIJCyz2Yyfn1+Cz3fxujw8PPj666/56quv2LdvH3PnzqVq1aoUKVKEbt260bZt22QVst69e5du3bqxceNGAHLkyEFwcDDr168HIE2aNOTJk4d69erRoUMHSpcu/cwQki5duvDXX3/x3nvvKbgQEREReYo6L1IZdV6ISFIWFBTE0qVLmTNnDufOnaN169Z069aNypUrJ/lhFH379mX69Om0bNmSzp07U6hQIR4/fsymTZs4evQoJ0+etAwlKVasGB06dKBdu3bkzJnTMueFv78/hw4d4t133yVdunTWviURERGRJEPhRSqj8EJEkosTJ04wZ84cFi1aRPbs2enWrRsff/wxmTJlsnZpz3j06BEeHh7kzJmTXbt2PTO3SHBwMEePHmXHjh1s2LCB48eP4+zsTOfOnRk1apSWkRURERH5D5qwU0REkqRSpUrxyy+/cO/ePb7++mv++ecfcuTIQevWrdm8efMzk15a07Zt2wgLC6NmzZpkyZKFiIgI4MmcFmazGWdnZ2rWrMmwYcOYOHEi3bp1IygoiAkTJtCwYUO8vb0BLZMqIiIi8iIKL0REJElLkyYNHTp0YOfOnZw+fRpPT086dOhAvnz5GDNmDL6+vtYuETc3tzjPHRwcgCeriMQOdzGbzdja2lKlShWmT5/OwoUL8fDwYOvWraxduxZ4dhUSEREREXlCw0ZSGQ0bEZGUICoqin/++YcZM2awd+9eWrRoQa9evahatapV5sa4fPkyFSpUIDw8nCVLltCsWTNLEPG/k3LGzm8BsGTJEjp06EDu3Lk5deoUzs7OiV67iIiISHKgzgsREUl27OzsaNmyJVu3buXkyZO4u7vTuHFjSpQowfTp0wkKCkq0WsxmM3ny5KFjx45EREQwadIkjh07htFoxGg0Yjab43RUxG4DaN26Ne+++y6RkZHcuHEj0WoWERERSW4UXoiISLJWsGBBJk6cyJ07dxg4cCC///47OXLkoFevXpw6dSrBr28wGLC1tWXQoEFUrFiR3bt3U65cOQYPHsz169cxGAyWTouYmBjLcSaTCRsbG0wmEw8ePCA6OjrBaxURERFJrhReiIhIipA2bVq6dOnC4cOH2bZtGxEREVSqVImqVauyaNEiwsPDE/T6Hh4eLFq0iJYtWwIwYcIE6taty1dffWUJUWxsbAAsgcbBgwc5evQoBQoUoHTp0glan4iIiEhypjkvUhnNeSEiqYm/vz/z589nxowZPHr0iK5du9K7d29y5cqVYNcMDQ1l7ty5LFmyhKNHjxITE0OmTJmoXLky7dq1o2DBggQEBPDw4UNGjx7N8ePHmTt3Lp07d06wmkRERESSO4UXqYzCCxFJjcxmM9u2bWPatGmsW7eOxo0b079/f6pVq5YgE3yaTCYuX77M4sWL2bFjB8ePHyc0NBSAjBkzEhISQmRkJAA9evTg119/jfcaRERERFIShRepjMILEUntbty4wbRp05gzZw6enp7079+ftm3b4ujoGO/XMpvN3L17lz179nDixAnWrl2Lv78/bm5uZM+enc6dO+Pl5aVVRkRERET+g8KLVEbhhYjIE6GhoSxatIgpU6bg6+tLjx496NWrFzlz5kzQ6964cYPMmTNjZ2eHvb19gl5LREREJKXQhJ0iIpIqpUuXjk8++YQzZ86wbNkyzpw5wzvvvEObNm3Yt28fCZXte3p6ki5dOuzt7RPsGiIiIiIpjcILERFJ1QwGA7Vr1+aff/7h/Pnz5MiRgwYNGlC+fHkWLFhAREREgl5bRERERP6bho2kMho2IiLy30JCQli4cCFTpkwhICCAfv360bNnTzJmzGjt0kRERERSJXVeiIiI/A8nJyd69erF2bNnmTNnDlu2bMHDw4O+ffty9epVa5cnIiIikuoovHjK9evXmT17Nt27d6dkyZLY2tpiMBj44Ycf3uh8w4cPx2AwvPRx4cKFFx5//vx52rdvT7Zs2XB0dOSdd95h8ODBBAQEvOEdiojI6zAajTRs2JBt27axe/du/P39KVKkCM2bN2fv3r2as0JEREQkkdhau4CkZPLkyUyePDnez+vh4UGuXLme+1ratGmfu3379u00bNiQsLAwMmfOTNGiRblw4QI///wzK1euZN++fWTJkiXeaxURkecrU6YMixcvZsyYMUyZMoUGDRpQuHBhBg0aRLNmzbC11X+pIiIiIglFnRdPyZQpE40aNeL7779nw4YNtGjRIl7O26VLF/bs2fPcx/NCjeDgYFq3bk1YWBj9+/fnzp07HD16lFu3blG1alWuXbtG165d46U2ERF5PR4eHowfPx5vb29at27N4MGDKVCgAFOmTCEkJMTa5YmIiIikSAovnjJs2DDWrFnDN998Q/369XFycrJKHb/++isPHjygcOHCTJgwATs7OwDc3NxYsmQJtra2rFu3jmPHjlmlPhERARcXFwYOHMjVq1cZNWoUCxcuxMPDg6+++gofHx9rlyciIiKSoii8SIJWrFgBQKdOnbCxsYnzWq5cuXj//fcB+OuvvxK9NhERicvW1pY2bdpw6NAhZs2axYoVK8iTJw+9evXS5J4iIiIi8UThRSLYvn07H374Ie+99x4tW7Zk3LhxL/xULjo6mqNHjwJQtWrV5+4Tu/3gwYMJU7CIiLw2g8HAiRMnKFKkCIcOHSI4OJgiRYrQtm1bTpw4Ye3yRERERJI1hReJYNeuXfz1119s376dv//+my+++IK8efMyb968Z/a9ceMGUVFRAOTNm/e554vdfvny5QSrWUREXk9ERARz5syhd+/eFC9enEWLFnHhwgXc3NyoUqUKDRo0YNeuXVqhREREROQNKLxIQNmyZePrr7/m8OHD+Pn58fjxY/bu3YuXlxdhYWF06dKFNWvWxDnG39/f8nWGDBmee97Y7U/vKyIi1vX333+TPn16ateubdmWJ08efvnlF27cuEHp0qVp0qQJVatWZfXq1ZhMJitWKyIiIpK8KLxIQJ988gk//vgj5cqVI2PGjKRJk4YqVaqwbt06mjVrhtlsZuDAgXE+hQsPD7d8bW9v/9zzOjg4ABAWFpawNyAiIq9s+vTp9OrVC6Px2f9a3d3d+fHHH7l16xbNmjXjk08+oUSJEixcuNDSbSciIiIiL6bwwgoMBgNjxowB4OrVq5w6dcrymqOjo+XryMjI5x4fEREBQJo0ad64hqCgoNd+xF5XRETiOnnyJMePH6djx44v3c/FxYUhQ4Zw/fp1+vfvz4gRI8iXLx/Tpk2LE15L/AgNDbV2CSIiIhJPFF5YSYECBciYMSMAV65csWx/eqjIi4aFxG5/0bCSV+Hh4YGrq+trPUaPHv3G1xMRScmmT59Ou3btXvnfZUdHR3r06MHFixcZN24cM2fOJG/evEyaNInHjx8ncLWpw/nz56lYsSJbtmyxdikiIiISDxReWJGdnR3wZIWRWJ6enpbt165de+5xsdvz58//xtf29vYmMDDwtR5fffXVG19PRCSlCgwMZNGiRfTq1eu1j7WxsaF169acOHGCadOmsWDBAvLkycP48eMJCQlJgGpTjwEDBnDu3DkuXLhg7VJEREQkHii8sJKHDx/i6+sLQM6cOS3bbW1tKVOmDAB79+597rGx2ytWrPjG13dxcXntR+xcGyIi8n/mz59PiRIlLP92vwmj0UizZs04evQov/32G3/99Reenp6MGjWKoKCgeKw2dVi2bBlbtmyhSZMm9OjRA4CYmBgrVyUiIiJvQ+GFlUyYMAGz2Yyrqyvly5eP81rz5s0BmDdv3jM/bN26dcvSAtuiRYvEKVZERJ7LbDYzffp0+vTpEy/nMxgMNGzYkAMHDrBkyRLWr19P7ty5GT58uFaYekXR0dEMGDAAZ2dnBgwYgL29PSaTCRsbGwAuXLjAhg0bmDVrFmfOnOHRo0da+UVERCQZUHjxliZNmoSnpydt2rSJs/3s2bP07t2bs2fPxtkeHh7OqFGjGDt2LABffPHFM6uK9OzZk0yZMnH+/Hk+++wzy0z0fn5+tGvXjujoaLy8vChbtmwC3pmIiPyXbdu24efnR8uWLeP1vAaDgbp167J7925WrFjBrl27yJ07N0OHDuXhw4fxeq2UZsiQITx48IDu3btTq1Yt4Elny9WrV+nduzcVK1akYcOG9OzZkxIlStC7d29WrlxJQEAAQJwVwERERCTpMJj1v7TF3r17adq0qeV5SEgIERERpE2bNs7KHsePH8fDwwOA4cOHM2LECGrUqMGOHTss+5w4cYLSpUsDkDlzZnLlygU8mUAsdjK2rl27Mnv2bAwGwzO1bN26lUaNGhEeHm45PvZYT09P9u/fT9asWV/7HoOCgnB1dSUwMBAXF5fXPl5ERP5PixYtyJ8/v2UFqYS0Z88eRo4cyd69e+nduzdDhgwhc+bMCX7d5OT06dOULFmS4sWLs3XrVjJlymTZ/sUXX7Bx40acnZ3x8PAgQ4YMlmGYWbNmZciQIQwcONCa5YuIiMhLqPPiKVFRUfj5+VkesUuDPn78OM72Vxk36+npyciRI/Hy8sLJyYmLFy9y+vRpMmbMSMuWLdm4cSNz5sx5bnABULt2bY4cOUKbNm0wGAycPn2aLFmy8Nlnn3Hs2LE3Ci5ERCT+3L59mzVr1tCzZ89Eud67777Lv//+y9atWzlz5gx58+Zl6NChPHr0KFGunxzEfi9KlCgR5//X8ePHs3HjRtq2bcs///zD0aNH2b17NwcOHOD999/Hx8eHQYMGMXLkSGJiYjSMREREJAlS50Uqo84LEZH4ERAQwObNm/nwww+tcv19+/bx3XffcejQIT777DM+/fRTXF1drVJLUnD79m369+/PgQMHCA4OpmHDhnTs2JGwsDA6depEvnz5OHLkCEbjk89tYmJiLPNgfPnll4wfP57SpUuzbds2/f8oIiKSBCm8SGUUXoiIpCw7d+7k22+/5fTp0wwePJh+/frh7Oxs7bKs4saNG2zatImFCxeyf/9+cubMSZYsWTh8+DAbN26kbt26cUKL2K8vXrxI3bp18fb2ZuXKlXGGkIqIiEjSoGEjIiIiyVjsnEvLly9nzZo15M2bl/Hjx1vmV0pNPD096dGjBxMnTmTw4MHY29tz+PBhypcvT7Vq1QAswcXTXxcsWJASJUoAkDZt2sQvXERERP6TwgsREZFkzmAw8P7777Nv3z4WLFjA8uXLyZs3L5MnTyY8PNza5SWa2GbScuXKMXToUMaNG0eHDh2oWLHiC+erit0eFRVFunTptNqIiIhIEqVhI6mMho2IiKR8ZrOZNWvW8O233/LgwQOGDh1Kt27dnlmaO6Uym82WCTuvXLlCaGgoJUuWjLMd/m/YyMmTJylXrhweHh4cOXKEjBkzWqt0EREReQF1XoiIiKQwBoOBJk2acOzYMaZMmcK0adMoVKgQixYteqUVs5I7g8Fg6aDIly8fJUuWtGyPZTabLcNGfv75Z2JiYujbt6+CCxERkSRKnRepjDovRERSn5iYGBYtWsS3336Lq6sro0aNomHDhi9crjs1mTx5MgMHDqRcuXIcOnTI2uWIiIjIC6jzQkREJIWzsbGhY8eOXLp0ia5du9KlSxeqVavGnj17rF2a1Xh7ezNgwAAGDhxIjhw5mDZtmrVLEhERkZdQeCEiIpJKODg4MGDAAK5evUrdunVp0KABjRo14tSpU9YuLdGFhoZy69Yt8ufPz5gxYyhfvry1SxIREZGX0LCRVEbDRkREJNaDBw8YPXo0M2bMoEWLFnz//ffkzZvX2mX9p9iJNmOZTCaMRuMzE3L+l5CQEHx9fcmVKxe2trYJUaqIiIjEE3VeiIiIpFKZM2dmwoQJXLhwAXt7e4oWLUrfvn3x8fGxdmkvFR0dTVRUFNeuXQPAaHzy40zsRJ3P+1zmf7eZTCacnJzImzevggsREZFkQOGFiIhIKpc7d25+++03jh49yt27d8mXLx/ffvstwcHB1i4tjvDwcFasWEHTpk0pXbo01apVo0KFCnz//fesWLGCBw8eYDAYMBgMmEymOMfGdmQcPnwY+L/AQ0RERJIHDRtJZTRsRERE/suBAwcYPHgwV65cYcSIEXTt2jVJdCd89dVX/PTTT8TExGBvb4+TkxOPHj0CIGvWrJQpU4b27dvTpk0bS1gR+2OOwWBg165dtG7dmpo1a9KvXz+qVKlitXsRERGR16OPHURERCSOSpUqsXv3bmbMmMHPP/9MiRIlWLt27XOHYySWnTt3MnbsWHLkyMHmzZvZt28fx48fZ8qUKdSvXx+DwcD69evp3bs3Xbt25eTJkwCWTgyAXbt2ERUVxR9//ME///xjtXsRERGR16fOi1RGnRciIvI6oqKimDlzJiNGjKBYsWL89NNPlC1bNtHrqFevHps3b+avv/6iefPmcV57+PAh//77L6tXr2bLli0EBARQrVo1Bg8eTP369bGxscFgMHD9+nVWrFjBpk2b+Ouvv3B2dk70+xAREZE3o/AilVF4ISIibyIwMJAxY8YwefJkmjVrxo8//oinp2eiXPvOnTvUqVOH6Ohozp07h62trWVOi6c7K65du8bff//NwoULOXPmDFWrVmXSpElxwhaTycTDhw9xd3dPlNpFREQkfmjYiIiIiPwnV1dXRo8ezcWLF7G1taVIkSJ8/vnnBAQEJPi1nZ2diYqKIjAwkJs3bwJPJtw0Go2WFUYA8ubNy+DBg/nhhx8oVaoUe/fupWXLlpw+fRp4skqJ0WhUcCEiIpIMKbwQERGRV+bh4cH8+fPZu3cvx44d45133mHSpElERkYm2DXt7OwoXLgwDx48YPbs2URGRmI2m+N0X8CTyTkNBgNNmjThzz//pFKlSty8eZNVq1YBJIlJR0VEROTNKLwQERGR11a6dGk2b97MokWLmDNnDsWKFWPNmjUJMqlnmjRp6NevHy4uLixcuJDVq1djMBgwGo1xlkSN7cIwmUy88847fPvttwDMnj0bHx+feK9LREREEo/CCxEREXkjBoMBLy8vTpw4wcCBA+ncuTP16tXj7Nmz8X6tChUq4OXlxb1792jVqhWff/45gYGBGI1PfpSJiYmx1BS7rXbt2pQqVQqDwRAn5BAREZHkR+GFiIiIvBVbW1t69erF5cuXKVq0KOXKlaNv3774+fnF2zVcXV1ZunQpn376KUajkZ9++okPPviANWvWAGBjY4PZbMZsNluCDLPZTHBwMJGRkQQGBsZbLSIiIpL4FF6IiIhIvMiQIQMTJ07k+PHjXL9+nXz58jF58mSioqLi7RrfffcdI0eOJF++fOzcuZOOHTvy8ccfc/z4ccvKIzY2NsCT4SJXr16lQoUKFC5cON5qEBERkcSnpVJTGS2VKiIiiWXjxo0MHDgQgAkTJuDl5RUv542OjmbLli3MnDmT7du3ExQUBECbNm0oX748BoMBHx8fJk2aBMCxY8coUqRIvFxbRERErEPhRSqj8EJERBJTVFQUv/76K9999x2VKlViwoQJFCpUKF7O/ejRI1asWMH69estK4o8vXRqwYIF+eyzz+jevXu8XE9ERESsR+FFKqPwQkRErMHPz4/hw4czZ84cPvnkE7777jsyZMgQL+cOCgri2rVrLFiwgKioKEJDQylWrBgffPABefPmjZdriIiIiHUpvEhlFF6IiIg1nT17loEDB3LixAnGjBlDp06dLKuDxAez2YzBYIi384mIiEjSoPAilVF4ISIi1mY2m1m1ahUDBw4kS5YsTJs2jXLlysX7NRRiiIiIpBxabUREREQSlcFgoFmzZpw7d4769etTvXp1PvnkEx4+fBiv1xAREZGUQ+GFiIiIWEXatGkZMWIEp0+f5t69exQsWJBff/2VmJgYa5cmIiIiSYyGjaQyGjYiIiJJ1bp16xgwYACurq788ssvVK5c2doliYiISBKhzgsRERFJEho2bMiZM2do1qwZ77//Pp07d8bX19faZYmIiEgSoPBCREREkgxHR0eGDRvGuXPnCA4OpkCBAkyZMoXo6GhrlyYiIiJWpGEjqYyGjYiISHKyadMmevbsSVhYGKtWraJixYrWLklERESsQJ0XIiIikmTVrVuXokWLkitXLt577z169+5NQECAtcsSERGRRKbwQkRERJKs3bt3s3PnTlavXs2pU6e4du0aBQsWZMmSJah5VEREJPVQeCEiIiJJktlsZvDgwXz++edkyZKFd955hw0bNjB16lQGDx5MnTp1uHTpkrXLFBERkUSg8EJERESSpD///BNvb28GDhxo2WYwGGjVqhXnz5+nSJEilCpViuHDhxMeHm7FSkVERCShKbwQERGRJCciIoKvvvqKkSNHki5dumded3V1ZcqUKezatYu1a9dSvHhxNm/ebIVKRUREJDEovBAREZEkZ8aMGaRNm5ZOnTq9dL9y5cpx8OBBBgwYQMuWLWnXrh0+Pj6JU6SIiIgkGoUXIiIikqQEBAQwcuRIxo0bh42NzX/ub2NjQ9++fTl//jwmk4lChQoxa9YsTCZTIlQrIiIiicFg1lTdqUpQUBCurq4EBgbi4uJi7XJERESe8cUXX3DkyBG2bNmCwWB47eM3bNhAz5498fT0ZNasWRQsWDABqhQREZHEpM4LERERSTJu3rzJ1KlTGT9+/BsFFwBeXl6cPXuW0qVLU6ZMGUaNGkVUVFQ8VyoiIiKJSZ0XqYw6L0REJCn7+OOPMZvNLFy4MF7Od/DgQbp164bBYGDOnDlUqFAhXs4rIiIiiUudFyIiIpIkHD9+nL/++osffvgh3s5ZsWJFjh49SuvWralZsyYDBw4kJCQk3s4vIiIiiUPhhYiIiCQJ586d44svviB37tzxel57e3uGDh3KsWPHOHr0KMWKFWPjxo3xeg0RERFJWBo2kspo2IiIiKRmJpOJ2bNn8/nnn9OkSRMmTpxIpkyZrF2WiIiI/Ad1XoiIiEiqYTQa+eSTTzh37hwhISEULlyYxYsXo89yREREkjaFFyIiIpLq5MiRg5UrV/Lrr78yaNAgmjZtyt27d61dloiIiLyAwgsRERFJtVq0aMHZs2dxdXWlaNGiLFiwQF0YIiIiSZDmvEhlNOeFiIjI861evZpPPvmEsmXLMnPmTHLkyGHtkkREROT/U+eFiIiICNCkSRPOnj2Lm5sbRYsW5ffff1cXhoiISBKhzotURp0XIiIi/23dunX06NGDEiVKMGvWLDw8PKxdkoiISKqmzgsRERGR/9GwYUPOnj1L1qxZKVasGHPnzlUXhoiIiBWp8yKVUeeFiIjI69mwYQPdu3enaNGizJ49m1y5clm7pCTFbDYTHh5OmjRprF2KiIikYOq8EBEREXkJLy8vzp49i4eHB8WKFWPOnDnqwnjK/Pnz6dq1K7t27bJ2KSIikoIpvBARERH5D66ursyZM4fly5fz3Xff0bhxY3x8fKxdltX9/PPPdO3albVr13Lnzh0iIyOtXZKIiKRQCi9EREREXlH9+vU5ffo0Li4uFCtWjL/++svaJVnNqlWrGDJkCO7u7qxdu5a2bdtib2//3H3VqSIiIm9Lc16kMprzQkREJH4sX76cXr164eXlxdSpU8mQIYO1S0o09+7do1q1aty9e5clS5bwwQcfPLNPeHg4jo6OlucmkwmjUZ+biYjIm9H/ICIiIiJvoFWrVpw5cwZ/f3+KFy/Opk2brF1SotmyZQvXrl2ja9eucYKLq1evMm/ePOrVq0e5cuXo1asXkyZNwsfHR8GFiIi8FVtrFyAiIiKSXGXLlo21a9cyZ84cWrRowccff8y4ceNIly6dtUtLUDdu3ACgbdu2lm3Hjx9n6NChbNu2zTL3xblz57Czs2Px4sWMGzeOWrVqWaNcERFJARSBi4iIiLwFg8FA9+7dOXnyJKdOnaJUqVLs37/f2mUliJiYGADu3LkT5/mDBw8YNmwYGzdupHnz5kyePJkFCxbQtm1bPD09OXr0KG3btuWPP/6wWu0iIpK8KbwQERERiQd58+Zlx44d9OjRg9q1azN06NAUt/qGjY0NAIULFwZg06ZNmEwmdu/ezYYNG2jVqhVLliyhX79+dOjQgV9++YUff/yROnXq4Ovry7Rp0yxdGyIiIq9D4YWIiIhIPLGxsWHIkCEcPHiQ9evXU7FiRc6fP2/tsuJdjRo1cHFxYdOmTURFRXHv3j0AvvnmG+BJR4bJZCJDhgy0aNGCTz/9lJw5c7Jnzx5WrVplxcpFRCS5UnghIiIiEs+KFy/OwYMHqV+/PuXLl2fGjBkpZrlQs9lMoUKFaNy4MYcPH6Z9+/bcuHGDjBkzWlYXMRqNGI1GzGYzBoMBLy8vunfvDsCBAwesWb6IiCRTCi9EREREEoC9vT2jR49m7dq1jBo1iiZNmuDr62vtst6awWDA0dGRzz77DDc3N1asWMGCBQt49OgRa9eutewT+2vsvBhVqlQB4O7du9YpXEREkjWFFyIiIiIJqGbNmpw6dYo0adJQvHhxNmzYYO2S3prZbKZ06dL8+eef5M+fnwcPHgCwbt06jh07FqfLxGQyARAeHg48mS/DZDKlmE4UERFJHAovRERERBJYhgwZ+OOPPxg7diytW7emf//+hIWFWbusNxbbWVGlShUmTJhA1apVAdiyZQsjRoxg3759BAYGAmBnZ8eDBw8YNWoUAO+99x5Go9FyDolfsZ0uIiIpjcGs2DtVCQoKwtXVlcDAQFxcXKxdjoiISKpz5coVOnToQGhoKEuWLKF48eLWLumtREVFcfjwYebNm8ecOXMAKFSoEJUqVaJs2bIYjUbmzZvH4cOH6dChAwsWLLByxSnDiRMn8PX15f79+9jY2ODh4UHVqlUxGAwYDAbLfCMiIimFwotURuGFiIiI9UVFRTFy5Eh+/vlnRo0aRb9+/TAak3dDrI+PDzt37mTYsGFcvXo1zmtOTk54eXnxxx9/WKm6lMFkMnHixAkmT57M+vXr8fPzi/N6hQoVaNWqFa1atSJnzpyYTKZk/+dKRCSWwotURuGFiIhI0rFnzx46dOhAoUKF+P3338mWLZtV6zGbzZhMJmxsbCxvfF/3DXBYWBhLly7l4cOHnD9/nuzZs9OkSROKFCmCs7NzAlafskVFRTF16lQWLVrEiRMnLN0VxYsXJyQkhMePH3P//n0MBgOVK1dm3rx55MuXTwGGiKQYCi9SGYUXIiIiSUtgYCB9+vTh33//Zd68eTRs2NCq9cQONwgODn7tsCEmJgYbG5tnziVvJyIigm+++YY//vgDb29v7O3t6dOnD5UrV6ZFixaEh4cTFBTEjh07mDVrFtu3bydPnjxs2bKFPHnyKMAQkRRB4UUqo/BCREQkaVq0aBG9e/eme/fujB49Gnt7+0S9vo+PD3/99Rfr1q0jICCAtGnTUrlyZZo3b46npycZM2YE+M83wgos4ldUVBRjx47l119/5e7duzg7O/Pnn39So0YNHBwcgLihkclkom3btvz5558UKVKE7du3kzlzZn1fRCTZU3iRyii8EBERSbouX75MmzZtMBqNLFu2jHfeeSdRrhsZGUmdOnXYvXv3M6+988471K5dmzZt2lCzZk3g2QDjf5//bweGvLldu3bRrVs3rly5QubMmdm0aRMlS5a0vP50KPH073vDhg3ZsGEDnTt3Ztq0aTg6OlqlfhGR+KL+MREREZEkIn/+/Ozbt4+qVatSpkwZli1blijX7dKlC7t376Zp06YcP36c7du3s3LlSipUqMC9e/eYM2cOffv2ZcqUKQAYjUZiP/+KDS7MZjNLliwhKioKGxsb9PnY2wsPD+eLL77gypUrZMmShdWrV1OyZElMJpNln6e7KWxsbCxLpf7+++/ky5ePDRs2cPz4cQB9T0QkWVN4ISIiIpKEODg4MGnSJBYuXEifPn3o1q0boaGhCXa9LVu2sGTJEkqVKsX8+fMpWbIkNWrUoGnTpmzZsoUxY8ZQqVIlLly4wDfffMPgwYN59OiR5U1zbMfF559/TufOnfn444+5efOmhijEgwMHDnDx4kXSpUvHgAEDKFeuHGaz+aXDdmInW3Vzc6N9+/b4+Piwfv16AH1PRCRZU3ghIiIikgQ1adKEkydPcunSJcqXL8/p06fj9fyxn8Lfv38fgLZt2+Li4kJ4eDjwZAiCk5MTffv2ZfTo0Xz88ceYzWZmzpzJiBEjuHv3ruVcfn5+REVF4eTkxB9//MHFixfjtdbU6uDBgwQEBGAwGKhduzY2NjavFEAYjUZsbGxo0KABAKtXr35mWVURkeTG1toFiIiIiMjz5cyZk23btjFy5EgqV67Mzz//TI8ePeLlE/TYcwQFBQFw69YtAMvcCE8vl1qtWjWyZs2Kq6sr8+bNY/HixRQoUIA+ffoA4ObmxqBBg0iXLh3p0qWjbt26b12fYAkc6tatS/ny5V/7+Bw5cpA1a1a+/PJL3Nzc4rs8EZFEpfBCREREJAmztbVlxIgR1KxZkw4dOrB161ZmzZpF+vTp4+X8BQoUAGDHjh1cvHiRggULWiZ+jJ3LwmAwkD9/fr766iuio6OZNm0aX3/9NWXLlqVSpUoAeHh48M0332hiyHhkZ2cHPPkzAK8/EWr27NlZvXo15cqVS5D6REQSk4aNiIiIiCQDtWrV4sSJE4SGhlK6dGkOHToUL+etUKECNWrU4OzZs8yaNQuIO/FjbIeG2WzG3d2diRMn0rx5c4KDg5k6dSomkwmTyYTZbFZwEc+cnZ0BuHPnDtHR0a8VXMRO6qngQkRSCoUXIiIiIslE5syZWbNmDX379qVWrVpMnTr1rVeQcHZ2pnPnzgBMnDiR3r17ExkZaRk2EstgMBATE4OtrS3Dhg3D1dWVAwcO8ODBA4xGoyaDTAAffvghHh4e3Llzh8uXLwPE+Z68zMsm9RQRSY70r5qIiIhIMmI0Ghk0aBCbNm1i7NixtG7d2jJvxZv6+OOPmTJlCunSpePXX3+lY8eO3Lx50/IGOPYNc+wn/wUKFCBnzpz4+voSEhLydjckL5Q+fXqqV6/OjRs3WLBgAfDk+/9fAcbbvi4ikhQpvBARERFJhqpWrcrx48cJDAykXLlynDx58q3O16lTJz7//HPc3d35448/aN++PVu2bAGwzH0RHR0NPAkxHj9+jLu7u94IJyA3Nzd69OhBunTpGDt2LHPnzgX+u6vCaDTi7e3N7Nmz6dKlCx999BF9+/Zl/fr1BAUFYTQaLcOCRESSC4P5bXsNJVkJCgrC1dWVwMBAXFxcrF2OiIiIvKWYmBh+/PFHxo0bx+TJk+nSpcsbD+GIiIhg5syZ/Prrr1y4cAFnZ2cGDBjA559/jr29Pfb29gCMGDGCESNG0Lx5c/7666/4vB15jmXLltGuXTsAZs6cSffu3S2vxcTExBm2ExkZyaZNm+jRowcPHz4kOjoag8GA2WzGxcWFatWqsWjRIlxdXYmOjrZMBioiktQpvEhlFF6IiIikTFu3bqVdu3Z4eXkxffp00qZN+0bnMZlMbNmyhenTp7N69WoASpYsScmSJcmePTs3btxg2bJlZMqUiWPHjpEzZ874vA15gVmzZtGzZ08AunfvTv369WnWrBmhoaGkS5cOgNDQUH7//XcGDRpEVFQUBQsWJEuWLNSvX58rV65w8OBBzp49S4UKFdi2bRtp06a1LIcrIpLUKbxIZRReiIiIpFx3796lTZs2+Pv78+eff1KoUKE3Pte9e/dYv349I0eO5NatW3FeK1u2LBMmTKBatWpvW7K8hj/++IOffvqJY8eOYTabyZQpEx9//DGjR4/Gzs6OmTNn0qtXLwAaNWrE4MGDKVasGBkzZgQgODiYRo0asXv3btq1a8eCBQsUXIhIsqHwIpVReCEiIpKyRUdHM2zYMKZPn86sWbNo06bNW50vODiYjRs3EhAQwMOHDylTpgxFixZVx4WVXLhwgaNHjzJu3Dhy5MjB77//TpYsWdiyZQt169YFoG3btkyaNInMmTMDT5a5jV0pxtfXl3LlyhEVFcXff/9NlSpVrHk7IiKvTOFFKqPwQkREJHVYs2YNHTt2pG3btkyYMAEHBwdrlyTxyM/Pj/Tp02NjY0NQUBDt2rVj/fr1eHl5MW3aNDw9PZ85JnbCVS8vL7Zu3cr06dMtQ1FERJI69YmJiIiIpECNGzfm2LFjHDp0iGrVquHt7W3tkiQeubm5WZauDQkJ4fDhwwDUq1cPDw+P5x5ja2uLra2tpSNDy9yKSHKi8EJEREQkhfL09GT37t2UKlWKsmXLsm3bNmuXJAng/v37PHz4EA8PDzp27IiNjQ0vaq4+ffo0mzdvBsDR0TExyxQReSsKL0RERERSMEdHR2bNmsWoUaNo3LgxP/300wvf2EryFB0djdlsJigoiMDAQGJiYp67XG50dDS7du0iIiICDw8P3n333ReeMyYmJiFLFhF5bQovRERERFKBbt26sWPHDqZMmULr1q0JDg62dkkSTwoWLEjlypWJiYnh0aNH2NjYEBUV9UxItW3bNn744QdCQkIoXbo0xYoVe+Zce/bsAXhp94aIiDUovBARERFJJcqXL8/Ro0d59OgRFStW5OLFi9YuSeKBi4sLVapUISQkhG7duhESEoKdnZ2l+8LX15fly5fTrl077t+/T4UKFZg1axa2trZxOixGjx5N9erVGTBgAMBzuzdERKzF1toFiIiIiEjiyZw5Mxs2bKBt27aULFmSpUuX0qxZM2uXJW9p9OjRHD16lB07dlCjRg369+9P7ty5OXv2LIcOHeLvv//m8ePHVKlShYkTJ+Lu7k5MTAw2NjbExMTw3XffMWrUKIBnOi7MZrOCDBGxOi2VmspoqVQRERHx9vamRo0aVKlShdWrV9O3b19GjhxpWb1CkqfHjx/zwQcfsGXLFuDJ6iLR0dEYjUZMJhONGjVi7NixFCpUyBJGREZGMnToUH7++WcAypQpw+DBg/H09CRnzpzkzJkTUIAhItan8CKVUXghIiKSukVERPDRRx/h6+vL1q1buXTpEs2bN8fDw4MlS5aQKVMma5cobyE4OJhZs2axc+dOTp06RWhoKA0aNKBEiRIMGjQozr5hYWF88cUX/PLLL8CTeS7Sp0/Po0ePMJvNFCtWjBEjRlg6cxRgiIg1KbxIZRReiIiIpF5ms5np06fzzTffcPLkSTw8PIAnPx907tyZo0ePsmLFCsqUKWPlSiU+BAUFER0dTcaMGS3boqOjsbW1JTg4mM8++4y5c+cC0KdPH6pWrUrjxo25dOkS69ev55tvvgFg6dKltG7d2ir3ICISS+FFKqPwQkREJPU6ffo01atXZ/bs2bRs2TLOa2azmbFjx/LDDz8wZ84c2rRpY6UqJaGYTCaMRiMBAQH07duXJUuWADBt2jQ6dOiAs7NznP2nTZtGv379qFy5Mjt27MDOzs4aZYuIAAovUh2FFyIiIqlTTEwMtWvX5p133rF82v4869evp127dvTq1YsffvhB82CkMA8ePKBXr16sWLECg8HAvHnz+Oijjyyvm81mzGYzRqMRs9nM1KlT6dixI66urty8eZPcuXNbQhARkcSkf3VEREREUoFx48Zx9+5dJk+e/NL9GjRowMGDB1m5ciVNmjQhMDAwkSqUhHbv3j06d+7MihUrcHBwYNmyZXGCC3iyPGpscGEwGOjfvz+Ojo4MGzaMvHnzsmXLFgUXImIV+pdHREREJAUzm83s3LmTkSNHsnjxYpycnP7zmIIFC3Lw4EEAKlasyMWLFxO6TElgN2/epFmzZqxfvx5nZ2eWL1/Ohx9++ML9Yyfm9PX15ccff2TMmDGYzWbWr1+fWCWLiMSh8EJEREQkBbt9+zZdunThm2++oXz58q98nKurK6tXr6Z58+ZUrFhRb1qTOR8fHw4dOoSjoyMrVqygcePG/3nMvXv3mDBhAj/88AMmk4latWrRu3dvgoKCCAsLA54MRxIRSQya8yKV0ZwXIiIiqUdERAQff/wx9+/fZ+vWrW88f8WyZcvo1q0b33zzDZ9//rmWy0ymNm7ciKOjIzVr1vzPfW/fvs3EiROZOHEi8KQTw8XFhbCwMBwdHWnUqBHjxo0je/bsxMTEaG4UEUlwCi9SGYUXIiIiqYPZbGbGjBkMGzYszrKob+rYsWN88MEHVK1alblz55I2bdp4qlSSmhs3bjB+/HhmzJgBQOfOnSlfvjwVKlTg0qVL/Pbbb2zZsoUCBQqwc+dOsmTJYuWKRSQ1UHiRyii8EBERSR18fHxo0aIFAwcOfGZZ1Dfl6+tLy5YtCQkJYdWqVeTKlStezitJx9WrVxk9ejS//fYbABMmTODTTz99ZoWRRo0asX79enr27Mm0adPUjSMiCU7hRSqj8EJERCTli46OxtfXl8yZM2NnZxev546MjGTAgAH8/fffrFy5kqpVq8br+cV6Ll68yA8//MDixYsB+O233+jUqVOcfaKjo7G1teX+/fuMHj2a/v37kzdvXitUKyKpjcKLVEbhhYiIiMSHGTNmMHjwYH799ddnltuU5MVsNnPu3DmGDx/O33//DTyZ56RVq1YAz3RdxAYYYWFhpEmT5rn7iIjEN1trFyAiIiIiyU+vXr3Ily8frVq14vz58/zwww9685pMHTlyhO+//55169YBsHr1aho1agQ8CTae/r6aTCZsbZ+8hYiOjubq1auYTCaio6MpXLiwZT9N4iki8U3/w4iIiIikEMHBwURHRyfa9erUqcP+/ftZvnw5LVu2JDQ0NNGuLfHn6NGjrFu3DoPBwNatW2nUqBFmsxmz2fzMXBaxQcb48eNp2bIlpUqVokyZMpQoUYIPP/yQmTNnAmBjY6NlVEUkXmnYSCqjYSMiIiIpU2RkJHfv3iV37tyJPnmin58fLVu2JDAwkNWrV5MzZ85Evb68vb59+/Lhhx9So0YNYt8ePO/P0e3bt+nXrx///PMPBoOB3LlzkytXLm7cuIGPjw+RkZF88sknlpVK1IEhIvFF4UUqo/BCREQk5TGbzdy8eZPs2bNjb29vlRoiIyPp06cP69at459//qF8+fJWqUPezvPmrogNIHx9ffnoo4/YvHkzBoOBsmXLMm/ePIoUKcLNmzc5d+4c7dq1IzAwkN69e/PLL78APLeDQ0TkdWnYiIiIiEgy5+vrS/r06a0WXADY29sza9YsBg8eTK1atfjzzz+tVou8uefNWxLbOdGlSxc2b95MunTpcHZ25siRI0yfPh2A3Llz4+XlxY4dO3B2dmb69OnMnTsXeH4Hh4jI61J4ISIiIpKMhYaGEhUVRfr06a1dCgaDgc8++4ylS5fStWtXRo4ciZp8k7fY79+cOXNYv3496dKlY/bs2Wzfvt0SUgwZMsSyf8mSJS2hxdatW4mKinrunwHNhyEir0vhhYiIiEgyFhwcTLZs2axdRhyNGzdmz549zJkzh/bt2xMWFmbtkuQNxXZNnDhxAoCCBQtSvHhxSpcuzdatW7G3t+fnn39m+PDhlmMKFiyIs7MzO3bswM/P75nOC5PJZOnmOHnyZKLch4gkfwovRERERJKxrFmzJskJEUuUKMGhQ4e4fv06tWrVwtfX19olyRswmUxERESwc+dOAD744AOKFi2KyWSiXLlybNq0CYDvv/+e0aNHA1C4cGHSp0+Pg4MDdnZ2cc4XExNjGZry448/UqZMGebNm5d4NyQiyZbCCxERERFJEFmyZGH79u14enpSqVIlLl68aO2S5A0YDAbLfCqxXT4mkwmTyUT16tXZsGEDAEOHDmXu3LmsXLkSb29vnJ2dMZvNmEwmIO7KIyNGjGDChAmYzWZWr17No0ePrHBnIpKcKLwQERERSWYiIyMJDg62dhmvxNHRkSVLltC6dWsqV67Mrl27rF2SvAaj0Yi9vT1lypQB4NatW3FeM5vN1KtXj7///huA7t2706NHDwC6du1KpkyZMBqNlqEiJpOJr776inHjxhEaGkrnzp358ssvyZgxY+LfnIgkKwovRERERJIRs9nM3bt3cXBwsHYpr8xoNDJ69GjGjh2Ll5cXS5YssXZJ8opiJ9usVasWDg4ObNmyBbPZjK2tbZxJN5s1a8bChQsBCAwMpG3btrRo0QKAqKgojEYjERERDB48mEmTJgHw0Ucf0b9/fypUqBDnWiIiz2Nr7QJERERE5NUlhWVR31T37t3JlSsXrVq14vr163z99ddaRjOJi/3+1K1bl3LlyrF371569uzJzJkzsbGxsQwLMRqNtG/fnpCQEJYuXUrnzp3JmTMnZrMZOzs7QkJC+Pzzz5kzZw6Ojo589NFH9OnThyJFigBPggv9WRCRlzGYFXGmKkFBQbi6uhIYGIiLi4u1yxEREZHXEBoair+/Pzlz5rR2KW/l5MmTNGzYkHr16vHrr78+M6mjJE0XL16katWqPHr0iB49ejB9+nTL5JtRUVGW76O3tzceHh6W4/z9/Rk8eDDz58/H2dmZTp060atXLwoUKGCV+xCR5EnhRSqj8EJERCR5iomJ4datW+TKlStJri7yum7fvk3Dhg3JkiULf/75J66urtYuSV7BsWPHaNiwIffv36du3bp069aNatWqkSVLlud2T/j6+vLZZ5+xZMkSMmbMSJcuXejVqxd58uSx0h2ISHKlOS9EREREkoHHjx+TJUuWFBFcAOTMmZPdu3djNBqpVq0a3t7e1i5JXkGZMmXYsGED9evX58CBA7Rq1YpWrVoRGRlpCS5iVxe5ffs2ffr0YcmSJbi7u9OzZ0/69etnCS5i9xMReRUKL55y/fp1Zs+eTffu3SlZsiS2trYYDAZ++OGHNzrf8ePH+fbbb6lRowaZMmXCzs4Od3d3vLy8WLly5QuPmzdvHgaD4aWPjRs3vultioiISDLk7OxM2rRprV1GvHJxcWHNmjVUqlSJihUrcvz4cWuXJK+gVKlSzJkzh4ULF/L+++8zadIkyxwsZrMZo9HItWvX6N27N3///TfZsmWjd+/e9OnTxzKcJHaejPDwcCIiIiznVqAhIi+iCTufMnnyZCZPnhwv57p69aplSSmAPHny4OnpybVr19i4cSMbN26kY8eO/Pbbb5axgv/L3d2d/PnzP/e1DBkyxEudIiIiItZkZ2fHzJkzGTduHDVq1OCPP/7Ay8vL2mXJf8iePTvZs2enYcOGGI1GoqKiLB/8XbhwgQEDBrB582Y8PDzo2bMn3bp1I3PmzJbjjUYjQUFBfP3119y9e5fGjRvTrFkz0qdPT0xMTIrpMBKR+KPw4imZMmWiUaNGVKhQgfLlyzNnzhzLmtWvy2w2ky1bNj799FM++ugjsmXLBjxJk6dPn07//v2ZP38+5cqVo2/fvs89h5eXF/PmzXvT2xEREZFkzmw28+DBA9zd3a1dSoIyGAx88cUX5M6dm5YtWzJt2jQ6depk7bLkFRiNRsuKIvBkMtZPP/2UnTt3kjdvXnr16kXnzp3JmDHjM3NiREREYGdnx44dO1i1ahXr1q1j1qxZZMyYkejoaGxt9VZFRP6P/kV4yrBhw+I8X7Zs2RufK2fOnFy5cuWZ9k6j0Ujfvn05e/Ysv/76K7Nnz35heCEiIiKpm6+vLw4ODtYuI9G0adMGd3d3mjVrxt27d/nqq6+0fGYyEPs9OnjwIEOGDGHPnj0UKFCAPn360LFjxxdOEp85c2a+/fZbPv74Y3r27MmKFSvw9vZm8+bNuLi4qANDROLQnBcJxNHR8aXjUuvWrQvApUuXEqskERERSUZCQ0OJiooiffr01i4lUb333nvs2rWLX375hb59+xITE2PtkuQV3Llzhw4dOrBnzx5KlCjBwIED6dKlS5zgwmw2c/XqVc6cOUNERAQxMTFkyJCB0qVLs23bNt577z0OHz5MixYtiIyMVHAhInEovLCS8PBwANKkSfPCfU6ePEm7du147733+OCDDxgxYgRXr15NrBJFRETESmJiYvD19bUMO01tSpYsyb59+9i6dSutWrWy/NwkSVeOHDno0KEDHh4e9O/fn44dO5IuXTrL66tWraJ79+4ULlyYMmXKULduXcaOHUtoaCgA6dKlY9WqVRQpUoStW7fG2zx0IpJyKLywkuXLlwNQtWrVF+5z4sQJli5dyvbt2/nnn38YPnw4BQsW5Mcff0ysMkVERMQK7t27l6KWRX0Tnp6e7N27l7t371K3bl38/f2tXZL8h++++45//vmHDh064OjoiNlsBp783Pv9998zf/58oqOjyZQpE4cOHWLYsGG0bdvWEk45OTnx7bffYmtry+HDh615KyKSBCm8sIJNmzaxatUqAIYMGfLM6+nTp6dfv37s3buX+/fvEx4ezvHjx/noo4+IiYlh2LBh/PLLL4lctYiIiCSGmJgY0qZNm+KWRX0Tbm5ubN26lfTp01OtWjW8vb2tXZL8h1KlSmFvb4/JZMJgMBAaGspff/3FiRMnKF26NIsXL2bfvn0sXryYggULsnbtWurVq0dUVBTwZN44W1tbTp48SWBg4DPnjw1ERCT1UXiRyG7dukX79u0B6N27N9WrV39mnw8++IApU6ZQpUoV3N3dcXBwoFSpUixYsIBPP/0UeDK5aHBwcGKWLiIiIonAxsaGjBkzWruMJCNt2rSsWLGCKlWqUKVKFc6ePWvtkuQVGI1P3mYcPXqUv/76C4DBgwfTtm1bPD09ad68OTt37qRs2bLs3r2bhg0bAk+6jsLDw0mTJo1lBZNYT69Wcu7cOfz8/BLxjkTE2hReJKJHjx7h5eXFw4cPqVmzJhMmTHjtc4wYMQIHBwcCAwPZtm3bG9cSFBT02o+IiIg3vp6IiIjIm7K1tWXmzJl069aNd999l927d1u7JHlFJpMJeDInRuXKlS3bYmJicHd3559//qFcuXJs2bKFWrVqsWDBAuzs7OjSpUuc7qPHjx9bgot58+bx6aefMmPGDAICAhL9nkTEOrRUaiIJCQmhQYMGnDt3jrJly7J69eo3WvrMxcWFokWLcuzYMa5cufLG9Xh4eLz2Md999x3Dhw9/42uKiIjIiz18+BAXFxfs7e2tXUqSZDAY+O6778iWLRteXl4sWLCA5s2bW7ss+Q/p06cnV65cPHr0CF9fX3LlyoXJZMLW1paIiAiyZ8/OsmXLeP/999m5cyfwZMLW2KADIDAwkPHjxxMWFkaVKlWYNGkSp06dwtHREV9f31S3Io9IaqXwIhFERETQtGlTDh48SJEiRdi4cSPOzs5vfL7YFrro6Og3Poe3t/cL19x+kdS0zryIiEhiCg0NJTw8nEyZMlm7lCSvR48eZM2alXbt2uHn50f37t2tXVKii4mJSTaTuZYqVYpatWoxf/58unXrxpYtWyx/zh0cHAgLC+P+/fvkypWLGzdukDlzZr799lvKly8PPBkqEhMTw6xZs3j48CGLFi3Cz8+PqlWr0qlTJwoUKGDN2xORRKTwIoFFR0fTqlUrtm3bRt68edm8efNb/WASExPDxYsXgScTGr0pFxeX1w4vREREJP7FLouaK1cua5eSbDRp0oT169fTpEkTHj16xBdffGHtkhLNhg0bePz4MS1atLB2Ka/s999/5969e2zatImqVasyYsQIsmTJgpOTE3PnzuXAgQOcOnUKV1dXpk2bRrNmzQCIiorCzs6OjBkz0rp1a2bPns2DBw/w9PTk559/pkKFCkDcuTBEJOVSeJGAzGYznTp1YvXq1WTPnp0tW7aQPXv2tzrn3LlzCQgIwMbGhpo1a8ZPoSIiImI19+7dw93dPdl8kp5UVK9enR07dlCvXj38/PwYO3Zsin8Du2DBAjp16kSVKlWSVXgBsGbNGvr378/q1atp3749ZrMZGxsbYmJiAMicOTO///47DRo0AP4vuIiIiGDq1Kls2LCB6OhojEYjN27c4NChQ88NLxRkiKRcmrDzLU2aNAlPT0/atGnzzGsDBgxg8eLFZMqUiS1btpAnT57/PF9QUBBt27bl0KFDcbbHxMQwe/ZsBgwYAEDXrl3JkSNH/NyEiIiIWEVAQAB2dnakS5fO2qUkS6VKlWLPnj0sX76cbt26vdWQ2qRu1qxZdOrUCYB9+/Yxa9Ys6xb0muzs7JgyZQonTpxg2bJlfPnll5Y/9zly5GDp0qWW4CI6Oho7OzvCwsKYMGECkydP5ubNmzRp0oQffvgBo9FI//79+fXXX4H/W9kkdnlWAB8fHyvcpYgkJINZiyVb7N27l6ZNm1qeh4SEEBERQdq0aUmTJo1l+/Hjxy0TXg4fPpwRI0ZQo0YNduzYYdln//79VKlSBXgyOebLWkH37Nlj+TogIIAMGTIATyY4ypMnD7a2tly+fNkym7KXlxcrVqzA0dHxte8xKCgIV1dXAgMDNWxERETEygICAnB1ddUnxW/pzp071KtXj4IFC7J48eI3+hkpKZs6dSoDBgwge/bslC5dmvXr19O2bVt+//13bG1tk92fnw0bNjBkyBDOnTuHp6cnCxcupGrVqpb5LWxtbQkODubnn39m1qxZ+Pn54eXlxdChQylfvjx//PEHbdu2BZ50o3To0CHO+f/880+GDBnCL7/8QqNGjaxxiyKSADRs5ClRUVHPXS/68ePHPH782PI8tr3tZZ5eVtTb2xtvb+9XqiFdunSMGzeOffv2cebMGa5evUpYWBhubm40bNiQjz/+mA8//DDZ/SclIiIiz9IqCfEjR44c7Nq1iwYNGtCwYUNWrVr1VpOjJyU///wzQ4YMIXfu3EyfPh0XFxfWrVvHkiVL6NWrF1WrVrV2ia+tdOnSXLlyhcyZM7NixQpKlSqF2Wy2rELi7+/P+PHjmTt3LoGBgTRt2pShQ4dSsmRJAFq3bk1gYCA9e/bE19fXMsQEYNeuXXz11VfcunWLsWPHUqlSJU2EK5JCqPMilVHnhYiIiKRUISEhNG/eHH9/fzZs2JDs37SOHj2aoUOHkjdvXqZOnYqXlxcAHTp0YMmSJbRq1YpZs2Yly5/pbt68SUREBAUKFMBkMgFPhn88fPiQsWPH8vvvv/P48WOaN2/O0KFDKVy4MBB3pZVz586RLVs2S9cygL+/Py1btsTGxoZevXpZJv8UkeRP4UUqo/BCRETEuh4/fmzpqpT4FxERwUcffcTp06fZtGmTZahvcvPtt9/yww8/UKBAAaZNm0bt2rUxmUwYjUbWrl1Lx44dcXd3Z926deTNm9fyWnLzdN1BQUFMnDiRqVOnEh4eTqtWrfj666/Jly/fc495enLOadOmUaxYMWrUqIGfnx9Xr17VaiQiKUzy+xdOREREJJmKiYnh/v37Gi6SgBwcHFi6dCnVq1fn3XfftSwxn1yYzWb27t3LDz/8QP78+Zk9eza1a9eOs0+lSpXw8PDg4sWL/PzzzwDJMriAuHV7e3uzfPly/P39adu2Ld99990zwUXsMTExMZZAYsqUKXz22We8//77nD9/Hjc3NwUXIilQ8vxXTkRERCQZ0rKoicPGxoZff/2V9u3bU61aNY4fP27tkl6ZwWCgatWqzJkzh1mzZlGtWjXgyZtwo9GIyWQiU6ZMfP/99zg4OLB9+3bOnDlj5arjx5IlSzh//jyFChXim2++IXfu3DyvSfzpoSNjxoxh+PDh2NjYULt2bR49ehRnXwUXIimHJuwUERERSQRaFjVxGQwGRo0aRYYMGXjvvffYsGEDlSpVsnZZ/yn2jXmXLl0s257uHojtVChUqBDFihXj6NGjHDx4kGLFilml3viUL18+7O3tKV68uGWlPpPJFCfsezq4GD58OBMnTiQsLIyWLVsyYMAAKlasaJXaRSThqfNCREREJIFFRkYSEBCAu7u7tUtJdYYMGcKPP/5I3bp14yxrn1Q9ryvned0DBQoUoHnz5gCMHDmSa9euJXhtCa1YsWI4OzuzfPlyfvvtN+DJ70ds90VscGEymfjyyy8ZP348kZGRtGvXjkGDBlmCC03pJ5IyKbwQERERSWAmk4ns2bOrhd1KevfuzdSpU2nUqBEbNmywdjlvLfbNebdu3ahQoQKPHj3i6NGjwJM3+MlV+fLlmTZtGgC9evVi0aJFwJPwJja4iIiIYNCgQUyePBl4svLKZ599RtmyZQGIjo62/D2LXcVEYYZIyqDwQkRERCSBOTo6Ym9vb+0yUrWOHTvy22+/0bJlS1asWGHtct5K7JtzFxcXSpUqRUhICLNnzwae37mRnLRq1YoZM2YQFRXFb7/9hr+/v2XoSEhICJ9++inTpk3Dzs6OTp06MXDgQEqUKGE53tb2yaj46OhogoODgf/7/UrOwY6IaKnUVEdLpYqIiCQerXSQ9Kxdu5Y2bdrw66+/0qFDB2uX88Zi/2xdvnyZihUrEhAQwIIFC5L1PT3tzz//JGfOnJQrVw47Ozv8/f0ZNGgQCxYswNnZmU6dOtG7d2/y589vOebOnTtcu3aNX375BV9fX3x9falatSrVqlWjbdu22NraEh0dbQk4RCR5UXiRyii8EBERSRwxMTHcuXMHDw8PBRhJzJYtW2jWrBk///wzPXr0sEoNJpPprZc3jR0WMWDAAKZNm0bfvn2ZMmVKfJSXJMT+Hvn4+DBkyBAWL15MxowZ6dq1Kz179iRPnjyWfQ8ePMiUKVPYtWsXd+7cwWAwWIaLGAwGWrZsybJly+IMQRGR5EXhRSqj8OL/sXfXcVHeDxzAPw+dIiEIimJ3tyhgd8/C7pq5zZ6Ks3V2zhmzZnfMRIzZM+bsRklBuu+e3x/3g8kUJY57nrv7vF8vXuLd8zz3YRO4+9w3iIiINOPt27ewtbXl7iIydenSJbRu3RrTp0/H2LFjpY6TIwcPHkxbvNPX1xeenp4SJ1KfyMhIdOzYEb6+vnB2dka/fv0wZMgQuLq6ph3j6+uLiRMn4q+//oJCoUDFihUxcOBAmJmZISIiAqtWrcLr16/Rtm1bHDx4EABHRRFpI46ZIiIiIlIzbosqf/Xq1cOZM2fQrFkzxMTEYOrUqRp5Mbtr1y48f/4cjx8/Rt26dVG+fHm4u7un3Z+dF9Xt27dHz549sW3bNjx+/FinygsbGxuUKVMGFy5cwJAhQzB48GDkz58/7f7r169jxowZuHHjBgoWLAhvb2/8+OOP6b73vL290ahRIxw+fBjTp0+Hj48PiwsiLcSRF3qGIy+IiIhyV1JSEgICAlC4cGG+QNICf//9N5o0aYK+ffti7ty5ufb/TKFQoGPHjjhy5Mgn902cOBHt2rVL2+ozK1NKUsuOpUuXIiwsDD/99JNac8vF8ePHUa1aNTg5OQH4d9vUKVOmYOnSpbCyssJ3332HsWPHwtjYGMnJyen+/PPPP9G4cWNUq1YNe/fuTbsOEWkPlhd6huUFERFR7hFFEa9fv4aLiwt3F9EiT548QaNGjdCpUycsWbJE7QVGSkoKOnTogGPHjsHT0xMjRozAixcv8PTpU2zYsAEA4O7ujkGDBqF3794Asr4mRuqLdH3y6NEj1KhRA7GxsRg6dChWrFgBQ0PDz/63e/v2LerUqYOAgABcuXIFNWvWlCg1EWUXp40QERERqZGTkxOLCy1TsmRJXLhwAQ0aNEBKSgpWrFih1gJj9+7dOHbsGLy8vHDw4MF0byC5u7tj2bJl+PPPP/H27VtER0djxIgRMDAwSPci/L+LTP73Bbo+FRepo018fX0RGxuLihUrYsGCBRkWFwAQFxeHlJQUAEBCQoKmIxORGuRsiWMiIiIiSiMIAszNzaWOQdlQpEgRnD9/HseOHcPw4cPTdvJQh9u3bwMAxowZgzx58iAxMTHt+n379sXChQvRsmVL+Pv746effsKvv/4KADAwMIAoilAqlWkvzM+dO5d2nzozaqOgoCAAgIuLC6ysrKBQKD4pLlIHmT9//hyRkZGwtrbm6GMiLcXygoiIiCiHOAtXN7i5ucHPzw+nTp3C0KFDc1wOiKKI5ORkvH37FgAQHh4OADA1NU0rJgCgcePGmDRpEtq1a4fQ0FAsXrwYhw8fBqAqxAwMDKBQKNCtWzf06NED69evB4Acb7WqrVJHxaSuW2Fqagrg89+HgiDg8ePH+OGHH5CQkIA6deqgcuXKGR6v74UQkZzp5088IiIiIjV69+4dEhMTpY5BalCoUCH4+fnB19cXAwcOhEKhyPa1BEGAsbExypYtCwC4c+cOFApF2jUFQUh7AV23bl2MHDkSnp6eePz4MbZt24aXL1+mXevx48dISEhAcHAwxo4di4cPH+bgq9QNlSpVQr58+fD3338jKioKRkZGSEpKgiiKaf9dHz9+jBkzZuDx48dwc3PDkCFDAKjWCEktQY4ePYrdu3cD0N9CiEgb8LuTiIiIKAdSt0VNffeXtF/BggXh5+eHy5cvo3///jkqMACgTJkyAFTbpL548QKGhoafLTC8vLwwbNgw5MuXDwcPHsTVq1fTrlG2bFmMHj0aHh4eWLBgQdo19Vm1atXg7u6OFy9eoHfv3lAqlTAxMYEgCBAEAX/++Se+//57HD58GMbGxmjZsiU8PDwA/LtGyNGjR+Hj44Nu3bphx44dUn45RPQV3G1Ez3C3ESIiIvXhtqi6LTAwEA0bNkS1atWwefNmGBllf637xo0b49y5c6hZsyZOnDgBW1vbdItwpi5CCai2Tl2wYAFKlCiBS5cuIV++fGnXCQgIgIuLS86+MB3y/v17uLu74+nTp6hduzaaNWsGY2NjhIWFYcWKFUhJSUGePHnQqVMnzJ8/Hw4ODmnn7tmzB0uWLMGtW7dQsWJFDBs2DP3795fwqyGiL2F5oWdYXhAREakHt0XVD8HBwWjYsCEqVqyIrVu3ZrvAuHnzJnr27IknT56ge/fuWLduXdoik6kFRupOGREREfDw8EBoaCguXryI4sWLZ3nrVH3y9u1bdOvWDdevX0/bUSRVaqExZswY2NjYpN2+Y8cOLF++HDdu3AAA1KhRA506dUKtWrVQqFAhuLm5pSuUiEh6LC/0DMsLIiIi9QgJCYGxsTFsbW2ljkK5LCQkBI0bN0bp0qWxffv2bG1LqlAosGbNGsyaNQshISEYMGAAli1bBgsLi09GYMTGxqJhw4a4efMmDh8+jNatW6v7S9I5ISEhOH36NM6cOYPXr1/D1tYWtWvXRvv27eHm5pbu/9nmzZuxePFi3L9/H4CquAgPD4coinjx4gXKli2LlStXwsvLi6URkYywvNAzLC+IiIjUIzExMW1+Pem+9+/fo3HjxihWrBh+//33bI22SUhIwOzZs7F69Wp8+PABPXr0wK+//pq2XkpKSkrayI769evj+fPnuHTpEooWLarWr0UffPzf8mO//PILlixZgidPnqBy5coYNGgQBg8ejNjYWCQmJmLhwoVYuHAhTExMcP78edSuXZsjMIhkgjUiERERUTaYmpryBY0ecXBwwNmzZ/Hy5Ut4e3sjOTk5y9cwMzPDpEmT8O2338LBwQHbt29HkyZNcP/+fcTExKS92F6+fDkuX76MUqVKwcrKSt1fis76+D3Z1NESqdNIlEolVqxYgYULF+LJkyfw8PDAnDlzMHToUBgYGMDa2hoODg6YP38+vvvuOyQlJWHUqFEICgri9zmRTHDkhZ7hyAsiIqKc+XiIP+mfsLAwNGzYEGXKlMG2bduytQZGfHw8tmzZgjlz5sDf3x9FihRB2bJlUbNmTTx+/Bg7duyAmZkZTp06hXr16uXCV6EfUqd8JCcnY/ny5Vi5ciX8/f3RsGFDTJ48GV5eXgD+XSw19Xs7tdxQKpU4efIkqlSpIu0XQkQAZF5evH79GgEBAQgNDUVCQgLs7e2RL18+lChRAubm5lLH00osL4iIiLIvIiICycnJ6XZ/IP0TGhqKBg0aoFKlStiyZUu2yixRFPHw4UMMHz4cDx8+RGhoaNp9pUqVwvr161lcqEF8fDyWL1+OVatWITAwEE2bNsWUKVNQt25dAOl3eUn93N/fH7Vq1UJQUBAOHTqENm3aSPklENH/ZX+/p1yQkJCAXbt24Y8//oCfnx+Cg4M/e5yRkRGqVasGT09PeHt7o0KFChpOSkRERPomKSkJERERKFy4sNRRSGL58uXD2bNn0aBBA/Tv3x8bN27McoEhCALKli2Lo0eP4tWrV7h69SoSEhJQokQJlC1bFq6urrmUXn8oFArMnDkTa9euRVJSElq3bo0pU6agevXqAPDJWhaCICAxMRFbt25FUFAQ8ufPj4oVK0oVn4j+QxYjL168eIGlS5di27ZtiIyMRGYjpf6wqV27NoYPHw5vb2/OSfsKjrwgIiLKOm6LSp8TGBgILy8v1KtXD+vXr+euFDK0c+dOeHt7o127dvDx8UkrIz63CGdKSgpOnz6NmTNn4saNGxgyZAgWLVoEMzMzvsYgkgFJy4sPHz5g5syZWLNmDZKSkgAAJUqUgIeHB2rVqoUqVarAwcEBdnZ2MDc3R3h4OMLDw/Hy5Utcu3YN165dg5+fHxISEiAIAsqXL48FCxagWbNmUn1JssfygoiIKOu4LSpl5N27d/Dy8kLDhg2xZs2aHBcY3NlC/c6cOYP8+fOjfPnyGR6TlJSEM2fOYOHChfDz80OpUqWwadMm1K5dW4NJiehLJC0v7O3t8eHDBzg4OKBHjx7o2bMnqlWrlqVrREdHY+/evdi6dSvOnz8PQRCwdOlSjBw5MpdSazeWF0RERFkTFxeHsLAwFCxYkC8q6bPevn0LT09PNG/eHCtXruS/Ey2TkJCAkydPYsGCBbhy5QoKFCiAbdu2wdPTU+poRPQRSde8MDAwwNy5c/Htt9/C0tIyW9ewtrZGv3790K9fP1y/fh0zZsxARESEeoMSERGR3jIzM4OLiwtfkFKGChYsiHPnzsHT0xPGxsZYsmQJ/71oibi4OBw/fhzz58/HrVu34Obmhu3bt6NOnTpSRyOi/5B05EVsbGy2SwsprqsLOPKCiIiIKHe8fPkSnp6e6NKlCxYuXMgCQ+ZiYmJw5MgRzJ8/H/fu3UPJkiXx+++/o0qVKpy+QyRDkq4qlFsFA4sLIiIiyqnk5GSpI5CWKVKkCGbMmIH169dj0qRJmV6EnjQvIiIC+/btw+zZs3Hv3j1UqFABBw4cQJUqVaBUKllcEMkQl0QmIiIi+o+kpCS8e/eOLz4pSy5evIhRo0bBx8cHv/32G3766SepI1EG7t69i2+//RYPHjxAzZo1ceDAAZQpUwZKpZK7xhDJlKRrXhARERHJjSiKCAgI4DoXlCW3b99GmzZtsGTJEgwaNAhNmjSBp6cnLC0t8d1330kdj/7D09MT9erVw+vXr7F//364uLiwuCCSOUnLi5kzZ6rtWtOmTVPbtYiIiEh/hYaGwsbGBiYmJlJHIS3x+PFjNGvWDJMnT8agQYMAAOXKlcOpU6fQsGFDWFpaYujQoRKnpP86ceIEoqKikCdPHhYXRFpA0gU7DQwMcvyORupiOgqFQk2pdBsX7CQiIspYXFwcwsPDUaBAAY66oEx58+YN6tWrhx49emDu3Lmf3H/58mU0b94ca9asQc+ePSVISF/D4oJIO0g68sLDwyPDJwZ37txBZGQkAKBAgQIoWLAgAODdu3d4+/YtACBv3ryoVKmSZsISERGRThNFEcHBwShUqBCLC8qUkJAQNGnSBK1atcKcOXM+e4y7uzsOHjyIdu3awcLCAh07dtRwSvoaFhdE2kHS8uL8+fOfvX3SpEnw8/ND9+7dMWPGDJQoUSLd/c+ePYOPj0/aHswZ/bIgIiIiyixBEFC4cGG+kKFMiYyMRPPmzVG1alWsXLnyi4VXo0aN8Pvvv6Nbt26wsLBA8+bNNZiUiEg3SDpt5HP27duHLl26YNiwYVi5cuUXj/3222+xZs0a7Nmzhy12JnHaCBEREVHOxMXFoVmzZsiTJw8OHjwIY2PjTJ23a9cuDBgwAMeOHYOnp2cupyQi0i2yKy8aNGiAixcvIigoCA4ODl889v3793BycoKnpyfOnTunoYTajeUFERFResnJyTAwMIChoaHUUUgLJCUloX379oiJicEff/wBCwuLLJ2/ceNGjBkzBqdPn0atWrVyKSURke6R3Vap9+7dg42NzVeLCwBwcHBA3rx5cffuXQ0kIyIiIl0jiiLevXsHZ2dnlhf0VQqFAn369EFQUBB8fX2zXFwAQP/+/RETE4PmzZvj/PnzXL+NiCiTZFdeJCYmIjExETExMbCysvrisTExMYiKioKpqamG0hEREZEuSd0Wlc8lKDNevnyJ169f448//oCNjU22rzNq1CjExsaiSZMmuHDhAkqXLq3GlEREukl2K1KVKlUKSqXyq+tdAMDKlSuhUChQqlQpDSQjIiIiXRIXF4fExETkzZtX6iikJYoXL47Lly/D0dExx9eaNGkSBg4ciMaNG+P169dqSEdEpNtkV17069cPoihi6tSp8PHxQUxMzCfHxMbGYubMmZg6dSoEQUC/fv0kSEpERETaSqFQIDg4GC4uLtwWlbJEnf9eZs+ejTZt2qBp06YIDQ1V23WJiHSR7BbsVCqVaNmyJU6dOgVBEGBubo7q1aujQIECEAQBb9++xc2bNxEfHw9RFNGkSROcOHGC25plEhfsJCIiAoKDg2FlZQVLS0upo5CeUygU8Pb2xvPnz3Hu3Dk+PyMiyoDsygtAtYrzxIkTsXLlSqSkpAD4t+VOjWtkZIThw4dj/vz5nKeaBSwviIiIVM8nOOKC5CIpKQlt2rRBcnIyjh8/DjMzM6kjERHJjizLi1SBgYHYu3cvbt68iZCQEACAo6Mjqlevjk6dOsHFxUXihNqH5QURERGR/MTExKBx48ZwdnbGnj17YGQku3X1iYgkJevygtSP5QUREekrURQRHx+fre0tiTQhLCwMHh4eqF27Nn799VeODiIi+ggXiiAiIiK9EBoaisTERKljEGXI3t4ep06dwtmzZzFx4kSp4xARyYqsx6O9f/8evr6+eP36NeLi4jBt2jSpIxEREZEWSt0WNV++fFJHIfqiAgUK4PTp03B3d4e9vT3Gjx8vdSQiIlmQ5bSRlJQUTJgwAatXr0ZSUlLa7QqFIu3zDx8+oFixYoiLi8PLly/h7OwsRVStw2kjRESkbxQKBd68eYNChQrB0NBQ6jhEmXL79m14eXlh8eLFGDBggNRxiIgkJ8tpI507d8bSpUuRlJSEcuXKfXbBIltbW3h7eyMpKQmHDh2SICURERFpg8DAQDg6OrK4IK1SpUoVHD58GKNHj8aBAwekjkNEJDnZlRe7du3CoUOH4OjoiJs3b+LevXuws7P77LGdO3cGABw9elSTEYmIiEhLxMfHw9jYGJaWllJHIcoyT09P7NixAz179sT58+eljkNEJCnZlRebNm2CIAhYuHAhqlSp8sVja9asCUEQ8Pfff2soHREREWkTc3NzODo6Sh2DKNvatm2LlStXon379nzOS0R6TXYLdv71118AgE6dOn31WHNzc9jY2CA0NDS3YxEREZGW4naTpO369euHd+/eoXnz5rhy5QoKFSokdSQiIo2T3ciLyMhI2NjYwNzcPFPHK5XKXE5ERERE2iY6OhoyXJOcKNumTJmCtm3bonnz5ggPD5c6DhGRxsmuvLC1tUVkZCQSEhK+euzbt28RFRXF4aBERESUJi4uDhEREVLHIFIrQRCwcuVKlCxZEm3btkV8fLzUkYiINEp25UWlSpUAAH5+fl89dt26dQCAWrVq5WomIiIi0g4KhQLBwcFwcXHhdBHSOYaGhvj9998hiiJ69OgBhUIhdSQiIo2RXXnRvXt3iKKIH3/8EXFxcRket3v3bsyfPx+CIKBXr14aTEhERERyxW1RSdeZm5vjyJEjePjwIUaNGsXpUUSkN2RXXvTu3Rs1a9bErVu3UKdOHaxduxbJyckAgJs3b2Ljxo1o2rQpunfvjpSUFDRs2BCtW7eWODURERFJLTIyktuikl6ws7PDH3/8gYMHD2Lu3LlSxyEi0ghBlGFdGxISgtatW+PmzZsZDvkURRG1atXCsWPHYGdnp+GE2isqKgo2NjaIjIxEnjx5pI5DRESkFqIoIiAggNNFSK/cu3cPHh4eWLp0Kfr27St1HCKiXCW7kRcA4OjoiMuXL2PFihWoWLEiBEGAKIppH2XKlMHSpUvh5+fH4oKIiIggCAIKFCjA4oL0SsWKFbF//36MGDECJ06ckDoOEVGukuXIi/+KiYlBUFAQFAoFnJyckDdvXqkjaS2OvCAiIiLSLTt37sTgwYNx9uxZ1KhRQ+o4RES5wkjqAJlhZWWF4sWLSx2DiIiIZCYuLg6CIMDc3FzqKESS6datGwIDA9G6dWtcvXoVRYoUkToSEZHayW7ayIULF3DhwgWEh4dn6virV6/iwoULuZyKiIiI5CZ1W1QTExOpoxBJbsyYMejSpQtatWqFDx8+SB2HiEjtZDdtxMDAAIIgoHDhwjh69CjKli37xeOdnZ0RGhqKlJQUDSXUbpw2QkREuuLt27ewtbXl7iJE/6dQKNChQwfExMTgjz/+YLFHRDpFdiMvANWK4a9evULdunVx8uTJTB1PRERE+oPbohJ9ytDQEDt27EBkZCQGDRrE58hEpFNkWV7Y2trC09MTUVFRaNOmDVavXi11JCIiIpKJpKQkfPjwAY6OjlJHIZIdKysrHD16FL6+vvjpp5+kjkNEpDayLC9MTU1x6tQp9O7dGykpKRg5ciRGjRrF9piIiIgQExMDZ2dnbotKlAFnZ2ccP34cixcvxtatW6WOQ0SkFrIsLwDA2NgYmzdvxsyZMwEAq1atQuvWrRETEyNxMiIiIpKSnZ0dTE1NpY5BJGvly5fH3r17MXToUJw/f17qOEREOSbb8iLV1KlTsX37dpiamuKPP/6Au7s7/P39pY5FRERERCRrjRs3xooVK9ChQwc8fPhQ6jhERDki+/ICUO1dfebMGTg4OODvv/9GrVq1cP36daljERERkYYoFAqEhYVJHYNI6/Tv3x8jRoxAy5YtERwcLHUcIqJs04ryAgDq1q2Lq1evonTp0ggKCkKDBg2wa9cuqWMRERGRBgQFBcHMzEzqGERa6aeffkKdOnXQtm1bxMXFSR2HiChbtKa8AIAiRYrgypUraNiwIeLj4+Ht7Y3Q0FCpYxEREVEuioyMhJGREbdFJcomQRCwadMmmJqaolevXlAqlVJHIiLKMq0qLwDAxsYGf/zxB/r37w9RFPnDl4iISIdxW1Qi9TA1NcWBAwdw7949TJ06Veo4RERZZiR1gP/atGkTzM3Nv3iMkZERfv31V5QqVQrHjx/XUDIiIiLSJFEUERgYyG1RidTE3t4eR44cQZ06dVC6dGn07t1b6khERJkmiKIoSh2CNCcqKgo2NjaIjIxEnjx5pI5DRESUoaSkJMTHx8PGxkbqKEQ65fTp02jfvj1OnToFd3d3qeMQEWWK1k0bISIiIv1gYmLC4oIoFzRp0gQLFy5Ehw4d8OrVK6njEBFlCssLIiIiIiI9M3z4cHTt2hVt2rRBVFSU1HGIiL5K0mkjDRs2BAAULlwYmzZtSndbVgiCgLNnz6o1m67itBEiIpK74OBg5MuXDwYGfI+FKDelpKSgVatWMDY2xqFDh2BoaCh1JCKiDElaXqQ+KSldujQePHiQ7rasEAQBCoVCrdl0FcsLIiKSs8jISMTHxyN//vxSRyHSCxEREahTpw5atGiBxYsXSx2HiChDku42Mn36dACAg4PDJ7cRERGRfkndFrVw4cJSRyHSG3nz5sXRo0dRq1YtlClTBoMGDZI6EhHRZ3G3ET3DkRdERCRHoiji9evXcHZ2hqmpqdRxiPSOn58fWrZsiaNHj6JBgwZSxyEi+gQnkxIREZHkQkNDYWNjw+KCSCKenp5YsWIFvvnmGzx9+lTqOEREn5B02ggRERGRKIowMjJC3rx5pY5CpNf69++Phw8fok2bNrh27Rq3KiYiWeG0ET3DaSNERERElBGFQoE2bdrAwMCAO5AQkazIYqvUnOJWqZnH8oKIiIiIviQiIgK1atVCp06dMGfOHKnjEBEBkHjayPnz59VyHUEQ1HIdIiIi0pzIyEgYGBjA2tpa6ihE9JG8efPi0KFDqF27NipVqoSuXbtKHYmISB5bpRIREZF+4baoRPJWunRpbN++HV27dkXJkiVRpUoVqSMRkZ7jmhd6htNGiIhIaqIo4s2bN8ifPz93FyGSublz52Lt2rW4ceMGHB0dpY5DRHqM5YWeYXlBRERSCw0NhZGREWxtbaWOQkRfIYoiunfvjsDAQJw5cwbGxsZSRyIiPWUgdQAiIiLSH3FxcUhISOC2qERaQhAEbNiwAVFRURgzZozUcYhIj7G8ICIiIo1RKpVwdnbmYttEWsTS0hIHDx7E7t278csvv0gdh4j0lKQLdn5JUFAQNm7ciEuXLuHt27eIjY1FRjNcBEHA8+fPNZyQiIiIssrKykrqCESUDYULF8bevXvRsmVLlC1bFvXq1ZM6EhHpGVmWFwcOHECfPn2+Wlik3sd3b4iIiORNFEX+vibScp6enli4cCE6deqEmzdvwtXVVepIRKRHZDdt5MGDB/D29kZMTAxatmyJ1atXAwBsbGzw66+/YtasWfDy8oIoinBwcMDKlSuxceNGiVMTERFRRpKSkhAYGCh1DCJSg2HDhqFdu3bo0KEDEhISpI5DRHpEdruNDBo0CBs2bEDPnj2xZcsWAICBgQHy58+PgICAtONOnDiBzp07o1y5crh06RJXPs4k7jZCRESaxG1RiXRPYmIiPD09Ua5cOfz6668cVUVEGiG7kRfnz5+HIAiYNGnSF49r0aIFfv75Z9y4cQNLly7VTDgiIiLKkvfv38Pa2prFBZEOMTU1xd69e3H06FGsX79e6jhEpCdkN/LCwsICCoUCiYmJabcZGhoib968CAsLS3dsXFwcbGxsULFiRdy6dUvTUbUSR14QEZGmxMXFISwsDAULFuQ7s0Q66Pz582jVqhV8fX1Rs2ZNqeMQkY6T3cgLExMTWFhYpLvNysoKkZGRSElJSXe7hYUFrK2tudMIERGRzCgUCgQHB3NbVCId5uXlhZkzZ6JTp04ICQmROg4R6TjZlRcuLi6IiopCfHx82m1ubm4QRRF3795Nd+yHDx8QERGBpKQkTcckIiKir8ifPz+MjGS5sRkRqcm4ceNQt25ddOvW7ZM3GomI1El25UWZMmUAAE+fPk27zd3dHaIoYtGiRemOnTp1KgCgVKlSmgtIREREX2VoaAhzc3OpYxBRLhMEARs2bEBISAgmT54sdRwi0mGyKy9atWoFURSxb9++tNuGDh0KAwMD7N69G+XLl0ePHj1QsWJFrF27FoIgoH///hImJiIiolQyW0qLiDTAysoK+/fvx7p167Bnzx6p4xCRjpJdedGmTRv06dMn3TDTihUrYunSpTAwMMCDBw/w+++/4/79+xBFEd26dcPIkSMlTExERETAv9uiKhQKqaMQkYaVLFkSW7ZswYABA/DgwQOp4+RYTEwMXr9+jYcPHyIoKEjqOEQEGe428iWPHj3C3r174e/vDxsbGzRv3hwNGzaUOpZW4W4jRESUW0JDQ2FoaAg7OzupoxCRRKZMmYK9e/fixo0bWvtc88iRI5g3bx4CAgLw+vVruLq6YurUqejatavWfk1EukCrygvKOZYXRESUG7gtKhEBqp2GWrZsCUtLS+zbt0+rfh6Ioohvv/0Wa9asAQCUL18eiYmJePr0KSwtLfHzzz+jf//+XIiYSCKymzZCRERE2oXbohJRKkNDQ+zYsQO3b9/GggULpI6TaeHh4ejXrx/WrFmDChUq4NChQ7h37x5u3ryJkSNHIjY2FmvWrEFycrLUUYn0Fkde6BmOvCAiInV79+4dbGxsYGVlJXUUIpKJW7duwcPDAydOnICHh4fUcb7q0qVL6NChA/Lnz48jR47Azc0NoihCEATExsaiXr16uHv3Lv7880/Url1b6rhEekm2Y56ePXuG3bt34969e/jw4cMXW05BEHD27FkNpiMiIqJU9vb2MDMzkzoGEclItWrVsGjRInTr1g23b9+Gk5OT1JG+aM2aNQgLC8OwYcPg5uYGhUIBAwMDKBQKWFpaomjRoggJCYGzszOAf3dW4mgzIs2RZXkxefJkLFy4EEqlMlNbrvGHBhERkXRYXBDR5wwdOhQXL16Et7c3Tp06BUNDQ6kjfSJ1dIWNjU3an4Bq+ktKSgqMjIwQGhqKd+/eoUWLFggMDISJiUlaifHxNYgod8muvFi9ejXmzZsHAHBzc0Pjxo3h5OTEhXGIiIhkRBRFiKIIAwMun0VEnycIAtatW4caNWpgxowZ+Omnn6SO9InU0sHe3h6iKGL//v345ptvULhwYRgZGSExMRGTJ0/G9evXcePGDezfvx+RkZFo0aIFevfujS5durC4INIQ2a15UaFCBTx48AB9+/bF+vXr+aRIzbjmBRERqUNoaChMTEzS3qUkIsrI/fv3Ubt2bezduxfNmzeXOk46SqUSBgYGiIuLQ5UqVfD06VPUr18fFSpUQOHChbFhwwY8efIEDg4O6NSpE6KionDy5EmEh4ejePHimDVrFrp06SL1l0GkF2RXXpibmyMpKQnh4eF8QpQLWF4QEVFOcVtUIsqqLVu2YNy4cbh9+zZcXV2ljpNO6vSQ69ev46effsKxY8dQsGBBREZGIjo6Gh07dsTChQtRpEgRAMDly5cxc+ZMnD59Gh4eHti8eTPc3Nyk/SKI9IDsygsXFxckJCQgPDxc6ig6ieUFERHlhEKhwJs3b+Dq6sopnUSUJYMGDcI///wDPz8/GBsbSx3ns+Li4uDv74+goCCMGzcOTk5OOH78OIB/Sw4A2LFjB0aOHAkTExPs2rVLK3ZUIdJ2spuTUbNmTURFReH9+/dSRyEiIqL/CAoKQr58+VhcEFGWLV++HPHx8ZgwYYLGHjOr79NaWFigVKlSMDU1xfPnz1GqVCkAquLWyMgo7XrdunWDk5MTgoOD8fLlS7XnJqJPya68+OGHHyAIAmbPni11FCIiIvpIVFQUDA0NYWVlJXUUItJC5ubm2LNnDzZu3Ij9+/fn2uOIoohbt27h4cOHeP78eZbPBYDbt28jKioqbVcRpVKZdr9CoUB0dHTatDlra2s1pieijMiuvHB3d8eaNWuwevVqDB06FK9evZI6EhEREUH1jqSjo6PUMYhIixUvXhwbNmxA//798ezZM7Vf/+bNm/Dy8kKzZs1QrVo11KtXD3369MHly5czdX5qIZE6vXrJkiUICwuDsbExFAoFDAwMYGhoiNOnT+P58+eoU6cOvLy81P51ENGnZLfmRar58+dj0qRJEAQBdnZ2X2w0BUHIcquqr7jmBRERERFJbcyYMfDz88OVK1dgZmamlmtu3rwZgwYNgkKhQI0aNWBmZoZ//vkH4eHhsLa2xrJly9C2bVvY2dml7TKSkXfv3qFz5864evUqWrZsiQ0bNsDOzg6GhoZYvHgxpk6diqSkJCxfvhwjRozg4sVEGiC78kKhUKB3797YuXNnpueoCYIAhUKRy8l0A8sLIiLKqo8XqSMiUoekpCTUr18fNWrUwMqVK3N8vefPn6Nly5Z49eoVVq9ejQEDBkChUODhw4f48ccfcejQIRQoUABDhgzBxIkTYWRk9MUCIyEhAdu3b8f333+PyMhIlCxZEvny5UNwcDCePXsGQ0ND/PLLL+jXr1+OsxNR5sjumcjSpUvx+++/AwDq16+PZs2awcnJSfInTW5ubnj9+nW620xNTeHs7Ax3d3eMHj0aNWrU+OS8vn374rfffvvq9fv06YPNmzdn6bx27drh4MGDmcpPRESUHfHx8WnbohIRqYuJiQl+//13VK1aFY0aNUKHDh1ydL0LFy7g6dOnGDt2LAYMGAAAMDQ0RPny5bF9+3YMHToUe/bswapVq2Bra4sRI0Z8ceSFmZkZunXrBhMTE4wcORJPnjzBkydPYGNjg1atWmHRokVpi3kSkWbIrrzYsGEDBEHApEmTMGvWLKnjfKJEiRJp830jIyPx7NkzbN++HTt37sSmTZvQq1evz57n6OiIEiVKZHjdkiVLZvm8smXLZjE9ERFR5ikUCgQFBcHV1VXqKESkg4oWLYr169djwIABqFq1KgoXLpzta/39998AAAcHBwCqn1+GhoZQKBSwsLDA1KlTkZKSgt27d2PJkiUoV64cvLy8Pjv6QhRFCIIAS0tL9OrVC/Xr18fDhw9hYWEBAPD09Mx2TiLKPtmVF69evUorL+Ro8uTJ6Nu3b9rfP3z4gMGDB2Pv3r0YMWIEWrduDVtb20/Oa9GiRbqRFZmV3fOIiIhyituiElFu69y5M86cOQNvb2+cP38exsbGWTo/tWhwcnICAERERECpVKatQWFoaAhA9Ubh0KFDERQUhPPnz2P58uWoWLEi7Ozs0qaqp56TkpICY2NjJCcnw9jYGG5ubnBzc1PTV0xE2SW73UZsbW2RJ08eWFpaSh0lU2xtbbFhwwZYWloiOjoap06dkjoSERFRjkVGRnJbVCLSiKVLlyIqKgozZszI8rmphUPqop+XLl2CgYEBDAwM0kqJ1D89PDzg7e0NFxcX+Pn5Ye/evWnXSL3Otm3bMG7cOCQlJcHY2Dhti1Qikp7sygsPDw9ERkbi3bt3UkfJtDx58qRN++DWrkREpO1SUlLw4cMHbotKRBphbm6OXbt2YdmyZThz5ky2rtGjRw/Y29vjypUr+OWXX9LdJwhCWoHRvn17NGzYEB8+fICfnx/ev3+fdty5c+cwceJErF+/HvPmzQOAL66LQUSaJbvvxkmTJsHU1BTjx4+XOkqWxMXFAUDaXDgiIiJtZWhoCFdXVz5pJyKNKVu2LJYtW4aePXsiODg4y+c7ODhgxIgRAIBFixbh2bNn6XYkTC0wHBwc0L17dwDAkSNHEBERkXaNkiVLonXr1khKSsK1a9fSnt8TkTzI7llJxYoVsX//fpw4cQItWrSAr68vYmNjpY71RU+fPsXz588BAJUrV5Y2DBERUQ4JgpA2T5yISFP69++PBg0aoHfv3tmartGxY0fUqFEDz549w+zZswGoytjUa6VODWnRogVatGiBmJgYHDhwIO38ggULwtvbG2vWrMGxY8f4piSRzMiuvDA0NESrVq0QGRmJU6dOoXHjxsiTJw8MDQ0z/JBqIbGoqCicOXMG7du3R0pKCtzd3VG/fv3PHvvbb7+lzaf73EdGW55+6TwiIiJ1SkpKShtaTUSkaYIgYN26dXj27BkWLlyY5fMrVKiAXr16wdbWFjt37sSSJUsApJ/6kVpkVKxYEYBqy1YAaSM0PDw8MGTIkBx9HUSUO2S3fLjcnzT169cP/fr1S3ebgYEBunbtijVr1mR43te2SrW3t8/WeUREROqgVCrx7t07uLq6cncRIpJMnjx5sGvXLnh6esLDwwN16tTJ9LmCIKBv3774559/sG7dOsyYMQNlypRB8+bNIYpi2gfw75TvmJgYAOBoMyItILtnJ76+vlJH+KISJUrA0dERoigiKCgIL168gLGxMWrUqPHZLVJTyWWr1F27dgEA6tevDxMTExgZGcHIyAjz5s1DhQoVPnvO3LlzERwcDFNTU5iZmcHExARWVlawtrb+5MPKygqOjo5wcXFRW2YiIsp9gYGB3BaViGShevXqmDVrFrp3747bt29/8Tn2f1lZWWH8+PEICwvD3r170a1bN+zduxd16tRJ283w4cOHOHr0KFxcXNCpU6fc+jKISM1k9wzF09NT6ghfNHnyZPTt2zft75cvX0b79u3x/fffw8nJCT179pQuXCY4OzsDAO7du5fu9nr16n31XCcnJzg4OCAxMRHR0dGIjo7+7EJGHTt2xL59+z57jePHj2PJkiWwtbWFo6Mj8uXLl+7P1M9tbW25UBwRkYZERUVxW1QikpUxY8bg7NmzGDJkCHbt2pWlKdNFihTBnDlzEBUVhVOnTqF///6oU6cOvvnmG7x79w5r1qzBy5cvMWLECLi6ukIURU7JJtICsisvihQpAgMDA5w8eRLFixeXOs5Xubu7Y/369ejQoQNGjx6Ntm3bIk+ePFLHypCHhwcAwN/fP8s5TU1NYWpqmu42hUKB2NjYtDIjOjr6i09+zczMYGtri/DwcDx+/BihoaEIDQ1FSkpKuuMMDQ3h4OAAR0dH+Pr6Zjit5v3797C3t+cvHCKibEpOTkZ4eDgKFSokdRQiojSCIGDjxo2oWLEifvvtt3RvHmZG8eLFsXPnTowYMQJnzpzBnj17sGfPnrT7J06ciDlz5qg5NRHlJtmVF4GBgTAxMdGK4iJV+/btUbt2bVy9ehWLFy/GjBkzpI70VXny5FFLyWJoaJilazVs2BANGzZMd5tSqURERARCQ0MREhLyyZ/W1tafvVZSUhIcHR1hYmKCQoUKoVChQihcuPAnnxcsWBBmZmY5/lqJiHRRcHAwnJ2dOdqNiGTH0dERmzdvRpcuXVCvXr0svz7Imzcv1q9fjxcvXuDIkSNpb7I1bNgQtWvXzqXURJRbZFdeuLi4IDQ0VOoYWTZx4kS0b98ey5cvx/fff8+ht1lgYGAAOzs72NnZoVSpUlk6d//+/Xjz5g3evHmD169f4/79+zh+/DiCgoLSHZc/f34UKlQIkydPRrt27dQZn4hIq7m4uLC4ICLZat68Ofr164cePXrg0qVLMDY2ztL55ubmKF++PMqXL59LCYlIU2RXXjRu3BgbNmzA7du3UaVKFanjZFrbtm1RpkwZPHz4EGvWrMEPP/wgdSSdZ2Jigvbt23/2voSEBLx9+zZdsfHmzRvY2NhkeL2FCxciKCgIpUqVSvtwcnLilBQi0mksLohI7ubPn48aNWrAx8cHs2bNytK5qc/juK4FkfaTXXkxceJE7Ny5E99++y1Onz4NCwsLqSNliiAI+P777zFgwAAsXrwYI0eOTDdV4cSJE19cFLNEiRLYtGmTJqLqBTMzMxQvXjxLwwvfvn2LY8eO4eXLl2l7gOfJkyddmVG6dGmUKlUKJUqU4FQUItJaSqUSSUlJ/DlGRFrB1NQUrVu3xoIFC9C0adO0NdyygsUFkfaTXXlhZGSEdevWYciQIShfvjxGjhyJunXrwtHR8Yv7L8thobGePXvixx9/REBAADZu3Ijhw4en3RcSEoKQkJAMz03dY5qks2zZMixbtgyJiYl4/vw5Hj9+nO7j+PHjCA8PB6D6BThgwACsX79e4tRERFkXGBj4xZFoRERyERcXhyFDhuDs2bMYMWIEevXqhbt37yJv3rxSRyMiDRNEURSlDvGxLxUUGREE4ZPdKujzoqKiYGNjg8jISFnviiJX79+/TysznJ2d0aJFi88ed/78eTx9+hSVK1dG+fLlYW5uruGkRESfFxkZifj4eOTPn1/qKEREX/TixQt07NgR1tbW2L17N/Lnz49WrVohT548+P333zmagkjPyK68yO7c29Rh/vRlLC80Y8qUKZg3bx6USiUMDAxQunRpVK5cGZUrV0alSpVQuXJlODo6Sh2TiPRMcnIy3r59i8KFC3OtCyKStRMnTqBHjx7o1asXFi1alLZQZ3BwMCpUqIBFixahd+/eEqckIk2SXXnx+vXrbJ1XuHBhNSfRTSwvNCc+Ph7379/HnTt30j7u3r2L2NhYAICzszMqV66MWrVqwcvLC56enhInJiJdJooi3rx5g/z588PU1FTqOEREn6VUKjFnzhzMmzcPa9euRc+ePT855tixY+jevTtu376NYsWKSZCSiKQgu/KCchfLC2kplUo8f/48rci4desWrl27hmrVquH06dNSxyMiHRYZGQmFQgE7OzupoxARfVZkZCR69+6Nv//+GwcOHEClSpUyPHbkyJG4efMmLly4kOXtU4lIO7G80DMsL+RHqVQiMjIStra2n73/9OnTuHLlCurUqYOaNWtykT0iypbUX/ecI05EcvTPP/+gQ4cOKFasGLZv3/7VojU+Ph41atRAp06d4OPjo6GURCQlrZjw+vr1a9y4cQM3b97M9rQSIrkyMDDIsLgAgAcPHmDp0qVo2rQpbG1tUb58eQwaNAgbN27EgwcPuN4LEWWKIAgsLohIlnbv3o3atWujW7duOHr0aKZGiJmbm2P79u1YuHAhrl+/roGURCQ12Y68CAwMxNy5c7Fz506EhYWlu8/e3h7e3t6YMGECnJ2dJUqonTjyQjsplUo8efIEV69exZUrV3DlyhXcv38foijCwcEBDRo0QMOGDdGwYUOUKFGCL1CIKE10dDSsra2ljkFE9FlLly7FjBkzsHXrVrRp0ybL58+bNw+bNm3C7du3YWFhkQsJiUguZFleXL58Ge3bt0d4eDgyiicIAuzt7XHw4EHUrVtXwwm1F8sL3REVFYXr16/Dz88P586dw7Vr16BQKNC2bVscOnRI6nhEJANRUVGIi4vjtqhEJFtPnjyBIAgoUaJEts5XKBTw8PBAtWrVsHz5cjWnIyI5kV15ERISgjJlyuDDhw/IkycPhg4diiZNmqBgwYIAgLdv3+LMmTNYt24dIiIiYGdnhwcPHnDbyUxieaG7oqOjcenSJQiCgObNm3/2GIVCAUNDQw0nIyIpcFtUItIXz58/R+XKlbF//340adJE6jhElEtkV15MmDABCxcuROnSpXH69GkUKFDgs8cFBASgcePGePz4MX744QfMmzdPw0m1E8sL/TZy5Ej4+vqiYcOGaNCgATw9PbnzAJEO4raoRKRv1q1bh59++gl///33F9cSIyLtJbvyonz58nj48CEuXLgAd3f3Lx57+fJl1K9fH2XLlsX9+/c1lFC7sbzQbydOnMD+/ftx7tw5vHjxAoIgoFq1amjZsiVat26NatWq8R1aIh0QGhoKQ0NDlpNEpDdEUUSrVq1gZ2eHbdu2SR2HiHKB7MoLKysrGBgYICoqKlPHpy5CFh0dnZuxdAbLC0r16tUrnDt3DqdOncLJkycREREBJycntGjRAq1atULTpk35b4RICykUCgQFBcHFxYWL9xKRXgkMDET58uWxdu1adO7cWeo4RKRmsisvslpGWFtbQxRFxMTE5GYsncHygj4nJSUFf/75J44dO4Zjx47hn3/+gZGREX7++WeMGjVK6nhEREREmbJnzx4MHToU9+/f566ERDpGduVF6rSRy5cvo3bt2l889sqVK3B3d+e0kSxgeUGZ8erVKxw/fhw1a9ZE9erVpY5DRERElGk9evRAREQEjh49yhFoRDpEdpPbW7RoAVEUMXjwYISGhmZ4XEhICAYPHgxBENCyZUsNJiTSfW5ubhg+fPgXi4sJEyZg/fr1CAgI0GAyIspITEwMkpOTpY5BRCS5lStX4u7du1i/fr3UUYhIjWQ38iI4OBhlypRBZGQkbG1tMWzYMDRq1AgFChSAIAjw9/fH2bNnsW7dOoSFhSFv3rx49OgRt0rNJI68IHVITk5Go0aNcPnyZSiVSri7u+Obb75Bp06d4OrqKnU8Ir3DbVGJiNI7ffo0OnbsiDt37qBYsWJSxyEiNZBdeQEAfn5+6NChAyIiIjIc6iWKIvLmzYuDBw/Cw8NDwwm1F8sLUqewsDAcO3YMe/fuxcmTJ5GUlITatWvjm2++wTfffIPChQtLHZFI53FbVCKiz/v2229x584d+Pn5wdDQUOo4RJRDsiwvAODt27eYPXs29uzZg/Dw8HT32dnZoWvXrpg8eTIKFCggUULtxPKCcktkZCSOHj2KPXv24I8//kBiYiJq1KiBzp0745tvvkGRIkWkjkikk7gtKhHR58XGxqJixYoYNWoURo8eLXUcIsoh2ZYXH3v58iVCQkIAAI6OjnwRlAMsL0gToqOj04qMEydOICkpCSEhIbC3t5c6GpFOiY+PR2hoKFxdXbkoHRHRZ/j5+aFVq1a4ffs2SpQoIXUcIsoBrSgvSH1YXpCmxcTE4OrVq2jcuLHUUYh0TnBwMOzt7WFkZCR1FCIi2Ro1ahRu374NPz8/rgtEpMX43UtEucrKyuqLxcX169fx888/IygoSIOpiHSDk5MTiwsioq+YO3cuAgICsGLFCqmjEFEOsLwgIkndvHkzbf2ali1bYufOnYiPj5c6FhEREekIS0tLbNy4EVOmTMHTp0+ljkNE2ST5tJGiRYvm+BqCIOD58+dqSKP7OG2E5OjDhw/YvXs3tmzZgj///BN58uRB586d0bt3b9SrV49DPIk+kpycjLi4ONjY2EgdhYhIq3D6CJF2k7y8UMcPDkEQoFAo1JBG97G8ILl79uwZtm7dii1btuDVq1dwc3NDr1690KtXLy60RXqP26ISEWUfdx8h0m6Slxc+Pj7ZOu/WrVs4evQoAJYXWcHygrSFUqnE5cuXsWXLFuzevRtRUVGoU6cO5s2bBw8PD6njEUni/fv3MDAw4LaoRETZxN1HiLSX5OVFVr148QKTJ0/G3r17oVQqAQDt2rXDgQMHJE6mHVhekDaKj4/H4cOH8dtvv+HHH39EnTp1pI5EpHHcFpWISD04fYRIO2lNeRESEoKZM2di/fr1SElJgSiKqFevHubPn88XMlnA8oKISPsolUq8fv0arq6u3F2EiCiHOH2ESDvJvmqMiYnB9OnTUbx4caxZswbJyckoV64cDh8+jAsXLrC4ICIAwJs3b9CqVSscPnwYKSkpUschUqv4+Hjky5ePxQURkRpw9xEi7STb8iI5ORnLli1D0aJFMWvWLMTExMDV1RWbN2/G3bt30bp1a6kjEpGMhIaGIiQkBO3atUORIkUwc+ZMvHv3TupYRGphaWkJKysrqWMQEekMT09P9OvXD4MGDUqbik5E8ibL8mLbtm0oVaoUxo0bh/fv38POzg4///wznjx5gt69e3OuLxF9olq1arhx4wZu3LiB5s2bY/78+ShcuDA6duyIU6dO8YkJERERpTNnzhy8ePECv/76q9RRiCgTZLXmxfHjxzFp0iTcv38foijCwsICY8eOxfjx42FtbS11PJ3ANS9IX0RGRmL79u1Ys2YN7t+/j6JFi2Lw4MHo168fHB0dpY5H9FWiKCIkJASOjo4s7YmIcsmJEyfQrVs3PHjwAAUKFJA6DhF9gSzKi6tXr2LixIm4ePEiRFGEkZERBg4ciOnTp8PJyUnqeDqF5QXpG1EUceXKFaxduxa7d++GUqlEp06d8P3336NatWpSxyPKELdFJSLSjJ49eyImJgYHDhxgWUwkY5JPG+nYsSPc3d1x8eJFAECXLl3w8OFDrF69msUFEeWYIAioW7cutmzZgnfv3mHevHn466+/8ODBA6mjEWUoPj4ecXFxsLW1lToKEZHOW7p0KS5fvoy9e/dKHYWIvkDykRepeysLgoBWrVqhevXq2brOtGnT1BlLZ3HkBZFqNIZSqYShoaHUUYg+wW1RiYg0b8eOHRg7diwePnzIEW9EMiWL8kIdw7MUCoUa0ug+lhdEX5aYmIgHDx6gSpUqUkchPRUQEIA8efJwdxEiIg0SRRGtW7eGo6MjNm3aJHUcIvoMyd/SKVSoEOeWEZFs7N27Fz179oSXlxe+++47tGzZMm2EGFFuUyqVMDMzY3FBRKRhgiBgzZo1KF++PLy9vdGkSROpIxHRf0g+8oI0iyMviL4sJSUFBw4cwM8//4xr166hZMmSGDt2LHr37g0LCwup4xEREVEuWrVqFRYtWoT79+/D0tJS6jhE9BG+nUhE9BEjIyN07twZV69exZ9//omKFStixIgRcHV1xdSpUxEYGCh1RCIiIsolw4YNQ4ECBfDjjz9KHYWI/oMjL/QMR14QZd3Lly+xfPly/Prrr0hMTIS3tzfGjh2LSpUqSR2NdERYWBgsLS1hZmYmdRQiIr336NEjVK1aFefPn0fNmjWljkNE/8eRF0REX1GkSBEsWbIEb9++xdy5c+Hr64vKlSujSZMmePTokdTxSMvFx8cjNjYWpqamUkchIiIApUuXxuTJkzFgwAAkJSVJHYeI/k/S8iI39lJ+9+4drly5ovbrEhHZ2Njgu+++w/Pnz7Fz505ER0fD2tpa6likxZRKJYKCguDi4sLFq4mIZGT8+PEAgJ9//lniJESUStLyokuXLqhcuTIOHDiAnM5e8ff3x7fffovixYvj9OnTakpIRPQpIyMjdO3aFVevXkWBAgWkjkNaLCgoCPny5YORkeSbfxER0UdMTEywbt06zJo1Cy9evJA6DhFB4vLC29sbf//9N7755hsUKFAA33//PW7dupXpIiM0NBQbNmxAw4YNUaRIEaxevRpOTk7w8vLK3eBERF/x4cMHKBQKqWOQjEVFRUEQBG6LSkQkU3Xr1kXPnj0xfPjwHL/RSkQ5J/mCnTdv3sR3332Hixcvpg2ZtbS0RNWqVVGpUiXky5cPdnZ2MDU1xYcPHxAeHo4XL17g+vXreP36NQBAFEXkyZMHEydOxNixYzlv+Au4YCeRZnTt2hV3797F5MmT4e3tzXfW6RORkZGwtraGgQGXnyIikqsPHz6gdOnSWL58Obp27Sp1HCK9Jnl5keratWtYs2YN9uzZg/j4eADIcP7vx5ErVaqEIUOGoGfPnnz3KhNYXhBpxvXr1zF79mwcPnwYRYoUwaRJk9C7d2+Wq0RERFpmx44d+O677/Dw4UPkzZtX6jhEeks25UWq6Oho+Pn54cKFC7h27RoCAgIQGhqKhIQE2NvbI1++fChbtiw8PDzg5eWF0qVLSx1Zq7C8INKsO3fuYM6cOdi7dy8KFCiA8ePHY+DAgTA3N5c6GhEREWWCKIpo2rQpSpYsiVWrVkkdh0hvya68oNzF8oJIGg8fPsTcuXOxY8cOODg44Pvvv8fw4cNhYWEhdTTSoPj4eMTExCBfvnxSRyEioix49uwZKlasCF9fX9SqVUvqOER6iRNtiYg0oEyZMtiyZQseP36MNm3aYNKkSShevDjWrFmD5ORkqeORBqRui2prayt1FCIiyqLixYtj8uTJGDJkCFJSUqSOQ6SXWF4QEWlQsWLFsH79ejx69AgNGzbEiBEj0LlzZ6ljkQZwW1QiIu32ww8/IDExEcuWLZM6CpFe4rQRPcNpI0Ty8vfffyMuLo5DUHVcVFQUYmNj4ezsLHUUIiLKgQsXLqBVq1a4f/8+ChcuLHUcIr3C8kLPsLwgItKs5ORkvH37FoULF+a2qEREOqB///54//49Dh06lOHuiESkfnwWRUQkUwkJCfjrr7+kjkE5JIoiXFxcWFwQEemIBQsW4M8//8TBgweljkKkV/hMiohIprZt24Zq1aqhc+fOePTokdRxKJtMTExgamoqdQwiIlITBwcHLFq0CKNHj0ZsbKzUcYj0BssLIiKZ6tu3LzZu3Ijr16+jXLlyGDBgAN68eSN1LMokzsokItJdvXv3hqurK2bPni11FCK9wfKCiEimjIyM0K9fPzx58gSLFy/GkSNHUKJECYwdOxbh4eFSx6MvUCqV8Pf3Z4FBRKSjDAwMsGrVKixduhSPHz+WOg6RXuCCnXqGC3YSaa+YmBgsXboUCxYsgJGREXx8fDB06FAYGxtLHY3+IyAgANbW1rC2tpY6ChER5aJRo0bh0aNHOHnyJBfvJMplHHlBRKQlrKysMHXqVDx58gSdOnXC6NGjUbFiRZw4cULqaPSRqKgoCILA4oKISA/MnDkTd+/exb59+6SOQqTzWF4QEWmZ/PnzY/369fjrr7+QP39+tGzZEh06dOAUBRlITk5GWFgYnJycpI5CREQakDdvXixcuBBjx45FTEyM1HGIdJpsp408f/4cu3fvxr179xAeHo7k5OQMjxUEAWfPntVgOu3FaSNEukUURRw6dAj+/v4YOXKk1HH0miiKePPmDZycnGBmZiZ1HCIi0hBRFOHh4QF3d3fMmzdP6jhEOkuW5YWPjw9mzZoFpVKZqXcSBUGAQqHQQDLtx/KCiCh3iKKIhIQEmJubSx2FiIg07N69e6hVqxZu376N0qVLSx2HSCcZSR3gv7Zv3w4fHx8AgIuLC5o1awYXFxcYGckuKhERURpBEFhcEBHpqYoVK2LIkCEYOXIkTp06xcU7iXKB7EZe1K1bF1evXkXbtm2xe/dumJiYSB1Jp3DkBZF+uXHjBqZMmYKff/4ZFSpUkDqOTkr9NconqkRE+i0yMhKlSpXCihUr0LlzZ6njEOkc2S3Yef/+fQiCgNWrV7O4ICLKoYSEBLx69QqVK1fGsGHDEBoaKnUknRMYGIj4+HipYxARkcRsbGywaNEiLt5JlEtkV14IgoA8efLAxcVF6ihERFqvfv36uH//Pn7++Wfs3LkTpUqVwrp166BUKqWOphNSt0W1sLCQOgoREclAjx49ULRoUfz0009SRyHSObIrL0qXLo24uDgkJiZKHYWISCeYmJhgzJgxePLkCdq3b4+hQ4eibt26uH37ttTRtBq3RSUiov8SBAGrVq3C8uXL8fjxY6njEOkU2ZUXAwcORHJyMvbs2SN1FCIinZIvXz5s3LgRFy9eRExMDKpXr44xY8YgKipK6mhaRxRFBAQEwNnZGQYGsvtVSkREEqpQoQIGDhyIcePGSR2FSKfIbsFOAGjfvj0uXLiAgwcPwsPDQ+o4OoULdhIRoBo1sHTpUsyYMQN58+bFkiVL0LlzZy46mUnv37+HIAiwt7eXOgoREclQeHg4SpQoga1bt6Jly5ZSxyHSCbIrL2bOnAmFQoGVK1ciIiIC7u7uqFWrFqytrb943rRp0zSUULuxvCCij7158wajR4/GwYMH8cMPP2DBggVSR9IKSUlJMDY2ZtlDREQZWr16NZYtW4a///6bGxEQqYHsygsDA4O0J4NZ2X5OoVDkai5dwfKCiD7nyJEjKFy4MCpWrCh1FCIiIp2QkpKCqlWrok+fPvjuu++kjkOk9WRXXnh5eWXrnSxfX99cSKN7WF4QEWWfQqGAoaGh1DGIiEhL+Pr6on379njy5AkXeCbKIdmVF5S7WF4QEWVPVFQU4uLikD9/fqmjEBGRFvnmm2+QN29e/Prrr1JHIdJqXCKdiIi+aM6cOVi5cqVeT89L3RbV0dFR6ihERKRlFi5ciN9//x23bt2SOgqRVmN5QUREGRJFEYGBgRg5ciQ8PDz0cs96botKREQ5UaRIEYwbNw6jRo0CB70TZZ+sp40kJSXh9OnTuHnzJkJCQiAIAvLly4caNWqgcePGXLU3GzhthIiy49KlS+jfvz/evHmDmTNnYty4cTAyMpI6lkZwW1QiIsqp2NhYlCpVCgsWLIC3t7fUcYi0kmzLi19++QU//vgj3r9//9n7HRwcMGvWLAwaNEjDybQbywsiyq64uDhMmzYNS5YsQbVq1bBp0yaUK1dO6li5KiEhASEhIXB1deW2qERElCM7duzA+PHj8fjxY1haWkodh0jryHL864QJEzBs2DCEhoZCFEW4uLigZs2aqFmzJlxcXCCKIkJDQzF06FBMnDhR6rhERHrBwsICixYtwuXLlxEdHY2qVati9uzZSE5OljparjE1NUWBAgVYXBARUY51794dhQsXxty5c6WOQqSVZDfyws/PDw0aNAAAdOrUCT/99BNKly6d7pjHjx/jxx9/xN69eyEIAs6fP4/69etLEVfrcOQFEalDQkICfHx8sHDhQlSqVAmbNm1CxYoVpY5FREQka7du3UL9+vXx4MEDuLm5SR2HSKvIbuTFqlWrAAADBgzAnj17PikuAKBUqVLYvXs3BgwYAFEUsXLlSk3HJCLSa2ZmZpg7dy6uXr2KpKQkVKtWDTNmzEBSUpLU0dQiOTmZi6oREZHaVatWDV26dMHkyZOljkKkdWQ38qJgwYIICgpCQEDAV7ekCw4OhouLC5ydnfH27VsNJdRuHHlBROqWlJSE2bNn4+jRo7hy5YrWL6acnJyMt2/fonDhwtxdhIiI1O7du3coWbIkzp07h1q1akkdh0hryK68MDMzg6WlJcLCwjJ1vL29PWJjY5GQkJDLyXQDywsiyi3JyckwNjaWOkaOiKKIN2/ewMnJCWZmZlLHISIiHTVt2jScPXsWly5d4rpKRJkku7eUrK2tER0dnakyIj4+HtHR0bCystJAMiIi+hJtLy4AICwsDFZWViwuiIgoV40fPx4vXrzAvn37pI5CpDVkV15UrFgRCoUCGzdu/OqxGzduREpKCipVqqSBZERElB0KhUIrdiSJj49HXFwc7OzspI5CcjB+PCAI/36cPy91IiLSIVZWVpg1axYmTJiAxMREqeMQaQXZlRc9evSAKIr47rvvsGHDhgyP+/XXX/Hdd99BEAT06tVLgwmJiCgr5s2bB3d3dzx58kTqKBkSRTFtHSUO3yXcvQssWSJ1CiLScX379oWVlRU3HyDKJNmteaFUKtGoUSP4+flBEAQULFgQDRo0QIECBSAIAvz9/eHr64t3795BFEV4eXnh7NmzfLKZSVzzgog07caNG+jRowfevXuHpUuXYuDAgbL8ma1UKrlAJwFKJVC7NnDjBuDoCISEqG739QW8vCSNRkS65/Tp0+jSpQuePXsGe3t7qeMQyZrsygtA9QK7f//+2L9/PwB88iQ3NXKnTp2wYcMGvgjPApYXRCSF2NhYjB07FuvXr0e7du3w66+/wsHBQepYRJ9auhQYOxYoXRro0AGYO1d1O8sLIsolrVq1QvHixbFs2TKpoxDJmizLi1Q3btzAzp07cfPmTYT8/50PR0dHVK9eHd26dUONGjUkTqh9WF4QkZQOHjyIgQMHwtjYGJs3b0azZs0kzZOSkgIAMDIykjQHyYS/P1C2LBAToyorzp8HfHxU97G8IKJc8uDBA1SrVg13795FyZIlpY5DJFuyLi9I/VheEJHUAgMD0a9fP5w8eRKjR4/GvHnzJNndg9ui0ifatAGOHgX69AE2bwZmzGB5QUQaMWzYMAQGBuLgwYNSRyGSLU7uJSIijXJ2dsbx48exbNkyrF27FjVq1MDff/+t8RzcFpXS2b1bVVzY2QELF0qdhoj0jI+PD86dOwc/Pz+poxDJFssLIiLSOAMDA4waNQo3btyAIAioXr06lixZAqVSqZHHT0hI4Lao9K+ICGD0aNXn8+cD+fJJGoeI9I+joyMmT56McePGaex3IZG2kXSS75YtWwAANjY2aNeuXbrbsqp3795qy0VERJpRoUIFXL9+HZMnT8b69esxZMgQWFhY5OpjKpVKBAYGwtXVVZa7npAExo8HgoKAunWBAQOkTkNEemr06NFYvXo1du3ahe7du0sdh0h2JF3zwsDAAIIgoFSpUnjw4EG627JCEIS0Rdfoy7jmBRHJVVxcXK4XFwAQGhoKMzMzWFtb5/pjkRa4dAnw8AAMDYG//gIqVPj3Pq55QUQatnnzZsycOROPHj2CiYmJ1HGIZEXSkReFChWCIAhwcXH55DYiItIvmiguAMDBwYG/Z0glKQkYPBgQRdX2qB8XF0REEujVqxcWLVqEdevWYeTIkVLHIZIVScuLV69eZeo2IiIidWFxQWnmzAEePgQKFQKmT5c6DRERDA0NMW/ePPTr1w99+vThSGmij3DBTiIikrV169bleOs4URQRGxurnkCkGx49AubOVX2+YgVgaSltHiKi/2vVqhXKlCmDRYsWSR2FSFYkHXnxOW/evIGhoSEKFCiQqeMDAgKQkpKCQoUK5XIyIiLSNFEU4evri127dmHcuHGYN28ejI2Ns3ydsLAwCIIAS75ApVRLlqimjRQtCsTFATt3fnrM/fv/fn7unGpRTwBo04ZlBxHlGkEQMH/+fDRp0gTDhw9H/vz5pY5EJAuSLtj5OQYGBnB2dsa7d+8ydXyRIkXg7+/PBTsziQt2EpG2EUURy5Ytww8//IAaNWpg165dcHV1zfT5CQkJCAkJ4e4ilF7fvsBvv2Xv3JcvATc3daYhIvpEp06d4OTkhNWrV0sdhUgWZDltJKt9isz6FyIiUiNBEDBmzBhcvHgRb9++RZUqVXDixIlMnZu6LaqLiwuLCyIi0ipz5szBpk2b8OTJE6mjEMmCLMuLrEhISICRkexmvxARkZrVrl0bt2/fRq1atdCyZUtMmTLlq6PugoKC4ODgwN8T9KnNm1W7jHzp4+NFPH19/72doy6ISANKlSqF3r17Y+rUqVJHIZIFrS4vAgICEBoaCnt7e6mjEBGRBtjb2+PIkSOYO3cu5s2bh8aNGyMwMPCzxyYlJUEQBFhbW2s4JRERkXpMnz4dx44dw/Xr16WOQiQ5yd+KunDhAs6fP5/utpiYGMycOTPDc0RRREREBI4fPw5RFFGrVq1cTklERHJhYGCAiRMnok6dOujevTsqV66M33//HQ0bNkx3nImJCZydnSVKSURElHMuLi4YM2YMxo8fD19fX06BJL0meXnh6+sLHx+fdN+IsbGx8PHx+eq5oijCzMwMkyZNys2IREQkQ56enrh9+zZ69OiBJk2aYPny5RgxYoTUsYiIiNRq/PjxKFq0KP744w+0aNFC6jhEkpG8vHBzc4Onp2fa3/38/GBsbIw6depkeI6BgQHy5MmD8uXLo0+fPihevLgmohIRkcw4OTnh5MmTmDVrFqpXrw4AiI6OhqWlJQwMtHpmJBEREQDAxsYGU6dOxcSJE9GsWTP+fiO9JcutUvPnz4+AgACpo+gkbpVKRLqM26ISEZEuSkhIQIkSJbBo0SJ07dpV6jhEkpB85MV/bdq0Cebm5lLHICIiLZO6LSqLC8q08HDVLiIfPgDm5kD58kClSlKnIiL6hJmZGX788UdMmzYNnTp14i5apJdkN/KCchdHXhCRrgoICIC1tTV3F6Gvu3sXWLoU2LkTSEhIf1+tWsDw4UCPHoChoSTxiIg+Jzk5GWXKlMGUKVPQr18/qeMQaRwnTBERkdaLjo7+7Lao9+7dQ69evRATEyNRMpKdHTuAGjWAc+eAadMAf39AoQBiYoCDBwEbG6BPH6BTJyA+Xuq0RERpjI2NMWPGDPj4+CAxMVHqOEQaJ9uRF4mJidi3bx8uXbqEt2/fIjY2FhlFFQQBZ8+e1XBC7cSRF0Ska0RRRGBgIPLnz//JImYnT55E586d4ebmhoMHD6Jo0aISpSRZOHQI6NBBVU788gtgbPz5444dAzp3Bpo3B/buBbg4HhHJhEKhQMWKFTF8+HDusEV6R5blxZ9//omuXbsiICAAoiimzV1OjfrxXObU+xUKhSRZtQ3LCyLSNw8ePEC7du0QHh6O3bt3o1GjRlJHIikkJgKFCgF16gD793+9kDh8GGjXTlVedOqkmYxERJmwf/9+jBgxAs+fP4eFhYXUcYg0RnZvJfj7+6NVq1Z49+4dKlSogPHjx0MURVhaWmLq1KkYOHAgihQpAlEUYW9vj6lTp2LatGlSxyYiIpkqW7Ysrl+/jurVq6NZs2ZYunRphiP5SIOiolRrTnz3HeDpCRQvrpqyYWICODoCXl7AggVAWJh6Hm//fiAkBJg7N3MjKdq2BerWBdasUc/jExGpSYcOHVCgQAGsWrVK6ihEGiW7kRdjx47FsmXL0KJFCxw9ehSCIHx2+9Q1a9Zg1KhRaNmyJQ4dOiRhYu3CkRdEpCsSEhKgVCoz/a6TQqHApEmTsHDhQvTp0wdr166FmZlZLqekDJ05AzRp8vXjHByAbduAZs1y9ngNG6r+PHcu8+ds3w707Ak8faoqV4iIZOLkyZPw9vbGy5cv+Zye9IbsRl6cOnUKgiDAx8fni1vdDRs2DD4+Pjh69CjWr1+vwYRERCS11G1RTUxMMn2OoaEhFixYgG3btmHXrl3w9PTEu3fvcjElfZWrK9C7N7BsmWpkxJUrwOXLwK5dqjUnDA2B9+9VoyDu3cvZYz16pBrhkRWpxz99mrPHJiJSs6ZNm6JcuXJYsmSJ1FGINEZ2Iy+sra2RkJCAxMTEtIXXDAwMYGdnh/fv36c7NjIyEvb29qhVqxYuX74sRVytw5EXRKQLAgMDYWVlle1tUW/duoX27dsjJSUF+/fvR506ddSckL5Kofj6VqQHD6oW2ASAjh2Bffuy/3j29sAPPwATJ2b+nPfvgXz5gAMHgPbts//YRES54OLFi2jdujVevHgBe3t7qeMQ5TrZjbwQRRHW1tbpVoy3tLREVFTUJ3OUbWxsYGNjg0ePHmk6JhERSSQ6OhoAsl1cAEC1atVw8+ZNFC9eHF5eXti+fbu64lFmfa24AFSFQenSqs8vXMjZ4zk4AG/eZO2c1OPt7HL22EREuaB+/fqoU6cOFixYIHUUIo2QXXlRoEABREZGptu7uGDBglAoFHj48GG6Y+Pi4hAREYG4uDhNxyQiIgmkpKTg/fv3cHJyyvG1nJyccPbsWXh7e+PVq1c5D0e5w9JS9WdCQs6u066daoHQrDxn2LRJtXho7do5e2wiolwya9YsrFy5EoGBgVJHIcp1sisvSpQoAQDpnkjWqlULALB27dp0xy5evBiiKMLNzU1T8YiISEIxMTFwdnZONzovJ0xMTLBx40ZMnjxZLdcjNXv4ELhzR/V56giM7BoyBIiIUC3+mRkREcBvvwGDBql2QCEikqHq1aujadOmmD9/vtRRiHKd7MqLFi1aQBRFHDlyJO22gQMHQhRFrFq1Ci1btsSUKVPQunVrTJ8+HYIgoHv37hImJiIiTcmbN6/adwgRBOGLC0SThsXFqRbIXLwYaNBAtTYGAIwenbPrFisGdOsGjBsHXL/+9QydOqmmtgwblrPHJSLKZdOnT8cvv/zC0Rek82S3YKe/vz969+6NChUqYPny5Wm3T5gwAQsXLgSgeqKZGtvDwwOnTp3K0orz+owLdhIRkexs3gz065fx/d9/DyxYAOS0ZIqNBZo2VY3mmDMH6NsXsLH5935RBM6eBSZPBv75Bzh+POs7lBARSaBjx44oVKgQli5dKnUUolwju/LiS86cOYOdO3fC398fNjY2aN68OXr37g0jIyOpo2kNlhdEpG2USiXCw8Ph4OCg0ceNj4/Hs2fPUKFCBY0+rl7KqLyoXBlYuxb4//RRtYiLA0aMALZuBczMVGthuLgA8fHA6dPAkydAuXKqTNWrq+9xiYhy0Z07d1C3bl08f/4czs7OUschyhVaVV5QzrG8ICJtk9NtUbNr+vTpWLRoEX7//Xe0bdtWo4+tdyIigLdvVZ/HxwPPnwO7d6u2KC1WDFi6FGjdWr2PGRAA/PorcOwYEB4OWFioSouhQ4H69XM+yoOISMM4+oJ0HcsLPcPygoi0SXR0dNoinZoWFxeHXr164cCBA1i6dClGjRql8Qx6b+tWoE8fVZGwYYNqmgcREX0WR1+QrpPdgp1ycPz4cTRu3Bh2dnawtLRE1apVsWLFCiiVyixdJ3URuK99/Pbbb+nO27x581fP+eOPP9T5JRMRyY46t0XNDgsLC+zZswfjxo3D6NGjMWbMGChSF48kzejVC+jcGVAqgW+/BT58kDoREZFsVa5cGc2bN9fqnUf4vjp9iaSLRWzZsgUAYGNjg3bt2qW7Lat69+6tlkzz5s3DpEmTAABFixaFlZUV7t69i1GjRuHMmTM4cOBAprfoc3d3z/C+Dx8+4MGDBwCA2hnsH+/o6Ji2dex/2draZioDEZE2EkURAQEBat0WNTsMDAywaNEiFC1aFCNHjsSrV6+wfft2WFpaSpZJ77Rrp5pCEhsLnDgBeHtLnYiISLamTZuGunXrYsKECVo1+iIpKQkmJibc/Yu+SNJpIwYGBhAEAaVKlUp7IZ96W1YIgoCUlJQc57ly5Qrc3d0hCAK2bduWtgXr3bt30axZMwQHB2PhwoX4/vvvc/xYU6dOxezZs1GzZk1cu3Yt3X2bN29Gv3790KdPH2zevDnHj/UxThshIm2QnJyMmJgYWRW1x44dQ9euXVGmTBkcOXIE+fPnlzqSfjh9WrVDCKDaIeT/bzAQEdHndezYEa6urli2bJnUUb5IqVRi06ZNOHnyJKysrODi4oJ27dqhRo0aafdL+QYGyY+kIy8KFSoEQRDg4uLyyW1SmDVrFkRRxKBBg9KKCwCoVKkSFi9ejB49emDevHkYPXo0jI2Ns/04oihi+/btAIBevXrlODcRka4xNjaWVXEBAK1atcKFCxfQunVr1K5dG6dOnULJkiWljqX73r3793MrK+lyEBFpienTp6NOnTqYMGFCutdZciCKIpRKJXbu3InJkyfD398fAGBoaAiFQoFNmzZhwIABmDlzJosL+gQX7Py/qKgo5MuXD0lJSbh27Rpq1qyZ7v7k5GQ4ODggKioKJ0+eRNPUd4Gy4cKFC/D09ISxsTECAgI+2f6PIy+IiOTL398fzZo1w/v37/HHH3+gatWqUkfSba1aAcePqz739QW8vCSNQ0SkDTp16oSCBQvKcvTFlStX0K1bN/j7+2PYsGHw9vZGoUKFsGLFCmzduhXBwcFYtGgRhg0bBnNzc4iiyOkkBIALdqa5ffs2kpKSYGZm9tknosbGxmlDmP47zSOrtm3bBgBo3rz5J8XFx+7evQtvb280bNgQ7du3h4+PD54/f56jxybSeklJql0HmjcHnJ0BU1PVu7GlSgH9+wNXr0qdkHIgJCRE9otiurq64sKFC3Bzc4OXlxeu8t9c9mzeDCQkfPmYJUv+LS7c3IB69XI7FRGRTpg2bRrWr1+PgIAAqaOkk5ycjJEjR8Lf3x+rV6/GqlWr4O7uDldXVyxYsABz584FAPz888/Ys2cPALC4oDQsL/7v6dOnAFTTVoyMPj+bpmjRoumOzY7ExMS0b8SvTRm5c+cOfv/9d/j6+uLQoUOYMWMGSpUqhdmzZ2f78Ym0mr8/UL06MHAgcPIkEBSkKjNiY4EnT4BNm4A6dYBx4wAOKtM60dHRSElJgaGhodRRvsrBwQFnz55Ft27d0n43UBbNmAEUKAAMHgxs2QJcvgzcvQtcugSsWaMqKsaNUx1rYgKsXw9k8PuZiIjSq1SpElq0aCG7nUeePHmCt2/fIn/+/Kj3/0L647UL+/bti8qVKyMwMBBbt27FX3/9BYC7kJCK7MqLkiVLYtasWXj16pVGH/fD/7df+9Ic69T7PuRgq7YjR44gIiICNjY2aNOmzWePyZs3L0aOHInLly8jODgYCQkJuH37Nnr16gWFQoGpU6di5cqV2c5ApJVSUlTDx//+W/X3ihVV79xeuQKcOgVMmwak7gCxZAmwaJFkUSnrUrdF1aZFMK2trfHLL7/A0dFR6ijaKzxcVUr06aMqKypXBurXB4YPV5UZAFCwIHD0KNC4saRRiYi0zY8//oj169cjODhY6ihp5UNUVBRCQkKQnJyMYsWKAUDaG8epJUbPnj0BAH/99Rd2794NgKMvSEV25cWzZ88wffp0FCtWDF5eXtiwYQOioqJy/XET/j901cTEJMNjTE1NAQDx8fHZfpzUKSOdO3eGmZnZZ49p3749li9fjrp168LR0RGmpqaoXLkytmzZgjFjxgBQ7VYSHR2d7RxEWufQoX+Lizp1gL/+Ur3gqV0baNIE8PEB/PyA1MV0585VFR4ke3LZFpU07OxZYO1aoGtXVRnp5KQaWWFlBRQrBnTqpBpN9fix6nuciIiypHLlymjQoAGWLFkidZS08sHOzg6FChVCWFgYzp49CwBp00VTR14WKFAAgOoN4zNnzuCff/4BwNEXJMPyYsqUKXBzc4Moirhw4QIGDx6M/Pnzo3v37jh+/DiUSmWuPG5qkZCUlJThMYmJiQAAc3PzbD1GWFgYjv9/7m7v3r2zdQ0fHx+YmpoiMjIS586dy9Y1AFXrmdWP1K+fSBKp78ICqq0SPze1oFo1oHVr1ecfPgCPHmkmG+VIeHg4LCwsMix0SUcVKwYMGQLs3KmaLhIUBCQnA9HRwLNnwN69QN++gIWF1EmJiLTW1KlTsXr16hyNHM+MzL5GMzU1RZUqVQAAv/32G4B/dxpJLTguXLgAQRBQvHhxPHr0CBcvXgTA0Rckw/Lip59+wvPnz3Hx4kUMGjQINjY2SEhIwO7du9GmTRu4uLhg3LhxuH37tlofNzNTQjIzteRLdu3aheTkZLi5uaXN8cqqPHnyoFy5cgBUo1Syy9XVFTY2Nln6SF1Ah0gSHxeLX1pj4P9DEAEALNy0goGBAezt7aWOoVY3b96U/cKjRESk++rUqYPq1atjxYoVar3umzdv8Msvv2Dr1q24cOFCpkdOurm5oXHjxrC1tcW+ffvw22+/ITY2Nm3Uxb59+7Bjxw7Uq1cP9erVQ1xcHB49eoS4uDi15iftJLvyIpW7uzvWrVuHoKAg7N27F23atIGRkRFCQkKwbNkyVK9eHeXLl8fChQvVsopuiRIlAKi+EVMyGGr+4sWLdMdmVeqUkZ49e+aoOTT+/7D4jHJmhr+/PyIjI7P0MWnSpGw/HlGOlSz57+f//178rNQdeQQByOb3KmmWra2tTr2bEhwcDA8PD3h7e39xNJ9ee/kSmDgRKFxYtWOQuTlQpgywYAHw/r3U6YiIdMqUKVOwbNkytUw5f/nyJQYMGAA3NzcMHToUffr0gZeXF3r16pU2DSSjURip0z7atm0Lb29vAMDYsWPRvHlzTJ8+HY0aNULnzp1hYGCA3377DZ6engBUb9haWFjk2gh80h6CqEWTh8LDw7Fz505s3bo1bbtSQRBgaGiY4yeIUVFRcHBwQHJyMq5du4aaNWumuz85ORkODg6IiorCyZMn0bRp0yxd//nz5yhevDgA4NGjRyhVqlS2cioUCjg4OCAiIgLbtm1Djx49snR+VFQUbGxsEBkZiTx58mQrA5EkQkOB4sWBqCjA3V21vsV/p47cvq1aAyMpCejeHdixQ5qspPcOHDiAbt26wcvLC/v27YOVlZXUkeQhKQkYOVK1SKeNDdCzp2qbY6USuHUL2LVLtVPQjBmqckOHSi0iIqmIoog6deqgU6dO+OGHH7J9nQ8fPqBfv344fPgwypcvj3bt2sHY2Bi//PILAgICkDdvXpw/fx4VKlT46psSsbGx6Nu3L06ePImYmJi02ytXrgwfHx+0adMGT548QenSpeHk5ISnT5/ydykBopZ68OCBWKNGDVEQBNHAwEAt12zRooUIQBw8ePAn923fvl0EINrb24uJiYlZvvb06dNFAGLNmjVzlHHdunUiANHQ0FB8+/Ztls+PjIwUAYiRkZE5ykEkif37RdHcXBQBUaxSRRR/+00Ur1wRxdOnRXHGDFG0tlbdV7myKAYGSp2WviAqKkr88OGD1DFy1blz50QrKyuxdu3aYlhYmNRxpJecLIpt2oiisbEoLl8uirGxnx7z/r0ojh+v+j7+/nvNZyQi0lGHDx8WnZycxLi4uCyfq1QqRVEUxdWrV4uCIIgdO3YUo6Ki0u5/9OiR2KJFC1EQBLFly5bi9evX0533XykpKWmfX79+Xdy3b5+4cOFC8dKlS+mO++uvv0QHBwfR3d1djI6OzvB6pD+0rry4du2a+O2334r58uUTDQwM1FpeXLp0Ke16O3bsSLv9zp07opOTkwhAnD9/frpzlixZIhYuXFjs2rXrF69dvHhxEYC4YsWKLx4XGRkpduvWTbx27Vq621NSUsRffvlFNDMzy7BgyQyWF6T1/vlHFAcMEEVBUL3A+fjDyUkUFy8WxZgYqVPSFyQnJ4svXrwQFQqF1FFy3Y0bN0QHBwexXLly2Sqcdcq0aaJoaCiKJ058/dhly1Tf07t25X4uIiI9oFQqxYoVK4orV67M9vlNmjQRBUEQ9+7dK4qiKCYkJKT9Lr9//75YrFgx0djYWBw4cGBaSZKdwiH2/+X23r17RUEQxMaNG2crM+ke2a558bHXr19j9uzZKF26NOrUqYPVq1fj/fv3MDY2RseOHXHgwAG1PI67uzt++uknKJVKeHt7o1ixYqhUqRKqVq2K4OBgtGrVCt999126cyIiIvD69WsEBQVleN0rV67g2bNnMDY2Rrdu3b6YQalUYufOnahVqxZsbW1RtWpV1KxZEw4ODhg8eDASEhLQokULLFu2TC1fM5FWSU5WTQU5ckRVV/xXcDDw++/A+fMaj0aZI+rZtqjVq1fHxYsXERUVBQ8PD7x580bqSNKIjwdWrgRGjQKaN//68aNGAc2aAT//nPvZiIj0gCAImDJlChYsWIDk5OQsnx8dHY2YmBhYW1unTT03NTVN+11erlw5jBgxAtbW1jhy5EjaDotiJlYoSF3LIjExEaIowuL/u0xt3boVADBo0KAs5yXdJNtnjlFRUfj111/h6emJYsWKYdq0aXjy5AlEUUTt2rWxZs2atMU827Ztq7bHnTJlCo4cOYKGDRsiLCwMz549Q4UKFbB06VIcOnQobSXcrEj9xmvevDkcHBy+eKylpSUWLFiA9u3bw8HBAc+fP8edO3dgZmaGVq1aYdeuXTh27Bi3FCT9ExsLNG4MzJ4NhIUB48cDDx+qdhSJjAROnQLq1QNu3ADatAFY8MmSPm6LWrp0aVy4cAFKpRKenp549eqV1JE0b/duIDwcGD488+eMGAFcvw7cvJl7uYiI9EinTp1gbm6etolAVigUCrx79w7R0dFpa0+kFhOp5UP79u3h6emJkJAQbN26FUqlMlNvVKQeY2pqCkEQ8OTJEwwcOBCHDx9Gu3bt0K5du0yVIKT7ZLdg59GjR7F161YcOXIkrX0DgCJFiqBnz57o3bs3in28FSJlCRfsJK31/ff/vgu7eTPQp8+nx6SkAE2bAr6+gIGBagHPihU1GpMylpCQgODgYBQqVEindhfJrDdv3qBBgwZISUmBr68vin5py19d06OHapegK1cyf45CATg4qL73p0zJvWxERHpk8+bNmDNnDh4+fJjlN2Xbt2+Pw4cPY8aMGZg2bRoUCsUn19iwYQMmTpwIY2NjbNu2DQ0bNkxXYoii+MlzgKioKNy9exf37t3DpUuX4Ofnh6CgIFStWhVLlixB/fr1c/ZFk86Q3ciLtm3bYu/evUhISECePHkwcOBAXLhwAc+fP4ePjw+LCyJ9JIrApk2qz0uW/HxxAQBGRsBPP6k+Vyr/PYdkQalUwsXFRS+LCwAoVKgQ/Pz8YGJiAk9PTzx79kzqSJoTEQE4OWXtHENDVXkREZEbiYiI9FKPHj2QlJSEPXv2ZPncBg0aAAAOHjyI5OTkdMVF6hvO7u7uKF++PEJCQuDr6wtANbJCVK21mO45QOo5hoaGOHv2LEaOHIldu3YBAKZNm4Zz586xuKB0ZFdeGBoaomXLlti1axeCgoLwyy+/oF69elLHIiIpBQerhpwDQJUqXz62WrV/P3/0KPcyUZZZWFjA2NhY6hiSKliwIPz8/GBlZYXLly9LHUdzLCxUU7+yKjYWsLRUfx4iIj1lbGyM8ePHY86cOVmeilG1alW4urrin3/+wbFjxwCoppMASCslSpcujWrVqkGpVOLZs2cIDQ1Nu18QBDx79iytoBAEAaIowtLSEt7e3ti4cSOOHDkCf39/zJgxg6PE6RNGUgf4r4CAAOTLl0/qGEQkJ0Yf/ahKSfnysR8vQmUkux9xeulzQ0T1mYuLC27fvq1X636gcmVgzhzVKIq8eTN3zp07QGCg6lwiIlKbfv36wcfHBydPnkTzzCyi/H9VqlRBrVq1sHfvXuzYsQPt27dPN/oidXpInTp1AACPHz+Gubl52vOAU6dOYcCAAVAoFChSpAhq1qwJhUIBIyMjlCxZEiVLllT710q6RXYjL1hcENEn7OyA1Pb9ypUvFxh+fv9+XqRI7uair0pJScG7d++kjiE7elVcAED//kBSErBlS+bPWbMGKFAAaN0693IREekhc3NzjBo1CvPnz8/SeVZWVmjTpg1sbW1x4sQJnDp1CsCnoy8aNWoECwsL3LlzB2FhYWm358uXD0WLFkVQUBDWr18PADDiG02UBbIrLz527949LFy4EN9++y0GDBiQ7r7k5GQEBAQgMDBQonREpDEGBkCrVqrPAwJUO458zocPwIQJ//6dL3oklbot6td2WSI94OwMfPMNMHcukJntYq9eBX77DRgyhCOoiIhywbBhw3Djxg1cv349S+e1bt0ajRo1QmxsbFr58d9FO4ODg2Fvb49ixYohOTk5bXpK+fLl4eHhgS5dumDMmDFq+TpIv8hutxEAiIyMRP/+/XHw4EEA/w45Tm31ACAuLg6FCxfGhw8f8OTJE/1atT0HuNsIaa1Hj1TrWcTFqf7epo1q4c6iRYGEBNWLnaVL/31h1KgRcOaMZHEJCAsLgyiKLC9IJSgIqFNHVUYePQqUKfP543x9gU6dgHLlgNOnAX0bpUJEpCHjxo3DmzdvsHfv3iydd+rUKfTu3RshISFYu3YtevbsCQsLi7T7z549iyZNmqBSpUq4ffs2gH9fzyUmJsLU1FStXwfpD9mNvEhJSUHLli1x8OBBWFhYoFWrVp8dXmthYYH+/ftDqVSmlRxEpMNKlwYOHVLtPgAAR46o3smtWhWoWxcYN+7f4qJhQyAbq2iT+iQkJCA2Nhb29vZSR9EacXFx+Oabb9Ke6Omc/PlVxYSJCVC+PNCuHXDsGPDsGfD4MbBjB1C/vur7t0oV1fc4iwsiolwzduxYHD16FE+fPs3SeU2bNsV3330HAJg5cyZ8fHzw/v17AMCZM2cwbtw4GBsbp42uUCgUaVNHWFxQTshu5MW6deswbNgwFCtWDH5+fnBxcYGzszNCQkLSjbwAgOvXr6N27dpo1KgRTp8+LVFi7cKRF6T1wsKADRuAEyeAf/5RLQBoZKR6YVSjBuDtDbRtC3CBSMkolUq8fv0aBQsW1PvdRbIiIiICTZs2xbNnz3D69GlU+3jnHF0SGwts3w6sWgXcu5f+vgYNgOHDgfbtOV2EiEgD+vTpAzMzM6xbty5L5ymVSowbNw7r1q1DYmIiihcvDiMjIzz6/05vffv2xfz587meIamV7MoLT09PXLp0CYcOHULr/89Xz6i8SE5Ohrm5OZycnLggXCaxvCCi3KZUKpGYmAhzc3Opo2idyMhING/eHA8fPsSpU6dQs2ZNqSPlHlFUTQcLCgIMDYFChQA3N6lTERHplfv376NGjRp4+fIl8ufPn6VzU1JScOTIEaxfvx5Pnz5FVFQUSpQogdGjR6Nz5865lJj0mezKCzs7O0RFRSEuLg4mJiYAMi4vAMDe3h6xsbFISEjQdFStxPKCtFZEhGp4eXw8YGurmi//nwWiiHRBVFQUWrRogX/++Qfnzp1D1apVpY5EREQ6KDY2Fn/99Re6deuG4sWLw+/jHduyICUlBe/fv0dcXBzXIaRcJbs1L2JjY2FtbZ1WXHxNUlISt9gh0mU3bgB9+/47LcTDA6hQAShWDJg3DwgNlToh/Z/MunCtlSdPHpw4cQIlS5ZEs2bN8ODBA6kjERGRDomLi8Ply5cxZMgQNGnSBBUqVMCdO3cQHR2d5WuJoggjIyPkz5+fxQXlOtmVFw4ODoiKikJsbOxXj3369CliY2Ph7OysgWREpFFKpWrb05o1AT8/wMcHuHULePgQOHtWNTfexwcoVQq4eFHqtHpPFEX4+/sjOTlZ6ig6IU+ePPjjjz/g7OyMxo0b4/nz51JHIiIiHfDs2TMMHz4cjRs3hlKpxN27d3HixAmULVsW69evz/L1BK4xRhoku/KiRo0aAIBjx4599dglS5YAANzd3XM1ExFJYPx4YOFCYNEi1XSRCRNUO4uULq3ajWDTJtXuIpUqAc2aAVncp5zUKzw8HBYWFlygU43s7Oxw+vRpWFtbo1GjRvD395c6EuWS8eNVawynfpw/L3UiItIlCoUCgYGBGD16NCpUqIC4uDjcvHkTO3bsQKlSpSAIAsaPH4/FixcjKSlJ6rhEGZJdedG3b1+Ioohp06YhKCgow+MWLlyItWvXQhAE9O/fX4MJiSjXnT8P/PwzsGQJ8N13Ga9tkS8fcPw4ULky0L078Jl1cSj3cVvU3OPk5IQzZ84AABo3bozg4GCJE5G63b2r+lFHRKRuCQkJuH37Nr799lsUK1YM/v7+uHbtGnbv3o1y5cqlO7Zt27awtLTE77//LlFaoq+TXXnRvn17tGrVCk+ePEH16tUxceLEtMU49+zZg2nTpqFMmTKYOHEiAKBbt27w8PCQMjIRqduqVaoFOUeN+vqx5uaqZ/4vXgAnT+Z+NkpHqVQiMDAQzs7OHDqaS1xdXXH27FlER0ejSZMmCA8PlzoSqYlSCQwaBKSkAI6OUqchIl2RkJCAu3fvYty4cahXrx7evn2LS5cuYf/+/ahYseJnzzE0NMQPP/yAhQsXcg0rki3Z7TYCqBbt7NmzJw4dOvTZJ8OpkTt06IDt27fDzMxM0xG1FncbIdkLCgIKFgSWLgW+/TZz54giUL064OwMHD2aq/EovcDAQFhaWvLniQY8ePAAo0ePxvbt2+HIV7o6YelSYOxY1Wy4Dh2AuXNVt/v6Al5eUiYjIm0kiiLevXuHpKQkuLu7o3LlyvDx8cn0ttsJCQkoVKgQtm3bhqZNm+ZyWqKsk93ICwCwtLTEgQMHcOTIEbRt2xb29vYQRRGiKCJPnjxo2bIlDh48iH379rG4INI19+6ppn+0apX5cwQBaN0auH0793LRZ9nZ2bG40JCyZcvi9OnTLC50hL8/8OOPqs/XrAEyuckaEVGGBEFI2/Xjxo0bOHHiRKaLCwAwMzPD8OHDsXjx4lxMSZR9siwvUrVq1QoHDhxASEgIkpKSEB8fjw8fPuDo0aNo27at1PGIKDfExan+tLTM2nlWVkAmdiki9TI1Nc3S8UlJwIYNQPPmqoEypqaq/3WlSgH9+wNXr+ZSUCKZGT4ciIkB+vThKAsiyp6kpCQEBARAqVSm3WZkZAQAKFiwYLauOWzYMPj5+eGff/5RS0YidZJ1efExIyOjLD9JJiItZGOj+jM0NGvnhYT8ey7lKlEU0z1Ryix/f9XsnoEDVcuTBAWpyozYWODJE9UGMnXqAOPGqWYCEemq3btVM9zs7FSbKhERZUVqaREcHAw7OzsYGKjvJZ2TkxN69OiBpUuXqu2aROqiNeUFEemJGjWAPHmArKx2nZIC7NoFNG6ce7koTXh4OCIiIrJ0TkqKaibQ33+r/l6xIrB5M3DlCnDqFDBt2r+DbZYsUe2QS6SLIiKA0aNVn8+fr9o0iYgoM5KTkxEQEICgoCDY2trC1dU1V6bQjxkzBtu2bUNISIjar02UE0ZSPviFCxfUdi3uOEKkI6ysVOOo169XTQjPzIiro0dVb+uPGJH7+fRcQkICYmJiUKhQoSydd+jQv8VFnTrAxYvpd8Bt0gRo21Z1X3KyauHCsWMBI0l/S2mHAwcO4Ny5c1i+fDl3fNEC48erRh3VrQsMGCB1GiLSJnFxccibNy8sLCxy9XHKly8PDw8PrF27FtOmTcvVxyLKCkmfFnp5eanliZYgCEhJSVFDIiKShREjgHXrgMGDVXMJvjQc8s0b1fGenkDVqprLqIdSt0UtWLBgln92X7787+eTJqUvLlJVq6Zad/XAAeDDB+DRI6B8+RyG1gNRUVFYuXIlzMzMsJBzEGTt0iXg119Vpdzataq1homIMpKSkgJRFGFsbAwAsNHg9NixY8eiT58+GD9+PDdIINmQfNpI6i4iOfnIztxrIpKxUqVUcwq2bgW6dAFevfr0GKVStXBC3bqqZfp37tR0Sr0THBwMe3v7tCdRWZGU9O/nRYtmfFyxYv9+npiY5YfRS3369MHy5cuxaNEiLFmyROo4lIGkJFUfK4qqUUUVKkidiIjkKiUlBcHBwXj37h0UCoUkGZo1awYHBwf8npVpvES5TNLyQqlUfvbj0KFDyJs3L4oVK4Z169bh6dOniI+PR0JCAp49e4Z169ahRIkSyJs3Lw4fPszygkgXde8O7NsHnDmjerXbpg2wYoXqbcuffgJKl1ZtWeHqCvz5J5A/v9SJdVpMTEzadtXZUbLkv5+/eJHxcc+fq/4UBKBEiWw9lF4aOXIkJk6ciHHjxmEnizxZmjMHePgQKFQImD5d6jREJEcKhQLBwcF4+/YtLC0tUahQIclGPQiCgLFjx2Lx4sUQuYo2yYQgyuxf419//QV3d3fUqlULJ06cgLm5+WePS0hIQPPmzXHt2jVcuXIFlStX1mxQLRUVFQUbGxtERkZm+0UIkUbFxqoW71y7VrVoQlKSakHPVq1Uew26u3PstQYoFAoIgpDtFc1DQ4HixYGoKNX/Mj+/T6eO3L4N1K6t+l/cvTuwY4cagusRURTRp08f7Nq1C3/88QcaNGggdST6v0ePgEqVVP+2Dx1Sre/yXzNmAD4+qs99fbl9KpG+SUhIQFBQEOzt7WFlZSWLNYzi4+NRqFAh7NixA02aNJE6DpH8yosuXbpg3759+Oeff1C6dOkvHvvw4UOUK1cOXbp04TtNmcTygrSaKKqmi3xuwQSSvQMHgB49gPh4oEoVYMwY1YiMmBjVmhg//wxERwOVKwMnTnAwTXYkJyejdevWuHr1Ki5cuIBKlSpJHYkADBkC/PKLahDZ7NmfP2bvXtVgM0C1VnHZsqrP27T5dyceItJdqS/J5FBafGz69Om4ceMGjh8/LnUUIvmVFy4uLoiPj8eHDx8ydbytrS3Mzc0REBCQy8l0A8sLIsqKlJQUGKlxy48HD4DFi4GNG1Vd1MecnIAJE1TrAvDFWvZFR0fDy8sLgYGBuHLlCgoXLix1JL3Xty/w22/ZO/flS8DNTZ1piEhqSqUS4eHhSElJQX6ZN/XBwcEoXLgw/vrrL5RNbVWJJCL5gp3/9eHDByQkJGRqHQulUomEhIRMFx1ERJR5CQkJai2Gk5NVU0GOHPm0uACA4GDVDKHz59X2kHrJ2toax44dg5mZGVq0aIHw8HCpIxEREVSvXd6/f4/Xr1/D2NgYTk5OUkf6KicnJ3h7e2PZsmVSRyGSX3lRoEABJCUl4eDBg1899uDBg0hMTESBAgVyPxgRkR5J3RbV2dlZLdeLjQUaN1YNmQ8LA8aPVy1emJgIREYCp04B9eoBN26ohsnzOVLO5M+fHydPnkRoaCjatm2L+Ph4qSPptc2bVYXdlz4+XsTT1/ff2znqgkj7iaKIsLAwvH79GkZGRnBzc4ONjY3spohkZNSoUdi2bRvfMCbJya686NChA0RRxODBg3H+C2+/XbhwAYMHD4YgCOjQoYPmAhIR6YGcbIv6OdOnAxcuqD7fsAGYP1+1YYyJiWr91SZNVC/YGjRQvWAbNw64d08tD623SpQogWPHjuHu3bvw9fWVOg4Rkd4SBAEmJiZwc3ND3rx5taa0SFW5cmVUrVoVGzdulDoK6TnZrXkRERGBypUr482bNxAEAe7u7mjYsCEKFCgAQRDw9u1b+Pr64tKlSxBFEYUKFcKdO3eQN29eqaNrBa55QURfEx0djejoaLi4uKjleqIIODgA4eGqBTofP8742MuXVSMwANWCnkuWqCWCXgsNDUW+fPmkjkFfwd1GiHSHKIppz7Wzu0uX3OzevRsTJ07E06dPYciF00ki6luFTU3y5s2L8+fPo3Pnzrh16xYuXbqEy5cvpzsmtW+pWrUq9uzZw+KCiEhNUufjqnORx+BgVXEBqHYZ+ZJq1f79/NEjtUXQaywu5OX9e0ChUC1QS0S6RRRFREREICIiQqumhWRGhw4dMG7cOBw/fhxt2rSROg7pKVlWgW5ubrh27Rp27dqFDh06oGDBgjAxMYGJiQkKFiyIDh06YOfOnbh27RqKFCkidVwiIp1hYGCAQoUKqfWdoo83K0lJ+fKxycmfP49IFzx9qtoKuGJF4J9/pE5DROqSWlq8evUKSqUShQsXhp2dnU6VF8bGxhg6dChWrFghdRTSY7KbNkK5i9NGiEjTlErA1haIigJcXIDXrzMuJo4eVS3YCQAjRwLLl2suJ1FuevpUtaaLtbVqrZegIODcOaBcOamTEVFOhYWFQRRF2NnZ6cw0kc8JCQlJm7JfunRpqeOQHtLd7y4iIsq0pKSkTG1RnR0GBkCrVqrPAwJUO458zocPwIQJ//69detciUMAYmJi8IjzcjTm4+Li3Dng7Fkgf36gYUOOwCDSRqIopvudaW9vDwcHB50uLgDA0dERXbp0wcqVK6WOQnqKIy/0DEdeENF/KZVKvH79GgULFlTb7iL/9eiRaj2LuDjV39u0Afr0AYoWBRISgKtXgaVLgTdvVPc3agScOZMrUQhAv379cPr0ady4cUNt2+HS5/23uEj9z/3+verfOUdgEGkPURQRExODsLAwODg4wMrKSupIGnfjxg00bNgQ796942sJ0jiWF3qG5QUR/VdgYCAsLS1z/WfC+vXA5MmqF21f0rAhsHevaqoJ5Y6AgADUqFEDBQoUgJ+fH8zNzaWOpJMyKi5SscAg0g4flxYWFhawt7fX6x03ateuDW9vb4waNUrqKKRndHtsExERfVF0dDREUcz14mLNGmDwYNWLs1mzVNtA5ssHGBsD5uZAkSJAly7AwYOqERcsLnKXi4sLDh8+jPv376Nv377g+xjq97XiAlBtIcwpJETylpSUhNevXyMuLg6urq5wdHTU6+ICAEaOHImVK1fm2nRTooxw5IWe4cgLIkqVkpICf39/FC5cOFfn6a5ZAwwfDnTuDBw7Bri7A4cOqUoLktbevXvRuXNnzJgxA9OnT5c6js7ITHHxMY7AIJIvpVIJpVIJI26BlSYpKQmFChXC5s2b0bx5c6njkB7hyAsiIj0VEhKC/Pnza6S4GD0a2LVLVV5cugS0awfEx+faw1ImffPNN5g1axZmzJiBXbt2SR1HJ2S1uAA4AoNITuLi4vD+o/mNBgYGLC7+w8TEBEOGDOG2qaRxHHmhZzjygohSiaKYq3vQf1xcLFkCpD7U+fNAy5ZAvXocgSEHoiiiV69e2LdvH/z8/FCzZk2NZ4iKAo4fB27cAG7eBN69A0JDVQVX3rxA2bKqfzMDBgD29hqPl2nZKS4+xhEYRNJJLS2MjY3h4OCQawtY64qAgAAUKVIE//zzD4oXLy51HNITLC/0DMsLItKEjIqLVCww5CUhIQENGjTAq1evcOPGDRQsWFCjj3/mDNCkydePc3AAtm0DwC4y8gAAprVJREFUmjXL/UxZ9eqV6t9zdouLVB8XGBcvAiVLqjUmEf1HfHw8QkNDYWRkhHz58rG0yIIuXbrAzc0NCxYskDoK6QlOGyEi0iNKpRLxuTxf42vFBaBasPP4cU4hkQszMzMcPHgQxsbGaNu2LWJjYzWewdUV6N0bWLYM2L8fuHIFuHxZNd2oc2fA0FD1wr5tW+DePY3H+6orV1QjRrp1y35xAagKml69gJAQVXlBRLlHFEVER0cjf/78cHFxYXGRRcOGDcPGjRuRkJAgdRTSExx5oWc48oJIv+X2tqiZKS4+xhEY8nLv3j3UrVsXzZo1w549e3J1PZSPKRSqcuJLDh4EOnRQfd6xI7BvX67HyhJRBCZNAubPV/3bHzMme9f55RdgyBDg22+B5cu//j1ERFmTmJgIExOTXJ02qS9EUUTp0qUxbdo09OjRQ+o4pAckXX1my5YtartW79691XYtIiJdlNvboma1uAD+HYHRsqVqBAYLDGlVrFgRO3bswKpVqxAXFwcrKyuNPG5mdh1s3x4oXRp49Ai4cCHXI2WZIABz56o+HztW9WdWCwwWF0S5JzExEaGhoQBU20WzvMg5QRAwdOhQrF27luUFaYSkIy8MDAzU8oNDEASkpKSoIZHu48gLIv2U29uiZqe4+BhHYMhLbi/mml3VqwO3bgFWVkB0tNRpPi+7IzBYXBDljo9Li3z58sHU1FTiRLolPDwcBQoUwPXr11GhQgWp45COk3TkRaFChTJ8chQaGoq4uDgAgJGREez/v7x4WFhYWlFhaWkJBwcHzYQlItJSoigiICAg17ZF3bAhZ8UF8OkIjOPHAe5MJx05FhcPHwJ37qg+L11a0ihflJ0RGCwuiHJHWFgY4uLikC9fPpiZmUkdRyfZ2dmha9euWLduHVauXCl1HNJxki7Y+erVK7x8+fKTjwkTJiA5ORn16tXDyZMnER0djcDAQAQGBiImJgYnT55E/fr1kZycjAkTJuDly5dSfhlERLIWGxsLCwsLmOfScIZjxwBjY9Viizl50VWrFlCpkmqRxogItcUjLRYXp9p+dPFi1RakCoXq9tGjpc31NakFxoQJqgJj6dKMj2VxQZR77Ozs4OrqyuIilw0dOhRbtmxBTEyM1FFIx8luwc5z586hadOmaN++PXbv3p3hu4SiKKJLly44cOAAzpw5Ay8vL80G1VKcNkKkn3JzGkBEBNC0KfDsGXD2LFClStavER+v2kXizz9VZQh/pOuvzZuBfv0yvv/774EFC7TjRf7XppCwuCBSn+TkZISGhsLa2hrW1tZSx9EroiiiatWqGD58OAYNGiR1HNJhstsq9eeff4YoiliyZMkXhzcLgoCff/4ZSqUSixYt0mBCIiLtk5vTAPLmBU6dAooXBxo1Am7fztr5LC60w5UrVyR9/MqVgatXgYULtedF/pdGYLC4IFKPlJSUtBHaefPmZXEhgdSFO9esWQOZvS9OOkZ2Iy+cnJzwP/buO0yq+mzj+He2917YXbYAFhAI0kRBFCwoAkpUNKKUiMagxh41iTVRX6OxxBKJiiKWYO+dYkFsgIiISt3Csmzvbdp5/xhnZaVtmdkzM3t/rmsvZmfOzHlGYXfmnt/veex2O5WVlR06PikpidDQUEpLS71cWWDQyguR3qO+vp6YmJge61/QlRUYCi78w+eff87YsWN5/PHHmTdvnlfPVVMDO3a4Ljc3w9at8MIL8OqrMGCAKwCYOtWrJXjcr1dgREUpuBDpLrvdTkVFBa2traSmphIVFWV2Sb1afX09mZmZLFu2jCOOOMLsciRA+Vx4ERUVhcPhoL6+nrCwsP0ea7VaiY2NJTg4uK25p+yfwguR3qGhoYG6ujoyMzN79LydCTAUXPiXiy66iKeeeoqVK1cyatSoHj//00/DnDmuN/oLF8LcuT1eQrfsHmCAgguR7rLZbFitVqKjo80uRX528cUX09LSwhNPPGF2KRKgfG7bSL9+/bDb7SxevPiAxy5evBibzUa/fv16oDIREf9gt9spLy+nT58+PX7ujm4hUXDhfx544AGGDRvGGWecQUVFRY+ff9YsmDEDnE7XG//q6h4voVvcW0j+7//g5psVXIh0lvvDTbfQ0FAFFz7moosuYsmSJVT72w9o8Rs+F16cc845GIbBZZddxlNPPbXP4xYvXsxll12GxWLhnHPO6cEKRUR8l7fHonbEgQIMBRf+KTw8nJdeeommpibOOeccHO7RHz3otNNcfzY2wrvv9vjpu81igeuvh1tuUXAh0lEOh4OysjKKiop8coyz/GLYsGEcfvjhHfoQWqQrfG7bSEtLC2PHjmXdunVYLBays7OZMGECWVlZWCwWduzYwccff0xhYSGGYXD44YezatUqjUDqIG0bEQlsVVVVOJ1OUlJSzC5lr1tIFFz4v+XLl3PiiSdy3XXXcccdd/TouT/80PV3CuCOO1zbMEQkMDkcDqqqqmhoaCAlJaVHezhJ1z311FPcfffdfPfdd/r/JR7nc+EFQHV1NfPmzeO1114D9uyS7y751FNP5YknniApKamnS/RbCi9EApfT6aSkpITMzEyfecGwe4Dx1luu5fIKLvzfXXfdxXXXXcerr77K9OnTe+y8u49RfeAB+NOfeuzUItKDDMNgx44dxMfHExsb6zO/0+TAGhsbyczM5IMPPmDMmDFmlyMBxifDC7evv/6aJUuWsHr1asrKygBIS0tj1KhRnH322epk2wUKL0Skp7kDjK+/dk1ZUHDh/wzDYMaMGXzwwQd8/fXXHHrooT1y3ilT4J13XJdXrNDfI5FAYhiGQooAMX/+fOx2O4899pjZpUiA8bnworCwEHCFFNoK4nkKL0TEDDU1cPXVrmkRxxxjdjXiCfX19RxxxBEEBQXx5ZdfEhMT0+XHWrQIfvc72N+v/fvug6uucl3Oy4PNmyEkpMunFBEf4XQ6qa6upq6ujtzcXNP6NYnnrFmzhmOPPZaSkhJiY2PNLkcCiM+FF0FBQQQFBVFYWNjjI/56A4UXIoGnsbGR0NDQA46XFvG0H374gSOOOILJkyfz/PPPd/lT07w8qK+HM86Ao4+GAQMgJsZ13XffwbPPwmefuY4NC3Ot3jnhBM89DxHpeU6nk5qaGmpra0lISCAhIUErLwKEYRgMHz6cP/3pT8ybN8/sciSA+Fx4ERcXR2hoKJWVlWaXEpAUXogEFrvdTlFRkT6tEtO89NJLzJ8/n6+//pq8vLwuPUZeHhQUHPi4vn3hiSfgxBO7dBoR8RF1dXVUVlYqtAhgDz30EM899xyrVq0yuxQJID4XXvzmN79h8+bNNDQ0EBwcbHY5AUfhhUjgMAyDoqIiUlNTiYyMNLsc6cVqa2uJj4/v8v23bnWNEH3pJdcI0fh4aGhwbSNJT4fDD4epU+Gss1x9U0TEv1mtVkJCQhS6B7Dq6moyMzNZvXo1gwcPNrscCRA+9xNj+vTpWK1W3n77bbNLERHxadXV1URFRSm4ENN1J7gAeOMNV3Bx7bUwfTo0NcGrr7q2jWzZ4rpt7lwFFyL+yDAMampqaGhoaLsuLCxMwUWAS0xM5IwzzmDhwoVmlyIBxOdWXjQ2NjJixAgaGhp49913+c1vfmN2SQFFKy9EAkNLSwulpaXk5ORoua34NXcjzuuvhzvuAJvN1bzz7bfh5ZddKy5ExP8YhkFdXR1VVVXExsaSlJSkwKKX+eijjzjzzDMpLi4mPDzc7HIkAPhceLF48WIqKiq45ZZbaGlp4eSTT2bcuHGkpaXtdxvJ7Nmze7BK/6XwQiQwlJeXk5CQQGhoqNmliHTZr4MLdw5ntSrAEPFXhmFQX19PZWWlQotezjAMDjnkEG6//XbOOusss8uRAOBz4UVQUFDbp4gdnfdssViw2+3eLi0gKLwQEZGecKDf4fsKLtwUYIj4p5aWFurr60lKSlL/OuHOO+9kxYoVvP/++2aXIgHA58KLvLy8Li2B3r59uxeqCTwKL0RExNs++ugjrrrqKpYtW0ZiYuIetx8ouHBTgCHi+wzDwG63ayWg7FVJSQm5ubls2rSpyxOpRNx8LrwQ71J4IeK/7HY79fX1e30zKOJLCgoKOPzwwznuuON46aWX2n0o0dHgwk0BhohvMgyDxsZGKioqiImJISUlxeySxEeddtppHH744dx6661mlyJ+ThvQRET8gGEY7Ny5k4iICLNLETmg3NxcFi5cyCuvvMKCBQvaru9scAEQFgZLlsCUKXDGGfDWW14sXEQ6pLGxkcLCQhobG+nbt6+CC9mvefPmsWjRIpxOp9mliJ/TyoteRisvRPxTVVUVTqdTLxDFr1xyySUsXLiQr776imXLftPp4GJ3WoEhYj7DMNixYwehoaGkpKQQEhJidkniB2w2G1lZWSxZsoTjjjvO7HLEjym86GUUXoj4n9bWVnbt2qWxqOJ3WlpaGDNmDOXlkygpuZvrroP/+7/OBxduViucfTa88w6sXAmjR3u2XhE5MKfTqekh0mlXXnklVVVVPPXUU2aXIn7Mp+PSVatWsXLlSnbs2EFjYyP7ylksFgsLFy7s4epERLzP6XSyc+dO+vbtq+BC/E5ERARLlixh+PAbsFiclJUFYRjdCy+qqiA8HKKiPFuriOypubmZiooKMjMz2yaHKLiQrpg7dy5jx47loYceIjY21uxyxE/55MqLzZs3M3PmTNauXdvu+r2NXXNf53A4erJEv6WVFyL+pbm5GZvNpn+v4teefPJJzj9/KRbL08ydG8Tjj0Nn3/80NLj6XnzzDbz3Howd651aRcS1aqqsrIyQkBBSUlIICwszuyQJAIcffjhXXHEFc+fONbsU8VM+F51WVlZy3HHHsWbNGtLS0pgxYwaGYRAREcF5553H8ccfT0xMDIZhkJyczJw5c5g9e7bZZYuIeEVkZKSCC/F7c+fOZeZMCA//A089ZXDBBdCZvm0KLkR6RktLC0VFRVRWVtKnTx8yMzMVXIjHzJkzR9tGpFt8Lry4//77KS4uZsyYMWzdupUlS5YAEB8fz+LFi/nggw/YuXMnf/7zn6moqCAyMpInn3zS5KpFRERkXywWC4888ghZWR+Rk3NjpwIMBRciPcdut5OWlkZWVpZCC/G4c889l88++4zt27ebXYr4KZ8LL95++20sFgt33HEHUfvY0BodHc0///lPLr/8cv773//y4osv9nCVIiLeYxgGpaWl++zzI+KP4uLiWLJkCcXFd3HSSc/x1FMcMMBQcCHiXa2trbS2trZ9HxMTQ3h4uIkVSSBLS0vj5JNP5umnnza7FPFTPtfzIj4+nsbGRlpaWtrGLwUFBZGUlERFRUW7Y0tLS8nMzOS4447jww8/NKNcv6OeFyK+r6qqCofDQWpqqtmliHjcggULSE5OxmqdwezZMGcOe+2BoeBCxHusVivl5eU4nU7S0tIUWEiPefnll7n22mvZsmWLGpFLp/lceBEVFUVkZCSVlZVt18XExGCz2dolw25JSUmEhoZSWlrak2X6LYUXIr5NY1GlN3n2WfYaYCi4EPEOq9VKRUVFW0AeERFhdknSy7S2tpKZmclrr73G+PHjzS5H/IzPbRvJzMyktrYWu93edl16ejp2u51t27a1O9Zms1FXV0dtbW1Plyki4nHusaiZmZkKLqRXOPdcWLyYdltIFFyIeEdLSwu7du0iMTGR7OxsBRdiivDwcM455xw17pQu8bnwol+/fhiGQVFRUdt1o0ePBuCZZ55pd+yiRYtwOp1kZWX1aI0iIt5QVlZGcnIyoaGhZpci0mN2DzDOP1/BhYgn7b7AOiIigpycHCIjI02sSMQ1geqFF16gqanJ7FLEz/hceDFp0iQA3nvvvbbrZs2ahWEY3HbbbVxyySU89thjXHrppVx66aVYLBamT59uUrUiIp5hGAZhYWHaziW9kjvAePppBRcinmC329m1a5e2VYtPGjlyJNnZ2bz66qtmlyJ+xud6XmzatIlJkyYxduxYnnvuubbrZ86cyZIlS9otpTYMg0GDBrFq1Sri4+PNKNfvqOeFiIj4mpqaGuLj4/noIwspKTB0qNkVifgnu91ORUUFra2tpKSkEB0dbXZJInt11113sXTpUj744AOzSxE/4nPhxb4YhsHjjz/O888/T1FREfHx8Zx88slcffXVCi46QeGFiIj4koqKCoYMGcLtt9/OvHnzzC5HxC8ZhkFZWRnNzc2kpKQQExNjdkki+7Vjxw769etHUVERffr0Mbsc8RN+E16IZyi8EPEtVVVVREREEBUVZXYpIqa54IILeP7551m/fj39+vUzuxwRv9Tc3ExERIQaPovfmDhxIqeddhpXXHGF2aWIn/C5nhciIr1Fa2sr9fX1ap4mvd69995LSkoKc+bMweFwmF2OiM9zOBxUVFTgdDrbrouMjFRwIX7l3HPP5dlnnzW7DPEjCi9EREygsagiv4iLi2PRokWsXLmS+++/3+xyRHyW0+mkvLycwsJCwsLC9PtD/NqZZ57J+vXr2bRpk9mliJ8wddvI4sWLPfZYs2fP9thjBTJtGxHxDbt27SIqKkr/DkV2c/XVV/Pwww+zZs0aBg8ebHY5Ij7D6XRSVVVFfX09SUlJxMXFKbiQgHD66afzm9/8hltuucXsUsQPmBpeBAUFeeQHr8ViwW63e6CiwKfwQsR8DQ0N1NbWkpWVZXYpIj6lpaWFkSNHEh4ezhdffEFYWJjZJYn4hKqqKoKCgoiPj1doIQHl5Zdf5vrrr2fTpk36uy0HZGp4kZeXt8+/pOXl5TQ1NQEQEhJCcnIyAJWVlW1BRXR0NCkpKQBs3769Byr2fwovRMxXV1dHTEwMQUHauSfya2vWrOHII4/kL3/5C3//+9/NLkfEFE6nE8MwCA4ONrsUEa9qaWkhPT2dDz/8kCOOOMLscsTHmfrKOT8/n+3bt+/xdd1112Gz2Tj66KN5//33qa+vp6SkhJKSEhoaGnj//fcZP348NpuN6667TsGFiPiVuLg4BRci+zBy5Ehuuukm7rjjDr788kuzyxHpUYZhUF1dTUFBAS0tLWaXI+J1ERERnHHGGWrcKR3ic6NSly9fzqRJk5g+fTovvPDCPl/gG4bBWWedxauvvsrSpUuZMGFCzxbqp7TyQkREfJ3dbmfcuHHU1NTw7bffEhERYXZJIl5lGAY1NTXU1NQQHx9PQkKCQm7pNZYtW8bMmTMpLi4mJCTE7HLEh/ncT8V77rkHwzC477779vtD22KxcM899+B0OvnXv/7VgxWKiHRea2srpaWlZpch4hdCQkJYtGgR+fn5/OMf/zC7HBGvam1tJT8/H6fTSW5uLklJSQoupFeZMGECwcHBLFu2zOxSxMf53MqL9PR07HY7lZWVHTo+KSmJ0NBQvSnoIK28EOl5TqeTgoIC+vbtS2hoqNnliPiN++67j+TkZE0Uk4BmGAaGYSiwkF7t6quvpry83KPTKCXw+Fx4ERUVhcPhoL6+/oBdxq1WK7GxsQQHB7c195T9U3gh0vN27dpFZGQk8fHxZpciIiImMgyD+vp6mpubSU9PN7scEZ+xdu1ajj32WEpLS4mKijK7HPFRPhfx9uvXD7vd3qHUbfHixdhsNvr169cDlYmIdF5DQwMOh0PBhYhIL2YYBnV1deTn59Pa2to2LU9EXIYPH07fvn154403zC5FfJjPhRfnnHMOhmFw2WWX8dRTT+3zuMWLF3PZZZdhsVg455xzerBCEZGOsdvtlJeXk5GRYXYpIiJiAvdKC/f0kJycHFJTUzUCVeRX3O/pnn/+ebNL6THr1q2jrq7O7DL8is9tG2lpaWHs2LGsW7cOi8VCdnY2EyZMICsrC4vFwo4dO/j4448pLCzEMAwOP/xwVq1apU7kHaRtIyI9x2az4XA49PNJRKSXco8+jY+PV2AhcgA//fQTw4YNo6ysLCDfp7S0tPDmm2/y/PPP89prr+F0Olm5ciVjx441uzS/4XOzaCIiIli2bBnz5s3jtddeo7CwkKeffrrdMe685dRTT+WJJ57QGwMR8UmhoaFq0CniYYZhYLFYzC5DZJ+ampqIjIzEYrFgsVhISkoyuyQRv3DooYcycOBA3njjDc477zyzy/GI8vJyXn/9dZ577jk++uijtusHDx7M6NGj1fumk3xu5cXuvv76a5YsWcLq1aspKysDIC0tjVGjRnH22WdzxBFHmFyh/9HKCxHv05srEe9YvXo18+bN44MPPtALPvE5TU1NlJeXEx4eTlpamqaHiHTBHXfcweeff86bb75pdindtmLFCk4++WRsNhtBQUGMGjWKo48+mhNOOIExY8aQmJhodol+x6fDC/E8hRci3uV0OikqKiI7O1svXEU8rKKigkGDBnHCCSfwv//9z+xyRIBfQouwsDBSU1MJCfG5hc0ifmPLli0MHjyY0tJSEhISzC6nS9wfYn333Xf88Y9/ZN26ddx2221ceeWVexzncDj0M6MT9MpaRMSDysrKSEhIUHAh4gUpKSncf//9LFmyhLfeesvsckSorKykpqaGzMxMMjIy9CZEpJsOOugghgwZwmuvvWZ2KQe0du1aPv3003ZNN51OZ9vq29zcXEaOHElzczNWq3WP+1ssFv3M6CS9uhYR8RCNRRXxvpkzZ3LyySczf/586uvrzS5HeqHdFy0nJSWRmZmp/kYiHnT22WfzwgsvmF1GO+5/99988w0XX3wxycnJjBo1ikmTJnH00Ufz97//nZaWlnYfXsXFxTFmzBhCQ0P57LPPsFqttLS08NFHH/Hkk0+yfPly1q5dS2Njo1lPy+/47LaR+vp63nrrLdavX09VVRU2m22fx1osFhYuXNiD1fkvbRsR8Q673U5RURE5OTnqKC/iZQUFBQwePJi5c+fy0EMPmV2O9BItLS2Ul5eTkJBAbGys2eWIBKzt27dz6KGHUlJSQnJystnltNm0aRNz5szhyy+/JC8vj+HDhxMTE8Pzzz+P1Wpl5syZPPLII8TGxuJ0OgkKCmLdunXMmjWL6upqzj77bL755htWrlzZtmUEXGHNn/70J8aOHau+aQfgk+HFokWLuPzyy2loaGi7bm9lWiyWtv/B7v/5sn8KL0Q8zzAMduzYQUpKCpGRkWaXI9IrPPDAA1xxxRV8+umnjBs3zuxyJIC1trZSVlaGxWIhNTWV8PBws0sSCXhjxozhD3/4A/PmzTO7FMC1HWT06NF88803XH755fztb38jJSUFgPfee4+bb76Zr7/+mttuu42//OUvbQFEZWUl119/fdsH7aGhoZxwwgkMGzaM7777ji+++ILKykqSk5P59NNPGThwoGnP0R/4XHjx/vvvc8opp2AYBhERERx11FFkZmYecD/Qk08+2UMV+jeFFyKeZxgGLS0tCi5EepDD4WDcuHHU1dXxzTff6A2leJzNZqO0tBRAoYVID7vnnnt4//33+eCDD8wuBYA33niDc889l+TkZD744AMOOeQQ7HY7wcHBWCwWXn75ZWbMmMHBBx/Mww8/zAknnAC4XiMuXLiQ2267jQsuuIB58+aRkZHR9rjLli3jpptu4vPPP+f3v/89t9xyC9nZ2VqBsQ8+1yHkrrvuwjAMjjrqKF5//fW2REtExFdZLBYFFyI9LDg4mMcff5zhw4fzr3/9i7/97W9mlyQBJigoiJSUFCIiIswuRaTXmTFjBtdffz3l5eWkpqaaVod7+0dRURGNjY2MGzeOQw45ZI8pIVOnTiU5OZnNmzfz4osvctRRRxEdHY3FYmHEiBH885//ZNKkSSQmJuJ0OjEMg+DgYI4//njsdjuTJ0/mgw8+YOrUqWRnZyu42Aefa9i5Zs0aLBYLixYtUnAhIj7NMIy9bmkTkZ4xZMgQrrzySm6//XYKCgrMLkf8nNVqpbq6uu374OBgBRciJsnJyWH06NG88sorHntMm83Gxx9/zBtvvEFFRUXb9U6nc5/3cTfgdP8syM/PB2jX38xutxMeHs5vfvMbAL766ivWrVvXdvuIESM4++yzSUxMbHvM4ODgtteQ48eP58gjj6S4uJjvv/8eu93e/ScboHwuvLDb7cTExHDwwQebXYqIyH6VlpaqQ7SIyW688UYSExO58sorzS5F/JTNZmPnzp3s2rVLYYWID/HU1JGNGzdy4YUXkpiYyMSJE/ntb3/L6NGjueaaa6ipqSEoKOiAH0ZFRUWRkpJCeXk5q1evBlyhh9PpJCQkhMbGxrZGvvn5+XzyySdA+76Nvz6HxWLB6XQSFRXV9t63srJSqy72w+fCiwEDBtDa2qoGnCLi09xjUWNiYswuRaRXi42N5Z577uHDDz+kqKjI7HLEj9hsNkpKSigpKSEhIYGcnBxtARTxIWeeeSaffPJJW++ZrqioqOCGG25g4cKFpKWlMWfOHH7/+99TUFDAvffey3nnnUdra+s+AwN34HDYYYcxePBgqqurWbRoEeBaQeFemfHDDz/w7rvvkp2dTW1tLRs3bsRms7V73L2dw/342dnZAJSUlBAcHLzf1SC9mc+FF+eddx42m413333X7FJERPbKbrdTXl5Onz59zC5FRHB9Ord169a2F38iB2IYBuXl5cTHx5OTk0NUVJTZJYnIr2RlZXHEEUfw+uuvd/kxHn74YV577TXOPvts1qxZw5NPPsnjjz/OK6+8wuDBg3nnnXe47777aGpqAva+OgLg0EMP5eyzzwZcgyL+/Oc/U1FRQXFxMYsWLeK8884jOjqaU089lejoaHbu3ElJSUm7x/r1Kgx3w8/i4mLef/99AIYNGwb8sl1F2vO5/ypXXHEFo0eP5uKLL2bz5s1mlyMi0o5hGJSUlNCnT592+x1FxDwWi4W0tDSzyxAft/uqXovFQmZmpkILER93+umnd7nvhdVq5Y033gDg3HPPJTExkdbWVgCmT5/ONddcA8CiRYtYsWLFfh8rIiKCP/7xj0yZMgW73c4999zDwIED6d+/P+effz75+fk899xzzJgxg9bWVurr6/eYlvnrVRju259++mnWrFlDUlISv/vd77r0XHsLnxuVunjxYurr67nppptobm7mzDPPZMyYMW17iPZl9uzZPVShf9OoVJHuqa6uxm63m9r5WkREOs7hcFBRUUFzczPZ2dkKnkX8yLZt2xg4cCBlZWUkJCR06r5r165lypQpxMfH89JLLzFkyBCAtjGkdXV1nHHGGSxfvpxZs2bx+OOP7xE4uLmnjrS0tPDUU0/xwQcf8MMPP+BwOBg/fjxz5sxh/Pjx5Ofn079/f5KSkti1a1e7x1u/fj3R0dEMGDCA77//npUrV/Lss8+ycuVKDjroIP71r39x6qmn4nA49HNqH3wuvAgKCmpLpTo639ZisagrawcpvBDpHpvNRkhIiJopiYj4OIfDQWVlJU1NTaSkpLSNLRQR/zJ8+HCuvvpqzjvvvE7db/PmzRx66KEkJSWxffv2vX4Y/uCDD3LjjTeSnJzMiy++yIgRI9qCigMpLi4mKyur3XXffPMNxx13HNnZ2Xz44Yekp6e33Xbttdfy8MMPExsbS1lZWdv1Y8eO5corr+TUU08lNDS0U8+xt9l7tGSinJwc/WIREZ+lXyoiIr6vpqaGmpoakpOTSU1N1WtLET92xhln8Morr3Q6vEhMTCQjI4OSkhIKCgoYMmRIWzDh/pB83LhxDBw4kK+++orly5czYsSIDj220+lsCy6sVis2m43o6Gg+/PBDamtrOfvss0lPT8fpdGKxWLBYLJx66qm88847REREMGzYMMaOHctpp53G4Ycf3tn/JL2Wz4UX7tm5IiK+REv4RPzLypUrOeKIIwgLCzO7FDFBTEwM8fHxCi1EAsDpp5/OHXfcQWNjI9HR0R2+n8Vi4dBDD6WkpIRPPvmEIUOGtDXNdP9sOPjgg/nNb37DV1991TYCtSOrLnYPQMLCwggLC6OoqIgnn3wSi8XCzJkz93iso48+mjfeeIPExEQSExM7/DzkFz7XsFNExNc0NDR0a0yXiPSsoqIiJkyYwH333Wd2KdIDnE4nFRUV1NfXt12n7X0igWPQoEHk5OTw3nvvdep+cXFxDBgwAIBVq1YB7PFBVGxsLAMHDiQiIoKCggIKCgqAXyaD7N7od3cNDQ20tLQAUFhYyKJFizj55JPZunUrF110EePGjdvr/fr376/gohsUXoiI7Id7LOruexZFxLdlZ2dz6aWX8o9//IOioiKzyxEvcTqdVFZWUlBQQGhoKDExMWaXJCJeYLFYujR1JDQ0lKFDhxIWFsaaNWvaRpe6gwmn0wnAQQcdREREBA0NDVRUVLSdE/YMO9w+/vhjTj/9dAYMGMDhhx/O+eefzw8//MCFF17IPffco9W6XqLwQkRkH9xjUdPT0/VLSMTP3HrrrcTExHD11VebXYp4mNPppKqqioKCAoKDg8nLy9MWEZEAd/rpp/PWW2+1jTrtqOOOO47+/fvz008/sXz5cuCX0ML9M2Pw4MHU1dVRXl7ebqBBS0sLzz//PNdffz2VlZXALysxUlNTMQyDhoYGsrKyuPjii/nss894+OGHiYyM7Pbzlb3zuZ4Xu1u1ahUrV65kx44dNDY2sq/BKBaLhYULF/ZwdSIS6Kqrq4mIiCAqKsrsUkSkk+Lj47n77ruZPXs2S5cu5YQTTjC7JPEQu92OxWIhLy9PgYVILzFy5EgSEhJYvnw5kydP7vD9DjroIMaNG8ePP/7IM888w7nnntv2c8P9Z0ZGBklJSZSVlbXrk/TZZ5/x17/+lZKSEsaOHcupp57a9n50xIgRLFiwgODgYLKzsz34TGV/fG5UKrjG2sycOZO1a9e2u35vo1Pd1+1rP5K0p1GpIh1jtVopKSnRBCQRP2YYBscccwwVFRV8++23at7ppwzDoLW1lYiICLNLERETXXnllTQ0NPDYY4916n4ffvghU6ZMwW63s2rVKo488kjA9VovLCyMpUuXcvrpp3PQQQfxyiuvkJeXB8D27dv5/e9/zyeffML8+fN5+OGHPf2UpJN8bttIZWUlxx13HGvWrCEtLY0ZM2ZgGAYRERGcd955HH/88cTExGAYBsnJycyZM4fZs2d7tIZ33nmHE044gaSkJKKjoxkxYgQPPvhg2xKjjrrlllvaRuPs6+vHH3/c5/1/+OEHzj33XDIyMoiIiGDAgAFcc8011NTUdPMZisiBhIaG0rdvXwUXIn7MYrHw0EMPsWnTJhYsWGB2OdJJhmFQU1NDfn4+zc3NZpcjIiY7/fTTee2117Db7Z2634knnshvf/tbAG666aa25p3uQPu9996joaGBww8/nLy8vLb3fDk5OcyZM4dHH32U22+/3YPPRLrK57aN3H///RQXFzNmzBiWLVtGVFQUL7zwAvHx8SxevBiAxsZG/v73v3P33XcTGRnJf/7zH4+d/8477+Qvf/kL4OoGGxMTw7fffstll13G0qVLefXVVzs0Pmd32dnZ5OTk7PW2fS1HX7FiBVOmTKG5uZnU1FQGDx7Mjz/+yD333MOrr77KqlWr1EBQxIssFov6XIgEgGHDhnH++edz6623MmvWLHV59wOGYVBXV0dVVRVxcXHk5uZ2+rWXiASesWPHEhQUxKeffsrEiRM7dd8///nPlJWVsXTpUnbs2MH8+fMBeP/993nnnXcYM2YM1157LfDLeNPg4GB+//vfe/ZJSPcYPmb48OFGUFCQsXz58rbrLBaLkZGRscexV1xxhREUFGS88MILHjn3qlWrDIvFYgQFBRnPPfdc2/Xr1q0z0tPTDcC4++67O/x4N998swEYN998c6fqqKurM1JTUw3AuOyyywyr1WoYhmFUVFQY48aNMwBjypQpnXpMt9raWgMwamtru3R/kUDX2tpqOJ1Os8sQEQ/auXOnER0dbVxzzTVmlyIH4HQ6jYKCAqO8vNxwOBxmlyMiPqKiosL473//a2RkZBhHHnlklx5j27ZtxpQpUwyLxdLua8yYMcbbb7/t4YrFG3wuxt66dSsWi4Xx48e3u95qte5x7PXXXw/Ao48+6pFz33bbbRiGwQUXXMA555zTdv2wYcO49957AdfKDJvN5pHz7cuCBQsoLy9n0KBB3HvvvYSGhgKQnJzMc889R0hICG+//fYePUFEpHvsdjvFxcX7bA4sIv4pIyODa6+9lgceeIDt27ebXY7sh8ViITs7m5SUFK22EOnl6urqePrpp5kyZQoZGRksWrSIadOmsXPnzk6/VjMMg379+vHMM8/w2Wefcffdd3PXXXexevVqvvjiC0455RQvPQvxJJ/7rWCz2YiPjyck5JcdLVFRUdTX1+9xbHp6OvHx8axfv77b562rq2Pp0qUAzJs3b4/bZ8yYQVxcHJWVlaxYsaLb59sf9wzjuXPn7rFsPScnp61j+ksvveTVOkR6E2O3sah6wSwSeK6++mpSUlLatoaK+QzDoL6+nvz8/HaN19VrSKT3am5u5qWXXuLMM88kPT2de+65h2OOOYZNmzaxatUq7r//fioqKvj+++879bgWiwXDMEhISOCoo47i6quv5pprrmHEiBFeeibiDT73Cj0zM5Pa2tp2jVjS09Ox2+1s27at3bE2m426ujpqa2u7fd5vvvkGq9VKRETEXv8Sh4aGMnr0aAC+/PLLTj32ihUrmDFjBscddxxnnnkmd911F7t27drrsXa7nTVr1gAwbty4vR7jvr6zdYjIvmksqkhgi46O5rbbbqOmpmavqzml5xiGQUNDAwUFBTQ3N5Odna0eQyK9mNVq5e2332bWrFmkpaXx17/+lcGDB7N27VrWrVvHdddd1zYBJDIykkmTJvHGG290+jwKRv2fz4UX/fr1wzAMioqK2q5zhwbPPPNMu2MXLVqE0+kkKyur2+fdvHkz4FrZsPuqj93179+/3bEd9cknn/DSSy+xYsUKXn75Za677jr69+/PokWL9jg2Pz+/bVuK+3yeqkNE9q61tZX6+npSUlLMLkVEvGju3Lm89957GplqoqamJgoLC2lsbKRv376kpaUpuBDpxf7v//6PjIwM5s+fT0ZGBp988gk//fQTt956K4MGDdrrfU499dQuhRfi/3wuvJg0aRLgGlnjNmvWLAzD4LbbbuOSSy7hscce49JLL+XSSy/FYrEwffr0bp+3uroaYL9dyN23uY89kIyMDP7617/y9ddfU1lZSVNTE5999hmTJ0+mubmZ888/nzfffHOvdeyvls7WISL7V1paSkZGhhJ5kQCnf+Pms1gsZGVlkZ6evs8Pi0Sk9xg1ahRvvPEG+fn53HXXXQwfPvyAP6unTJnC6tWr97mSXQKXz4UXp512GtnZ2Xz66adt102ZMoXf/e532O12FixYwB//+EceeeQRbDYbAwcO5Kabbur2eVtaWgD2+2lMeHg4QIdnjV900UXcfvvtjBo1iqSkJCIjIxk7dixvv/02v/3tbzEMgyuvvLJdwxl3HfurpbN1iMj+9e3bV5/Eioh4QVNTU7vXK5GRkQotRKTNiSeeyLhx4zrVbywtLY0xY8bw1ltvebEy8UU+99vjkEMOIT8/f4/rn332WSZOnMjzzz9PUVER8fHxnHzyyVx99dXEx8d3+7wRERHA3qeauLW2tgKuX7zdYbFYuPPOO3n11VfZunUr69evZ9iwYe3qcNey+/eerKOurq7T9wkPD28LTkQCiRp0ioh4VnNzM+Xl5YSEhJCammp2OSISYKZNm8Ybb7zBBRdcYHYp0oN8LrzYF4vFwoUXXsiFF17olcfvyFaMjmwt6ahDDjmEpKQkqqqq2LJlS1t4sftjV1dXk5GR4ZU6srOzO32fm2++mVtuuaXL5xTxJXa7HafTqRUXIiIetHtokZGR0TbuXUTEk0499VRuvfVWmpqa1Gy9F/Gb8MLbDj74YAAKCwux2+17XdLonnbiPra73L/Qd5+skpeXR2hoKDabjW3btu01vPBEHUVFRcTFxXXqPlp1IYHCPRY1OTlZ4YVIL1ZVVcXKlSs59dRTzS4lILS2tlJVVUWfPn30s1VEvGrQoEFkZWWxdOlS/QzvRXxurXRQUFCnpof069fPI3snhw8fTmhoKC0tLaxdu3aP2202G19//TUAY8aM6fb5KioqKCsrA1z77d1CQkLaRrV+9tlne72v+/ru1BEXF9fpL4UXEihqamo0FlVEePTRRznzzDP3GMUuHed0Otsuh4eHk5WVpeBCRLzOYrFo6kgv5HPhBdCugaU3jt+buLg4TjjhBAAWLly4x+0vvvgidXV1JCcnM2HChG6f795778UwDOLj49tGwbqdfvrpgGsUrMPhaHdbYWEhS5cuBeCMM87odh0ivU1rayt1dXUaiyoiXHbZZaSlpXH99debXYrfaW1tZceOHW0fxIiI9LRTTz2Vt956q12IKoHNJ8OLzrBarR5rtve3v/0Ni8XC448/zv/+97+267/99luuuuoqAK699tp2nyjcf//95OXl8bvf/a7dY33//fdcfPHFfP/99+2ub2lp4Y477uCf//wnANddd90en1D88Y9/JCUlhR9++IGrrroKm80GQGVlJTNnzsRutzN58mRGjhzpkect0lu4t4toLKqIAERFRXH77bfz4osv8vnnn5tdjl+wWq0UFxdTVlZGSkoKffr0MbskEemlxo0bh9VqbVsdL4HPYnhi2YIHBQUF0adPH3bu3HnAY2tqakhNTSUhIYHy8nKPnP/222/nhhtuAKB///7ExMSwYcMGnE4nU6ZM4fXXXyc4OLjt+FtuuYVbb72VY489lo8++qjt+nXr1jF8+HAAUlNTycnJAeCHH36gqakJgHnz5vHYY4/t9U3UsmXLmDp1Ki0tLW33d983Ly+Pzz//vEsvGOrq6oiPj6e2trbTPS9E/F1VVRXBwcEemVAkIoHB6XQyatQooqKi+PTTTxVs7oNhGOzatQu73U5qaupep6GJiPS08847j5ycHO644w6zS5EeYHrDzvXr17Nu3bp21zU3N7N48eJ93scwDGpqanjppZdwOp1tPSI84W9/+xvDhg3jvvvuY82aNezatYuhQ4fy+9//nksvvbRdcLE/eXl5/OMf/2DVqlX8+OOP/PTTT1itVtLS0jjllFO44IILOOmkk/Z5/+OPP57Vq1dz2223sXz5cr777juysrL47W9/yw033OCRiScivU1iYqLemIhIO0FBQdx+++2ccsopfPDBB/v93dybWSwWUlJSND1ERHzK1KlTufPOOxVe9BKmr7y49dZb+fvf/972vWEYHX5z4T72nXfe0YuNDtLKCxERkfYMw+Doo4/GarXy1VdfKeTE1ai8srKS1NTUDn9wIyLS06qqqkhLS6OgoKBTQx/EP5m+8iIhIaFtSwVAQUEBQUFB7SZw/FpQUBBxcXEMGTKEP/zhD4wfP74nShURP2QYBo2NjcTExJhdioj4KIvFwu23387EiRN5/fXXmT59utklmcZut1NRUUFra6uCCxHxeUlJSYwZM4Z3332XCy64wOxyxMtMX3nxa53peSGdp5UX0ttUV1e37dEWEdmfE044gdLSUr799luPNQP3F7uHFikpKURHR5tdkohIh9x+++2sXbuWl19+2exSxMt87jfzzTffzNVXX212GSISADQWVUQ64x//+AcbNmzghRdeMLuUHudeoZabm6vgQkT8yimnnMKHH36I1Wo1uxTxMp9beSHepZUX0lsYhkFBQQGZmZl7jCMWEdmXqVOnsnnzZr7//ntCQkzfXes1DocDp9OpBpwi4vcMwyAzM5PnnnuOiRMnml2OeJHPrbzYF6vVyhtvvMHdd9/NAw88wMqVK80uSUR8WGlpKYmJiQouRKRT/v73v1NbW8umTZvMLsUrHA4HZWVlFBYWYrfbzS5HRKTbLBYLkydP5t133zW7FPEy01de1NfX8+qrrwJw9tlnEx4evscxq1ev5owzzmDHjh3trh8zZgyvvPIKffr06ZFaA4FWXkhvYLfbKSsrIzMz0+xSRMQPWa3WgAs+nU4nlZWVNDQ0kJycTGxsrKaqiEjAeOmll7jlllvYsGGD2aWIF5keXrz22mucfvrpHH744axdu3aP28vKyhgyZAiVlZX8ulSLxcLIkSP56quveqpcv6fwQkREpHdpbW1l586dJCUlERcXp9BCRAJOTU0NqampbN26td0kSwkspm8b+fTTTwGYOXPmXm//5z//SUVFBQBz5szhs88+49tvv+XKK6/EMAzWrFnDSy+91GP1ioiIiPiTsLAw8vLyiI+PV3AhIgEpISGBsWPHautIgDM9vPjqq6+wWCycfPLJe7392WefxWKxMG3aNJ588kmOOuoohg4dyj333MOcOXMwDENjcUQEcG1DczgcZpchImIap9NJVVUVJSUlbddZLBaFFiIS8E455RTeeecds8sQLzI9vCgpKSEkJITDDjtsj9u+//57ysrKALjsssv2uP3yyy8H4JtvvvFukSLi81pbW6msrCQoyPQfayIiPc4wDKqqqigoKMBisagfmIj0OpMnT2bZsmW0traaXYp4iemv8ktLS4mLi9vrGw53L4uwsDCOPvroPW4fMmQIFouFnTt3er1OEfFdhmFQUlJCZmamPl0UEY8yDINt27aZXcY+GYZBdXU1+fn5AOTl5ZGYmNj+Z6HF0rGvCRNMeQ4iIp4wdOhQEhIS2toSSOAxPbxwOBzU1dXt9bY1a9YAMGjQoL12/Q4JCSExMZHm5mav1igivk1jUUXEW/71r38xcuRIampqzC5lrywWC8HBweTm5pKUlKQAV0R6LYvFoq0jAc708CItLQ273c7WrVv3uO3zzz/HYrEwevTofd6/oaGB6Ohob5YoIj6ssbERh8NBfHy82aWISAA677zzaG1t5b777jO7FMC10qK2than09l23b5WsO5h/nz47rt9fz35pBcrFxHxvkmTJvHBBx+YXYZ4ienhxYgRIwB49NFH212/efNm1q1bB8Cxxx671/sWFBRgtVrp27evV2sUEd9VX1+vvd0i4jUZGRnMnz+ff//73/tcKdoTDMOgrq6O/Px8bDZb1x4kLQ2GDNn3V79+ni1aRKSHHXfccfzwww9qKxCgTA8vzjnnHAzD4L777uPuu+/mp59+YtmyZcyYMQPDMIiOjmbatGl7ve8nn3wCuHpfiEjv1KdPH4KDg80uQ0QC2NVXX01zczOPPPJIj5/bHVoUFBTQ2tpKbm4uKSkpak4sIrIXSUlJjBo1iqVLl5pdiniB6b/5ZsyYwTHHHIPdbuf666/nsMMOY9KkSXz33XdYLBauuuoqYmNj93rf559/HovFstdmniIiIiKekJmZye9//3vuvffeHu+zVV1dTUtLC9nZ2aSmpiq0EBE5AG0dCVw+8Rvw9ddfZ+rUqRiG0fYFcMEFF3DTTTft9T6bN2/mvffeA1wzfUWk92htbaW+vt7sMkSkF7n22mupqKhg4cKFXj2PYRjt+lkkJSWRlpamFWYiIh104oknsnTp0nY/SyUwWAx3UuADtmzZ0tbnYvTo0eTm5u7z2Pz8fL7//ntCQ0OZNGlSD1Xo/+rq6oiPj6e2tpa4uDizyxHpNMMwKCgoIDMzU9NFRKRHnXfeeXzyySds2bLFKz9/GhsbqaioICkpaZ+rTrvEPYHksMPAbofCQggJgT59YOxYmDsXJk703PlERExktVpJSkris88+Y9iwYWaXIx7kU+GFeJ/CC/F3paWlREREaLqIiPS4DRs2MHToUJ588knmzp3rscd1hxbh4eGkpKQQEhLisccGfgkv9mf6dFi0CPSzVUQCwLRp0zj22GO55pprzC5FPEjhRS+j8EL8WWNjI9XV1ZowJCKmmT59Oj/++CPff/99t7dy2Gw2du7cSVhYGKmpqZ4PLdyio+HUU+H442HgQIiJgfJy+PhjWLAAKitdxx17LHz4IYSGeqcOEZEe8sADD/D222/z/vvvm12KeJDCi15G4YX4K4fDQWFhITk5Odr7LSKm+eqrrxgzZgwvvvgiZ555Zrcey+l04nA4CPV2WFBTAwkJe7+ttBQmT4ZvvnF9/+9/w2WXebceEREv+/HHHxk+fDjV1dVERESYXY54iMKLXkbhhfiruro6QkJCiIqKMrsUEenlTjzxRCorK1mzZg2WjmzJ+FlzczONjY2kpKR4sbou2LYNBg0CqxUOOgg2bza7IhGRbjEMg5ycHJ588klOOOEEs8sRD/GJaSMiIgcSFxen4EJEfMK//vUvFi5c2OHgoqWlhaKiIqqqqnzzg4P+/eHEE12Xt2yBnTvNrUdEpJssFgsnnniiRqYGGIUXIiIiIp0wbNgwhg8ffsDjWltbKSoqoqKigvT0dLKysnx3StJhh/1yubjYvDpERDxk0qRJfPjhh2aXIR6k8EJEfJZhGJSXl5tdhohIpxmGQU1NDWlpafTt29d3Qws37SIWkQBz/PHHs379esrKyswuRTxE4YWI+KyysjLff8EvIvIzq9WKu5WYxWIhPT2d8PBwk6vqoI0bf7mcmWleHSIiHpKamsqwYcNYunSp2aWIhyi8EBGf1NjYiM1mIz4+3uxSRET2y2q1UlxcTGlpKU6n0+xyOm/bNteIVHD1v8jKMrceEREPOf7441mxYoXZZYiHKLwQEZ/jcDgoKysjIyPD7FJERPbJZrOxc+dOdu3aRVJSEtnZ2b43yvnNN8Fu3/ftpaVw5plgs7m+v+SSnqlLRKQHTJw4UeFFANGo1F5Go1LF1xmGwY4dO0hOTtZ0ERHxWdXV1dTX1xMZGcmdd97JH/7wBw499FCzy9pTXp4rmDjjDDjqKNf3kZFQUQEffQQLFkBlpevYo4+GpUvBX7a6iIgcQH19PYmJiWzbto2cnByzy5FuUnjRyyi8EF/ncDioq6sjMTHR7FJERPbJ6XQSFBREa2srubm5nH766fznP/8xu6w95eVBQcGBjzvjDHj8cUhI8HZFIiI96sgjj2T+/PnMmTPH7FKkm7RtRER8SnBwsIILEfEpdrudXbt2UVdX13ZdUJDrJVR4eDgXX3wxTz31FFVVVWaVuG9PPQW33gonnwyHHAJJSRAS4gophg6Fiy6CVavgpZcUXIhIQDruuOO0dSRAaOVFL6OVFyIiIh3jcDioqKigubmZlJQUYmJi9npcWVkZOTk53HrrrVx33XU9XKWIiOzPhx9+yAUXXEB+fj4Wi8XscqQbFF70MgovxFeVl5eTkJBAaGio2aWISC/ncDiorKykqamJlJQUoqOjD/iCd968ebz//vts375dP8dERHxIU1MTCQkJ/PDDDwwYMMDscqQbtG1EREzX2NhIa2urXvCLiE8wDIPIyEhyc3OJiYnp0Cd1V1xxBcXFxbz88ss9UGEH2e3w+uswZQrk5EBaGhx6KFx1FWzaZHZ1IiI9IioqiiOPPFJbRwKAwgsRMZXGooqI2ZxOJw0NDW3fh4SEEBsb26nlxUOHDuX444/nvvvuwycWtX78MQwYANOnuyaLzJoFl18Oxx8Pixe7QowzzoDd+niIiASqiRMnsnz5crPLkG5SeCEipjEMg507d5Kenk5wcLDZ5YhIL+N0OqmoqKCgoACn09ntx7viiiv46quv+OKLLzxQXTe88w5MmuQKL77+Gr78Em6/Hf72N/jPf2DHDnjySVi2DCZMgNpac+sVEfGyiRMnsmLFCt8Il6XL1POil1HPC/El1dXV2Gw20tLSzC5FRHoRp9NJdXU1dXV1JCUlERcX55Embk6nk4EDB3L44YfzwgsveKDSLti+3TVF5PjjXRNE9rcd77vvYPx4OO44eOWVnqtRRKSHtbS0kJCQwLp16xg4cKDZ5UgXaeWFiJjGYrGQmppqdhki0svs3LmT4OBg8vLyiI+P91j3+aCgIC6//HJefvllCgoKPPKYnfbwwxAeDs89t//gAlwhx7//Da++Cj/91DP1iYiYICIignHjxmnriJ9TeCEipklISNDIKhHxul8vMu3bt6/Xfv7MmTOHuLg4HnroIY8/9gE1N8MTT8D550N0dMfuc/bZkJICCxZ4tzYREZO5t46I/1J4ISIiIgHJMAyqq6vJz8/H4XD0yDljYmK48MILeeeddzzSR6NTvvgCqqth9uyO3yciwhVgvPWW9+oSEfEBEydO5KOPPlLfCz+m8EJEelRjYyNVVVVmlyEiAcwwDGpqasjPz8cwDHJzc3u0KfCNN97IunXrCArq4ZdZ1dWuP7OyOne/rKxf7isiEqBGjRpFQ0MDP/74o9mlSBcpvBCRHuMeixofH292KSISoBoaGtpWWuTm5pKUlNTjIUJsbCyhB+o34Q0REa4/m5s7d7/mZoiM9Hw9IiI+JDw8nDFjxvDpp5+aXYp0kcILEekRGosqIj0hNDSU3NxckpOTe37lg9kGDXL9uXRp5+63dCkcdpjn6xER8THjx49XeOHHetlvdRExS01NDeHh4URFRZldiogECMMwqKuro6Ghoe268PDw3hdauPXrByedBP/5T8fv88038Pnn8Mc/eq8u2beyMle/kZtugsmTXc1TLRbX19y5ZlcnEnAUXvi3ELMLEJHA19raSm1tLbm5uWaXIiIBwDAMGhoaqKysJCoqiuTkZLNL8h0XXwynnQZLlsDvfrf/Y202uO466NsXpk3rmfqkvfR0sysQ6VWOOuooduzYQVFREdnZ2WaXI53USz+aEJGeZBgGmZmZGosqIt3iDi0KCgpobm4mOzubtLQ0bUXb3bRpcN55MGeOK8DYl6YmV7ixYgUsWgQh+jzLdNnZMGmS2VWIBLTY2FiGDx+u1Rd+SuGFiHhdREQEYWFhZpchIn7OarXS2NjoV6HFV199xfjx49ttbfEqiwUWLnSNPz3nHBgzBp56CnbudE0U+f5712qLnBx47z145RU4/vieqU32dNNN8OabsGsXFBbCf/9rdkUiAW/8+PF88sknZpchXaDwQkS8RnO0RaS77HZ72+Xw8HC/a/qbnp7OZ599xpL9rYLwtLAwV2Dx+uuQmOjqnZCVBUlJMGQIPPoozJ4N69dru4jZbr0Vpk7V9hGRHqS+F/7LYujdRa9SV1dHfHw8tbW1xMXFmV2OBDCHw8HOnTvp27evtouISKc1NTVRXl5OZGQkaWlpZpfTLVOmTKGsrIyvv/7anAK2bYONG10jUZOS4KijQM2TfVN+vqvxKri2/ixaZGY1IgGpvLyc9PR0ysvL1TPJz2iDo4h4nHssanJysoILEemU5uZmysvLCQ0NJTMzk9DQULNL6raLLrqI0047jTVr1jBy5MieL6B/f9eXiIiQmprKwIEDWblyJaeddprZ5UgnaNuIiHicxqKKSFfs2LGD6upqMjIyyMjICIjgAuCUU04hKyuL/6qfgYiIT9DWEf+k8EJEPMo9FjU1NdXsUkTEz2RkZATMaovdhYSEcOGFF/Lcc89RV1dndjkiIr2ewgv/pPBCRDzGMAxKSko0FlVEDqi1tZUdO3bgcDjarvOnRpydNW/ePJqbm3nuuefMLkVEpNcbP348a9eu7blJUOIRCi9ExGMMwyA9PV1jUUVkn9yhRXl5OampqQEdWOyub9++TJ06lQULFmgSk4iIyXJzc8nIyOCrr74yuxTpBIUXIuIxQUFBREZGml2GiPggq9VKcXExZWVlpKSk0LdvX8LDw80uq0f98Y9/5Ntvv/Xai2WLpWNfEyZ45fQiIn7lqKOO4vPPPze7DOkEhRci0m36FFFEDsRqtZKcnEx2djYRERFml2OKSZMmkZubG3iNOydM6Hhy4v766COzqxaRXk7hhf9ReCEi3WIYBsXFxbS2tppdioj4EJvN1u7nQkxMTK8NLdyCg4O58MILWbJkCTU1NV47z/z58N13+/568kmvnbpjgoLg4INNLkJEejt3eKEP4fxHiNkFiIh/q6mpISwsrNct/xaRvbPZbFRUVGCz2UhLSzO7HJ9z/vnnc8cdd/DFF19w8skne+UcaWkwZIhXHnrvnnwSGhv3f8zGjXD22a7Lxx8PWVner0tEZD+GDx9OY2MjmzZt4tBDDzW7HOkAhRci0mVWq5Xa2lpyc3PNLkVETGa32ykvL8dqtZKamkpUVJTZJfmkjIwMSktLiYmJMbsUz+nX78DHPP30L5dnz/ZeLSIiHRQWFsbIkSP5/PPPFV74CW0bEZEuMQyDnTt3aiyqiNDa2kpxcTFxcXHk5uYquDiAgAouOsLphGefdV2OiYHTTze3HhGRn40dO1Z9L/yIwgsR6ZKysjISEhI0FlWkl9p9j3BYWBi5ublER0ebWJH4rGXLoLjYdfnMM0Hhloj4CDXt9C/aNiIiXZKQkKA+FyK9kMPhoLKyErvdTmZmJoBWX/mYF1+E//0PCgshJAT69IGxY2HuXJg40YSCFi/+5bK2jLS3ciVs2fLL9xUVv1zesgUWLWp//Ny5PVGVSK9x1FFHsWHDBurq6oiLizO7HDkAi6H2qr1KXV0d8fHx1NbW6h+oiIh0mDu0aGpqIjk5mZiYGIUWPqYj/zumT3e9H46P93Y1P2tocKUnjY2QkwP5+R0rtLeYOxeeeqrjx+tlu4jH5eXl8fjjj3PCCSeYXYocgLaNiEiHGYaBw+EwuwwR6WEVFRUUFhYSERFBbm4usbGxCi58UFQU/O538Nhj8Omn8M038MEH8Le/QXKy65jXXoPTTgObrYeKevnlXyaRzJql4EJEfI62jvgPhRci0mE1NTVUV1ebXYaI9LDo6Gjy8vKIi4tTaOFBRUVFnHXWWRQUFHjk8YqLXdtFLrgAjj4aDj8cTjwRbrsNvv8ehg93Hffxx/DIIx455YFpy8j+LVrkWk3R0S8R8TiFF/5D4YWIdIh7LGqy++M7EQlITqeTysrKdqusIiMjFVp4QUJCAm+99RbPuidxdPvx9n1bejq89BK4eyw/+KBHTrl/O3bARx+5Lh95JBxySA+c1M9s3QpLlsDjj7ualezcaXZFIr3OUUcdxRdffIHT6TS7FDkAhRcickAaiyoS+NyhRUFBAcHBwQQF6SWCt8XGxnL66aezePFieqIFWf/+rpUY4OoF6fX3yc884xqTCjBnjpdP5kcMA956C046CQ46CM45By68EM46y9UX5MwzXft+RKRHDBs2jObmZjZt2mR2KXIAemUiIgeksagigcswDKqqqigoKCAoKIi8vDwSEhIUVPaQOXPm8NNPP/H111/3yPkOO+yXy+7ppV7z9NOuP8PD4eyzvXwyP+F0wmWXwbRpUFvratZZUwMOB5SXw7//DRs3wjHHwD//aXa1Ir1CWFgYo0aN4osvvjC7FDkAhRcisl9NTU3YbDYS9rceWUT8Vk1NDeDqtp6YmKjQoocdd9xxZGZmsnj33hBe1GNtE1avdr0JB5g6FRITe+jEPu7aa+Hhh2HBAvjiC1cfkPh4CAqClBS45BJXg5Ibb4Trr++h/T0iMnr06B4LkaXrFF6IyH5FRESQkZFhdhki4iG/nhqUmJhIUlKSQguTBAcHc9555/G///0Pq9Xq9fO58wSAzEwvnmj3MMbLW0bKyly7MG66CSZPdmUAFovra+5cr566c775Bu65x/V10UX7Ps5igb//3bVC4+qrobS052oU6aUUXvgHi9ETmyzFZ9TV1REfH09tbS1xcXFmlyMiIj3EMAzq6uqoqqoiNTWVmJgYs0uSn23YsIGhQ4fy6quvMn36dK+dZ9s2GDjQNSa1f39Xr0ivsNkgK8u1DSI11dVcIyTESyfb//TVOXNcAz18wh/+AO+8A/n5HfvvUV3t+u94ww3w1796vTyR3mzLli0MHjyY+vp6bZP2YVp5ISJ7ZbPZzC5BRDzAMAxqa2vJz8/HZrORm5ur4MLHDBkyhBEjRnRr68ibb4Ldvu/bS0tdfSDdP9ovuaTLpzqwd991BRcAM2d6Nbj4texsmDSpx07XcY2N8OyzrhUXHf3vkZjoaub56KPerU1EGDBgANHR0axfv97sUmQ/eu63iYj4DavVys6dO8nNzdVSchE/ZrVaKS4uJiYmhtzcXE0Q8WGzZ8/mz3/+M5WVlV0aSf2nP7mCiTPOgKOOgrw8iIyEigrXtNIFC6Cy0nXs0Ud7ObzYPYSZPduLJ3K56SYYPdr1lZ7uWtjQr5/XT9s5RUXQ1ATHHtu5+x17LDzxBLS0QESEd2oTESwWC6NGjeLrr79m1KhRZpcj+6BXMSLSjsaiigSO0NBQcnJySE1NVXDh48455xycTidLlizp8mPs3Onq7zhzJowdC8OHu0aj3n77L8HFGWe4VmmEh3uo8F+rrnY1oAAYMgRGjPDSiX5x662unqDp6V4/Vde1trr+7Ox/eHdg4b6/iHiN+l74Pr2SEZF2NBZVxD8ZhkFDQwOluzX3s1gsBAcHm1iVdFRaWhqTJ0/u8taRp56C+fMhJwcOOgiSkly7ExISYOhQ126FVavgpZdc13nN88//8ka7B1Zd+A33aprCws7dr7DQ9T8yNtbzNYlIOwovfJ/CCxFp09jYqLGoIn6ooaGBwsJCGhsbSUlJMbsc6aLZs2fz1VdfsbULnTTj4125QWGhK5zYssW1jaS6Gtavd20bOeooz9e8h6efdv0ZHAznntsDJ/QTWVkwcmTnuocaBjz5JJx2mmuUqoh41ejRo9m4cSONjY1mlyL7oJ+EIgKA0+mkrKxMY1FF/EhjYyMFBQU0NDSQlZVFenq6Vlr4sWnTprFu3ToGDBjQqfutWwfHH++aILJihWuqyKRJruCix332metNt93u5VmsfsZicS2Nefdd2LSpY/dZvtw123b+fO/WJiIAbb9H165da3Ypsg8KL0QEgKCgIHJzc/XGR8SPtLS0kJWVRZ8+fQjpwYkO4h0REREMGzasU/fZPbj44AOYMAGWLTMhwLBaXSfTpKp9O+ccyM2F00//pQnJvmzf7tp2M2YMHHdcz9QnIto64uMUXohIGzX0E/Ftzc3NGIbR9n1ycrJCi17s18FFYqLr+sMP76EAo6HBNcZz+HBXI8qkJAgLc40zee45NZn8tago18qLsjLXHp7XXttzvm1Li2tay5FHuo5/7TXXqg0R6REKL3yb3qmI9HI2mw2Hw2F2GSKyH83NzRQWFlJdXY3T6TS7HPEB+wou3LweYHz4oas7qLtL6MKF8OKLruYa4eGufhcDBsCaNR4+sZ8bOBC++AJSU+G3v3XNdJ0/H667Di64APr2hTlzXHNfV62CPn3MrlikV1F44dssxu4f4UjAq6urIz4+ntraWuLi4swuR0xmGAYFBQVkZmZquoiID2ppaaG8vJygoCBSU1P171SAAwcXXT22w95/3zWb9IQTXGFFbu6ex/zwA8ydC99/Dx9/7GpW2UPy812ZALhygM70yOxRa9fCI4/AV1+5VrHEx7v2/fzxj3DIIWZXJ9IrVVZWkpKSQmVlJUlJSWaXI7+i8KKXUXghuystLSU8PFzTRUR8UFVVFc3NzQotpJ2uhBEeDTAqKlwPdMwx8OqrEBq672MbG139GoqLYetW14qMHuA34YWI+KQBAwawYMECTjzxRLNLkV/RthGRXkpjUUV8W2JiIllZWQoueqkffviBDz74oN11XQ0hPLqF5IknXM05Fy3af3ABEB0NTz3lCi9efrkbJxUR6TnDhw/nm2++MbsM2QuFFyK9kMPh0FhUER9itVopLi6mtra27TqLmvT1av/+97+56KKL2hq0dnf1hEcCDKfTtU3k7LMhJaVj9xk40LX64j//6cIJRUR6nsIL36XwQqQXKi8vJy0tTWNRRUzmDi1KS0tJTk4mPj7e7JLER8yYMYP8/HzWrFlDY6OrvURGRve2fbgDjI0bYebMLjxAYaFrhOdZZ3XufmefDZ99pjGqIuIXFF74LoUXIr1Qeno60dHRZpch0mvZ7XZ27tzJrl27SEpKIjs7m4iICLPLEh9y7LHHkpKSwgsvvEBkJIwa5Vo10d3X0++9B01NrpYVnVZX5/ozOblz93Mf776/iIgPGz58OJs2baKhocHsUuRXFF6I9EJaji5iLovFQmJiIjk5OURGRppdjvigkJAQzjjjDF588UUsFoPXXnMFDlOnwvLlXXvMO++Ev/wFbr7Z9WenxcS4/uxsCOE+3n1/EREflpGRQVpaGuvXrze7FPmVELMLEJGeYRgGzc3NREVFmV2KSK9jt9tpaGhoa5AbHBys0EIOaMaMGfz3v/9lzZo1jBo1itdeg+nTXQHGW2+5Wkl01O7BxS23dLGg7Gzo0wdef93VOKOjXn8dhg3z2rSRlSthy5Zfvq+o+OXyli17ThuZO9crZYhIAHFvHRk7dqzZpchuFF6I9BJlZWWEh4crvBDpQXa7nYqKClpbW0npaINDkZ+5t468+OKLjBo1iogIuhRgeCS4ANd0kQsvhPvucz1obOyB71NYCG++6dWGnY8/7hpqsjeffeb62p3CCxE5EPW98E3aNiLSC2gsqkjPstvtlJaWsmPHDmJiYsjNzVWfGem0kJAQTj/9dF544YW2qSPuAKOjW0g8Fly4/eEP0NoKl18OP9e0T3Y7zJ8PcXFw7rkeOPneHagMEZHOUnjhmxReiAQ4jUUV6XllZWVER0eTm5tLjPb5SzecddZZbVNH3DoaYHg8uADo2xcWLoQnn3Stwqiv3/txlZVw+umu8SjPP++1fhcOh+sLXAtDXnvNFWbs70tE5ECGDx/Ohg0bsGlKkk9ReCES4EpKSjQWVcTLnE5n2yfjAJmZmcTExKg5rnTb7ltHdnegAMMrwYXbrFmufRqLF0NWFlx6KSxdCl99Be++69qXkZUFK1bAG290rj9GJzgcMGcOLFkCzz4Lp50GM2a4WmyIiHRH//79CQ8PZ+PGjWaXIruxGIYy6N6krq6O+Ph4amtriYuLM7sc8bLm5mbq6upIT083uxSRgOR0OqmsrKShoYHs7GxCQtRKSjzvoosu4sMPP2Tr1q17BGItLa4eGJ988ksPDG8EFxMmwMcfd+4+K16tYcL0BM8U8Cu7BxfPPQdnnQU2G8yc6QovXnzRFWaIiHTVMcccw/nnn89cNcrxGVp5IRLAIiMjSUtLM7sMkYDjdDqpqKigoKCA8PBw8vLyFFyI18yYMYPt27e32zri9usVGBde6MUVF50QFAQHj07wymPvLbgA17aR557TCgwR8Qz1vfA9eqUlEuC0bF3Es+rq6qisrCQpKYm8vDz9GxOvmzBhArNmzdrn9r/dp5A8/rh3gosnn4TGxv0fs3EjnH226/Lxx7t2jnjavoILN3eAMXOmK8DQCgwR6arhw4fzxBNPmF2G7EbbRnoZbRvpHerr67XfXsRL7HY7wcHB+vclPqe1FdauhaOOMuf8110Hd93luvz003DeeZ59/AMFF7vTFhIR6a5vv/2W8ePHU1tbq9/5PkLhRS+j8CLwNTU1UVVVRd++fc0uRcTvGYZBdXU1ISEh+pkpsh9OJ+TkQHGxa7BIaSlERXnu8TsTXLgpwBCR7mhtbSU6OpotW7aQl5dndjmCel6IBBSHw0FpaanGoop0kzu0yM/PByA2NtbcgkR83LJlruAC4MwzzQ8uQD0wRKR7wsPDOfTQQ/nuu+/MLkV+pvBCJIBoLKpI9xiGQU1NDfn5+RiGQW5uLklJSVouKnIAixf/cnn2bM89bleDCzcFGCLSHUOHDlV44UMUXogEiJqaGkJDQ4mOjja7FBG/ZbPZcDgcbaFFUJB+TYocSEMDvPqq63JOjmusqqfcfDM8+yw880zngws3d4Bx8smuAGPDBs/VJyKBTeGFb9GrMpEAYBgGjY2NGosq0kmGYdDS0tL2fVhYGMnJyQotRDrh5Zd/mUQyaxZ4cqHSqFGusavvvutahdFVO3bAt99Cbi5oZ6WIdJTCC9+iV2ciAcBisZCVlaWl7SIdZBgGdXV15Ofn03ig+Y8iPuTyyy/nyiuvNLuMdry1ZQRc41/dKy/OP79rAcb27a7VIGFhsGIFJCd7tkYRCVxDhgzhp59+wmq1ml2KoPBCRER6EcMwqK+vp6CggNbWVnJyckjWOxnxIyEhITz//PM4nU6zSwFcKxo++sh1+cgj4ZBDPH+O3/2u6wHGr4MLDeISkc7Iy8sjPDycH3/80exSBIUXIn6tqamp3ZJ3Edm/4uJimpubyc7OJjU1Vc1txe9MmzaNkpISvvnmG7NLAVyBgjtHmTPHe+fpSoCh4EJEuisoKIghQ4Zo64iPCDG7ABHpGvdY1JycHLNLEfEb2l4l/m7cuHEkJCTw5ptvMnLkSLPL4emnXX+Gh8PZZ3v3XL/7nevPc891/fnEE7Cv/FHBhYh4ivpe+A6tvBDxUxqLKrJ/jY2NFBQUYLfb265TcCH+LjQ0lJNPPpk333zT7FJYvRo2bnRdnjoVEhO9f86OrMBQcCEinjR06FA2aEyRT1B4IeKHNBZVZN+ampooKCigrq6OrKwsQkK0yFACy7Rp01i7di3FxcWm1rF7o05vbhn5tf0FGAouRMTTtPLCdyi8EPEzVquVmpoajUUV+ZXm5mYKCwupra0lMzOTjIwMBRcSkE4++WSCg4N5++23TavBZoMlS1yXU1Nh8uSePf/eAgwFFyLiDUOHDm17fSHmUngh4mfq6+vJzMzU8neRvcjIyCAjI4PQ0FCzSxHxmqSkJMaNG8dbb71lWg3vvgvl5a7LM2eCGTnh7gHGOecouBAR70hJSaFPnz7aOuIDFF6I+Jnk5GTCwsLMLkPEdC0tLTQ3N7d9HxkZqdBCeo1p06axdOnSdv8GetLuW0ZmzzalBOCXAOPllxVciIj3aOuIb1B4ISIifqWlpYWioiIqKyvVsFZ6ralTp9Lc3Mzy5ct7/NzV1eBe9DFkCIwY0eMltPO738HXX8Pnnyu4EBHvOOyww/jhhx/MLqPXU3gh4gccDgdVVVVmlyFiqtbWVnbs2EFFRQVpaWlkZWVpFZL0Woceeiin9OkDd9zhajiRne2aVxoTA4ccAnPnwqefevy8hgHPPw+tra7vzVx1sbsRIyAlxewqRCRQDRo0SOGFD1AnMxE/UFJSQmJPzKAT8VFWq5WysjLS0tIIDw83uxwR01kmTODtXbtg1672N1itsHmz6+upp2DWLHj8cdeeim7auhVOPhkaG13fBwfDued2+2FFRHyewgvfoJUXIj5OY1Glt3I6nW2Xw8LCyM7OVnAh4vbzmFRbWhpcfjm89BJ89ZVr78S990JWluu4p592rcLopq1bYeJEaGpy5SXz57tykszMbj+0iIjPGzRoEDt27KC+vt7sUno1i2EYhtlFSM+pq6sjPj6e2tpa4uLizC5HDsBqtbJz505yc3M1XUR6DZvNRnl5ORaLhYyMDLPLEfFNU6e69myccYZrCcSvVVTAuHGwaZPr+08+gfHju3Qqd3ARGelqiPnee3DBBfDHP8JDD0GQPgoTkV4gJSWFd999l9GjR5tdSq+lbSMiPsowDHbu3KmxqNJr2Gw2KioqsNlspKamEhkZaXZJIr5rH2NS1651hQuffprChqp1lBFEKDYyT21i7Gkwb17nMoxfBxeZmXD++a7bLrjA9acCDBHpDdxbRxRemEfhhYiPslqtJCYmqiGh9AqlpaW0tLSQmppKVFSU2eWI+KVjj3UtsPiFKwC0Es7mmhg2P9W5Nhh7Cy7cFGCISG+jvhfmU3gh4qPCw8O1v196DQV1It33cxsMMjNhxgwYf3g9Ob8/DgfBfH7YBdxTewHFxa42GHY7PPfcvh9rf8GFmwIMEelNBg0axMcff2x2Gb2afsWIiEiPstvtlJaWYrfb265TcCHSfQMHusaYFhbC/ffDGfFLGc1qjuRLrpyyiXXrXFNUAf73v31PUu1IcOF2/vmuVRwLFsCll8JufXZFRAKKVl6YTysvRHxMaWkpqampBOnjKwkwDoeDyspKmpqaSElJIXhvTQZFpNMMw6CoqIi33sr55UqnE+6885fvzzqLlBS45x6YNs111Usv7dn/ojPBhZtWYIhIbzBo0CC2bt2K1WrVhy4m0a+WvXjnnXc44YQTSEpKIjo6mhEjRvDggw+2G9vXEd988w033XQTxx57LCkpKYSGhpKWlsbkyZN59dVX93m/RYsWYbFY9vv13nvvdfdpig+qqakBUHAhAcXhcFBWVkZRURGRkZHk5uYSExOjRrQiHnL33XczdOjQdquZuO8+1+hUgN/+FkaNAmDChF8O2bq1/eN0Jbhw0woMEQl07pHtmzdvNruUXksrL37lzjvv5C9/+QsA/fv3JyYmhm+//ZbLLruMpUuX8uqrr3bojeXWrVsZMWJE2/f9+vUjLy+Pbdu28d577/Hee+8xZ84cnnjiiX0+XlpaGgcffPBeb0tMTOzCsxNfZrVaqampITc31+xSRDyqoaGBiIgIUlNTFViIeMExxxzDddddx+rVqznyyCPh44/h+utdN6alwSOPtB1rtf5yv91ffnQnuHDTCgwRCWRBQUEMHDiQH374gcGDB5tdjtcYhuGzr9cUXuzm888/569//StBQUE888wznHPOOQB8++23nHTSSbzxxhvce++9XHPNNQd8LMMwyMjI4IorrmDWrFlkZGQA4HQ6+c9//sNll13GU089xahRo7j00kv3+hiTJ09m0aJFHnt+4rvcY1EzMjJ89oeFSEc5nU4cDgehoaEAxMfHm1yRSGAbNWoUcXFxLF26lCNjY10rLex2CA+HF16A9PS2Y3fvNTdw4C+X//EPKCqCr7/uWnDhdv75rnM88ohrLOvIkV1/LBERXxMofS92DyjKy8vZvn07VVVVpKSkMOrnlXq+SHn4bm677TYMw+CCCy5oCy4Ahg0bxr333gu4VmbYbLYDPlbfvn3ZsmUL1157bVtwAa7E7tJLL+Wiiy4C4LHHHvPwsxB/VF5eTnx8vKaLiF9zOp1UVlZSUFCAdfePd0XEq0JCQpg4cSLfvfEGTJoE1dUQHOzqynnssW3H7aUNRpsbb4TsbJg5E3bu7HotCxfC4sUwfz7stgBVRCQg+FN4YRjGXq93OBxYLBa++OILpk2bRp8+fTjyyCM55ZRTOOOMM7jooovYvn37fh/DLAovflZXV8fSpUsBmDdv3h63z5gxg7i4OCorK1mxYsUBHy8iIoKoqKh93j5p0iQANm3a1MWKJVAYhkFISAgJCQlmlyLSJbuHFsHBweTl5REdHW12WSK9ymmjR3PH11+7kgeLBZ54wrUCYzf7aIMBwIABru0iLS2uvhhdCTAWLnRtGZk/Hx5+2FWGiEggOeSQQ3yq54U7XGhubmbjxo28+uqrPPHEE6xYsWKvq7kNwyA4OJi33nqLmTNn8vbbbzNkyBDmz5/PZZddRkJCAo899hjXXHMNP/30ExaLpdN9H71J20Z+9s0332C1WomIiGjXq8ItNDSU0aNHs2zZMr788su28KGrWlpaAIiMjNznMd9++y0zZ85k165dxMXFMXz4cM477zwGDBjQrXOLb7FYLCQlJZldhkiXWK1WiouLSUhIIC8vT9ueRMxQUcHMRYtoW7v34IMwe3a7Q/bTBqONO8CYONEVYHz0Uce3kCi4EJHe4OCDD2bz5s0+0RfC6XQSFBTE8uXLufHGG/n888/bbouJieHkk0/m+uuvZ8SIEW31WiwWSktLWbBgAfn5+cybN6/dToCtW7dy5ZVX8uqrr5KZmcmDDz5o+vPcnVZe/MydoOXk5BASsvdMp3///u2O7Y4XXngBgHHjxu3zmHXr1vG///2PFStW8Prrr3PLLbdw6KGHcvvtt3f7/CIinhAaGkpeXh6JiYk+9ctNpNeorYWTTiJ8yxYA3jr6aLjkknaHfP/9fttgtNOVFRgKLkSktzjooIOora2loqLCa+foyFYNwzAICgritddeY/r06XzxxRdMnDiRm2++mTvvvJMjjzySl156iT//+c98//33WCyWtolUGzZs4J133uHggw/m4osvBsBms+FwOBgwYAB//etfAXjvvfdYs2aNT72+U3jxs+rqamD/Uzzct7mP7aoPPviA1157DYA///nPe9yekJDAn/70Jz777DNKS0tpaWnhm2++YdasWTgcDm644QYeeuihbtUg5qupqaGhocHsMkQ6zDAMampqKCkpabvOneKLiAmammDKFFi7FoA3f/Mb/lZX1+6Q7dv32wZjrzoTYCi4EJHeJCYmhoyMjG5/mL19+3YWLFjA7NmzmTRpEvPnz2flypU4nU4sFssBAwyLxUJxcTF33nknDQ0N/PGPf2TZsmXcfPPNXHvttTz11FOcc845rFixgr///e8AbRMu3e9lLRYLw4cPx+l0EhoaSnBwMODq69G/f3927NjB+++/363n6WkKL37m3sYRFha2z2PczRSbm5u7fJ7CwkLOPfdcAC6++GKOOeaYPY6ZPn06DzzwAGPHjiUtLY3w8HAOP/xwFi9ezBVXXAHADTfcQH19fZfrEHO5x6KqL4D4A3dokZ+fj8PhIH1fH9mKSM+xWl3LKT77zPX95ZdTccUVfPfdd9TU1ACu0OGEE/bbBmOfOhJgKLgQkd6ou30vNm7cyKWXXsrFF1/MM888w9KlS/nvf//LiSeeyJVXXgnQoQ+GCgoK+Oqrr8jMzGxbLWG323E6nWRkZHDzzTcDsHTpUjZs2EBQUBCGYbS9h3S//w361Uxr9xCB1tZWPv3007YVG75A4cXPIiIiAPbbIb+1tRXYf5+K/amqqmLy5MlUVFQwYcKEtgkmnXHrrbcSHh5ObW0ty5cv71Id4GpQ2tkv9/OX7tFYVPEntbW15OfnY7fbyc3NJTk5eY9fciJignPOgQ8+cF0+7jiYN4/j0tI4zDDYsGQJFZ/+wInHtLBtm+uQB28s/XUbjAPaX4Ch4EJEeit334uuqKys5JJLLuHdd9/l3HPPZfny5Xz//fc8/fTTGIbBo48+yo033ggcePuIu4awsDCysrIA1/Qp9+u0Qw45hKysLKqrq3n77bfbVnWkpqYSExNDYWEhlZWVbedyOp1tzTnd7/vy8/MpLy/v0nP1Br0C/VlHtoR0ZGvJvjQ0NHDKKaewceNGRo4cyRtvvNGlsZhxcXEMHjwYgC0/72/tiuzsbOLj4zv19X//939dPp/8QmNRxd/k5uaSkpKi0ELEl7zyyi+Xly+H3/yG3KlT2QAMnX8dJx3TxMatrg9m7uQ6LnlqTJdOs7cAQ8GFiPRm3QkvVq5cyccff8yQIUP497//zYQJExg0aBDnnnsuCxcupLW1lX/961/s3LnzgB9yNjY2Eh4eTnh4+B4r8h0OBwCxsbEAfPXVV23vZUePHk1GRgYAixcvpqmpCYvFQlBQEEFBQTzxxBPs2LEDgLKysrbLvkCvRH928MEHA65tHftaGrPt548v3Md2VGtrK6eddhpffvklhx12GO+9917bX6SuCA0NBejWEp6ioiJqa2s79fWXv/yly+cTl6amJlpbWzUWVXySeynh7iOx4uPjFVqI+JEmIpnC26xlJAB/4zau465uPebuAcbo0QouRKR360548fjjjwNw1llnkZSUhGEYbSsszj33XAYPHkxrayvPPfccNpttr4/hPj49PZ2EhAR++uknCgsLAVdoYbfbCQ4Opra2tm3HQGFhIaWlpW33mzZtGhaLheuvv5577rmHzZs3s2bNGh555BGuuuoqsrKyOPjgg2lqampbedGRRqLeplekPxs+fDihoaG0tLSw9ufGV7uz2Wx8/fXXAIwZ0/FPL+x2O2eddRbLly+nf//+fPjhh6SkpHS5TofDwU8//QRA3759u/w4cXFxnf7SSoHuczqdZGZmaruI+BR3aFFQUNCtnj4i0oMMY48va6vBlAk1fMbRAFx+Odxm3OC6PT+/W6dzBxjR0XDZZQouRKT32n1came5Pwx3T5x0Nz53f3B06qmnAq4+FWVlZXt9DPf7iBEjRnDQQQcB8OKLL9LU1ERwcHDb5MwnnniC9evXA64VFLs3XP/b3/7G/Pnzsdls3HzzzRx66KGMHj2aSy65hCFDhnDrrbeSnp5OcHAwTU1NnX6e3rL3maC9UFxcHCeccALvvvsuCxcu5Igjjmh3+4svvkhdXR3JyclMmDChQ49pGAZz587ljTfeIDMzk6VLl5LZ0YHp+7Bw4UJqamoIDg7ucB3iO2JiYswuQaSdhoYGKioqiIyMJDs7u63TtIj4n3POgY8+cjUe/7kNBhs27Pv4sDA45JCOP/6AAfDTTwotRKR3GzBgAA0NDZSWltKnT58O36+2trZt9b07+HA6ne1WuI4cOZL09HQ2btxIQUEBWVlZexzjvn+/fv2YNm0an332Gbfddhvl5eWcd9551NTU8Omnn/Lggw/St29f4uLiKCoqou7naVR2u53ExETuvvtupk+fzuLFi9m2bRvx8fGMHDmSuXPnYrFYuO2224iPjyc5ORnoWBNRrzOkzcqVKw2LxWIEBQUZzz33XNv169atM9LT0w3A+Oc//9nuPvfdd5+Rm5trnH322Xs83p/+9CcDMFJSUoyNGzd2qIba2lrjd7/7nfHll1+2u95utxuPPvqoERERYQDGH/7why48Q9fjA0ZtbW2X7i8igaOqqsooKSkxbDab2aWISGdUVRnGvfcaxuGHG0ZKiutr2LA9l2Ic4Cs31+wnIiLin7Kzs41PPvmkU/cpKyszjj76aMNisRhLliwxDMMwHA6HYRiG4XQ6DcMwjNWrVxvDhw83wsPDjWeeeabdMbtzH9/Q0GD8/e9/NywWyx5f06ZNM959911jxIgRRlJSkvHyyy+3u+/+5OfnGxaLxejbt69PvW/UyovdjBs3jn/84x/ccMMNzJw5kxtuuIGYmBg2bNiA0+lkypQpXH311e3uU1NTQ0FBAXl5ee2u//zzz3nwwQcB13SSCy+8cJ/nXblyZdtlp9PJkiVLWLJkCQkJCfTr14+QkBA2b97cNvps8uTJ/Pvf//bMkxavs1qtVFZWtjXGETGTYRhtyXlXmg+LiIkMA/7v/+C228Buh9NPhxkzXLdt2ADfmlueiEhv4d46Mn78+A7fJzw8nKioKAB27doF7NlHIjU1lfT0dNatW0dRUdE+H8v9Wi46Opq//vWvTJ8+va3RZlJSEqNGjWLq1KlERERQUFBAUFAQ/fr1a3ff3TkcjrYmn2FhYbzzzjuAa2JJXFxch5+jtym8+JW//e1vDBs2jPvuu481a9awa9cuhg4dyu9//3suvfTSDi+p3n2saFFR0X7/8u0uOjqau+66i1WrVrFhwwa2bt1Kc3MzycnJTJkyhdmzZzNjxgzfWLYjB2TsNhZVxExNTU1UVFS0TQ8SET9jGHDRRfDYY5CZCTYbvPoqfPIJZGfDMcfQ+NI7nHzlINYVJZMR30x9VBoffWTp1NYQERE5sK407YyIiGh7Deae4OF+T+f+MzY2lujoaIC2D64P9L4vODiYoUOHct999+1xW1FREVVVVcTFxXHYYYft9zHc73PXr1/PAw88ANA2ttVXKLzYi6lTpzJ16tQOHXvLLbdwyy237HH9hAkTutTEJTQ0lD//+c+dvp/4Jo1FFbM1NzdTXl5OSEgIGRkZbdOKRMTPXHKJK7gA17xSt5IS19dXX7EmeTPrrK/x/l/epP//XcDEyB+ZMCGRjz7qXG8LERHZv4MPPpjPP/+8U/cJDQ0lOzsboC34+HUwER0d3Tay1K2jH1obhoHdbsfpdGIYBhERETzxxBNYLBYmT568x3vTsrIyNm3axLBhw9o+cP3uu++47777+Omnn7jiiisYO3Zsp56jtym8EPES91jU1NRUs0uRXshut1NSUkJwcDB9+vQhLCzM7JJEpKueegoeecR1OS3NNaf06KMhKQl27aJ141bW3/4mFbWhvP8JHHXUNBq+O4L3153ISbFfM2GCRQGGiIgHDRgwgGeeeaZT97FYLAwcOBCAdevWtV23u7CwMGpqanA6naSnp++1Wef+Hn/3D6lWrVrFM888g2EYXHzxxURERLTbPlxVVcVVV13F6tWriY+Px+Fw0NDQ0LYV5ZprrvG5148KL0S8wOFwUFpaSk5Ojrb4iCmCgoJIT0/3uV86ItJJP/wA7r5Zv/mNa5vIblu/GhrglDthneNPfLDMypFHua6/5McfeWrHFlb87yMm/n0iEyagAENEpJNaW1vZsmULmzZtYtOmTfz0009s2rSJ77//vkvj5cePH09KSgqFhYVs3Lix3VYOd1BRXV0NuPpNBAUFtQscKioqiI2Nbbequ6CggC1btpCXl0dwcDA7duxg7dq1/Oc//2Hr1q3ccMMNbb05dn9fkpWVxRlnnEFISAgNDQ3ExsYyfPhwTjjhBCZNmtTWn8OXKLwQ8ZI+ffpo7KT0mNbWVurr60lJSQFc4YWCC5EA8Kc/ufpbBAXB0qV7BhenwLp18P77cORRv/ybj500iYKCAnJXvcqKFROZOBEFGCIie+F0OtmxY0e7cML9Z0FBARERERxyyCFtX8cddxyZmZkcf/zxVFdXd6oB+sCBAxk2bBjLli3j6aef5sYbbyQqKgqr1UpYWBhr1qyhurqakJAQ0tLSAFfgsGbNGq666iq2bNnCs88+y4QJE7Db7YSEhFBdXc0NN9zAl19+SVBQEE6nE4CUlBTuvfdeLrnkkr3WEhsby5VXXsk111zjN+9ZFF6IeEFwcDCRkZFmlyG9QGtrK+Xl5RiG0fZLTkQCxI8/wrJlrssZGbDbNsRfBxdHHdX+rkePH0/hf/5D2q5dpKfDihUowBAR2YtPP/2U448/nn79+rUFFNOnT2+7nJWVtdeV1ElJSWzfvr3T09tmz57NunXruO+++zjooIOYN29e2wdOCxYsYNu2bcybN4+hQ4e2rboICQmhubmZkpIStm7dyoQJE9oer3///sybN4/09HQaGxtJTk7m8MMPZ/z48YwaNWq//c787YMuhRciHrT7si4Rb7JarZSXl+N0OklNTSUiIsLskkTE0158se1iRXgWT9wFr78OWzY7qagAC3DooCBeecV1zO4BxtFHH80uYFdNDf1AAYaIyD6MGzeOpqamTr+R79evH9u3b2fEiBGdut/MmTMpLCzkxhtv5JJLLuG9994jLi6OdevW8c0333DYYYdx3nnnERERgcPhIDg4mPj4eJKSkkhOTm7rgeFeLREXF8e8efO44IILOlWHP1J4IeIhhmFQWFhI3759/Wbplfiv6upqkpOTFVqIBLIvvgDgxbCZzN/2byqvc9/wS/O2jRtdX5t/sPPaW7+8rOsbEkIa8I7dTr+fr1OAISKyp5CQrr0l7tevH9u2bev0/YKDg7nssstISEjgySef5OWXXwZc20OmTJnCTTfdxOjRo9uCC4Dc3Fzefffddh+S7utyIFN4IeIh5eXlxMXFKbgQr7DZbISEhLT9ckpPTze5IhHxuo0bWcwsfm99EifBpFHKfB7haFaSRBW76MNWBvAm0wj9FNg5BDIzXfdduBAjOJiH6+qYvttD/jrA+PhjOPjgnn9qIiL+zr3yoitiY2O55JJLmDZtGtu2bSMhIYGcnBySkpIA14eiu7+n6C3hxIF0bO6KiOyXeyxqQkKC2aVIgHGPPN25cycOh8PsckSkB/1QnsIfeBQnwYznE75nMCVk8Mkf/8eIls855eu/86fJW/mAk3i2birMmAFOJ2zbBvffz+YjjuDTDRuw2WztHjc9He68E0pK4MknTXpyIiJ+rjvhBbgCipycHCZMmMDhhx/eFlyAwop9UXgh0k3usaiZmZn6QSMeY7fb2bVrF8XFxcTFxZGbm9vlZY0i4p/+1HgnrUSQQjmvBM0gOTuaiJhQ/rEglQVPhsOoUfDWWzB5MmHYYNUqeOABOP54iI+n8a9/pbW1le+//77d437xBcyaBUcfDX/5i0lPTkTEz3U3vND7hs5TeCHSTSUlJaSlpWm7iHhMbW0tO3bsIDY2ltzcXKKjo80uSUR62I8/wjKOB+BSHiLlrOOwrPqM+/Pu5zLLA8yfDwsu2wilpXDddb/c8corISoKli1jyMSJBAUFsXr16rabv/gCTjoJfvMbeOcdiI3t6WcmIhIY+vXrR35+fttoUvE+hRci3ZSSkqI3l+JRCi1EZLdBI8zgRZg8Gfr2pebdz7nkphQuTHyB+Q8exoLMW13NK9wSE+HLL+HnnyGDBg1izZo1gIILERFPys3NpbW1lV27dpldSq+h8EKkmzTtQbrD4XBQVlZGbW1t23VBQUFaSijSy/08aIR4ahjEDzz740iGDYOk7GgOvXUmj1WfRVy0g/ks4P4LvoOhQ113aGqCmJi2xxk1ahSrV69WcCEi4mERERFkZmZ2a+uIdI7CC5EuMAxDS8SkWxwOB+Xl5RQWFhIREUFcXJzZJYmID9m40fVnHvn8iQc57/8Gs359+2PqGl3bFa98fAjrq/q6rvxVb5yRI0eyYUMMJ51kKLgQEfGw7va9kM5ReCHSBeXl5dTX15tdhvghp9NJRUUFhYWFhIeHk5eXR1xcnFZaiEg7VVWuP39kIA9zKQmRrSxYAGVl0NICX3/t2knidkHxzTixQFZWu8cZMuQCwsKW85vfWBRciIh4WL9+/di2bZvZZfQaCi9EOsk9FlWflEtXOJ1OQkNDFVqIyH41Nrr+bCWCYOy8O+TPXHQRpKZCePtBIwB8zRhe4XR+SBnf9hhffAHTp0cquBAR8ZJ+/fpRUFBgdhm9hsILkU7QWFTpLKfTSaP7XQgQEhJCfHy8/v6IyH7t3k5pBi9y5NcPwpIl7Y4JCoK7b/nl58v/OIfZqy5iwQI15xQR6QnZ2dkUFRWZXUavEXLgQ0TEbdeuXRqLKh3idDqpqamhtraWxMREs8sRET8TG/vL6ovJSV9BFTBrFnz2GZx+OsTFwXffMfif/ySLDymmL1/HTOS35ycxf75rWuqIEQouRES8KTs7m8LCQrPL6DUUXoh0UG1tLSEhIRpfKftlGAY1NTXU1NSQkJBAXl6eVlmISKdlZ4N7+l7ff10Bd7wFW7bAQw+5vnY/liKK6UuZLZH774foaNiwAZ59VsGFiIg3uVdeGIah13s9QOGFSAdFR0erz4UcUHFxMVFRUeTm5hIUpJ15ItI1gwe7mnICOPrmwrp18Mgj8NJLsHkzNDRAWhqMG4dj3WD4CUJCLFgscMcdppYuItJrZGdn09TURHV1NUlJSWaXE/D0ylqkg0JCQpSoyh4Mw2j3fd++fUlKSlJwISLdcswxv1zeuhXXcoprrnE1s6ishNZWKCqCJUvYVuEK1n81aKSdoqIi8vPzvVqziEhvExcXR1xcnPpe9BC9uhY5ALvdbnYJ4oMMw6C2tpb8/Hz9HRERjzv1VAgNdV1+5ZV9H/fxx64sA2D8+H0fN3XqVO7QkgwREY/LyclReNFDFF6I7EdTUxO73JuORXCFFnV1deTn52Oz2cjNzSUkRDvwRMSzkhOdXHCS68Xwhx/CkviL4JBD4E9/go0bAaivhyuu+OU+F12078cbNWoUq1ev9mLFIiK9kyaO9ByFFyL74B6LmpGRYXYp4iMaGxspKCigtbWVnJwcUlJStD1ERDxv9WoYNIhb3xpBTuhOAGY1/Ic/RTzGimd3smbwLBYNvYcjRtpZt851l/nzYfTofT/kqFGj+O6772hpafF+/SIivYjCi56jjwtF9kFjUeXXQkJCyM7O1t8JEfGelSvhpJNgyBBSVz7Be4kZnHoabNkSzEPfHctDHOs6bsMvdzn/fPj3v/f/sCNHjsRut7N+/XqOOOII79UvItLLZGdn89NPP5ldRq+gjwxF9kJjUQWgoaGBhoaGtu/Dw8MVXIiI95SVwWmnuZZQrFgB48ZRWWXh6KPhH/+AMWMgKQnCwqBvHxtnh7/G8sOvYuHCX/pj7MvQoUMJCgpi/fr1PfNcRER6iezsbAoLC80uo1fQyguRX7Hb7VRXV5Obm2t2KWKSxsZGKioqCA8PJyUlxexyRKS3ePxxaGpyjUONiuKTT2DyZNdVY8bA++9DfLz74FB43QLT74Ovz9n/nhEgMjKS/v378/3333v9aYiI9CbaNtJztPJC5FeCg4PJzs7WWNReqKmpiYKCAurr68nKyqJPnz5qxikiPcPhgP/+F2bOhJSUtuDiqKPg00/hp59cu0lqa3e7z9SpkJsL//lPh04xZMgQhRciIh6Wk5PDjh07cDqdZpcS8BReiPyKxWLR1oBeyGazUVtbS2ZmpkILEel5GzZAYSHMnt0uuHjjDTj6aFi6dC8BRnAwzJoFb77ZoVMMHjyYDRs2HPhAERHpsL59+2Kz2SgrKzO7lICn8ELkZ1arFcMwzC5DepDdbm+7HBoaSkZGBqEH2jguIuINVVUAfFI8oF1wERXlunnkyH0EGFlZUF0NHfj9NWTIEEpKSqj6+VwiItJ9ERERpKamautID1B4IYJrLGpxcbGWe/USLS0tFBUVUVFRYXYpIiIuERF8wngmX5C5R3DhttcAo6UFIiKgA1sdBw8eDKCtIyIiHpaRkUFJSYnZZQQ8hRciaCxqb+EOLSorK0lPT6dPnz5mlyQiAsAn5YOYzLsclb1jr8GF2x4Bxrur4OdQ4kAOOeQQgoODFV6IiHiYwoueoU3d0uvV1tYSHByssagBbufOnTidTtLS0ggPDze7HBGRNp98ApPPSeCo9O94w3keUZHrgH2vpHAHGCcc5+Ckuqt4/4FNxO/z6F+Eh4dzyCGHKLwQEfGwzMxMhRc9QCsvpFezWq1UV1eTnp5udiniZenp6fTt21fBhYj4lHbNOZ+uI2rLetfUkQMYOdzJ0tF/5SfLQE56+tz2U0j244033uCOO+7oZtUiIrK7jIwMdu7caXYZAU/hhfRqpaWlZGRkaCxqgLFarRQXF7dryKktQSLia349VSTqxHFwySWur8cf33cTTqsV5s1j5PK7WfrPtfy0OXjPMar7cNBBBxEbG+vZJyIi0stp20jP0LYR6dWysrIIClKGFyisVisVFRXY7XbS0tI07lREfFZ5uSu4GDr0V805//1vcDrhwgvhP/+Biy+GU06BmBgoLYVnn4VHH4WKCnj6aUaeexwfToSxY+H88+Hll019WiIivZLCi56hV/bSqym4CAw2m43y8nLsdjupqalERkaaXZKIyH4lJsKRR8KXX8Lq1XDMMT/fEBwMDz8Mp57q+vMPf2i/AiM6GmbNgksvhcGDMQx47jmw2eDkk015KiIivZ7Ci55hMYwODAaXgFFXV0d8fDy1tbXExcWZXY4pHA4HdrtdvQ8CSENDA0FBQUTtqz2/iIgPamqCadNcAcY77+wWYOyuoAC++w4aGyEhwZV4xLvacxoGXH013HcfPPSQa7eJiIj0vPz8fAYMGIDVatVWZS9SeNHLKLyA4uJi4uPjiYmJMbsU6SK73Y7D4VAAJSJ+r0MBxl4ouBAR8R0tLS1ERkZSUlJCnz59zC4nYGnNvPQq7rGoCi78k91up7S0lOLiYpxOp9nliIh0W1QUvPkmjBnjam3xyScHvo8ngou6urrO30lERPYqIiKCxMREbR3xMoUX0mu4x6KmpaWZXYp0ksPhoLS0lB07dhAdHU1OTo76WohIwOhMgOGJ4OKee+4hLy8PLb4VEfEc9b3wPoUX0isYhkFJSQkZGRlq0ulnbDYbRUVFREVFkZubS0xMjEbbikjA6UiA4amtIgcddBDV1dV6kS0i4kEZGRns3LnT7DICmt7FSa/g7vGhHgn+YfdPA0NDQ8nNzSU2NlahhYgEtP0FGJ7scTFo0CAAfvjhh25WLCIibpmZmQqFvUzhhfQK8fHxJCQkmF2GHIDT6aSiomKP1FqhhYj0FnsLMDzdnDMvL4+goCC2bt3qmaJFRETbRnpAiNkFiPQEvfn1bU6nk6qqKurr60lKSiI5OdnskkRETOMOMKZNcwUYU6fC8897bqpIWFgYubm5bNmypfsPJiIiAKSlpSkU9jKtvJCAVl9fb3YJcgBVVVUUFBQQEhJCXl4e8fHxCptEpNfbfQWGJ4MLtwEDBuhFtoiIB6WlpVFWVmZ2GQFNKy8kYNXW1tLc3ExsbKzZpch+uEdLKbAQEWkvKgrefht++gmGDfPsYw8YMIAvvvjCsw8qItKLpaamUl5ebnYZAU0rLyQgaSyqbzIMg+rqahwOR9t1UVFRCi5ERPYhIsLzwQW4Jo5s2bJF41JFRDxE4YX3KbyQgKOxqL7HHVrk5+djGIbCChERkw0YMIDGxkYtcRYR8ZC0tDSqqqqw2+1mlxKw9M5OAk5FRQWxsbEai+oDDMOgpqaG/Px8nE4nubm5JCUlKVQSETHZQQcdBKC+FyIiHpKamophGFRWVppdSsDSOwgJKA6HA6vVSmJiotmlCK6+I3a7ndzcXJKTkxVaiIj4iP79+wNo4oiIiIdEREQQExOjrSNepIadElCCg4PJysoyu4xeyzAMnE4nwcHBACQkJJhbkIiI7FV0dDQZGRlaeSEi4kFpaWkKL7xI4YWIdJthGDQ0NFBRUUFycjJxcXFmlyQiIgfw8MMPM2DAALPLEBEJGKmpqeol5EUKLyQgNDQ0EBERQUiI/kr3JHdoUVlZSVRUFDk5OW2rLkRExLf99re/NbsEEZGAookj3qUN6OL3rFYr5eXl6qfQw2w2GwUFBTQ1NZGdnU1aWpqCCxERERHptbRtxLv0MbX4NfdY1MzMTIUXPSwkJIS+fftqtYuIiIiICFp54W16tyd+TWNRe05TUxOlpaVt31ssFgUXIiIiIiI/U88L79I7D/Fbzc3NtLS00LdvX7NLCWhNTU1UVFQQGhpKamqq2eWIiIiIiPgkbRvxLoUX4rfq6urIyMjAYrGYXUpAam5upry8nJCQEDIyMggNDTW7JBERERERn5WcnExFRYXZZQQshRfit9LT080uIaA1NTXRp08fwsLCzC5FRES85PLLLyc2NpbbbrvN7FJERPxeUlIS1dXVZpcRsBReiAgALS0thIWFtTU+TU5ONrkiERHxtqKiIhobG80uQ0QkICQmJiq88CI17BS/YrVaqaurM7uMgNLa2sqOHTuoqKjA6XSaXY6IiPSgvn37UlxcbHYZIiIBISkpiZaWFpqbm80uJSBp5YX4DfdY1D59+phdSkBobW1tayiUmpqqiS0iIr1QVlaWwgsREQ9JSEgAoLq6msjISHOLCUBaeSF+Q2NRPaempoaysjJSUlLo27ev/puKiPRSffv2paamRltHREQ8IDQ0lNjYWKqqqswuJSApvBC/0NTUREtLC4mJiWaXEhDi4+PJzs4mIiLC7FJERMREWVlZAFp9ISLiIep74T0KL8TnORwOSktLNRa1i2w2Gzt37qSmpqbtOv13FBERcK28ANixY4fJlYiIBIakpCStvPAS9bwQn9fc3ExqaiohIfrr2hl2u53y8nJsNhspKSlERUWZXZKIiPgYrbwQEfEsrbzwHr0bFJ8XExNjdgl+xeFwUF5eTmtrK6mpqQotRERknyIjI0lKStLKCxERD0lKSlJ44SUKL0QCUGxsrKayiIhIh2jiiIiI5yQmJmrbiJeo54X4JMMwKCsrwzAMs0vxeQ6Hg9ra2rbvg4ODiY6ONrEiERHxJ3379tXKCxERD9G2Ee9ReCE+qaKigpCQEDWW3A+Hw0FZWRlFRUUEBemfsoiIdI1WXoiIeI4adnqPto2Iz2lubqalpaWtA7q053A4qKqqoqGhgZSUFFJTUxXyiIhIlx1zzDHqLyUi4iFaeeE9Ci/EpzgcDnbt2kV2drbekO9DaWkpMTExpKSk6L+RiIh026xZs5g1a5bZZYiIBASFF96j8EJ8yq5duzQW9VecTicWi6UtqMjMzDS5IhERERER2Zu4uDjq6urMLiMgaaO8+Ayn00lkZKSWrv7M6XRSWVlJQUEBdrvd7HJEREREROQA4uLiqK+vN7uMgKSPt8VnBAUFkZSUZHYZpnM6ndTU1FBbW0tCQgJ5eXnaHiIiIiIi4ge08sJ7FF6I+JCGhgbKy8sVWoiIiIiI+KHY2Fjq6+sxDEOv5T1M20bEdJWVlbS2tppdhk+IiIggNzeXxMRE/bATEREREfEzcXFxGIZBY2Oj2aUEHIUXYqrm5maampoICwszu5QeZxhG2/YQt5CQEIKC9M9SRER61muvvcbbb79tdhkiIn4vNjYWQFtHvEDbRsQ0TqezV45FNQyDuro6qqqqiI2NVZ8PEREx3aOPPkp4eDhTpkwxuxQREb8WEhJCZGSkmnZ6gcILMU1JSUmvGotqGAb19fVUVlYSGxtLbm6uVlmIiIhPSElJYfv27WaXISISENS00zv0zklMUVtbS3BwcK8ai2q322ltbSUnJ4eUlBQFFyIi4jNSUlKorKw0uwwRkYDgbtopnqV3T2KatLQ0s0vwKsMw2jUiDQ0NJTU1leDgYBOrEhER2VNycjIVFRVmlyEiEhC08sI7FF6IKeLj4wN25YFhGDQ0NFBQUKAfWiIi4hdSUlKoqqrC6XSaXYqIiN/Tygvv6B3NBkR6SGNjIxUVFURERNC3b99e089DRET8W3JyMg6Hg9raWhITE80uR0TEr2nlhXfonZX0mObmZhobG0lJSTG7FK8oLi4mODiYrKwshRYiIuJX3L+bKysrFV6IiHSTwgvvCMx1++Jz3GNRExISzC7FazIzM+nTp4+CCxER8Tvu8EJ9L0REui82NlbhhRcovJAeEWhjUZubmyksLMRms7VdZ7FYTKxIRESk65KTkwGFFyIinhAdHU1TU5PZZQScwHgnKT6trq4uYMaitrS0UFZWRkhICH369CE0NNTskkRERLrNHV5oXKqISPdFRUWxa9cus8sIOAovxKtsNhuVlZXk5uaaXUq3tLa2UlZWRlBQEH369CEsLMzskkRERDwmLCyM2NhYrbwQEfGAyMhIrbzwAoUX4lVOp5PMzEy/H4vqdDpJS0sjPDzc7FJERES8IiUlRSsvREQ8ICoqSuGFFyi8EK/y1zf7ra2tOJ1OIiMjAdr+FBERCVTr168nOjra7DJERPyeVl54h8IL8QrDMPyygaXVaqW8vLxtpYWIiEhvEQi9qUREfEFUVBTNzc1mlxFwFF6IxzmdTnbs2EF2drbfBBhWq5WKigocDgepqalERESYXZKIiIiIiPghbRvxDoUX4nElJSUkJSX5TXBhs9nYtWsXqamp2h4iIiIiIiLdom0j3qHwQjzKX8ai7r6tJTQ0lJycHJMrEhERERGRQKBtI97h3yMgxKe4x6L6cq8Iu93Orl272Llzp9mliIiIiIhIANLKC+/QygvxCMMw2Llzp8+ORbXb7VRUVNDa2kpKSoq6qYuIiPyK0+mksbGR2NhYs0sREfFr6nnhHb73LlP8Vlpamk+ORi0vL2fHjh3ExMSQm5ur4EJERGQvnn76aeLi4rBarWaXIiLi17RtxDu08kI8wmKx+Gyzy7i4OFJSUvymgaiIiIgZ3P2qGhsbCQsLM7kaERH/FRkZid1ux2azERoaanY5AUMrL6RbDMPAMAyzy2jjcDgoLy/HZrO1XRceHq7gQkRE5ADc4UVDQ4PJlYiI+LeoqCgAbR3xMIUX0i0lJSW0tLSYXQZOp5OKigoKCwsJDw8nJESLikRERDrDva2ysbHR5EpERPxbREQEgLaOeJje4UmX1dXVERQUZOp2EafTSVVVFfX19SQlJZGXl6dVFiIiIl2glRciIp7h3iqy+2pw6T6FF9Il7rGoubm5ptZRX19PSEiIQgsREZFuUnghIuIZQUFBhISEKLzwMIUX0mlmjkV1Op04nc62bSHx8fE9en4REZFApW0jIiKeExYWpulNHqaeF9JplZWVxMbG9uhYVMMwqK6upqCgwCd6bIiIiAQarbwQEfEchReep5UX0mlxcXE9NvLHMAxqav6/vXsPiuq64wD+XWBhBQSUly8QUUPUaXxQTSpNtJaxJfjAV7Qag6/YmEzM1NG0VUehaMZgYzW2046Jr6SapNoYtTFOSsRWFscxojaM2iqIaEQjbw3Lsgu//hF3w7q7sMte2Ct+PzM74j33nD2X/Xn23J/n3luN6upqhIaGom/fvh2+2oOIiOhRYLk7PpMXRESeY/JCeUxekNs66tnvZrMZ169fR0hICJMWRERE7czX1xeBgYFMXhARKUCr1fKeFwpj8oJc1tjYCF9f3w57P19fXyYtiIiIOlBQUBDveUFEpACuvFAezwrJJbW1tSgvL2+39kUEtbW1uHnzpnWbRqNh4oKIiKgDBQcHc+UFEZECmLxQHldeUKva87GoIoK7d++ioqICwcHBiI6OVvw9iIiIyDWrVq3CwIEDvd0NIqKHHpMXymPyglrUno9FtSQtAgMDERsb26GXpBAREZG9hQsXersLRESdgr+/P+95oTAmL6hF7flY1KamJsTExDBpQUREREREnQpXXiiPNxQgp+rr61FXV4du3bop0t63336LxsZG699DQ0OZuCAiIiIiok6HyQvlceUFORUQEIDevXtDo9F41E5dXR3u3LmDgIAA6HQ6hXpHRERERESkTlqtlskLhTF5QU5pNBqPVkZYkhb+/v7o3bs3/PwYbkRERERE1PkxeaE8XjbyiDEajTZ/OqLEjWWqq6tRXV2NXr16oWfPnkxcqIzRaERGRkaLcUCPBsYCWTAWCGAc0PcYC2TBWGgbX19fiIi3u9GpaIS/0UfKjRs3EBMTg+vXr6NPnz525SaTCTdu3EBcXJzbl4uIiMeXmFDHqK2tRWhoKGpqahASEuLt7pAXMRbIgrFAAPD222/jtddeYxwQxwSyYiy0zeTJkzF+/Hi88sor3u5Kp8GVF2TV/LGo7iQh6uvrcf36ddTU1LRj74iIiKi96fV6b3eBiKhT8PHxQVNTk7e70alwLT9ZuftYVKPRiG+++QYajQZRUVHt8jhVIiIi6jg+Pvx/LSIiJTB5oTx+Qzlw5MgRJCcno3v37ggKCsKIESOwdevWNgffyZMnMXnyZERGRqJLly4YPHgwsrKyUF9f32K9ixcvYs6cOejZsyd0Oh369++P5cuXo7q6uk39aInBYHD5sahmsxk3btzAnTt3EBUVhT59+jBxQURE1AnwHlVERMrwJHlRUlKCd999F4sXL8awYcOg1Wrh4+ODN954w6M+Wc5Lo6KiEBgYiCFDhmDdunUPzf1MmLx4wIYNG5CamoovvvgC3bp1w4ABA3D+/HksXboUU6ZMcTsA9+zZg6effhqHDh1CQEAABg0ahCtXrmDNmjV45plnUFdX57Bebm4uEhMTsXfvXjQ2NmLIkCG4desW3nrrLSQmJuL27dtKHC6A7y4XuX37tsuXi/j4+CAiIoJJCyIiok6GyQsiImV4krzYsmULFi9ejO3bt+Orr75CU1OTx/cW3LNnD5555hn84x//gE6nw+DBg1FUVIQ1a9ZgzJgxrf7HuhowedHMyZMnsXLlSvj4+GDv3r0oKirC+fPnUVBQgOjoaBw6dAibNm1yub2SkhIsXLgQjY2NyM7OxvXr11FQUIDLly8jISEBp0+fxuuvv25X7+7du5g5cyYMBgOWLl2Kr7/+GmfOnEFpaSmSkpJQXFyMhQsXKnbcGo0GsbGxTicsDQ0NKC8vt/7dx8cHOp1OsfcnIiIidWDygohIGZ4kLyIiIjBx4kRkZWXhs88+w9SpUz3qy7Vr17Bo0SI0NTVh48aNKC0txZdfftnqeanaMHnRzLp16yAiWLRoEX7xi19Ytw8dOtSatNiwYYPLjxLduHEjjEYjxo8fjxUrVlizZX379sWOHTsAANu2bbNbRfGXv/wFd+7cwaBBg7Bp0yZotVoAQHh4OPbu3Qs/Pz98+umnKCgo8PiYLRxd42oymXDz5k3cunULQUFBir0XERERqZOvr6+3u0BE1Cl4krxYtWoVDh48iJUrV2L8+PEIDg72qC/Z2dkwGo342c9+hmXLllm3x8TEYMeOHRARbNu2DXfu3PHofdobkxf31dbWIicnBwAcrmqYMWMGQkJCUFFRgdzc3FbbExEcOHDAaXujR4/G448/DpPJhIMHD9qUffzxxwCAefPm2U0iYmNjkZycDADYv3+/C0fmnNlshtlstttuMplQVlaGsrIyhIWFITY2Fl26dPHovYiIiEj9uPKCiEgZarph5yeffAKNRoMFCxbYlf3oRz9yel6qNkxe3Hf27Fk0NDRAp9NhxIgRduVarRYjR44EAJw6darV9kpLS1FWVgYASEpKcriPZXvz9sxmM86cOeN2PXeJCL7++muHyYvKykqEhoYiNjYWgYGBbX4PIiIiergweUFEpAy1JC9cPS8VEY/OLzsCkxf3Xb58GQBavPdDfHy8zb6utBcQEIBevXq53F5JSYn1shRLuSf9cKaqqgpdu3aFTqeD2WyGiFjLoqOjmbQgIiJ6BPGyESIiZagledH8vLRnz54O91Hi/LIjMHlxX1VVFQC0+KhQS5llX1faCwsLc3pnWEftNf/ZWV/c6YczBoMBISEhuH37Nm7cuOFwBQYRERE9WrjygohIGWpJXjQ/L3VGifPLjsBvqPssj4bx9/d3uo/lsaAGg6Hd2mv+iBpndd3px4Ms/4D8/f1x48YNhIeHIyoqyuNH7xAREdHDjysviIiUoZbkhdLnud7E5MV9lkd/NjQ0ON3HaDQCgEs3r2xre80fQWq5B4cn/XiQ5XqnmpoaREREoKamBjU1NS7VDQgIsAY2Pdxqa2tt/qRHF2OBLBgLBHw/D2EcEMcEsmAsfHf+ZTkHc1VdXR3u3r0LEfHqfxQrfZ7rTUxe3OfKUhlXLi15sL3q6mqnAeuoveY/V1VVObwuyZ1+OOvXT37yE7frUucTExPj7S6QSjAWyIKxQADjgL7HWCALxkLbZGRkICQkxGvv3/y81BlPzi87EpMX9w0cOBDAd3djNZvNDq/5LC4uttnXlfaMRiNu3ryJ3r17u9ReXFwctFotTCYTiouLHSYv3OnHgwYMGICioiJotVq3M4BceUFERERERI+atqy8AL47f+ratWs79Mh1zc9Ly8rKFD+/7EhMXtw3fPhwaLVa1NfXo6CgAKNGjbIpN5lMOH36NADgySefbLW92NhY9OjRA7du3YJer8dzzz1nt49er7drz8/PDyNGjMCpU6eg1+sdPs7GUT1X+fj4OH2KCREREREREXUelvPS27dvQ6/XY/r06Xb76PV6aDSaNp1fdiQ+beS+kJAQJCcnAwC2b99uV75v3z7U1tYiPDwcY8eObbU9jUaDKVOmOG0vPz8fly5dglarxaRJk2zKpk6dCgDYtWsXGhsbbcpKS0uRk5MDAJg2bVrrB0ZERERERESPrClTpkBE3D4vVRsmL5pZtWoVNBoN3n33XXzwwQfW7efPn8eyZcsAAK+//rrNnVo3b96MuLg4zJo1y669FStWwN/fH59//jk2btwIEQEAXLt2DQsWLAAALFq0CD169LCp99JLLyEiIgIXL17EsmXLYDKZAAAVFRWYPXs2zGYzUlJSkJiYqOwvgIiIiIiIiB46W7ZsQb9+/TB79my7subnpb///e+t2y3npRqNBi+++CKioqI6sstu04jljJoAAOvXr8fq1asBAPHx8QgODkZhYSGampqQmpqKgwcP2jxGLCMjA5mZmRgzZgyOHz9u1957772H+fPno6mpCb1790ZUVBQKCwthMpmQmJiIf/3rXwgKCrKr98UXX2DChAmor69HZGQkYmNjcfHiRdTV1SEuLg4nT560S3oQERERERHRwy0/Px+TJk2y3qPw3r17MBqNCAwMtHkiyLlz56z3VszMzERmZibGjh2LY8eO2bX5/vvvY8GCBWhsbLQ5LzWbzfjhD3+I48ePq/5pI1x58YBVq1bh8OHDGDduHCoqKnDlyhX84Ac/wObNm+0SF6544YUXcOLECUyYMAEGgwEXLlxAfHw8MjIykJeX5zBxAQA//elP8eWXX2LWrFnQaDT46quvEB0djWXLlqGgoICJCyIiIiIiok7IZDKhqqoKlZWVqKysRENDAzQaDQwGg3VbVVWV3S0GNBqN04cyzJ07FydOnMDEiRNRX1+Pixcvon///sjMzMSJEydUn7gAuPKCiIiIiIiIiFSOKy+IiIiIiIiISNWYvCAiIiIiIiIiVWPygoiIiIiIiIhUjckLIiIiIiIiIlI1Ji9U7siRI0hOTkb37t0RFBSEESNGYOvWrWhqampTeydPnsTkyZMRGRmJLl26YPDgwcjKykJ9fX2L9S5evIg5c+agZ8+e0Ol06N+/P5YvX47q6uo29YPcp1QsnD17FmvWrMGYMWMQEREBrVaLqKgopKSk4MCBA07r7dq1y3oHY2evo0ePenqY5AKlYiEjI6PVz/TSpUtO63Nc8C6l4qC1GLC8du/ebVOPY4K6xMXF2f3+dTod+vXrh+effx6nT592WG/evHkuff7z5s1zu15aWlr7HzgBAK5evYp33nkHL774IoYOHQo/Pz9oNBqsW7euTe1xrvBwUjoOOE8gtfHzdgfIuQ0bNuC3v/0tACA+Ph7BwcE4f/48li5dipycHBw4cAA+Pq7nn/bs2YP09HTrs31jYmJQWFiINWvW4PDhwzh+/DgCAwPt6uXm5iI1NRUGgwGRkZEYMmQILl26hLfeegsHDhxAfn4+oqOjFTtusqdULBQVFWHEiBHWv/fr1w9xcXEoLi7G0aNHcfToUaSnp2PHjh1O24uKisLAgQMdlnXr1q0NR0fuUHpcAICYmBjExsY6LHM0JgAcF7xNyThISkpyWlZVVYULFy4AAJ566imH+3BMUJeBAwciKioKAFBTU4MrV65gz549+PDDD7Fz507MnTvXYb2WPkcAeOyxx9yuN3jwYDd7T221ZcsWbNmyRZG2OFd4eCkZB81xnkCqIaRK+fn5otFoxMfHR/bu3Wvdfu7cOYmOjhYAsnHjRpfbu3r1qgQEBAgAyc7OlqamJhERKSkpkYSEBAEgr7zyil292tpaiYyMFACydOlSaWhoEBGR8vJySUpKEgCSmprq4dFSS5SMhcuXL0vPnj3lzTfflJs3b1q3NzY2ytatW0Wj0QgA2bp1q13dnTt3CgBJT0/3+JiobZQeF9auXSsAZO3atW71g+OCdykdBy1ZtWqVAJBRo0bZlXFMUJe+ffsKANm5c6fN9srKSpk+fboAkK5du0plZaVNeXp6eps+x7bWo/aRlZUlEyZMkN/97nfy2WefybRp0wSAZGVlud0W5woPLyXjQITzBFIfJi9U6tlnnxUAsnjxYruyPXv2CAAJDw+3DgatefnllwWAjB8/3q5Mr9cLANFqtXLr1i2bsuzsbAEggwYNErPZbFN27do18fPzEwBy5swZN46O3KFkLBgMBvn222+dlr/00ksCQJ544gm7Mk5IvE/pcaGtkxKOC96ldBw409TUJHFxcTxJeUg4S16IiNTU1EhQUJAAkA8//NCmjMmLzsny+bTlpJVzhc7DkzgQ4TyB1If3vFCh2tpa5OTkAAAWLlxoVz5jxgyEhISgoqICubm5rbYnItbrEx21N3r0aDz++OMwmUw4ePCgTdnHH38M4LtrW319fW3KYmNjkZycDADYv3+/C0dG7lI6FnQ6ndPlfQAwfvx4AMD//ve/NvaY2ovSseAJjgve05FxcOLECZSUlECr1WLWrFketUXeFRISYr3so6SkxLudIdXjXIE8xXkCtRcmL1To7NmzaGhogE6ns7nm0EKr1WLkyJEAgFOnTrXaXmlpKcrKygA4v7bZsr15e2azGWfOnHG7HilH6VhojeXGrV26dHG6z/nz5zF79myMGzcOaWlpyMzMRFFRkcfvTS1rz1jIzc3FjBkzMG7cOEyfPh3Z2dm4deuWw305LnhXR44Jf/3rXwEAP//5zxEREeF0P44JD4e6ujoAzq9PJ3IV5wqPHs4TSC2YvFChy5cvA/guM+nn5/ieqvHx8Tb7utJeQEAAevXq5XJ7JSUlMJlMNuWe9IPcp3QstOZvf/sbgJZv4Hfu3Dl88MEHyM3NxcGDB5GRkYGEhASsX7/e4/cn59ozFv79739j//79yM3Nxd///nf8+te/Rnx8PHbt2mW3L8cF7+qoMcFoNGLfvn0A4PQGjxYcE9Tv8uXL1hPHYcOGebcz9NDjXOHRw3kCqQWTFypUVVUFoOW7MVvKLPu60l5YWBg0Go3L7TX/2Vlf3OkHuU/pWGjJ559/jk8++QQAsGLFCrvysLAwvPrqq9Dr9bh9+zbq6+tx9uxZzJ07F42NjVi9ejX++Mc/etQHcq49YqFnz55YuXIlTp8+jYqKCtTV1UGv1yMlJQUGgwELFizA4cOHHfajpb5wXGg/HTUmHD58GNXV1QgNDcXEiRMd7sMxQf0slxmlpaXBbDYjKSkJTz/9tMN9d+/e3eLjEC3fD+7Uo86Hc4VHC+cJpDZ8VKoKWZbj+fv7O90nICAAAGAwGNqtPUu9luq60w9yn9Kx4ExpaSnmzJkDAHj55ZfxzDPP2O2TlpaGtLQ0m23Dhg3De++9h/DwcGzevBmrV69Geno6unbt2ua+kGPtEQu//OUv7baNHj0an376KaZNm4YDBw7gV7/6FSZMmGA9EeG44F0dNSZYLhmZMWMGdDqdw304JqjT/PnzMX/+fJttPj4+mDlzJv785z87rdfao1LDw8PbVI86D84VHj2cJ5DacOWFClkmig0NDU73MRqNAFq+3tDT9ppPWJ3Vdacf5D6lY8GRyspKpKSkoLy8HGPHjsWmTZvcbiMzMxMBAQGoqanBsWPH2tQPallHxIKFRqPBhg0bAABFRUX4z3/+Y9ePlvrCcaH9dEQcVFRU4MiRIwCAF154oU1tcEzwnoEDByIpKQmjR4+2Ls223AulpRU7KSkpyMvLc/pytmKjpXrUeXCuQM1xnkDewuSFCrmylMqVpcMPtlddXQ0Rcbm95j8764s7/SD3KR0LD7p37x6effZZXLhwAYmJiTh06JA1G+6OkJAQDBkyBABw5coVt+tT69o7Fh702GOPoXv37gBsP1OOC97VEXHw0UcfwWQyIS4uDj/+8Y/b1AbHBO9ZuXIl8vLyoNfrUVRUhLy8PHTt2hXLly+3rqghcgfnCuQI5wnkDUxeqJBl+WVpaSnMZrPDfYqLi232daU9o9GImzdvutxeXFwctFqtTbkn/SD3KR0LzRmNRkyePBmnTp3C4MGDcfToUY+WcFpixVk/yTPtGQvOOPpMOS54V0fEgeUE9/nnn/fovgUcE9QhKSkJ77zzDgDgtddeQ21trZd7RA8TzhWoJZwnUEdj8kKFhg8fDq1Wi/r6ehQUFNiVm0wmnD59GgDw5JNPttpebGwsevToAQDQ6/UO97Fsb96en5+f9VF87tQj5SgdCxZmsxnPPfccjh07hvj4ePzzn/9s8VGIrWlsbMR///tfAECfPn3a3A45116x4Ex5eTm++eYbALafKccF72rvOCgqKsLJkycBfJe8aCuOCeqSlpaGp556CpWVlW1a7k+PJs4VqCWcJ5A3MHmhQiEhIUhOTgYAbN++3a583759qK2tRXh4OMaOHdtqexqNBlOmTHHaXn5+Pi5dugStVotJkybZlE2dOhUAsGvXLjQ2NtqUlZaWIicnBwAwbdq01g+M3KZ0LACAiGDevHk4dOgQevXqhZycHKeP0HXV9u3bUV1dDV9fX5f7Qe5pj1hoyaZNmyAiCA0NxciRI23KOC54T3vHwfvvvw8AGDVqFBISEtrcT44J6vOb3/wGAPD222/j3r17Xu4NqR3nCtQazhPIK4RUKS8vTzQajfj4+MjevXut28+dOyfR0dECQN58802bOn/4wx+kb9++MnPmTLv2iouLxd/fXwBIdna2NDU1iYhISUmJJCQkCABZsmSJXb2amhqJiIgQALJ06VJpaGgQEZHy8nJJSkoSAJKSkqLkodMDlI6FV199VQBIRESEXLhwwaU+1NTUyKxZs+TUqVM2281ms2zbtk10Op0AkMWLF7fhCMlVSsZCYWGhLFmyRAoLC222GwwGWb9+vfj4+AgAeeONN+z6wXHBu5QeE5obMGCAAJCtW7e2uB/HBPXp27evAJCdO3c6LG9qapJBgwZZ5wEW6enpAkDS09Pder+21qOOYfl8srKynO7DuULn50kccJ5AasTkhYqtW7dOAAgAiY+PlyeeeMI6UKSmporZbLbZf+3atQJAxowZ47C93bt3W+v37t1bhg8fLlqtVgBIYmKi3Lt3z2G9nJwc6xdOZGSkJCYmSmBgoACQuLg4KSsrU/rQ6QFKxUJ+fr61nZiYGElKSnL6aq6qqspaLywsTIYPHy4jR46UsLAw6/aUlBQxGAzt/at45CkVC2fPnrW2Y/l33fzfNgBZuHChNdH5II4L3qX094PI9+ODVquVO3futPj+HBPUp7XkhYjI9u3bBYD06NHD+tlYTm6ioqJa/E6YN2+eTVtMXqhLXl6ehIeHW18BAQECQAIDA222l5aWWutwrtD5KBkHnCeQGjF5oXKHDx+WcePGSWhoqAQGBsrQoUNl8+bNdhNTEdcmp3q9XiZMmCDdu3eXgIAASUhIkIyMjFa/SAoLC2XWrFkSFRUl/v7+0q9fP1m2bJlUVlZ6eojkIiViITc31/qF09qruYaGBsnOzpa0tDQZMGCAhISEiFarlR49ekhqaqp89NFHTr+8SHlKxEJVVZVkZWVJSkqK9OvXT4KDg8Xf31/69Okj06dPl6NHj7baD44L3qX098OSJUsEgEycOLHV9+aYoD6uJC+MRqP06tVLAMif/vQnEfk+CdHaa+jQoTZtMXmhLq5+v1+9etVah3OFzkfJOOA8gdRII+Lk2ZlERERERERERCrAG3YSERERERERkaoxeUFEREREREREqsbkBRERERERERGpGpMXRERERERERKRqTF4QERERERERkaoxeUFEREREREREqsbkBRERERERERGpGpMXRERERERERKRqTF4QERERERERkaoxeUFEREREREREqsbkBRERERERERGpGpMXRERERERERKRqTF4QERERERERkar9H4mgkwBJVuLJAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Create figure and Taylor Diagram instance\n", - "fig = plt.figure(figsize=(12, 12))\n", - "taylor = gv.TaylorDiagram(fig=fig, label='REF')\n", - "ax = plt.gca()\n", - "\n", - "# Draw diagonal dashed lines from origin to correlation values\n", - "# Also enforces proper X-Y ratio\n", - "taylor.add_xgrid(np.array([0.6, 0.9]))\n", - "\n", - "# Add model sets for p and t datasets\n", - "taylor.add_model_set(\n", - " a_std,\n", - " a_cc,\n", - " fontsize=20,\n", - " xytext=(-5, 10), # marker label location, in pixels\n", - " color='red',\n", - " marker='o',\n", - " facecolors='none',\n", - " s=100) # marker size\n", - "taylor.add_model_set(\n", - " b_std,\n", - " b_cc,\n", - " fontsize=20,\n", - " xytext=(-5, 10), # marker label location, in pixels\n", - " color='blue',\n", - " marker='D',\n", - " facecolors='none',\n", - " s=100)\n", - "\n", - "# Add figure title\n", - "plt.title(\"Example\", size=26, pad=45);" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Finishing touches" - ] - }, - { - "cell_type": "code", - "execution_count": 54, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 54, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABDoAAAQhCAYAAADMPO/hAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3hU1drG4d8kIQkhDRIglEDondBDLyq9KEX6AREUkSZgFxVsFBWxgNKOIAiIqDQF6dJ776GTkEAI6T2Z/f3BlzlEWoCESXnu65qLzMxee78TWuaZtd5lMgzDQEREREREREQkB7CxdgEiIiIiIiIiIhlFQYeIiIiIiIiI5BgKOkREREREREQkx1DQISIiIiIiIiI5hoIOEREREREREckxFHSIiIiIiIiISI6hoENEREREREREcgwFHSIiIiIiIiKSYyjoEBEREREREZEcQ0GHiIiISCYbN24cJpMJk8lE8+bNrV2OiIhIjqagQ0RExEpuf/P7qLeLFy9a+2WIiIiIZCkKOkREREREREQkx7CzdgEiIiJyS+vWrR96TN68eTOhEhEREZHsS0GHiIhIFrFmzRprlyAiIiKS7WnpioiIiIiIiIjkGAo6RERERERERCTHUNAhIiKSQ+zevRt7e3vLjiz9+/dP17gBAwZYxtjb27N79+67Hmc2m9m6dSvjx4+nffv2lClTBhcXF/LkyUPBggXx9fXllVdeYcOGDemu+YUXXrBc+4UXXrA8vnPnTgYNGkTFihVxcXHBycmJ6tWr88EHHxAWFnbX2hYvXkyHDh0oUqQI9vb2eHp60rx5c2bPno3ZbH5gLffaAvbw4cMMHz6cqlWr4u7ujouLC5UqVWLEiBEcOXIk3a/1UZw4cYIPP/yQRo0aUaxYMRwcHMifPz+VK1dmyJAh/PPPP5l6fRERkWzJEBEREav48MMPDcByywiTJ09Oc8558+bd9/gFCxakOX7SpEl3PW7v3r2Gl5dXmmPvd2vcuLEREBDwwHr79+9vGdO/f38jISHBGDZs2H3P7e3tbZw7d85yjitXrhh+fn73HdOsWTMjKirqvrXc/vvRrFkzIyUlxfjggw8MGxube57X1tbWeOeddwyz2fxQ536QsLAwo3///ve9duqtbdu2RkhIyAPPKSIikltoRoeIiEgO8vrrr9OmTRvL/aFDh3LmzJm7Hnv27FmGDBliud+6dWveeOONux4bHBxMcHCw5b6TkxO+vr40a9aMFi1aULlyZWxtbS3Pb9u2jfr16xMSEvJQ9b/00kt89913AHh6etKoUSOaNGmCu7u75ZgrV67w1FNPERMTQ0hICE2bNrXMQvHx8aFZs2bUq1cPe3t7y5h//vmHAQMGPFQtH3zwAR999BFmsxkHBwdq165Ns2bNKFGihOWYlJQUJkyYkOb7+LguX75Mw4YNmTdvnmUmio2NDZUrV6ZFixbUr18fZ2dny/GrV6+mYcOGaX5/REREcjMFHSIiIjmIyWTip59+okiRIgBER0fTs2dPEhIS0hyXmJhIjx49iIqKAsDLy4uffvoJk8l0z3OXL1+eiRMncuTIEaKiojh06BCbN29m48aNHD9+nJCQECZPnky+fPkACAgIYPDgwemufdWqVfz0008UL16cZcuWce3aNbZt28aWLVu4fv0648ePtxx76dIlpk2bRv/+/blw4QINGzZk//79XLhwgc2bN7N7926uXr1Kp06dLGOWLl3K1q1b01XLsWPH+Oyzz7CxseGdd97h2rVr7Nu3j82bN3Pp0iW2bNlCpUqVLMfPmDGDn3/+Od2v9V4SEhJ49tlnOXnyJACOjo588sknhISEcPz4cTZu3MjOnTu5efMmc+bMwdXVFQB/f3/69u2briU6IiIiOZ61p5SIiIjkVpmxdCXVxo0b0yx7GD58eJrnR4wYYXnOZDIZ69atu+/5YmJiHrg8I9XWrVsNW1tby7lPnz59z2NvX7oCGIUKFTIuXbp0z+P79u1rOdbe3t6yFCQ+Pv6ux8fHxxulSpWyjBkwYMA9z/3v3w/A+Prrr+95fEhIiFGuXDnLsQULFjTi4uIeeO77LV15++23Lcc5Ozsbu3fvvuexhmEYBw8eNJycnCxjfvvtt/seLyIikhtoRoeIiEgWkdoIM72325t3/luLFi0YO3as5f63337LihUrAFixYgXffPON5bm33nqLZ5555r61OTk53Xe2x+0aN25Mjx49ADAMgz/++CNd4wA+//zzNEtD/u32JSKJiYnY2try448/4uDgcNfjHRwcGDhwoOX+tm3b0l1L48aNGTFixD2f9/T0ZPr06Zb7ISEhLFmyJN3n/7fIyMg055s8eTL16tW775gaNWrw9ttvW+7f/vsqIiKSWynoEBERyaE++OADmjZtark/YMAAdu7cmaZXRYMGDfj4448z/NoNGjSwfL1nz550jXF1daVXr173PaZOnTppeoG0bNmSUqVK3XdM/fr1LV+fPXuWxMTEdNUzcuTIBx7zzDPPULlyZcv93377LV3nvpvff/+dyMhIANzd3dMENPdze+C1Y8cOYmNjH7kGERGRnMDO2gWIiIjILa1bt36o46tVq3bf521tbVm4cCG+vr6EhoZy8+ZNGjdubOnj4O7uzqJFi7Cze7gfByIjI1m3bh2HDh3i0qVLREVFER8fj2EYlmMCAwMtXwcEBKTrvLVr1yZPnjz3Pcbe3p4CBQpYmpzeHqjcS2q/Erg1wyQiIoKCBQved4zJZErT1PV+2rVrx4kTJwDuuTVvety+VWzTpk3TNFO9H29vb9zd3QkPDycpKYnDhw+n6/siIiKSUynoEBERySLWrFmT4ecsVqwYc+fOpWPHjgBpmlXOmjWLkiVLpvtcoaGhvPvuu/z000/Ex8ene1x4eHi6jvPy8krXcU5OTg815vbjgXTNeChVqlSanU3u5/bA6dq1a0RGRlqahD6MI0eOWL4+ePBguoMWIM3vx8PudCMiIpLTKOgQERHJ4Tp06ECbNm3SBCl9+vShW7du6T7H+fPnadGiBZcvX37o6/97x5d7Se8Mhscdc/vMk3vx8PBI9/n+fWxYWNgjBR2hoaGWr69cucKVK1ce+hyQ/mBJREQkp1KPDhERkRxu8+bNrF27Ns1jmzZtSvcn/2azme7du1tCDpPJxLPPPsvcuXM5dOgQN27cIC4uDsMwLLcff/wxw1/Hk/QwAcq/G6GmN9j5t5iYmEca92/aYlZERHI7zegQERHJwW7cuEGfPn3uePN79epVXnjhBVatWvXA3VT++usv9u/fb7m/YMECevfufd8xUVFRj150FvAw9ac2EE3l5ub2SNd0d3fnxo0bALz33nt88sknj3QeERGR3E4zOkRERHKwF154gatXrwLg7OycZsvZv/76i6+++uqB57h9yUvTpk0fGHIAj7zsIqu4ePFiupa4wK1lPans7OwoUKDAI13z9n4jZ86ceaRziIiIiIIOERGRHOurr77izz//tNyfPn06H3/8cZqg4p133kkzW+NuLl26ZPm6Xr166br2tm3bHrLarCUyMpKTJ0+m69jbd1qpXr36A3eOuZeGDRtavt6wYQMpKSmPdB4REZHcTkGHiIhIDnTgwAHefvtty/3//Oc//Oc//wHghx9+oEyZMgAkJibSs2fP+y7VSEpKeqhrnzhxgp07dz5C1VnLwoULH3hMREREmjCpWbNmj3y9du3aWb6+efNmuq4vIiIid1LQISIiksNER0fTs2dPEhMTAShbtizTp0+3PO/i4sLixYstMw/Onj3LkCFD7nm+okWLWr7esmXLfa9tNpsZOnTo45SfZXz99dcEBATc95hx48YRFxdnuf/iiy8+8vWaNWuWZsbMm2+++cDri4iIyJ0UdIiIiOQwQ4YMwd/fH7i1e8jixYtxdnZOc0ydOnX47LPPLPd//vln5s2bd9fzPfXUU5av9+zZw/fff3/X42JjY+nbty+bN29+zFeQNURHR9OhQweCg4Pv+vz06dOZOnWq5f5zzz1H1apVH+uaX331lSWACg4OplmzZuzdu/eB4y5fvszYsWMZM2bMY11fREQkJ9CuKyIiIllEmzZtHnrMK6+8wnPPPWe5P2/ePBYsWGC5P2HCBGrXrn3XsWPGjGHDhg2WZqNDhw6lQYMGlC9fPs1xzz//PO+++66lweirr77K2rVr6d69O8WLFycqKoo9e/bw3//+lytXrpAnTx769evHnDlzHvr1ZBW1a9cmOjqaw4cPU6VKFV5++WUaN26Ms7Mz58+f5+eff2bDhg2W4z08PJg2bdpjX7dhw4ZMmzaNwYMHYxgG58+fp169erRs2ZK2bdtSsWJFXFxciImJ4dq1axw5coR//vmHffv2AdC/f//HrkFERCS7U9AhIiKSRfz9998PPeb2cOTMmTMMGzbMcr9t27aMGjXqnmNNJhPz5s3D19eX4OBgYmJi6NGjB7t27cLBwcFynIODA0uWLOHpp58mNjYWgGXLlrFs2bI7zmlnZ8f333+Pra1ttg46nJ2dmTt3Lk8//TTXr19n4sSJ9zy2QIECrFu3Ls0Sn8fx0ksv4enpSf/+/S29U9atW8e6desy5PwiIiI5nZauiIiI5AAJCQn07NmT6Oho4NZWpfPmzcNkMt13XKFChZg/fz42Nrd+JDh06BBvvPHGHcfVr1+fXbt2pdkZ5G7HbN++nYEDBz7GK8k6qlatysGDB+nUqRO2trZ3PG9ra0vXrl05cuQINWvWzNBrd+7cGX9/f9544w08PT3ve6yDgwNPPfUU06ZNY8qUKRlah4iISHZkMtK7SbyIiIgIcPLkSXbs2MH169fJmzcvRYoUoV69epQqVcrapT2WcePGMX78eOBWY9Dbe40EBQWxdetWAgMDSUlJoVixYjz11FMULlw40+syDIPDhw9z9OhRQkNDiY6OJl++fBQqVIjy5ctTrVo1HB0dM70OERGR7EJLV0REROShVKpUiUqVKlm7jCeqSJEidO/e3SrXNplM1KhRgxo1aljl+iIiItmNlq6IiIiIiIiISI6hoENEREREREREcgwFHSIiIiIiIiKSYyjoEBEREREREZEcQ0GHiIiIiIiIiOQY2l5WRERERERERHIMzegQERERERERkRxDQYeIiIiIiIiI5BgKOkREREREREQkx1DQISIiIiIiIiI5hoIOEREREREREckxFHSIiIiIiIiISI6hoENEREREREREcgwFHSIiIiIiIiKSYyjoEBEREREREZEcQ0GHiIiIiIiIiOQYCjpEREREREREJMdQ0CEiIiIiIiIiOYaCDhERERERERHJMRR0iIiIiIiIiEiOoaBDRERERERERHIMBR0iIiIiIiIikmMo6BARERERERGRHENBh4iIiIiIiIjkGAo6RERERERERCTHUNAhIiIiIiIiIjmGgg4RERERERERyTHsrF2AZI6QkBCWL1/O7t278ff3JywsjLi4OPLmzUv+/PkpV64cfn5+dOrUiUKFClm7XBEREREREZEMYTIMw7B2EZJx4uPjefPNN5k5cyZJSUnc77fXZDKRJ08eXnrpJSZPnkzevHmfYKUiIiIiIiIiGU9BRw6SkJBAs2bN2Lt3L4ZhULFiRRo1akTp0qXJnz8/Dg4OJCQkEBYWxvnz59m+fTunTp3CZDJRp04dtm7dir29vbVfhoiIiIiIiMgj09KVHOTzzz9nz549VKhQgf/+9780aNDggWN27NjBiy++yL59+5g8eTJjx459ApWKiIiIiIiIZA7N6MhBqlSpwrlz5/D398fb2zvd4y5dukT58uUpU6YMJ06cyMQKRURERERERDKXgo4cxMnJicqVK7Nv376HHlu7dm1OnjxJbGxsJlQmIiIiIiIi8mRoe9kcxNnZmevXrz/S2OvXr5MvX74MrihnMgwDs9mMYRj3bfb67zEA+/btY/Xq1URFRWVmiSIiIiIiIrmWgo4cpEGDBgQGBjJlypSHGvfFF18QGBhIw4YNM6mynMVkMmFjY4PJZMJkMt3xfGoQknozDIPk5GQAXnvtNdq3b09AQMCTLltERERERCRX0NKVHGTnzp00bdoUs9lM69atefHFF2nUqBFFihS549igoCC2b9/OnDlzWLt2LTY2NmzdupX69etbofLs5b///S8FChSgYMGC5M+fHzc3N1xcXMiXLx+2trb3HVu1alVOnDhBSEgIHh4eT6hiERERERGR3ENBRw7z888/M2jQIBISEiyzDRwcHHB3d8fe3p7ExETCw8NJSEgAbs0+sLe3Z9asWfznP/+xZunZQnh4OEWLFqVgwYIAuLi44ObmRv78+SlQoAAFChTAw8MDT09PPDw8LI/lz58fZ2dnKlasSHh4OCkpKVZ+JSIiIiIiIjmTgo4c6NKlS0yePJlly5YRFBR0z+O8vLzo3Lkzb7zxBj4+Pk+uwGzs5MmTVKlSBQcHB3x8fIiMjCQ2Npa4uDiSkpIwDAOTyYSdnR2Ojo44OTnh7OyMu7s7+fLlY8uWLRQsWJBr165Z+6WIiIiIiIjkSAo6crjLly/j7+9PWFgY8fHxODo6kj9/fsqVK0eJEiWsXV62s3fvXvz8/KhatSpffPEFJpOJmzdvEh4ezs2bN9PcwsLCCA8PJyIigpiYGGJjY4mNjaVatWocPnzY2i9FREREREQkR7KzdgGSuUqUKKFAIwOZTCaKFStGnjx5KF++/B0zYVJSUoiLiyM2Npbo6GiioqK4efMmZrOZ9evXM2nSJP1+iIiIiIiIZCIFHSIPwdXVFQ8PD44dO8apU6fw8fEhOTkZO7tbf5VsbW1xdnbG2dmZQoUKpRkbGhoKoGVCIiIiIiIimUhBh8hDKFasGM8995ylySiAjc3dd2lOXRWWlJSEvb09p0+fBhR0iIiIiIiIZCYFHULv3r0JDg7GZDKxYcMGa5eTpeXLl4/hw4fTs2dPyxKUewUdqbvepM72SExMBMDb2/sJVCoiIiIiIpI7qRmpUKpUKS5duoTJZNK2p5koMTGR0NBQChQogIODg7XLERERERERyZE0o0N47bXXCA8Pt3YZOZ69vT1FihSxdhnZTuqWvbffB9I8JiIiIiIikkozOkQky9u3bx9JSUlUqlQJd3d3a5cjIiIiIiJZ2N2bC4iIZAGHDh3ihRdeoEePHjRq1IgCBQrQoEEDlixZ8sCxZrMZs9n8BKoUEREREZGsRDM6cqiUlBQ2bdrE7t278ff3JywsjLi4OPLmzUv+/PkpV64cfn5+NG/e3NIsUzJHYmIigYGBuLm54e7ufs/mpZLWsWPHGDlyJJs2bSJPnjx4e3sTFBREXFwcPj4+vPfee7z44otawiIiIiIiImko6MiBpkyZwsSJEwkNDQX+19PgdqlvDj08PHjrrbcYPXq03jBmsNTeEgcOHKBr164YhkG7du2YPn26tUvLFvr168eCBQt4+umneeGFFyhfvjxhYWHMmDGDP/74A2dnZxYtWkT79u1JSUnB1tbW8uuiRYv44osvmDhxIi1btrT2SxERERERkSdIH+XnIIZh0KVLF1asWIFhGLi6ulK3bl1Kly5N/vz5cXBwICEhgbCwMM6fP8/evXu5ceMGb775Jlu2bGHZsmUKOzLBjRs3iIqK4ubNm0RFRVm7nGwhIiKCX3/9lUKFCrFo0SI8PT0tz9WqVYvy5cszadIkXn75Zfbs2UOxYsXSNC3du3cvBw8eJD4+3lovQURERERErERBRw4ybdo0li9fTuHChZkyZQrPP//8fZelJCcns2TJEsaMGcOqVauYNm0aw4YNe4IVZ1+pMwf+zTCMO3YFqVixIt9++y2BgYHUqVPnidaZXe3du5eEhAS6dOmCp6cniYmJ2NvbA+Dp6cnrr7/OyZMnWbFiBYMGDWL16tWYTCbL9/zEiRMANG7c2GqvQURERERErENLV3KQ2rVrc+TIEQ4cOEC1atXSPe7w4cPUrl2b6tWrc+DAgUysMPszm81pemyEh4djMplwcnIiT548dxz/761RJX2mTp3K6NGj+fbbbxk6dOhdg6Xz58/z9NNPExAQwKRJkxg9ejQAwcHB+Pn5kZKSQkBAgDXKFxERERERK9KMjhzk9OnTVK1a9aFCDgBfX1+qVq2Kv79/JlWWM6S+2b548SJbtmzh4sWLXLp0iWvXrpGcnIy9vT1FihShdOnSVKlSBV9fX7y9vQEFHg8rdYlP4cKFAe743qWkpFC6dGkmTZpE7969mTJlCo0bN6ZevXqcPn2aK1eu8Oyzzz7xukVERERExPoUdOQgDg4OREdHP9LY6Ojou85IkP+xtbVl1qxZzJ8/n23btqV53DAMy1amdnZ2eHl5UaNGDdq0aUP79u0pWbKktcrOlgoVKoTJZCIkJATgjp1qbG1tSU5Opnv37mzatIkZM2Ywfvx4/vzzT44ePQpA8+bNn3TZIiIiIiKSBSjoyEFq1qzJpk2bWLJkCd27d0/3uMWLF1uWAci9LV++nDfeeIPIyEhatmxJiRIl8PDwwMnJCcMwiImJ4dq1a1y8eJETJ06watUqVq1axZo1a/jyyy8pV66ctV9CtlGlShUMw2D27NkMGTLkrsfY2dlhGAaTJk1i//79rF69mgULFnD48GFA/TlERERERHIr9ejIQf766y86dOiAra0tL730Ei+++CK1atW649NwuNVr4sCBA8yZM4fZs2djNptZuXIl7dq1s0LlWV9MTAxNmjTh8OHDfPXVV/To0cOyrCKV2WwmNjaW8PBwLl++zO7du/n999/Zvn07tWvXZtu2bTg4OFjpFWQvZrOZffv2ERUVxdNPP/3ApT9r166ld+/e3Lx5E29vb65cuUJSUtJdG8aKiIiIiEjOpqAjh5k4cSLvvfee5b6joyMlSpQgf/782Nvbk5iYSFhYGJcvX06z9eYnn3zCO++8Y42Ss4VTp05RuXJl2rdvz8qVK4Fbu9bY2Nik2e3j3w4dOsTw4cPZuXMn06ZNY/DgwU+y7Bwhvf1Nxo4dy6RJk0hJScHX15eDBw8+gepERERERCSrufOjfsnW3n77bbZt20abNm3IkycPcXFxnD59ml27drFlyxZ27drF6dOniYuLw87OjjZt2rB161aFHA8QFBQEQPny5QGIj4/Hzs7OEnT8m9lsxmw2U6NGDSZMmIDZbOaff/55ojXnFA8KOVKz2lGjRllmJPn6+mZ6XSIiIiIikjWpR0cO1KBBA/7880+ioqI4ePAg/v7+hIWFER8fj6OjI/nz56dcuXLUrFkTFxcXa5ebLSQmJgIQGBgI3Jopk/oG+25vxG1sbEhKSsLGxgZHR0cAkpKSnlC1uYvJZMJsNuPh4cGcOXPYuHGjgg4RERERkVxMQUcO5uLiQtOmTWnatKm1S8n2qlSpgp+fH0uWLMHX15eBAwdSqFChO44zm82WACR1F5sDBw4AULZs2SdXcC5jY2NDcnIynp6eD9WIV0REREREch4FHSIPYBgGxYsX59VXX2X37t289957HDt2jGeffRZfX18KFy6Mm5sbJpMpTePXy5cvs3HjRiZOnIirq6sCp0xmZ6d/zkRERERERM1IRdItMTGRRYsW8dlnn+Hv7295vFSpUhQtWpT8+fOTL18+4Nab7itXrrBlyxYAJkyYwMiRIy3LWCRjpDYqvX79OqGhoZQuXVo724iIiIiI5HIKOkQe0pYtW1ixYgV79uzhwoUL3Lx5k/j4eO72V6lGjRr069ePwYMHkzdvXitUm7OlpKRga2vLpEmT+Prrr3F2dmbSpEl07tzZ2qWJiIiIiIiVaK63yENK7XsSGRmJv78/Z8+e5dy5c0RHR2M2m3F2dsbV1RV3d3eeeeYZihYtau2SsyWz2ZxmKVDqY4Dl8dRfAwMDSUhIIDg42DKrRkREREREcifN6BDJIIZhWJZS3L4TS+pjcn93+z4FBweTkpKCh4fHfZf97N+/n1OnTnHq1CneffddzZ4REREREcnFFHSIiNWlhhwxMTHs27eP2bNnExAQQN68eUlKSsLe3p7ChQtTqVIlateuTeXKlfHy8gLuPvNDRERERERyLy1dERGrM5lMhIaG8vrrrzNv3rw0z+XJk4eUlBTLshUvLy9q1qzJs88+S+/evXF2dgYUeIiIiIiIyC2a0SEiWcKQIUOYMWMGhQsXZvDgwfj6+nLz5k0iIiIIDQ0lKCiIs2fPcvbsWYKDg7G1tcXX15e33nqL559/3trli4iIiIhIFqGgI5cZM2YMSUlJODo6Ymtri42NDTY2Nmm+vv2W+ritrS329vY4ODhgb2+frq8dHBxwdHQkX758ODg4qE+F3NPly5cpXbo0pUuXZuvWrRQsWPCO2RmRkZFcvXqV48ePs3HjRhYsWEBUVBRly5blu+++o1WrVlaqPue5V78ZEREREZHsQEtXcpno6GhmzpzJiy++iIODA2az+Y5b6jKB22/JyckkJiaSmJhIQkJCml/v9lhCQgIpKSmW69rY2ODk5ES+fPnIly/fA792dXXFzc3tnjdXV1dsbW2t+J2UjLR7927MZjM9e/akcOHCGIZBSkqK5Y22yWTC1dUVV1dXKlasSNeuXfn000/56KOPmDp1Kq+99hoHDhy4b8NSubvbm8BevXoVk8lEkSJFFHCIiIiISLaloCOXef/995k5cybjx4+nePHimXqtlJQU4uPjiYmJITY2lpiYmDRf3+uxyMhIAgICiIiIuOMWGRlp6dXg7OycJvxwd3fHw8MDDw8PPD09LV//+zHtyJH1nD17FsCyFW9qA9J/S51pAODu7s6bb77J2bNn+fvvv1mxYgXdu3d/ckXnEKmBxqhRo9iyZQsHDx6kWrVqDBgwgJdffhknJydSUlIULIqIiIhItqGgQzKNra2tZaZGRjEMg5iYmLuGIOHh4YSGhnLjxg38/f3ZtWsXN27cIDQ0lNDQUMLCwgDImzdvmgCkUKFCeHl5Ubhw4Tt+LVSoEHZ2+muS2cqXLw/Atm3beOGFF3B0dLTM6Lh9CcvtSynMZjNeXl60bduWVatWcfnyZavUnt0FBwfz4YcfMmvWLOzt7XF0dOTo0aOMHj0awzB47bXXsLW1JT4+nri4OMLDw/Hw8MDV1dXapYuIiIiI3JXewUm2YjKZcHZ2xtnZmWLFij3U2OTkZMLCwizBR2oIcv36da5du8bhw4dZu3YtwcHBXLt2jZs3b2IymfDw8EgTgKTeihUrRvHixSlWrBjFihXDwcEhk151zte8eXOqVq3KwoULyZcvH++///4dM47MZjOGYWBjY4PJZCI5ORl7e3sCAwMB8PHxsULl2d+iRYuYNWsWfn5+DBkyhLZt27Jt2zbGjBnDt99+S48ePThw4AAffPABYWFheHt7U7NmTfr06UO9evWsXb6IiIiIyB3UjDSXCQgIwNvbmytXrmT60pXsLjExkevXr1uCj9t/DQ4OJjAwkICAAK5evUpycjIFCxakePHilvAj9evbH0vdClXutGTJEgYPHkxsbCzVq1enY8eOtGzZkqpVq+Li4nLXMYGBgbRs2ZJTp05x6dIlvL29n3DV2V+5cuU4d+4cBw8exNfX1/L4hAkTmDt3LjVq1GDdunWEh4djb2+Pk5MT4eHh+Pj48Nlnn9GzZ08rVi8iIiIicicFHbmMgo6Ml5KSwoULF5g0aRJt2rQhKCiIgICAO24JCQnkz58fHx+fO26lSpXCx8fnnm/oc4vly5czfPhwAgICALCzs6NChQpUqlSJChUqUL58ecqUKUNkZCSbNm1i9erVHDt2jEGDBjFz5kwrV5/9HD16FF9fXzp16sSyZcvSPHf8+HFatmxJcHAwrVq14sMPP6RQoULs3buXWbNmsWnTJmrXrs3atWtxd3dX81IRERERyTK0dEXkMdna2pKUlMSCBQuYOXPmXd/wGYbBzZs3uXTpEpcuXeLixYtcvHiR9evXc/HiRS5cuEB0dDQFChS4awhSpkwZSpUqleN3FXn22Wdp2rQpf/zxB8uXL+fgwYOcPn2a48eP33NMv379+Oijj55glTnHhg0bAGjUqBFAmr4ocXFxBAcHU6pUKX7//XecnJwAKFOmDD179qRZs2Zs3bqVnTt30q5dO6u9BhERERGRf1PQIZIBgoOD77slZ2qvDw8PD2rVqnXH84ZhEBYWZglAUm/r1q3jwoULnDt3jvj4eEqUKEHZsmUpV66c5ddy5crlqBAkf/78vPjii3Tu3JkzZ86we/du/P39CQ4OJjw8nICAABITE2nTpg1PP/00LVq0IH/+/Gm2SZX0OXnyJABPPfUUcOvPqdlsxsbGhuXLlwMwZMgQnJycSE5OxtbWFrPZjK2tLe3bt2fr1q2cOXNGQYeIiIiIZCkKOkQyQHBwMF5eXo883mQyUaBAAQoUKHDPIOTq1av4+/tz9uxZ/P392bFjB/PmzePs2bN3DUHKly9PxYoVKVWqVLbcOSZ//vz4+fnh5+eH2WwmPj6e5ORkXF1dSUlJITk5OU0DWIUcDyc2NhYbGxvy5ctn6R1jY2Nj2eXmr7/+Ik+ePLRu3drynMlksmzvW6BAAQBiYmKsUL2IiIiIyL1lv3c/IllQUFAQRYoUybTzm0wmy+4uzZs3T/NcagiSGoCcPXuWHTt2MHfuXM6cOQNgCT0qVapkuZUvX96yHCGrs7GxSVOrra0ttra2Vqwo+8uTJw9PPfUUJpOJlJSUNM+lpKTw6aefEhkZSbVq1QAsAUjqr7t37wZI08BURERERCQrUDPSXEbNSDPHm2++SWxsLN999521S0kjOTmZixcvcvLkyTtuUVFRlCxZ0hJ8pAYhVapUIX/+/NYuXZ6QxMRETCYTefLkueO5lJSUuwZKMTExNGnShKNHjxIZGUnevHmfRKkiIiIiIumiGR0iGSAoKIgKFSpYu4w72NnZUbZsWcqWLUvHjh0tjxuGQXBwcJrgY/HixZw8eZKgoCCKFy9OtWrVqFatGtWrV6datWpUrFgRe3t7K74ayWiGYdz39/TfIUdq8PH3339z6NAhunXrppBDRERERLIcBR0iGSA4OPiOJSVZmclkokiRIhQpUsTSiDLVzZs3OXr0KEePHuXIkSN89913HDt2jPj4eCpUqGAJPlJvJUqUUH+MbOphf99sbW2JiIjg66+/xs7OjoEDB2ZSZSIiIiIij05Bh0gGCAoKeqxmpFlJgQIFaNasGc2aNbM8ZjabuXTpEkeOHOHo0aMcOnSI+fPnc+bMGZydnalWrRo1a9akVq1a1KxZk8qVK991KYRkb3FxcYwaNYqtW7cyePDgO0IyEREREZGsQD06cpmQkBAKFSrE9evXKViwoLXLyTE8PT1Zu3btXXdMycni4+M5efIkR44c4eDBgxw4cICDBw+SlJR0R/hRvXp1LXPI5sxmM6dOnWLfvn00bNiQsmXLWrskEREREZE7KOjIZSIjI3FzcyMiIgJXV1drl5MjJCYm4uDgQGBgIEWLFrV2OVZnNps5d+4cBw4csAQfBw4cIDw8nEqVKqUJP2rVqoWLi4u1SxYRERERkRxEQUcuo6Aj4125coWSJUuSmJiInZ1Wg92NYRgEBASkCT/2799PUFAQlStXpl69epZbtWrVtOwlCzObzZjNZv1ZFxEREZEsS0FHLqOgI+Pt3buXDh06cO3aNWuXku1cvXqVvXv3smfPHvbs2cPevXtJSEigZs2a+Pn5WcKP0qVLq+GplZjNZmxsbLh27RouLi44OTlZuyQRERERkfvSR3IijykoKIgiRYpYu4xsqWjRojz77LM8++yzwK031f7+/pbg44svvuDw4cO4ublZQg8/Pz/q169PgQIFrFx99mQYhiU0+vfXhmFgY2Nz13FvvvkmZ86coUaNGrz//vtapiUiIiIiWZZmdOQymtGR8QICAjhz5ox2oMgE69evZ9CgQfz666+W8GPnzp2cPXuWSpUq0bBhQxo1akTDhg0pV66cZn2kU2RkJI6OjiQmJhIWFoaHh0eamRr/Dj2io6Np1KgRR48eBSAiIkK9VUREREQky1LQkcso6JDs5PPPP2fXrl389ttvaR4PCQlh586dbN++nR07drB3715cXFxo2LChJfyoU6cOjo6OVqo8a4qIiGDatGns37+fTZs2UapUKQoVKoSLiwsVKlSgYcOGNGjQAHd39zTjoqKi+Pvvv9m2bRt58uTh888/t84LEBERERFJBwUduYyCDslOevXqRdWqVXnvvffue1xCQgIHDx60BB/bt2/n5s2b1K5d2xJ8NG7cmEKFCj2hyrOevXv3MnHiRP744480j9vY2FhmcLi6uuLr60ubNm3o2LEjlSpVwsbGxjJTJjExkfj4eP3bISIiIiJZmoKOXEZBh2QnFSpU4KuvvqJdu3YPNc4wDC5cuGAJPrZt28bx48epVKkSzZo1s9y8vLwyqfKsp1OnTqxatYrnnnuODh060KRJEy5evMiJEyc4d+4cp0+f5uTJkwQGBpI3b16aNm3KsGHDLN/72/t5iIiIiIhkZQo6chkFHZJdREVF4ebmxtWrVzMkkLhx4wZbt27ln3/+4Z9//uHIkSOULVs2TfBRvHjxDKg86zl//jxly5alfv36bNu27Y6Go8nJyVy6dIkjR46wceNG1q5di7+/PwCjR49m/Pjx5MuXzxqli4iIiIg8NAUduYyCDskutm3bRvfu3bl69WqmnD8sLIxt27ZZgo8DBw7g4+OTJvjw8fHJlGs/ad9//z1Dhw7l008/5Z133iEpKYk8efJgNpsxmUxpZmokJyezb98+vv/+e37++Wfy5cvHtGnT6Nu3r2WrWRERERGRrEw/sYpIlnTgwAFq1aqVaefPnz8/HTt25IsvvmDv3r2EhYXx3XffUahQIX744QfKlStHqVKlGDRoEIsXL+b69euZVktmi42NBbCEm3Z2t3YWv73/RmqfDjs7O+rXr8+8efP48ssviYqKYvz48cTHxyvkEBEREZFsQT+1ikiWlNlBx7+5urrStm1bJk6cyM6dOwkLC+P7778nf/78TJo0iSJFiuDr68vo0aP566+/iI6OfmK1Pa569eoBMH/+fE6ePInJZCIlJQWz2Ww55vaZHcnJyQC8/PLLtGnThuvXr7Njx44nX7iIiIiIyCNQ0CEiWdLBgwepWbOm1a7v7OxMmzZt+Pzzzzl48CDBwcG89957xMTEMHz4cPLnz0+TJk0YN24c27ZtIykpyWq1PkjlypVp2rQpe/bsYfz48Vy4cAFbW1vLDA2z2Zwm9LCzsyMpKYm8efNSrFgxoqKiiI+Pt1b5IiIiIiIPRT06chn16JDsID4+HmdnZ86dO0fJkiWtXc5dXbhwgQ0bNlhusbGxNG3alJYtW9KmTRsqVqyYJXYpSd0t5fDhw7zwwgscPnwYNzc3BgwYQJ8+fahdu3aa41NSUrC1tbXcr1u3Lvv37+fGjRsUKFDgSZcvIiIiIvLQFHTkMgo6JDvYu3cvbdq04caNG1kiLHgQs9nMsWPHWL9+PWvXruWff/6hUKFCtGnThjZt2vD0009nib9vf/75J+PGjWP//v0AuLm50aBBA5o3b06LFi2oW7cucOvfiZiYGH788UfGjh1L27Zt+fPPP61ZuoiIiIhIuinoyGUUdEh2MGPGDJYuXcq6deusXcojiYuLY8uWLaxZs4Y1a9Zw9uxZGjVqZAk+fH19rRbgpKSkMG/ePJYsWcK+ffu4efMmALa2tnh4eFCvXj1MJhP79u0jKCiIihUr8u233/L0009bpV4RERERkYeloCOXUdAh2cErr7yCm5sbkyZNsnYpGeLixYv8/fffrFmzhvXr1+Ps7Ezr1q1p06YNLVu2xMPD44nWYxgGISEhbN++nfXr13PixAnOnj1LYGAgcCv0SElJoW3btnz88cfUrFkzW8ysEREREREBBR25joIOyQ7CwsJISkqiUKFC1i4lwyUmJrJz507LbI8jR45Qt25dOnToQMeOHalevfoTDRXMZjOhoaEEBAQQGRnJmTNncHBwoF69enh5eeHu7m7p8yEiIiIikh0o6MhlFHSIZC1BQUGsWbOGVatW8ffff1OgQAFL6NGiRQscHR2tWp9Cjsyh76uIiIhI5lHQkcso6BDJuhISEti8eTOrVq1i5cqVhISE0LJlSzp27Ej79u3x8vKydomSgVL/+1XgISIiIpKxFHTkMgo6RLIHwzA4duyYJfTYs2cPtWvXtsz2sGZDU3l0ZrOZFStW0LRp0zTb9ZrNZmxsbKxYmYiIiEjOoaAjl1HQIZI9Xb9+ndWrV7Ny5Ur+/vtv8ufPz7PPPkvnzp1p2rQpdnZ21i5R0uGbb77hgw8+oH379rRq1YqWLVtStGhRy/N3CzwUgoiIiIg8HAUduYyCDpHsL3WJy7Jly1i2bBlJSUl07NiRzp0707JlS/LmzWvtEuUe3N3diYyMxM7ODicnJxo2bEi7du1o3bo15cqVsxyXkpKCra2tFSsVERERyb70EZGISDbj4OBA69at+f777wkMDGTFihV4enoyatQoChYsyPPPP8/ChQuJiIiwdqlym/DwcOrUqYPJZKJjx45UqlSJtWvX8vbbbzNw4EA+++wzDh06hNlsxtbWlj179lCvXj02bNhg7dJFREREshXN6MhlNKNDJOcyDIOjR4/yxx9/8Pvvv3Py5EmeeuopunTpwrPPPkvhwoWtXWKut2XLFtq3b0/dunUZM2YMO3fuZN26dRw+fBjDMKhatSrPPPMMffr04YsvvmDBggV89NFHjB07VrM8RERERNJJQUcuo6BDJPc4f/48f/zxB3/88Qe7du2ifv36PP/883Tr1o1ixYpZu7xca/To0UybNo3FixfTuXNndu/ezZYtW1izZg179+4lNjaWkiVLcvHiRRwdHblw4QKFChWydtkiIiIi2YaCjlxGQYdI7hQcHMyyZcv49ddf2bJlC/Xr16d79+507do1TTNMyXxxcXE888wznD59ml27dlG2bFkMw+DkyZNs2rSJLVu2sGrVKuLj43F2dqZnz540b96cZ555hoIFC1q7fBEREZEsT0FHLqOgQ0SOHTvG22+/TUxMDNu2baNhw4aW0MPLy8va5eVoqTuorF69mi5duvDMM8/w888/p/n3eN++fTRr1oy4uDiKFClCUFAQRYoUoUyZMkydOpVatWpZ8RWIiIiIZH1qRioiksvs2bOH0NBQNm3axJUrV+jevTtLlizB29ubFi1a8P3333Pt2jVrl5kjpW4T27ZtW4YNG8aff/7JypUrAUhMTARg8+bNxMXF0bVrVxYtWsTgwYNxdHRkx44dlC1b1mq1i4iIiGQXmtGRy2hGh4h06dKF2rVr895776V5/OrVq/z2228sWbKEXbt20aRJE7p37063bt3w9PS0UrU5j2EYmEwmoqKiaNmyJf7+/vz555/Ur1+fuLg4KlasyJUrV/D396dMmTLcuHGDXbt2kZyczHPPPWft8kVERESyPAUduYyCDpHcLT4+Hk9PT3bs2EH16tXveVxgYCBLly7ll19+Yd++fbRq1Yo+ffrQqVMn8uXL9wQrzplSw47ff/+dvn370qJFC/78809mzpzJK6+8QqtWrVizZo12WhERERF5BFq6IiKSi2zevBkPDw+qVat23+OKFSvGyJEj2bFjB6dPn6ZBgwZ8/PHHFC5cmL59+7J69WqSkpKeUNU5j8lkAm7Nrhk+fDirV69mzpw5zJgxA4B33nnHcqw+jxARERF5OJrRkctoRodI7jZs2DAMw2DatGkPPdYwDA4fPszPP//MokWLSExMpHv37vTp04f69etb3rxL+qTO6ggNDaVNmzYcPXqUxMREatSowYEDB6xdnoiIiEi2pRkdIiK5hGEYrFy5ko4dOz7SeJPJRI0aNfj888+5fPkyS5YsISEhgXbt2lG2bFnef/99Tp48mcFV51ypwZCHhwdjxoyhdOnSwP9mcyQnJ1utNhEREZHsTDM6chnN6BDJvY4cOULDhg25ceMGjo6OGXbehIQEVq9ezc8//8zKlSupXLky/fr1o3fv3hQqVCjDrpPTXblyhRUrVjB06FBrlyIiIiKSrSnoyGUUdIjkXp999hl79+7ljz/+yLRrRERE8PvvvzNv3jx27NhB27Zt6d+/Px06dMDe3j7Trpudpf43fPvSn9RlLSIiIiLy8LR0RUQkl3icZSvp5ebmxoABA9i8eTOnT5+mVq1avP766xQpUoThw4ezb98+Ndf8F5PJhMlkwmw2A2o+KiIiIvK4NKMjl9GMDpHc6fr16xQtWpTAwEAKFy78RK9tNpvZtm0b8+bNY8mSJZQsWZL+/fvTt29fihQp8kRreRLMZjM2Nnf/HOFez6U+npycjJ2dHaBZHSIiIiKPSjM6RERygb/++ovatWs/8ZADwMbGhqZNmzJnzhyCg4N5++23Wbt2LSVKlKBdu3b88ssvxMfHP/G6MktqkOHv709iYiJRUVHExMSkeS519sa/x7zxxhtMnTqVy5cvK+QQEREReUSa0ZHLaEaHSO7UtWtXatasydixY61disWVK1eYP38+c+fOJSQkhD59+jBo0CBq1Khh7dIeWXBwMHPmzGHNmjVcuXKFsLAwmjRpQsmSJalSpQotW7akXLlyluPNZrNl6crevXtp3LgxSUlJ1K5dm127dmFra2vFVyMiIiKSPdlZuwAREclchmEQGhqa6f05Hpa3tzfvvvsu77zzDjt27GDOnDk0atSIypUrM2jQIHr16pWtAtmrV68yaNAg1qxZA0CxYsWIiorir7/+AiBv3ryUKlWK1q1b07dvX2rWrHnHMpYXX3yRpUuX8tRTTynkEBEREXlEmtGRy2hGh4hkZZGRkSxatIjZs2dz4sQJevTowaBBg2jQoEGWX8oxbNgwpk+fTrdu3RgwYAAVK1YkNjaWtWvXsn//fg4fPmxZzlK1alX69u1L7969KV68uKVHR1hYGHv27KFx48bky5fP2i9JREREJFtS0JHLKOgQkezi0KFDzJ49mwULFlC0aFEGDRpEv3798PT0tHZpd7h58ybe3t4UL16cLVu23NELJSoqiv3797N582ZWr17NwYMHcXFxYcCAAXz22WfaeldEREQkA6kZqYiIZEk1atTgu+++IygoiHfffZfly5dTrFgxevTowbp16+5o6GlNGzduJC4ujubNm1O4cGESEhKAWz04DMPAxcWF5s2bM3bsWL766isGDRpEZGQkU6ZMoX379ly5cgXQ1rIiIiLpFRICSUnWrkKyKgUdIiKSpeXNm5e+ffvyzz//cPToUXx8fOjbty9ly5Zl4sSJXL9+3dol4uHhkea+g4MDcGs3ldQlN4ZhYGdnR8OGDZk+fTrz58/H29ubDRs2sGrVKuDO3VhERETkTlu2QKlS0KoV/P/GZtnG9u3befnll6lYsSJubm44ODhQrFgxOnTowOzZsy07tWV3c+fOtTRcv/2WJ08eihQpQqdOnSx9zDKDlq7kMlq6IiI5QVJSEsuXL+f7779n+/btdO3alSFDhtCoUSOr9PLw9/enXr16xMfHs3DhQjp37mwJLf7dcDS1HwfAwoUL6du3LyVLluTIkSO4uLg88dpFRESyky1boF07qFYNjh2DOnVg1SrI6q2tYmNjGTBgAEuWLAHA0dGRMmXKkDdvXgIDAwkKCgKgSJEi/P3331SrVs2a5T62uXPnMmDAABwcHKhTp47l8ejoaM6fP09UVBQA7777Lp9++mmGX18zOkREJNvJkycP3bp1Y8OGDRw+fJhChQrRsWNHqlevzvTp04mMjHxitRiGQalSpejfvz8JCQlMnTqVAwcOYGNjg42NDYZhpJmpkfoYQI8ePWjcuDGJiYlcvHjxidUsIiKSHaWGHH5+sGEDrF4N+/ZBhw5Ze2ZHUlISrVq1YsmSJXh5eTFv3jxu3rzJsWPH2Lt3L1evXuX48eMMHjyYkJAQzp07Z+2SM4yXlxfbtm2z3A4dOsS1a9cYPXo0ABMmTOD48eMZfl0FHSIikq1VqFCBr776isDAQEaNGsWPP/5IsWLFGDJkCEeOHMn065tMJuzs7BgzZgx+fn5s3bqVOnXq8Prrr3PhwgVMJpNlBkdKSoplnNlsxtbWFrPZTEhICMnJyZleq4iISHZ1e8ixciU4OUHjxtkj7Bg/fjzbt2+ncOHC7Ny5k379+pE3b940x1SuXJkffviBTZs2UahQIStV+mTkzZuXzz//nMKFC2MYBhs2bMjwayjoEBGRHMHJyYkXX3yRvXv3snHjRhISEqhfvz6NGjViwYIFxMfHZ+r1vb29WbBgAd26dQNgypQptGrVinfeeccSuNja2gJYwo/du3ezf/9+ypcvT82aNTO1PhERkezqbiFHqqwedkRERPDNN98AMHXqVHx8fO57fOPGjWnYsKHlflxcHIsWLaJnz55UqFABZ2dnnJ2dqVGjBp988sk9e3qEhoby+uuvU7FiRRwdHcmXLx8+Pj60adOG6dOn33XMzZs3ee+996hatSr58uXDxcWF+vXrM2vWrAzvI2ZjY4O3tzcAiYmJGXpuUI+OXEc9OkQkNwkLC2PevHl8//333Lx5k4EDB/Lqq69SokSJTLtmTEwMc+bMYeHChezfv5+UlBQ8PT1p0KABvXv3pkKFCoSHh3Pjxg0mTJjAwYMHmTNnDgMGDMi0mkRERLKr+4Uct9u2Ddq2zXo9OxYuXEifPn0oWLAgV69exc7O7qHGb9u2jSZNmmBnZ4eXlxdeXl5ERERw4cIFkpOTqVWrFtu2bUszQyQiIoLatWtz7tw57O3tKVu2LI6OjgQEBBASEoKrqyvh4eFprnP8+HFat25NYGCgZUxCQgLnz5/HMAy6devGkiVL0t0LLbVHR8mSJe+6PDcqKorixYsTGRnJypUr6dChw0N9Xx7IkFwlIiLCAIyIiAhrlyIi8sSYzWZj/fr1RufOnQ17e3uja9euxj///GOYzeZMuV5KSopx6tQp4/333zeaNGliODs7GyaTyTCZTIaHh4fh4OBguT948OBMqUFERCS7++cfw8iXzzCeesowYmIefPzWrYbh7GwYzZsbRnR05teXHkOHDjUA47nnnnuk8RcvXjSWLFliREVFpXk8KCjI6NatmwEY48aNS/PcF198YQBGq1atjNDQ0DTPXbp0yfjqq6/SPBYdHW2UKVPGAIwRI0akea94/Phxo0qVKgZgfPfdd+mu+8cffzQAo2TJkndca8+ePcYzzzxjAEaNGjWM5OTkdJ83vTSjI5fRjA4Rye0uXrzItGnTmD17Nj4+PowYMYJevXrh6OiY4dcyDIOrV69amm+tWrWKsLAwPDw8KFq0KAMGDKBt27babUVERORf0juT49+y2syOzp07s2zZMkaNGsWUKVMy9NxxcXG4u7tTsmRJzpw5Y3n8lVdeYcaMGSxfvpxOnTo98DzffvstI0aMoHPnzvz+++93PH/kyBFq1KhBqVKl0t0oNXVGx704ODgwcuRI3n33Xdzc3NJ1zofxcPNmREREsjkfHx8+//xzxo0bx4IFC/jiiy948803efnllxkyZAjFixfPsGuZTCaKFStGjx496NGjBxMmTODixYsULFiQPHnyYG9vn2HXEhERySkeNeSA//XsaNv2Vs8Oa4cdqduo5nuMIsxmMytXrmTt2rWcP3+e6Ohoyw5uJpMJf39/YmNjcfr/b1Rq74s//viDdu3aPXC5TGq4MWjQoLs+X716dXx8fDh//jwBAQEP9bPSv7eXTUxM5PLly1y7do0FCxZQo0YNevXqle7zpZdmdOQymtEhIpKWYRhs3LiRb775hjVr1tC5c2dGjBhBgwYN0r0O9XGundnXEBERyU62b4fWrR8t5Ljd7TM7/voL/rXJyRPzuDM6wsPDadeuHTt37rzvcQEBARQrVgyAq1evUrlyZSIiIihcuDBt2rShSZMmtGjRgtKlS98x1tPTk9DQUGrXrn3PGa5HjhwhKiqKXbt24efn98C6H9SjY/369fTo0YOwsDCWLVuWrpknD0O7roiISK5mMpl4+umnWb58OSdPnqRYsWK0a9eOunXr8tNPP5GQkJCp1xYREZH/mT//1s4p77//6CEHQKNG0LEjbN4Mp09nWHkPLTV8uHDhwiONHz16NDt37qRChQr89ttvBAYGkpCQgGEYGIZhOX9SUpJlTNGiRdm5cyddu3YlIiKCefPmMWjQIMqUKUODBg3uCE0iIiIA2L9/P9u3b7/rLXVmSlxc3CO9jn975plnGD9+PIZh8MEHH2TIOW+noENEROT/lS5dmi+//JKAgAAGDhzIhAkT8PHx4bPPPuPmzZvWLk9ERCTHmzwZGjaE556DPXse7RyGAa+/DosWwXffQY0aGVnhw0ndKnbHjh0kJyc/1Njk5GSWLFkCwPLly+nSpQtFixa1LH1NTk4mODj4rmMrVarE0qVLCQ8PZ9OmTYwbN46KFSuya9cuWrVqlWaWhbOzMwD+/v6WAOVet+bNmz/kd+DeUr83R44cIT4+PsPOCwo6RERE7uDs7MyQIUM4fvw4s2fPZv369Xh7ezNs2LB0N+ESERGRh+fqeqvHRpUq0KrVw4cdqSHHlCm3Qo6hQzOnzvRq164dzs7OXL9+naVLlz7U2JCQEGJiYihQoAAVKlS44/ljx46RkpJy33M4ODjQvHlzPvzwQ44dO0ajRo2Ijo5m0aJFlmMqV65sOd+TZDabgVtLef+93e3jUtBxmwsXLjBr1ixeeuklfH19sbOzw2Qy8cknnzzS+caNG4fJZLrv7dSpU/ccf/LkSfr06UORIkVwdHSkTJkyvP766xn+h0BERO7OxsaG9u3bs3HjRrZu3UpYWBiVK1emS5cubN++HbW5EhERyXiPGnZktZADwN3dneHDhwPw2muv3bVfxe22b9/Ojh07AMj7/41FIiMj77pkZPLkyQ9Vi62tLXXr1gVu9fFI1aVLFwC++eabJ/qzTerrdHFxoWDBghl6bgUdt/n66695+eWXmT17NkeOHHlgOpZe3t7eNGrU6K43p3ssPNu0aRO1a9dm4cKFpKSkUKVKFYKDg/nyyy+pXbs2165dy5DaREQkfWrVqsXPP//M2bNnKVOmDO3ataNBgwb8+uuvDz0VVURERO7vYcOOrBhypBo3bhwNGjTg2rVrNGjQgPnz59+xVOPMmTMMHTqU5s2bc/36deBWSFKlShWSk5MZNWoUiYmJAKSkpDBp0iR++eWXu+7g9t577zFnzpw7PiA/duyYZSlMrVq1LI8PHjyY0qVLs2nTJvr06UNQUFCacdHR0SxZsoTRo0c/9vci1dq1axk3bhwAvXr1wtbWNsPODYAhFh9//LHRoUMH46OPPjJWr15tdO3a1QCMjz/++JHO9+GHHxqA8eGHHz7UuMjISKNgwYIGYIwYMcJITEw0DMMwbty4YTRq1MgAjPbt2z9STREREQZgREREPNJ4ERG5JSIiwpgyZYpRokQJo1SpUsbXX39tREVFWbssERGRHCUiwjAaNjQMNzfD2L377seYzYYxerRhgGF8990TLS/doqKiLO8vASNv3rxG1apVjbp16xrFihWzPF68eHHj6NGjlnErVqwwTCaTARgFChQw6tSpY3h6ehqA8f777xslS5Y0AOPChQuWMc8++6wBGDY2NkbZsmWNevXqGWXLlrVco0WLFkZSUlKa+k6ePGmUKlXKMq5SpUqGn5+fUb58ecPW1tYADD8/v3S/3h9//NEADAcHB6NRo0aWW926dY3ChQtbaqlTp44RFhb2uN/eOyjouI/+/ftbJeiYPHmyARiVKlUykpOT0zx36dIlw87OzgCM/fv3P3RNCjpERDJWUlKSsWjRIqNOnTqGu7u78fbbbxtBQUHWLktERCTHuF/YkR1Cjttt2bLFGDhwoFG+fHnD2dnZsLe3N4oWLWq0b9/emDNnjhEbG3vHmDVr1hgNGzY08ubNa7i4uBj169c3FixYYBiGcdegY+/evcbbb79t+Pn5GV5eXoa9vb1RrFgxo1mzZsZPP/10R8iRKjIy0pg4caLh5+dnuLq6Gg4ODoaPj4/x1FNPGV988UWaazxIatDx75uNjY2RP39+o0mTJsY333xjJCQkPNT3L73sMnZ+iGSE33//HYAXXnjhjik8JUqU4JlnnmHNmjUsXbo0zZQjERF58uzs7OjZsyc9evRg6dKljB07lqlTp/LCCy/w+uuvU6ZMGWuXKCIikq2lLmNp2/bWMpa1a6Fevay9XOVemjRpQpMmTR5qTOvWrWnduvVdn7tbz486depQp06dh67NxcWFt956i7feeuuhx/7bCy+8wAsvvPDY53lU6tHxBGzatInnn3+ep556im7dujF58uR7bgOUnJzM/v37AWjUqNFdj0l9fPfu3ZlTsIiIPDSTycShQ4eoXLkye/bsISoqisqVK9OrVy8OHTpk7fJERESytbv17MhuIYc8OQo6noAtW7awdOlSNm3axG+//cZbb71F6dKlmTt37h3HXrx4kaSkJABKly591/OlPu7v759pNYuIyMNJSEhg9uzZvPrqq1SrVo0FCxZw6tQpPDw8aNiwIe3atWPLli3aqUVEROQR3R52NGqkkEPuTUFHJipSpAjvvvsue/fuJTQ0lNjYWLZv307btm2Ji4vjxRdfZOXKlWnGhIWFWb7Onz//Xc+b+vjtx4qIiHX99ttvuLu78/TTT1seK1WqFN999x0XL16kZs2adOrUiUaNGrFixQrL3vEiIiKSfq6usGYNdOkCM2cq5JC7U9CRiQYPHsynn35KnTp1KFCgAHnz5qVhw4b8+eefdO7cGcMwGDVqVJpP927fZuhuWwUBODg4ANx1L2UREbGO6dOnM2TIEGxs7vyvtVChQnz66adcvnyZzp07M3jwYKpXr878+fMts/hEREQkfVxc4Jdf4KWXrF2JZFUKOqzAZDIxceJEAM6dO8eRI0cszzk6Olq+Tt0n+d8SEhIAyJs37yPXEBkZmeZ2/vx5Tpw4wenTp/H39+fcuXNcuHCBixcvcvnyZQIDA7l58yZxcXEkJCSQnJz8yNcWEclpDh8+zMGDB+nfv/99j3N1deWNN97gwoULjBgxgvHjx1O2bFmmTZuWJuiWjBETE2PtEkRERMQKtOuKlZQvX54CBQpw8+ZNzp49i6+vL5B2uUpYWBhFihS5Y2zqkpV7LW1JD29v74ce06xZM1q0aAHcWpbz8ssv3/W4K1eu8Ntvv2Fvb4+Dg0OaX+/2mIODAyVLlsTJyemRX4+IiDVNnz6d3r17p/vfZUdHR15++WUGDhzI0qVL+fTTT/n000958803efnll/XvYQY4efIkzz//PFOnTuWZZ56xdjkiIiLyBCnosKI8efIApJkd4ePjQ548eUhKSuL8+fN3DTrOnz8PQLly5R752leuXMHV1dVyPyIigsTERMxms+WWkpJi+dowDOzs7LCzs8NsNluWz9xNvnz5qFatGomJiSQmJpKQkEBiYiJRUVF3PJaSkgLAiy++eM8f7OfOnUtkZOQd4UjevHlxcnIiX758aW7Ozs6PNdtFRORhREREsGDBArZu3frQY21tbenRowfPP/88y5cv5+OPP2bChAm8/vrrDBkyBGdn50yoOHcYOXIkJ06c4NSpUwo6REREchkFHVZy48YNrl+/DkDx4sUtj9vZ2VGrVi12797N9u3b77rF7Pbt2wHw8/N75Ou7urqmCTpu//pxFShQIE0zvvtJSUkhISHhvsFJ5cqViYyMtIQjiYmJxMbGEhoaSkxMDDExMWma+lWrVo0uXbrc9VxBQUEEBgbeEZA4OjpiMpke7oWKiADz5s2jevXq1KpV65HPYWNjQ+fOnXnuuef466+/+Oijj5g0aRKjR49m2LBhGfpvdG6wePFi1q9fT6dOnSyzD1NSUrC1tbVyZSIiIvIkKOiwkilTpmAYBm5ubtStWzfNc126dGH37t3MnTuXMWPGpPnB7PLly6xfvx6Arl27PtGaM4Otre0Dp2jXq1fvvs8bhkFCQoIl9LhfaHLp0iXWrl17x/aOJpPJEnqkhiBOTk64urri5+eHnZ3+qojInQzDYPr06YwdOzZDzmcymWjfvj3t2rVj3bp1fPTRR3z++eeMHDmSkSNHPtaSxdwiOTmZkSNH4uLiwsiRI7G3t8dsNlv+Lz116hQXLlzgypUrNGzYkKJFi+Lu7n7XJrIiIiKSPend22OaOnUqU6dOpX79+ixevNjy+PHjx5k2bRpDhw6lSpUqlsfj4+OZMmUKkyZNAuCtt966Y3eVV155hc8//5yTJ08yevRovvjiC/LkyUNoaCi9e/cmOTmZtm3bUrt27SfzIrM4k8mEo6Mjjo6OeHh43PfY+vXr4+fnR1xcHDExMcTGxloCktvvR0dHExwcTGxsLA0bNrzruZKTk9myZQtubm64u7vj5uaGq6vrPXfLEZGcZ+PGjYSGhtKtW7cMPa/JZKJVq1a0bNmSzZs38/HHHzNlyhSGDx/OqFGj8PT0zNDr5SRvvPEGISEhjB492tJXysbGhnPnzvHll1/y888/ExUVZTm+e/fuPP/88zz99NO4u7tjGIZm+ImIiGRzJuPfH23nYtu3b+fZZ5+13I+OjiYhIQEnJ6c0PR8OHjxoaeY5btw4xo8fT7Nmzdi8ebPlmEOHDlGzZk0AChYsSIkSJYBbzdFiY2MBGDhwILNmzbrrD1QbNmygQ4cOxMfHW8anjvXx8WHnzp14eXk99GuMjIzEzc2NiIgITYV+TJGRkcyZM4eoqKg0M0ScnJxwc3OzBB+pIYibmxuenp73nXEiItlL165dKVeunGUnrcy0bds2Pv74Y7Zv386rr77KG2+8QcGCBTP9utnJ0aNH8fX1pVq1amzYsMESCB09epS33nqLNWvW4OLigre3N/nz57csBfXy8uKNN95g1KhR1ixfREREMohmdNwmKSmJ0NDQOx6PjY21hBOApYHm/fj4+PDxxx+zY8cOTp06xenTp0lMTKRQoUK0a9eOQYMG0bp163uOf/rpp9m3bx+ffPIJGzdu5OjRoxQrVozOnTszduxYTV/OAlxdXRk1ahQpKSlERUURERFBREQE4eHhREREWLbtjYiIICkpCbj1yWGlSpXuer7IyEicnJy0TEYkmwgICGDlypWcOXPmiVyvcePG/P333+zevZvx48dTunRpRowYwZgxYyhQoMATqSGre+WVVwCoXr16mg8RPv/8c9asWUOvXr146aWXaNCgAQ4ODuzZs4exY8eyfv16xowZQ3R0NO+++y4mk0lLWURERLIxzejIZTSj48kzDIP4+HjCw8Nxd3e/544wM2bMIDg4GHd3dzw8PPDw8MDT09Pyq4uLi6ZTi2Qh4eHhrFu3jueff94q19+xYwcffvghe/bsYfTo0bz22mu4ublZpZasICAggBEjRrBr1y6ioqJo3749/fv3Jy4ujhdeeIGyZcuyb98+S4Bxe3PSt99+m88//5yaNWuyceNG/f8oIiKSzSnoyGUUdGRdAQEBXL9+ndDQUEJDQ7lx4wZhYWGWHWXs7e0tAYiHhwelS5e2LIkSkdzrn3/+4YMPPuDo0aO8/vrrDB8+HBcXF2uXZRUXL15k7dq1zJ8/n507d1K8eHEKFy7M3r17WbNmDa1atUoTcKR+ffr0aVq1asWVK1f4448/0ixjFRERkexHQUcuo6Aje0lJSSE8PJwbN25Ywo/UIMTX15eWLVvedVxERIRlVx/NAhHJ+QzDYMOGDbz//vucPXuWN998k6FDhz5wV6ucat++fSxdupTff/+ds2fPUrduXTZv3nzPGXUAHTt25M8//+Tvv/++57+tIiIikj2oGYBIFmZra2uZwfFvqTM97mbr1q3s378fOzs7PDw8KFSoEF5eXnh5eVG4cGHy5cuXmWWLyBNmMpl45plnePrpp1mzZg0ffPABX375Je+88w6DBw/G0dHR2iU+Eak7ptSpU4cKFSpQv359fv/9d9zd3e/ZXyt1VkdSUhL58uW7Y/txERERyX40oyOX0YyO3CEyMpJr165ZZoFcu3aNa9euWZqiuri4WIIPLy8vihQpoga3IjmIYRisXLmSDz74gJCQEN577z0GDRqUa7a/vn2L2LNnzxITE4Ovr+8dW8emhhyHDx+mTp06eHt7s2/fPjV3FRGRTLN9+3bmzZvHli1bCAoKIj4+Hk9PT2rWrMlzzz1Hr169cuSHkr/99hvdunUD4N133+XTTz/N1Osp6MhlFHTkXmazmbCwMIKDgwkODubatWsEBwcTFRWFj48P/fv3t3aJIpLBzGYzf/zxBx988AFxcXF89NFH9OrVy9KjIif7d6hxv+f79evHggUL+OKLLxg9evSTKlFERHKR2NhYBgwYwJIlSwBwdHSkTJky5M2bl8DAQIKCggAoUqQIf//9N9WqVbNmuRnuueeeY/ny5QCUKFGCixcvZuoSewUduYyCDvm3mJgY4uPj77o8BuDUqVOcOHGCwoULW2aA5MSUWSQnS0lJYcGCBXzwwQe4ubnx2Wef0b59e/XwAb7++mtGjRpFnTp12LNnj7XLERGRBzEMuHIFbtwAe3vw9oYsvutYUlISLVq0YPv27Xh5eTFp0iSef/75NL2jTpw4wTfffMOcOXP49ddfee6556xXcAYLDQ2lSJEiJCcn4+LiQmRkJJs3b6ZZs2aZdk316BDJ5fLly3ff4MJsNhMeHs7p06dJTEwEbi19uT348PLyokCBAnrTJJJF2dra0r9/f3r27MkPP/zAiy++SPny5Zk4cSKNGze2dnlWceXKFb744gu+/fZbihUrxrRp06xdkoiI3E9sLCxeDNOmwYED/3vcwQG6d4ehQ8HPz3r13cf48ePZvn07hQsXZufOnfj4+NxxTOXKlfnhhx/o27evZSv0nOKXX34hKSmJRo0a4evry/Tp05k/f36mBh2a0ZHLaEaHPCrDMNIsfUm9RUVFAZA3b16KFy+Oj48PDRs2tHK1InI/UVFRfPXVV3zxxRc0bdqUzz77jOrVq1u7rCfq1KlTvPPOO5w4cYIPPviAPn36WLskERG5lzNnoG1buHDh1q8vvgg+PpCYCFu3wg8/3HrulVfg22/BLut8nh8REYG3tzdRUVEsWrSInj17PtT4uLg4li1bxvLlyzl48CCBgYEAlC1blm7dujFq1Ki7fmgZGhrKhAkTWLVqFRcvXsTW1paCBQtSsWJFOnXqxKuvvnrHmJs3b/Lll1+yfPlyLly4gI2NDVWqVGHgwIEMHDjwkQOYBg0asGvXLqZNm0aNGjVo1KgRrq6uXLt2LdMapivoyGUUdEhGi4mJISgoiICAAAICArCxsaF3797WLktE0iEkJIQJEybw/fff07VrVz766CNKly5t7bIeKLWJaCqz2YyNjc0D+3L8W3R0NNevX6dEiRLYZaEfikVE5DYXL0KDBpA/P/zxB1SocOcxKSkwaxYMGwb9+sGcOZBFZhovXLiQPn36ULBgQa5evfrQ/99s27aNJk2aYGdnZ5lJHRERwYULF0hOTqZWrVps27YtzTKYiIgIateuzblz57C3t6ds2bI4OjoSEBBASEgIrq6uhIeHp7nO8ePHad26NYGBgZYxCQkJnD9/HsMw6NatG0uWLHnoGdz+/v6UL18eOzs7goKC8PT0pHTp0ly4cIFffvmF7t27P9T50itnzYkRkScuX758lC1blubNm9O3b9/7hhynT5/m559/5p9//uH8+fMkJCQ8wUpF5N8KFizIlClTOHXqFPb29lSpUoVhw4YRHBxs7dLuKzk5maSkJM6fPw9g+YTJZDJhGMZdt4j992NmsxlnZ2dKly6tkENEJCt78UXImxc2b757yAFga3trNsfcufDjj/Drr0+ywvvasWMHAI0aNXqk/2+8vb1ZsmQJYWFhXLlyhb1793LmzBmuXLlCt27dOHDgAJMnT04zZvbs2Zw7d45WrVoRFBTE8ePH2b9/P9euXePixYuMGzcuzfExMTE8++yzBAYGMmLECEJCQjh+/Dhnz57l2LFjVKlShaVLlzJ9+vSHrn/+/PkAtGrVCk9PTwDL+4XU5zKDZnTkMprRIdZ09uxZdu/eTUBAAPHx8QAUKlSI4sWLU7x4cby9vfHw8FCvDxErOXHiBGPHjmXt2rWMHj2aN954AxcXF2uXZREfH89ff/3FzJkzCQgIICwsjGLFitGhQweqVq1KkyZNKFiwIPC/WR7/tnfvXurWrfukSxcRkUdx/DhUrXqrN0ePHukb06LFrRkeW7Zkbm3p1LlzZ5YtW8aoUaOYMmVKhp47Li4Od3d3SpYsyZkzZyyPv/LKK8yYMYPly5fTqVOnB57n22+/ZcSIEXTu3Jnff//9juePHDlCjRo1KFWqFOfOnXuoGlNnbyxYsMCyTPTkyZNUrlwZOzs7rl69avm/OyPpIwwReWLKli1L2bJlMQyDGzduWJa7BAQEcOD/m0o5Ojpago8SJUpQqlQpK1ctkntUrlyZ33//nV27dvH6668zc+ZMxo8fz8CBA7PErIfx48fzxRdfkJKSgr29Pc7Ozuzbt499+/bh5eVFrVq16NOnDz179rSEHKmf55hMJrZs2UKPHj1o3rw5w4cPVz8hEZGs7ocfoHBh6Nw5/WNeffVWc9Jjx26FJFaW2s/ucXYtNJvNrFy5krVr13L+/Hmio6PT/P/m7+9PbGwsTk5OwK1ZIAB//PEH7dq1e+D/4anhxqBBg+76fPXq1fHx8eH8+fMEBARQvHjxdNW9bds2Lly4gJOTU5pdZCpVqkSNGjU4dOgQixcvZvjw4ek638Ow/k8tIpLrmEwmChYsSMGCBalZsyZw65PawMBAS/Cxa9cuTp8+zcsvv2zlakVyn/r167N161aWLVvGW2+9xddff83kyZOtuiXtP//8w6RJkyhRogRz5swhf/78FCxYkOXLl/PXX39x+PBh/vrrL7Zv3866desYOXIkvr6+aerdsmULSUlJ/PLLL5QoUUJBh4hIVrd3763mo/b26R+TOoNh374sEXSkzoyMiYl5pPHh4eG0a9eOnTt33ve4sLAwS9AxYMAAPv/8c+bOncvq1atp06YNTZo0oUWLFnftxXX06FEAPvjgAz777LO7nv/GjRsABAYGpjvoSF2a0qlTpzuCnj59+nDo0CHmz5+fKUEHhuQqERERBmBERERYuxSR+zKbzUZ0dPQ9n7927Zpx6tQpIy4u7glWJZL7JCYmGt9++63h6elpNG/e3Ni3b59V6mjVqpVhMpmM33777Y7nQkJCjAULFhjdu3c3ChQoYNjY2BjNmjUzVq5caSQlJRlms9kwDMM4f/688cUXXxitWrUyIiMjn/RLEBGRh1WlimEMH/7w4+ztDePbbzO+nkcwdOhQAzCee+65Rxo/YMAAAzAqVKhg/Pbbb0ZgYKCRkJBgeb5YsWIGYFy4cCHNuBMnThhdu3Y1HB0dDcByq1+/vrFjx440x9rZ2aU55n63TZs2pavu+Ph4w93d3QCMFStW3PF8QECAYWNjYwDGqVOnHvr78iDq0ZHLqEeH5BSbN2/mn3/+wWQyUbRoUXx8fChVqhQlSpQgT5481i5PJMeJiIhg4sSJfP3113Tu3JlPP/0UHx+fJ3LtwMBAWrZsSXJyMidOnMDOzg6z2QzcmiGWOmvj/Pnz/Pbbb8yfP59jx47RqFEjpk6dSu3atS3nMpvN3Lhxg0KFCj2R2kVE5DE0anRrG9mff07/mKgocHWFefNu7cBiZam7rhQqVIjAwMCHWgqanJyMu7s7MTExnDp1igr/asaanJyMo6MjKSkpXLhw4a7/LyckJLBz507++ecfFi9ezKlTp3B2dubo0aOW4/Pnz094eDj+/v6ULVv2cV6uxdKlS3n++efTdex7773HJ598kiHXTaVdV0QkW2rWrBkjRoygQ4cO5M+fn0OHDrFgwQImTpzI3Llz2bx5M5cuXSIlJcXapYrkCG5ubkyYMIHTp09jZ2dH5cqVefPNN+/Yni4zuLi4kJSUREREBJcuXQJu7bRiY2Nj2WkFbjU8e/311/nkk0+oUaMG27dvp1u3bpYpucnJydjY2CjkEBHJLlq0gFWrIDo6/WMWL761tWzTpplX10No164dzs7OXL9+naVLlz7U2JCQEGJiYihQoMAdIQfAsWPHHvizroODA82bN+fDDz+0fAgQHR3NokWLLMdUrlzZcr6MkrpsxcXFhcKFC9/1VqBAAQAWLFhw1x3THoeCDhHJlkwmE/nz56dWrVp07dqVMWPG8Oqrr9K6dWvy5s3L7t27mTt3LhMnTmT+/PkcPHjQ2iWL5Aje3t7MmzeP7du3c+DAAcqUKcPUqVNJTEzMtGvmyZOHSpUqERISwqxZs0hMTMQwjDSzOuBW41GTyUSnTp349ddfqV+/PpcuXWLZsmUAWaKhqoiIPISXX74VcixYkL7jDQOmT4cOHW7NBMkC3N3dLT0oXnvtNS5evHjf47dv327ZkjZv3rzArVn5cXFxdxz7721lH8TW1tay89jVq1ctj3fp0gWAb775JkMCh9DQUFavXg3AihUrCA4OvuvtwoULODo6cunSJbZu3frY172dgg4RyRFSG5zWq1ePHj168MYbb/Dyyy/TokULbG1tCQkJsXaJIjlKzZo1WbduHQsWLGD27NlUrVqVlStXZvgnMnDrB73hw4fj6urK/PnzWbFiBSaTCRsbG0vYAVhmd5jNZsqUKcMHH3wAwKxZswgODs7wukREJJOVKAHdusG778KpUw8+/pNP4NAhGDky00t7GOPGjaNBgwZcu3aNBg0aMH/+fOLj49Mcc+bMGYYOHUrz5s25fv06cCskqVKlCsnJyYwaNcryoUJKSgqTJk3il19+wf4ujVrfe+895syZc8esy2PHjrFkyRIAatWqZXl88ODBlC5dmk2bNtGnTx+CgoLSjIuOjmbJkiWMHj06Xa938eLFJCUlUaJECZo1a3bP41xdXenYsSPwvxkgGSbDu35IlqZmpCJ3On78uLF3714jPDzc2qWIZEtJSUnG9OnTDQ8PD6Nly5bGsWPHMvwa4eHhRs+ePQ2TyWSYTCbjjTfeSPN3Njk5+Y4xiYmJRs2aNY0SJUoYgYGBGV6TiIg8AWFht5qSFixoGKtWGUZKyp3H3LxpGKNGGQYYxscfP/ES0yMqKsro2rWrpaln3rx5japVqxp169a1NBQFjOLFixtHjx61jFuxYoVhMpkMwChQoIBRp04dw9PT0wCM999/3yhZsuQdzUifffZZAzBsbGyMsmXLGvXq1TPKli1ruUaLFi2MpKSkNPWdPHnSKFWqlGVcpUqVDD8/P6N8+fKGra2tARh+fn7peq1+fn4GYLzzzjsPPHb58uUGYLi5uWXoJgNqRprLqBmpyJ3+/PNPDhw4gNlsplChQpQrV45y5crh7e2NjY0mvomkV1hYGB999BE//PADAwcOZPz48Xh4eGToNUaPHs0333yD2WymWbNmjB492vJpUOqPNGazGVtbWxITE6lSpQrR0dFs3LiRSpUqZWgtIiLyhISG3prZsXkzlCsHAwbcWpqSkABbt8KiRZCcDJMmwahR1q72vrZu3cq8efPYunUrV69eJTExEU9PT2rWrEmXLl3o1auXZclKqr///puPPvqIgwcPYmdnR5UqVRg2bBh9+vTBx8eHS5cupWlGum/fPn777Tc2bdrEpUuXuHnzJgULFqRs2bIMHDiQXr163XU5Z1RUFNOnT+ePP/7g5MmTJCQkUKRIEUqXLk27du3o2rXrAxuR+/v7U758eQCOHz9u6f9xL0lJSRQpUoTQ0FCWLFmS7gamD6KgI5dR0CFyd/Hx8Zw/f54zZ85w9uxZYmJicHR0pGzZspQrV46yZcta9iYXkfs7deoUY8aMYceOHYwbN45XX301w3ZDioiIYPr06fz444+cPXsWd3d3OnTowKhRo6hZs2aaY6dNm8bw4cPp2LEjy5cvz5Dri4iIlRgG7NhxqwfH779D6tKPkiXhpZdg0CAoXNi6NUqWoaAjl1HQIfJghmFw9epVzpw5g7+/P0FBQZhMJooXL065cuWoUqWKpUu0iNzbmjVrGPX/n6xNmTKFtm3bZsh5k5OTWb9+PTNmzGDTpk1ERkYC0LNnT+rWrYvJZCI4OJipU6cCcODAgQd+oiQiItmIYUBsLOTJA3fpUSGioCOXUdAh8vCioqLw9/fH39+f8+fP07ZtW2rUqGHtskSyhaSkJH744Qc+/PBD6tevz5QpU6hYsWKGnPvmzZv8/vvv/PXXX5adVW7fbrZChQqMHj2al156KUOuJyIiItmDgo5cRkGHyONJTk4G7r1NZWxsrJa4iNxFaGgo48aNY/bs2QwePJgPP/yQ/PnzZ8i5IyMjOX/+PD/99BNJSUnExMRQtWpVnnvuOUqXLp0h1xAREZHsQ0FHLqOgQyTzJCcnM3nyZNzc3ChXrhzly5fH29sbW1tba5cmkmUcP36cUaNGcejQISZOnMgLL7yQoU1/DcPAZDJl2PlEREQk+1HQkcso6BDJPCkpKZw+fdqyzCUmJgYHBwdLQ9Py5cvf0UVbJDcyDINly5YxatQoChcuzLRp06hTp06GX0OBh4iISO6koCOXUdAh8mQYhkFQUJCloenVq1exsbGhVKlSVK5cmYoVK2qJi+R6sbGxTJo0ic8//5z//Oc/fPrpp3h6elq7LBEREcnmFHTkMgo6RKwjKiqKU6dOceLECS5dugRAqVKleP7553F0dLRydSLWde7cOUaNGsX27dv59NNPeemll7TkS0RERB6Zgo5cRkGHiPVFR0dz6tQprly5wnPPPafp9SL/788//2TkyJG4ubnx3Xff0aBBA2uXJCIiItlQxnX/EhGRdHF2dqZOnTp07tz5niFHbGwsUVFRT7gyEetq3749x44do3PnzjzzzDMMGDCA69evW7ssERERyWYUdIiIZEH79u1jypQp/Pjjj+zevZvIyEhrlyTyRDg6OjJ27FhOnDhBVFQU5cuX55tvvrFs7SwiIiLyIFq6ksto6YpI9hAXF8epU6c4efIk586dw2w24+3tTeXKlalUqRJubm7WLlHkiVi7di2vvPIKcXFxLFu2DD8/P2uXJCIiIlmcgo5cRkGHSPYTFxfHmTNnOHHiBOfOnSMlJYXixYtbQg93d3drlyiSqTp27Mj169c5duwY/fv357PPPtOfexEREbknBR25jIIOkewtPj7eEnqcPXuWlJQUihUrRuPGjalYsaK1yxPJcFu3bqV9+/b4+/sTHR3N0KFDOXjwIF999RW9evVSM18RERG5g4KOXEZBh0jOkZCQYAk9qlatSpUqVaxdkkiGMgyD+vXr07FjR8aOHWt57Ndff+W1116jcuXKTJ8+nfLly1u5UhEREclK1IxURCSbcnBwoFq1avTo0eO+IYfybMmufv31V65cucKoUaMsj5lMJrp3787JkyepXLkyNWrUYNy4ccTHx1uxUhEREclKFHSIiORgiYmJTJ8+nfXr1xMSEmLtckTSLSEhgXfeeYePP/6YfPny3fG8m5sb33zzDVu2bGHVqlVUq1aNdevWWaFSERERyWoUdIiI5GBJSUn4+Piwf/9+pk+fzqxZs9i9ezcxMTHWLk3kvr7//nucnJx44YUX7ntcnTp12L17NyNHjqRbt2707t2b4ODgJ1OkiIiIZEnq0ZHLqEeHSO6UnJyMv78/hw8fxt/fH4By5crh6+tLuXLlsLOzs3KFIv8THh5OmTJlWLBgAW3btk33uKtXrzJ69GjWrFnD5MmTGTRoEDY2+kxHREQkt1HQkcso6BCRmJgYjh07xpEjR7h69SqOjo5UrVoVX19fihUrpl0sxOreeust9u3bx/r16x/pz+Pq1at55ZVX8PHxYebMmVSoUCETqhQREZGsSkFHLqOgQ0RuFxISwuHDhzly5AhRUVGULVuWPn36WLssycUuXbpEpUqV2LZtG7Vq1Xrk80RHRzN27FhmzZrFe++9xxtvvEGePHkysFIRERHJqhR05DIKOkTkbsxmMxcvXiQxMZGKFStauxzJxfr164dhGMyfPz9Dzrd7924GDRqEyWRi9uzZ1KtXL0POKyIiIlmXFq6KiAg2NjaULl36viFHdHS0tqqVTHXw4EGWLl3KJ598kmHn9PPzY//+/fTo0YPmzZszatQooqOjM+z8IiIikvUo6BARkQcyDIO5c+cyffp0du3aRVxcnLVLkhzoxIkTvPXWW5QsWTJDz2tvb897773HgQMH2L9/P1WrVmXNmjUZeg0RERHJOrR0JZfR0hUReRSGYXDx4kX27dvHqVOnsLGxoWrVqtSuXVsNTCVbMZvNzJo1izfffJNOnTrx1Vdf4enpae2yREREJAMp6MhlFHSIyOOKjo7m4MGD7N+/n4iICLy8vKhduzbVqlXDwcHB2uWJpEtgYCDDhg1j27ZtTJ06ld69eyuwExERySEUdOQyCjpEJKOYzWbOnTvH/v37OXPmDHny5KFatWrUqVMHLy8va5cnki6//fYbQ4cOpV69evzwww8ULVrU2iWJiIjIY1LQkcso6BCRzBAREcGBAwc4cOAA0dHR+Pj40K9fP31CLtlCaGgor732GqtWreLrr7/mP//5j/7sioiIZGMKOnIZBR0ikplSUlI4c+YMERER1K9f39rliDyUFStWMHjwYGrXrs2MGTMoVqyYtUsSERGRR6BdV0REJMPY2tpSqVIlhRySLXXq1Injx4/j4eFBlSpV+PHHH7WlsoiISDakGR25jGZ0iIi1LVu2DGdnZ2rXrk3+/PmtXY7IXf3555+8/PLLVK9enZkzZ+Lt7W3tkkRERCSdNKNDRESeGMMwyJs3L/v37+ebb75hwYIFnDx5ErPZbO3SRNJo3749x48fx8vLi6pVqzJnzhzN7hAREckmNKMjl9GMDhHJCpKSkjh+/Dj79+8nICAANzc3/Pz8qFmzJo6OjtYuTySN1atX89JLL1GlShVmzZpFiRIlrF1SlmIYBvHx8eTNm9fapYiIiAAKOnIdBR0iktUEBQWxe/dujh49ip2dHTVr1sTPz0/LWiRLiYiIYMyYMSxZsoQpU6YwcOBA7czy/+bOncvatWt55ZVXaNq0qbXLERERUdCR2yjoEJGsKioqij179rBv3z4SEhIsTU3VG0GykjVr1jBw4EBq1qzJ7Nmz8fLysnZJVvXll1/y5ptvki9fPmbMmEHXrl2xt7e3dlkiIpLLKejIZRR0iEhWl5iYyOHDh9m1axfOzs4MGDDA2iWJpHHz5k2GDRvG2rVr+eGHH+jWrZu1S7KKZcuW0aVLFwoXLswvv/xy39kchmFoBoyIiDwxCjpyGQUdIpJdGIZBTEwMzs7O1i5F5K6WLFnCkCFDaNu2Ld9++22uWm4VFBREkyZNuHr1KgsXLuS5556745j4+Pg0PXfMZjM2NuqDLyIimU//24iISJZkMpnuG3IkJiY+wWpE7tS9e3eOHTtGWFgY1apVY+3atdYu6YlZv34958+fZ+DAgWlCjnPnzjF37lxat25NnTp1GDJkCFOnTiU4OFghh4iIPDF21i5ARETkYSUmJvL1119TqlQp6tevT/Hixa1dkuRSRYoUYdWqVcyePZuuXbvSr18/Jk+eTL58+axdWqa6ePEiAL169bI8dvDgQd577z02btxoCSJPnDhBnjx5+Pnnn5k8eTItWrSwRrkiIpLLKFoXEZFsx2Qy0bx5c4KCgpgzZw7//e9/OXHiBGaz2dqlSS5kMpl46aWXOHz4MEeOHKFGjRrs3LnT2mVlipSUFAACAwPT3A8JCWHs2LGsWbOGLl268PXXX/PTTz/Rq1cvfHx82L9/P7169eKXX36xWu0iIpJ7aEaHiIhkO3ny5KFu3brUqVOHM2fOsHPnTn799Vfc3d3x8/OjZs2aODg4WLtMyWVKly7N5s2bmTJlCk8//TSjRo3iww8/zFG7kNja2gJQqVIlANauXUujRo3YunUrq1evpnv37ixcuNByfPv27dmwYQOzZs1i3bp1TJs2DT8/P3x8fKxRvoiI5BJqRprLqBmpiORUV69eZdeuXRw/fpw8efJQq1Yt/Pz8cHNzs3ZpkgsdPXqUfv36AbBw4UJLMJBTHDp0iObNm1OhQgW2bNnC7NmzGT58OEePHqVKlSqkpKRgMpmwsbHBMAzWrFnD4MGDCQgIYMqUKbz22mvWfgkiIpKDaemKiIjkCEWLFqVLly6MHDmSOnXqcPDgQb7++mt+//13rl+/bu3yJJepVq0au3fvpk2bNtStW5fvv/+enPLZkmEYVKxYkY4dO7J371769OnDxYsXKVCggGWXFRsbG0vIYTKZaNu2LS+99BIAu3btsmb5IiKSCyjoEBGRHMXV1ZVnnnmGUaNG0bp1ay5dusSpU6esXZbkQvb29kyYMIFVq1bx2Wef0alTpxwRuplMJhwdHRk9ejQeHh78/vvv/PTTT9y8eZNVq1ZZjkn9NbWPR8OGDYFbs69EREQyk4IOERHJkezt7fHz82PEiBE0aNDA2uVILta8eXOOHDlC3rx5qVatGqtXr7Z2SY/NMAxq1qzJr7/+Srly5QgJCQHgzz//5MCBA2lmr6Q2CY6Pjwdu9fcwm805ZoaLiIhkPQo6REQkR7O1tSVPnjx3fc4wDL3Zkicif/78/PLLL0yaNIkePXowYsQI4uLirF3WI0udsdGwYUOmTJlCo0aNAFi/fj3jx49nx44dREREALeaB4eEhPDZZ58B8NRTT2FjY2M5h2Ss1Bk0IiK5mZqR5jJqRioi8j8XLlxg8+bNNGnShDJlyuiNlzwRZ8+epW/fvsTExLBw4UKqVatm7ZIeS1JSEnv37mXu3LnMnj0bgIoVK1K/fn1q166NjY0Nc+fOZe/evfTt25effvrJyhXnDIcOHeL69etcu3YNW1tbvL29adSoESaTCZPJZOmPIiKSGynoyGUUdIiI/M+VK1f4+++/CQwMpGjRojRp0oQKFSrozYFkuqSkJD7++GO+/PJLPvvsM4YPH46NTfaeaBscHMw///zD2LFjOXfuXJrnnJ2dadu2Lb/88ouVqssZzGYzhw4d4uuvv+avv/4iNDQ0zfP16tWje/fudO/eneLFi2M2m7P9nysRkUehoCOXUdAhIpKWYRhcuHCBLVu2cOnSJQoXLkyTJk2oVKmS3iBIptu2bRt9+/alYsWK/PjjjxQpUsSq9RiGgdlsxtbW1vIm+WHfLMfFxbFo0SJu3LjByZMnKVq0KJ06daJy5cq4uLhkYvU5W1JSEt9++y0LFizg0KFDllkb1apVIzo6mtjYWK5du4bJZKJBgwbMnTuXsmXLKuwQkVxJQUcuo6BDROTeLl26xNatWzl37hweHh40adKEatWq6U2CZKqIiAiGDh3K33//zdy5c2nfvr1V60ld8hAVFfXQwURKSgq2trZ3nEseT0JCAu+//z6//PILV65cwd7enqFDh9KgQQO6du1KfHw8kZGRbN68mZkzZ7Jp0yZKlSrF+vXrKVWqlMIOEcl1FHTkMgo6REQeLDAwkC1btnDmzBnc3d1p3Lgxvr6+2NnZWbs0ycEWLFjAq6++yksvvcSECROwt7d/otcPDg5m6dKl/Pnnn4SHh+Pk5ESDBg3o0qULPj4+FChQAOCBb5oVbmSspKQkJk2axA8//MDVq1dxcXHh119/pVmzZjg4OABpAyaz2UyvXr349ddfqVy5Mps2baJgwYL6fRGRXEVBRy6joENEJP2Cg4PZunUrJ06cwNXVlcGDB+Pk5GTtsiQH8/f3p2fPntjY2LB48WLKlCnzRK6bmJhIy5Yt2bp16x3PlSlThqeffpqePXvSvHlz4M6w49/3/z2zQx7dli1bGDRoEGfPnqVgwYKsXbsWX19fy/O3Bxi3f9/bt2/P6tWrGTBgANOmTcPR0dEq9YuIWIPmsImIiNyDl5cXzz//PK+++ip169ZVyCGZrly5cuzYsYNGjRpRq1YtFi9e/ESu++KLL7J161aeffZZDh48yKZNm/jjjz+oV68eQUFBzJ49m2HDhvHNN98AYGNjY9maOTXkMAyDhQsXkpSUhK2trbZuzgDx8fG89dZbnD17lsKFC7NixQp8fX0xm82WY26fpWFra2vZXvbHH3+kbNmyrF69moMHDwLo90REcg0FHSIiIg9QsGBBGjdubO0yJJdwcHBg6tSpzJ8/n6FDhzJo0CBiYmIy7Xrr169n4cKF1KhRg3nz5uHr60uzZs149tlnWb9+PRMnTqR+/fqcOnWK999/n9dff52bN29a3mCnzuR48803GTBgAP369ePSpUtaJpEBdu3axenTp8mXLx8jR46kTp06GIZx36VDqY1kPTw86NOnD8HBwfz1118A+j0RkVxDQYeIiMhjunr1quVTVJGM0qlTJw4fPsyZM2eoW7cuR48ezdDzp366f+3aNQB69eqFq6sr8fHxwK1lEM7OzgwbNowJEybQr18/DMNgxowZjB8/nqtXr1rOFRoaSlJSEs7Ozvzyyy+cPn06Q2vNrXbv3k14eDgmk4mnn34aW1vbdIUVNjY22Nra0q5dOwBWrFhxx1a0IiI5mbqqiYiIPIbExER++uknnJycaN68OVWrVtXuBpJhihcvzsaNG/n4449p0KABX375JS+//HKGfDKfeo7IyEgALl++DGDp5XD7FrNNmjTBy8sLNzc35s6dy88//0z58uUZOnQoAB4eHowZM4Z8+fKRL18+WrVq9dj1CZZwolWrVtStW/ehxxcrVgwvLy/efvttPDw8Mro8EZEsSz+JiYiIPAZ7e3sGDBhAoUKF+OOPP5gxYwanT5/WWnjJMHZ2dowfP56VK1fy0Ucf0aNHD8LDwzPs/OXLlwdg8+bNlpkYqTOUbu/FUa5cOd555x369u3LzZs3effdd9m1a5flPN7e3rz//vu8++67GVZbbpcnTx4Ay45PDztzrGjRoqxYsYJevXpleG0iIlmZgg4REZHHVLhwYXr27MnAgQNxcnJi8eLF/Pe//+XixYvWLk1ykBYtWnDo0CFiYmKoWbMme/bsyZDz1qtXj2bNmnH8+HFmzpwJpG1qmTrzwzAMChUqxFdffUWXLl2Iiori22+/xWw2YzabMQxDO3tkMBcXF+DWltfJyckPtZNNasPSOnXqZEptIiJZmYIOERGRDFK8eHH69etH3759MZvNzJs3jwULFqTpZSDyOAoWLMjKlSsZNmwYLVq04Ntvv33s2UMuLi4MGDAAgK+++opXX32VxMREy9KVVCaTiZSUFOzs7Bg7dixubm7s2rWLkJAQbGxs1OgyEzz//PN4e3sTGBiIv78/QJrfk/vREjoRyc30L6CIiEgGMplMlClThkGDBvH8888TERHBrFmzWLJkCTdu3LB2eZID2NjYMGbMGNauXcukSZPo0aOHpc/Go+rXrx/ffPMN+fLl44cffqB///5cunTJ8mY59c116oyC8uXLU7x4ca5fv050dPTjvSC5J3d3d5o2bcrFixf56aefgFu//w8KOx73eRGR7M5kaBFxrhIZGYmbmxsRERG4urpauxwRkRzPbDZz5MgRNm/eTGRkJD179rT0RBB5XCEhIfTt25cLFy7w66+/4uvr+8jnio6O5quvvmLatGlcv36dhg0bMm7cOJ555hng1tKV1BkdCQkJVK5cGYA1a9ZQrly5DHk9cqetW7fSrl07YmJimDVrFgMHDkzXuCtXrrBmzRp27txJUlISbm5utGvXjsaNG+Pq6kpKSspDLYUREclOFHTkMgo6RESsIzk5mYMHD+Lr64u9vb21y5EcJCUlhU8//ZTJkyfz9ddf8+KLLz7yMpKEhARmzJjBDz/8wKlTp3BxcWHkyJG8+eab2NvbW/7sjh8/nvHjx9OlSxeWLl2akS9H7mLx4sX07t0bgBkzZvDSSy9ZnktJSUmzdCgxMZG1a9fy8ssvc+PGDZKTkzGZTBiGgaurK02aNGHBggW4ubmRnJxsaXQqIpKTKOjIZRR0iIiI5EwbNmygd+/etG3blunTp+Pk5PRI5zGbzaxfv57p06ezYsUKAHx9ffH19aVo0aJcvHiRxYsX4+npyYEDByhevHhGvgy5h5kzZ/LKK68A8NJLL9GmTRs6d+5MTEwM+fLlAyAmJoYff/yRMWPGkJSURIUKFShcuDBt2rTh7Nmz7N69m+PHj1OvXj02btyIk5OTZQthEZGcREFHLqOgQ0QkawoLC8PZ2dmynaTIo7h69So9e/YkLCyMX3/9lYoVKz7yuYKCgvjrr7/4+OOPuXz5cprnateuzZQpU2jSpMnjliwP4ZdffuGLL77gwIEDGIaBp6cn/fr1Y8KECeTJk4cZM2YwZMgQADp06MDrr79O1apVKVCgAABRUVF06NCBrVu30rt3b3766SeFHCKSIynoyGUUdIiIZE3//e9/CQ8Pp2nTptSsWVNr5+WRJScnM3bsWKZPn87MmTPp2bPnY50vKiqKNWvWEB4ezo0bN6hVqxZVqlTRTA4rOXXqFPv372fy5MkUK1aMH3/8kcKFC7N+/XpatWoFQK9evZg6dSoFCxYE0vZXuX79OnXq1CEpKYnffvuNhg0bWvPliIhkCgUduYyCDhGRrOnmzZts3ryZo0ePUqBAAVq1akX58uW1Zac8spUrV9K/f3969erFlClTcHBwsHZJkoFCQ0Nxd3fH1taWyMhIevfuzV9//UXbtm2ZNm0aPj4+d4xJTk4GoG3btmzYsIHp06dblsOIiOQkmqsmIiKSBRQoUIAuXbrwyiuv4O7uzuLFi5k/fz7Xrl2zdmmSTXXs2JEDBw6wZ88emjRpwpUrV6xdkmQgDw8Py8yv6Oho9u7dC0Dr1q3x9va+6xg7Ozvs7OwsMz20NbCI5FQKOkRERLKQwoUL07dvX3r16kVkZCQzZsxg5cqVxMTEWLs0yYZ8fHzYunUrNWrUoHbt2mzcuNHaJUkmuHbtGjdu3MDb25v+/ftja2vLvSZtHz16lHXr1gHg6Oj4JMsUEXlitJ+UiIhIFmMymShfvjxlypRh3759bN68mWPHjtG0aVP8/Py0HaQ8FEdHR2bOnEm9evXo2LEj48ePZ8yYMVoWlYMkJydjGAaRkZFERETg7Ox81z4/ycnJbNmyhYSEBLy9vWncuPE9z5mSkqJeQSKSbWlGh4iISBZla2uLn58fw4cPp0aNGpY19ZcuXbJ2aZINDRo0iM2bN/PNN9/Qo0cPoqKirF2SZJAKFSrQoEEDUlJSuHnzJra2tiQlJd0xq2Pjxo188sknREdHU7NmTapWrXrHubZt2wZw31khIiJZnYIOERGRLM7JyYm2bdsyZMgQPD09Nd1cHlndunXZv38/N2/exM/Pj9OnT1u7JMkArq6uNGzYkOjoaAYNGkR0dDR58uSxzNq5fv06S5YsoXfv3ly7do169eoxc+ZM7OzsSElJsZxnwoQJNG3alJEjRwJo1o+IZFua+yoiIpJNFCxYkN69e1u7DMnmChYsyOrVq+nVqxe+vr4sWrSIzp07W7sseUwTJkxg//79bN68mWbNmjFixAhKlizJ8ePH2bNnD7/99huxsbE0bNiQr776ikKFClmWp6SkpPDhhx/y2WefAdwxk8MwDIUeIpKtaHvZXEbby4qIiMiVK1do1qwZDRs2ZMWKFQwbNoyPP/5YPRmyudjYWJ577jnWr18P3NplJTk5GRsbG8xmMx06dGDSpElUrFjRElwkJiby3nvv8eWXXwJQq1YtXn/9dXx8fChevDjFixcHFHaISPaioCOXUdAhIpJzbd++HXd3dypXrqw3JHJPCQkJ/Oc//+H69ets2LCBM2fO0KVLF7y9vVm4cCGenp7WLlEeQ1RUFDNnzuSff/7hyJEjxMTE0K5dO6pXr86YMWPSHBsXF8dbb73Fd999B9zqy+Hu7s7NmzcxDIOqVasyfvx4y4wfhR0ikl0o6MhlFHSIiORMhmHw66+/cvLkSUqUKEHr1q0pWrSotcuSLMYwDKZPn87777/P4cOH8fb2Bm79fDBgwAD279/P77//Tq1ataxcqWSEyMhIkpOTKVCggOWx5ORk/o+9+w5r6n64AH4S9p6C4ABbFfeoWxSVOuree+9VrbbaqrWtWq1a694DV917a12Ie9ZZ9wDZICOMQOZ9//AlP20dgJCbkPN5Hh4x3FxOUGNy7neYm5sjNTUV3377LYKCggAAI0eOhL+/P1q3bo3Hjx/jyJEj+OmnnwAAW7duRdeuXUV5DEREucGiw8Sw6CAiKtiePXuG48ePIy4uDpUrV8aXX34JBwcHsWORgbh79y4CAgKwevVqdOrU6a2vCYKA2bNnY/r06VizZg26desmUkrKL1qtFlKpFMnJyfj666+xZcsWAMDSpUvRq1ev/zxXLF26FKNGjUKdOnVw5swZWFhYiBGbiCjHWHSYGBYdREQFn1arxd9//43g4GCoVCrUq1cPderU4ZsUE6fRaPDll1/i888/113Ff5cjR46gR48eGD58OKZPn851OwqY+Ph4DB8+HHv27IFEIsH69evRu3dv3dcFQYAgCJBKpRAEAYsXL0bfvn3h5OSEsLAw+Pj46AoTIiJDxaLDxLDoICIyHZmZmTh79iyuXLkCe3t7NGnSBOXLl+ccexM1c+ZMrFu3Dn///Tfs7e0/eOyjR4/Qtm1bfP7559iyZQucnJz0lJLyU3R0NAYPHowjR47AysoKGzduROfOnd957JvrcSgUCvz666+YOXMm/vrrLzRu3FifsYmIcoxVLBERUQFlbW2Npk2bYuTIkfDy8sLu3bvx559/4tWrV2JHIz0SBAEhISH49ddfsXnz5o+WHADg5+eHK1euAABq1aqFR48e5XdMymdhYWFo3749jhw5AgcHB+zYseO9JQcAXckRFxeHGTNmYNasWRAEAUeOHNFXZCKiXGPRQUREVMC5urqiW7du6NmzJ5KTk7FixQqEh4eLHYv0JCIiAgMGDMBPP/2EGjVqZPt+Tk5OOHDgADp06IBatWrxDa6Ri4mJwdWrV2FtbY09e/agdevWH71PdHQ05s2bh+nTp0Or1aJRo0YYMWIEUlJSkJGRAeD1lCgiIkPDqSsmhlNXiIhMm0qlwt9//40aNWpwjr0JUCgU6NOnD2JjY3Hq1Klcr7exbds2DBo0CD/99BO+//57Tn8yUseOHYO1tTUaNmz40WMjIiIwf/58zJ8/H8DrER6Ojo7IyMiAtbU1WrVqhd9//x3e3t7QaDRcy4WIDAqLDhPDooOIiMg0CIKA5cuXY/LkyW9tJZtbf//9N9q1awd/f38EBQXB1tY2j5KSoQkNDcWcOXOwfPlyAED//v1Ro0YN1KxZE48fP8batWtx8uRJlC5dGiEhIfD09BQ5MRHR21h0mBgWHURERKYhJiYGHTt2xNixY/+zlWxuxcXFoVOnTkhLS8O+fftQvHjxPDkvGY5nz55h5syZWLt2LQBg3rx5GDNmzH92WmnVqhWOHDmCYcOGYenSpRzlQ0QGhWNWiYiICACgVquxc+dOREREiB2FPpFarYZWq8WZM2fyrOQAAA8PD5w8eRK1atVC9erVceHChTw7N4nv0aNHmDJliq7kWLt2LcaMGQMAupJDrVYDAIKCgjB69GiMGzeOJQcRGRyO6DAxHNFBRETvI5PJsH37dkRHR+OLL75A48aNYWNjI3YsMlDLly/HuHHjsGLFCvTu3VvsOPQJBEHA/fv3MWXKFOzevRvA63VZunTpAgD/Gc2hVqthbm6OjIwM3XPEv48hIhITiw4Tw6KDiIg+RKvV4vr16zh9+jTMzMzQpEkTVK5cmVds6Z1OnDiBLl26YPjw4Zg+fTrf6Bqpa9euYdq0aTh8+DAA4MCBA2jVqhWA1yXIm//+3yw0UlNTERcXB61WC7VajbJly+qO4wKlRCQmFh0mhkUHERFlR2pqKo4fP4579+7Bx8cHLVu2RKFChcSORR+RmpoKGxsbmJub6+17Pnz4EK1atUKlSpXw559/ws7OTm/fm/LGihUrMGLECEgkEpw8eRKNGjVC1luE95Wcc+bMwcmTJ3Hx4kUAQGZmJtq1a4fGjRtj6NChAFh2EJF4WHSYGBYdRESUE8+fP8fhw4eRnJyMOnXqoEGDBrCwsBA7Fr2DUqlEVFQUfHx89D4CJyEhAZ06dYJMJsOBAwdQtGhRvX5/+nRff/01OnfujAYNGnyw5IiIiMCoUaOwf/9+SCQS+Pj4oHjx4ggNDUVMTAyUSiWGDh2q27GFZQcRiYFFh4lh0UFERDmlVqtx4cIFnDt3Dvb29mjRogVKly4tdix6gyAICAsLg7e3NywtLUXJoFQqMXLkSBw+fBj79+9HjRo1RMlBn+Zda21klRVxcXHo3bs3Tpw4AYlEgmrVqmH9+vUoV64cwsLCcP/+ffTo0QMymQwjRozAkiVLAPx3+gsRUX5j0WFiWHQQEVFuJSYm4siRI3j27BnKly+Pjh078s2LgYiNjYWVlRWcnZ1FzSEIAubPn4+ff/4Z69atQ+fOnUXNQ3kra0tZOzs7mJmZISUl5a1CAwBu376NgIAApKamYvXq1Rg4cKCIiYnIVHHFKCIiIsoWV1dX9OzZE506dULRokVZchiI9PR0qFQq0UsO4PVUh2+//RZbt27FwIED8euvv4LX1Ixb1p/fmjVrdCXH6tWrERwcDAcHByxbtgzjx4/XHV+5cmUEBQUBAE6dOgWVSvXOvwMajUY/D4CITBKLDiIiIso2iUSC8uXLo3bt2mJHof+XmpoKLy8vsWO8pXXr1jh//jzWrFmDnj17IiMjQ+xIlEtZheatW7cAAH5+fqhYsSKqVq2KU6dOwdLSEnPnzsWUKVN09/Hz84ODgwPOnDmDhISE/5SiWq1Wt27H7du39fI4iMi0sOggIiIiMmKFCxc2yMUeK1WqhKtXr+LFixdo1KgR4uLixI5EuaDVaqFQKBASEgIAaNeuHcqXLw+tVovq1avj+PHjAIBp06Zh5syZAICyZcvC2dkZVlZW/1m8WKPR6NYAmTFjBr744gusX79efw+IiEwCiw4iIiLKM7GxsYiMjBQ7BhkIT09PBAcHw9fXF7Vr18ajR4/EjkS5IJFIdIvcZo0e0mq10Gq1CAgIwNGjRwEAP/74I4KCgrB3716Eh4fDwcEBgiBAq9UCeHsHlqlTp2LevHkQBAEHDhxAYmKiCI+MiAoqFh1ERESUZy5duoSgoCCcOHECKpVK7DgFllKpRGpqqtgxssXa2hpbtmxB165dUadOHZw9e1bsSJQDUqkUlpaW+OKLLwAAL1++fOtrgiCgWbNm2L17NwBg8ODBGDJkCABg4MCBcHd3h1Qq1U1X0Wq1mDhxIn7//Xekp6ejf//+mDBhAlxdXfX/4IiowGLRQURERHmmTZs2aNSoEa5cuYKVK1ciPDxc7EgFjiAIiIqKgpWVldhRsk0qlWLmzJmYPXs2mjdvji1btogdibIpayHRRo0awcrKCidPnoQgCDA3N39rQdH27dvjzz//BADIZDJ0794dHTt2BACoVCpIpVIoFAqMGzcOCxYsAAD07t0bo0ePRs2aNd/6XkREn4pFBxEREeUZqVSK+vXrY+jQobC2tsbatWvx119/cXRHHoqLi4Ozs7NuKoExGTx4MPbs2YPhw4djxowZfGNrBLIWEm3atCmqV6+OS5cuYdiwYQCgm4aSNTWlZ8+eWL58OQICAtC/f38ULVoUgiDAwsICaWlpGDt2LJYsWQILCwv069cPY8eOReXKlQG8Ljm4kxMR5RWJwP9hTEpKSgqcnJwgk8ng6OgodhwiIirAtFotLl++jODgYDg6OqJNmzbw8fERO5ZRS09PR1JSEooWLSp2lE9y+/ZttGzZEs2aNcOKFSv+s2AlGaZHjx7B398fiYmJGDJkCJYtW6ZbWFSlUun+HMPDw1GsWDHd/ZKSkjBu3Dhs2LABDg4O6NevH4YPH47SpUuL8jiIqOBj0WFiWHQQEZG+JSQk4MCBA3j58iVq1KiBxo0bG+VoBLFpNBq8fPkSxYsXN8hdVnIqIiICLVu2hKenJ3bu3AknJyexI1E2/P3332jZsiViY2PRtGlTDBo0CPXr14enp+c7R2XExcXh22+/xZYtW+Dq6ooBAwZg+PDhKFGihEiPgIhMAYsOE8Oig4iIxCAIAq5evYpTp07Bzs4OrVu3xmeffSZ2LKOSmpoKMzMz2Nraih0lz6SkpKBLly6IiorC4cOH3xoFQIbr1q1bmDRpEi5evIiUlBTUr18fJ06c0BWYWq0WUqkUERERGDt2LHbv3g0PDw8MGjQIQ4cO1f05Zx1HRJTX+MzyhhcvXmD16tUYPHgwKleuDHNzc0gkEkyfPj1X57t58yZ+/vlnNGjQAO7u7rCwsICHhweaN2+OvXv3vvd+69evh0Qi+eDHsWPHcvswiYiI9E4ikaBWrVoYNmwYnJ2dsWnTJshkMrFjGRUHB4cCVXIAgKOjIw4ePIjatWujVq1auHnzptiRKBuqVKmCNWvW4M8//0Tjxo2xYMECXckhCAKkUimeP3+OESNGYPfu3fDy8sKIESMwcuTI/5QcmZmZUCgUunNnrfdBRPQpzMUOYEgWLlyIhQsX5sm5nj17ptuGCwBKlCgBX19fPH/+HMeOHcOxY8fQt29frF279r1NtoeHB0qVKvXOr7m4uORJTiIiIn1ydXVFnz59EBkZyakKBACwsLDAypUr8fvvv6NBgwbYvn07mjdvLnYs+ghvb294e3ujZcuWkEqlUKlUuouEDx8+xDfffIMTJ06gWLFiGDZsGAYNGoRChQrp7i+VSpGSkoJJkyYhKioKrVu3Rvv27eHs7AyNRlMgpmcRkXhYdLzB3d0drVq1Qs2aNVGjRg2sWbNGtyd4TgmCAC8vL4wZMwa9e/eGl5cXgNct9bJlyzB69Ghs2LAB1atXx9dff/3OczRv3hzr16/P7cMhIiIySBKJxOgX09QXQRAQHx8PDw8PsaPkK4lEgh9++AE+Pj7o1KkTli5din79+okdi7JBKpXqdlYBXi80O2bMGISEhOCzzz7D8OHD0b9/f7i6uv5nDQ+FQgELCwucOXMG+/btw+HDh7Fq1Sq4urpCrVbD3JxvVYgod/js8YbJkye/9ftt27bl+lxFixbF06dP/zPEVCqV4uuvv8Y///yDFStWYPXq1e8tOoiIiMi0xcXFwcrKSuwYetOtWzd4eHigffv2iIqKwsSJE7nlqBHI+jO6cuUKxo8fj/Pnz6N06dIYOXIk+vbt+9514QoVKoSff/4Zffr0wbBhw7Bnzx6Eh4fjxIkTcHR05MgOIso1rtGRT6ytrT84j7Zp06YAgMePH+srEhERkcGLj4/H/v37kZGRIXYU0aWnp0OlUsHZ2VnsKHoVGBiIs2fPYsmSJfj666+h0WjEjkTZEBkZiV69euH8+fOoVKkSxo4diwEDBrxVcgiCgGfPnuHevXtQKBTQaDRwcXFB1apVcfr0aQQGBuLatWvo2LEjlEolSw4iyjUWHSLJzMwEANjY2Lz3mNu3b6NHjx4IDAxEu3btMHXqVDx79kxfEYmIiPQuOTkZDx8+xLJly/D06VOx44hGo9EgLi5ON/XV1FSuXBkXL17EqVOn0KVLF93rJjJcRYoUQa9evVCsWDGMHj0affv2hZ2dne7r+/btw+DBg1G2bFl88cUXaNq0KWbPno309HQAgJ2dHfbt24dy5crh1KlTebZuHhGZJhYdItmxYwcAwN/f/73H3Lp1C1u3bkVwcDD279+PKVOmwM/PDzNmzNBXTCIiIr0qVaoURowYAU9PT2zevBlHjx6FSqUSO5beRUdHw9PT06SvaPv6+uLChQuIiopC06ZNkZSUJHYk+ohffvkF+/fvR69evWBtbQ1BEAC8ft07bdo0bNiwAWq1Gu7u7rh69SomT56M7t2764ose3t7/PzzzzA3N8e1a9fEfChEZORYdIjg+PHj2LdvHwBg/Pjx//m6s7MzRo0ahQsXLiA2NhaZmZm4efMmevfuDY1Gg8mTJ2PJkiV6Tk1ERKQfDg4O6NmzJ7766ivcuHEDq1evRmxsrNix9Eaj0cDW1rbAbSWbG25ubjh16hScnZ1Rv359hIeHix2JPqJKlSqwtLSEVquFRCJBeno6du3ahVu3bqFq1arYvHkzLl68iM2bN8PPzw+HDh1Cs2bNdIVm0aJFYW5ujtu3b79zC+qs8oSI6ENYdOjZy5cv0bNnTwDAiBEjEBAQ8J9j2rVrh0WLFqFu3brw8PCAlZUVqlSpgo0bN2LMmDEAXi+cmpqaqs/oREREeiORSFCrVi0MGTIEEokEq1evxqVLl0ziTY6ZmRlcXV3FjmEwbG1tsWfPHtStWxd169bFP//8I3Ykygap9PXbjBs3bmDXrl0AgHHjxqF79+7w9fVFhw4dEBISgmrVquHcuXNo2bIlgNejmTIzM2FjY6PbySXLm7u23L9/HwkJCXp8RERkTFh06FFiYiKaN2+OV69eoWHDhpg3b16OzzF16lRYWVlBJpPh9OnTuc6SkpKS4w+FQpHr70dERJQbHh4eGDx4MGrUqIHjx49j06ZNLPpNkLm5OVauXIlBgwahXr16OHfunNiRKJu0Wi2A12t41KlTR3ebRqOBh4cH9u/fj+rVq+PkyZNo1KgRNm7cCAsLCwwYMOCtUU1yuVxXcqxfvx5jxozB8uXLkZycrPfHRESGj9vL6klaWhpatGiB+/fvo1q1ajhw4ECutotzdHRE+fLl8ffff3/SIm3FihXL8X1++eUXTJkyJdffk4iIKDfMzc3RrFkzlCxZEvv27cPy5cvRunVrlC1bVuxoeerVq1dwdHSEpaWl2FEMkkQiwS+//AIvLy80b94cGzduRIcOHcSORR/h7OyM4sWLIzExEXFxcShevDi0Wi3Mzc2hUCjg7e2Nbdu2oXHjxggJCQHwejHarFIEAGQyGebMmYOMjAzUrVsXCxYswJ07d2BtbY24uDiT25mIiD6ORYceKBQKtG3bFleuXEG5cuVw7NgxODg45Pp8WcP41Gp1rs8RHh7+3j3N3yc3xQwREVFe+fzzzzF8+HAcPHgQO3bswMiRI+Hu7i52rDyRnp6OzMzMAvN48tOQIUNQuHBh9OjRAwkJCRg8eLDYkfROo9EYzUK1VapUQaNGjbBhwwYMGjQIJ0+e1P09t7KyQkZGBmJjY1G8eHGEhoaiUKFC+Pnnn1GjRg0Ar6eraDQarFq1Cq9evcKmTZuQkJAAf39/9OvXD6VLlxbz4RGRgWLRkc/UajW6dOmC06dP47PPPsOJEyc+6UWMRqPBo0ePALxerCm3HB0dc1x0EBERic3W1hZdunRBdHR0gSkFsraSLV68uNhRjEabNm1w5MgRtGnTBomJifjhhx/EjqQ3R48ehVwuR8eOHcWOkm3r1q1DdHQ0jh8/Dn9/f0ydOhWenp6wt7dHUFAQLl++jDt37sDJyQlLly5F+/btAQAqlQoWFhZwdXVF165dsXr1asTHx8PX1xdz585FzZo1Aby9dgcREcCiI18JgoB+/frhwIED8Pb2xsmTJ+Ht7f1J5wwKCkJycjLMzMzQsGHDvAlKRERkRCQSySf/f2pIoqOj4eHhYTRX6A1FQEAAzpw5g2bNmiEhIQGzZ88u8G92N27ciH79+qFu3bpGVXQAwMGDBzF69GgcOHAAPXv2hCAIMDMzg0ajAQAUKlQI69atQ4sWLQD8r+RQKBRYvHgxjh49CrVaDalUitDQUFy9evWdRQdLDyICuBjpJ1uwYAF8fX3RrVu3/3ztm2++webNm+Hu7o6TJ0+iRIkSHz1fSkoKunfvjqtXr751u0ajwerVq/HNN98AAAYOHIgiRYrkzYMgIiIiUSQnJ8PCwgJ2dnZiRzFKVapUwfnz57Fjxw4MGjTok6b1GrpVq1ahX79+AICLFy9i1apV4gbKIQsLCyxatAi3bt3Ctm3bMGHCBN3f+yJFimDr1q26kkOtVsPCwgIZGRmYN28eFi5ciLCwMLRp0wbTp0+HVCrF6NGjsWLFCgD/2+Ela0tbAIiJiRHhURKRoZAIprBPWzZduHABbdu21f0+LS0NCoUCtra2sLGx0d1+8+ZN3WKeU6ZMwdSpU9GgQQOcOXNGd8ylS5dQt25dAK8X/vzQcNTz58/rPk9OToaLiwuA14s3lShRAubm5njy5IluVenmzZtjz549sLa2zvFjTElJgZOTE2QyGaeuEBFRgZOYmIjw8HBUqlTJKK7qJicnw8nJySiyGrLIyEg0a9YMfn5+2Lx5c65eIxmyxYsX45tvvoG3tzeqVq2KI0eOoHv37li3bh3Mzc2N7u/P0aNHMX78eNy/fx++vr74888/4e/vr1uPw9zcHKmpqZg7dy5WrVqFhIQENG/eHD/++CNq1KiB7du3o3v37gBej3Lp1avXW+ffuXMnxo8fjyVLlqBVq1ZiPEQiEhmnrrxBpVK9cz9uuVwOuVyu+33WELsPeXMr1vDwcISHh2crg52dHX7//XdcvHgR9+7dw7Nnz5CRkQE3Nze0bNkSffr0QefOnY3uPzQiIiJ9+Oeff3D69Gk8efIELVu2fOtChSHibhF5o0iRIjh79ixatGiBli1bYt++fZ+08LshmTt3LsaPHw8fHx8sW7YMjo6OOHz4MLZs2YLhw4fD399f7Ig5VrVqVTx9+hSFChXCnj17UKVKFQiCoNuNJSkpCXPmzEFQUBBkMhnatm2LH3/8EZUrVwYAdO3aFTKZDMOGDUNcXJxumgsAnD17FhMnTsTLly8xe/Zs1K5du8Cs50NE2ccRHSaGIzqIiKigu3fvHg4fPgxLS0u0b98evr6+YkciPUlLS0OHDh2QlJSEo0ePGv0b3JkzZ+LHH3/EZ599hsWLF6N58+YAgF69emHLli3o0qULVq1aZZSv6cLCwqBQKFC6dGlotVoAr6egvHr1CrNnz8a6desgl8vRoUMH/Pjjj7rtpN/cceb+/fvw8vLSjYYGgKSkJHTq1AlmZmYYPny4bmFTIjItLDpMDIsOIiIyBTKZDPv27UNoaCj8/f3RqFEjg1nsUy6X60ZrUt5TKBTo3bs37t69i+PHj+umGxubn3/+GdOnT0fp0qWxdOlSfPnll9BqtZBKpTh06BD69u0LDw8PHD58GJ999pnua8bmzdwpKSmYP38+Fi9ejMzMTHTp0gWTJk1CyZIl33mfNxceXbp0KSpUqIAGDRogISEBz549464sRCaMRYeJYdFBRESmQqvV4tKlSzh9+jQ8PT3RoUMH0a/wazQavHz5EsWLFzeY4qUg0mg0GDFiBI4dO4bjx4/Dz89P7EjZJggCLl68iPr166NUqVJYs2YN6tevD+B/b/BfvXqFxo0b486dOxg+fDiWLl0qcuq88c8//6BLly54+PAhBgwYgMmTJ8PHx+edx745smPRokUYP348tFot7ty5oxv9AbDkIDJVxlf7EhEREWWDVCqFv78/Bg0aBKVSiVWrVuHOnTuiZuJWsvphZmaGFStWoGfPnqhfvz5u3rwpdqRsk0gk8Pf3x5o1a7Bq1SpdySEIAqRSKbRaLdzd3TFt2jRYWVkhODgY9+7dEzl13tiyZQsePHiAMmXK4KeffoKPjw/edU32zZJj1qxZmDJlCszMzPDll18iMTHxrWNZchCZJhYdREREVKB5eXlhyJAhKFeuHPbu3YuDBw9CpVLpPQe3ktUviUSC3377DePHj0dgYCAuX74sdqRsyVr0fsCAAWjQoAGAt0clZE3zKFOmDCpUqICHDx/iypUr4oTNYyVLloSlpSUqVqyo27Ewa/2OLG+WHFOmTMHMmTORlpaGdu3aYerUqUa5OCsR5T0WHURERFTgWVpaom3btmjTpg3u3LmDtWvX6rXsUCqVSE5OhoeHh96+J702fvx4zJgxA02bNsWZM2fEjvNR7xrt865RCaVLl0aHDh0AAL/++iueP3+e79nyW4UKFeDg4IAdO3Zg7dq1AF7/PLJGdWSVHFqtFhMmTMCcOXOgVCrRo0cPfPfdd6hVqxYAvHMUCBGZFhYdREREZBIkEgmqVq2KQYMGoWLFirrtKPVBq9XC29ubw+hFMmLECCxevBitWrXC0aNHxY7zybLeyA8aNAg1a9ZEYmIibty4AeB/I0KMUY0aNXTrjQwfPhybNm0C8PrfblbJoVAo8N1332HhwoUAXu9A8+2336JatWoAALVarft3ljUahMUHkelh0UFEREQmxdPTE3Xr1tXr97S2toalpaVevye9rW/fvli7di06deqEPXv2iB3nk2S9kXd0dESVKlWQlpaG1atXA3j3iBBj0qVLFyxfvhwqlQpr165FUlIStFotzMzMkJaWhjFjxmDp0qWwsLBAv379MHbsWFSqVEl3f3NzcwCvC4/U1FQA//t5GXMJREQ5w11XTAx3XSEiItIf7vhgeA4dOoRu3bphxYoV6NWrl9hxci3r79aTJ09Qq1YtJCcnY+PGjUb9mN60c+dOFC1aFNWrV4eFhQWSkpLw3XffYePGjXBwcEC/fv0wYsQIlCpVSnefyMhIPH/+HEuWLEFcXBzi4uLg7++P+vXro3v37jA3N4dardaVIURUcLHoMDEsOoiIiN7vzYUO8+JckZGRKFasGMsOA3Py5Em0b98ec+fOxZAhQ0TJkLVV7KeeAwC++eYbLF26FF9//TUWLVqUF/EMQtbPKCYmBuPHj8fmzZvh6uqKgQMHYtiwYShRooTu2CtXrmDRokU4e/YsIiMjIZFIdFNWJBIJOnXqhG3btr01DYaICi4WHSaGRQcREdG7abVabNy4EUWKFEFgYOAnvxGKiIiAi4sLd1kxUOfPn0erVq3wyy+/YOzYsWLH+ST79u3TLUwaHBys262lIJDJZOjQoQOCg4Ph5eWF/v37Y+jQoShWrJjumODgYEyYMAF///03NBoNKlWqhEGDBsHa2hrJyclYunQpwsLC0KZNG+zbtw8AR1sRFXQct0VERESE11d9S5cujZMnTyIiIgIdO3bM9UUBbiVr+OrVq4eTJ0+iWbNmSEtLw+TJk/Xyxnf79u149uwZHj16hLp166JChQpvbYmamzfg7dq1Q69evbBp0yY8evSoQBUdTk5OKFu2LM6ePYuhQ4diyJAhKFy4sO7rV69exZQpU3Dt2jUULVoUPXr0wE8//fTWv70ePXrgyy+/xIEDB/DLL79g6tSpLDmICjiO6DAxHNFBRET0YS9fvsSuXbug0WjQoUMHfP755zm6v1KpRFRUFHx8fPhmygjcvXsXTZo0Qb9+/TBz5sx8+zPL+vt08ODB/3xtwoQJaNu2rW571JxMa8kqRhYsWICEhAT8+uuveZrbUBw5cgTVqlWDp6cngP9NM/vxxx+xYMEC2Nvb47vvvsPYsWNhYWEBlUr11q8XL15E48aNUa1aNezatUt3HiIqmFh0mBgWHURERB+Xnp6OvXv34tmzZwgICECDBg2y9cZTEASEhYXB29ubu6wYkcePH+PLL79Ex44dMX/+/DwvO9RqNdq3b4/Dhw+jQYMGGDlyJJ4/f44nT54gKCgIAODv74/BgwejT58+AHK+hkfWG3pT8vDhQ9SoUQPp6ekYNmwYFi9eDDMzs3f+7CIiIlCnTh1ERUXh0qVLqFmzpkipiUgfOHWFiIiI6F/s7OzQs2dPnDt3DmfOnEF4eDg6dOgAe3v7j97X09OTJYeRKV26NM6ePYtGjRpBrVZj8eLFeVp27NixA4cPH0bDhg2xb9++ty42+fv7Y+HChbh48SIiIiKQmpqKkSNHQiqVvvWG/d8LaP77zbwplRxZo1iCg4ORnp6OSpUq4ffff39vyQEAcrkcarUaAJCZmanvyESkZ5+21DMRERFRASWRSBAQEIDevXsjLi4OK1euRGho6EfvY2Njo5+AlKdKlCiBM2fO4PDhwxgxYoRuR5O8cPPmTQDAmDFj4OjoCIVCoTt/v379MGfOHLRo0QLh4eH49ddfsWbNGgCAVCqFIAjQarW6N/GnT5/WfS0vMxqjmJgYAIC3tzfs7e2h0Wj+U3JkDV5/9uwZZDIZHBwcOKqZyASw6CAiIiL6gBIlSmDo0KFwc3PDxo0bce7cOfx75i9nAhcMvr6+CAkJwfHjxzFs2LBPLhIEQYBKpUJERAQAIDExEQBgZWWlKzEAoHHjxpg4cSLatm2L+Ph4zJs3DwcOHADwujyTSqXQaDTo1q0bevbsidWrVwPAJ29Pa6yyRttkrbNhZWUF4N3/DiUSCR49eoTx48cjMzMTderUQZUqVd57vKmXR0QFhWk+OxIRERHlgIODA/r06YN69erh9OnTuHr16ltfj4yMhEKhECkd5aXixYsjJCQEwcHBGDRoEDQaTa7PJZFIYGFhgXLlygEAbt26BY1GozunRCLRvdmuW7cuRo0ahQYNGuDRo0fYtGkTXrx4oTvXo0ePkJmZidjYWIwdOxYPHjz4hEdZMFSuXBmFChXC3bt3kZKSAnNzcyiVSgiCoPu5Pnr0CFOmTMGjR4/g6+uLoUOHAni9pklWYXLo0CHs2LEDgOmWR0QFDf8lExEREWWDVCpFYGAg+vTpgy+++EJ3e9ZWsllXlcn4FS1aFCEhIbhw4QIGDBjwSWUHAJQtWxbA661lnz9/DjMzs3eWHQ0bNsTw4cNRqFAh7Nu3D5cvX9ado1y5cvjmm28QEBCA33//XXdOU1atWjX4+/vj+fPn6NOnD7RaLSwtLSGRSCCRSHDx4kWMGzcOBw4cgIWFBVq0aIGAgAAA/1vT5NChQ5g6dSq6deuGLVu2iPlwiCgPcdcVE8NdV4iIiPIOt5It2KKjoxEYGIhq1aph/fr1MDfP/Tr+jRs3xunTp1GzZk0cPXoULi4uby0wmrXAJvB6u9nff/8dpUqVwvnz51GoUCHdeaKiouDt7f1pD6wAefXqFfz9/fHkyRPUrl0bzZo1g4WFBRISErB48WKo1Wo4OjqiY8eOmD17Ntzd3XX33blzJ+bPn48bN26gUqVKGD58OAYMGCDioyGivMKiw8Sw6CAiIsob3ErWNMTGxiIwMBCVKlXCn3/+meuy4/r16+jVqxceP36M7t27Y+XKlboFNLPKjqwdQ5KTkxEQEID4+HicO3cOJUuWzPF2s6YkIiIC3bp1w9WrV3U7q2TJKj/GjBkDJycn3e1btmzBokWLcO3aNQBAjRo10LFjR9SqVQvFixeHr6/vW+UTERkXFh0mhkUHERFR3oiLi4OFhQVcXFwAvC4+lEolp7AUQHFxcWjcuDHKlCmDzZs352orV41Gg+XLl2P69OmIi4vDwIEDsXDhQtja2v5nZEd6ejoCAwNx/fp1HDhwAK1atcrrh1TgxMXF4cSJEzh58iTCwsLg4uKC2rVro127dvD19X3rz2z9+vWYN28e7t27B+B1yZGYmAhBEPD8+XOUK1cOS5YsQcOGDVkwERkpFh0mhkUHERFR3lAoFLr1AADgwoULuHHjBrp16wYPDw+R01Fee/XqFRo3bozPP/8cW7duzdUonszMTMyYMQPLli1DUlISevbsiTVr1ujKMbVarRsxUr9+fTx79gznz5/HZ599lqePxRS8+bN806pVqzB//nw8fvwYVapUweDBgzFkyBCkp6dDoVBgzpw5mDNnDiwtLXHmzBnUrl2bIzuIjBDrSSIiIqJcsLKyeuvNT7ly5WBhYYGgoCA8fPhQxGSUH9zd3XHq1Cm8ePECPXr0gEqlyvE5rK2tMXHiRHz99ddwd3fH5s2b0aRJE9y7dw9paWm6N+aLFi3ChQsX4OfnB3t7+7x+KAXWm9dvs0ZhZE1l0Wq1WLx4MebMmYPHjx8jICAAv/32G4YNGwapVAoHBwe4u7tj9uzZ+O6776BUKjF69GjExMSw5CAyQhzRYWI4ooOIiOjTvDnN4N+USiX27duHBw8eoGHDhggICOCbpAImISEBgYGBKFu2LDZt2pSrNTsyMjKwceNG/PbbbwgPD0eJEiVQrlw51KxZE48ePcKWLVtgbW2N48ePo169evnwKExD1rQTlUqFRYsWYcmSJQgPD0dgYCAmTZqEhg0bAvjfQrBZ/7azihCtVou//voLVatWFfeBEFGOGXTRERYWhqioKMTHxyMzMxNubm4oVKgQSpUqBRsbG7HjGSUWHURERLmXnJwMlUr11i4Y/yYIAs6dO4fg4GCUKVMG7dq147odBUx8fDwaNWqEypUrY+PGje8tvj5EEAQ8ePAAI0aMwIMHDxAfH6/7mp+fH1avXs2SIw9kZGRg0aJFWLp0KaKjo9G0aVP8+OOPqFu3LoC3d7vJ+jw8PBy1atVCTEwM9u/fj9atW4v5EIgoFwyq6MjMzMT27dtx7NgxhISEIDY29p3HmZubo1q1amjQoAF69OiBihUr6jmp8WLRQURElDs53Ur20aNH2LNnD5ycnNCtWze4urrqISXpS2xsLBo1aoQaNWpg7dq1uSo7ACAtLQ2hoaG4fPkyMjMzUapUKZQrVw7FihXL48SmR6PRYPLkyVixYgWUSqWu5KhevToAvHPtDYVCgblz52Ly5MkoXLgwLl26BB8fHzHiE9EnMIii4/nz51iwYAE2bdoEmUyG7EbKemKqXbs2RowYgR49enB46Eew6CAiIsq53G4lGx8fj23btkEul6Nz585cVLKAiY6ORsOGDVGvXj2sXr2au3MYoG3btqFHjx5o27Ytpk6dikqVKgF4d8mhVqtx4sQJTJs2DdeuXcPQoUPxxx9/wNramu8xiIyMqEVHUlISpk2bhuXLl0OpVAIASpUqhYCAANSqVQtVq1aFu7s7XF1dYWNjg8TERCQmJuLFixe4cuUKrly5gpCQEGRmZkIikaBChQr4/fff0axZM7EeksFj0UFERJRz/95KNicyMjKwe/duPH/+HE2aNEHt2rX5pqkAiYyMRMOGDREYGIjly5d/ctnBHT7y3smTJ1G4cGFUqFDhvccolUqcPHkSc+bMQUhICPz8/LBu3TrUrl1bj0mJKK+IWnS4ubkhKSkJ7u7u6NmzJ3r16oVq1arl6BypqanYtWsX/vzzT5w5cwYSiQQLFizAqFGj8im1cWPRQURElDNyuRwJCQkoWrRort+AarVanDp1ChcvXkS9evXw5Zdf5nFKElNERAQaNGiAr776CkuWLGFRYWQyMzPx119/4ffff8elS5dQpEgRbNq0CQ0aNBA7GhHlkqhFR6FChTBu3Dh8/fXXsLOz++TzXb16FVOmTEGdOnXw008/5UHCgodFBxERUc5otVoIgpDrNRjedPfuXXh4eMDT0zMPkpEhCQsLQ4MGDdCuXTvMnz+fZYeRkMvlOHLkCGbPno0bN27A19cXmzdvRp06dcSORkSfQNSiIz09PU8KDn2dtyBg0UFERESUP168eIEGDRqgS5cumDNnDssOA5eWloaDBw9i9uzZuHPnDkqXLo2tW7eiatWqnEJEZOREXTEpv8oIlhxERET0qVQqldgRyMiUKFECU6ZMwerVqzFx4sRsL7BP+pecnIzdu3djxowZuHPnDipWrIi9e/eiatWq0Gq1LDmIjByXhiYiIiL6F6VSicjISL5RpRw5d+4cRo8ejalTp2LDhg349ddfxY5E73H79m18/fXXuH//PmrWrIm9e/eibNmy0Gq13D2HqAAwFzsAERERkSERBAFRUVHw9vbW21XdyMhIBAcHo0OHDrC1tdXL96S8dfPmTbRu3Rrz58/H4MGD0aRJEzRo0AB2dnb47rvvxI5H/9KgQQPUq1cPYWFh2LNnD7y9vVlyEBUgohYd06ZNy7Nz/fzzz3l2LiIiIjJd8fHxcHJygqWlpd6+p0ajQXR0NIKCgtCzZ0+4urrq7XvTp3v06BGaNWuGSZMmYfDgwQCA8uXL4/jx4wgMDISdnR2GDRsmckr6t6NHjyIlJQWOjo4sOYgKGFEXI5VKpZ98pSRroSCNRpNHqQo2LkZKRET0fnK5HImJiShSpIje5+gnJiZiy5YtyMjIQLdu3VCsWDG9fn/KnZcvX6JevXro2bMnZs6c+Z+vX7hwAV999RWWL1+OXr16iZCQPoYlB1HBI2rR0bBhw/e+iLh16xZkMhkAoEiRIihatCiA10M7IyIiAADOzs6oXLkyACA4OFgPiY0fiw4iIqJ3EwQBoaGhKF68eJ5sJZsbcrkc27dvR2RkJNq3b4/y5cuLkoOyJy4uDvXr10dgYCCWLVv23te1p06dQtu2bbFx40Z06NBBzymJiEyPqEXH+0ycOBGzZ89G9+7dMWXKFJQqVeqtrz99+hRTp07F5s2bMWHCBPz2228iJTU+LDqIiIjezxCu7KrVauzfvx/37t1D48aNUbduXe4AYYBkMhkaNWoEPz8/bNq06aPl2MGDB9GtWzfs3r0bX331lZ5SEhGZJoMrOnbv3o0uXbpg+PDhWLJkyQeP/frrr7F8+XLs3LmT7Xg2seggIiIyfIIgIDg4GOfOnUO1atXQokUL0QsY+h+5XI5mzZrB0dER+/btg4WFRbbut337dgwcOBCHDx9GgwYN8jklEZHpMriio1GjRjh37hxiYmLg7u7+wWNfvXoFT09PNGjQAKdPn9ZTQuPGooOIiOhtKpUKUqlUtOkqH3Lz5k0cOnQIn332GTp16gQrKyuxI5k8pVKJdu3aIS0tDceOHcvxLjlr167FmDFjcOLECdSqVSufUhIRmTaDKzrc3NwAAAkJCflyvKlj0UFERPQ/giAgLCwMXl5eBlsiPHv2DDt37oSzszN69OjB/79FpNFo0KtXLzx69AjBwcFwcnLK1XkWLVqEX375BWfOnNGtN0dERHnH4MZAKhQKpKSkIC0t7aPHpqWlISUlBQqFQg/JiIiIqKDJ2krWUEsOAPj888/Rv39/ZGRk4MmTJ2LHMWkvXrxAWFgYjh07luuSAwBGjx6N77//Hk2aNMHDhw/zMCEREQEGWHT4+flBq9V+dH0OAFiyZAk0Gg38/Pz0kIyIiIgKErlcDoVCAWdnZ7GjfJSnpyeGDx+OatWqiR3FpJUsWRIXLlyAh4fHJ59r4sSJGDRoEBo3boywsLA8SEdERFkMrujo378/BEHA5MmTMXXq1HeO7EhPT8e0adMwefJkSCQS9O/fX4SkREREZKw0Gg1iY2Ph7e1tNDuaWFtbix2BgDz9+zJjxgy0bt0aTZs2RXx8fJ6dl4jI1BncGh1arRYtWrTA8ePHIZFIYGNjg+rVq6NIkSKQSCSIiIjA9evXkZGRAUEQ0KRJExw9epQrkWcT1+ggIiICYmNjYW9vDzs7O7GjkInTaDTo0aMHnj17htOnT/P1GRFRHjC4ogN4vZr1hAkTsGTJEqjVagD/a8+z4pqbm2PEiBGYPXu2Qc+rNTQsOoiIiF6/njCWkRwfo1QqIZVKYW5uLnYUyiWlUonWrVtDpVLhyJEjHL1DRPSJDLLoyBIdHY1du3bh+vXriIuLAwB4eHigevXq6NixI7y9vUVOaHxYdBARERUsO3fuRGpqKrp165bjrU7JcKSlpaFx48bw8vLCzp07WVwREX0Cgy46KO+x6CAiIlMlCAIyMjIKXBkQERGBrVu3wtraGj169ICbm5vYkSiXEhISEBAQgNq1a2PNmjUFZtQREZG+cWELIiIiMgnx8fEFckv6okWLYtCgQZBKpQgKCsLLly/FjkS55ObmhuPHj+PUqVOYMGGC2HGIiIyWQY/oePXqFYKDgxEWFga5XI6ff/5Z7EhGjyM6iIjIFMnlciQkJKBo0aIF9ip5RkYGduzYgfDwcLRt2xYVK1YUOxLl0pMnT+Dv749x48bh+++/FzsOEZHRMciiQ61W44cffsCyZcugVCp1t2s0Gt3nSUlJ+PzzzyGXy/HixQt4eXmJEdXosOggIiJTo9Fo8PLlSxQvXhxmZmZix8lXGo0GBw4cwJ07d9C4cWP4+/uLHYly6ebNm2jYsCHmzZuHgQMHih2HiMioGOTUlc6dO2PBggVQKpUoX778OxdjcnFxQY8ePaBUKrF//34RUhIREZExiI6OhoeHR4EvOQDAzMwM7dq1Q/369XHy5EmcOHECBnhNi7KhatWqOHDgAL755hvs3btX7DhEREbF4IqO7du3Y//+/fDw8MD169dx584duLq6vvPYzp07AwAOHTqkz4hERERkJDIyMmBhYQE7Ozuxo+iNRCJBYGAgmjVrhosXL+LgwYPQarVix6JcaNCgAbZs2YJevXrhzJkzYschIjIaBld0rFu3DhKJBHPmzEHVqlU/eGzNmjUhkUhw9+5dPaUjIiIiY2JjYwMPDw+xY4iidu3aaNeuHW7duoVdu3ZBrVaLHYlyoU2bNliyZAnatWvH17xERNlkcBt0//333wCAjh07fvRYGxsbODk5IT4+Pr9jERERkZEqqIuPZkflypVhbW2Ns2fPQqVSvXM6MBm+/v37IzIyEl999RUuXbqE4sWLix2JiMigGdz/djKZDE5OTrCxscnW8RyKSURERP+WmpoKe3t7ky45svj5+aF06dL8WRi5H3/8UVd2nD9//r1Tu4mIyACnrri4uEAmkyEzM/Ojx0ZERCAlJcVkh6QSERHRf8nlciQnJ4sdw6Cw5DB+EokES5YsQenSpdGmTRtkZGSIHYmIyGAZXNFRuXJlAEBISMhHj125ciUAoFatWvmaiYiIiIyDRqNBbGwsvL29+eaeChwzMzNs3boVgiCgZ8+e0Gg0YkciIjJIBld0dO/eHYIg4KeffoJcLn/vcTt27MDs2bMhkUjQu3dvPSYkIiIiQ2VKW8nmBYVCIXYEyiEbGxscPHgQDx48wOjRo7l9MBHROxhc0dGnTx/UrFkTN27cQJ06dbBixQqoVCoAwPXr17F27Vo0bdoU3bt3h1qtRmBgIFq1aiVyaiIiIhKbTCYzua1kP0VoaCgWLlyI0NBQsaNQDrm6uuLYsWPYt28fZs6cKXYcIiKDIxEMsAaOi4tDq1atcP369fcOOxUEAbVq1cLhw4e5GFMOpKSkwMnJCTKZDI6OjmLHISIiyhOCICAqKopTVnJAqVRi+/btCAsLQ6dOnVCmTBmxI1EO3blzBwEBAViwYAH69esndhwiIoNhcCM6AMDDwwMXLlzA4sWLUalSJUgkEgiCoPsoW7YsFixYgJCQEJYcREREBIlEgiJFirDkyAFLS0t0794dfn5+2LFjB27evCl2JMqhSpUqYc+ePRg5ciSOHj0qdhwiIoNhkCM6/i0tLQ0xMTHQaDTw9PSEs7Oz2JGMFkd0EBER0Zu0Wi2OHDmCGzduoEmTJqhbt67YkSiHtm3bhiFDhuDUqVOoUaOG2HGIiERnLnaA7LC3t0fJkiXFjkFEREQGRi6XQyKRwMbGRuwoRksqlaJly5awsbHBiRMnIJfL8eWXX3J0jBHp1q0boqOj0apVK1y+fBklSpQQOxIRkagMrug4e/YsAKBChQrZmpZy+fJlKJVKBAQE5Hc0IiIiMiBZW8kWL15c7ChGTyKR4Msvv4StrS2OHz+OjIwMtGzZElKpQc5ypncYM2YMnj9/jpYtW+LChQtwcXEROxIRkWgMbuqKVCqFRCKBj48PDh06hHLlyn3weC8vL8THx0OtVuspoXHj1BUiIiooIiIi4OLiwl1W8titW7dw4MABlC1bFu3bt4e5ucFdF6P30Gg0aN++PdLS0nDs2DFYWlqKHYmISBQGWdMLgoDQ0FDUrVsXf/31V7aOJyIiItPBrWTzT5UqVdClSxc8evQIW7duhVKpFDsSZZOZmRm2bNkCmUyGwYMH8zUyEZksgyw6XFxc0KBBA6SkpKB169ZYtmyZ2JGIiIjIQCiVSiQlJcHDw0PsKAVWmTJl0KtXL0RGRuLFixdix6EcsLe3x6FDhxAcHIxff/1V7DhERKIwyKLDysoKx48fR58+faBWqzFq1CiMHj2arTQREREhLS0NXl5eXCwzn/n6+mL06NHw8/MTOwrlkJeXF44cOYJ58+bhzz//FDsOEZHeGWTRAQAWFhZYv349pk2bBgBYunQpWrVqhbS0NJGTERERkZhcXV1hZWUldgyTYGtrK3YEyqUKFSpg165dGDZsGM6cOSN2HCIivTLYoiPL5MmTsXnzZlhZWeHYsWPw9/dHeHi42LGIiIiIiAxa48aNsXjxYrRv3x4PHjwQOw4Rkd4YfNEBvN4b/OTJk3B3d8fdu3dRq1YtXL16VexYREREpCcajQYJCQlixyAyOgMGDMDIkSPRokULxMbGih2HiEgvjKLoAIC6devi8uXLKFOmDGJiYtCoUSNs375d7FhERESkBzExMbC2thY7BuH1YrD79+9HSkqK2FEom3799VfUqVMHbdq0gVwuFzsOEVG+M5qiAwBKlCiBS5cuITAwEBkZGejRowfi4+PFjkVERET5SCaTwdzcnFvJGgi5XI7nz59j/fr1kMlkYsehbJBIJFi3bh2srKzQu3dvaLVasSMREeUroyo6AMDJyQnHjh3DgAEDIAgCn6iJiIgKMG4la3icnZ3Rr18/aLVabNiwgWWHkbCyssLevXtx584dTJ48Wew4RET5ylzsAP+2bt062NjYfPAYc3NzrFmzBn5+fjhy5IiekhEREZE+CYKA6OhobiVrgFxcXNCvXz9s2LAB69evR9++feHs7Cx2LPoINzc3HDx4EHXq1EGZMmXQp08fsSMREeULiSAIgtghSH9SUlLg5OQEmUwGR0dHseMQERG9l1KpREZGBpycnMSOQu8hk8mwYcMGaLVa9O3bFy4uLmJHomw4ceIE2rVrh+PHj8Pf31/sOEREec7opq4QERGRabC0tGTJYeCcnJzQr18/mJmZYf369UhMTBQ7EmVDkyZNMGfOHLRv3x6hoaFixyEiynMsOoiIiIgo1xwdHdGvXz9YWFhg/fr13AbYSIwYMQJdu3ZF69atuYMOERU4ok5dCQwMBAD4+Phg3bp1b92WExKJBKdOncrTbAUVp64QEZGhi42NRaFChSCV8nqMMUlLS8OGDRuQmZmJvn37wt3dXexI9BFqtRotW7aEhYUF9u/fDzMzM7EjERHlCVGLjqwXMGXKlMH9+/ffui0nJBIJNBpNnmYrqFh0EBGRIZPJZMjIyEDhwoXFjkK5kJ6ejo0bNyI9PR39+vVj2WEEkpOTUadOHTRv3hzz5s0TOw4RUZ4QddeVX375BQDe+k8w6zYiIiIyLVlbyfr4+IgdhXLJzs4Offr0wfHjx2FnZyd2HMoGZ2dnHDp0CLVq1ULZsmUxePBgsSMREX0y7rpiYjiig4iIDJEgCAgLC4OXlxesrKzEjkNkckJCQtCiRQscOnQIjRo1EjsOEdEn4eRXIiIiEl18fDycnJxYchCJpEGDBli8eDE6deqEJ0+eiB2HiOiTiDp1hYiIiEgQBJibm8PZ2VnsKEQmbcCAAXjw4AFat26NK1eucHtnIjJanLpiYjh1hYiIiMSiUCg4asfAaTQatG7dGlKplDuxEJHRMojtZT8Vt5fNPhYdREREJIbnz59j9+7d6N27N3fVMXDJycmoVasWOnbsiN9++03sOEREOWYQ28t+Km4vm30sOoiIyFDIZDJIpVI4ODiIHYX0IDMzE3/++SeSk5PRv39/bj1r4B4+fIjatWtj5cqV6Nq1q9hxiIhyRNSiY+rUqXl2Lm5Lmz0sOoiIyBAolUpERUXBx8cHEolE7DikJ3K5HBs2bEBGRgb69+8PFxcXsSPRBxw+fBhdu3bFuXPnULVqVbHjEBFlG9foMDEsOoiISGyCIODly5coXLgw12swQWlpaVi3bh20Wi369+/P1yMGbubMmVixYgWuXbsGDw8PseMQEWULiw4Tw6KDiIjEFh8fD3Nzc17NN2EymQzr1q2Dubk5+vfvDzs7O7Ej0XsIgoDu3bsjOjoaJ0+ehIWFhdiRiIg+Km8WySAiIiLKBrlcjszMTG4la+KcnJzQp08fKBQK/Pnnn8jIyBA7Er2HRCJBUFAQUlJSMGbMGLHjEBFlC4sOIiIi0hutVgsvLy+uy0FwdXVF7969kZKSgs2bN0OhUIgdid7Dzs4O+/btw44dO7Bq1Sqx4xARfZTBTl2JiYnB2rVrcf78eURERCA9PR3viyqRSPDs2TM9JzROnLpCREREhiQqKgobN26El5cXevTowakRBiwkJAQtWrTAX3/9hXr16okdh4jovQyy6Ni7dy/69u370XIj62vcXjb7WHQQEZEYBEHgKA56r5cvX2LTpk3w9fVF9+7d+XfFgC1btgxTp07F9evXUaxYMbHjEBG9k8FNXbl//z569OiBtLQ0tGjRAsuWLQPwei7nmjVrMH36dDRs2BCCIMDd3R1LlizB2rVrRU5NRERE76NUKhEdHS12DDJgxYsXR7du3VCuXDmWHAZu+PDhaNu2Ldq3b4/MzEyx4xARvZPBjegYPHgwgoKC0KtXL2zcuBEAIJVKUbhwYURFRemOO3r0KDp37ozy5cvj/PnzHOaYTRzRQURE+sStZIkKHoVCgQYNGqB8+fJYs2YNyykiMjgGN6LjzJkzkEgkmDhx4gePa968OebOnYtr165hwYIF+glHREREOfLq1Ss4ODiw5CAqQKysrLBr1y4cOnQIq1evFjsOEdF/GNyIDltbW2g0mrdW3jYzM4OzszMSEhLeOlYul8PJyQmVKlXCjRs39B3VKHFEBxER6YtcLkdCQgKKFi3KK75EBdCZM2fQsmVLBAcHo2bNmmLHISLSMbgRHZaWlrC1tX3rNnt7e8hkMqjV6rdut7W1hYODA3dcISIiMjAajQaxsbHcSpY+GRecN1wNGzbEtGnT0LFjR8TFxYkdh4hIx+CKDm9vb6SkpCAjI0N3m6+vLwRBwO3bt986NikpCcnJyVAqlfqOSURERB9RuHBhmJubix2DjJharcaGDRtw8eJFsaPQe3z77beoW7cuunXr9p+LkkREYjG4oqNs2bIAgCdPnuhu8/f3hyAI+OOPP946dvLkyQAAPz8//QUkIiKijzIzM4ONjY3YMcjImZubw8fHBydOnMD169fFjkPvIJFIEBQUhLi4OEyaNEnsOEREAAyw6GjZsiUEQcDu3bt1tw0bNgxSqRQ7duxAhQoV0LNnT1SqVAkrVqyARCLBgAEDRExMREREWQxs6S8qAAIDA1GzZk0cPnwYd+7cETsOvYO9vT327NmDlStXYufOnWLHISIyvKKjdevW6Nu371tDXStVqoQFCxZAKpXi/v372Lp1K+7duwdBENCtWzeMGjVKxMREREQE/G8rWa6pQHlJIpHgq6++QpUqVbBv3z48ePBA7Ej0DqVLl8bGjRsxcOBA3L9/X+w4nywtLQ1hYWF48OABYmJixI5DRDlkcLuufMjDhw+xa9cuhIeHw8nJCV999RUCAwPFjmVUuOsKERHll/j4eJiZmcHV1VXsKFQAabVa7NmzBw8ePECPHj3w+eefix2J3uHHH3/Erl27cO3aNaN9rXnw4EHMmjULUVFRCAsLQ7FixTB58mR07drVaB8TkakxqqKDPh2LDiIiyg/cSpb0QaPRYPv27QgNDUW/fv3g7e0tdiT6F41GgxYtWsDOzg67d+82qucDQRDw9ddfY/ny5QCAChUqQKFQ4MmTJ7Czs8PcuXMxYMAALrJMZAQMbuoKERERGRduJUv6YmZmhk6dOsHDwwNbtmxBUlKS2JHoX8zMzLBlyxbcvHkTv//+u9hxsi0xMRH9+/fH8uXLUbFiRezfvx937tzB9evXMWrUKKSnp2P58uVQqVRiRyWibOCIDhPDER1ERJTXIiMj4eTkBHt7e7GjkIlIT0/H2rVrAQADBgyAnZ2dyIno327cuIGAgAAcPXoUAQEBYsf5qPPnz6N9+/YoXLgwDh48CF9fXwiCAIlEgvT0dNSrVw+3b9/GxYsXUbt2bbHjEtFHGOy4q6dPn2LHjh24c+cOkpKSPtieSiQSnDp1So/piIiIKIubmxusra3FjkEmxM7ODr169UJQUBC2bt2KPn36wNLSUuxY9IZq1arhjz/+QLdu3XDz5k14enqKHemDli9fjoSEBAwfPhy+vr7QaDSQSqXQaDSws7PDZ599hri4OHh5eQH43w5THMVGZJgMsuiYNGkS5syZA61Wm61t6vgEQ0REJB6WHCQGFxcX9OzZEydPnoRarWbRYYCGDRuGc+fOoUePHjh+/DjMzMzEjvQfWaM2nJycdL8Cr6fgqNVqmJubIz4+HpGRkWjevDmio6NhaWmpKzzePAcRGQ6DKzqWLVuGWbNmAQB8fX3RuHFjeHp6ctEfIiIiAyIIAgRBgFTK5b5IPF5eXujdu7fYMeg9JBIJVq5ciRo1amDKlCn49ddfxY70H1kFhZubGwRBwJ49e9CpUyf4+PjA3NwcCoUCkyZNwtWrV3Ht2jXs2bMHMpkMzZs3R58+fdClSxeWHEQGyODW6KhYsSLu37+Pfv36YfXq1XwBlce4RgcREeWF+Ph4WFpa6q5+EhG9z71791C7dm3s2rULX331ldhx3qLVaiGVSiGXy1G1alU8efIE9evXR8WKFeHj44OgoCA8fvwY7u7u6NixI1JSUvDXX38hMTERJUuWxPTp09GlSxexHwYR/YvBFR02NjZQKpVITEzki6d8wKKDiIg+FbeSJaKc2rhxI7799lvcvHkTxYoVEzvOW7KmqFy9ehW//vorDh8+jKJFi0ImkyE1NRUdOnTAnDlzUKJECQDAhQsXMG3aNJw4cQIBAQFYv349fH19xX0QRPQWgys6vL29kZmZicTERLGjFEgsOoiI6FNoNBq8fPkSxYoV47RSIsqRwYMH459//kFISAgsLCzEjvNOcrkc4eHhiImJwbfffgtPT08cOXIEwP8KEQDYsmULRo0aBUtLS2zfvt0odpYhMiUGNy+kZs2aSElJwatXr8SOQkRERP8SExODQoUKseQgg3bv3j2Eh4eLHYP+ZdGiRcjIyMAPP/ygt++Z02u6tra28PPzg5WVFZ49ewY/Pz8Ar0tec3Nz3fm6desGT09PxMbG4sWLF3mem4g+jcEVHePHj4dEIsGMGTPEjkJERERvSElJgZmZGezt7cWOQvRegiDg+vXr2Lp1Ky+cGRgbGxvs3LkTa9euxZ49e/Lt+wiCgBs3buDBgwd49uxZju8LADdv3kRKSopudxWtVqv7ukajQWpqqm7qnoODQx6mJ6K8YHBFh7+/P5YvX45ly5Zh2LBhCA0NFTsSERER4fWVTg8PD7FjEH2QRCJB165dYW9vj02bNiE1NVXsSPSGkiVLIigoCAMGDMDTp0/z/PzXr19Hw4YN0axZM1SrVg316tVD3759ceHChWzdP6u8yJriPX/+fCQkJMDCwgIajQZSqRRmZmY4ceIEnj17hjp16qBhw4Z5/jiI6NMY3BodWWbPno2JEydCIpHA1dX1g02pRCLJcVtrqrhGBxEREZkCmUyGoKAg2Nraon///rCyshI7Er1hzJgxCAkJwaVLl2BtbZ0n51y/fj0GDx4MjUaDGjVqwNraGv/88w8SExPh4OCAhQsXok2bNnB1ddXttvI+kZGR6Ny5My5fvowWLVogKCgIrq6uMDMzw7x58zB58mQolUosWrQII0eO5MLMRAbG4IoOjUaDPn36YNu2bdmeUyeRSKDRaPI5WcHAooOIiHLqzQX4iIxJXFwc1q5dC29vb/Ts2RNmZmZiR6L/p1QqUb9+fdSoUQNLliz55PM9e/YMLVq0QGhoKJYtW4aBAwdCo9HgwYMH+Omnn7B//34UKVIEQ4cOxYQJE2Bubv7BsiMzMxObN2/GuHHjIJPJULp0aRQqVAixsbF4+vQpzMzMsGrVKvTv3/+TsxNR3jO4omPu3LkYP348AKB+/fpo1qwZPD09P/oCq2/fvvmay9fXF2FhYW/dZmVlBS8vL/j7++Obb75BjRo1/nO/fv36YcOGDR89f9++fbF+/foc3a9t27bYt29ftvJnYdFBREQ5kZGRodtKlsgYhYaGYtOmTShXrhzat2/PK+8G5Pnz5/jiiy+wbt06tG/f/pPOtW7dOgwcOBBjx47F3Llz3/qaXC7HsGHDsHPnTjg7O2Py5MkYOXLkR8+Znp6OPXv2YNSoUUhJSQEAODk5oV69evjjjz90C5USkeExuMszQUFBkEgkmDhxIqZPny52nP8oVaqUbn6yTCbD06dPsXnzZmzbtg3r1q1D796933k/Dw8PlCpV6r3nLV26dI7vV65cuRymJyIiyj6NRoOYmBgUK1ZM7ChEuebr64v27dtj165dcHBwQJMmTcSORP/vs88+w+rVqzFw4EB88cUX8PHxyfW57t69CwBwd3cH8Pr5y8zMDBqNBra2tpg8eTLUajV27NiB+fPno3z58mjYsOE7R3UIggCJRAI7Ozv07t0b9evXx4MHD2BrawsAaNCgQa5zEpF+GFzRERoaqis6DNGkSZPQr18/3e+TkpIwZMgQ7Nq1CyNHjkSrVq3g4uLyn/s1b978rREb2ZXb+xEREX0qbiVLBUX58uWRlpaGY8eOwcHBAbVr1xY7Ev2/zp074+TJk+jRowfOnDkDCwuLHN0/q5Tw9PQEACQnJ0Or1epG7mRNVypdujSGDRuGmJgYnDlzBosWLUKlSpXg6uqqmy6fdR+1Wg0LCwuoVCpYWFjA19cXvr6+efSIiUgfDG7XFRcXFzg6OsLOzk7sKNni4uKCoKAg2NnZITU1FcePHxc7EhER0SeTyWTcSpYKlFq1aqFu3br466+/8M8//4gdh96wYMECpKSkYMqUKTm+b1Y5kbWg6fnz5yGVSiGVSnUFRtavAQEB6NGjB7y9vRESEoJdu3bpzpF1nk2bNuHbb7+FUqmEhYWFbltZIjIuBld0BAQEQCaTITIyUuwo2ebo6KibesLtcImIyNip1WokJSVxK1kqcBo3boyKFSti//79SE9PFzsO/T8bGxts374dCxcuxMmTJ3N1jp49e8LNzQ2XLl3CqlWr3vqaRCLRlR3t2rVDYGAgkpKSEBISglevXumOO336NCZMmIDVq1dj1qxZAPDBnVmIyHAZ3L/ciRMnwsrKCt9//73YUXJELpcDgG7uHhERkbEyMzNDsWLF+AKfChyJRIK2bduiV69eRjN62FSUK1cOCxcuRK9evRAbG5vj+7u7u+sWGP3jjz/w9OnTt3ZmzCo73N3d0b17dwDAwYMHkZycrDtH6dKl0apVKyiVSly5ckX3+p6IjI/BvYKpVKkS9uzZg6NHj6J58+YIDg42+Mb9yZMnePbsGQCgSpUq4oYhIiL6RBKJhNtwUoFlZmaG4sWLix2D3mHAgAFo1KgR+vTpk6spIx06dECNGjXw9OlTzJgxA8DrP++sc2VNT2nevDmaN2+OtLQ07N27V3f/okWLokePHli+fDkOHz7MC5hERszgig4zMzO0bNkSMpkMx48fR+PGjeHo6AgzM7P3foi1SFpKSgpOnjyJdu3aQa1Ww9/fH/Xr13/nsRs2bNDN/3vXx/u2if3Q/YiIiPKSUqmEge06T0QmRCKRYOXKlXj69CnmzJmT4/tXrFgRvXv3houLC7Zt24b58+cDeHv6SVbpUalSJQCApaUlAOhGfgQEBGDo0KGf9DiISHwGt4y6ob/A6t+/P/r37//WbVKpFF27dsXy5cvfe7+PbS/r5uaWq/sRERHlBa1Wi8jISBQrVoy7rBCRaBwdHbF9+3Y0aNAAAQEBqFOnTrbvK5FI0K9fP/zzzz9YuXIlpkyZgrJly+Krr76CIAi6D+B/087T0tIAgKPYiAoYg3slExwcLHaEDypVqhQ8PDwgCAJiYmLw/PlzWFhYoEaNGu/cVjaLoWwvu337dgBA/fr1YWlpCXNzc5ibm2PWrFmoWLHiO+8zc+ZMxMbGwsrKCtbW1rC0tIS9vT0cHBz+82Fvbw8PDw94e3vnWWYiIsp/0dHR3ErWCAmCAK1WC61Wq/v8zZ0m/v2RnduzvGsk6ftGmL7r9qydL4xlNKpWq+W6NAaievXqmD59Orp3746bN29+8DX2v9nb2+P7779HQkICdu3ahW7dumHXrl2oU6eObl2WBw8e4NChQ/D29kbHjh3z62EQkYgM7tVMgwYNxI7wQZMmTUK/fv10v79w4QLatWuHcePGwdPTE7169RIvXDZ4eXkBAO7cufPW7fXq1fvofT09PeHu7g6FQoHU1FSkpqa+c5GmDh06YPfu3e88x5EjRzB//ny4uLjAw8MDhQoVeuvXrM9dXFz4YoOISE9SUlK4laxIssoJjUYDjUYDtVr9zs/ft17Bm6XCm79mp5h4VwmR9fmHypGsMuVDxcmbx75Zvrwr/5tTkd/1uZmZWb6XJOnp6di0aRMaN26Mzz//PF+/F2XPmDFjcOrUKQwdOhTbt2/P0d+BEiVK4LfffkNKSgqOHz+OAQMGoE6dOujUqRMiIyOxfPlyvHjxAiNHjkSxYsUgCILBF3FElDMGV3SUKFECUqkUf/31F0qWLCl2nI/y9/fH6tWr0b59e3zzzTdo06YNHB0dxY71XgEBAQCA8PDwHOe0srKClZXVW7dpNBqkp6frio/U1NQPvlC2traGi4sLEhMT8ejRI8THxyM+Ph5qtfqt48zMzODu7g4PDw8EBwe/d2rPq1ev4Obmxv+ciIhySaVSITExkYsz5gFBEN4qKN4sKt78/b9JpdL/vLm3tLSEra2t7vdZpURB866fmVqthkKheOvn928fKkayPs/Jz8vGxgb29vbYuXMnBg0aBHd397x8mJQLEokEa9euRaVKlbBhw4a3LjRmR8mSJbFt2zaMHDkSJ0+exM6dO7Fz507d1ydMmIDffvstj1MTkaEwuKIjOjoalpaWRlFyZGnXrh1q166Ny5cvY968eZgyZYrYkT7K0dExTwoZMzOzHJ0rMDAQgYGBb92m1WqRnJyM+Ph4xMXF/edXBweHd55LqVTCw8MDlpaWKF68OIoXLw4fH5//fF60aFFYW1t/8mMlIiqIYmNj4eXlxVF02SAIAlQqFZRK5Vu/vvlGPOtN9pu/WllZ5foNeEEnkUh002izK6sc+XdBolAo3lsoWVpawsLCApaWlrrP31yTQSqVolOnTggKCsKWLVswaNAg7rhhADw8PLB+/Xp06dIF9erVy/H7A2dnZ6xevRrPnz/HwYMHdRfkAgMDUbt27XxKTUSGwOCKDm9vb8THx4sdI8cmTJiAdu3aYdGiRRg3bhyH/+aAVCqFq6srXF1d4efnl6P77tmzBy9fvsTLly8RFhaGe/fu4ciRI4iJiXnruMKFC6N48eKYNGkS2rZtm5fxiYiMmre3N0uO/6fVat8qMLI+f3PaSNabZQsLCzg6OureMLO80J83y5F/jzR9lzcLKqVSCblcDpVKpftzlUqluj/XNm3aYMuWLdixYwd69+7NBSoNwFdffYX+/fujZ8+eOH/+PCwsLHJ0fxsbG1SoUAEVKlTIp4REZIgMruho3LgxgoKCcPPmTVStWlXsONnWpk0blC1bFg8ePMDy5csxfvx4sSMVeJaWlmjXrt07v5aZmYmIiIi3SpCXL1/CycnpveebM2cOYmJi4Ofnp/vw9PTki1ciKtBMqeQQBEH3ZvfNURlZ60dIJJK3igwbGxtYWlryza6Rk0gkupEc76LRaHR/F6ytrdG4cWMcPnwY27dvR926dWFubq67f9YHyy39mj17NmrUqIGpU6di+vTpObpv1p8T1+EgMi0GV3RMmDAB27Ztw9dff40TJ04YzbBBiUSCcePGYeDAgZg3bx5GjRr11nSJo0ePfnDBz1KlSmHdunX6iGoSrK2tUbJkyRwNcYyIiMDhw4fx4sUL3VUeR0fHt4qPMmXKwM/PD6VKleJ0GCIyWlqtVvemriDKenwKhUL3kfW8/uabVTs7u/9MYSDTk7W2R9a/B3d3d0ilUuzfvx8lSpRAjRo1dOVYWloaVCrVW2uLZZVjWWuZWVhY8A11HrOyskKrVq3w+++/o2nTpro153KCfyZEpsXgig5zc3OsXLkSQ4cORYUKFTBq1CjUrVsXHh4eH3whYgiLqPXq1Qs//fQToqKisHbtWowYMUL3tbi4OMTFxb33vll7eJN4Fi5ciIULF0KhUODZs2d49OjRWx9HjhxBYmIigNf/WQ4cOBCrV68WOTURUc5FR0d/cISbsRAEAQqFApmZmbpCI2t0RtabTnt7e7i5ubHMoBypUqUK4uPjceLECbi5uaF06dLvvPj25rQYhUKBlJQUqNVqCIIAc3NzWFtb6z64dXPuyOVyDB06FKdOncLIkSPRu3dv3L59G87OzmJHIyIDJhHet9+XSHLzQkQikfxn1w56t5SUFDg5OUEmkxn07jCG6tWrV7riw8vLC82bN3/ncWfOnMGTJ09QpUoVVKhQATY2NnpOSkT0bjKZDBkZGShcuLDYUbIt681kVqmRmZkJjUYDiUQCKysrWFtb64oNU5qKQ/lLEARs374dL168wMCBA+Hh4ZGj+2YtkJqZmYmMjAxoNBpIpVJYWVnBxsYG1tbWHP3xEc+fP0eHDh3g4OCAHTt2oHDhwmjZsiUcHR2xdetW/uyI6L0MrujI7QuU9+0vT29j0aEfP/74I2bNmgWtVgupVIoyZcqgSpUqqFKlCipXrowqVark6AUTEVFeUKlUiIiIgI+Pj8EWAoIg6N4YZmZmQqlUAng9PSDryriVlRWvjpNeKJVKrF27FgqFAoMGDYKdnd0nnU+r1erKuoyMDKhUqrcKu6x1YfgG/vW07549e6J37974448/dIuQxsbGomLFivjjjz/Qp08fkVMSkaEyuKIjLCwsV/fz8fHJ4yQFE4sO/cnIyMC9e/dw69Yt3cft27eRnp4OAPDy8kKVKlVQq1YtNGzYEA0aNBA5MREVZIIg4OXLlyhcuHC2dqrQF5VKBblcris2st702dra8oo3GQSZTIbVq1ejcuXKaNKkSZ6fP2sK1pvlniAIsLS01JUfpjRaSavV4rfffsOsWbOwYsUK9OrV6z/HHD58GN27d8fNmzfx+eefi5CSiAydwRUdlL9YdIhLq9Xi2bNnutLjxo0buHLlCqpVq4YTJ06IHY+ICjCZTAaNRgNXV1fRMmi1WmRkZCAjIwNyuRxarVa3u4mtrS2srKxYapBBSkxMhLOzs97KhqzpWlnlR2Zmpm7dDxsbG91HQfv3IpPJ0KdPH9y9exd79+5F5cqV33vsqFGjcP36dZw9ezbHW84SUcHHosPEsOgwPFqtFjKZDC4uLu/8+okTJ3Dp0iXUqVMHNWvWLBALCBKR/r25haq+vp9SqdSN1lAqlZBKpbC2toatrS1sbGy4QChRDqnVal1RmJmZCQC6EVC2trZGPaXrn3/+Qfv27fH5559j8+bNHy1lMzIyUKNGDXTs2BFTp07VU0oiMhZGUXSEhYUhLi4OEokEhQoV4jSVT8Ciw/gsXLgQU6dORVJSEiQSCcqVK4c6deqgTp06qF27NsqUKWMyw1mJyHBlvQHL+hAEQbfooq2tLaegEOWDrDVt5HI55HI5NBoNzM3NYWtrCzs7O6NZ72PHjh0YOHAgxo4di19++SXbJejt27dRp04dnDlzBjVr1sznlERkTAy26IiOjsbMmTOxbds2JCQkvPU1Nzc39OjRAz/88AO8vLxESmicWHQYJ61Wi8ePH+Py5cu4dOkSLl26hHv37kEQBLi7u6NRo0YIDAxEYGAgSpUqZRQvaohIP1JTU+Hg4JDn51WpVEhLS0N6ejrUajXMzMx0pYa1tTULWCKRZK17I5fLoVAoIJVKdcWHtbW1wb1GWLBgAaZMmYI///wTrVu3zvH9Z82ahXXr1uHmzZvv3AKYiEyTQRYdFy5cQLt27ZCYmIj3xZNIJHBzc8O+fftQt25dPSc0Xiw6Co6UlBRcvXoVISEhOH36NK5cuQKNRoM2bdpg//79YscjIgOQkpICuVyeJ1vJajQapKenIy0tDUqlEubm5rC3t4ednR3nx5PJUqvVBj9dRKvVIj09Henp6cjMzIRUKoWdnR3s7OwMYl2cx48fQyKRoFSpUrm6v0ajQUBAAKpVq4ZFixblcToiMlYGV3TExcWhbNmySEpKgqOjI4YNG4YmTZqgaNGiAICIiAicPHkSK1euRHJyMlxdXXH//n1u1ZlNLDoKrtTUVJw/fx4SiQRfffXVO4/RaDScE09kIj51K1mtVgu5XI709HRkZGRAKpXqig1jGQ5PlJ/OnDmD0NBQ9O7d26j+b80qLdPT06FQKGBmZqYrPoz13/azZ89QpUoV7NmzJ192xiEi42NwRccPP/yAOXPmoEyZMjhx4gSKFCnyzuOioqLQuHFjPHr0COPHj8esWbP0nNQ4segwbaNGjUJwcDACAwPRqFEjNGjQQNQdGIgof+RmK9msuf5paWmQy+UAAFtbW9jb2xvkcHcisYWFhWHjxo2oWbMmmjVrJnacXFOr1briI2u01pvFh7FYuXIlfv31V9y9e/e9C7wTkekwuKKjQoUKePDgAc6ePQt/f/8PHnvhwgXUr18f5cqVw7179/SU0Lix6DBtR48exZ49e3D69Gk8f/4cEokE1apVQ4sWLdCqVStUq1aN8+qJCoD4+HiYmZl9sMjM2hUl6w2ORqOBtbU17O3tYWtry+cComy4fPky/vrrL3Ts2BEVKlQQO06eUKlUuucFlUoFS0tL2Nvbw97e3qCfFwRBQMuWLeHq6opNmzaJHYeIRGZwRUfWk2hKSkq2js9aYC01NTU/YxUYLDooS2hoKE6fPo3jx4/jr7/+QnJyMjw9PdG8eXO0bNkSTZs25d8RIiOk0WgQExMDb2/v/4zCUKvVugVEs97AZF25NfR1BogMkSAI2Lt3Lx4+fIhBgwYVyKnUSqUSqampSEtLA/D6tbqDg4NBjvaIjo5GhQoVsGLFCnTu3FnsOEQkIoMrOnJaXDg4OEAQBN2TL30Yiw56F7VajYsXL+Lw4cM4fPgw/vnnH5ibm2Pu3LkYPXq02PGIKJeypqOkpKQgIyMDZmZmb62zQUSfTqlUIigoCGq1GoMHD4a1tbXYkfKNVqtFWloaUlNToVKpdKPA7OzsDGZ6286dOzFs2DDcu3ePuzMSmTCDKzqypq5cuHABtWvX/uCxly5dgr+/P6eu5ACLDsqO0NBQHDlyBDVr1kT16tXFjkNEOZC1w0JqaiqUSiWsra3h6OgIGxsbg3kjQlTQJCYmYtWqVfD19UXXrl1N4t9aVpGampoKuVyuK1IdHBxEHyHWs2dPJCcn49ChQybxZ0FE/2VwE+2aN28OQRAwZMgQxMfHv/e4uLg4DBkyBBKJBC1atNBjQqKCz9fXFyNGjPhgyfHDDz9g9erViIqK0mMyInoXtVqNmJgYhIWFITw8HAqFAm5ubvD19UXhwoVha2vLF/tE+cjV1RXt27fHo0ePcP78ebHj6IVEIoGNjQ08PDzg6+sLLy8vSCQSREdHIzQ0FHFxccjIyIAY11SXLFmC27dvY/Xq1Xr/3kRkGAxuREdsbCzKli0LmUwGFxcXDB8+HF9++SWKFCkCiUSC8PBwnDp1CitXrkRCQgKcnZ3x8OHDAjknMj9wRAflBZVKhS+//BIXLlyAVquFv78/OnXqhI4dO6JYsWJixyMyCUqlEikpKUhPTwcAKBQK+Pr6ckoKkYhOnz6N8+fPo2fPnvj888/FjiMaQRAgl8uRmpqKzMxMWFhYwMnJSa9TXE6cOIEOHTrg1q1bJv1nQWSqDK7oAICQkBC0b98eycnJ730yFAQBzs7O2LdvHwICAvSc0Hix6KC8lJCQgMOHD2PXrl3466+/oFQqUbt2bXTq1AmdOnWCj4+P2BGJCpSs9TbkcjnMzc3h6OgIOzs7RERE5GgrWSLKH1qtFlu2bEFUVBSGDBkCZ2dnsSMZBIVCoStms5679LGLy9dff41bt24hJCQEZmZm+fq9iMiwGGTRAQARERGYMWMGdu7cicTExLe+5urqiq5du2LSpEkoUqSISAmNE4sOyi8ymQyHDh3Czp07cezYMSgUCtSoUQOdO3dGp06dUKJECbEjEhmdrDnwMpkMGRkZsLKy0pUbWRcCsrOVLBHpT0ZGBlatWgU3Nzf06tVL7DgG583RaFKpFI6OjnBwcMiX0iM9PR2VKlXC6NGj8c033+T5+YnIcBls0fGmFy9eIC4uDgDg4eHBN0yfgEUH6UNqaqqu9Dh69CiUSiXi4uLg5uYmdjQig5c15DslJQWZmZmwsbF572KiGRkZiI+PR7FixbgGB5EBiY2NhZWVFUd0fIRKpUJKSgrS0tIgkUh0pUdejr4ICQlBy5YtcfPmTZQqVSrPzktEhs0oig7KOyw6SN/S0tJw+fJlNG7cWOwoRAYtMzMTycnJyMjIgJ2dHRwdHWFlZfXBAiM2NhZubm6i73BARPSp1Go1UlNTkZKSAqlUCicnJzg4OORJiTt69GjcvHkTISEh+T5dhogMA4sOE8OigwzN1atXce7cOfTs2ROFCxcWOw6RXqlUKshkMqSlpcHS0hLOzs7cBpaITF5ePzdyCguR6WHRYWJYdJChWbZsGcaOHQu1Wo1mzZqhT58+aNu2LWxsbMSORpQvtFotUlJSIJPJ8vyqJRFRQfPv0W7Ozs652l2KU1iITIvoRcdnn332yeeQSCR49uxZHqQp+Fh0kCFKSkrCjh07sHHjRly8eBGOjo7o3Lkz+vTpg3r16nGYKRk9QRCQlpYGmUwGjUYDR0dHODo65moeukqlglwuh5OTUz4kJSIyTIIgID09HTKZDCqVSvc8mpOpe5zCQmQ6RC868uJJRiKRQKPR5EGago9FBxm6p0+f4s8//8TGjRsRGhoKX19f9O7dG7179+YVGDIqWTumJCcnIzMzE/b29nBycsrVlcg3z/ny5UtuJUtkhJ4+fYqoqCgEBASIHcXoabVapKamQiaTAQCcnZ2ztV0tp7AQmQ7Ri46pU6fm6n43btzAoUOHALDoyAkWHWQstFotLly4gI0bN2LHjh1ISUlBnTp1MGvWLL5IJIOmUqmQnJyMtLQ0WFtbw9nZGdbW1nkyNeXVq1eQSqXcSpbICF28eBEnTpxAly5dULZsWbHjFBhqtRoymQypqamwsLCAs7MzbG1t3/ucyyksRKZB9KIjp54/f45JkyZh165d0Gq1AIC2bdti7969IiczDiw6yBhlZGTgwIED2LBhA3766SfUqVNH7EhEb9FoNEhJSUFKSgrMzMzg5OQEe3v7PF13g1vJEhk3QRCwa9cuPH36FIMHD4a7u7vYkQochUKB5ORkyOVy2NrawtnZ+Z2j3ziFhajgM5qiIy4uDtOmTcPq1auhVqshCALq1auH2bNn801PDrDoICLKG4IgICMjA4mJiZ+87sbHaLVahIWFoVixYtxKlsiIKRQKrFmzBgAwaNAgTkHLJ4IgQC6XIzk5Wbeeh5OTk+75mVNYiAo+g68w09LS8Msvv6BkyZJYvnw5VCoVypcvjwMHDuDs2bMsOYgIAPDy5Uu0bNkSBw4cgFqtFjsOFWAajQaJiYkIDQ1FSkoKPDw84OPjAxcXl3wpOYDXozkKFSrEkoPIyFlZWaFr165ISUnB/v37YSTXG42ORCKBnZ0dihQpguLFi0MqlSIiIgKRkZG60R5r167Fjz/+iCdPnogdl4jygcEWHSqVCgsXLsRnn32G6dOnIy0tDcWKFcP69etx+/ZttGrVSuyIRGRA4uPjERcXh7Zt26JEiRKYNm0aIiMjxY5FBUhmZiaioqIQEREBqVQKHx8fFC5c+JMWF80uOzs72Nvb5/v3IaL85+7ujnbt2uHBgwe4cuWK2HEKPKlUCmdnZ/j4+MDd3R0pKSkIDQ1FhQoV0K9fPwwePFg3HZ6ICg6DLDo2bdoEPz8/fPvtt3j16hVcXV0xd+5cPH78GH369OHcZCL6j2rVquHatWu4du0avvrqK8yePRs+Pj7o0KEDjh8/zhcxlCtarRbJyckIDQ1FYmIiXF1d4ePjA2dnZ87rJqJcK1u2LGrVqoWTJ08iOjpa7Dgmw8rKCoULF4aPjw/Mzc0xfPhwPHnyBKtWrRI7GhHlMYNao+PIkSOYOHEi7t27B0EQYGtri7Fjx+L777+Hg4OD2PEKBK7RQaZCJpNh8+bNWL58Oe7du4fPPvsMQ4YMQf/+/eHh4SF2PDJwCoUCSUlJyMjIgJOT01tzu/VFEATExcXBw8ODBT9RAaRWq7F27VooFAoMGTKE63WI5MCBA+jduzfu37+PIkWKiB2HiPKIQRQdly9fxoQJE3Du3DkIggBzc3MMGjQIv/zyCzw9PcWOV6Cw6CBTIwgCLl26hBUrVmDHjh3QarXo2LEjxo0bh2rVqokdjwyIIAhITU1FUlISzMzM4OrqChsbG9FKBm4lS1TwJSQkYNWqVShTpgzat28vdhyT1atXL6SlpWHv3r0slokKCNHH3Xbo0AH+/v44d+4cAKBLly548OABli1bxpKDiD6ZRCJB3bp1sXHjRkRGRmLWrFn4+++/cf/+fbGjkYFQqVSIi4tDaGgolEolihQpgqJFi8LW1la0F7wZGRmQy+VwcXER5fsTkX64ubmhZcuWuHPnDm7fvi12HJO1YMECXLhwAbt27RI7ChHlEdFHdGTNcZZIJGjZsiWqV6+eq/P8/PPPeRmrwOKIDqLXV+61Wq3epyKQ4RAEAenp6UhKSgIAuLi4wM7OziCu5HErWSLTc/ToURQrVgwVKlQQO4rJ2rJlC8aOHYsHDx5wJB1RAWAQRUdevLDUaDR5kKbgY9FB9GEKhQL3799H1apVxY5C+UCr1SIpKQkpKSmws7ODi4sLLCwsxI71lqioKDg6OnKXFSIiPRIEAa1atYKHhwfWrVsndhwi+kSiXyoqXry4QVxBIyICgF27dqFXr15o2LAhvvvuO7Ro0YK7axQAarUaCQkJuukgvr6+Bvl/j1arhbW1NUsOIiI9k0gkWL58OSpUqIAePXqgSZMmYkciok8g+ogO0i+O6CD6MLVajb1792Lu3Lm4cuUKSpcujbFjx6JPnz6wtbUVOx7lkEKhQEJCAlQqFdzc3AxmegoRERmmpUuX4o8//sC9e/dgZ2cndhwiyiUWHSaGRQdR9l26dAnz5s3Dnj174OzsjOHDh2PkyJHw8vISOxp9hFwu1+1a4u7uDmtra7EjERGREdBqtQgICEDNmjUxb948seMQUS6x6DAxLDqIcu7FixdYtGgR1qxZA4VCgR49emDs2LGoXLmy2NHoDVnbwyYmJsLKygpubm6wtLQUO1a2JCQkwM7OjoUMEenI5XJYW1tz+qQIHj58iC+++AJnzpxBzZo1xY5DRLnAZ04ioo8oUaIE5s+fj4iICMycORPBwcGoUqUKmjRpgocPH4odz+RptVokJiYiNDQUCoUCxYoVg5eXl9GUHBkZGUhPT4eVlZXYUYjIQKhUKqxatQohISFiRzFJZcqUwaRJkzBw4EAolUqx4xBRLohadOTHXtWRkZG4dOlSnp+XiMjJyQnfffcdnj17hm3btiE1NRUODg5ixzJZGo0G8fHxCAsLg0QigY+PDwoVKmRU2wZrtVrExMTA29uba4cQkY6FhQW++OILnD17Fi9evBA7jkn6/vvvAQBz584VOQkR5YaoRUeXLl1QpUoV7N27F586gyY8PBxff/01SpYsiRMnTuRRQiKi/zI3N0fXrl1x+fJlFClSROw4JkelUiEmJgbh4eGwsrKCr68vXFxcjHJ4d0xMDAoVKgRzc9E3QSMiA1OvXj2UKFECe/bsQXp6uthxTI6lpSVWrlyJ6dOn4/nz52LHIaIcEvVVYY8ePXD37l106tQJRYoUwbhx43Djxo1slx7x8fEICgpCYGAgSpQogWXLlsHT0xMNGzbM3+BERB+RlJQEjUYjdowCRaFQIDIyEtHR0XBwcICvry8cHR2NdiRESkoKJBIJt5IloneSSqVo3749tFot9u3b98kXBSnn6tati169emHEiBH8+RMZGdEXI71+/Tq+++47nDt3Tvdi1c7ODl988QUqV66MQoUKwdXVFVZWVkhKSkJiYiKeP3+Oq1evIiwsDMDrBegcHR0xYcIEjB07lvOcP4CLkRLpR9euXXH79m1MmjQJPXr04BX7T6BQKBAfHw8ABWoHFZlMBgcHB6MciUJE+vPkyRNs2bIFTZs2RZ06dcSOY3KSkpJQpkwZLFq0CF27dhU7DhFlk+hFR5YrV65g+fLl2LlzJzIyMgDgvVfp3oxcuXJlDB06FL169eJVsWxg0UGkH1evXsWMGTNw4MABlChRAhMnTkSfPn1YxObAmwVHoUKF+LMjIpN1/PhxXLlyBQMGDOCUSRFs2bIF3333HR48eABnZ2ex4xBRNhhM0ZElNTUVISEhOHv2LK5cuYKoqCjEx8cjMzMTbm5uKFSoEMqVK4eAgAA0bNgQZcqUETuyUWHRQaRft27dwm+//YZdu3ahSJEi+P777zFo0CDY2NiIHc1gKZVKxMfHQ6vVolChQgVmBAcRUW5pNBqsW7cOcrkcQ4cOZfGrZ4IgoGnTpihdujSWLl0qdhwiygaDKzoof7HoIBLHgwcPMHPmTGzZsgXu7u4YN24cRowYAVtbW7GjGQyVSoX4+Hio1Wp4eHgUyIIjIyMDaWlpKFSokNhRiMjIJCUlYeXKlShVqhQ6dOhgtOsTGaunT5+iUqVKCA4ORq1atcSOQ0QfwYnBRER6ULZsWWzcuBGPHj1C69atMXHiRJQsWRLLly+HSqUSO56oVCoVoqOjER0dDRcXFxQvXrxAlhxZW8m6uLiIHYWIjJCLiwtatWqFe/fu4datW2LHMTklS5bEpEmTMHToUKjVarHjENFHsOggItKjzz//HKtXr8bDhw8RGBiIkSNHonPnzmLHEoVarUZMTAyioqLg5OSE4sWLF+gpPdxKlog+VYUKFfDFF1/gyJEjkMlkYscxOePHj4dCocDChQvFjkJEH8GpKyaGU1eIDMvdu3chl8tNahisWq1GQkICMjMz4e7uDjs7O7Ej5buUlBSkp6fDy8tL7ChEZORUKhUePnyIChUqcPqKCM6ePYuWLVvi3r178PHxETsOEb0Hiw4Tw6KDiMSi0WiQkJAAuVyuKzhM4UW6SqVCREQEfHx8uJUsEVEBMGDAALx69Qr79+83if/HiIwRX3ERERmozMxM/P3332LH+GQajQbx8fEIDw+HjY0NfHx8YG9vbzIvDgVBgLe3N0sOIqIC4vfff8fFixexb98+saMQ0XvwVRcRkYHatGkTqlWrhs6dO+Phw4dix8kxrVaLV69e4eXLl7CysoKPjw8cHBxMpuDIYmlpya0giYgKEHd3d/zxxx/45ptvkJ6eLnYcInoHFh1ERAaqX79+WLt2La5evYry5ctj4MCBePnypdixPkoQBCQnJyMsLAwWFhbw9fWFo6OjyRUcnBlKRFRw9enTB8WKFcOMGTPEjkJE78Cig4jIQJmbm6N///54/Pgx5s2bh4MHD6JUqVIYO3YsEhMTxY73Tunp6QgLC4NarYaPjw+cnJxMruAAXo9mCQ8PZ9lBRHqRmZmJmJgYsWOYFKlUiqVLl2LBggV49OiR2HGI6F9YdBARGTgrKyt88803eP78OX766ScEBQWhZMmSWLx4MVQqldjxAAAKhQLh4eFISUlB0aJF4e7ubtJrUsTExMDFxcUkSx4i0r+jR49iy5YtyMjIEDuKSalSpQoGDRqEUaNGsdgmMjCm+yqUiMjI2NvbY/LkyXj8+DE6duyIb775BpUqVcLRo0dFy6TRaBAdHY3Y2Fh4eHjAy8sL5ubmouUxBCkpKZBIJHBwcBA7ChGZiMDAQCiVShw7dkzsKCZn2rRpuH37Nnbv3i12FCJ6A4sOIiIjU7hwYaxevRp///03ChcujBYtWqB9+/Z6vZokCAISEhLw8uVLODg4oHjx4lxwE6+3kk1ISICnp6fYUYjIhDg5OaF58+a4c+cO7t+/L3Yck+Ls7Iw5c+Zg7NixSEtLEzsOEf0/iWCg46yePXuGHTt24M6dO0hMTPzg8GyJRIJTp07pMZ3xSklJgZOTE2QyGRwdHcWOQ0SfSBAE7N+/H+Hh4Rg1apRevl9aWhpevXoFZ2dnODs7c3rG/xMEAS9fvoSnpyesra3FjkNEJkYQBOzcuROhoaEYMWIE7O3txY5kMgRBQEBAAPz9/TFr1iyx4xARDLTomDp1KqZPnw6tVputK5QSiQQajUYPyYwfiw4iyq3MzEzExsbC2toa7u7uMDMzEzuSQREEAZmZmbCxsRE7ChGZqPT0dCxfvhxFihRBt27dWETr0Z07d1CrVi3cvHkTZcqUETsOkckzuInUmzdvxtSpUwEA3t7eaNasGby9vU1+zjcRkVhUKhXi4uIgCAK8vLxgaWkpdiSDJJFIWHIQkajs7OzQunVrbNu2Dbdu3ULVqlXFjmQyKlWqhKFDh2LUqFE4fvw4SyYikRlce7B06VIAQJs2bbBjxw6+oCYi+gTXrl3Djz/+iLlz56JixYo5uq9Wq0VCQgLS09Ph4eEBW1vbfEpp3LJGHvJFLREZAj8/P1SpUgXHjh2Dr68vXFxcxI5kMqZOnQo/Pz/s2rULnTt3FjsOkUkzuMVI7927B4lEgmXLlrHkICL6RJmZmQgNDUWVKlUwfPhwxMfHf/Q+giAgOTkZYWFhsLS0hI+PD0uOD4iOjuaWjkRkUL766ivY2Nhg//793PZUj5ycnPDHH39wYVIiA2BwRYdEIoGjoyO8vb3FjkJEZPTq16+Pe/fuYe7cudi2bRv8/PywcuVKaLXadx6fmZmJly9fQqVSwcfHB05OThyp8AFZW8myCCIiQ2JlZYV27dohLCwMly9fFjuOSenZsyc+++wz/Prrr2JHITJpBld0lClTBnK5HAqFQuwoREQFgqWlJcaMGYPHjx+jXbt2GDZsGOrWrYubN2/qjtFqtYiNjUVcXBy8vLxQqFAhSKUG91+EQeFWskRkyHx9fVG7dm2cOnUKiYmJYscxGRKJBEuXLsWiRYvw6NEjseMQmSyDexU7aNAgqFQq7Ny5U+woREQFSqFChbB27VqcO3cOaWlpqF69OsaMGYPY2FiEhYXBxsYGxYsX57TBbBAEAVFRUfDy8mIhREQGKzAwEK1ateI6HXpWsWJFDBo0CN9++63YUYhMlkFuL9uuXTucPXsW+/btQ0BAgNhxChRuL0tEwOvRCMuXL4dSqURKSgoqVqyITp06cZpKNr169QoSiQRubm5iRyEiIgOUmJiIUqVK4c8//0SLFi3EjkNkcgyu6Jg2bRo0Gg2WLFmC5ORk+Pv7o1atWnBwcPjg/X7++Wc9JTRuLDqISBAEJCYmIjU1FYIg4Ntvv8W+ffswfvx4/P7772LHMwpKpRIWFhYshoiI6L2WLVuGhQsX4u7duxwtSaRnBld0SKVS3QvHnGzZp9Fo8jVXQcGig8i0yeVyxMbGwsnJCS4uLrrn14MHD8LHxweVKlUSOSEREVHBoFar8cUXX6Bv37747rvvxI5DZFIMruho2LBhrq6QBQcH50OagodFB5Fp0mg0iI2NhVarReHChWFubi52JKOk0WhgZmYmdgwiIjISwcHBaNeuHR4/fszFq4n0yOCKDspfLDqITIsgCJDJZEhKSoKHhwfs7OzEjmS0UlJSIJfLUbhwYbGjEBHlWtbaTO7u7mJHMRmdOnWCs7Mz1qxZI3YUIpPBpeKJiAoohUKBly9fQqVSwcfHJ9clx2+//YYlS5aY9BTBrK1kPTw8xI5CRPRJDh06hK1bt0KlUokdxWTMmTMHW7duxY0bN8SOQmQyWHQQERUwWq0WcXFxiI2NhZeXFwoVKpTrLVAFQUB0dDRGjRqFgIAAPHr0KI/TGj5uJUtEBUlAQABkMhlCQkLEjmIySpQogW+//RajR48GB9MT6YdBT11RKpU4ceIErl+/jri4OEgkEhQqVAg1atRA48aNuXpxLnDqClHBlp6ejri4OLi6usLR0THPdgU5f/48BgwYgJcvX2LatGn49ttvTWadD24lS0QFzblz5xAcHIzBgwfDy8tL7DgmIT09HX5+fvj999/Ro0cPseMQFXgGW3SsWrUKP/30E169evXOr7u7u2P69OkYPHiwnpMZNxYdRAWTVqt9a7HR/FgwUy6X4+eff8b8+fNRrVo1rFu3DuXLl8/z72NIMjMzERcXh2LFinErWSIqMDQaDVatWgUzMzMMGjSIo9X0ZMuWLfj+++/x6NEjrplFlM8M8lnthx9+wPDhwxEfHw9BEODt7Y2aNWuiZs2a8Pb2hiAIiI+Px7BhwzBhwgSx4xIRiSo9PR1hYWGwt7dHkSJF8m1XEFtbW/zxxx+4cOECUlNT8cUXX2DGjBkFep63lZUVihQpwpKDiAoUMzMztGnTBjExMbh06ZLYcUxG9+7d4ePjg5kzZ4odhajAM7gRHSEhIWjUqBEAoGPHjvj1119RpkyZt4559OgRfvrpJ+zatQsSiQRnzpxB/fr1xYhrdDiig6jg0McojvfJzMzE1KlTMWfOHFSuXBnr1q1DpUqV9Pb9iYjo0/3111+4fv06hg8fDldXV7HjmIQbN26gfv36uH//Pnx9fcWOQ1RgGdyIjqVLlwIABg4ciJ07d/6n5AAAPz8/7NixAwMHDoQgCFiyZIm+YxIRiUoul+tlFMf7WFtbY+bMmbh8+TKUSiWqVauGKVOmQKlU6jVHflGpVFwwjogKvEaNGsHe3h6HDh3ic56eVKtWDV26dMGkSZPEjkJUoBnciI6iRYsiJiYGUVFRH93GLzY2Ft7e3vDy8kJERISeEho3juggMm5ZO6qo1Wp4eXnpveB4F6VSiRkzZuDQoUO4dOmS0S8UrVKpEBERAR8fH85bJ6IC79mzZ9i0aRPatGmDqlWrih3HJERGRqJ06dI4ffo0atWqJXYcogLJ4IoOa2tr2NnZISEhIVvHu7m5IT09HZmZmfmcrGBg0UFkvORyOWJjY+Hm5maQ/35VKhUsLCzEjvFJBEHAy5cv4enpCWtra7HjEBHpxb59+/Do0SOMHDkS9vb2YscxCT///DNOnTqF8+fPcx0oonxgcJeqHBwckJqamq3iIiMjA6mpqXxCJqICLWstjsTERBQrVswgSw4ARl9yAEBCQgLs7e1ZchCRSWnatCmkUimOHj0qdhST8f333+P58+fYvXu32FGICiSDKzoqVaoEjUaDtWvXfvTYtWvXQq1Wo3LlynpIRkSkfxkZGQgLC4O1tTWKFi0Kc3NzsSPlmEajMYqdWTIyMiCXy7kgH732/feARPK/jzNnxE5ElG9sbW3RokULFClShGt16Im9vT2mT5+OH374AQqFQuw4RAWOwRUdPXv2hCAI+O677xAUFPTe49asWYPvvvsOEokEvXv31mNCIqL8JwgC4uLi8OrVKxQrVgxOTk5iR8q1WbNmwd/fH48fPxY7ynsJgqBb94lDiAm3bwPz54udgkivypcvj7p16/I5UI/69esHe3t7bqxAlA8Mbo0OrVaLL7/8EiEhIZBIJChatCgaNWqEIkWKQCKRIDw8HMHBwYiMjIQgCGjYsCFOnTrFJ+Vs4hodRIYvMzMT0dHRcHV1NeqCI8u1a9fQs2dPREZGYsGCBRg0aJBBPmdrtVouPkqAVgvUrg1cuwZ4eABxAn/WkQABAABJREFUca9vDw4GGjYUNRoRFTwnTpxAly5d8PTpU7i5uYkdh6jAMLiiA3j9ZnzAgAHYs2cPAPznBXFW5I4dOyIoKIhv2HOARQeR4RIEAfHx8cjMzIS3t7dRTlN5n/T0dIwdOxarV69G27ZtsWbNGri7u4sdi+i/FiwAxo4FypQB2rcHZs58fTuLDiLKJy1btkTJkiWxcOFCsaMQFRgGWXRkuXbtGrZt24br168j7v+vqHh4eKB69ero1q0batSoIXJC48Oig8gwKZVKREVFwdnZGU5OTgY54iEv7Nu3D4MGDYKFhQXWr1+PZs2aiZpHrVYDQIEqlegThIcD5coBaWmvi40zZ4CpU19/jUUHEeWT+/fvo1q1arh9+zZKly4tdhyiAsGgiw7Keyw6iAxPcnIykpOT4e3tDUtLS7Hj5Lvo6Gj0798ff/31F7755hvMmjVLlF1OuJUs/Ufr1sChQ0DfvsD69cCUKSw6yKQJglBgi3dDM3z4cERHR2Pfvn1iRyEqEDgZmYhIJFqtFpGRkVAoFPDx8TGJkgMAvLy8cOTIESxcuBArVqxAjRo1cPfuXb3n4Fay9JYdO16XHK6uwJw5YqchEl1SUhJWrFiB2NhYsaOYhKlTp+L06dMICQkROwpRgcCig4hIBFnbxjo5OcHT09PkrphJpVKMHj0a165dg0QiQfXq1TF//nxotVq9fP/MzExuJUv/k5wMfPPN689nzwYKFRI1DpEhcHBwgCAIOHDggN6em02Zh4cHJk2ahG+//ZY/b6I8IOrUlY0bNwIAnJyc0LZt27duy6k+ffrkWa6CjFNXiMQlCAISEhIgl8sL3IKjuZWZmYlJkybh2LFjuH79OmxtbfP1+2m1WoSFhaFYsWL8+dNrQ4YAq1cDdesC588DWcUjp66QiQsPD8fatWvRtGlT1KlTR+w4BV5GRgb8/Pwwe/ZsdO/eXew4REZN1KJDKpVCIpHAz88P9+/ff+u2nJBIJLoF5ejDWHQQiUetViMqKgp2dnZwdXU1uVEcHyOXy/O95ACA+Ph4WFtbw8HBId+/FxmB8+eBgADAzAz4+2+gYsX/fY1FBxGOHj2KmzdvYvjw4XBxcRE7ToG3fv16TJs2DQ8fPjSZKa1E+UHUS1nFixeHRCKBt7f3f24jIipI0tLSEB8fj8KFC8PGxkbsOAZJHyUHALi7u/P/GXpNqXw9mkMQXm8p+2bJQUQAgMDAQDx8+BCHDx9Gz549+fyZz3r37o0//vgDK1euxKhRo8SOQ2S0RC06QkNDs3UbEZGxEgQBcXFxUKvV8PHxgVTKpZHExhfppPPbb8CDB0Dx4sAvv4idhsggWVlZoVWrVtiyZQvu3r2LSpUqiR2pQDMzM8OsWbPQv39/9O3blyOwiXKJr7iJiPKJUqlEWFgYrKysUKRIEZYcubRy5cpP3m5PEASkp6fnTSAqGB4+BGbOfP354sWAnZ24eYgMWKlSpVCuXDmcOHECCoVC7DgFXsuWLVG2bFn88ccfYkchMloG96r75cuXiIyMzPbxUVFRePnyZT4mIiLKuZSUFERGRsLLywvOzs5ixzFagiAgODgY7du3x3fffQeVSpWr8yQkJCAzMzOP05FRmz//9dSVzz4D5HJg27b/fty797/jT5/+3+0szcgENW3aFAqFAmfOnBE7SoEnkUgwe/ZszJs3DzExMWLHITJKoi5G+i5SqRReXl7ZLjtKlCiB8PBwLkaaTVyMlCh/abVaxMTEQCKRwNPTk6M48oAgCFi4cCHGjx+PGjVqYPv27ShWrFi275+ZmYm4uDgUK1aM01bof/r1AzZsyN19X7wAfH3zMg3R/7F332FOldkDx7+ZmUzvk+mVoqAgHRGwICKiKGJBFFRQ1LX3n7iri7CLXQF7V8AGiAooKF26dEQRpMj03ksm/f7+yCYy0qZk5iaT83meeQjJLSeQubn33Pc9xyNs2LCBtWvXcvfddxMXF6d2OO3eddddR3x8PG+//bbaoQjhcdzyDLypuRc3y9UIIbyU0WgkKyuL0NBQEhMTJcnhIhqNhocffpgNGzaQm5tL7969+eGHHxq1rs1mo6CggKSkJElyCCFECw0cOJCoqCh++OEHOf9uA8899xyffPIJBw8eVDsUITyOx5+FGwwG/PxUrakqhBBUVVVRUFBASkqKjJZqJeeddx67d+9mwIABXHHFFTz11FOnHc1XWFiITqeT7wlxvNmz7d1WTvVzbIHStWv/el5Gcwgv5efnx+WXX05OTg7FxcVqh9PudenShVtvvZWnn35a7VCE8DgenejIz8+npKSEmJgYtUMRQngpRVEoLCxEr9eTnp6OVqtVO6R2LSYmhu+++47nn3+eF154gWHDhlFQUHDCZU0mExqNhrCwsDaOUggh2q/OnTvz0EMPER8fr3YoXuGZZ55h6dKlbNu2Te1QhPAoqt/iWr9+/XFFjWpra/nPf/5z0nUURaGyspJly5ahKAoDBgxo5SiFEOJ4FouFvLw8IiIipOBoG/Lx8eHJJ59k4MCB3HTTTfTq1Ysvv/ySoUOHNljO39+fxMRElaIUQoj2SxLIbScpKYmHH36YJ554grVr18o0TCEaSfVEx9q1a5k2bVqDX9q6ujqmTZt22nUVRSEwMJB//vOfrRmiEEIcp76+nsLCQhISEggKClI7HK900UUXsXv3bsaPH8+ll17K66+/zn333ad2WEIIIYRLPfHEE3Ts2JEff/yRyy+/XO1whPAIqic6MjIyuOiii5x/X7duHVqtloEDB550HR8fH8LDw+nevTsTJkygc+fObRGqEEIAUFlZSVVVFampqVL7QWXx8fEsX76c6dOn069fPwBqamoICQmRYrBCCCHahYiICJ5++mmefPJJLrvsMvl+E6IR3LK9bEJCAvn5+WqH0i5Je1khms9Rj8PROlaGj7ofaSUrhBCiPTIYDJxxxhm88sorjB07Vu1whHB7bncr8pNPPpFh4EIIt2M2m8nLyyMqKoqIiAi1wxEn4GglK0kO0Wjl5fZuKhUVEBQE3btDz55qRyWExykoKCAmJgZ/f3+1Q2m3AgMD+fe//82UKVO47rrrZESpEKfhdiM6ROuSER1CNJ1er6eoqIjExEQCAwPVDkecRH5+PmFhYVIkT5zeL7/ArFkwbx4YDA1fGzAA7r0Xxo8HX19VwhPCkxgMBmbMmEH//v259NJL1Q6nXTObzZx11lk89dRT3HbbbWqHI4RbkwleQghxEoqiUF5eTmlpKWlpaZLkcGM1NTUnbCW7d+9ebrnlFmpra1WKTLidL76A/v1hzRqYMgVycsBqhdpaWLQIIiJgwgS47jqor1c7WiHcXmBgIIMHD+bnn3+mtLRU7XDaNa1Wy9SpU5k2bRpGo1HtcIRwa247osNoNPL111+zceNGcnNzqaur42ShajQaVq9e3cYReiYZ0SFE4zimQWi1WmJjY2UqhBtTFIWCggISEhKOK9C2fPlyxowZQ0ZGBosWLaJjx44qRSncwuLFcM019kTG+++DVnvi5ZYuhTFjYMQIWLgQpPCfEKdksVh4++23iYqK4uabb5bvzFZktVrp0aMH9957r3QaE+IU3DLRsXnzZsaOHUt+fj6KojgPlo5Qjz14Ol63Wq2qxOppJNEhxOmZTCby8/OJiYmRaRDtwO+//87VV19NeXk5CxYs4JJLLlE7JKEGoxHS0mDgQPjmm9MnL5Ysgauvtic6rruubWIUwoMdPHiQL7/8kjFjxnD22WerHU679s0333Dfffdx5MgRgoOD1Q5HCLfkdrcocnJyGDlyJHl5eZxzzjk88cQTKIpCSEgITz/9NHfccQcdOnRAURRiYmJ4+umnmTJlitphCyHaidraWvLy8khMTJQkRztx9tlns23bNvr168dll13GrFmzTjpCULSh6mp7jYzHHoOLLoLOne3TRvz9IS4OhgyBl16CsjLX7O+bb6C4GJ5/vnEjNEaNgkGD4J13XLN/Idq5M888kzPPPJPly5djMpnUDqddu+aaa0hOTuatt95SOxQh3Jbbjeh45JFHeO2117j88sv5/vvv0Wg0J2w5+8477/Dggw9yxRVXsHjxYhUj9iwyokOIE3PU49Dr9SQlJeErRQjdnsFgwGazNfpultVq5Z///Ccvv/wyEyZM4N1335W6K2patQoaU7hQp4PPPoPLLmvZ/oYOtf+5Zk3j1/n8c7j5Zjh0yJ6IEUKcUkVFBW+//TbnnXeejJ5rZcuXL2fcuHEcPXpUzumFOAG3G9GxYsUKNBoN06ZNO+X8vnvuuYdp06bx/fff88EHH7RhhEKI9sZR48FqtZKSkiJJDg/gqKHSlFaGvr6+vPTSS3z22WfMnz+fiy66iLy8vFaMUpxWairceiu89pp9xMWWLbBpE8yfb6+R4esLpaX20RV797ZsXwcO2EeONIVj+UOHWrZvIbxEVFQUgwcPZvPmzVKYtJUNHz6cbt26MXPmTLVDEcItud2IjrCwMAwGA0aj0VlUzsfHh+jo6OMOmFVVVcTExDBgwAA2bdqkRrgeR0Z0CNGQ1WolNzeXyMhIIiIi1A5HNFJBQQGhoaHNnl60c+dORo8ejcVi4ZtvvmHgwIEujlCcltV6+vatixbZi4cCXHstfP118/cXEwP/93/w5JONX6e0FGJj4dtvYfTo5u9bCC9iNpt5++23iYmJYfz48VKYtBVt2LCBK6+8kj///JOYmBi1wxHCrbjdiA5FUQgLC2tQOT8kJITq6urj5lRHREQQERHBgQMH2jpMIUQ7YDKZyM7OJjY2VpIcHqSmpgagRTVU+vbty44dO+jcuTNDhgzh888/d1V4orEaM3Jq9Gjo2tX+eP36lu1Pp4Ps7Kat41g+Orpl+xbCi2i1WkaMGMGRI0fkHL2VXXDBBQwcOJCXXnpJ7VCEcDtul+hITk6mqqqqQW/olJQUrFYr+/fvb7CsXq+nsrISvV7f1mEKITycXq8nLy+P5ORkqVjuQSwWC6WlpcTHx7d4W/Hx8axevZpx48aRmZnZ8uBE6wgJsf9pMLRsO1dfbS9+2pRzhk8+sRdGPe+8lu1bCC/TpUsXzjjjDJYvX47ZbFY7nHZt+vTpvPnmmxQUFKgdihBuxe0SHWeccQZAg5POAQMGAPDuu+82WHbGjBkoikJGRkZbhSeEaAeqqqooKSkhLS2tSTUehPpqa2tJTExsMOqvJfz9/fn444/517/+5ZLtCRfbvx/27LE/dozsaK5//AMqK+2FTRujshLmzIE777R3ghFCNMmIESOIjIykrq5O7VDatX79+jF8+HBefPFFtUMRwq24XaLj8ssvR1EUvvvuO+dzd9xxB4qi8NZbb3HFFVfw1FNPceWVV/LMM8+g0Wi46aabVIxYCOEpFEWhpKSE2tpa0tLSpOioB4qMjHR5pxSNRiNzyN2JXm8v/jljBlx8sb2WB8BDD7Vsu506wY03wqOPwrZtp4/huuvs02vuuadl+xXCS0VHRzNx4kQiIyPVDqXde+aZZ3j//fdlVIcQx3C7YqQ5OTnceuutnHPOObz++uvO5ydPnszLL78M2E9KHWFfeOGFrFixQu7KNpIUIxXeSlEU8vPz8ff3R6fTyYWtEO5k9my47baTv/744/DSS9DS39u6Ohg+3D5K5LnnYOJEOLY+j6LA6tXwr3/Bvn2wbFnTO7UIIYQKrr32WtLS0pg1a5baoQjhFtwu0XEqq1atYt68eeTk5BAREcGIESO49dZb8fPzUzs0jyGJDuGNpLOKZ7PZbJSXl6PT6dp0v/X19Rw+fJhzzjmnTffrlU6W6OjVC959F/43hdUl9Hq47z749FMIDLTX7khKgvp6WLkSDh6Ebt3sMfXr57r9CiFEK9qzZw+DBg3iyJEjJCYmqh2OEKrzqESHaDlJdAhvYzKZyMvLIz4+XoqOeqiWtpJtrmeeeYZXXnmFL7/8klGjRrXpvr1OZSXk5tof19fDkSOwYIG9rWunTjBrFlx5pWv3mZ8PH34IS5dCeTkEB9sTHHffDRdc0PLRI0II0cZkVIcQf5FEh5eRRIfwJnq9nqKiIpKTk2V6m4eqqalxFiBta3q9nltuuYVvv/2WWbNm8eCDD7Z5DF7v009hwgR70uGjj+xTTYQQQpyQjOoQ4i9uV4zUHSxbtoxhw4YRHR1NSEgIffr04Y033sBmszVpO44Cd6f7mTNnToP1Zs+efdp1fvzxR1e+ZSHaHems4vlc2Uq2OYKDg/nqq6949NFHeeihh3j44YexOgpjirZxyy0wZgzYbHD//VBRoXZEQohmMplMbNmyRY6jrahXr16MGDHCozuwyD144SqqFreYO3cuABEREVx99dUNnmuqW2+91SUxvfDCC/zzn/8EoGPHjoSGhvLLL7/w4IMPsmrVKr799ttGtzUcPHjwSV+rqKjg999/B+C888474TJxcXHOdrt/FxUV1agYhPA2iqJQWlqK2WwmLS1Nio56KEfxWFe2km0OHx8fXnnlFTp27MgDDzxAZmYmn3/+OSEhIarF5HWuvto+jaWuDn74AcaNUzsiIUQzlJeXs2LFCvz8/Ojfv7/a4bRbU6ZMYdCgQUyePNmjRnWYTCb8/f3lvE24jKpTV3x8fNBoNHTp0sV50e94rik0Gg0Wi6XF8WzZsoXBgwej0Wj47LPPnG1rf/nlFy677DKKiop4+eWXefzxx1u8r6effppnn32Wc889l61btzZ4bfbs2dx2221MmDCB2bNnt3hfx5KpK6I9c1wcBwQEEBMTI1+WHsxsNlNbW+tWSd2lS5cyduxYzjrrLL777jsSEhLUDsk7rFxp75QC9k4p/7sZIYTwPIsXL+bgwYM88MADLm8VLv5y7bXXkpqaymuvvaZ2KKdks9n45JNPWL58OaGhoSQlJXH11Vc7E2E2m03Vmx3Cs6k6osNxtzUpKem459Qwffp0FEXhzjvvdCY5AHr27MmMGTMYP348L7zwAg899BBarbbZ+1EUhc8//xyAW265pcVxCyHsX4Z5eXmEhYURGRmpdjiihbRarVslOQBGjhzJ+vXrufLKKznvvPNYsWIFZ555ptphtX95eX89Dg1VLw4hRItdfPHF/Pbbb2zcuJFhw4apHU679cwzzzBw4EAmT57c4DrLHSiKgs1mY968efzrX/8iJycHAF9fX6xWK5988gmTJk3iP//5jyQ5RIuo+unJzMzk6NGjrFq16rjnmvrTUtXV1c44Jk2adNzrY8aMITw8nLKyMtauXduifW3YsIHMzEy0Wi033nhji7YlhLC3j83JySEyMlKSHKJV9enTh61btxIcHMz555/Prl271A6p/fvqq78eS6tfITxaeHg4gwYN4ueff6ayslLtcNqtnj17cvnll7tlrQ6NRsO2bducSY577rmHDRs28Oeff/L4449js9mYPn06M2bMoL6+HpC6HaJ5JE32P7t378ZkMhEYGEifPn2Oe12r1TqHUf19qklTffbZZwCMGDECnU530uV++eUXxo0bx9ChQxk9ejTTpk3jyJEjLdq3EB7PZLJ3XxgxAhITUQIC0ISHk3rppYQ99BD8/LPaEYoWKC4udvtCdampqaxfv56MjAyGDBnCz/KZa57Zs8FgOPUyM2fCsmX2xxkZcP75rR2VEKKVDR48mMDAQNasWaN2KO3alClT+OCDD8jPz1c7lAbMZjMPPPAAOTk5vP3227z11lsMHjyY1NRUXnrpJZ5//nkAXn31Vb76X6JbpiKL5pBEx/8cOnQIsE+d8fM78Yyejh07Nli2OYxGo/OX9nTTVvbs2cOXX37J2rVrWbx4MVOnTqVLly48++yzzd6/EB4tJwf69YM77oDly6GwEI3JhI9ej8+hQ/DJJzBwIDz6KEj23+PU1NRgsVjw9fVVO5TT0ul0rF69mhtvvNH53SCaaOpUSE6Gu+6CuXNh0yb45RfYuBHeecee1Hj0Ufuy/v7wwQdwku9nIYTn8Pf35+KLL+bXX38l79ipacKl3HVUx8GDB8nNzSUhIYHz/5e8PrbW4sSJE+nVqxcFBQV8+umnzpGTMqpDNJXbJTrOPPNMpk+fTmZmZpvut+J/LetONSfc8VpFC9rbfffdd1RWVhIREcFVV111wmUiIyN54IEH2LRpE0VFRRgMBnbv3s0tt9yC1Wrl6aef5s0332x2DEJ4JIsFRo6EX38FwHbOOZS8/DLm9ethxQqYMgUcnTBmzoRXXlExWNFUjlaynlTgMywsjPfff5+4uDi1Q/Fc5eX2BMaECfbERq9ecMEFcO+99sQHQEoKfP89yHx+IdqN3r17ExcXx8qVK+UCthX9+9//5oMPPqCoqEjtUJz/z9XV1RQXF2M2m+nUqROA8yazI+Fx8803A7Br1y4WLFgAyKgO0XRul+g4fPgwzzzzDJ06dWLIkCF89NFHVFdXt/p+Df8bPuvv73/SZQICAgCc88WawzFtZcyYMSetNj169Ghef/11Bg0aRFxcHAEBAfTq1Yu5c+fy8MMPA/auLTU1Nc2OQwiPs3ixM8lhHTCArG++IfKhh9BecAFceilMmwbr1oGjUPDzz9uTI8LtuUsrWdHGVq+Gd9+FsWOhRw+Ij7eP2AgNhU6d4Lrr7KO0/vjD/jsuhGg3fHx8uPTSS8nKyuKPP/5QO5x2q1evXlx88cXMnDlT7VCciYro6GjS0tIoKytj9erVAM4pq44RncnJyYD95vKqVavYt28fIKM6RNO43RnlU089RUZGBoqisH79eu666y4SEhK46aabWLZsGTabrVX260g6mEymky5jNBoBCAoKatY+ysrKWPa/uca33nprs7Yxbdo0AgICqKqqatHcxurq6ib/ON6/EKpw3N0FSu+4g7QOHY7vftS3L1x5pf1xRQUcONCGAYrmKi8vJzg4WFoNeptOneAf/4B58+xTVgoLwWyGmho4fBgWLoSJEyE4WO1I2xVHxwOLxYLZbMZoNGIwGNDr9ej1eurr650/BoMBo9GIyWTCbDZjsViw2WxysSFcolOnTnTs2JGVK1e6fW0mT/b000/z9ttvt2hEemM09hotICCA3r17AzBnzhzgr44rjmTI+vXr0Wg0dO7cmQMHDrBhwwZARnWIpnG7ya7//e9/+e9//8umTZuYO3cuX331FZWVlSxYsIAFCxYQGxvLuHHjuOWWW5y/JK7QmGkpjZnecirz58/HbDaTkZHhnJPWVOHh4XTr1o1du3Zx+PDhZm0D7MX0muqZZ55h6tSpzd6nEC1yTBIydsAAfE5Wx+F/wyABkOScR/Dx8Wl33XJ27NhB7969PaLeiHBfxyYlLBYLVqvV+afjNcefjseNSUJoNBp8fHzw8fFxPj72AsKxDcf2/v7T1JtOPj4++Pr64uvri5+f3wn/lNFc3kej0TB8+HDeffddduzYwYABA9QOqV0aOHAg/fr144033mDKlCku2252djY//vgjQUFBpKenc+GFFzZqvYyMDIYNG8b69ev5+uuvmTNnDtdffz0h/5t+/PXXX/PFF19w/vnn06lTJ2bPns2BAwfQ6/UES+JbNIHbJTocBg8ezODBg3njjTf4/vvvmTt3Lj/88APFxcW89tprvPbaa5x11llMmDCB8ePHt7hH9BlnnAHYf2ktFssJC5L++eefDZZtKse0lZtvvrlFGUnHXWxLC4bl5+TkEB4e3qR1HFN3hFCDPiUFx9ebT2bmydtMOjoTaTTQzN9V0baamzx2V0VFRVx44YVcddVVfPrpp6ecEum1jh6F996DL7+0j+Tw8bF3VbntNrj9djhFR7L24NjkhWOkhOPPv9/Z9vHxwc/Pr8FPQEDASZMVjh934UiO/D1RYzAYsFqtzuf+nqBxvG9HMuTvP5IYaR/i4+MZMGCAW31m26OnnnqKG264gUceeYSwsLAWbevo0aNMnz6dTz75pMHz48ePZ+LEiVxyySXYbLYT/o4qioJGo2HUqFEcOHCAt956i0ceeYQPP/yQoUOHsnHjRtauXUtUVBRz5sxh3bp1zJ49m8OHDxMcHHzS7QpxIhrFg8YflpeXM2/ePD799FNni1eNRoOvr+8pp5w0RnV1NTqdDrPZzNatWzn33HMbvG42m9HpdFRXV7N8+XKGDx/epO0fOXKEzp07A3DgwAG6dOnSrDitVis6nY7Kyko+++wzxo8f36T1q6uriYiIoKqqqsmJDiHUUlJSgq2oiLjBg9FUV8PgwfZ6HH+/W757N5x3nn30x003wRdfqBOw8HrffvstN954I0OGDOHrr78mNDRU7ZDcg8kEDzxgL0AaEQE33wxduoDNBjt3wvz59o5JU6fCk0/aE5YeRlEUzGYzJpMJo9F4wgSGRqPBz88PrVbrvHB3PPb19fX6i75jR7Icmwxx/FsemxjRaDT4+/vj7+9PQEAA/v7++Pn5ef2/oRDHUhSFgQMHct111/F///d/zd5ORUUFt912G0uWLKF79+5cffXVaLVa3n//ffLz84mMjOSnn37inHPOOe3vYF1dHRMnTmT58uXU1tY6n+/VqxfTpk3jqquu4uDBg3Tt2pX4+HgOHTok36WiaRQP9fvvvyv9+/dXNBqN4uPj45JtXn755Qqg3HXXXce99vnnnyuAEhMToxiNxiZv+5lnnlEA5dxzz21RjO+9954CKL6+vkpubm6T16+qqlIApaqqqkVxCNEWbDabUlBQoBQVFSk2m01RvvlGUYKCFAUUpXdvRZkzR1G2bFGUlSsVZepURQkLs7/Wq5eiFBSoHb44herqaqWiokLtMFrVmjVrlNDQUOW8885TysrK1A5HfWazolx1laJotYry+uuKUld3/DKlpYryxBP23+PHH2/7GJvAYrEodXV1Snl5uVJYWKhkZWUpR48eVTIzM5W8vDylpKREqa6uVurr6xWz2Ww/hgmXs1qtSn19vVJVVaUUFxcrubm5SmZmppKZmalkZ2crhYWFSnl5uVJXV6eYzWa1wxVCNUuWLFHi4+MVvV7f5HUdx6+3335b0Wg0yrXXXqtUV1c7Xz9w4IBy+eWXKxqNRrniiiuUbdu2NVjv7ywWi/Pxtm3blK+//lp5+eWXlY0bNzZYbteuXYpOp1MGDx6s1NTUyHFUNInHJTq2bt2q3H///UpsbKzi4+Pj0kTHxo0bndv74osvnM/v2bNHiY+PVwDlxRdfbLDOzJkzlfT0dGXs2LGn3Hbnzp0VQHnjjTdOuVxVVZVy4403Klu3bm3wvMViUd5//30lMDDwpMmYxpBEh/AUNptNyc3NVUpLSxu+sG+fokyapCgajf1i6Nif+HhFmTFDUWpr1QlaNIrZbFb+/PNPxWq1qh1Kq9u+fbui0+mUbt26NSs53a5MmaIovr6K8sMPp1/2tdfsv9Pz57d+XKdgtVoVg8Fw0ovooqIipaKiQtHr9Q1O3IV7sFgsil6vVyorK5WioiIlJyfH+f+Xk5OjFBUVKZWVlfL/J7yCzWZTevToobz55pvNXv/SSy9VNBqNsnDhQkVRFMVgMDi/y3/77TelU6dOilarVe644w5nQqU5yYm6/yXCFy5cqGg0GmXYsGHNill4N49IdGRmZirTp09XunTpovj4+DgTHAEBAcp1112nLF682GX7mj59ugIogNKxY0elR48eio+PjwIoI0eOPO6L0DFS46KLLjrpNjdv3qwAilarVUpKSk65/4qKCuf+IyMjld69eyv9+/dXIiMjnc9ffvnlSn19fbPenyQ6hCewWq1Kdnb28Xf8TSZFeeopRYmLOz7J4fjp319Rvv9elbjF6dlsNiUrK6vZxzBPtH//fiU1NVXp2LGjkpWVpXY46tDrFSU6WlEeeaTx61x2maK0cBRkY1mtVqWurk4pKytT8vPznRfDmZmZSn5+vlJWVqbU1tYqJpNJ7ii2E2azucGInOzsbOf/eW5urlJcXKxUV1fL/7loV+bPn6+kpaUpJpOpyetWVVUpAwcOVMLDw5UVK1accJkZM2Yo0dHRSnx8vDMZ0pibGo5lDAZDg9+3q6++WtFoNMp8lZPewjO5bTWX6upqPvzwQy666CI6derElClTOHjwIIqicN555/HOO+9QWFjIwoULGTVqlMv2+9RTT/Hdd98xdOhQysrKOHz4MOeccw6zZs1i8eLFzaqg/+mnnwIwYsQIdKcpsBYSEsJLL73E6NGj0el0HDlyhD179hAYGMjIkSOZP38+S5culTaMot2y2Wzk5uYSGRnZsBNHXR0MGwbPPgtlZfDEE7B/v72zSlUVrFgB558P27fDVVfBa6+p9h7EyXljK9muXbuyfv16bDYbF110EZmZmWqH1PYWLIDycrj33savc999sG0b7Njh0lBsNhv19fWUl5eTm5tLZmYmubm51NTU4OfnR3R0NGlpaaSnp5Oenk5iYiLR0dGEhISg1Wql9kM74efnR3BwMFFRUcTHx5Oamkp6ejppaWnExcURHByMyWSiuLiYrKwssrKyKCwspLq6ukXF4IVQ03XXXUdQUJCzQUJTWK1W8vLyqKmpcdbKUP5XK8fRiWn06NFcdNFFFBcX8+mnnza6eKhjGUeh5YMHD3LHHXewZMkSrr76aq6++mppay2azO2KkX7//fd8+umnfPfddxiNRueHukOHDtx8883ceuutdDq2faRoEilGKtyZI8kRFRV1fFXwxx+HV1+1P549GyZMOH4DFgsMHw5r19q7OOzeDT16tHrconEMBgNFRUWkpaV55cVidnY2F198MRaLhbVr19KxY0e1Q2o748fDn3/Cli2NX8dqtXdfefxxeOqpZu1WURRMJhN6vZ76+npMJhMajYbAwECCgoIICgpydjIT4lQURcFgMFBfX49er8diseDr60twcDBBQUEEBgZKNwgXOXr0KGA/9xeuN3v2bJ577jn279/f5Bu4o0ePZsmSJUydOpUpU6ZgtVqP28ZHH33Ek08+iVar5bPPPmPo0KENEh7K/zqvHKu6uppffvmFvXv3snHjRtatW0dhYSF9+vRh5syZXHDBBS1708Irud0RedSoUSxcuBCDwUB4eDh33HEH69ev58iRI0ybNk2SHEK0UzabjZycnBMnORQFHG3MzjzzxEkOAD8/+O9/HRv8ax3hFmw2G0lJSV6Z5ABIS0tj3bp1+Pv7c9FFF3H48GG1Q2o7lZUQH9+0dXx97YmOyspGLe5IalRVVVFYWOi8C19eXo5GoyEmJsY5SiM+Pp7w8HBJcohG02g0BAUFER0dTUpKChkZGSQmJuLv709NTQ05OTlkZmZSUFBAVVUVJpNJ7kA308aNG/nxxx+dowSEa40fPx6TycRXX33V5HUvvvhiABYtWoTZbG6Q5HB83gcPHkz37t0pLi5m7dq1gH3EhvK/VtPHngM41vH19WX16tU88MADzJ8/H4ApU6awZs0aSXKIZvNTO4C/8/X1ZcSIEdx6662MGjWKgIAAtUMSQrQyR5IjJibmxK3Diorsw94Bevc+9cb69v3r8YEDrgtStFhwcLDaIaguJSWFdevWcckll7Bp0yZn2/F2Lzi40QmLBurqICTkhC/ZbDbq6uqor6/HYDBgs9nQarUEBQURGRnpHAItRGvx8/MjLCzMmZw/dgRRaWkpJpMJHx8f5+ihoKCgZk2B9jYXX3wxH330Efv27eOcc85RO5x2R6vV8sQTT/Dcc88xduzYJh0n+/TpQ2pqKvv27WPp0qWMHj3aOarDsZ2uXbvSt29f1q1bx+HDhykpKSE2Ntb5+uHDh9m5c6dz34qiEBISwrhx48jIyCA2NpYRI0bI74poMbdLdOTn5xMbG6t2GEKINnLaJAfYR2o4nG5utNl84vWEak40TNWbJSUlsXv3bq+qU0KvXvDcc/Zkx7G1d05lzx4oKLCvi/1zVF9fT21tLfX19Wg0GoKDgwkNDUWn08m0AaE6jUZDQEAAAQEBREVFAX/VhNHr9ZSXlzsTcsHBwQQHB+Pv7y/Hx79JSUnhzDPP5KeffqJbt27yu90KbrvtNqZNm8by5csZMWJEo9fr3bs3AwYMYOHChXzxxReMHj26QULCMUVl4MCBAPzxxx8EBQU5zwNWrFjBpEmTsFqtdOjQgXPPPRer1Yqfnx9nnnkmZ555psvfq/BebnfkkCSHEN6jUUkOgOhocNSU2bLl1MmOdev+eizze1VnsVjIy8tTOwy341VJDoDbbweTCebObfQqyjvvYBg0iNJBg8jOziY7O5va2lpCQkJIS0sjLS0NnU5HcHCwXAgJt+Xj40NISAixsbHOIrexsbH4+PhQVlZGVlYWeXl5VFVVSZHTYwwZMoTy8nJ++eUXtUNpl4KCgnjwwQd58cUXm7ReaGgoV111FVFRUfzwww+sWLECsBcqBZxJu0suuYTg4GD27NlDWVmZ8/nY2Fg6duxIYWEhH3zwAWAfGSVEa3DrM4O9e/fy8ssvc//99zNp0qQGr5nNZvLz8ykoKFApOiFESzQ6yQH2wqIjR9of5+fbO6+cSEUFTJ7819+vvNI1wYpmURSF/Pz803abEl4gMRGuvx6efx6ys0+6mMlkoqKigpzdu8nq04eKxx8nICiI5ORk0tPTiYuLIyQkRO6AC4+l0Wjw9/cnIiKCpKQk51B9m81GQUEBmZmZFBYWUltb69U1KhITEzn77LNZt26d8yJauNY999zD9u3b2bZtW5PWu/LKK7nkkkuoq6tzJkr+Ps2kqKiImJgYOnXqhNlsdtbi6N69OxdeeCE33HADDz/8sEvehxAn43ZdVwCqqqq4/fbbWbRoEfDXsOdjD3R6vZ709HQqKio4ePCgd1WvbwHpuiLcgSPJodPpCDnJ/PvjHDhgr7+h19v/ftVV9qKkHTuCwQA//wyzZv11EXXJJbBqVavELxqnrKwMRVEk0SHsCgth4EB74vL77+Gss7BYLNTV1VFXV4fJZEKr1RKalUXIzTfjl5wMK1eCt41+EV7N0d3F8XsBOKdoBQYGelWSr6SkhLfffpsrrriC/v37qx1Ou/Too4+SnZ3NwoULm7TeihUruPXWWykuLubdd9/l5ptvblCHa/Xq1Vx66aX07NmT3bt3A39dzxmNRqnBKNqE243osFgsXHHFFSxatIjg4GBGjhx5wiG+wcHB3H777dhsNmdCRAjh/qxWK9nZ2U1LcgB07QqLF9u7MAB89539DnGfPjBoEDz66F9JjqFDoRnVxIXrOE7UY2Ji1A7FY+j1eq6//nrnSWG7k5CAbc0aavv2pfCDD8j85hsKdu7EWlCArrqajM2bSb7xRiIGD8avQwf777gkOYSXcXR30el0pKenk5qaSlBQEFVVVWRlZZGbm0tVVZVXjHKIjY2lR48ebNiwAfOx9beEyzzyyCN8//33HDp0qEnrDR8+nMceewyA//znP0ybNo3S0lIAVq1axaOPPopWq3WO2rBarc4knSQ5RFtxuxEd7733Hvfccw+dOnVi3bp1JCUlkZiYSHFx8XEH9W3btnHeeedxySWXsHLlSpUi9iwyokOoyWq1kpOTQ2xsbNOSHMcqK4OPPoIffoB9++zFDf38ICEB+veHceNg1Cjworte7sZms5GVlUVKSoq072yCyspKhg8fzuHDh1m5ciV9j+0g5MGsVis1NTXU1NRgs9kI9vMjdO1aAl95Bc3f599ffDHcey+MHi3FhIU4AZPJRG1tLbW1tSiKQmhoKGFhYfj7+6sdWqsoLy/nzTff5NJLL3UWuBSuNWHCBAIDA3nvvfeatJ7NZuPRRx/lvffew2g00rlzZ/z8/Djwv453EydO5MUXX5T6i0I1bpfouOiii9i4cSOLFy/myv/Nrz9ZosNsNhMUFER8fLwUu2skSXQItTiSHHFxcdJmtJ2z2WwYjUaCgoLUDsXjVFVVMWLECPbv38+KFSs499xz1Q6pWSwWizO5AfYCduHh4Q2LzimKfUpaYSH4+kJaGmRkqBOwEB7IZrNRW1tLTU0NZrOZwMBAwsPDCQoKaldTXL777jsOHDjAQw891G4TOmr67bff6N+/P0ePHiUhIaFJ61osFr777js++OADDh06RHV1NWeccQYPPfQQY8aMaaWIhWgct0t0REdHU11djV6vdx7MTpboAIiJiaGurg6DwdDWoXokSXQINbgkyVFZCYcPQ309REXBWWfZL46EaGeqq6u5/PLL2bdvH2vWrKFPnz5qh9QoZrOZ6upqamtr8fHxISwsjLCwsOOK1AkhXM9R26O6upr6+nr8/Pycv4Oe3pWoqqqKN954g4suuogLLrhA7XDalbq6Onbt2sWNN95I586dWXds57omsFgslJaWotfrpW6icBtuNy60rq6uSUPwTCaTtCUSwo21OMmxfTu89RbMmwdG41/Pp6fD3XfDpEkgwyLdgqPQmGiZ8PBwfvjhB4YNG8Zll13GunXrOPvss9UO64SMRiPV1dXU1dXh5+dHeHg4qampHn9hJYSncdT2cIykcyQec3Jy8PX1JSIigtDQUI88RkdERNC3b19KSkrUDqXd0Ov17N69m3feeYeFCxcyZMgQtmzZQk1NDWFhYU3alqIo+Pn5NXk0iBCtze3ORHQ6nfOk6XQOHTpEXV0diYmJbRCZEKKpWpTksNnsrWLPPRfWrYNp02DnTti/H1avts/lnzYNunSBDRta5w2IRlMUhZycHCkY5yLh4eH8+OOPJCYmMmzYMI4cOaJ2SMBfd42Li4s5evQopaWlBAYGkpaWRkpKCuHh4ZLkEMINaLVaYmJiSE9PJz4+HqPRSFZWFvn5+dTV1eFmA7pP67LLLuPaa69VO4x24fDhw9x7770MGzYMm83GL7/8wg8//MDZZ5/NBx980OTteWLyTHgHtzsbcbSPWrp06WmXnTlzJgCDBw9u1ZiEEE3naCHb7JEcTzwBL78Mr7xin7IyebK9w0rXrvauKp98Yu+y0rMnXHYZNLEPvHCt8vJygoODpfioC0VHR7Ny5UrCwsK45JJLyMnJUSUORVGor6+nsLCQzMxMKioqCAkJISMjg+Tk5HYxNF5tTzxhr5/s+PnpJ7UjEu2JVqtFp9ORkZHhnPKdmZlJYWEh9fX1HpH0kGNMy1itVgoKCnjooYc455xz0Ov17Nixgy+++IIuXbqg0Wh44oknmDFjBiaTSe1whXAJtztqTJw4EUVRmDJlCoWFhSdd7uWXX+bdd99Fo9Fw++23t2GEQojTsdls5ObmotPpmpfk+OknePVVmDkTHnvs5LU4YmNh2TLo1Qtuugm8oN2eO5JWsq0nPj6eVatWATBs2DCKiorabN9ms5mSkhIyMzOpqqoiIiKCjIwMEhMTCQkJkbt4LvLLL/ZDnRBtISAggLi4ODIyMpw12zIzMykuLsZ47PRQ0S4YDAZ2797N/fffT6dOncjJyWHr1q0sWLCAbt26NVh21KhRhISE8OWXX6oUrRCu5XbFSAGuuuoqli5dSlJSEjfffDPvvfce1dXVzJs3j19//ZWvvvqKgwcPoigKN910E59//rnaIXsMKUYqWpuiKOTm5hIREdH8z9iYMfbWsfv2Na5N7NatcN55sHQpXHFF8/YpmkVaybaNI0eOcMEFF6DT6fjpp5+Ijo5ulf3YbDZqamqoqqpCo9EQGRnpsfP6PYHNZj90bd8OcXFQXGx/fu1aGDJE1dCEF1EUBb1eT1VVFSaTidDQUCIiIuSY7sEMBgN//PEH7733HnPmzGHo0KFMmzbttMWtP/zwQ2bNmsWvv/4qx33h8dwy0VFXV8fNN9/M4sWLT/hL5gj5mmuu4fPPPycwMLCtQ/RYkugQrUlRFPLz8wkODiYqKqp5GykshJQUmDUL7r+/sTuGfv0gMRG+/755+xXNUlBQQEhIiBxP2sDvv//OQw89xOeff05cXJxLt11fX09lZSVGo5GwsDAiIiKk0HcbmDULHnnEPiPvmmvg+eftz0uiQ6hFURRqa2upqqrCarUSFhZ2fGto4bYURSEvLw+TycTgwYPp1asX06ZNa3SrcoPBQFpaGp999hnDhw9v5WiFaF1umehwWLp0KR9++CGbNm2itLQUsFdeHjx4MHfddRejRo1SOULPI4kO0VoURaGoqMhZAK3ZVqyw19z480/o0KHx6z3zDHz4IeTlNX/fosmMRiMBAQFqhyGawWKxUFVVRU1NDQEBAURGRjo7NojWl5MDZ58NtbX2xMZPP9nrK4MkOoR7cOcRXnq9HpvNRmhoqNqhuB2LxYKfnx+5ubmkpKQ0ef2pU6fy888/8+OPP7ZCdEK0HbdOz44cOZKRI0cC9l9aq9UqJ9RCuKnS0lJ8fHxaXqdBr7f/GRLStPVCQ6ER3ZqEazX1mGwywaefwldf2WsTlJeDVgvJyTB4MNx1l30ov2gdiqI4L1wURSEyMpK0tDQp9KeCe++1JzkmTLAnNaQAqXA3Pj4+REREEBERgdlsprKyktLSUueoTX9/f1XiUhSFDz/8kIyMDK+/6WkymSgtLSUhIcF5HHeMvmlOkgPgnnvu4cUXX2Tfvn3H1fEQwpN4zJmNn5+fJDmEcFNlZWVYLBZiY2NbvrGICPufJSVNW6+4+K91RatSFAWbzdbk9XJy7DOM7rgDli+3z1Iymez5qYMH7Y10Bg6ERx+1z0YSrmMwGJxdU0wmEwkJCaSlpUk7WJUsWGCfZRcdbW8uJYS702q1xMbGkpGRQWhoKMXFxWRlZVFZWdms74OW0Gg09O/fnz179lBWVtam+3YXJpOJ/Px8ioqKiI6OdulxPD4+nvHjxzNr1iyXbVMINcjZjRCiRSorKzEYDCQkJLhmOGv//hAeDk2p+m2xwPz5MGxYy/cvTqu8vJzKysomrWOxwMiR8Ouv9r/36AGzZ8OWLfbZSlOm/DWIZ+ZMe1dh0TI2m43y8nIyMzMpLy8nPDycjIwMdDqdFBlUUWUlPPSQ/fGLL9qbRwnhKTQaDSEhIaSkpJCSkuIsSF1cXIzFYmmzOPr3709oaCjr1q1rs326A7PZTH5+PoWFhURFRZGamtoqtQoffvhhPvvsM4odFZKF8ECqTl1Zv369y7Z14YUXumxbQojGqa6upqamhpSUFNfN2Q0NtY/l/uAD+Pe/oTEjub7/3j5c4L77XBODOCmDwUBtbS1paWlNWm/x4r+SHAMHwoYNDbsGX3opjBplf81sthdlfOQRkPp3p/ftt9+yZs0aXn/9dTQaDSaTifLycgwGg0xNcUNPPGEfzTRoEEyapHY0QjSfr68v0dHRREVFUVdXR35+vnMKa2vX+/Hz8+PCCy9k6dKlnH/++S4v0Oyu9Ho9kZGRBAcHt+p+unfvzoUXXsi7777LlClTWnVfQrQWVU8hhwwZ4pKLI41G06ZZZCEE1NbWUllZ6dokh8N998F779kLNnzyCZzqIi072778RRfBadqmiZax2WwUFBQ06/9806a/Hv/znw2THA59+8KVV8K330JFBRw4AN27tzBoL1BdXc2bb75Jeno6Y8eOBSAmJoaEhASVIxN/t3GjvWaynx+8+27jumcL4e40Gg2hoaGEhoZiNBopKyujuLiYqKgowsLCWq14ae/evdm0aRM//fQTN9xwQ6vsQ20WiwVFUZyj8CLacIruI488woQJE3jiiSekw6XwSKrf4lEUpcU/bT03UAhvp9frKS0tJSUlpXXuFHfpYp/X8OmncMMNkJl5/DI2m73Qw6BB4O8P8+a5Pg7RQFFRETExMc2a9mAy/fW4Y8eTL9ep01+PjcYm78br2Gw2Ro0axbp168jOzua7774jNTW11e/2iaYzmey5W0Wxj1Y65xy1IxLC9QICAkhKSiIlJQWTyURmZialpaVYrVaX78vX15eLLrqI/fv3U1BQ4PLtq8lisVBUVEReXl6r/Ns1xmWXXYZOp+PLpkwlFsKNqJrosNlsJ/xZvHgxkZGRdOrUiffee49Dhw5RX1+PwWDg8OHDvPfee5xxxhlERkayZMkSSXQI0YYMBgNFRUWkpqa27nD4m26Cr7+GVavsV8ZXXQVvvGG/Hfrf/0LXrjBiBKSmwubNIHevW1VtbS2KojS7LfWZZ/71+M8/T77ckSP2PzUaOOOMZu3KKzhOgrOysgA4//zzCQkJ4b777mOeJP3c0nPPwf79kJZm74YtRHvm6+uLTqcjIyMDrVZLbm4uBQUFGF2cwe7RowfR0dFs2LDBpdtVi9VqpaioiNzcXEJCQkhLS1NtNIVGo+GRRx5hxowZKFIhXHggjeJmn9xdu3YxePBgBgwYwA8//HDSOX4Gg4ERI0awdetWtmzZQq9evdo2UA9VXV1NREQEVVVVzb5gEd7LZDKRl5dHamqqs31Zq6ursxcmffdde5EHk8lerHTkSHt/xsGDZfx3G7BarWg0mmYnt0pKoHNnqK62/5etW3f89JXdu+2tZU0me57riy9cEHg7U19fT1lZGTabjejoaEJCQpzDwhVFYcKECcyfP58ff/yRiy++WOVohcOBA9Czp/2zvXixvR7N302dCtOm2R+vXWtvOStEe3Kq41dL7Nq1i++++457773XNd3fVOLojhUTE0NoaGirTflpivr6etLS0vjiiy+49NJL1Q5HiCZxu0THDTfcwNdff82+ffvo2rXrKZfdv38/3bp144YbbpA7WI0kiQ7RXGazmdzcXJKTk/H391cnCEWxT1k5UYEH4fa+/RbGj4f6eujdGx5+2D7So7bWXsPj1VehpgZ69YIffpBBOg6KolBTU0NFRQVarZaYmJiTtls3m81ceeWV/Pzzz6xfv56ePXu2cbTiRP7xD3j/ffvgtGefPfEyCxfaB7GBvQ7z2WfbH1911V8diYRoD8xmM+Xl5c7CmhERES0aIWqxWHj99dfp2LEjo0ePdl2gbcxxSeYOCY5jPfPMM2zfvp1ly5apHYoQTeJ2iY6kpCTq6+upqKho1PJRUVEEBQWRn5/fypG1D5LoEM1htVrJzs4mKSnppBdYon2yWCwuHb3z++8wYwZ8/LE9b3Ws+HiYPNlex0Au7Oy/dxUVFdTU1BAWFkZUVBS+jUjy1dTUMGTIEAoKCtiyZQvp6eltEK04lYkTYc6c5q179ChkZLgyGiHcg81mo6qqisrKSoKDg4mOjm526+uff/6ZFStW8OCDDxIZGenaQFuBo/23xWJx+8LRRUVFpKens2vXLs52ZGCF8ACqFyP9u4qKCgwGQ6PqbthsNgwGQ6OTIkKIplMUhby8POLi4iTJ4WUMBoNLk8hms306ynffHZ/kACgqss9S+uknl+3SI1ksFgoLC8nJyUGr1ZKRkYFOp2tUkgMgLCyMpUuXEhgYyOWXX055eXkrRyyEEE3n4+NDVFQUGRkZhISEUFBQQG5uLvX19U3eVp8+fQgKCmLr1q2tEKnr2Gw2SktLycrKQqvVEh8fr3ZIpxUfH8+4ceN47bXX1A5FiCZxu0RHcnIyJpOJRYsWnXbZRYsWYTQaSU5Obv3AhPBCiqJQUFBAeHg4IXKL3as4WskmJia6ZHt1dTBsmH3YflkZPPGEvTCj0QhVVbBiBZx/Pmzfbh+q743nU44ER15eHqGhoWRkZBAREdGsYcwJCQksX76ckpISRo0a1awLB+E6s2fbk3un+jm2QOnatX89L6M5RHvnaE+blpZGbGwslZWVZGVlUV1d3egimP7+/owbN85taxMpikJZWRlZWVn4+fm16PiuhgcffJDPPvtMbi4Lj+J2iY5rrrkGRVG46667+OkUt/XWr1/PXXfdhUaj4Zprrmm7AIXwIqWlpWi1Wo8YBipcqyWtZE/kmWdg/Xr7448+ghdftDfO8fe315a99FL7xd3FF9sv7h59FPbudcmu3d6xCY6wsDDS09MJDQ1t8XbPOOMMli5dyi+//MLatWtdEKkQQrSugIAAEhMTSUlJwWg0kpmZSVVVVaMSHqrWEDsNjUaDv78/GRkZREZGekyCw6FXr1706dOHjz/+WO1QhGg0t6vRUVlZSa9evcjOzkaj0TB48GCGDh1KcnIyGo2G3Nxc1q5dy8aNG1EUhbS0NPbs2SMXYo0kNTpEY1VVVVFXV0diYqLHfSGLlqmpqaGmpoakpCSXbE9RQKeD8nJ78dE//jj5sps22Ud2gL1Y6cyZLgnBLZnNZkpLSzGZTOh0ulYbNVVSUuLRnQi8hXRdEeJ4jloWNTU1REdHEx4e7hHnJIqiOM+1W1Jo1Z0sWLCAJ598kkOHDjV6KqUQamqj/pCNFxkZyU8//cSYMWPYuXMnGzduZNOmTQ2WceRm+vTpw1dffSVJDiFcrK6ujqqqKlJTUz3ihEK4jmP+sCsLWBYV2ZMcYO+2cip9+/71+MABl4XgVtoqweEgSQ73UloKVqu9+K4Q4tR8fHzQ6XRER0c7p37odDqXjHprDYqiUFlZSWVlpUdNTWmMa665hkcffZRly5Zx1VVXqR2OEKfllinGjIwMtm7dyvz587nmmmtISUnB398ff39/UlJSuOaaa5g3bx5bt26lQ4cOaocrRLtiNBopLi52jqIS3sXHx4e0tDSX3oE6tmmLxXLqZc3mE6/XHpjNZgoKCsjPzyciIoL09HSpfeNlDh2yt0/u0QP27VM7GiE8h4+PD7GxsaSmplJbW0tWVpZb1R5yJDgyMzOx2Wykp6cTHR3drs6jtFotd999N2+88YbaoQjRKG43dUW0Lpm6Ik7FYrGQk5NDSkqKy2ozCGGzQVQUVFdDUhJkZZ08ifH99/ZipAAPPACvv952cbYWxwgOs9mMTqcjODhY7ZCECg4dstegCQuz16YpLIQ1a6BbN7UjE8LzmM1mSkpKsFqtbtEVrqysDEVRiI6ObjdTVU6kuLjYWTaga9euaocjxCm1399EIUST2Gw2cnNzSUxMlCSHFzKZTI1q690cPj4wcqT9cX6+vfPKiVRUwOTJf/39yitbJZw2Yzabyc/Pp6CggIiICNLS0twmyVFbW8uB9jo3yA0dm+RYswZWr4aEBBg6VEZ2CNEcWq2WpKQk4uLiKC4uJi8vD/MxQwILCgqYN28eltMNI2wmRVEafGfGxMSg0+nadZIDIC4ujhtuuIE333xT7VCEOC0Z0eFlZESHOBFFUcjNzSUqKspt572K1mOz2cjKymrVkTwHDtjrb+j19r9fdRVMmAAdO4LBAD//DLNmQXa2/fVLLoFVq1ollFbnuNNosVjcdgTHbbfdxsqVK9m+fbvLWgiLE/t7ksPxz11aav+cy8gOIVquvr6e4uJiAgICiI2NpaKigrfeeouRI0fSr18/l+1HURRqa2spKytz61ohrWn79u0MHTqUvLw8uZYQbk0SHV5GEh3iRAoKCggMDCQqKkrtUIQKCgoKCAkJafVjwgcfwL/+Zb/AO5WhQ2HhQvt0F0/iKORaX19PbGysWyY4HPLz8+nfvz/JycmsW7eOoKAgtUNql06W5HCQZIcQrlVbW0tpaSkhISH89NNP5Ofn88ADD7R4pMWxCY7g4GBiYmK8uvPIeeedx7hx43jwwQfVDkWIk2rf46uEEKdVVlaGj4+PJDm8VE1NDYqitHqS45134K677Bdy06fbW2fGxoJWC0FB0KED3HADLFpkH8nhSR9HRVGoqKggKyuLwMBAt5qicjJJSUksWbKE3377jYkTJyL3PFzvdEkOsLddlmksQrhOaGgo6enp+Pv707FjRyorK/ntt99atE2TyURWVhZ6vZ7U1FTi4uK8OskB8MADD/Dmm2+22pRXIVxBEh1CeLHq6mrq6+uJi4tTOxShAovFQmlpKQkJCa26n3fegXvvhTFjYPt2WLcOli2D4mIwmezTWf78E+bPh6uvBk8qUl9bW9ugyn54eLjHVNnv27cvc+fOZcGCBfznP/9RO5x2pTFJDgdJdgjhWhqNhoiICPr06UN6ejpr166lsrKy2QldPz8/UlJSiI+P9/oEh8OYMWOorq5mxYoVaocixElJokMIL6XX66moqCApKcljLsyEaxUXF5OQkNCqxdMcSY6HHrInMpYuhY0b7QkNN+oM2GRGo5Hs7GxqampIS0sjJibGI4vQXX/99UyfPp2pU6cyf/58tcNpF5qS5HCQZIcQrqfRaBg6dCiVlZX88ccfZGVlUVtbe9r19Ho9pcfMsfTx8cGvvfU7byF/f3/+8Y9/SKtZ4dakRoeXkRodAuzDMPPy8khLS5O7E15MUZRWTXIdm+SYOfOvkRo//QRXXAHnnw+LF9unrngKi8XiLDTqDi0NXUFRFG655Ra+/vpr1q1bx7nnntvmMVRX20f5bN8OO3ZAXh6UlNiTYZGRcPbZ9s/MpEkQE9Pm4TVac5Icx5KaHUK43uzZszGbzdx2222UlpZiNBqJi4s7rjaRI8Gh1WrR6XTSge408vPz6dChA/v27aNz585qhyPEcSTR4WUk0SEcHTaSk5Px9/dXOxzRTp0syeHgackOm81GeXk5tbW1xMbGEhISonZILmUwGLj44ovJzMxk+/btpKSktOn+V62CSy89/XI6HXz2GVx2WevH1FSZmfbPc3OTHA7HJjs2bIAzz3RpmEJ4nSNHjvDZZ59xyy230LFjR2dnLKvVSlxcHDabjZKSEvz8/IiNjZUERxPccMMNZGRk8NJLL6kdihDH8bxxtkKIZlMUhby8PGJjYyXJ4aVsNhv1rTxn5HRJDrAXI122zP2nsSiKQlVVFVlZWfj5+ZGent7ukhwAgYGBLFq0CK1Wy6hRo6irq2vzGFJT4dZb4bXX4JtvYMsW2LTJPuVpzBjw9bUnAUaNgr172zy809qyxT4S5cYbm5/kAHsy55Zb7DVsNmxwXXxCeKuOHTuSmJjIhv/9Qmm1WpKSkoiLi6O4uJj8/Hx0Oh1JSUmS5Giie+65h48//hiDwaB2KEIcR0Z0eBkZ0eHdSkpK8PHxIcadx36LVtXarWQbk+Q4ljuP7NDr9RQXFxMSEuKxNTiaau/evQwaNIjLLruMr776qs3es9VqT2ScyqJFcM019sfXXgtff93qYTWJosA//wkvvmj/7D/8cPO28/778I9/wP33w+uve1ZxXiHc1f79+1mwYAG33347cXFx+Pv7O6du1tfXU1xcTGBgILGxsV5xrHcVRVHo2rUrU6ZMYfz48WqHI0QDqiY65s6d67Jt3XrrrS7bVnsmiQ7vVVNTQ3V1tRQf9WI1NTXU1NSQlJTUKttvapLDwd2SHSaTieLiYnx8fIiLi/O6InRLlizhrbfe4uuvvyY0NFTtcBo46yw4cMA+6qGkRO1ojtfSZIckOYRoHYqi8NZbbxEcHMzw4cNJSkpqkNBQFIWamhrKysqIiYmRc+QmmDlzJt98841zxIwQ7kLVRIePj49LLrg0Gg0Wi8UFEbV/kujwTkajkYKCAtLS0uROhZeyWCzk5OSQnp7eKp+B5iY5HNwh2aEoCmVlZdTV1REfH09gYGDbB+EmWrtQbXP16wc7d0JoKNTUqB3NiTU32SFJDiFah9FopKSkhMOHD5Ofn8/YsWNPWojdUa/DZDKRkJAgU1kaoby8nOTkZLZt28Y555yjdjhCOKl6myotLe2kJ1IlJSXo9XrA3r/aMdS+rKzMmdQICQlBp9O1TbBCeCir1Up+fj4pKSmS5PBSiqKQn5/faq1kP/qoZUkO+KtmxxVX2Gt2LFsGbTmQQq/XU1RURGRk5Cm/m7yFO77//fthzx77465dVQ3llDQaeP55++NHHrH/ebpkhyQ5hGgdZWVl6PV6YmNjG1Vk2cfHh/j4eAwGA3l5eYSHhxMVFeWWx0R3ER0dzdixY3nvvfd488031Q5HCCdVr3oyMzM5evTocT+TJ0/GbDZz/vnns3z5cmpqaigoKKCgoIDa2lqWL1/OBRdcgNlsZvLkyRw9elTNtyGE23IUH42Pj5e7El6srq6O4ODg41rpucrSpaDV2gtJtuRccMAA6NnTXoCystJl4Z2SIxFYUVFBamqqnNC6Gb3e3rJ1xgx721ar1f78Qw+pG9fpOJIdkyfbkx2zZp18WUlyCNF6oqOjSU1NbfIIvcDAQNLT07HZbGRnZ2M0Glspwvbh7rvvZu7cudTW1qodihBObleMdM2aNQwfPpzRo0ezYMGCk959VBSFG264gW+//ZZVq1YxZMiQtg3UQ8nUFe9SWFhIQEAAUVFRaociVNaaUxEqK2H4cDh8GFavht69m76N+np7N43Nm+2Jk9Y+pCuKQnV1NeXl5cTFxbXLTiqeavZsuO22k7/++OPw0kuekRA43TQWSXII4TqOtrFhYWGEhYW5bLsmk4nCwkKCgoLQ6XSSDD8BRVHo06cP9957L3feeafa4QgBuGF72VdffRVFUZg5c+Yph1hrNBpeffVVbDYbr7zyShtGKIRnqKqqQlEUSXIIoHWnIkRGwooV0LkzXHIJ7N7dtPXbOslhMpnIycnBaDS223axrWHLli2q7r9XL/j5Z3j5Zc9JCJxqZIckOYRwDYvF4hz5HRkZ6dIkB4C/vz+pqalotVoyMzNbvUW7J9JoNNx999288847uNk9dOHF3G5ER3x8PBaLhbKyskYtHx0djVarpaioqJUjax9kRId3cLRKk1oD3q2mpobQ0NA2+ww0Z2RHWyY5FEWhtLQUvV5PQkICAQEBrbezdmbLli0MGjSIDz/8kEmTJrXqviorITfX/ri+Ho4cgQUL4NtvoVMne7LgyitbNQSX+/vIjuBgSXII0VIWi4XS0lKMRiOxsbEEBwe3yT4LCwvx8/MjLi5Oap8dw9HVbfXq1Zx77rlqhyOE+yU6goODsVqt1NTU4O/vf8plTSYTYWFh+Pr6OguXilOTREf75+iukZqa6nVtMcVfamtrne2E21JTkh1tmeRwFBuNiooiIiJCEoDN8I9//IM5c+awceNG+vXr1+b7//RTmDDBnhT46COYOLHNQ2iRY5MdIEkOIVrKbDZjMpmaPSpPr9cTFBTUrO+DmpoaSktLiY2Ndbs23Gq69957MRgMfPzxx2qHIoT7TV3p0KEDFouFuXPnnnbZuXPnYjab6dChQxtEJoT7cxQfTUhIkCSHF7NYLJSUlJCQkNDm+27sNJa2SnL8vdhoZGSkJDma6fXXX6dnz55cd911lJaWtvn+b7kFxowBm82eJKioaPMQWsQxjeX55+GZZyTJIURTOW6EOmi12mYnOcrLy5kxYwaHDx9u1vphYWGkpaVRU1NDbm6usyOkt/vHP/7BvHnzqPC0A7Rol9wu0XHTTTehKAoPPvggc+bMOelyc+fO5cEHH0Sj0XDTTTe1YYRCuK/CwkIiIyNbrbuGcH+t3Uq2MU6X7GiLJIeiKFRWVpKdnU1ERATJycmS/GuhgIAAFi5ciF6v56abbsLqaIHShq6+2v5nXR388EOb777FNBp48kmYOlWSHEI0ltVqpbi4mJycHJclqqOiooiLi2Pr1q3N3oavry+JiYlER0eTk5NDZWWl19en6NmzJ7169WrUDWshWpvbTV0xGAwMGjSIPXv2oNFoSE1NZciQISQnJ6PRaMjNzWXdunVkZ2ejKAq9evVi8+bNTW4b5a1k6kr7VVFRgdFoVOUuvnAf5eXl2Gw2dDqd2qGccBpLWyQ5TCYTBQUFBAcHExMTI3OoXWzNmjVceumlTJ48meeee65N971ypf0zBfDcc/apIEKI9slqtVJeXk5tbS06nc7lNaf27t3Lt99+yz333ENcXFyLtqUoCiUlJRgMBhISEk47/b49mzNnDi+//DK//vqrjKAUqnK7RAfYL9gmTZrEokWLgOO7BThCHjVqFB9//DHR0dFtHaLHkkRH+6TX6yktLSU1NVW+VLyYzWajoKCApKQkt/kcHJvs+P57+5D91kpyOEZxVFVVkZiYKMVGW9FLL73E5MmT+fbbbxk9enSb7ffY1rOvvw4PPNBmuxZCtCFFUcjNzSUiIoKwsLBW+U6zWq3MmjWLM888k6uuusol2zQajRQWFhIaGkp0dLTbfBe3pbq6OpKSklixYgUDBgxQOxzhxdwy0eGwfft25s2bx44dOyguLgYgLi6Ofv36MXbsWKno2wyS6Gh/rFYr2dnZpKWl4evrq3Y4QhzHkezYvt3ebaI1khyO9oKBgYHodDqvPLlsS4qiMGbMGFasWMH27dvp0qVLm+x35EhYtsz+eO3a1m9FLIRoO4qitPmxe8OGDaxfv55HHnnEZV1bFEWhoqKC6upqEhISvHLU+T333IPFYuGDDz5QOxThxdwu0ZGdnQ3YExreeGBobZLoaF8URSEnJwedTtcmbdWEaK7KSnjsMXvXjAsvdO22q6urKSsrIyEhQerTtKGamhrOPfdcfHx82Lp1a4s6D8yeDTfeCKf62p85Ex591P44IwMOHQIpuyKE57PZbM7EQHp6eptON9Tr9cycOZMLLriAC1385WQ2myksLMTf35/Y2Fivmka5c+dOLrroIgoKCggLC1M7HOGl3C7R4ePjg4+PD9nZ2W3eFtEbSKKjfXF0PnCHegxCPXV1dWi1Wq+bE2y1WiksLMTHx4f4+HivOol0F/v37+fcc8/l8ssvZ/78+c2+G5uRATU1cN11cP750KkThIban/v1V/j8c9i0yb6sv799VNCwYa57H0KItmez2ZzTDSMjI1XrivXdd99x8OBBHn744VYZGVtVVUV5eTlxcXHN7hLjaRRFoXfv3jzwwANMmjRJ7XCEl3K7REd4eDharZaysjK1Q2mXJNHRfuj1esrKykhJSZFh+l7MYrGQk5PT5nfB1FZXV0dxcTGxsbEtGkkgWm7hwoXcc889bN++nYyMjGZtIyMDsrJOv1xKCnz8MVx6abN2I4RwE46ReGomOBxKSkp4++23GT16ND179myVfTgS8xqNhvj4eK+Yavzmm2/yxRdfsHnzZrVDEV7K7RIdPXr04NChQ9TW1nrFQaCtSaKjfXBc3EpdDu/mmLoUGxvrNVM2bDYbxcXFWCwWEhMT5fPvJqqqqoiIiGj2+keO2NuuLlxob7saEQG1tfapLPHx0KsXXHkl3HCDvc6LEMKzmUwm/Pz83CZB//nnn1NbW8tdd93VqkkXR5LeG0Z3VFRUkJSUxI4dO+jWrZva4Qgv5B5Hl2OMHj0ak8nE0qVL1Q5FCLekKAr5+fkkJCTIRZ6Xq6ioIDg42GuSHAaDgaysLIKCgkhJSZHPvxtpSZIDYMkSe5LjiSdg9GjQ6+Hbb+1TVw4ftr82caIkOYTwRI6OWLW1tc7n/P393SbJATBgwAAKCwudtQJbS0hICGlpaVRWVlJYWIjNZmvV/akpKiqK6667jo8++kjtUISXcp8jzP9MnjyZzp07c88997B37161wxHC7ZSVlRESEuI1F7fixAwGAzU1NcTExKgdSqtTFIXS0lKKi4tJSUlp8UW1cC+OIqNPPgkvvADz5tm7q1x3nb0lsRDCMymKQlVVFZmZmVgsFrcumt6pUydiY2P5+eefW31fvr6+JCcnExQURHZ2NiaTqdX3qZY77riDuXPnYjQa1Q5FeCG3m7oyd+5cSktLmTp1KgaDgREjRjB48GDi4uJOeffu1ltvbcMoPZdMXfFsUpdDOJSUlBAZGYlWq1U7lFZlMpmcVdujoqLkc9/OHJvkeO45+7QVAJPJ3oVl6VL4+mv7tBUhhGdQFIWamhrKysoICwsjOjrarUZvnMz+/fupq6ujX79+bbZPk8lEXl4eOp2uXXYnURSFM888k2effZYbbrhB7XCEl3G7RIePj4/zRLax/bQ1Gg0Wi6W1Q2sXJNHhuaQuh/AmjqHOVVVVJCYmEhAQoHZIoolO9x1+siSHgyQ7hPBMjhGH0dHRcr7SCDabrUEHsfaW0H/hhRdYu3Yty5cvVzsU4WXcLtGRkZHRrF/wo0ePtkI07Y8kOjyTNxadFN7LarWSn59PQEAAsbGx7e6kzxv89NNPPProo6xevZqoqKjjXj9dksNBkh1CuD9FUbBYLO1+hGFrcyT3k5KS2tW/ZUFBAenp6Rw8eLDZnbmEaA63S3SI1iWJDs9UUlKCj4+PV9RjECdnsVioqak54YVje2EwGCgoKPCKivTtWVZWFr169WLo0KEsXLiwQbKqsUkOB0l2COGeFEWhrq6O0tJSQkND0el0aofk8Rzfge2tdfrVV19Nr169mDZtmtqhCC/i/hPmhPBydXV1GAwGoqOj1Q5FqMjRbScwMFDtUFpNRUUFRUVFpKamSpLDw6Wnp/PRRx/xzTff8O677zqfb2qSA8DfXwqUCuFu6urqyM7Opq6ujpSUFElyuEhgYCDp6elUVlZSXFxMe7kfPWnSJGbPnt2uu8wI9yMjOryMjOjwLFKXQziUl5djs9na5cmkzWajoKAAPz8/4uLiZKpKO3Lffffx0UcfsW3bNlav7tHkJMexZGSHEOpTFIXc3Fy0Wi06nQ4/Pz+1Q2qXFEWhoqKC2tpakpKSPP7f2Ww2k5yczLx58xg6dKja4QgvIYkOLyOJDs8hdTmEg9FopLCwkLS0tHaXBDAajeTn57fbivPezmAwMGDAAEpKhlNQ8DKTJ8Pzzzc9yeFgMsHYsbBsGWzcCP37uzZeIcTp2Ww2j+ii0hI2m43MzEw6duyoahz19fUUFhYSHx/v1u15G+ORRx6hvLycOXPmqB2K8BJunR7cvHkzGzduJDc3l7q6upMO39JoNHz00UdtHJ0Qrcsx51WSHN7NZrORn5/fLlsKV1dXU15eTnJyMv7+/mqHI1pBYGAg8+bNo3fvp9FobBQX+6AoLUt0lJdDQAB4+Dm/EB6hvr6e0tJSkpKSnCNL23uSA+DQoUPMmzePu+66i8TERNXiCAoKIi0tjfz8fPR6PTExMR57LjBx4kQGDRrEm2++KTc2RJtwyxEdhw4dYty4cezatavB8ydqVed4zmq1tmWIHktGdHgGvV5PWVlZu7y4FU1TX1+P2WxuV7+viqJQWFgIQHx8vFecNHu7Tz75hNtvX4VG8ykTJ/rw4YfQ1P/22lp7nY7du+HHH2HQoNaJVQhhH41VXFyMn58fOp3O65LRNpuNWbNmceaZZ3KlG8yTUxSFsrIy6uvrGySdPE2vXr14+OGHmThxotqhCC/gdmeXZWVlDB06lJ07dxIXF8eYMWNQFIXAwEBuvvlmLrnkEkJDQ1EUhZiYGCZMmMCtt96qdthCuIzNZqOoqIjExERJcgiCgoLaVZLDbDaTlZVFcHAwiYmJkuTwEhMnTmTcOAgIuIs5cxTuuAOaUpNOkhxCtA2DwUBOTg5lZWUkJCSQlJTkdUkOsI9a6dOnD7/++itGo1HtcNBoNOh0OmJiYsjOzqa+vl7tkJplwoQJMnVFtBm3O8OcNWsWeXl5DBgwgCNHjjBv3jwAIiIimDt3LitWrCA/P5//+7//o7S0lKCgID755BOVoxbCdQoLC4mNjfX4wlNC/F1tbS25ubkkJiYSERGhdjiiDWk0Gt555x2Sk38iLe3fTUp2SJJDiLZjsViIi4uTKYVAnz59MJvN/Prrr2qH4hQcHExqaiolJSWUl5d7XFeW8ePHs2nTJo4ePap2KMILuF2iY+nSpWg0Gp577rmTFt0JCQnhxRdf5KGHHuK9997jq6++auMohWgd1dXVaDSadtU7XTSdoigUFRV53AnMySiKQnFxMZWVlaSnpxMQEKB2SEIF4eHhzJs3j7y8l7jssi+YM4fTJjskySFE6zIajQ1GLISGhsox+n/Cw8M544wz2Llzp1t9H/v5+ZGamorFYiEvL8+jWrbGxcUxYsQIPv30U7VDEV7A7RIdR44cQaPRcMEFFzR43mQyHbfsk08+CcD777/fJrEJ0ZosFgtlZWXEx8erHYpQWUVFBT4+Pu1i6pLFYiE7OxutVktKSopMVfFy/fr14/XXX+e22/yZO5dTJjskySFE6zGZTOTl5VFcXKx2KG6tb9++FBYWkp+fr3YoDWg0GuLi4oiMjCQrKwuDwaB2SI3mmL7iTskj0T653dh4s9lMREREg2H7wcHB1NTUHLdsfHw8ERER7N27ty1DFMLlFEUhPz+fhIQEuRD0ckajkZqaGtLS0tQOpcUcbfESEhKke5Bwuvvuuxv83VFm69gCpZLkEKJ1mEwmSktLsVqtxMbGEhgYqHZIbq1z585ERESwY8cOkpOT1Q7nOI4ROPn5+URERBAZGal2SKd15ZVXctddd7Fx48bjbmwL4Upud0WVlJREVVUVFovF+Vx8fDwWi4U///yzwbJms5nq6mqqqqraOkwhXKqiooKgoCC5GPRyjlaySUlJHj+ao7q6muLiYlJTU+VzLU5q/HiOG9khSQ4hWofBYKCwsJCoqChSU1MlydEIjqKk+/btc9tRE1qtlrS0NIxGI/n5+W4/lSUgIICbbrpJipKKVud2iY4OHTqgKAo5OTnO5/r37w/AZ5991mDZ2bNnY7PZ3DLDKkRjOe7g63Q6tUMRKisuLiYmJgatVqt2KM2mKAolJSXU1NSQmpoqRXXFaR2b7Lj9dklyCOFKx04PCAwMJC0tTZLPTdS7d28sFotbjyDXaDTEx8cTFhZGVlaWW3SKOZWJEyeyYMEC9Hq92qGIdsztEh3Dhw8H4Mcff3Q+d8stt6AoCtOnT+e+++7jgw8+4P777+f+++9Ho9EwevRolaIVomUURaGgoEBayQoURcHf39+jW8k6RqRoNBqSkpJkGpZoNEey49NPJckhhCtYLBYKCwspKipSOxSPFxYWRpcuXdyuKOmJhIWFkZycTH5+PnV1dWqHc1J9+/YlNTWVb7/9Vu1QRDumUdzsN/bgwYMMHz6cQYMG8cUXXzifHzduHPPmzWtwMagoCmeddRabN2+WVoWNVF1dTUREBFVVVR59QdVeFBcXo9VqiYqKUjsUIVrEYrGQm5tLdHS0HFtEk1VWVhIREcFPP2nQ6eCcc9SOSAjPZLFYKC0txWg0otPpCAkJUTukduHIkSN89tln3H777aSmpqodzmnZbDby8vIIDQ1123PMl156iVWrVrFixQq1QxHtlNslOk5GURQ+/PBD5s+fT05ODhEREYwYMYLHHntMkhxNIIkO96HX6ykrKyMlJUVGcwiPZjAYnCOTZM63aKrS0lK6d+/Os88+y6RJk9QORwiP5GjjXV9fj06nkzb1LqYoCuvWraNXr14eUfAT/mpVD/Z6h+52rpmbm0uHDh3IyckhISFB7XBEO+QxiQ7hGpLocA82m42srCypYSAoLy8nMDCQ4OBgtUNplpqaGmfCTj7LornuuOMO5s+fz969e+nQoYPa4Qjhkerr6wkMDHS7C1qhroqKCmpqatyyxfvFF1/M1VdfzcMPP6x2KKIdcq9PuxBeorCwkNjYWLkw9HKOQrSeWhiurKyMqqoq0tLS5LMsWmTGjBnodDomTJiA1WpVOxwh3J7VaqW0tLRBh42goCBJcojjREVFERMTQ1ZWFmazWe1wGhg/fjyff/652mGIdkoSHUK0sZqaGjQajQwr9XKe3EpWURTy8/OxWq0kJye73R0i4XnCw8OZPXs2GzduZNasWWqHI4TbstlslJSUkJ2djb+/v8d9fwh1hISEkJSURG5urlt1ZLn++uvZu3cvBw8eVDsU0Q6pOnVl7ty5LtvWrbfe6rJttWcydUVdFouFnJwc0tPT5eLQyxUWFhIcHOxxv4dWq5Xc3FwiIyOlPpJwuccee4y33nqLnTt30q1bN7XDEcJt2Gw2ysvLqampcRZ9liSHaCqz2Uxubi7x8fFuM2X22muvpUePHkydOlXtUEQ7o2qiw8fHxyUHaY1Gg8VicUFE7Z8kOtSjKAq5ubnodDqPnaogXKO2tpaqqiqSk5PVDqVJjEYj+fn5bnWCJNoXg8FA3759CQgI4Oeff8bf31/tkIRwC+Xl5fj4+BARESEJDtEijhsW0dHRhIWFqR0OX3/9NU8++SQHDx6Uz7ZwKVUTHRkZGSf9QJeUlKDX6wHw8/MjJiYGsM8JdyQ1QkJC0Ol0ABw9erQNIvZ8kuhQT1VVFUajkbi4OLVDESqrrq4mNDTUo0b11NXVUVxcTEpKClqtVu1wRDu2c+dOzjvvPP75z3/yn//8R+1whFCFzWZDURR8fX3VDkWcQHFxMWFhYR5748qd2s8aDAbi4+NZuXIl5557rqqxiPZF1bPszMxMjh49etzP5MmTMZvNnH/++SxfvpyamhoKCgooKCigtraW5cuXc8EFF2A2m5k8ebIkOYTbs1gslJeXOxNzwruFh4d7VJKjqqqKsrIy0tPTJckhWl3fvn2ZMmUKzz33HFu3blU7HCHalKIoVFRUkJWVhcFgUDsccQIGg4H333+f3bt3qx1Ks/n4+JCSkoLBYKCkpAQ1m3AGBgZy3XXXSVFS4XJu1152zZo1DB8+nNGjR7NgwYKTXgwoisINN9zAt99+y6pVqxgyZEjbBuqhZESHOhxDBGW4v/A05eXl6PV6kpOTZUipaDMWi4XBgwdTWVnJL7/8QmBgoNohCdGqFEWhsrKSyspKIiIiiIyM9KiEuLf55ptvyMvL4/777/fo70ZFUSgtLcVisZCQkKDae1m9ejXjxo0jLy9PurgJl3G7I+irr76KoijMnDnzlAd4jUbDq6++is1m45VXXmnDCIVompqaGnx9fSXJ4eWMRiNFRUVqh9FoiqJQUlKC0WiUJIdoc35+fsyePZvMzEz++9//qh2OEK3KaDSSmZmJzWYjPT2d6OhoSXK4ub59+1JeXk5mZqbaobSIRqMhNjaWwMBAcnNzG7QrbktDhgzB19eX1atXq7J/0T653VF0x44dREZGkpqaetpl09LSiIyMZPv27W0QmRBN5+hzHx8fr3YoQkWOVrLR0dFqh9IoiqJQWFiIoiiq3uER3u2ss87ihRdeoEuXLmqHIkSr8vf3Jz09nZiYGElweIi0tDR0Oh07d+5UOxSXiIqKIjIykpycHKxWa5vv39fXl5tuukmmrwiXcruxQTU1NVitVkwm02mrrZtMJurq6qRQk3BbRUVFxMbGyomLlysuLiY6Otoj6lsoikJeXh7BwcEek5gR7dcjjzyidghCuJSiKNTU1FBfX++8CaLRaCSh7GE0Gg19+/Zl5cqV1NbWEhoaqnZILRYWFoavry/Z2dmqFB4fP348F110EXq9XkZBC5dwu6uvDh06YLFYmDt37mmXnTt3LmazmQ4dOrRBZEI0TV1dHYqitIsvP9F8tbW1WK1WIiIi1A7ltGw2Gzk5OYSFhUmSQwghXEhRFKqrq8nMzMRoNEpx8nagZ8+e+Pj4sGfPHrVDcZng4GCSkpLIzc3FaDS26b579+5NSkoKS5YsadP9ivbL7RIdN910E4qi8OCDDzJnzpyTLjd37lwefPBBNBoNN910UxtGKMTp2Ww2iouLSUhIUDsUoSKLxUJJSQmJiYlqh3JaVquV7OxsoqOjPSIpI4QQnsAxgsPRRSUtLY3Y2FgZjdwOBAUF0a1bN3bu3Klq1xJXCwgIICUlhfz8fPR6fZvt13FNN3/+/Dbbp9r27NlDdXW12mG0W27XdcVgMDBo0CD27NmDRqMhNTWVIUOGOIvh5ebmsm7dOrKzs1EUhV69erF582apyN5I0nWlbRQVFREUFCT/xl7ObDZjtVrd/vhkNpvJzc0lPj5ehosKIYQLOdrFRkRESHKjHcrKymL27NlMnDiR9PR0tcNxKavV6uwaGBYW1ib7/OOPP+jZsyfFxcXt8hzaYDDw3XffMX/+fBYtWoTNZmPjxo0MGjRI7dDaJber0REYGMjq1auZNGkSixYtIjs7m08//bTBMo7czKhRo/j444/d/iJCeJf6+npMJpMUIBVotVq3r8thMpnIy8sjMTFRjqXCIyiKIvUMhFvT6/UEBQU5a2/IVMD2y9EY4Zdffml3iQ5fX19SU1PJy8vDYrEQFRXV6vvs0qULXbt2ZcmSJdx8882tvr+2UFJSwuLFi/niiy/46aefnM9369aN/v37y/VCK3K7ER3H2r59O/PmzWPHjh0UFxcDEBcXR79+/Rg7diznnnuuyhF6HhnR0boURSEzM5PU1FTpA+7FPOVCzGAwUFBQQHJy8mmLPwvhDnbs2MGkSZNYsWKFnBwKt6PX6ykpKSEgIIC4uDgpRO4l1q5dy88//8zjjz/u9jc3msPRic3X15fY2NhWP7957rnn2LJlC999912r7qctrF27lhEjRmA2m/Hx8aFfv36cf/75DBs2jAEDBrRJ8sibuXWiQ7ieJDpaV0lJCX5+fnLg8mKOgp6pqalufZKr1+spLi4mJSVFknLCY5SWlnLWWWcxbNgwvvzyS7XDEQL4K8Hh7+9PbGysHFO9THl5OW+88QbXXXcd3bt3VzucVqEoCqWlpZjNZhITE1s12XH48GG6detGUVERkZGRrbaf1uS44fXrr79y9913s2fPHqZPn35cJzFFUbBarXLMaCXuexYuhIcxGo3o9XqPPSgL1yguLiYyMtKtkxw1NTWUlJTIyCPhcXQ6HbNmzWLevHl8//33aocjBGVlZVRWVpKUlERiYqIcU71QdHQ0559/frsu5K3RaIiNjSUoKIjc3NxWLb7auXNnunfvzqJFi1ptH66ya9cuNmzY0KCgqM1mcyaC0tPT6du3r3Na+99pNBo5ZrQi9z0TF8KDKIpCQUFBq2e5hXvzhFay1dXVVFZWkpqaKoXxhEcaN24cI0aM4J577qGmpkbtcIQXOvYiLzo6mqSkpHY5ZUE03iWXXEJqaqraYbS6qKgoIiIiWj3ZMXbsWBYsWNBq228Ox/vdvXs39957LzExMfTr14/hw4dz/vnn85///AeDwdDgRld4eDgDBgxAq9WyadMmTCYTBoOBn376iU8++YQ1a9awa9cu6urq1Hpb7ZrbTl2pqanh+++/Z+/evZSXl2M2m0+6rEaj4aOPPmrD6DyXTF1pHWVlZQDExMSoHIlQi8ViIScnh7S0NLdNIFRXV1NVVUVKSook5IRHy8rKolu3bkycOJE333xT7XCElzAYDJSUlBAZGdlmXSiEcEdVVVVUV1e32vnE0aNH6dKlCwUFBW51bn3w4EEmTJjA1q1bycjIoHfv3oSGhjJ//nxMJhPjxo3jnXfeISwsDJvNho+PD3v27OGWW26hoqKCsWPHsnv3bjZu3OictgL2xM4DDzzAoEGDPKbOmydwy0TH7Nmzeeihh6itrXU+d6IwNRqN88Pg+KCIU5NEh+uZzWby8vJIT0+XA5OXUhSF3NxcdDodQUFBaodzQpLkEO3N66+/zsMPP8yGDRsYPHiw2uGIdsxoNFJcXOwcvh8QEKB2SEKorrWTHQMGDOCuu+5i0qRJLt92c9hsNvr378/u3bt56KGHeOqpp9DpdAD8+OOPPPPMM2zfvp3p06fzz3/+0/lvUlZWxpNPPum8Ka/Vahk2bBg9e/bk119/5eeff6asrIyYmBg2bNhA165dVXuP7Y3bJTqWL1/OFVdcgaIoBAYGMnDgQJKSkk47f+mTTz5powg9myQ6XC8nJ4fY2FhpzenFFEXBYDC4dZKjsrKSlJQUt64dIkRTWK1WBg8eTHV1Nbt375aLT+FyZrOZoqIiAElwCHECrZnsePXVV1m+fDkrVqxw6Xaba8mSJYwfP56YmBhWrFjBmWeeicViwdfXF41Gw9dff82YMWM444wzeOuttxg2bBhgP0f86KOPmD59OnfccQeTJk0iMTHRud3Vq1czZcoUtmzZwm233cbUqVNJTU2VkR0u4HbVT1566SUURWHgwIEsXrzYmSkTwh3V1tbi5+cnSQ4vp9FoJMkhRBvz9fXlww8/pHfv3rzyyis89dRTaock2hkfHx90Op18xwtxEo6aZLm5uS5PdowZM4Ynn3ySkpISYmNjXbbdpnJMQcnJyaGuro7Bgwdz5plnHtct5corryQmJoZDhw7x1VdfMXDgQEJCQtBoNPTp04cXX3yR4cOHExUVhc1mQ1EUfH19ueSSS7BYLFx++eWsWLGCK6+8ktTUVElyuIDbnfXu3LkTjUbD7NmzJckh3JrNZqOkpIS4uDi1QxEqURSlVYtxtVRNTY0kOUS71r17dx555BGeffZZsrKy1A5HeDiTyURFRYXz776+vpLkEE1mMBiw2Wxqh9FmIiIiCA8Pd3mB0rS0NPr3788333zjsm2azWbWrVvHkiVLKC0tdT5/qv8vx/mT41iQmZkJ0KAem8ViISAggB49egCwbds29uzZ43y9T58+jB07lqioKOc2fX19nf9eF1xwAeeddx55eXns27cPi8XS8jcr3C/RYbFYCA0N5YwzzlA7FCFOqaysjKioKLctPClaX1FRkdtWyq6pqaGiokKSHKLd+/e//01UVBSPPPKI2qEID2U2m8nPz6ewsFASG6JFKisreeWVVzhy5IjaobQpR7IjLy/PpckOV3Vf+f3337nzzjuJiori4osv5pprrqF///48/vjjVFZW4uPjc9q4g4OD0el0lJSUsGPHDsCeILHZbPj5+VFXV+csUpyZmcn69euBhnUm/74PjUaDzWYjODjYee1bVlYmozlcxO3Ofjt16oTRaJTiosKtmUwm9Hq9W7cRFa3L0Uo2NDRU7VCOI0kO4U3CwsJ49dVXWblyJTk5OWqHIzyI2WymoKCAgoICIiMjSUtLc9tpiMIzREREEBMTw969e9UOpc1FREQQFhbm0mTH9ddfz/r16521cpqjtLSUp59+mo8++oi4uDgmTJjAbbfdRlZWFjNmzODmm2/GaDSeNLngeC9nn3023bp1o6KigtmzZwP2kRmO86z9+/fzww8/kJqaSlVVFb///jtms7nBdk+0D8f2He2JCwoK8PX19apRQa3F7c6Ab775ZsxmMz/88IPaoQhxUkVFRcTHx0vG1UtZLBZKSkpISEhQO5TjSJJDeKOxY8dy5MgR54miEKejKAolJSVERESQlpZGcHCw2iGJdkCj0dCjRw8OHDiAwWBQO5w25+pkR3JyMueeey6LFy9u9jbeeustFi1axNixY9m5cyeffPIJH374Id988w3dunVj2bJlzJw5E71eD5x41AVAly5dGDt2LGBvgvF///d/lJaWkpeXx+zZs7n55psJCQlh1KhRhISEkJ+fT0FBQYNt/X10h6OYaV5eHsuXLwegZ8+eAHIO5wJu9y/48MMP079/f+69914OHTqkdjhCHKempgatVivDW72UoigUFBSQkJDgdtOWamtrKS8vlySH8DoajUbqJYnTOna0sEajISkpSRIcwuV69OiB1Wrl999/VzsUVbg62XHttdc2u06HyWRiyZIlAIwfP56oqCiMRiMAo0eP5vHHHwdg9uzZrF279pTbCgwM5O6772bkyJFYLBZeffVVunbtSseOHbn99tvJzMzkiy++YMyYMRiNRmpqao7rGvr30R2O1z/99FN27txJdHQ0N954Y7Peqzie27WXnTt3LjU1NUyZMoX6+nquv/56BgwY4JzzdDK33nprG0Xo2aS9bMvYbDaysrJIS0tzu4tc0TYqKiqwWCyqVgA/kdraWsrKykhNTZUkhxBCHMNqtVJaWkp9fT2pqany/S1a3WeffYbZbOa2225TOxTVVFZWUldXR1JSUotGQP/555907dqV4uJiIiMjm7Turl27GDlyJBERESxcuJDu3bsDOFu3VldXc91117FmzRpuueUWPvzww+OSEw6O7isGg4E5c+awYsUK9u/fj9Vq5YILLmDChAlccMEFZGZm0rFjR6KjoyksLGywvb179xISEkKnTp3Yt28fGzdu5PPPP2fjxo107tyZV155hVGjRmG1WuU45QJul+jw8fFx/jI0tn+wRqOR6rSNJImOlikpKcHf319qc3gxs9mMn5+fW01bkiSHEEIcz2q1UlZWhl6vR6fTOVs9CtHa9u7dy7fffsuDDz7o7LThjcrLyzEajSQkJLTod69379489thj3HzzzU1a79ChQ3Tp0oXo6GiOHj16whvnb7zxBv/+97+JiYnhq6++ok+fPs6kxunk5eWRnJzc4Lndu3czdOhQUlNTWblyJfHx8c7XnnjiCd566y3CwsIoLi52Pj9o0CAeeeQRRo0ahVarbdJ7FCd34pSVitLS0uRLSLglRwFSaXvs3dztC0iSHEIIcbzKykoqKyuJiYkhNjZWzi1FmzrrrLNYunQpe/fu5aKLLlI7HNVER0dTUlJCSUlJi6YXXnfddXzzzTdNTnRERUWRmJhIQUEBWVlZdO/e3ZnEcNxQHzx4MF27dmXbtm2sWbOGPn36NGrbNpvNmeQwmUyYzWZCQkJYuXIlVVVVjB07lvj4eGw2GxqNBo1Gw6hRo1i2bBmBgYH07NmTQYMGcfXVV9OrV6+m/pOIRnC7RIejN7EQ7kYKkHo3dxxGqNfrKS0tJS0tTZIcQvzNxo0bOffcc/H391c7FKGC0NBQIiIi5DtbqEKr1XL22Wfzyy+/cOGFF3r15zA2NpbCwkLKysqIiYlp1jauvfZannvuOerq6ggJCWn0ehqNhi5dulBQUMD69evp3r27s26I4//kjDPOoEePHmzbts3ZNrYx51THJkv8/f3x9/cnJyeHTz75BI1Gw7hx447b1vnnn8+SJUuIiory6pE+bUXOjIVoBClA6t1qa2tb1NqsNRiNRoqKimQkhxAnkJOTw5AhQ5g5c6baoYg2YLPZKC0tpaamxvmcu00xFN6nZ8+eVFRUSNtrID4+HqPRSEVFRbPWP+uss0hLS+PHH39s0nrh4eF06tQJgM2bNwMcd9MqLCyMrl27EhgYSFZWFllZWcBfHVKOLWJ8rNraWmdnnezsbGbPns2IESM4cuQI//jHPxg8ePAJ1+vYsaMkOdqInB0LcRqOEyh3Kz4p2oajleyxcyzVZjabyc/PJyUlxe1GmQjhDlJTU7n//vv573//KxcZ7ZjNZqOsrIysrCy0Wi2hoaFqhySEU3p6OhEREfzyyy9qh6I6jUZDYmIidXV1VFVVNWv95nRf0Wq1nHPOOfj7+7Nz505nu1dHEsNmswHQuXNnAgMDqa2tpbS01LlPOD4x4rBu3TquvfZaOnXqRK9evbj99tvZv38/d955J6+++qqcn7kBSXQIcRqlpaVER0fLAcsLOVrJxsfHu83/v9VqJTc3l6SkJLerFyKEO5k2bRqhoaE89thjaociXMxms1FeXk5WVha+vr5kZGTINBXhdjQaDT169GDfvn3SNAH7v0dycjJVVVUNRl811rXXXsv333/vbA/bWEOHDqVjx4788ccfrFmzBvgrweE4ZnTr1o3q6mpKSkoaNGswGAzMnz+fJ598krKyMuCvER6xsbEoikJtbS3Jycnce++9bNq0ibfeeougoKAmvz/hem5Xo+NYmzdvZuPGjeTm5lJXV3fSXswajYaPPvqojaMT3sBkMlFfXy+jObxURUUFgYGBBAcHqx0KYP9izsnJIT4+noCAALXDEcKtRURE8PLLL3PrrbeyatUqhg0bpnZIwkUsFgsajYaMjAxJbgi31qNHD/744w+qqqqaXZ+iPdFoNKSkpJCTk4OPj0+T6m307duXyMhI1qxZw+WXX97o9Tp37szgwYM5cOAAn332GePHj3ceNxx/JiYmEh0dTXFxcYO6Tps2beJf//oXBQUFDBo0iFGjRjmvR/v06cO7776Lr68vqampjY5HtB23ay8L9lZA48aNY9euXQ2eP1G7WcdzJ5s/JRqS9rJNk5OTQ1xcnFxUeiGTyURBQYHbdIJSFIWcnByioqJO2B5NCHE8RVG48MILKS0t5ZdffpHCpB5KURSMRqPUyRKinbBarc4bN00Z/fDII49QW1vLBx980KT9rVy5kpEjR2KxWNi8eTPnnXceYD/X8/f3Z9WqVVx77bV07tyZb775hoyMDACOHj3Kbbfdxvr167nnnnt46623mrRfoS63m7pSVlbG0KFD2blzJ3FxcYwZMwZFUQgMDOTmm2/mkksuITQ0FEVRiImJYcKECdx6660ujWHZsmUMGzaM6OhoQkJC6NOnD2+88YZzmFNjTZ061dlO6GQ/Bw4cOOn6+/fvZ/z48SQmJhIYGEinTp14/PHHqaysbOE7FI1RW1uLn5+fJDm8lFarJSUlxW2SHPn5+YSHh0uSQ4gm0Gg0vPnmmxw8eJB3331X7XBEEymKQmVlJZmZmdTX16sdjhDCRRyjIAoLC5s0FeXaa69l0aJFTZ4KdOmll3LNNdcAMGXKFGdhUkfy+8cff6S2tpZevXqRkZHhvOZLS0tjwoQJvP/++zz77LNN2qdQn9uN6Pj3v//Ns88+y4ABA1i9ejXBwcH4+PiQkJBAfn4+AHV1dfznP//h5Zdf5u677+btt9922f5feOEF/vnPfwL2qrihoaH89ttv2Gw2Ro0axbffftvoDgdTp05l2rRppKamkpaWdsJlvvjiixO+tnbtWkaOHOmcNpGamsqBAwfQ6/V07NiRzZs3N6s4oozoaBxFUcjMzCQtLc1tajMI71VUVISvry86nU7tUITwSHfeeSfffPMNhw8flmr3HkBRFKqrqykvLyc8PJyoqCjpLiVEO2Q2m8nNzSU5OblRI+6sVitJSUnMmzePiy++uEn72rFjB//3f//HunXr6Nq1K/fccw8Ay5cvZ9myZQwYMIBPPvmErl27Nuu9CDekuJnevXsrPj4+ypo1a5zPaTQaJTEx8bhlH374YcXHx0dZsGCBS/a9efNmRaPRKD4+PsoXX3zhfH7Pnj1KfHy8Aigvv/xyo7f3zDPPKIDyzDPPNCmO6upqJTY2VgGUBx98UDGZTIqiKEppaakyePBgBVBGjhzZpG06VFVVKYBSVVXVrPW9RUVFhVJSUqJ2GEIFRqNRsdlsaofhVFpaqhQUFKgdhhAeLT8/XwkJCVEef/xxtUMRp2Gz2ZSsrCylpKREsVqtaocjhGhlRqNR+fPPP53XOydTWlqqvPfee0piYqJy3nnnNWtff/75pzJy5EhFo9E0+BkwYICydOnSZm1TuC+3S48fOXIEjUbDBRdc0OB5k8l03LJPPvkkAO+//75L9j19+nQUReGOO+7gpptucj7fs2dPZsyYAdhHfJjNZpfs72TeffddSkpKOOuss5gxY4azs0JMTAxffPEFfn5+LF269LgaJsI1bDYbFRUVREdHqx2KaGMWi4W8vLyTFj5ua1VVVRgMBrdqbSuEJ0pMTOSJJ57g9ddf5+jRo2qHI05Bo9GQmpqKTqeTURxCeAF/f38SExPJy8s7rkxAdXU1n376KSNHjiQxMZHZs2dz1VVXkZ+f3+RzNUVR6NChA5999hmbNm3i5Zdf5qWXXmLHjh38/PPPXHHFFa58W8INuN03iNlsJiIiAj+/vxrCBAcHn7ANUXx8PBEREezdu7fF+62urmbVqlUATJo06bjXx4wZQ3h4OGVlZaxdu7bF+zsVR4/oiRMnHjdtIi0tzVk5fuHCha0ah7cqKysjOjpaTrC8jHJMK1l3+L+vra2lqqqKpKQkt6gTIoSne+yxx9DpdM7pqUJ9iqJQU1NDZmZmg6LycswTwrsEBgYSExNDfn4+er2ehQsXcv311xMfH8+rr77KhRdeyMGDB9m8eTOzZs2itLSUffv2NWkfGo0GRVGIjIxk4MCBPPbYYzz++OP06dOnld6VUJv6Z/N/k5SURFVVVYMiM/Hx8VgsFv78888Gy5rNZqqrq6mqqmrxfnfv3o3JZCIwMPCEH3itVkv//v0B2Lp1a5O2vXbtWsaMGcPQoUO5/vrreemllygsLDzhshaLhZ07dwIwePDgEy7jeL6pcYjTs1gs1NXVSf0SL+ROrWTr6+spLS11m2KoQrQHISEhTJ8+ncrKyhOOEhVtR1EUamtrycrKor6+ntTUVKmHJdq9Xbt2sWTJErXDcEsmk4n169fz6KOPEhcXx7/+9S+6devGrl272LNnD5MnT3Z2QgkKCmL48OHN+reUcyrv4naJjg4dOjjbKDo4EgyfffZZg2Vnz56NzWYjOTm5xfs9dOgQYB8xcexokmN17NixwbKNtX79ehYuXMjatWv5+uuvmTx5Mh07dmT27NnHLZuZmemcGuPYn6viEKdXXFxMXFycHAi9jNFopKamxi2KfRqNRgoLC0lJSXGLkSVCtCcTJ07kxx9/lDazKtLr9WRnZ1NXV0dKSgpxcXGS5BBewWazsWfPHvR6vdqhuJXnn3+exMRE7rnnHtLT0/nmm2/Ytm0b06ZN46yzzjrhOqNGjZKkkTgttzuLHj58OGBv8+Nwyy23oCgK06dP57777uODDz7g/vvv5/7770ej0TB69OgW77eiogLglNXYHa85lj2dxMRE/vWvf7F9+3bKysrQ6/Vs2rSJyy+/nPr6em6//Xa+++67E8ZxqliaGodoHKPRiNVqdYs7+qJtFRUVkZiYqHqCy2KxkJ+fT3Jy8kkTrkKI5lP7d1zY/w+Sk5OJj4+X45zwKo6L9gMHDqgciXvp168fS5YsITMzk5dffplLL72UqqqqU7aUHjlyJDt27DjpCHkhwA0THVdffTWpqals2LDB+dzIkSO58cYbsVgsvPvuu9x999288847mM1munbtypQpU1q8X4PBAHDKuzwBAQEAje7l/o9//INnn32Wfv36ER0dTVBQEIMGDWLp0qVcc801KIrCI4880qCYjiOOU8XS1DhE4xQVFUnRRy+VkpKi+h1em81GXl4eCQkJqscihBCuotfrG5yvBAUFSYJDeKWQkBDS09ObXFuivbv00ksZPHiwcxSrIxlaWFh40gYQcXFxDBgwgO+//74tQxUexu0SHWeeeSaZmZl88cUXDZ7//PPPee+997j44ovp3Lkzffv25emnn2bz5s1ERES0eL+BgYHAibu7OBiNRsD+Jd0SGo2GF154AbB3mTm2mKojjlPF0pI4HPVMfvnlF/bs2cOvv/7Kvn372L9/P3/88QeHDh3i6NGj5OXlUVJSQlVVFdXV1VRXVzv32x7V1tai1WobfYF59OhRPvjgA+6880569uyJn58fGo2G6dOnt3KkpzZ//nwuv/xy4uPj8ff3JyYmhrPPPpsxY8bw1ltvUVBQ0GD5n376CY1G06S7nI7lj/0JCQmha9euPPDAA2RnZ7v6bbU6taeIKIpCYWEhUVFRLT6+CCGEO6ivryc7O5vKykpJbAjxP2effTZHjx6V6Sun4efnR1JS0gk7sThcddVVMn1FnJLHfPNoNBruvPNO7rzzzlbZfmOmgzRmektjnXnmmURHR1NeXs7hw4fp2bPncduuqKggMTHRpXFkZmYCcOGFFzZ53WeeeYapU6c2eG7Lli1otVpCQkIa/AQEBHjMEGFFUSgtLSU1NbXR67z22mu89tprrRhV05jNZm644QYWLVoEQEREBGeddRa+vr78+eef7N+/n4ULF6IoCvfff79L9tm9e3dnkrG4uJjDhw/zxx9/8Omnn7Jy5UpnbR13ZbFYsNlsbjF6ory8HD8/PymCK4RoMkVRsFqt2Gw255/HPj7Ray1poX2iZPexP1arlbq6Ovz8/IiOjiYwMFBqcAjxP2eddRY//PADBw4ckG4fpxEQEODsxJKcnHzcdcWoUaOYNm0aer1epp2LE/KYREdrO+OMMwDIzs7GYrGc8O6Do+uLY9mW0mq1AA06zGRkZKDVajGbzfz5558nTHS0JI5u3boB8PvvvxMSEuI84Tn2JMhsNmM2mzGZTBiNRrp3745Wq3VOmXFQFIUtW7ZQW1t73EmTVqslIiLiuJ+UlBRiYmKaHHdrqqqqIjQ0tEknYjqdjiuvvJJzzz2X/v378+GHH/L111+3YpSn9sorr7Bo0SKCgoL48MMPGTt2rPP9KIrCzp07+fTTT116If3GG28wZMgQ59+PHDnC9ddfz549e5gwYQK//fab6iMlTsbRSjYmJkb1REdtbS16vZ6UlBRV4xDCG5WXl7Nx40ZGjRqldignZLPZMJlMmEwm5/fy30d7ajQafHx88PX1xcfHp8Fjx3f3sc/5+vo2+0aEoiin/DEajVRWVqLT6dBoNJjNZvR6PWazucF5gp+fH1qt1vmn48fHx8djbpII0RyhoaHO6SuS6Di9sLAwTCYTJSUlxMXFNXjtrLPOIjk5mVWrVrntMVyoy+0SHT4+PiQmJpKXl9eo5Tt06EBOTk6DZEFz9O7dG61Wi8FgYNeuXZx77rkNXjebzWzfvh2AAQMGtGhfAKWlpRQXFwM0uMDx8/OjT58+bN26lU2bNp2wxeymTZuaHYcjgZOcnNzii16NRsOjjz6KoijU19dTV1fn/KmurqayspLq6moKCgo4cOAAer2eoUOHcsEFF5xwe1VVVWi12jbNytpsNioqKkhPT2/Sek8//XSDv8+bN8+VYTXZnDlzAHjqqacYN25cg9c0Gg39+vWjX79+rRpDp06d+Pjjj+nTpw/79+/nl19+oXfv3q26z+aqrKx0i1ayRqOR0tJS0tLS5OReCBW8//77TJkyhQMHDpy001lrUhQFi8XiTGA4fhxDtTUaDf7+/vj7+xMQEEBoaCj+/v6qHS9ONNXRZrM5k9qBgYGnnU7seM8Wi8WZvKmrq8NsNjcYou7r69sgGRIYGIhWq5VjpfB4Z599Nj/88IOMRGik6OhoCgoKqKqqanB80Wg0zu4rkugQJ+J2iQ6gyUMqWzIE0yE8PJxhw4bxww8/8NFHHx2X6Pjqq6+orq4mJiamwV3s5poxYwaKohAREXHcEP9rr72WrVu3Mnv2bB577LEGIw2ys7NZtWoVANddd12L43AFjUZDcHAwwcHBxMbGnnS5v5/E/N3KlSvZt28fQUFB6HQ6EhISnD+xsbHOETCuVFZWRnR0tNuOPGgsxyifXr16qRpH7969CQsLo6amhkOHDrllosNoNFJdXU1aWpqqcVitVvLz86WNrBAqevDBB3nzzTd58sknWbBgQavtx2q1Ul9fj8FgcI7OcHCMZvD39yc8PBx/f3+PmOphNBopKSnBz8+PhISERq+n0Wic7/lkNYkc03HMZrMzEVRbW4vJZHImfwIDAwkMDHSOWBHCU8j0labRaDQkJiaSnZ2Nv79/g+PGqFGjuPHGGxskXIVwcMtER1OYTCaXfbCfeuopfvzxRz788EOGDBnCTTfdBNgLdz766KMAPPHEEw2Gus+aNYtZs2Zx3nnnNbirv2/fPt566y3uu+8+53QRsHdVmTFjBi+++CIAkydPPm7o/N13383LL7/M/v37efTRR3nllVfQarWUlZUxbtw4LBYLl19+OX379nXJ+24rp0tUXHzxxZx11lmUlZVRUlJCZmYmO3bsQFEUNBqNM/kRHx9PQkICycnJDYq3NpXFYqGurg6dTtfsbbiL8PBwysrK2LZtGyNHjlQ1FlckHluLY8pKUlKSqncFFUUhNzeX+Pj4VkngCSEaJzg4mGeffZaJEyeyZcsWBg4c2OJt2mw2DAYD9fX11NfXY7FY8PX1JSgoiMDAQMLDwz16ZIJjGLnNZiM2NrZF38Mno9Fo8PPzO+E0YkVRMJlMGAwGqqqqMBqNKIqCn5+f899Y6oIIdybTV5rO0YklJyeHlJQU57nT4MGDMZlMbN++3SUj7kX74tGJjsrKSoqLi4mMjHTJ9gYPHsx///tfnn76acaNG8fTTz9NaGgov/32GzabjZEjR/LYY48dF0NWVhYZGRkNnjebzbzzzju88847xMbGOu8e79+/31lpedKkSTz55JPHxREeHs68efO48soref311/nyyy9JS0tzrpuRkcHHH3/skvfsTmJiYo6r32E2mykuLqawsJDCwkKKioo4cOAAZrOZLl26cOONNzZ7f8XFxcTFxXnsyeaxRowYweeff87zzz+PyWRi/PjxdOvWrc3f2+7du6mtrQWgc+fObbrvxqioqCAqKkr1uhyFhYVERkbKkFUh3MAtt9zCa6+9xv/93/+xYcOGJh03HXUpHEkNx82XwMBAgoKCiIiIaDcdRxzdoSwWS6slOBpDo9EQEBBAQEBAg2HsFouF+vp69Ho95eXl2Gw2NBqNM/EhU1+EO5HpK013bCeWtLQ0Zx2iK664gsWLF0uiQxxH9W/fvXv3smfPngbP1dfXM3fu3JOuoygKlZWVLFy4EJvN5tJs6FNPPUXPnj2ZOXMmO3fupLCwkHPOOYfbbruN+++/v9F3CDIyMvjvf//L5s2bOXDgAH/88Qcmk4m4uDiuuOIK7rjjDi677LKTrn/JJZewY8cOpk+fzpo1a/j1119JTk7mmmuu4emnn3ZJ5xdPoNVqSU5OJjk52fmcoiiUlZWdchpMXl4eJpOJ1NTUE55kGo1GrFZru/lyefHFF9m8eTNHjx7lhRde4IUXXiAiIoK+ffty4YUXcuONN9KlS5dWjeHIkSPcfvvtgL1QrtrTaE4kKipK9ZPc8vJyfHx8XNIWWwjRcj4+Pjz77LNcccUVrFix4qTfzYqiYDabnRfTjqKgAQEBzimX7flC2jGy0l1Hofn5+REWFkZYWJjzOcfoGoPBQGlpqXPqi6NGU3BwsIz8EKqQ6SvN4+jEkpeXR0pKChqNhiuvvJIXXniB5557Tu3whJvRKCqPM582bRr/+c9/nH93TFNoDMeyy5YtO2XSQPylurqaiIgIqqqq2nUryyVLlrB79258fX1JS0sjIyODDh06kJSUhK+vL7m5ucTGxh7XSaa5Jk6cyJw5c5wjgtRQVVXFzJkzmTNnjrONsINGo2HSpEm8+eabDd7zTz/9xMUXXww0fsqJ4/fz2PayJSUlHDlyBKvVSmhoKMuXL2fQoEEueFftS11dHeXl5c4vZyGEe1AUhfPPPx+TycS2bdvQaDTO0Rq1tbXU1dWhKIpzfnhQUJBHtVFvDrPZTFlZGbGxse0qGWCz2TAajej1euf/a0hICKGhoe3+/1S4l6ysLJKSktw2eejOysrKsFqtxMXFUV5eTlxcHFlZWQ1ujAqh+oiOyMjIBkUBs7Ky8PHxOWWrRR8fH8LDw+nevTt33XXXSbt4CO911VVXMWDAAI4ePcrRo0fZvHkza9euxd/fn5SUFHQ6HX369Gk3U1cAIiIimDp1KlOnTuXo0aNs27aNtWvXsnjxYgoLC/nwww+xWq0um/b022+/OR8HBATQoUMHhg0bxuOPP06nTp1csg9XUBSFuro6QkNDVY3DZDJRXFxMenp6u/nMCdFeaDQa56iOlStX0r17d0wmk7PTSXsoWt1YFouF0tJSjEZju0tygP0c0pGsiomJwWazUVdXR0VFBQaDAX9/f8LCwggJCWl37124l6Z2/BN/ObYTS3R0NAMGDOCHH37gjjvuUDs04UZUH9Hxdz4+PiQkJJCfn692KO2St4zo+DubzUZBQQFHjx5l//79FBcXY7FYCA8P54wzzqBHjx4t6sLR0hEdzz33HMuWLTvu+TfeeKPFnUv0ej133HEHX375JRqNhqysLFJTU4GWjehYu3atSzoQtbaKigrnnHK1WK1WsrOzSU5OVr0+iBDiL47CljU1NdTV1bFx40Z27drFs88+q1oNCrUcm+DQ6XSEhISoHZIqjv08KIpCcHAwYWFhMtpDCDejKP/P3n3HN1WvDxz/nDRtuke6dwFlCbKHLEEUBUERxIEL10XE+XNdrwo4rvvq9bpREFQERUUcgAqiUgTZKHt275G0adPM8/sjJra0ha70JO33/XrlRWmSc55Am5zznOf7PDJZWVnExMTwyiuvsGvXLr744gulwxI8iOIVHaeaP3++4ldehY5HpVKRmJiIVqulS5cuxMbGkpmZyZEjRzh69CihoaGKjhs9cuQImzdvrvd9vV7f6m0HBgby7rvv8umnn2K329mxY4cr0dHRecIoWVmWyc3NJTY2ViQ5BMED2O12DAYDBoMBk8mERqMhJCQErVZL165duf766xkyZEirml17I2flW3NGxXZEfn5+rubodrud6upqysvLMZlM+Pr6EhwcTHBwsKj2EASF1Z7EctFFF/HCCy9gNpvFsZbg4pGJDkFwl+LiYuLi4lCr1XTr1o1u3bpxySWXnLaxqdForDOz2x2WLFnCkiVL3Lb9kJAQoqOjKSwsdDXQ6+g8ZZRsUVERISEhHabxrSB4m1OrNsAx3jEyMrJen6bzzjuPSy+9lPnz53PllVd2mIkpDbHZbNjtdld/ANEguT6VSuVKbICj2sNgMJCbmyuqPQTBAzgnsQAEBQWxefNmV6WyIHjNJ7jZbGbdunUcPnwYjUbDwIEDGTVqlNJhCV7EaDSiVqvrZXolSWr0yowsy7z77rtoNBp69erFOeeco+gSiMY4R+U25tixYxQVFQGOiSidQWFhoeKjZCsrK7HZbJ1mSpIgeApZlqmpqUGn02EymVx9F5rSa+Opp55i0qRJHDlyhN69e7dTxO3HZrNRWlpKVVUVcXFxohFiM/j5+aHVatFqtaLaQxA8hEajITo6mjFjxrBmzRqR6BBcFE90VFZWsmrVKgCuvvrqBqdg7Nixg+nTp5OTk1Pn+8OGDePLL7/s9GWWQtMUFxcTHx/frOfIsswll1zCwYMH2bp1K7/88gtRUVH07t2bPn36eEzSo1+/fkydOpVZs2YxZMiQOgfyv/76K3PnzkWWZfr169fqnh/ewGq1YrfbFb1CaTabKSkpEc3GBKEdmc1m9Ho9BoOBgIAAwsPD8ff3b9bV9oEDB5KVldXhyp/tdjulpaUYDAYiIyOJjo4WVQitcLpqD0mSCAsLIzg4uNM0sRVarqamhpycHM466yylQ/FawcHBXHLJJbz44ou89NJLSocjeAjFm5F+9dVXTJs2jf79+7Nr16569xcVFdGnTx9KS0vrNUuUJIlBgwaxbdu29grX63XWZqTV1dXo9fpmJzpqs1qtHD9+nIMHD7Ju3To+/PBDVCoVarWampoaTCYTgYGBdZa57N69u136YURERKDT6QDHMpUuXbqgVqvJzs6muLgYgKSkJH788Ud69uzpel7tZqSRkZGNbr9v375s3LgR8L5mpEqQZZnMzEzi4+PbbISxIAgNs9lsVFRUUFFRgY+Pj+sEU5zE/81kMpGXl4dWqyU0NFT827iZ1WpFr9dTWVmJr68v4eHhBAYGin93oUHbt29n7dq1PPjgg2KZayuUl5cTExPD8ePHFe3NJngOxdPMmzZtAmDmzJkN3v/CCy9QUlICwE033cTmzZvZu3cv999/P7Iss3PnTj7//PN2i1fwTsXFxa2uvlCr1fTo0YOpU6cyY8YMjEYjVVVV6PV6TCYT4EiolJaWum42m60twj+jP//8k3fffZdp06aRkpJCVlYWf/zxB3a7ndGjR/Piiy9y4MCBOkmOU9WO+9RbeXl5u7yOjqKgoICIiAiR5BAEN5FlmcrKSnJyclzVnklJSSQlJRESEiJOKE/h5+dHWloaYWFh4t+mHajVaiIjI0lLSyMqKgqDwUBGRkan6pMlNF2vXr2QZZkjR44oHYpXi4iIYMSIEaxdu1bpUAQPoXhFx+jRo/ntt9/Yu3cvffr0qXd/XFwcxcXFTJkyha+++qrOfTfffDNLly7l6quvZvny5e0UsXfrjBUdVVVVVFZWum2JU3V1Nfv27WPv3r2Ulpby4IMPdugGdp6ssrKSwMBARddHV1RUUFVV1arqIUEQGubsu2E0GgkODiY8PFz0mDiF3W539SYR70OeQ5ZljEYjZWVl2Gw2wsPDRXWN4LJo0SJCQkK46qqrlA7Fq73wwgv89ttvrF69WulQBA+geKLjrLPOIjs7G6PRWG8d4/79++nbty+SJPHjjz9ywQUX1Ll/z549DBw4kO7du3Po0KH2DNtrdbZEh3MJQVJSUrskH6qqqggKCnL7foT6TCYT+fn5pKamKnbgaDabycvLIyUlRazLFoQ2YrFYXH03NBpNi/pudAayLFNeXo5eryc8PJzw8HDxb+ShbDYbOp2OiooKAgMDFW+cLShv06ZNpKen89BDD4mLZa3wxx9/MGLECEpLS0VVraD80pXCwkJCQ0MbPClw9t7w8/NrcMJKnz59kCSJvLw8t8cpeCdnQ7r2+tA4XZIjNzeXwsLCdomjs/GEUbJ2u528vDwSEhJEkkMQWkmWZfR6PVlZWRQUFODn50dqairx8fEEBAS06++5LMucOHGi3fbXXM4ER0ZGBgBpaWlERETU/TeSpKbdRN+lduHj4+Na2hIcHExRURGZmZlUVFTU60cndA7du3fHbDaTmZmpdCherW/fvoSHh7taIwidm+JH484mYg3ZuXMn4Fi71lCmW61WExERgdFodGuMgneSZZnS0lKioqKUDgWA9PR03nnnHRYvXszevXuxWq1Kh9RheMIo2YKCArRarbgqJwit4Bx9mpGRgcViITExkeTkZEVL/F9++WUGDRrkavjsaZwj0lNTU9FqtaKKw4tIkkRQUBBJSUkkJiZiNptFL49OKiYmhrCwMA4fPqx0KF5NkiQmTZrEmjVrlA5F8ACKJzpiYmJc0yxOtWXLFiRJYsiQIY0+32AwiKUCQoM8oV9DbVdeeSUzZszA19eXr776iv/+97/88ssvVFVVKR2aV6uqqsJmsyk6Slav16NSqTrFcjBBcAeLxUJBQQHZ2dmo1WpXE0dPeP++/vrrMZlMvPrqq0qHAvxd7WK3213fa6wytp45c+DPPxu/ffCBGyMXTketVhMVFeWq8igsLCQrK0tUeXQSkiTRvXt3jh49Kv6/W2nChAn88MMPSocheADFF4ENHDiQ7OxsFi5cyAsvvOD6/tGjR9mzZw8A559/foPPzczMxGw2i7nTQj3Oag5PGi/l4+ND79696d27NyUlJfz++++kp6eTnp7Oueeey/Dhw1s9GaYzcmej2aYwmUyUl5eTmpqqWAyC4K2MRqNrfLxWqyU2NtbjKhLi4+OZM2cOr732Gg888IBiCU3npJnS0lJCQkJatpGYGGig8bvgOZxVHkFBQVitVnQ6HRkZGQQFBaHVakX/hg6se/fubN++neLiYmJiYpQOx2tdcMEFXH311a7lxELnpXhFx7XXXossy7z66qu89NJLHD58mA0bNjBjxgxkWSYoKIgpU6Y0+Nxff/0VoMFpLULnVlFRQXBwsEdcDWxIVFQUl156Kffffz9jxozhyJEjvPXWWyxbtowTJ06IbH4zxMXFKfb/7OzLkZiY6HEnZ4LgqZwn7JmZmZSXlxMdHU1ycjJBQUEe+3v0wAMPYDQaefvtt9t937IsU1FRQWZmJiaTidTUVKKiokQvoE6gdpVHQEAAubm5FBQUYLFYlA5NcIO0tDR8fX3F8pVW0mq1DB48mPXr1ysdiqAwxT8lZ8yYwZgxY7Barfzzn/+kd+/eTJgwgT///BNJkvi///u/Rq9cfPrpp0iS1GCjUqHzkmWZsrIyIiMjlQ7ljAIDAxk9ejT33nsvU6dOpbKyko8++oiFCxeKHh5eID8/n6ioKDHeUhCawG63U1ZWRkZGBjU1NSQmJpKQkOAVnfETEhK4+eabeeWVV9q9L1h5eTk1NTUkJycTHR0tEhydkCRJhISEkJqaSkhICPn5+eTl5Yk+Hh2MWq2mW7duHD16VOlQvJ5YviKAByQ6AFavXs3kyZORZdl1A7jtttuYN29eg885evQo69atA2DSpEntFqvg+Zx9W7zpYFCtVtOvXz9mz57NjTfeSO/evUV56mmYTCYqKysVjUGn06FWq1teQi4InYTVanVNlZAkidTUVKKjo73uPe7hhx+mpKSERYsWuXU/sizX6b+h1WqJiYnx2ApFoX0FBQWRkpJCREQEhYWF5OTkYDKZlA5LaCPdu3cnOztb9G9rpYsuuoj169fXeS8VOh9J9qAa+WPHjrn6cgwZMuS0a94zMjLYv38/vr6+TJgwoZ0i9H4VFRWEhYWh1+s7bOPEzMxMkpKSxEFhGyktLeWf//wna9asoaCgALvdzvz581mwYIEi8ciyTGZmJgkJCYpNOKmpqaGwsJCUlBSPLbUXBKWZTCZKSkqw2WxotVqPXprSVNdffz2//vorx44dc8v7T1VVFSUlJWi12rZNojr/3Xv3BqsVsrJArYa4OBgxAmbNgnHj2m5/QrsxmUwUFxcjyzJRUVEEBAQoHZLQCgaDgeXLlzNlyhRF+495O7PZjFarZfPmzfTr10/pcASFeFSiQ3C/jp7oqKqqcntzSlmW2bx5M6tXr2bTpk0cOnSI6upqoqKiOO+887jrrrsY58YDxoyMDBITE/H19WXBggU8+eSTzd7Gxo0bGTt2bJMeO2rUKDZv3kxYWBg9evTA19eXW265hVtuuaXZ+20LhYWF+Pv7KzZlxW63u5JpYsmKINRnNpspKioCHP2I/P39FY6o7ezbt4++ffvywQcfMGvWrDbbrjPBodFoiIqKavtql6YkmKZOhSVLQMEJVkLLmc1mSkpKsFqtREZGiomEQqc3ZcoUzj//fB588EGlQxEUIhIdnUxHT3RkZWURHx/v1hPQDRs2cOGFFwKgUqk466yzCAoK4ujRoxgMBgAef/xxnn766Tbft8lk4j//+Q/+/v6MGTOGPXv2sGTJknqP+/PPP6moqCA5ObnByTOvv/46AwYMOOP+/vjjD/r160diYiL79+9XdIQrOE4GysvLSUpKUiwGpRMtguCprFYrxcXFWCwWYmJiOlSCo7apU6dy6NAh9u/f3+rKQYvFQl5eHn5+fu5dzhMUBJddBuPHQ8+eEBwMxcXwyy/wzjtQWup43Pnnw48/gkjiei2LxUJpaSkmkwmtVktwcLDXV1IJQkv873//47vvvuP7779XOhRBISLR0cl05ERHTU0NpaWlJCYmunU/69evZ86cOfzf//0f11xzDREREYDjasqCBQt47rnnAPjmm2+YPHlym++/rKyMn3/+mT///JOIiAjGjRtHnz596hzIjB07ll9++aXVS0w+++wzrr76aq666io+/fTTNoi+5Ww2G1lZWaSkpCi2LKm6upqysjJFEy2C4GlsNhulpaVUV1cTHR3d4a8kb9u2jWHDhrFy5UquvPLKVm3Lbrdjs9ncXx2m00F4eMP3FRbCxImwe7fj76+9Bvfc4954BLezWq2UlpZiNBo7xe+lIJzq0KFDDBgwgPLy8g6beBdOz3u6NQrCGZSUlBAVFeX2/QwdOpSDBw8yZ84cV5IDwM/Pj2effZaJEycC8N5777ll/1qtlmnTpnHHHXcQExPDl19+yTvvvMPhw4fbfCytc7qAJ6z5raqqIjY2VtFRsoWFhcTHxyuyf0HwNLIsU1paSlZWFv7+/qSmpnaKk6mhQ4dy4YUX8uyzzzb7PddoNFJSUuL6u0qlap8lcI0lOQBiY+Hzz8HZc+T1190fj+B2arWa2NhYkpKSqKioICsri5qaGqXDEoR206NHD6KiokhPT1c6FEEhItEhdAhmsxlZlttlTGFoaOhpy4svuugiAI4cOeLWOGJjY7nmmmu45ZZbCAwMZMWKFXzwwQdkZGSc9nnffPMNF198sWssanR0NOeeey533303Bw8eBODnn39GkiTXGvSlS5ciSZLrVpssy6xcuZJJkyYRExODRqMhJSWFiRMnNrispqVCQ0MJDAxss+01V0FBAdHR0aLJrdDpybKMTqcjIyMDlUpFWloaoaGhnao8/uWXX2bRokVNfs01NTVkZ2dTVlbmmdWUXbvCX59dHDsGeXnKxiO0GbVaTXx8PHFxcZSUlJCTkyPG0gqdgiRJXHTRRWLMbCfmXbPdBKER7VXN0RTOKybtVQWRnJzMjTfeyIkTJ9iwYQNLly51NQI81RtvvMHdd98NQFxcHP3790ev13P06FH+/PNPunXrRq9evQgLC2PkyJEUFRVx9OhRYmJiOPvss+ttz2w2c80117Bq1SoA4uPj6devH3l5eXz//fesW7euTRv2KcU5yjY4OFjhSARBObIsYzAYKCkpISQkhNTUVK8a492WmtrF32QyUVRUhCRJxMbGKjYpqkl694bvvnN8nZsLCQnKxiO0KT8/P5KSkqipqaGgoMB1ocPbxjwLQnNMmDCBF154QekwBIWIdzfB61mtViwWi0csr3BWNwCMHDmy3fYrSRLdunWja9eu7N+/n48++ggAnU7neozVamXevHmo1WpWrlzJ1KlT69y3bt0615XGAQMGkJ6ezpIlS7j55psbrc545JFHWLVqFVFRUXz00Udccsklrvvy8vJYuHBhq16XLMuUlJQQHR3dqu20hs1mo6Sk5LTjrgWho6uurqa4uBh/f39F++R4E2fli7PSzeOJlm2dgvN3uKqqipycHIKCgoiMjOy0SUtP9tNPPxEREdGk5vFCw8aPH891111HUVERMTExSocjtDPxriZ4vdLSUiIjI5UOA3D05di9ezd+fn7cd9997b5/SZLo06ePqyFr7RLpkpISysvL6du3b50kBzhKWydPnsyYMWOavK+8vDzefPNNAL788ss6SQ6AhISEVjVCBSgqKlL8Cmh+fj6xsbHiIFDolEwmE9nZ2eh0OhISEhTtk+MNnMsoAVcVh1ckOQAOHPj7a1HN0eEFBQWRmpqKn58fmZmZVFRUKB2ScIqioiJ2O5sECy0SHR1Nv379WL9+vdKhCAoQR+6CV7PZbBiNRo9ogLdr1y7uvfdeAJ555hm6deumWCzOdeO1T86jo6PRaDQcOXKEvXv3tnofa9aswWKxMHz4cEaPHt3q7Z2qqqoKi8Wi6BhXvV6Pr6+vor1BBEEJNpuNvLw811WwhISE9mma6aXMZjO5ubkUFhZit9uVDqf5TpxwjJUFR78ON08vEzyDJEmEhYWRmpqK0WgkKytL9O/wIN27dycnJ4fq6mqlQ/Fq48ePZ+PGjUqHIShAJDoEr1ZWVoZWq1W8Cd7JkyeZPHkyNTU1zJw5kwcffFDReBri4+PDPffcQ1VVFQMHDmTMmDHMnz+f9evXt6gTu7Nx6fDhw9s6VGw2G0VFRYpOOLFYLJSXl4tSR6FTkWUZvV5PVlYWYWFhJCcne09FggIsFgt5eXkUFBSg1WpJTk72vIqXb74Bq7Xx+wsL4corwWJx/H3u3PaJS/AYKpWK2NhYYmNjyc/Pp7i4uM2nuAnNd/bZZyPLMkePHlU6FK82btw4kejopESPDsFr2e12DAaD4k1ICwoKuOiii8jPz+fSSy9lyZIlzU68PPvss6xZs6be919//fU2XZv5/PPPEx8fz/PPP8+mTZvYtGkT4Fjicuedd7JgwYImn9Q4y1zDTze2sAVkWSYvL0/REnlZlsnPzycuLk7xJJogtBez2UxBQYFrVKxYrnV65eXlVFZWEhAQwH/+8x/+8Y9/0KNHD6XDqu/uux1JjOnT4bzzIC0NAgKgpAR+/hneeQdKSx2PHTVKJDo6MefUNL1eT0ZGBjExMR5RMdtZhYSEkJCQwNGjR5vcAFmob/To0WRkZJCVlUVKSorS4QjtSCQ6BK+l0+kIDw9X9ES0rKyMiy66iOPHj3P++eezcuXKFpV3HzlyhM2bN9f7vl6vb4swXVQqFXfddRe9evXi+++/p6ysDJ1Ox7p163j++eeprKzkjTfeaNK2QkJCgLoNT9uC3W4nODhY0eUi5eXlBAYG4u/vr1gMgtBeZFmmtLSUqqoq4uLiRAVHE4WFhREREYHJZGLZsmUYjUbeeustpcNqWF4evP6649aY6dPh/fdB/P93apIkER4eTkhICIWFheh0OmJjY8V0FoV0796dLVu2YLPZPK9azEuEhIQwePBgNm7cyE033aR0OEI7EpdrBK/kLK9Wsn+DwWBg0qRJ7Nu3jyFDhvDNN9+0ePLLkiVLkGW53m3s2LFtGzTg6+vLJZdcwsMPP8zo0aMZOHAgjz76KACLFy9u8vryc845B4CtW7e2aXw+Pj5ERES06Tabw2QyUVlZ6TENbgXBnYxGIxkZGfj4+JCSkiKSHI2wWq0UFBTUadjorHjRaDTceeedLF26lLKyMqVCbNzSpfDkk3DJJdC9O2i1oFZDeDj07QuzZ8Nvv8Hnnzu+Jwg4PosTEhKIiIggOzub8vJysZxFAd27d8dkMpGZmal0KF7tggsuEMtXOiGR6BC8UkVFBaGhoYqVVptMJi6//HJ+//13zjnnHNatW+eqcPAW8fHx3HrrrVx66aWuqhij0djkA/VJkybh6+vL1q1bG6xG8UbOJSvx8fFiyYrQodlsNvLz8yktLSU5OZmIiAjxM98Am81GYWEhOTk5BAcH15lkVdsdd9yBzWbjvffea+cIm+D882HePFi7Fg4fdixTsVigvBz++MOxdOW885SOUvBQgYGBpKWlYbPZyMrKalFPL6Hl4uLiCAkJ4ciRI0qH4tWcfTpEsq5zEYkOwevIskx5ebliV/1tNhvXXHMNP/30E926dePHH39Eq9UqEktzHDhwgNmzZ7N9+/Y64w/79u1LeXk54CjFXrduXZOWzMTHx3PXXXcBMG3aNH744Yc69+fl5fHUU081Ob7i4mIszmZ4CikpKSEsLEzxkbaC4E4VFRVkZWUREhJCUlKSKElvgLMhcnZ2tmsMZ3BwcKOPj4mJ4brrruP1119X/H1MENqaJElERUURHx9PcXExBQUF3jldyAtJkkT37t1FQ9JWGjlyJPn5+Zw4cULpUIR2JI5uBK9jNBrx9/dXrJrjs88+46uvvgIcpcszZsxo8HHx8fGsXLmyHSM7PbPZzMKFC1m4cCHh4eF07doVWZY5ceIEer0ePz8/Xn75ZYqKinjrrbe46KKLzpj5fu655zhx4gSrV6/m4osvJiEhgcTERPLz88nNzUWWZebNm3fG2KqqqjCZTIqOrzSZTBiNRpKTkxWLQRDcyWKxkJ+fj0ajEc1Gz0CWZQICAoiOjm5ypct9993H4sWL+eKLL7jmmmvcHGETWa3w3XewcCH8+SfU1EBEBFx6Kdxxh2MpiyA0kZ+fH8nJyVRUVJCZmUlUVJTXVbN6o27durFz505Xbzqh+QIDAxk+fDgbN26kW7duSocjtBOR6BC8TmlpKbGxsYrt32Qyub4+evRoo1n21NTU9gqpSc4++2zee+89fvjhB/bs2eMqg0xJSeHaa6/lwQcfpFu3btTU1PDDDz/w3XffkZeXd9ptajQaVq1axfLly1m8eDG7d+9m7969xMXFMWnSJK6++uozxuW8cqpkJ2xZlikoKBBLVoQOSZZlysrKqKysJC4uTjTZbYDdbqe6utpVtaFWq5t9Ate3b1/Gjx/Pq6++ytVXX638e8kvv8CNN0JWFgwdCjfcAIGBkJsLH34Ir74K06bBBx9AI0tyBKEhoaGhBAcHU1RUhE6nIy4uTtELFR1dWloakiRx4sQJBg4cqHQ4XmvcuHH89NNP3HbbbUqHIrQTSRaLlTqViooKwsLC0Ov1ja419mQWi4WCggJx1b0dHD9+nNLSUoYOHeq2fciyTE5ODpGRkYpPWbHZbIqPKhaEtmY0GiksLCQ0NFT04WiA3W53JYEiIyNb/bn47bffMmXKFH777TfOU7LvxZo1cMUVMHIkvPgiDB5c9/6aGlixAu67D7p2hY0bQcHm3oL3qqmpoaCgQLzHuNn7779PREQE06dPVzoUr/Xzzz9z7bXXkpeXJ35OOwmR6OhkvD3RUVhYSHBwsJjr3kGUl5djsViIiYlRLAar1Up2drbriokgdATOkbHV1dXEx8eLq62nsNvtlJeXU1FRgVarJTQ0tE1+/+12Oz179qR///589tlnbRBpC5w86ZimMn68Y5LK6f7v//wTRo+GCy6AL79svxiFDqX2+01CQoLo++MGR44cwcfHRyy7aIWamhrCw8PZs2cPPXv2VDocoR2IBbqC13CWFit55V9oW5IkER0drWgMBQUFxMbGiiSH0GE4k3eSJJGcnCySHA3Iy8vDx8eHtLQ0wsLC2uz3X6VSce+99/LFF18oNw7yzTdBo4FPPjl9kgMcCZHXXoNVqxwTWQShBZzNSmNiYsjOzq4zhlloG927dxdJjlby9/dn5MiR/PTTT0qHIrQTkegQvIZeryc8PFyckHqA8vLyNhkxp/T/p8FgwMfHRyTPhA7DYDCQnZ1NdHQ0kZGR4v3yL6cWryYlJbnt/eemm24iNDSUN954o823fUZGIyxeDLfcAk2tfLz6aoiKcoyZFYRW8Pf3JzU1lerqanJzc7HZbEqHJAh1OMfMCp2DSHQIXkGWZXQ6HWFiDbFHWL16Ne+8845yVyzbgN1up7i4WNFlM4LQVpwNdfV6PampqQQEBCgdkkdwjiPPyMhot5Ou4OBgbr/9dtasWdP+Izi3boXyckcT0qby93ckO7791n1xCZ2GSqUiLi6OsLAwsrKyqK6uVjokQXAZN24cP//88xmnCgodg0h0CF6hurqagIAAMQ7RQ0ydOpWwsDCWLl3KTz/91KwTiKqqKsrKytwYXdMUFxcTGRmJj4+P0qEIQquYzWYyMzMJCAggMTFRvE/yd3I8IyMDWZZJTU1t19/1J554gj179rT//0V5uePPxMTmPS8x8e/nCkIbCA4OJiUlhbKyMoqLi8WJpeARBg8ejMFg4NChQ0qHIrQDcTQkeIWysjK0Wq3SYQh/CQ8P56abbmLs2LFs3ryZDz74AJ1Od8bnOUfJKl2ZYzKZMJlMzR4fKQieRq/Xk5eXR0JCguK/V57CYDC4KjhSU1PRarXtnnAICQlRpjeKc3Sw0di85xmNIKqAhDbm4+PjSr5mZ2eLpSyC4jQaDcOGDWPTpk1KhyK0A5HoEDye2WwGwM/PT+FIhNpUKhVjxozhlltuwWAw8O6773LkyJFGHy/LMnl5ecTGxipaReEs8Y+LixP9CwSvZbfbyc3NpaamhtTUVPH+WIuvry+pqalERkZ2vuqWXr0cf65f37znrV8PvXu3fTxCpydJEpGRkURFRZGVldUm/b06u3ZfEtfBjB49WiQ6OolOdgQgeCNRzeHZEhMTmT17NikpKSxfvpz169c3+CGs0+nQaDSKN/7U6XQEBQWJE0PBaxmNRjIzMwkLC+v0E4NkWaaiogKDweD6nkaj6XwJDqcuXeDii+Gtt5r+nN27YcsWuOMO98UlNK6oyNEfZd48mDjR0RhWkhy3WbOUjq7NBAYGkpycTGFhYZMqQIWG/fTTTyxZskTpMLyaSHR0Hp30SEDwFna7HaPRqPjJ8am++uorZs+ezaBBg4iPj8fPz4/w8HBGjBjBa6+95qpCaS9LlixBkqQ6N5VKhVarZfTo0bz11ltYrVa37T8gIIBrrrmGiy66iN9++42lS5fWGS9nMpnQ6/WKj5K1Wq3odDoiIyMVjUMQWkKWZUpLSykuLiY5OZng4GClQ1KMLMtUVlaSmZlJTU2NaL5a2513wrZtsGLFmR9rscAjj0BSEkyZ4v7YhPpiYx3/9k8/DevWQWmp0hG5jVqtJiUlBZPJRF5enqhMaIGwsDBycnJEZUwrnHfeeeTk5JCdna10KIKbiUSH4NE8daTsyy+/zMKFC9m/fz8BAQH069eP4OBgtmzZwn333ceIESMUuWKh0WgYOXIkI0eOZNiwYfj6+pKens7cuXOZMGECJpPJbfuWJIkRI0Ywa9YsysvLeffddzl+/DjgOClJSEhQ/P+xoKCg018BF7yT1Wp1HZQlJyejVqsVjkgZsixjMBjIzMzEaDSSnJxMTEyMaCpc25QpcP31cNNNp092VFfDNdfAxo2wZAl00p8pj5KcDBMmKB2FW0mSRGxsLMHBwWRlZbX7hSFv161bN2RZJiMjQ+lQvFZISAgDBgwQVR2dgEh0CB7Lk0fK3nbbbWzcuJHKykpOnDjB9u3bycnJYcuWLSQlJbFz504ee+yxdo8rLi6O9PR00tPT2bJlC4WFhaxYsQJfX182btzIq6++6vYYUlJSmD17NvHx8a4PYn9/f8WXihgMBlQqlcdVBwnCmVRXV5OdnU10dDSRkZGdOlFnNpupqqryqgTHtm3bGD16dJ3lNW4lSbBokWNk7LXXwrBhsHQp5OU5Jqvs3++o4khJcVQQfPkljB/fPrEJ9c2bB998AwUFkJUF776rdETtIjQ0lPj4eHJzc9vvd6MDCA8PJyIighMnTigdilcbPXo0v/76q9JhCG4mEh2Cx6quriYwMNAj11rPmjWLsWPH1uuqP3z4cF555RXAsbzFE1x99dXMmTMHgOXLl7fLPoOCgrjuuusYO3Zsu+zvTOx2O8XFxcTGxiodiiA0i06no6SkhJSUlE67PKP2sjuNRqN4Q+Pmio2NZfPmzaxoylKStuLn50hurF4NERGOXg+JiaDVQp8+sHAh3Hgj/PGHWLKitCefhMmTHUtYOhmNRkNqaio6nY6ioiIxgraJunbtKhIdrST6dHQOnncGKQh/8dYmpD179gQciRpPMWbMGACOHj3q+t6sWbOQJIklS5Zw8uRJZs2aRWJiImq1mgULFrgeJ8syK1euZNKkScTExKDRaEhJSWHixImnbYhlt9vJy8vziAOXkpIStFqtV50cCZ2bLMsUFha6lmd0xp/d6upqMjMzKSsrUzqUVklNTWXixIm8295X6iUJLrvMUbVx/LijauCzzxwTVnJz4ZVXoFu39o1JEE6hUqlITEzEx8dHjKBtoq5du1JaWoper1c6FK81atQoDh48SGkH7okjiESH4KGcazZPrZjwBlu2bAFg4MCBCkfyt9MlGw4fPszAgQNZsWIFcXFxnH322a7SeLPZzPTp07nqqqtYu3YtarWafv36Ybfb+f7777n55psb3V9eXp5HlNlbLBaMRiOhoaGKxiEITWW328nJycHX15f4+HjFf4fam9FoJCsrC71eT0JCAjExMUqH1GqzZ89mx44d7Ny5U5kAunZ1VA3MmOFYpiKW8AkeRIygbZ60tDQATp48qWwgXiw6OpqePXuSnp6udCiCG4lEh+CRdDodERERSofRZDabjZycHN566y0efPBBgoKCeO6555QOy8VZnnfWWWfVu++ll15izJgx5OXlsXPnTg4ePMgjjzwCwCOPPMKqVauIiopi7dq15OXlsW3bNnJycsjJyWH+/PkN7u90o2RtNht//vlnu1V6FBYWigakgtewWCxkZmYSERHhlRVtrZWTk0N5eTnx8fHEx8d7ZbK7IZMmTSIxMbH9qzoEwYvUHkFbXl6udDgeKzAwkPj4eLF8pZXE8pWOTyQ6BI8jyzJVVVUEBQUpHcoZ/fe//0WSJNRqNcnJycydO5fx48ezdetWhg4dqnR4AHz66ae8/fbbAFx11VX17o+OjuaTTz6pc1Ll7+9PXl4eb775JgBffvkll1xySZ3nJSQk1Fni4nSmUbJHjhzhyy+/ZPXq1W4deQuOK8OSJOHv7+/W/QhCWzAajeTk5JCQkNBpR8fGx8eTkJDQYRIcTmq1mttvv51PPvmkzuhtQRDqco6gNZvNYgTtaTj7dHjC8mBvJRIdHZ9IdAgex2AwEBwc7BVX4BMTExk5ciRDhw51NbrcuHEjy5cvV2SdaUFBAaNGjWLUqFGcd955xMXFcc0112CxWBgxYgQPPPBAvedMnz69waTSmjVrsFgsDB8+nNGjRzdp/7Isk5+ff9pRsr169eKKK65g3759fPTRR27rZeLscdARyt6Fjk+v11NUVERKSgoajUbpcNqFyWQiJyenzntlR+5Fcuutt2I0Gvnkk0+UDkUQPNqpI2gtFovSIXmcrl27UlVVRXFxsdKheK3Ro0eza9cuMfWnAxOJDsHj6HQ6wsPDlQ6jSWbMmEF6ejq///47BQUFbN26lbS0NJ599lnuuuuudo/HZDKxefNmNm/ezO+//47RaGT48OG8+uqrbNy4scGpDb169WpwWwcPHgQck2SaSpZlYmNjzzhK9txzz+Wmm26ipKSERYsWuaXZYEVFBYGBgR3uyrDQsciyTFFREVVVVaSkpHToE30nZ4KjuLiY6OjoTvGaAZKSkpg8eTLvvPOOuAorCE3gHEGbk5Mj+nacIiUlBbVaLZavtEJqairx8fFs27ZN6VAENxGJDsGjWK1WZFn22pPTYcOGsWbNGjQaDQsXLiQzM7NJz3v22WddlRi1b7t3727W/lNTU5FlGVmWsdvt6PV6tmzZwn333ddo8qGxJULO8urmJJ1UKlWTR2AmJydz6623IkkSixYtIjs7u8n7ORO73U5ZWRlRUVFttk1BaGt2u53c3Fx8fHw6RdNRs9lMbm4uRUVFREVFkZSU1GmqV5zuuOMO9u7d67YDa0lq2s1DJn8LwhlpNBqSk5MpKCigqqpK6XA8hnOJj0h0tM55553nGiIgdDwi0SF4FG+q5mhMQkIC/fv3x263s3fv3iY958iRI65KjNo3JUeHhYSEAI7/kzNp6dVJrVbLLbfcQlRUFEuXLmX//v0t2s6pysrKiIiIQKUSb3GCZ7JarWRlZREWFuYR04nag9lsJjIykuTk5E7bN2fChAmkpqZ2vKakY8c2PcvivP38s9JRC17C2QdNjFSt6+KLL2bKlClKh+HVRKKjYxNnAYLHkGWZyspK1wm2N3M22Wxqs80lS5a4KjFq38YqeNntnHPOAWDr1q2nfZwsy+Tm5mIymVq0n8DAQG644QZ69+7N559/zubNm1tV1m21WjEYDISFhbV4G4LgTkajkezsbOLi4jrE+11jLBZLnfeF4ODgTpvgcPLx8eH2229nxYoVTUoit9ScOfDnn43fPvjAbbtuGpUKzj5b4SAEb+Lj40NycjIGg4GSkhKlw/EIMTExHfozpD04Ex1iOWHHpFY6AEFwqq6uJjAw0OuvbGZkZLgqOfr166dwNC03adIkfH192bp1K5s3b2bkyJENPk6n0+Hn59eqEnS1Ws0VV1xBeHg469evR6fTMXHixBZVZBQVFRETE+P1P0dCx1RRUUFZWRnJycmo1R3zI9hisVBSUoLFYhHNgBtwyy238Oyzz7J169Z606zaSkwM9Onjlk037IMP4EzLCg4cgKuvdnw9fjwkJro/LqFDkSSJhIQEiouLyc/PJy4uTnzWC60yYMAAqqqqOHLkCD169FA6HKGNiYoOwWOUl5cTERGhdBhntHPnTubPn9/gush169YxceJErFYrkyZNolu3bgpE2Dbi4+NdDVWnTZvGDz/8UOf+vLw85s+ff9pRss0hSRIXXHABU6ZMYefOnWzcuLHZ26ipqcFmsxEYGNjqeAShrZWXl1NRUeFqItfRWK1W8vPzycvLIywsjJSUlE5fwdGQ+Ph4CgsL3ZbkUESXLo7MyuluO3f+/fgbb1QuVsGrSZJETEwMGo2GnJwcMX5WaBU/Pz8GDRoklq90UB3vSEvwSjabDZvNdsZpHZ6gsrKSp556iqeeeoq4uDiSkpIwm81kZWW5SpGHDBnC0qVLlQ20DTz33HOcOHGC1atXc/HFF5OQkEBiYiL5+fnk5uYiyzKPPfZYm15RGThwIMHBwcTHxzf7uUVFRcTFxbVZLILQVkpLSzGZTCQmJnbIK5Amk4mCggKioqIabXAs/C04OFjpENqX3Q7Lljm+Dg6GadOUjUfwelqtFl9fX7Kzs0lKSuo005uEtjdixAi2bNnCrFmzlA5FaGOiokPwCHq93mt6KvTr14/XXnuNyy67jKCgIA4dOsShQ4cICAhg4sSJfPDBB/z2228dYuKHRqNh1apVLFu2jPHjx1NTU8PevXtRqVSMHz+et99+2y3Jqe7duzd73WllZSV+fn5ekSwTOpeSkhLMZnOHm6xSe02zn58fqampIskhNGzDBsjNdXx95ZUgqu6ENhASEkJ0dDTZ2dnYbDalwxG8lGhI2nFJsui+0qlUVFQQFhaGXq8nNDRU6XBcMjIySElJEVMyvIjJZPKY0ZCyLLt+hsRVHcGTFBUVIctyh+obY7PZKC0txWq1kpCQoHQ4Qi3OH7HevcFqhawsUKshLg5GjIBZs2DcOAUCu+EG+Phjx9c//aRQEB4qPR2OHfv77yUl8NBDjq9HjoTbbqv7eHHVuR6j0UhBQUGH7n10OlarFaPRKBqTtlB+fj6JiYnodDqPOjcSWk8kOjoZT0x0GI1GdDpdi5YqCAI4xsmCo5RVEDyBLMsUFRW51pN3BM4ER3V1NZGRkQQHB3eY5E1H0ZT/jqlTYckSaLciSoPBkWmpqoKUFMjIaFqgncWsWdCcpa7isL1BNTU15Ofnd8pkx0cffYSfnx9XO5v9Cs2WlpbG+++/z4UXXqh0KEIbEpfPBcV5SxNSwXHypmR56LFjxyguLq7zPZvNhl6vFz9DgseQZZmCggJ8fHw6TJKjpKSErKws/P39SU1NJSQkRCQ5PFBgIFxzDbz3HmzaBLt3ww8/wGOPQWSk4zFffQWXXw4WSzsF9cUXf09kueEGkeQQ3MLf35/4+Hiys7OxtNsPt2dITEwkKytLjEhtBbF8pWMSiQ5BUXa7HbPZLDrzewmdTkd5ebki+5ZlmZ9//pmlS5dSVFTk+n5xcTFRUVHipEvwCLIsk5+fj5+fX4fo0+MUFBREWloaoaGh4netDWVnZ3PVVVeRmZnZJtvLzYXlyx2rHUaNgv794aKL4JlnYP9+GDDA8bhffoG3326TXZ7Zhx/+/bWYtlLfkiWOKo2m3oRG+fv7k5CQQE5ODmazWelw2k1KSgrV1dWu6lah+USio2MSiQ5BURUVFR6zhEY4PbPZjF6vJ9J5WbCdSZLEzJkzCQkJYenSpRQWFmKxWDCZTGJdquARZFkmLy8Pf39/xX5P2oLdbqe0tLRO9VZAQIBIcLhBeHg43377LcucE0lavb3G74uNhc8/B2e/5tdfb5Ndnl5ODvz8s+Pr4cOhe/d22KmXOX4cVqyA99+HlSshL0/piLyaRqMhMTGR3NzcTpPsSE5ORpIksrKylA7Fa5133nls3bpVjCvuYESiQ1CUN01b6cycJ3AJCQmKnuwEBgZy4403EhYWxtKlSzl06BDR0dGKxSMITrIsk5ubS1BQkNf2inEmODIzM/Hx8RHNodtBSEgI06ZN48MPP2yXsvOuXR0VHuDof+n2c+qPP3aMlgW46SY378yLyDJ8+y1cfDGcdRZcey3cfjtcdZWjj8mVVzrWHgkt4ufn50p2mEwmpcNxO41GQ0xMjEh0tEK/fv0wGo0cOXJE6VCENiSOYgTFmM1mfHx8xJQML1BUVER4eLhHjG4NCAjghhtucF0J1el0SockdHJ2u52cnBxCQkIIP90ldQ8lyzJlZWVkZmaiUqlIS0sjPDxcVHC0k5tuuonDhw+zffv2dtlf795/f+2c+Oo2H33k+FOjAdEo0cFuh3vugSlTQK93NCLV6cBmg+JieO01OHAAxoyBF15QOlqv5efnR1JSEnl5edTU1CgdjtulpKSQnZ2tdBhey8/Pj8GDB7N161alQxHakEh0CIrR6/VeeVLQ2VRXV2OxWDzq/yogIICLLrqIyMhIPvzwQ3LdfrQuCA1zJjnCwsK8tjrNmSxMS0sjIiJCJDja2QUXXEBCQgIf1u5l4Ubt1uZhxw7HCTvA5MkgGkY7PPwwvPkmvPMObN3q6FsSFgYqFURFwdy5joYqTzwB//xnO60x6ph8fX1JTk4mPz+/wyc7UlJSKC0tpcrZ+FdotiFDhrRbwlloHyLRISimqqqKoKAgpcMQzsDZydyTOKuBbrrpJmJiYvjoo4/IE+uahXZmt9vJzs4mIiLCq3oNnTo9KSIiAq1WKxIcCvHx8eH6669n+fLl7dJTwJl7AEhIcOOOaidu3LxspajIsRJk3jyYONGRL5Akx23WLLfuunl274b//Mdxmz278cdJEjz1lKPy44EHoLCw/WLsYNRqtSvZYTQalQ7HbZKTkwHE8pVWEImOjkckOgRF1NTUoNFoxIG1F1CpVB63vKi4uJjo6Gg0Gg3XXXcdUVFRfPzxx3WmsQiCO9lsNrKzs4mMjPSaZriyLKPX68nIyOjQB/ze6IYbbqCsrIw1a9a4dT8nTsCPPzq+7toVEhPdtCOLxdFgEyA62pF9cKPYWMdKkKefhnXroLTUrbtrubffdvyj33130x6/YAGo1bBokVvD6ujUajUpKSkUFhZSXV2tdDhu4awqFMtXWm7IkCHs3bu30zSx7QxEokNQhE6n89oy78Y8/vjjSJKEJEk888wz7brvJUuWuPbtvKlUKrRaLaNHj+att97CarU2a5ttPYe+oKCAp59+msmTJ9OtWzdCQ0PRaDR06dKFG2+8kT179pz2+TU1NTz11FP06tWLbt26kZKSwuWXX87u3bu57rrrCA0N5aOPPqL0lCPcrVu3cv3115OWloa/vz8hISGcddZZTJgwgX//+9/88ccfzX4tX331FbNnz2bQoEHEx8fj5+dHeHg4I0aM4LXXXjvjh+SWLVu4/PLLiY6OJiAggN69e/P00083Wlo7a9Ys1//rfffd1+h2n3nmGSRJYpZHXcLseJzLVaKioggODlY6nDOqneCwWCykpqZ6RdydSZ8+fRg4cGCrlq988w2c7m2+sNDR49L51j53bot3dWZr1zr6TQDMnOk4WW8nyckwYUK77a7pqqpg2TJHJUdT/z0iIhyNShcudG9snYCPjw/JyckUFRV12OUdKSkpoqKjFbp160ZQUFCLjgsFDyULnYper5cBWa/XKxaD3W6XT5w4IdvtdsViaGsHDhyQ/fz8ZEAG5Keffrpd9//BBx/IgKzRaOSRI0fKI0eOlIcPHy7HxMS4Yho3bpxcU1PTpO2ZTCb55MmTbfp/9OOPP7piiYqKkvv16yf37t1bDgwMlAHZx8dHXrx4cYPPNRgM8qBBg2RA9vPzk/v37y8nJia6nrd8+XLZYDDIb7zxhrxz507X855//nlZkiQZkP39/eUePXrIQ4YMkRMSElyxTJ8+vdmvZeTIka5/7y5dusiDBw92xQPIgwYNksvLyxt87scffyz7+PjIgJyYmCgPGDBA9vX1lQF5yJAhclVVVb3n3HTTTa5t+/v7y7m5uQ1u++mnn5YB+aabbmr2axKaxm63y1lZWXJFRYXSoTSJyWSST5w4IRcVFck2m03pcITT+O9//yv7+vrKJSUlLXp+aqosJyTI8t13y/Inn8jyb7/J8u7dsvzjj7L82GOyHBkpy44OHbI8apQsN/HjoGWmT/97Z7Xek91l3jxZ/uYbWS4ocPz95Mm/d+8xb4cHDzoC+uWX5j1v6VLH84xG98TVyVitVvnkyZNydXW10qG0uW3btslPPfWUbDablQ7Fa1100UXyW2+9pXQYQhsRFR1Cu6uuriYwMLDDLFuRZZnZs2fj6+vLBRdcoGgscXFxpKenk56ezpYtWygsLGTFihX4+vqyceNGXn311TNuQ3bTKNnU1FTef/99srOzKS4uZs+ePezfv5+CggLuu+8+bDYbc+bMIScnp95zH3jgAXbu3EmPHj34+eef2b17N1lZWbzwwgvYbDZuueUWysrKmD17NgMHDgQcVRP//Oc/kWWZRx99lMLCQg4dOsS2bdvIzc3l5MmTPP/886Smpjb7tdx2221s3LiRyspKTpw4wfbt28nJyWHLli0kJSWxc+dOHnvssXrPy8jI4NZbb8Vms/Hiiy+SnZ3Nrl27OHr0KD169GD79u08/PDDje7Xx8eHmpoann322WbHLLSeLMsUFBQQHBzsNctVfH19SUlJITo6WoyL9XDXXnstdrudFc4lHy2Ql+foXTlzJowYAQMGOMbJ/vvffy/nmD7dUf2h0bRR4KcqL3c0zADo0wf+ek92pyefdPQ7jY11+65azjnmtLn/8P7+dZ8vtIqPjw9JSUkUFBR0uCUKKSkp2O120bOsFUSfjo5FHPUI7a6jTVtZtGgRmzZtYt68ea5mUJ7k6quvZs6cOQAsX778jI931yjZs88+m1tvvZWkpKQ63w8JCeGVV17hnHPOwWQysXbt2jr35+fns+iv9ckvvPCCK5GhUql4+OGHueiiizAajbz88suoa5UDL126FIALL7yQZ599tl6zyLS0NB555BH+85//NPu1zJo1i7Fjx+Lr61vn+8OHD+eVV14BHMtbTvXSSy9hMpmYMGECDz30kCuRlJqayuLFiwFYuHAhhY00nrv66qtRqVS8//77DSaEBPcqKSlBrVYT4aHTI2RZxmAw1Pn5kSTJ43rsCA2LiYlh4sSJLV6+snQpzJkDKSlw1lmg1TpWSISHQ9++jhUTv/0Gn3/u+J7bfPrp3yflN97oxh15mchIx5/NXVqQleX4j/SS5Ko3UKvVJCYmkpub2+xlvZ4sOjqau+++m5SUFKVD8Voi0dGxiESH0K7sdjtmsxmN2y4lta/i4mIeeeQRevfuzf333690OI0aM2YMAEePHnV9z9n3YcmSJZw8eZJZs2aRkJBAYmIi//3vf12Pk2WZlStXMmnSJGJiYtBoNKSkpDBx4kSWLFnSJvFJkkSPHj0A6jUK+/rrr7FarfTs2ZNBgwbV+9m59dZbAfj888/rfP/EiRMA9O/fv01ibKqePXsC9V+HLMusWrUK+Dvm2kaMGEHPnj2xWCysXr26wW336tWLa665BpPJxL///e82jlw4nfLycqxWK1FRUUqH0iCDwUBWVhZVVVUeG6NwZjfeeCPbtm3j+PHjzX5uWJgjx5CV5UhkHDvm6MdRXg5//OGYZnreeW0fcz0ffeT408cHrruuHXboJRITYdAgaM7npizDBx/A5Zc7xs8KbcbPz4+4uDhycnKw2+1Kh9MmnL3ZOkrFtBKGDBnCgQMHOmwfl85GvGsK7cpgMHSoJnj3338/ZWVlvPXWW/Wu7nsSWZYbve/w4cMMHDiQFStWEBkZydlnn+36kDSbzUyfPp2rrrqKtWvXolar6devH3a7ne+//56bb765TeIzmUzs2rULwFWx4bR161bAkbCIjo6u99yRI0cCkJeXV6fbuLOCY9u2bW0SY1Nt2bIFqP86srKyyM/PB/6O+VTO7//++++Nbn/evHn4+PiwePFiMjMz2yJk4QwqKysxGAzExcV53AFkVVUVmZmZGAwGEhMTiY2NFRUcXmzKlCns2bOHbt26Net5e/bA+PGOSSobNzqmq0yY4EhytLvNmx0n6Farm+fXehlJcpTcrF0LR4407Tk//eSYB/xXVabQtgICAoiKiiInJ+e0x0lC5+H8HHUekwreTSQ6hHal1+s7zLSVDRs2sGzZMq6//nrOP/98pcM5rU2bNgFw1lln1bvvpZdeYsyYMeTl5bF3714OHjzII488AsAjjzzCqlWriIqKYu3ateTl5bFt2zZycnLIyclh/vz5rYqrsrKS33//nSuuuIKMjAxmzJjB6NGj6zzGWYWSmpraYCVQYmKia5lN7YqVSy65BIBff/2VCy+8kJ9//tlt63FtNhs5OTm89dZbPPjggwQFBfHcc881+Do0Gg0JjRz8d+3atc5jG9KjRw9mzpyJ2WwWVR3toLq6mrKyMhITEz0uyQGOaUSJiYnExcXVWboleCd/f3/69evXrOfUTnL88AOMHQsbNiiQ7DCbHTtr44ldHcq110JqKkybduYZuCdPOpb+DBsGCvf/6siCg4MJDQ0lPz9fJDsEQCxf6UhEokNoNzabDbvd7tGVD01VU1PDHXfcQVhYGC+//LLS4ZzWp59+yttvvw3AVVddVe/+6OhoPvnkE7RaratZob+/P3l5ebz55psAfPnll67EgVNCQgILFixoUUzh4eFIkkRoaCjDhw9n586dvPrqqw32ECn/6yj91N4eTpIkuXq+lNc6op81axaTJk0CHEmpcePGERISwpAhQ7jvvvv4+eefWxR7bf/973+RJAm1Wk1ycjJz585l/PjxbN26laFDhzb4OpyvvSHO3g/lZzgzcVZ1OJcdCe5hMpkoLCwkKSnJYxp5Go3GOgfjkZGRIsHRiZ2a5HC2j+nfv52SHQaDY/TpgAGOJptaLfj5wahR8MknooHmqQIDHRUdRUWOdURffVV/JnBNDXz4IQwf7nj8V185qkEEtwkPD8fX15eSkhKlQxE8gEh0dByeceQmdAqVlZX1GkJ6q2eeeYZjx47x73//m1gPavNeUFDAqFGjGDVqFOeddx5xcXFcc801WCwWRowYwQMPPFDvOVdccQX+zq7utaxZswaLxcLw4cPrVVm01nnnncfIkSPp2bMn/v7+FBUVsWLFCv788896jzUajQAEBgY2uj1npYfzseBoNvb111/z/vvvu/pmmM1mduzYwWuvvca4ceMYNWpUneUuzZWYmMjIkSMZOnSo6+dg48aNLF++HJvNVuexNTU1AKdt8trQ62jIWWedxQ033IDFYuHpp59ucfxC4ywWC3l5eSQlJXnEUhCj0UhWVhbl5eUdZj250DqNJTmc3J7s+PFHR+dTZwfURYtg5UpHMxCNxtGfo1s32LmzjXfs5Xr2hK1bIToarrgCunRx/Bs+8gjcdhskJcFNN8GQIY7usXFxSkfcKURFRWGxWM54oUHo+ESio+MQiQ6h3VRUVHSIRMfBgwd56aWXGDhwoGuaiacwmUxs3ryZzZs38/vvv2M0Ghk+fDivvvoqGzduJCAgoN5z4uLi6p2Ug+N1gmOSSFtbu3Yt6enpHDx4kJKSEp588km2b9/OqFGj6jXhc16tPt2yE9NfVw1PfX0+Pj7ceuutHDx4kM8++4yZM2fyj3/8g3POOQeAzZs3M2HCBNfzm2vGjBmkp6fz+++/U1BQwNatW0lLS+PZZ5/lrrvuqvNYZzKpJa+jIfPmzUOtVvPRRx+1qHGh0DjnUqSEhATFK9BqamrIzs6mrKyMuLg4EhISPCLxIijrTEkOJ7clO77/HiZNciyrOHECVq+GW26BK690jHfZsMHRWyIxEc4/XyQ7TtW1q6OXyc6dcMklf4/D2bXLsVzl8GHHiN4G+lIJ7iFJEvHx8RgMBgwGg9LhtIrdbnf1BBOab/DgwRw/fpyysjKlQxFaSSQ6hHZhtVo7zJjDO++8E6vVyttvv91m5ezPPvusqxKj9m337t3N2k5qaiqyLCPLMna7Hb1ez5YtW7jvvvsarSSIiopq8L6KigoAt48CDgoKYt68edx5551UVVXV6W1RU1PT4LKU2mRZRqfTAZx27OeVV17JtGnTSE5O5ttvv+XVV18F4NChQ3UmtjT0/zBjxowmvZZhw4axZs0aNBoNCxcurNMs1BmbTqdrdB2w8zU2ZXxply5dmDVrFlarlaeeeqpJ8QlnZrfbycnJIS4uTvHpUGVlZZSWlhIbG1unF43QuTU1yeHU5smOkhKYMQMuvhi+/trRc6IhvXo5mmmec45jaohYxlLfwIHw3nuwdy8cP+5IdLzyCnTvrnRknZIkSSQmJlJSUnLGykpPduTIERYuXIher1c6FK8UGRlJ165d2SkStF5PJDqEdqHX6ztENQfA7t27kSSJyy67jLi4uDq3Tz/9FIAXXniBuLg4hgwZ0qRtHjlyxFWJUfvmzg8p5+z4xpaEhISEALiSCO526aWXAtTpdF1SUuJaduIcF3uq3NxcV5XE2Wef3ej2JUni8ssvJzk5mc8++4wbb7zR9f9TezJLQ/8PzSlhTEhIoH///tjtdvbu3ev6vjM2k8lEXl5eg891vsbTvY7aHn/8cXx9fVm2bBlHmtrFX2iULMvk5uai1WqbVFXjbhERESLB0YkdPHiQH374oc73mpvkcGrTZMfixY7Go0uWwJkqnoKCYOlSyM2FL75oxU4FoX2oVCqSkpIoKChwWwNzd0tOTgYc096ElhkwYECzLzYKnkckOoR2UVlZ6Tpx7ghsNhuFhYX1bs4+DAaDgcLCQoqLi5u0vSVLlrgqMWrfxo4d67b4nbE2xrm8wzne1d2ciRfnnxaLBVmWGTFiBOBIQDTE+f2EhATXh3tj1Go1V111FYGBgSxfvpzUv65E1j6Yaej/ISMjo1WvBSAlJYW4v9Zan+m1DBs2rEn7SU1N5ZZbbsFms4mqjlaSZZn8/HxCQkIUea8ym83k5ubWSW564pQXof289tprzJ4921UB1tIkh1ObJDvsdkcPjquvhqiopj2nZ0/H1JC33mrBDgWh/anVahITE8nNza3zOe4tgoKCiIyMFImOVhCJjo5BJDoEtzObzajVao+ZWtBazqUHDd1uuukmAJ5++ukWnSC3l+Li4gYbkNY2adIkfH192bp1a6Mn5m3pq6++AqB///4AlJaWEhkZyWWXXYZarebgwYNs2bKl3vMWLVoEwPTp0+t8v6ioqMH9BAQEcO2116LX6/n111+BpldQNEVGRoarkqP2mEhJkrjiiivqxFzbb7/9xqFDh/D19eWyyy5r8v4ee+wx/Pz8WL58uauvitB8xcXF+Pn5uX2p1qmcCY7CwkIiIyM7zPhtofVmzJhBRkYGO3fupKoKLrwQ4uNbluRwciY7DhyAmTNbsIGsLMfY0wYmeJ3W1Vc7elKI0bOCl/Dz8yMuLo6cnByvbACdmJgo+nS0gkh0dAwd48xT8GgVFRXi4N3DxMbGnnEkZXx8vKuh5rRp0+qVUOfl5TWriuCJJ57g22+/rdf4s7i4mIceeohFixYhSRJz5851VZwEBgaSkJDAzTffDMAtt9zi6nshyzIvvfQSP/74I/7+/jz44IN1tjt79mymTJnCN998U2+trU6n45dffqGoqAiNRtPg2N3G7Ny5k/nz5ze4lGbdunVMnDgRq9XKpEmT6NatW537H3roIfz8/Pjhhx946aWXXFdqMzMzueWWWwC47bbbXJUfTZGcnMxtt92G3W53LZ0Smken02Gz2Yhq6hXqNmC1WsnLy6OgoACtVktycvIZk49C53L++ecTFRXFZ599RkAADB7sqMZo7bH3unVQXQ1jxrTgyX/1biIysnnPcz7e+XxB8AIBAQFERUWRm5vbaG8tTxUfH09BQUGDzeaFMxswYABHjhzx+sa0nZ1IdAhuV1VVRVBQkNJhCLU0tST+ueee4/LLL6eoqIiLL76YxMREhg4dSnJyMklJScyfP7/J+9y0aRNTpkwhNDSUc845h2HDhpGWlkZCQgIvv/wyfn5+vPvuuwwbNozy8vI6DTn/85//MGDAAA4dOkT37t0ZOHAgycnJPPzww/j4+PD++++TkpJSb5/ffvstl112GWFhYfTu3Zthw4aRmppK9+7d+eGHH9BoNFx22WWUlJQ0+XVUVlby1FNP0a1bN+Lj4xkyZAj9+vUjIiKCiRMncujQIYYMGcLSpUvrPbdLly689957qFQqHn74YZKTkxk4cCBnn302hw8fZtCgQbz00ktNjsXpX//6F/7+/uKApgWMRiN6vb5ZyaW2IEkSERERpKSkeEQ/EMHzqNVqpk+fzsqVK5Ekma++ciQnJk929Phsieefh0cfhfnzHX82W3Cw48/mJiycj3c+XxC8RHBwMEFBQY1WiXqqhIQEbDZbk5dQC3XFx8cTExPDH3/8oXQoQiuIRIfgVlarFZVK1WGWrXgzWZaprq5u1nM0Gg2rVq1i2bJljB8/npqaGvbu3YtKpWLSpEl8+OGHTd7WggULuPfee+nbty+lpaXs2rWLsrIyevfuzb333ssff/zB7bffjizLVFZW1mleGxISwubNm1mwYAFdunThwIED1NTUMGXKFDZt2sR1111Xb39Lly7l888/59Zbb6VPnz6UlZWxa9cudDod5557Lg888AAHDhzgoYceonszOtz369eP1157jcsuu4ygoCAOHTrEoUOHCAgIYOLEiXzwwQf89ttvjVYH3HjjjWzatInJkydjNBo5cOAAXbt2ZcGCBaSnp7coKZiYmMg//vGPZj+vs7NarRQUFJCYmOj2fhhWq7VOY18fHx+R4BDOqPbyFX9/WpXsqJ3kWLCghQElJ0NcnGOcbHOsXg39+oGbJhmlpzt6ozpvtQZpcexY3fuWLHFLCEIHptVqsdlsXjXFJC4uDkmSGm1+LpyZWL7i/STZ22qxhFZxLiNprykoZWVl+Pj4iKUrHqCwsBCNRtPuPQiaS6/XY7VaiWxuabQgNIMsy2RlZRETE+PWhIPVaqWkpASTyURUVJSobhOaxWq1Eh8fzy233MILL7wAQE0NTJ0Kv/4K337r6PN5Jm2S5HCaNw9efRXy8qApjXuzsqBLF0cz0tmzW7nzhs2a5Rju0lTiyFdorvb6zGhLb731FikpKUyePFnpULzSv/71L4qKinj//feVDkVoIXGZXXArg8FAsChVVVxVVRUWi8XjkxyyLNdbtiII7lBYWEhoaKjbDlitViuFhYXk5OQQHBxMamqqSHIIzaZWq5k2bRqfffaZq0dAcys72jTJAfCPf4DJBPfee+aMgdUKc+ZAaCg0UHnXVkTiQnA3SZJITEykoKAAi5c01U1ISBANSVtBVHR4P5HoENzG2S/Ax8dH4Ug6N5vNRlFREfHx8UqHckbV1dX4+/uLpU6CW1VUVGC3292aUCsqKiIoKIjU1FSR7BVa5aqrrnItX3FqarKjzZMcAElJsGgRfPAB3H47VFY2/LjSUpg2zTEm5tNP3dafw2Zz3AB8fR3/LrJ8+psgtIRarSY+Pp7c3FyvmMQSHx9PYWGh6N/VQgMGDGDfvn1ek9gS6hNnE4LbVFZWigN8D5Cfn09MTIxXJJycI2UFwV1MJhNlZWVt3nzUbrfX6cqfkJBAcHCw23t/CB2fc/rKypUr63z/TMkOtyQ5nG64wbFW5MMPITER7roL1q+Hbdtg7VrHWpLERNi4Eb7+GiZMaOMAHGw2uOkmWLECli2Dyy+HGTOa30JEEJrK39+fyMhI8vPzPX4Si7Mhqbc1UvUUXbt2RaPRcODAAaVDEVpIJDoEtzm1oaTQ/oxGI76+vl5RMm8ymVCpVPj6+iodCnv27HGNsRU6DrvdTl5eHgkJCW1WNWS32ykuLiYzM1NcNRPcwrl8ZeXKlfVOrBpLdrgjyTF2LEhSrdtNNyJZzEiVFUhvvoF00YVIw4YiTZqItHQJkqmGnz/KhokT2yaAU9ROcnzyCcyc6fhTJDsEdwsJCUGj0VBaWqp0KKflbEgqlq+0jEqlon///mL5ihcTiQ7BLex2O3a7HbVarXQonVpAQAAxMTFKh9EkpaWljU4qaU+yLLN3715WrlxJZWMl2YJXys/PJyoqCj8/v1Zvy263U1JSQmZmJhqNhrS0NPF+J7jNjBkzOHnyZJ3lK06nJjtuv92NlRzNoFLB2UPC3bLtU5McV13l+L6vr0h2CO0jMjISo9HY7Gl27cnX15e7776bAQMGKB2K1xJ9OrybSHQIbmEwGLyiiqAz8IbSeavVitVqxd/fX+lQkCSJK6+8EpVKxWeffSau0ncQZWVl+Pr6EtKUKRFnUFFRQWZmJr6+vqSlpREaGuoVv2eC9xo7diw33HBDo0sQayc73n/fPUmODz6AP/88/e3TT/9+/PjxjtUrba2xJIeTSHYI7UGSJBISEjy+B0ZERIT4fGoFkejwbmK8bCfTXuNlc3NziY6ObpMrp0LzOfujeMuHW1FREYGBgR7V0yUnJ4cPPviAwYMHM9FNpddC+zAajRQVFZGSktImvxNWqxUfHx+v+f0SOg+TCXbtgvPOU2b/jzwCL77o+Pqjj+D669t2+2dKctRmsTiWs6xeDStXOhIfgtDWDAYDer2eRHdk9QTF7d27l9GjR6PX68VnvhcSFR1Cm5NlGYvFIpIcCqmurvaqN2S73U5VVZXHVQAlJSVx8cUXs23bNg4fPqx0OEIL2Ww2CgoKSExMbNHvhCzLlJWVUVFR4fqeWq32mt8voXPRaJRLctjtjoag4BiwMm1a226/OUkOEJUdQvsIDg5GpVLV+YwQOo6ePXtSXV0t+rZ5KZHoENpcdXU1gYGBSofhVrNmzUKSpNPeampq2i2eJUuWIEkSaWlpFBYWNjhKduHChUiSRL9+/Rrdzs033+yKv7Eu3cuWLXPtqy3odDrCw8M98sRxyJAh9OjRg9WrV6PX65UOR2gmWZbJzc0lNja22f0zZFmmvLycjIwMgDZZ8iIIHdmGDZCb6/j6yiuhLQ8DmpvkcBLJDqE9xMbGUlpaitVqVToUoY1pNBp69OjBn3/+qXQoQguIRIfQ5ioqKjrNtJWzzz6bkSNHNnhrq6kOzWGz2RodJTtmzBgA9u3bh06na/D56enpDX7d0GNGjx7dymgdJ5N6vZ6wsLBWb8sdJEni8ssvx9fXly+//BK73a50SEIzlJSUEBQU1KzEqyzL6HQ6MjIykGWZ1NRUtFqtRybiBMGTfPjh31/feGPbbbelSQ4nkewQ3E2lUhEfH09eXp7Hj5wVmq9v374i0eGlRKJDaFOyLFNTU4NGo1E6lHbxr3/9i/T09AZvSi3daWwJSM+ePYmOjsZut7N58+Z69xcWFnLs2DG6dOkCwKZNmxrcTlsmOgwGg6vs01MFBAQwffp0srOz+eWXX5QOR2gig8GAyWRCq9U263kWiwWbzeZKcHjyz6YgeAqDAVatcnydkuIYRdtW5s93LIn5+OPmJzmcnMmOSy5xJDv27Wu7+AQBwN/fn8DAQMrLy5UOpR673U5ZWZnSYXgtkejwXuIITmhTNTU1BAQEiKuf7cx5BaGxjvxOo0aNAhqu1nAmNv7xj38QEhLS4GPKy8vZv38/8HeFSGuUl5cTERHR6u24W0pKCmPHjuXXX3/l5MmTSocjnIHFYqG4uJiEhIQzvhc5k7NOfn5+REZGigSHIDTDF19AVZXj6xtugLY8BBg82DGqdu1aR3VHS+XkwN69kJoKDazuFIRWi4yMpLKyEpPJpHQodezcuZM333xTLK1pIZHo8F7iSE5oU51p2YonaWpiyVmF0VC1hjOxcf755zNs2DB2796NwWCo85jNmzcjyzLR0dH07NmzVTFbLBYkSWp27wSljBo1irS0NFatWkWV84he8DiyLJOfn098fPxpkxWyLFNRUUFGRob4/xS8yr333sv999+vdBh1uGvZCsDUqX9XdNxyS8uSHSdPOqpM/Pxg40aIjGzbGAUB/h45m5+f71FLWBISErDb7RQWFiodilfq06cPhw8fxmw2Kx2K0Ewi0SG0KaPRSEBAgNJhtJvPP/+cqVOncsEFF3DNNdfw+uuve3TTSmeiY/v27fWapaanp+Pv78+gQYMYNWoUNpuNLVu21HtM7e20hrdUczipVCqmTZtGQEBAoz1OBOWVl5cTGBiIv79/g/fLskxlZSWZmZmYTCZSUlKIFGc9ghdRq9V8+umnHtMzKCcHfv7Z8fXw4dC9e9vv45prWp7sODXJkZTU9vEJgpOvry8RERGNNnRXQmxsLCqViry8PKVD8UppaWloNBoOHTqkdChCM4lEh9BmLBZLpxu7+N1337F69Wo2btzIp59+yj333EOXLl1Yt25du+y/urq6WdNdBgwYQEhICGazme3bt7u+bzAY2LNnD0OHDsXPz4+RI0cC9Ze4OCtBWpvokGXZI0fKnklISAh33HEHiYmJSociNMBsNlNRUXHaxEVubi5Go5Hk5GSio6PPuNxLEDzNlClTyM/PZ/fu3UqHAjiSD86cy003uW8/LUl2iCSHoISwsDAsFovHVAuq1WpiYmLIz89XOhSvpFKp6NOnj1i+4oVEokNoMwaDodOMYOzWrRvPPvsse/fupaKigsrKSn744QeGDRtGeXk5U6dOZceOHW6NwWazUVhYiK+vb5Of4+Pjw3nnnQfUXb6yZcsWbDabq4fH8OHD8fHxqfOYmpoadu7cCbQ+0eFsQuqNSTFvjLkzqL1k5XT/R4mJiY1OJhIEbzBy5EjCw8P55ptvlA4FgI8+cvyp0cDVV7t3X81Jdogkh6Ck+Ph4ioqKsLWmsUwbck6FEVpG9OnwTiLRIbQZg8HgdVfoW+qJJ57g0Ucf5dxzzyUkJITg4GAuuugifv31V4YOHYrJZOKRRx5xawz5+fktOmFrqE+H82tnoiM4OJh+/frx+++/Y7FYANi2bRsmk4mQkBD69+/fqth1Op1XLVsRPF9ZWRnBwcF1Jj5VVVWRmZlZpwGbSFQJ3s7X15dLLrnEIxIdO3bAgQOOrydPhvZ4W29KskMkOQSl+fj4eFQVRUJCAsXFxa5jOqF5+vbtyz4xrsnriESH0CZkWcZms3lNY0l38fPz4+mnnwbg559/dtuYMZ1Oh6+vb4sSS85Ex2+//eZa452eno5KpWLEiBGux40cOZLq6mp27drlegzAiBEjWnU13Pkh29l/VoS2YzKZMBgMrlGy1dXVZGZmUlFRQWJiovhZEzqcKVOmsGvXLnJzcxWNo3YTUncuWznV6ZIdIskheIqgoCDUarVH9G6Lj48XDUlbQVR0eCeR6BDahNFoJDAwUOkwPIJzaYjdbufEiRNNes6zzz7LqFGj6t0aWoNtNpvR6XTExMS0KL5hw4bh5+dHRUUFf/zxB1arld9//50+ffoQFhbmepyzusNZ7eFMdLR2rKxOpyM8PLxV2/A0ntRdvbOpvWSlpqaGrKws9Ho9CQkJxMfHiySH0CFdcskl+Pj48N133ykWg8UCK1Y4vo6OhokT23f/DSU7RJJD8DQxMTGUlZUpXknhbEjqKRUm3qZv376u4wvBe4hEh9AmKisrCQ4OVjoMj1C7Z0ZTZ5YfOXKEzZs317s19IZaWVlJQkJCi0vw/f39GTx4MOBIYuzcuZPq6mpXYsPJ2ZB006ZN2O12fvvtN6B1/TlkWXb15+gojhw5wkcffeQx63A7m5KSEsLCwvDz8wMcV63i4+Ob1btGELyNVqtl5MiRfPvtt4rFsHYtFBc7vp45E5TIKdZOdlx7rUhyCJ5HpVK5+mMoeVHE2ZBU9OlomaioKOLi4sTyFS8jEh1Cm+hsY2VPZ//+/a6vk5p4pLVkyRJkWa53Gzt2bL3HRkZGuk7qWspZlZGenu6q1Dg10ZGYmEhaWhqbN2/mjz/+QK/Xo9FoGDp0aIv365y00pH6JAQHB5OZmcmvv/6qdCidjl6vx2AwuCqEAgICRIJD6DSmTJnC+vXrMRqNiuy/9rKVG29UJATg72THF1+IJIfgmfz9/QkODqasrEzROOLj40VFRyuI5SveRyQ6hFazWq34+Ph0qJPX1vjPf/4DQM+ePT12DGnthqSNJTrAUdVRWlrKwoULARg6dGidZo/NVV5e3uGakCYkJDBq1CjS09MpKipSOpxOwblEJT8/n9jYWPHeI3RKkydPxmg08tNPP7X7vsvLwVlM0qcPDBzY7iHUcc01sH07bNkikhyCZ9JqtVRVVVFTU6NYDLGxsZSUlLj6swnN07t3bw4ePKh0GEIziESH0GodbSnCmfz44488+uijnDx5ss739Xo999xzD8uXLwdg3rx5bbZPm83WplcCRo4c6VqruW7dOlJSUkhOTm7wcQAffPAB0LplK1arFVmWO+QV99GjR6PVavn666/FAYQbmUwmcnJyKCkpQa1WExcXJ3oDCZ1Wjx49mBQXB88+62iQkZzsmPEaHAzdu8OsWVBrulZbkWX49FMwmRx/V7Kao7aBAyEqSukoBKFhkiS5KiqUOk6Ijo5u8+PJzqRXr14i0eFlRJc2odUMBgOxsbFKh9FuqqqqeP7553n++edJTEwkISEBi8XCgQMHMJvNSJLEvHnzuPbaa9tsn/n5+U2qhMjOzibqNEd6kyZN4sMPPyQsLIy+ffuyd+9eampqGqzmgL+rPJxXIFrTiLQjNiF1UqvVXHbZZSxevJjt27czbNgwpUPqcMxmM0VFRcTExCDLMkVFRXWa5wpCZyONHct3BQVQUFD3DrMZjh513JYuhRtugPffd6zraKXjx+GSS6CqyvF3Hx+47rpWb1YQOgVfX18iIyMpKioiLi6u3feflJTEHXfc0eEqa9uLSHR4H5HoEFpFlmWsVmuHvErfmEGDBvHYY4+xZcsWjh07xr59+5BlmcTEREaPHs2dd97Zpie6zRkla7fbKS0tbfT+iooK19ejR49m7969QMPLVgDOOeccwsPD0el0+Pj41Bk/2xyyLFNZWUlaWlqLnu8NkpOTGTJkCBs2bKBHjx4dNqnTnux2OyqVo/DQz8+P5ORkZFkmMzOTxMREsWRF6Nz+Gi1riYnB99prYfRoSElxjB/ZsgX+8x/HYz76CKxW+OSTVu3u+HEYN86x+YICmDMH3ngDVKI2WBCaLDQ0lMrKSkWqof38/DrVhcm21qtXL3JycqisrCQkJETpcIQmkGQxF7FTqaioICwsDL1eT2hoaKu3ZzQa0ev1imSmOwOz2UxeXh6pqalefVJXVVXVKSp/TCYTb731FjExMcycOdOr/8+UZLFYKC4udpX61lZaWookSWi1WoWiEwQPMXmyY93I9OmO0opTlZTAyJFw5Ijj77/+6kiGtIAzyREQ4Gj2uW4d3HYb3HGHSHYIQnPZbDaysrJISUnBp6HfXcFjRUVFsXbtWoYMGaJ0KEITiI8moVVEVtN9ZFkmLy+vVaNkPUVHbELaEI1Gw6WXXsqxY8dEZ+4WsFgs5Ofnu5ZqnZrkMJvNGAyGTvGzJAhn9O23cNVV9ZIcu3b91bbjhiiSy/agoYZgKul+WY8Wte04NcmRkAC33OJYDfPOO3DXXSBaEwlC0/n4+BAbG0vBqcvOBI8nlq94F7F0RWgVo9FIdHS00mF0SGazmYiIiFaPklWazWbDbrd7/etoqu7du9OnTx/WrVtHt27dmrTkSIDCwkJqamqIjo5usMGoLMvk5+cTFxfn9Yk/QXCX8893FG78zTH23YyGo7pgji5tXtuOhpIcTrfc4vjzttscf4rKDkFousDAQMrLy6murhZNtb2ISHR4F/GRJLSYzWZDkiRx0uEmGo2mQzRb1Ol0HeJ1NMcll1yCLMts2LBB6VC8RkREBKmpqY0e8Ol0OgIDA1s13lgQOrq/2naQkAD33guff1DJNoawheG80vt9nBPPP/rIMZTldE6X5HASlR2C0HKxsbEUFRUhugh4D5Ho8C4i0SG0WGcbKyu0TGdc3hQUFMQFF1zA4cOHMRqNSofjcaxWK4WFhVitVtf3TlfxY7PZ0Ol0p50oJAgC9OzpGP2alQX//S9MD1vPEHYwnN+5/9Ij7NnjmDwLsHx548tYmpLkcBLJDkFoGbVaTUhICOXl5e26X+cgAaH5RKLDu4hEh9BiItHhHoWFhYrNWG9rJpMJX19f1+SMzmTQoEHcddddBAQEKB2Kx7DZbBQVFZGTk0NQUFCTm7A5x8qK6jFBaJgsy2RlZdVt22G3w/PP//2gq64iKsoxjMXp88/rb6s5SQ4nkewQhJbRarXo9XpsNlu77fPNN99kU3Ob9QiAI9Fx/PhxzGaz0qEITdD5zj6aYM2aNVx44YVotVqCgoIYOHAgr7/+erNPPnfv3s28efM4//zziYqKwtfXl5iYGCZOnMiqVasafd6SJUtcS0Iau61bt661L7PVLBZLp+m70F50Oh1Ah0kM6PX6TrdsxUmlUokkx1+cCY7s7GwCAgJITU0lODi4SYmLmpoarFar6HUiCKfx0ksv0bdv37pXaV99FbZtc3x9xRUweDAAY8f+/ZDjx+tupyVJDieR7BCE5pMkiZiYGAoLC9ttn6GhoRQXF7fb/jqS5ORkNBoNR48eVToUoQlEM9JTPP/88zz66KMAdO3aleDgYPbu3cs999zD+vXrWbVqVZNOQo8fP87AgQNdf+/SpQtpaWmcOHGCdevWsW7dOm666SYWL17c6PZiYmI4++yzG7xP6akDZrMZX19fRWPoaMxmMzqdjtTUVKVDaROyLFNVVSWa1QoYDAb8/f2Jjo5udlVGUVGRGF8tCGcwZswYHnnkEXbs2MHw4cPhl1/gn/903BkTA2+/7Xps7QuRtQ8/WpPkcBINSgWh+YKCgigrK6OmpgZ/f3+37y8mJoZjx465fT8dkUqlomfPnhw8eJBzzjlH6XDcRpblDlFFKz5+atmyZQv/+te/UKlUfPLJJxw/fpy9e/eya9cuYmNj+frrr3nllVeatC1ZlomPj+eFF14gLy+PEydOsGPHDkpKSnj99deRJImlS5fy1ltvNbqNiRMnkp6e3uBt2LBhbfWyW6SqqkpcYW1DzlGy8fHxHeKNBRzLVvz9/TvM6xGazm63Y7FYXH8PCwsjNDS02T8LlZWVaDQaUTkmCGcwePBgQkNDWb9+Pezf76jgsFpBo4HPPoPYWNdjf/nl7+f17Pn3108/DdnZsGxZy5IcTrfc4pjq8vbbsHt3y7cjCJ2JszFpe4iOjqasrEz06WihjtKno3YT3OLiYrZt28a6devYsWNHhzl2F4mOWp555hlkWea2227j2muvdX2/X79+rgTH888/X+cAvjFJSUkcO3aMhx9+mPj4eNf3VSoVd911F7Nnzwbgvffea+NX0T5EoqNtFRcXExYW1qEmSnTGaSudnd1up7S0lMzMzFavX7Xb7ZSUlIiKIEFoArVazbhx4/jz669hwgQoL3c06li+3DFz9i8NtO1weeIJSE6GmTMhL6/lsSxaBB9+CHPmQK3CVkEQTsPPzw9fX18MBoPb9xUTE4Msy5SUlLh9Xx2RNyU6Gpvo45ycuXXrVqZMmUJcXBzDhw9n0qRJTJ8+ndmzZ3Py5MnTbsMbiETHXyoqKhxXQoBbb7213v0zZswgNDSU0tJSNm7ceMbt+fv7n3Yu9oQJEwA4cuRICyNWltVqFUtXcLxRvPfee64+LP7+/qSmpjJ16lRWr17dpG3IsoxarSY8PLzV8Xz66adMnDiR2NhY/Pz8iIyMpHfv3syYMYM333yT/Px812P/9a9/IUkSl19+eaPbGzduHJIkERoa2mijrH//+99IksTYWgu/ZVnGaDSKHhW1yLLMyZMnvfoDozG1Exw+Pj6kpaW1OhFaVlZGREREh+lXIwjudvmQITy7fbsjSyFJsHixo7KjlkbadgDQrZtjyUpNjaOPR0uSHYsWOZatzJkDb77pCEMQhKaJiYmhuLjY7ccJzgsI7VVB0tF0797do3p0OH9ejEYjBw4cYNWqVSxevJiNGzc2WJkhyzI+Pj58++23zJw5k++++44+ffowZ84c7rnnHsLDw3nvvfd48MEHOXz4MJIkee2QBNGj4y+7d+/GbDbj7+9fp7eGk6+vL0OGDGHDhg38/vvvrkRFS9XU1ACc9kRw7969zJw5k4KCAkJDQxkwYADXX3893bp1a9W+W8tisYgkB1BeXs6kSZPYunUrkiTRvXt30tLSyMvLY/Xq1ajV6tMmEZwkSUKr1bYqFovFwlVXXcVXX30FOJYK9OrVCx8fH06cOMHBgwf5/PPPkWWZu+66C3Cs6X7uuedIT09vcC2exWJh219HxJWVlezdu7fB34309HQARo8e7fqeM8nRUUrf2kJ+fj4ffvgh06dPp0+fPkqH02bMZjO5ubmEh4eTlpbWJv/nVqsVg8HQYfrVCILblZQwc8kSXDWBr78ON95Y5yGnadvh4kx2jBvnSHb8/HPTl7GIJIcgtI6Pjw8hISHo9fo2ufjVGH9/f9GQtBXOPvtsjh496hF9LOx2OyqVip9++oknnniCLVu2uO4LDg7mkksu4Z///CcDBw50xStJEoWFhbzzzjtkZGRw66231llhcPz4ce6//35WrVpFQkKCq+WCNxKXyv7izMylpKSgVjec/+natWudx7bGZ599BsDIkSMbfcyePXtYvnw5GzduZPXq1SxYsIAePXrw73//u9X7b42qqqrTVqt0Bna7ncsuu4ytW7cybdo0srKyOHToEDt27CAvL4/s7Gzuueeedovn5Zdf5quvviIgIIBly5ZRWlrq6i9TXl7O9u3bueeeewgNDXU9Z8SIEfj4+FBWVsaBAwfqbXPXrl1UV1fTpUsXgAZHkdntdtebau1Eh7s/pL1RQkIC3bt3Z/369R1qXayvry9paWlERES02QdhYWGhGCcrCE2l18PFF6P5q7ngt6NGwdy5dR5yhrYddbSkskMkOQShbWi1WsrLy91+BT0mJkZUdLTQWWedhV6vd+vSn6ZU9ciyjEql4quvvmLq1Kls3bqVcePGMX/+fJ5//nmGDx/O559/zkMPPcT+/fuRJMl1/Llv3z7WrFnD2WefzZ133gk4LnDabDa6devGv/71LwDWrVvHzp07vfZ4TCQ6/lJeXg6cfpqJ8z7nY1vqhx9+cF15f+ihh+rdHx4ezt13383mzZspLCykpqaG3bt3c8MNN2Cz2Xj88cd54403WhVDa4j+HLBw4ULS09MZN24cK1euJCkpqc79SUlJjBkz5rTb0Ol0bbYWc+nSpQA89thjzJw5Ex8fH9d9kiQxePBgXnvtNW6sdYUvNDSUc889F/i7KqM2Z2LjgQceaPQxf/zxB3q9Hh8fH0aMGAE43nhramo6VL+RtnLRRRdRUVHhqpTxNrIso9Pp6iyBcl4daCtGoxFZljt9MlUQmqS6Gi69FHbtAuCbc8/lsYqKOg85efK0bTsa1Jxkh0hyCELbUalUaLVaSktL3bqf6OhoUdHRQsHBwcTHx7f6wvfJkyd55513uPHGG5kwYQJz5swhPT0du92OJElnTHZIkkRubi7PP/88BoOBO+64gw0bNjB//nwefvhhli5dyrXXXsvGjRt56qmnAFzLgZ3nspIkMWDAAOx2O76+vq7zh169etG1a1dycnL4/vvvW/U6lSQSHX9xLiU5XXd/54mb0Whs8X6ysrK47rrrALjzzjsbPBmeOnUq//vf/xgxYgQxMTFoNBr69+/Phx9+yH333QfA448/TmVlZYvjaA2LxdLppyC89tprADz99NMt6iHgHCXbVgmjEydOANC/f/9mPc9ZhdFQtYYzsTFt2jTOOuus0z5mwIABBAcHA38nwrw1++tOUVFRDBo0iF9//ZXq6mqlw2kyZ4IjIyMDm81GbGOXgttgP0VFRW7bviB0KGazo0xj82bH3++9l5L77uPPP/9Ep9MBjgTFhReetm1Ho5qS7BBJDkFoe6GhoVRVVbm1+jMmJoby8vJWNw7vrFrbp+PAgQPcdddd3HnnnXz88cesX7+ed999l4suuoj7778foEnH0ZmZmWzbto2EhARXFYbVasVutxMfH8/8+fMBWL9+Pfv27UOlUiHLsusc0nn+e+q5jHNAgslkYtOmTV5biSwSHX9xzq0+3S+8yWQCTt9X43TKysqYOHEiJSUljB07tsmjamt78skn0Wg06PV6fvrppxbFAY7mq829mUwmLBZLo0t7OoujR49y6NAhtFotI0aMYPXq1Vx//fWMHz+ea665hvfff9/1s9IQd4ySdS5JaW6lwOkSHZs3b6Zr167Ex8czatQoCgsL672pOxMdtRN2er1eTFs5jbFjxyLLMr/UnvHowfR6PRkZGVitVlJTU4mMjHRbg9DKykoCAgJEDyBBaIprr4UffnB8fcEFcOutXBATQ29ZZt+KFZRsOshFY2r4Kw/Ofx7JYdo0AwaDgcrKStdnu16vR6fTodPpKC8vp6ysjLKyMkpLSwkLK+GHH0qYPLmY118v4vjxIoqKitDpdHz6aTUPP2xlzhxZJDkEoQ1JkuT2pSXOhqRi8krLOPt0tERpaSlz585l7dq1XHfddfz000/s37+fjz76CFmWWbhwIU888QRw5iUszhj8/PxITEwEHFO4nMdp3bt3JzExkfLycr777jtXtUh0dDTBwcFkZWW5qodkWcZut7uWTTnPZTIyMrCnqfYAAG/iSURBVLy2+kckOv7SlGUpTVne0hiDwcCkSZM4cOAAgwYN4uuvv25RaX9oaCjnnHMOAMf+Wo/bEsnJyYSFhTXr9txzz1FdXd3pl63s3LkTgJ49e3LDDTcwdepUli1bxk8//cSnn37K7bffTv/+/cnMzGzw+e4YJXvJJZcA8Nxzz/Hoo4+yb9++Jq3vcyYosrKyyM7Odn3/4MGDlJSUMGrUKODvXjKnLl85tRGpLMtYLBaxbOU0goKCGD16NDt27HB7aWpbSU1NJSoqyq0TUGRZprS0lMjISLftQxA6lC+//Pvrn36Cc88ldfJk9gF95zzCxWOqOXDccRHneR7hnmUjqKmpwWQyYTabsVqt2Gw210GtJEmoVCrUajW+vr74+fnh7+9PcnIAd9wRyI4dwcydG4LRGMzGjbBhg4F33ing4YezyMrKJCsri/z8fEpLS6msrMRkMnltp35BUFpgYCA2m+20F85aQ0xeaZ3WJDrS09P55Zdf6NOnD6+99hpjx46lV69eXHfddSxatAiTycTLL79MXl7eGS+IVlVVodFo0Gg09Sr9ndMSQ0JCAMfFUOe57JAhQ4iPjwfgww8/pLq62vUZoFKpWLx4MTk5OYDjZ8T5tbcRiY6/nH322YDjhK+x8hzn8gDnY5vKZDJx+eWX8/vvv9O7d2/WrVvn+qFrCefVztaUEWVnZ6PX65t1e/TRR0V/DnD1J9i+fTvLli3jtttuIyMjg5qaGtavX0/Xrl05dOgQ06dPr3eQV11djclkavNGnS+88AJdunTBYrHw/PPP07dvXyIiIhg/fjxPPvkkhw8fbvB5MTExdO/eHahb1eFMYDgTHc4/az/m5MmT5ObmIkmS637x89E0w4YNIyQkxDXS2lM4yxlr/9yGhYW1y4hXnU5HaGhonf4ygiDUZ7fbT7uEtpoALuU7djEIgMd4hkd4ER+ViqioKCIjI4mMjESr1RIREUFERATh4eGuixqhoaGEhIQQEhJCcHAwQUFBdO8exDvvBHLgQAAjRgQybVo4anUMV16ZRFpaKqmpqSQlJaHVavHz88NsNlNWVkZOTg6ZmZlkZmaSk5Pjqgaprq7GarV2yHHbgtBWYmNjKSwsdMu2/fz8uOKKK8R0sxZqTaLj/fffB+Cqq65Cq9Uiy7LrvfC6667jnHPOwWQy8cknn2CxWBrchvPxsbGxhIeHc/jwYbKysgBHgsNqteLj44Ner3etRMjKynL9PMXGxjJlyhQkSeKf//wn//nPfzh69Cg7d+7k7bff5v/+7/9ITEzk7LPPprq62lXR4W3v2SLR8ZcBAwbg6+tLTU0Nu/5q6lWbxWJh+/btgOMkpamsVitXXXUVP/30E127duXHH38kKiqqxXHabDbXSeupDTCbIzQ0tNk3jUaD2Wzu9GXlVVVVgONnYvTo0bz33nukpqai0WgYP348X375JZIksXPnTr777rs6z7Xb7SQkJLR5/4rExER2797N/PnzSUtLA3Atb1qwYAG9evXi9ttvb/DKQEPLV5xfOxMYPXv2JDIyssHH9OrVy/Uzrdfr60x2ERrm6+vLuHHjOHTokEdkyZ0JjszMzFb1IGopu92OTqdrUbWcIHRkNpsNnU5HQUFBnYRBRUUFuvJyjNXV2G02kGWQZcwmmUvH6tiM47373nvhGflxx/0ZGa2KxdmzIygI7rmnfk8OlUqFRqMhJCSEyMhI4uPjSUlJITU1lZSUFOLi4ly9nAwGg+s15eTkoNPpvHYNuCC4i5+fH76+vm3WuP5U5557rvjcbaHaI2aby3nh3Fkt7Wzq7rzIdNlllwGOvhqNVdw4zyMGDhzIWWedBcDKlSuprq7Gx8fH1WZg8eLF/PHHH4CjMqN2M/nHHnuMOXPmYLFYmD9/Pj169GDIkCHMnTuXPn368OSTTxIbG4uPj49X9ZWrrXM3W6glNDSUCy+8kLVr17Jo0SKGDh1a5/6VK1dSUVFBZGQkY8eObdI2ZVlm1qxZfP311yQkJLB+/XoSmjqQvhGLFi1Cp9Ph4+PT5DjaijM72NmbTDr7uQDce++99e7v168f48aN46effmLdunVMmTLFdZ/zIM8dwsLCWLBgAQsWLODkyZNs27bNNZq4oKCA999/H5vNxuLFi+s8b/To0SxatKjOspT09HQiIyPp2bOn63sjRozgm2++oaCggLi4OLFspZX69u3L5s2b2bhxIzfccINicRgMBkpKSggICCA5OVmRioqysjIiIiLapXJEEDyd2WymsrISg8GAJEmEhIQQHh6On5/fGX9Hrr0Wfv7Z0Sz8r7Yd7NvX+OP9/OCvor4m6dYNDh9ufj8OSZJQq9Wo1ep6E5UsFgsGg4H8/HxsNhv+/v6EhIQQGBjY6Y83BCE6Oprs7GzR5N3DdOvWDYPBQGFhIXFxcU1+nl6vd1X1O5Mkdru9znv7oEGDiI2N5cCBA2RmZpKYmFjvMc7nd+nShSlTprB582aeeeYZiouLuf7669HpdGzatInXX3+dpKQkQkNDyc7OpuKvqVxWq5WIiAheeuklpk6dyocffsiJEycICwtj0KBBzJo1C0mSeOaZZwgLC3MtK/a6n0FZcElPT5clSZJVKpX8ySefuL6/Z88eOTY2VgbkF154oc5zXn31VTk1NVW++uqr623v7rvvlgE5KipKPnDgQJNi0Ov18jXXXCP//vvvdb5vtVrlhQsXyv7+/jIg/+Mf/2jBK3RsH5D1en2zn6vT6eTS0tIW7bcjef/992VABuR9+/Y1+Ji5c+fKgDxp0qQmbfPf//63PHLkyHq3Xbt2tTreqqoq+dprr5UBWZIkOSsrq879x48fd91XWloq5+bmyoB82WWX1XncCy+8IAPyypUrZVmW5V69esmAvGzZMlmWZbmyslIuLCxsdbydyf79++UFCxbIJ0+eVGT/ZWVlcn5+vmyxWBTZvyw73ttOnDgh2+12xWIQBCXZ7XbZaDTKhYWF8smTJ+Xs7GxZr9fLNput8SeVlcnyK6/Icv/+shwV5bj16ye7SjuaeEtNbbeX2SR2u12urq5u3r+FIHRwxcXFcnl5udJhCKdITk6Wf/3112Y9p6ioSB41apQsSZK8YsUKWZZl1/ub8zhox44d8oABA2SNRiN//PHHdR5Tm/PxBoNBfuqpp2RJkurdpkyZIq9du1YeOHCgrNVq5S+++KLOc08nIyNDliRJTkpKatF5oycQFR21jBw5kqeffprHH3+cmTNn8vjjjxMcHMy+ffuw2+1ceumlPPDAA3Weo9PpyMzMdC0XcNqyZQuvv/464JjScvvttze639pX0u12OytWrGDFihWEh4fTpUsX1Go1R48edY2Lmzhxomu8aXuqqqoSjQKBHj16uL5urHrB+X2bzYbZbKa0tNTV9KchR44cYbNzRGAter2+ldE6Glq9++67fPrpp9jtdnbs2EFycrLr/q5du5KYmEhubi6bN292lac5l604OUvsNm3a5Fp2AX9XdDgrnoSm69WrF/Hx8WRkZNR7D3EXWZZdGXlPKFktKSkhKirK+64SCEIryLJMVVUVlZWV1NTU4O/vT2hoKNHR0af/XZBleO45eOYZsFph2jSYMcNx3759sLd94ncXSZIICAhwrSl3VrdkZ2e7qltCQkI6/fQ3oXPRarVkZmYSGhoqKh89iHP5ivM4uCk0Go2rqq2goACo3/ciOjqa2NhY9uzZU2dQwKmcnxVBQUH861//YurUqa4molqtlsGDBzN58mT8/f3JzMxEpVLRpUuXOs+tzWazuRqY+vn5sWbNGsAxucVbl6WLT4pTPPbYY/Tr149XX32VnTt3UlBQQN++fbn55pu56667mlzWXbsXQnZ29ml/UGsLCgrixRdf5LfffmPfvn0cP34co9FIZGQkl156KTfeeCMzZsxQ5KTAbDbj5+fX7vv1NAMGDMDf35+amhpOnDjhWhtXm3P9XUJCgmuU7OksWbKEJUuWuCNcwNFxOTo6msLCwgZHKI8ePZoVK1aQnp7eaKJj8ODBaDQa0tPTSU9PR5ZlUlNTSU5ORpZlTCaTWLbSTJIkcfPNN7dL35vq6mpKSkpcDQc9gcVioaamhpiYGKVDEQS3s9vtVFZWUllZidVqJTAwkIiICDQaTdM+02UZZs+G996DhASwWGDVKvj1V0hOhjFjqPp8DZfc34s92ZHEhxmpDIzh55+lZi1P8SR+fn6u5qk2m43Kykry8/Ox2+0EBQURGhoqjkuEDk+lUqHVaiktLXVNSxGU15KGpP7+/q5jMGePNuf7v/PPkJAQV2N/50XuM31G+Pj40LdvX1599dV692VnZ1NWVkZoaCi9e/c+7Tac57l//PEH//vf/wBco269kUh0NGDy5MlMnjy5SY919kQ41dixY1vUoMbX15eHHnqo2c9zN9Gf429BQUFMmjSJL7/8kqVLlzJhwoQ69xcUFPD9998DjuRAW4+SbUhRUdFpTxaPHTvmamjU0NQgZ6Jj06ZNGI1G/P39GTRoUJ3HaDQaBg8ezNatW11ZXud4WjFtpeXcneQwGo0UFxejVquJj4/3qGbCxcXFxMTEiPcVocOyWq1UVFRgMBiQZZng4GBiY2Nb9ns4d64jyQGQl/f39/PzHbdt29gZeZQ95q/4/tFv6PrcbYwLOMTYsRH8/HPzenF4Ih8fH8LDwwkPD8dut1NVVUVxcTEWi4XAwEBCQ0Pr9NAShI4kNDSUzMxMIiIiREWThzj77LPZsmVLs57j6+vrqqp2JklOPQYKCgpyjXl1aupxkizLWK1W7HY7sizj7+/P4sWLkSSJiRMn1js3LSoq4siRI/Tr1w9ZlsnLy+PPP//k1Vdf5fDhw9x3332MGDGiWa/Rk4jfFKFJqqur6zUQ68zmzZvH6tWrWbFiBRMmTOCmm24CHJnXWbNmYTQa6dKlCxdffHGbj5JtSL9+/Zg6dSqzZs1iyJAhdd4cf/31V+bOnYssy/Tr148BAwbUe76z7G7Hjh3YbDZGjRrV4FWykSNHsnnzZj788MM6zxPLVjyP1WolPz8fHx8f4uLiPO6qp9lsxmq1ukrUBaEjcS5ZNJvNhIWFkZiY2LpGv0uXwttvO76OiYE5c2DUKNBqoaAA04Hj/PHvbyjR+/L9r3DeeVMw/DmU7/dcxMUh2xk7VuoQyQ4nlUrlWsYiyzJGo5HS0lJsNhtRUVHieEXocCRJIiYmhqKiolYPNqhtzZo1qNXqehfthDPr1q0bH3/8cbOeI0mSq9H/nj17XN+rzc/PD51Oh91uJzY2tsFGpKfbfu1E+m+//cbHH3+MLMvceeed+Pv711nCXFZWxv/93/+xY8cOwsLCsNlsGAwG13KYBx980OOOH5tDJDqEJjEajV67Pssd+vXrxxtvvMGdd97JrFmzmDdvHjExMRw4cIDq6mqioqJ4/fXXSUtLa5er1TU1Nbzzzju88847hISEuHq7ZGdnu2ZfJyUlsWLFigbj6dOnDxEREZSXlwP1l604jRo1ihdffJGamhrAUdEhlq14JpVKRWxsrMd+QJWUlIgSXKHDMZlMlJSUtO0J98GD4Ozzde65jqUqtZafGQww6XnYY7ubHzaYGX6e4/tzDx1iac4xNi7/mXFPjWPsWDpUssNJkiQCAwMJDAzEYrFQUlJCcXGx699fVIwJHUVgYCDFxcVYrdY2q+owmUyuXhFCw0wmE8eOHePIkSMcOXKEw4cPc+TIEfbv34/RaGz29kaPHk1UVBRZWVkcOHCgznISZ1LDeTzevXt3VCpVneRESUkJISEhdY67MzMzOXbsGGlpafj4+JCTk8OuXbt46623OH78OI8//rjr4mTt98TExESmT5+OWq3GYDAQEhLCgAEDuPDCC5kwYYLXJ41FokNoErGOvr477riDc845h5deeoktW7bwxx9/kJCQwKWXXsrDDz9MdHR0u43q/PPPP1mzZg3ff/89hw8fJisrC4PBQFhYGKNHj2bKlCnccccdrpFWp5IkiZEjR/Ltt98CjSc6RowYgSRJyLJMdHQ0PXr0wGg0iqvyHsBkMlFZWUlUVBTgSHR4apLDYrGIag6hQzEajZSUlCBJElFRUW27hOLuux39OFQqWL++fpJjEuzZA99/D8PP+/t3PmTCBDIzM0n9bRUbN45j3Dg6bLLDydfXl/j4eKxWqyvhERkZSXBwsEh4CB2CVqulrKyszY7JIyIiOH78eJtsy5vZ7XZycnLqJDKcf2ZmZuLv70/37t1dtwsuuICEhATGjx9PeXl5s5q79+zZk379+rFhwwY++ugjnnjiCQIDA129EHfu3El5eTlqtdr1/yxJEjt37uT//u//OHbsGMuWLWPs2LGupFd5eTmPP/44v//+OyqVCrvdDkBUVBSvvPIKc+fObTCWkJAQ7r//fh588MF2O2dpTyLRIZyRLMt1MonC30aPHt2sbsvukpSUxD/+8Q/+8Y9/tHgb33zzzRkfExkZ6XrzdKqsrGw0gSI0X3V1NQEBAU3+fTOZTBQXFyPLstckI52TVgTBm8my7Gry6+vr654KqkOHYMMGx9fx8VCrCurUJMd559V96qjRo8l66y1iCgqIjYWNG+kUyQ4AtVpNXFwcNpuN0tJSSktLiYiIIDQ0VBzLCF4tODiYkpKSZi1nOB2tVktVVVWnr8zdtGkT48ePp0uXLq5kxtSpU11fJyYmNvjeodVqOXnyZLOn2N14443s2bOHV199lbPOOotbb73V9fnxzjvvcOLECW699Vb69u3rOgdTq9UYjUby8/M5fvw4Y8eOdW2va9eu3HrrrcTGxrqmZPbv35/Ro0czePDg0/aF8tSLYm1BJDqEMzKbzZ36za85OmNCqLq6WixBaCMlJSW8++67zJw50zUCrDFms5ni4mLsdjvR0dFe04TParViNpu9vhxS6LxkWaayspKysjL8/f1JTEx0X3PAlStdX5ZoEln8IqxeDceO2ikpAQno0UvFl186HlM72TFq1CgKgAKdji7Q6ZId4GhgGhMTg81mo7y8nIyMDCIiIggLC+t0n9VCxyBJEmFhYej1+jYZEa/VagEoLy8nLi6u1dvzViNHjqS6urrZJ/1dunTh5MmTDBw4sFnPmzlzJllZWTzxxBPMnTuXdevWERoayp49e9i9eze9e/fm+uuvx9/fH5vNho+PD2FhYWi1WiIjI11JLmcVRmhoKLfeeiu33XZbs+Lo6ESiQzgj5xVm4fRkWSYrK4ukpKQOWf7VEDGNp21FRkYSHR3Npk2bzpjoKC8vJzIy0msSHE6imkPwVrIso9frKS8vJygoiOTkZPe/12/dCsBKv5nMOfEapY847/j7Su6BA47b0YNWvvr278O6JLWaGGCN1Yrz3aQzJjvAcTIQFRWFVqt1JTzCwsIIDw9vk6vigtCewsPDyczMJDw8vNXHX85kSVlZWadOdLQ0Wd2lSxdOnDjR7Of5+Phwzz33EB4ezgcffMAXX3wBOBJZl156KfPmzWPIkCGuJAdAamoqa9eurfN/3tjXgoNIdAhnZDQaxUSNJiguLiY0NLTTJDkADAYDwcHBSofRYUiSxKhRo1i5ciU5OTkkJSW57rNYLKjVatcHWWxsrFJhtpjNZqOmpqZTH0wJ3sdut6PT6dDr9YSGhpKamtp+J8cHDvAhN3Cz+QPs+BBDIXN4m1Gko6WMAuI4Tje+YQq+m4C8PuCcyLBoEbKPD29WVDC11iZPTXb88gs0MHW8Q1KpVERGRqLVatHpdGRmZhISEoJWqxUJD8FrqFQqAgMDqaqqavUxWGBgIBqNxtX8UmgeZ0VHS4SEhDB37lymTJnCiRMnCA8PJyUlxVVlI8tynXMKkchoPvGuLpyRszmO0Ljq6mpMJlO7jJL1JCLR0fZ69epFVFQU6enpwN9jYvPy8rDZbApH1zrNbdglCEqSZZmSkhIyMzORJInU1NQ6JcPt4WBxFP9gIXZ8GM2v7Occ8onn1zuWM7BmC5O2P8XdE4/zAxezrGIyzJgBdjucOAH//S9Hhw5l0759WCyWOtuNjYXnn4f8fPjgg3Z7OR5DkiQiIiJIS0vD19eXzMxMiouLvf49Vug8IiMjKSsra/V2nL8LbbGtzqg1iQ5wfM6kpKQwduxY+vfv70pygEhstAWR6BBOy263I0mS+GU7DZvNRmFhIQkJCZ3q30mWZaxW62kbHAnN55yAc/jwYfbv309ubq7rKrLb+gC0A2dfAzGmWvAGNTU1ZGZm4uPjQ1paGhEREYpc8b+76nlM+BNFMV+qZhCZHIR/sC9PvxPNOx9oYPBg+PZbmDgRPyzw22/wv//B+PEQFkbVv/6FyWRi//79dba7dSvccAOMGgWPPtruL8tjOPsdpKWlodFoyM7OprCwUCQ8BI+nVqvx8fGhpqam1dtyLukSmq+1iY7OdN6gBJHoEE6rpqbG63oAtLf8/HxiYmI61ZIVQIyVdaOUlBSCgoLYv38/qampBAUFKR1Sq1VUVIiJB4LHk2WZoqIiioqKSExMJCIiQrGf2UOHYAPjAbiLN4i66gKk3zbz37T/co/0P+bMgXfuOQCFhfDII38/8f77ITAQNmygz7hxqFQqduzY4bp761a4+GI491xYswbE0CzHyYYzoRwYGEhWVpY48RM8XmRkJKWlpa3ejqjoaLkuXbqQkZFRbyKh4BlEokM4LaPRKKYjnEFUVFSHOBFtLoPBIMbKukl4eDijRo3i8OHDVFRUKB1OmygvL+90S7sE71JTU0NGRgZ+fn4kJycrXq1Wa+AKM1gJEydCUhK6tVuYOy+K2yM+Y87rvXkn4UlHsw2niAj4/Xf4K0naq1cvdu7cCYgkx5lIkkRISAhpaWmYzWZycnJEdYfgsfz9/bFarVit1lZtR6vVUlFR0ertdEapqamYTCYKCgqUDkVogEh0CKclJq6cWWeteBE/G23DZrNRVFSEXq93fU+lUjFgwAB8fX3Ztm2bgtG1jerqavz9/Ttd1ZPgHWpXcSQlJbXJJIO28NfAFcLQ0YuDLDs0iH79QJscRI8nZ/Je+VWEBtmYwzv897Y/oW9fxxOqq6FW76TBgwezY8cOkeRoBkmSiI2NJTw8nKysrDZZHiAI7qDValtdjREREYEsy+h0urYJqhPx9/cnISGhVctXBPcRiQ7htGw2m1f3BXAXWZY7dZmaGCvbejabjeLiYrKysvD396/Xu0Kj0TBgwAB27tyJ2WxWKMq2UVpaKiY3CR7JaDR6VBVHbQcOOP5MI4O7eZ3rnzuHP/6o+5iKKkfy8P73+/BH2V9Tmk75zB40aBD79gVz8cWySHI0U3BwMMnJyRQWFlJWVoYsy0qHJAh1BAcHU1VV1apj0ujoaAYOHCguRrRQa/t0CO4jEh1Co5wns0JdGRkZqFQq14n+6W6//PJLu8Q0a9YsJEli1qxZp33cggULkCSJsbXLnHEsQ3nxxReZPn06PXr0ICIiAj8/PxITE7nyyivrvY5Tp63Y7Xb+97//MWDAAIKCgtBqtVx44YWsXbv2jLF//PHHjBgxgrCwMEJDQxkxYgTLli1r8mv3Nna7nZKSErKystBoNKSlpTXau2Lo0KGYTCb+OPXsxouYTCYkSfKoE0hBsNvtFBUVUVJSQnJyssdUcdTmvEh7iJ68yV2EB5h45x0oKoKaGti+3bGaxem23PnYkSAxsc52+vS5DT+/nzj3XEkkOVpArVaTkpKCzWYTS1kEj+NsqFu7KrS5goODmTJlipiK1kJdunThxIkTSochNEBcqhcaJZpNNsxutzN48GA0Gk2D9+fn53PixAn8/f3p379/+wbXQgUFBTzyVzO7iIgIEhMT8fHx4eTJk3zxxRd88cUXPPnkk8ybNw+AyspK4uPjAUdlwuWXX853332HSqWiT58+VFZWsmHDBjZs2MBLL73Egw8+2OB+77jjDt59910AevbsiSRJbNmyxXV744032uHVty+73Y6vry9paWlnPLGKiIigZ8+ebN26lUGDBnnciVhTiGoOwdMYjUYKCgrQarVER0d77O9VVZXjTxP++GBlbZ+HGD77f677nQNXJk+GtWthO8P4kmn/396dxzlV3f0D/9wssyQzmX1f2RVUEFzQse4FERdQVKoibkWtT2kflz4+6svCA/VnsS7U2tYdtaBWVNSqaFGsLJYiOwoKDLOvmSWzZE/O748hccIkM0kmmZvl83695iXmLjmZuXPnnO/9nu/BpOx0nHhsn3//G5gzJ5mZHMMkSRJycnLQ29uLmpoa5Ofns39EESM9PR3V1dURGbCNB6NGjUJ1dbXczSAvmNFBPrEQ6UAOhwOSJOHf//43Nm/e7PXrrLPOAgBcccUVSEtLk7nF/klPT8czzzyDH374Ae3t7di/fz/27NkDvV6PFStWAOjLBtm+fTuEEB5Tmh5//HF89NFHyMvLw86dO7Fnzx5UVlZi9erVUCgU+M1vfoPt27cPeM8333wTzz33HLRaLT7//HMcOHAA3333HTZs2ACtVotnn30Wa9euHdHvQzg4nU70ukYs6Hs6mJaW5ndnpKKiAmeeeWZUTpVyOByw2WwcEFBEcDqdaG5udmdxBPJ7KIf+5Z+uwduYvv0Z4M03PfZRKIDHl/x4f3kDP8NNW+/AX//KwqPhoNVqUVJSgtbWVrS1tXEqC0UEhUIBjUbj0degkVNSUoLa2lq5m0FeMNBBPnFp2YGampoGXUq2p6cH69atAwAsWLBgBFs2PNnZ2fiv//ovjBs3zuP1hIQE3H///bj00kshhMC6des8rgur1eoOhDz11FOYPHmy+9jrr78et912G4QQWL58+YD3dL320EMP4cILL3S/ftFFF+HBBx8EACxbtiy0H3QEOZ1OtLe3o7q6GjabLejzFBUV4fTTT4/KaWTt7e1MhaWIYDKZUF1djaSkJJSUlERF7an+gYlZmceKEi9YAPzyl8DGjcCOHcCqVZi08DQUoQ4AsD3lApy9+HTcdRdw0UUMcoSDSqVCSUkJhBCcykIRIysri0vEyqSkpAQ1NTVyN4O8YKCDvHIV21QoeIm4GAwGqFSqQZeSfffdd9Hb24ucnBxccsklI9i68DrhhBMA9K2e0b8+x8aNG9HR0QGdTod58+YNOO62224DAHz66afo7u52v/7999/j22+/BQDceuutA45zvbZ371788MMPof0wYSaEQEdHB6qrqyFJEsrLy+NyWVWn08kliEl23rI4okVJyY//Lv7Dr4GxYwG7HfjTn4ALL+ybu3LLLcDBgyhB39PEFlsGnn4a+N//7Qt0MMgRHpIkITs7G1lZWaipqYHRaJS7SRTnVCoVlEolLBaL3E2JO66MDmZ4RR6OYskrm83G4oHH0Wq1yM3NHXSfv/3tbwCA+fPnR8UTQ38IIfDvY+scTp06FUaj0T2lyfX6GWec4fV6mTZtGpKSkmCxWLB79273667jxo4di7y8vAHH5efnY8yYMQCAbdu2hfTzhFt9fT2EECgrK0NGRkZEp8aHU1dXV8RPDaDYZrfb3asaRUsWR3+TJv34b0dxGbB7N/D448CZZwKZmUBCAlBcDFx3HRwT+nZWqSRIEvDoo8AHHzDIEW4ajQalpaVoa2uDXq/nQIdklZWVhba2NrmbEXdKSkpgNBrR0dEhd1PoOAx0kFdms5nz6o+jUqkGHbQ1Njbi888/BxBd01Z8MRqN2Lt3L2666SZs3boVZ511Fq677joAcGf6HDp0CAAwevRor+dwpfj239ef4/pv639cJDq+Y1tcXIzMzMy4z4bq7OyMy0wWigxmsxm1tbXIz8+PqiyO/s4998d/HzkCQKsF7ruvr/hGWxtgsQC1tcCbb6JS37c89XELrniora1FVVVVWNscj5RKJYqLiyFJEmpra2G32+VuEsWppKQk2Gy2oK5Bi8WCDRs2oLm5OQwti206nQ46nY51OiJQfPfEySez2exzVZF44+8fjNWrV8PpdGLChAk4/fTTw9yq8JkyZQokSYJWq8XkyZOxbt06LFmyBJ9//jksFovH1B1X9HqwOgyubf0j3cEeF0mEEDAYDKiqqmLH9jgmkwmJiYlxH+whefT09KCpqQklJSVRXWfqiisAV6Lcu+/63u9f/+qLewDAT37ie7/LLrsMjz76aOgaSG6SJCErKws5OTmora1lUUiSTWZmZlC1OlQqFbZu3Yq6urowtCr2lZaWMtARgdgLJa8sFktUdxBDxWg0oqmpya99XdNWoj2b49RTT0VFRQVOPvlkaLVa9PT04O2338bWrVvR29vrrs8B9AXEgL6ipb64AmYmk2nYx0UCIQS6urpQVVUFm82GsrKyEUuJdzqdOHr06Ii813C0t7cjMzNT7mZQHOro6EBHRwdKS0ujbqrK8bIynLh9Zl/H+Z//BN5MuwMYP76vGOl33wEAuruBX//6x2PuuMP3+U477TR88803YWwxJScno7S0FB0dHWhpaeFUFhpxKSkp6O3tDXilNqVSibS0NBY0DRJXXolMDHSQVw6HIypXeQglh8OB5uZmFBQUDLnvvn37sGfPHkiShBtvvHEEWhc+r7zyCjZv3oy9e/eio6MDzz77LI4cOYJLLrkEmzZt8sj06b/6ii+uwlj9p0IFe5zcent7UV1dDYvFgtLSUmRnZ49o1sKhQ4fw2muv+R18k4PD4YDdbmdGGI0oIQSam5thNptRXFwc/dlE33wDnHgilv5jKkrVDQCABT1/xi+TXsDG1Q3YMWkBVp38BM6YZoer/NFddwGDJROedtpp2LdvnzvQTOGhVCpRVFQElUqFmpoaZvzRiJIkCWlpaTAYDAEfm5mZGbFZtJGOgY7IFOU9AQoHrrbSZ6ilZPt7/fXXAQDnnnsuysrKAn6vRx99FOecc86Ar127dvl1vKuNQy1z5+pw+RvEUqvV+MUvfoHly5fDbrdj5cqVHnVK/Jle4m2aSrDHyc1VcyQnJ0eWQODYsWORkpIS0U9lDQZD1NZEoOgkhEB9fT1UKhUKCgqivwDu5s3AeecB6enI2bwO63cX9C244lTiT/vOw4Ud7+A07MAt++/FwUN9WSu33gqsXDn4aadNmwa73Y69e/eOwIeIb5IkITMzE3l5eaitrUVPT4/cTaI4kp6ejs7OzoAzijIyMhjoCBIDHZGJo1kawGKxxP3TWH+WknVxOp144403AAQ/beWHH37Ali1bBnz5G5F3DSw7OzsH3c+1PdCB6OzZswHAvSSsy7hx4wAAlZWVXo9zrXrQf19/juu/rf9xI62np8ejg5qYmChrppNSqcSpp56Kffv2DZoNI6euri7odDq5m0Fxwul0ora2FqmpqcjKypK7OcPX0gJceWVfasbGjUBFBdraJZxzDrBs2XELruTbcF3iOnwx5R689NKP9Tx8Ofnkk6FQKBjoGEFJSUkoKyuDwWBAc3Mzp7LQiFAoFNBoNAHXitHpdOjq6gpTq2JbSUmJu79LkYOBDhrAbDbHdX0Ou92Ojo6OIZeSddm4cSPq6uqQlJSEefPmBfWeq1atghBiwNf555/v1/Hjx48HAOzfv3/Q/fbt2wcAmDBhQkDtc2WCHJ8xcuaZZwIA/vOf/8Bmsw04bseOHbBYLEhISMCUKVMGHHf48GGvFb6bmppw5MgRj31HkmuKSk9PT8T9LkybNg02m839s4wkrp81M8JoJDgcDtTW1iIjIyN2sohefBEwGoG1awGNBl99BcycCaxaBfzjH8Cnn/ZbcKVRjTffknDB7qeA7duHPHVycjJGjx49IGBN4aVQKFBUVAS1Wo2GhgYGO2hEBDMNRafTwWg0crpVEJjREZnYG6UB4j3QoVQqUVJS4nf6s2vayhVXXCFbZ/unP/0pJElCVVUVtmzZ4nWfyspK97YZM2YEdP5169YBgEewAgAuuOACZGRkoKurC2vXrh1w3EsvvQQAmDlzJlJTU92vn3DCCTjxxBMBAC+//PKA41yvnXzyye4gzkgwGo2orq5Gd3c3ioqKkJ+fH3EFDdPS0jBmzBjs2bNH7qYM0NHRwSVlaUTY7XbU1tYiOzvb494S1RwO4LnngOuvB7Kz8dVXwKxZwFlnAZs2Ad9/3xf08Ej0u+wyoKwM+POf/XqLk046iYEOmWRmZiIpKYnLd9KIUKvVcDqdQ05p7s+Vjdnd3R2uZsWs0tJS1NXVBVwElsKLgQ4awGq1DroaRqyTJMnv6QkmkwnvHlv3T87VVsaMGYPrrrsOAHDjjTdi+3FP9w4ePIirr74aDocDZ511Fi644AKP7U8++STeeOONAWmO3d3d+P3vf4//+7//AwD88pe/9NiemJiI++67DwBwzz33eAy+16xZg5deegmSJOGhhx4a0OaHH34YAPC73/0OX3zxhfv1L774wr0EomufkWCz2WAwGFBYWBiRAY7+TjnlFNTW1kZUdXQhBEwmU0QVj6XYZLPZUFtbi7y8PL+mF0aN/fuBmhrgpps8ghwffACccw6wYYOXYIdSCSxYAHz4oV9vMWnSpCEz/yh8srKyIEkS2lzrAROFkU6nCyho4Qp0cPpK4IqLi2Gz2dDS0iJ3U6ifyO3Jk2yEENFfzC0IVqsVarU6oM++bt06dHd3IycnB5dcckkYWze0P//5zzh69Ci2bduGM844A2VlZcjPz0d7ezsOHToEoG+Ki6ueSH979+7FvffeC6VSiTFjxiA9PR1tbW2ora2F1WqFJEm49957cc011ww49je/+Q02bdqE9evXY+rUqTjppJPQ09PjrrHx//7f//M6/eT666/Hl19+iRdeeAEXXXSRO8PjwIEDAIA777wT1157bci+P97Y7XZ3QEOtVvu1wk4kOOGEE5CQkIC9e/f6Pb0p3Hp6epCSkhKX9w4aOVarFfX19SgsLIy9WlLHApdf1Y/BrJ//GOTQaPo2T5vWF+y4+OK+YMennwJpaQCKioCODkAIYIjfv5NOOgmNjY1cAlpGubm5aGhoYOFmCjudTof6+nq/My1d2XEMdAQuKSkJOTk5qK2tRX5+vtzNoWOY0UEe+g/84onD4UB9fX3AKWeuaSvz58+X/fuWkZGBr776Cn/9619x/vnno6enBzt27EBLSwvOOussrFixAjt27PC6KszixYvxwAMP4IwzzkBPTw927dqFpqYmjB49GrfffjvWr1+PpUuXen1flUqFf/zjH3j66adx8skn4/Dhw2hra8OFF16If/zjH3jggQd8tvn555/Hq6++iunTp6O2tha1tbWYPn06XnvtNfzlL38J2ffmeGazGbW1tdDr9WF7j3BSq9WYOHEi9uzZEzHzvTs7OzlthcLKbDajvr4eRUVFsRfkAICkJHyFn2DW7YUDghwurmCHR2aH2QwkJQ0Z5AD6MjqAgYWlaeRIkoTCwkIYDAauxkJh5cpO9rfmRmJiIhITExnoCFJBQQEaGxvlbgb1I4lI6SXTiOjq6nKvr+1tZYSenh6YzWZkZ2fL0Dr5uCLeMZUGHULV1dUoKSmJ+iKTZrMZra2tUCgUyMnJieopWlVVVXj11Vdxyy23oLS0VNa22O12NDQ0yN4Oil0mkwlNTU0oKSmRPagcLl990IlZV6px1vg2fLCrdECQo78dO/oyOyZMAD5NuxZpHVXAf/4z5HtYLBZotVr86U9/wp133hm6xlPAnE4nampqkJeXxyl/FDadnZ1wOp1+Z3A9++yzGDNmjOxZytHokksuwdy5c3HHHXfI3RQ6JrpHLRRy8ViI1GAwQKlUMsjhgysWGu1BjoaGBuj1euTm5qKoqCiqgxwAUFZWhvT09IgoSsoUbAqn3t5eNDc3o7S0NHaDHF8Bs36WjrPyKvGB83Jokgd/BuXO7DjgwMzP7oFhwX/59T6JiYkYP348MzoigEKhQHFxMZqamiJ2uXCKfqmpqQHV6cjNzeUU1CAVFhYyoyPCRPfIhUIu3gIdVqsVHR0dyMvLk7spEctsNsdEmnheXh6Ki4tj4rMAfenPp5xyCr799luvS/uOpJ6enthZ+YIiisViQWtrK0pKSvwuEh1tPAqPvt4FzeG9fauvDGHaqU5sOP1BfC+dgJmv3+C5GssgPvjgA3fBZ5KXSqVCUVER6uvruaQnhYVSqYRCofD7+rrmmmswc+bMMLcqNhUUFKChoUHuZlA/DHSQh3ir0dHc3IyCggJGrwdhNBqhGSyHOgK5Chb2/8Mei4OkyZMnY+rUqbJ2kG02m7sjRRRKrilRRUVFMfn7C2DA6iqan1YAd9/d9/Xii30FRr2xWoHbbsO0Lx7Hht/vxPeHlAOXnvVh7NixDExGkISEBBQUFHBpSgob15R1Ci/W6Ig87JmSWzyuthKzRe1CyGQyRU2gw2q1oqGhAU1NTcjKyor5oF1mZiZmzJgh6/xuTluhcHA6nairq0N+fj7UarXczQmL1ta+IMfJJx9XeHTlSuCOO4Cf/7xvjsqLLwINDUBXF3DoELBkCVBeDqxeDbz+OqbdfyH++U9g507g1ltl/EAUNNeKDXV1dRFTYJpiR0pKCgvfjgAGOiJPbI8CKCAWiyXq6xYEik+hhxYNWT42mw2tra2w2+3IyclhYbcR1NPTw2UqKaSEEGhoaEBmZmZM/y5nZADTpwPbtgHffAOce+6xDUol8OyzwBVX9P130SLPzA6tFliwAPiv/wImTYIQwJo1gM0GsH5g9NJqtbDb7e6VheLtwROFj0KhgFKphNVqjbt+/khioCPyRPbohUaUxWKJi/ocDocDdrudmRx+sNvtUZEybrFYkJ6eHjWZJ7HCarVCpVIxYEghpdfrkZSU5HVlsFiiUgEffghcfjlw6aXAxx/3C3ZIUl/U4pJLgOpqYN8+oLcXSE/vi44cy6ISArj3XuCpp4A//akvCYSiV1paGux2O5qbm5Gfny93cyiGpKWloaurK+5WVRxJhYWFaGpqgsPhiIq+czxg75TcLBZLXAz+m5qaZC/eGC0itT6H3W6HxWJx/39KSkpEtjPWuZarJgoVg8EAq9WKrKwsuZsyIjSavmDHmWf2BTu++srLTmVlwGWXAdddB8yc6TPIcffdI9t2Co+srCxIkoS2tja5m0IxhNNXwi8/Px9OpxOtra1yN4WOYaCD3OJh6oprKdmUlBS5mxIVIq0+h+tJV319PYu2RYCenh7+LlHImEwmdHZ2orCwMK7S9v0KdhwnFEGOrq6uwA+iEZGbmwuz2cwCkhQykiRBrVZ7PCTypampCZ2dneFvVIxJSkpCRkYGp69EEAY6yM3hcER8LYbhcC0lm5ubG5LztbS04L777sOkSZOg0WiQlJSEMWPGYNGiRTh8+HBI3iMYvb29eOaZZzBr1iwUFRUhKSkJKSkpGDNmDObNm4dXXnnF7w5upCw37HA40NzcjLq6Omi1WpSWlsb03P1gjeTqK1arFWq1Oq4GpBQ+NpsNTU1NKC4ujstrKpBgRyiCHE888QTKy8tZ+DJCSZKEwsJCGAwGPoWnkPF39ZW33noL33zzzQi0KPawTkdkYaCD4oIQAo2NjSgoKAhJPYHvv/8eJ598Mp544gkcOnQIpaWlGDduHBoaGvDCCy9g8uTJ+Ne//hWClgfms88+w+jRo7F48WKsX78eDocDkyZNwtixY2EwGPDOO+/g1ltvxahRo7B+/fpBz+XqAMs96LDZbKitrYVGo0FZWRlSUlJkb1Mkev/99/HOO++M2PtxtRUKFYfDgbq6OhQWFsb1vGZ/gh2hmq4yduxYdHR0sEMewSRJQnFxMfR6PUwmk9zNoRig1WphNBqH3C81NRXd3d0j0KLYU1BQgIaGBrmbQccw0EEAomNljeEwGAzQ6XQhq0Fy9913o6WlBRUVFaisrMTBgwexb98+1NXV4YorroDRaMQtt9wyok/LPvzwQ1x66aVoaWnB/PnzsX//fjQ1NWHHjh3YvXs3WltbsXPnTixatAg9PT3YvXv3oOeTszp3/++bWq1GWVkZUlNTGeAYRE5ODg4dOuRXWmoo9Pb2QqvVjsh7UewSQqC+vh65ublxUSNqKIMFO0JZk+PEE08EABw4cGCYLaZwUigUKC4uRlNTE6xWq9zNoSgnSRISEhKG7CfodDpObQtSYWEhA8gRhIEOAiDvoHYkpKWlIT09PSTnMhqN2LhxIwDgL3/5C4qLi93bsrKysGrVKkiShKNHj+LgwYMhec+htLS0YOHChXA4HHj44YfxxhtvYNKkSR77SJKEU089Fc899xy2b9+OCRMmDHpOo9E44tNDnE4n9Hr9gGg4AxxDmzhxIhwOx4hMm7JYLJy2QiHR0tKC1NRUBs368RbsCHXh0fLycigUChw5ciQ0jaawUalUKCoqQn19/YhOT6TY5E8QIzU1lYGOIHHqSmRhoIMAxH4hUkmSQjYos1qt7kKYo0ePHrA9IyMDmZmZAEauZsIf//hHdHR0YPLkyVi6dOmQ+59yyimYO3eux2uuAM3NN98MoK8wYP9Ax5dffglJknD++ed7PWd7ezseeughnHTSSdBqtUhNTcX06dPxwgsveC0carfbsXLlSpxxxhlITU1FYmIiCgoKMHv2bDz33HMDCmFVV1fjjjvuwOjRo5GYmIjU1FSMHj0ac+fOxZtvvjnkZ4516enpyMvLww8//BD29+JqKxQKPT09cDgcyMjIkLspEef4YMfPfhba1VUSEhJQVlYmaz0p8l9CQgIKCgpQV1cHh8Mhd3Moimm1WvT29g66j06nQ3d3N2v4BCE3NxctLS1yN4OOid25ChQQq9UKnU4ndzNCrru7G6mpqSE9Z3p6OkpKSlBbW4utW7fipz/9qcf277//Hm1tbUhPT8e4ceNC+t6+/P3vfwcALFq0KCQ1SIDAsny+/fZbzJw5E/X19UhISMDYsWNhsVjwn//8B9u2bcNnn32Gv//97x7Bpvnz57trSpSVlSErKwutra3YsWMH/vOf/+Cqq67ClClTAABVVVU4/fTTodfrodFoMGHCBCiVStTU1GDdunU4evQo5s+fH5LPHc3Gjx+Pb775Bk6nM2TXgTdGozFulv+k8LDb7WhtbUVZWZncTYlYrmDH5ZcDb70V+iVkx4wZw4yOKJKUlITs7Gw0NTWhqKhI7uZQlJIkCSqVCjabDWq12us+Op0ONpsNZrOZhd8DxEBHZGFGBwGIzakrBoNhyKh1sJYvXw4AuPXWW/HOO++gra0NBoMBn376KebMmQNJkrBixYoRWbFEr9fj0KFDAIBzzjknJOcUQvidBdPb24srr7wS9fX1WLx4MVpbW/Htt9/i8OHD2L9/PyZNmoS1a9fiz3/+s/uYHTt24J133kFJSQl27NiBo0ePYseOHaipqUF7ezteeOEFj4H0E088Ab1ej4ULF6K5uRl79+7Frl270NbWhgMHDuAXv/hFSD53tBs/fjxMJhPq6urC9h52ux0KhSKsgRSKbUIINDQ0ID8/n9fREDQa4KOPgN27QxvkABjoiEYpKSlQKBScVkDDMtT0FdeDTxYkDVxOTg5aW1vlbgYdwx4GAeirjRBL1e5DvZTs8W666Sa88847yM7Oxrx585CdnY309HRccsklSEhIwMcff4yf//znYXnv49XX17v/XV5eHpJzBrKs7Msvv4wjR45g7ty5WLlypUdm0MSJE7FmzRpIkoQnn3wSQgh0dHTg+++/BwDMmzcPU6dO9Qio6HQ63H777SgpKXG/5grk3HPPPUhJSfF4/xNOOAGLFi0K+rPGkqKiImi1Wvf3Nxx6enoG/AyIAtHW1gatVssnhX5KSgImTw79eceOHYvDhw8zPT3K5OXloa2tjfU6KGgpKSmDLlvsyoRmQC1wDHREFgY6KOY6OaFeStbXe1RWVqKtrQ1KpRJjx47FxIkTkZCQgP379+P5559He3t7WN77eP0j7r4K+p1wwgnuDA3X12BBEZPJ5Heg49133wUA3H777V63n3LKKSgvL0dlZSW+/vprCCHcQYzPP//cr++Ta/+1a9fG3PUaSpIkYdy4cWGt0xGO6WAUP0wmE4xGo7uOEclnzJgx6O3tZZp1lFEoFMjLy0NTU5PcTaEo5crK9BUsY6AjeLm5uWhvb2cgMkIw0EFwOBwxlc2h1+vdxS3D5c4778T999+PkpISHD58GIcOHcK3336L2tpaXHrppXjvvfdwwQUXjEjRsP6DTl9TdaZNm4aKigpUVFTg5JNPHvKcgWR07Nu3DwDwyCOP4JxzzhnwNX36dHd0W5IkZGZmoqKiAmeeeSb27t2LkpISzJkzB08++SR27NjhNZBx9913Q61WY9myZRg1ahTuvPNOrF69mmuVezF+/Hjo9fqwBNqEEHA4HDG9FDWFj9PpRFNTEwoLC7liTwQYO3YsAHD6ShTSaDRQq9UwGAxyN4Wi1GDTV5RKJbRaLQMdQcjJyYEQAm1tbXI3hcBAB6FvxZVwBgVGksPhgNVqDWsV/z179uCFF16AWq3Gm2++6ZEZkZubi9WrVyM7Oxt79+51FwkdyqOPPuo1SLBr164hj+1flKyqqsrrPqtXr8bmzZuxefNmj1oZvthsNr9rtrg6Wjt27MCWLVsGfG3bts2dIulau12hUOCTTz7Br371KyQnJ+P999/Hvffei9NOOw2jRo3CqlWrPN5jypQp+OqrrzBjxgzU19fjueeew4033oji4mLMnDkTBw4c8Kut8WDMmDFQKpVhyeowGo3QaDQhPy/Fh8bGRuTk5DBQFiFcq4Zx5ZXolJOTwyfHFLSUlJRBa3C4Vl6hwCQlJSElJYXTVyIEAx0UU4VIlUolioqKwvq0cMuWLRBCYPz48R51JFx0Oh3OOOMMAMA333zj1zl/+OEHr0ECf57WZGdnu5/Mbdq0KYBP4sn1PRNCuIuR9ucrW8RVr+HQoUNwOp2w2+3ucxz/1X9p2oyMDDz99NNobW3Frl27sHLlSlxwwQWorq7GLbfcgrVr13q8z/Tp0/Hpp5+io6MD69evx//8z/+guLgYn332GX76058OWI42XiUkJKC8vNxd1ySUOG2FgtXd3Q2FQsH6LhFEq9WioKCAGR1RyjWFhVOPKBhKpRKSJPnMPPZnGVryLjc3l4GOCMFAB8VURsdI8CfC7Zp+YTab/TrnqlWrhgwMDObaa68FADz//PNwOp1+HXM8V32P5uZmr0uO+XrqN3HiRADA9u3bUVVVFfAfRkmSMGXKFCxevBhffPEFHnjgAQDACy+84HX/lJQUzJw5E4899hgOHjyIMWPGoL6+Hp988klA7xvLxo4di9ra2pBPnQpkShORi9PphF6vD1txaAres88+i6uvvlruZlCQNBoNhBAwGo1yN4WikEajgclk8rptxowZmDFjxgi3KDbk5OQwABkhGOigmMjo6OnpGbH0zXHjxgHoy8Kora0dsL2rqwvbt28H0FcvYSQsXrwY6enp2Lt3L377298GdQ5XGvOePXsGpJY7nU688sorA44RQmD27NkA+jrMJSUlHquuBGP69OkA4Ff9DY1G4645wnodP5oyZQruvffekNbesVqtUKvVrK1AAWttbUVWVlZM1YKKFXPnzsUpp5widzNoGFxZHSzUTYHSaDQ+H07l5OSwaHSQuPJK5GCgg+B0OsO2OslIsFqtaG1tHbHPMGPGDGRnZ8Nms2H+/PkedTFaWlpwww03QK/XIykpCfPmzRuRNuXl5WHVqlVQKpVYvnw55s+f7y4S2l9lZSVee+01r+eYPHkyCgsL0dTUhD/84Q8eWSm//vWv8d1333nsb7PZUF1djfnz52P06NHYsmULbrrpJjQ2Nnrs19PTg7///e+455573K+tXr0ay5YtG1BTpK2tDX/84x8BAFOnTnW/ftddd+Gtt94a8NTqq6++wueffz5g/3iXlJQU8iwtLitLwbBYLLBYLJzyRBQmKpUKqamp6OjokLspFGWSk5P9zjwm/3HqSuSQBEPAcaWrqwtpaWkwGAzQ6XQQQqCmpgZlZWVyNy0orvbn5+eP6PSbTz75BFdddRXMZjOUSiVGjx4NtVqNw4cPw2q1QqVS4cUXX8TChQtHrE0A8PHHH2PhwoXQ6/UA+m62xcXFcDqdaGxsdD/1SU9Px6OPPoq77rrL4/i//e1vWLBgAYC+iHRZWRl++OEHOJ1OLFmyBPfddx/OO+88fPnllx4rcBw8eBCXXnopjh49CoVCgQkTJkCn06GjowNHjhyBw+HAmWeeiX//+98AgKeffhr//d//DaCvmGphYSFMJhN++OEHWK1WFBUVYevWrSgtLQXQl6HgyjQZN24cUlNT0dzcjOrqagDAjTfeiNdff31Evsfxqra2FoWFhXwqT35z3Z8LCgqiPmuQKJIJIVBVVYWSkhIW+6WAVFdXo7S0lNmaIfTAAw+gq6vLr+L/FF68G8Y5u90e1X8UR2IpWW9mzZqFPXv24IknnsAXX3yBmpoaCCFQUFCAc889F7/+9a9lyTBwBRtefvllfPTRR9i3bx/2798PlUqFvLw8XHXVVZg1axauvfZar09Yb7zxRnR1deHll1/Gt99+i8rKSlx00UVYvnw5ampqPPaVJMl97ZxwwgnYs2cP/vznP+O9997DgQMHUFlZiYKCApx33nm49NJLPeaBX3311bBardiwYQO+//577Nu3D1qtFieddBKuuuoq3H333UhPT3fv/9RTT+H999/Hpk2bUFtbiyNHjqCgoAAzZ87E3Xffjcsuuyw831AC8OOysgxyUCAMBgM0Gg2DHERhJkkS8vLy0Nzc7LESG9FQkpKSYDabkZycLHdTYkZOTg5Xs4oQzOiIM8dndBiNRvT09ERlkTiTyQS9Xo/i4mJGokPEW4aP0WiEXq+HWq3m0pBxymw2o6OjAwUFBXI3haKEw+Fw30uieWokUTSpr69HRkYGlwEnv3V3d8NisSA7O1vupsSM119/HS+++CL+9a9/yd2UuMcRS5yz2WxeV9iIBl1dXSgoKGCQI4T6F6Y1mUxobW2FSqVCQUFB1F4nNHy9vb3uVXmI/NHc3Izc3FwGOYhGUF5eHurq6lBWVsa+EflFo9GwvkuIZWVluaeQk7zYA4lz0RzoyMvLY3ZBiJnNZvc0IKPRiPz8fBQWFkbtNRLvLBYLDh06NOzzGI1GBjrIbyaTCU6nk9dMlPjVr36Fhx9+WO5mUAiwMCkFSqlUwul0Dli1x2g04o9//COOHDkiU8uiV2ZmJn8HIwQDHXHOZrMxWEAA+oIcZrMZSUlJAPoi0pxbH90qKyuxZs0aGAyGoM/B+hwUqJaWFuTn58vdDPJTbW2te0l0in6ZmZkwGAyw2+1yN4WiREJCAqxWq8driYmJ6OjoQHd3t0ytil4ZGRkMdEQIBjrinN1uj6qn9VarFV1dXXI3I6ZYLBbU1dVBr9fDYrGMeGFXCh/XqjXHF5INhNVq5TVBfuvt7UViYiID6FGkuLgY9fX1cjeDQqR/YVIif2i1WhiNRo/XlEolEhISBrxOQ8vMzITZbIbJZJK7KXGPgY4453Q6o+ZJrRACjY2NHHSFiCvA0draipycHBQXF0MIETXXAw1Nq9UiKytrWIEO1uegQOj1eha1izJFRUUMdMQYVzFSDlLJHxqNxuu14ut1Gpxr1UBmdciPgQ6KGnItJRuLOjs70dLSguzsbBQXFyMxMXHA/EyKDSUlJaitrQ36+N7eXlbwJ7/09vYiISGB2RxRpri4GJ2dnejt7ZW7KRRCrqwO/m2noajVathstgGvazQaZiUEQa1WIzU1Fe3t7XI3Je4x0BHHoumPn9FohNlsRkZGhtxNiQlpaWkoKSlx1+MAWK8lVpWWlqK5uRlmszngY131OXhdkD+YzRGdioqKAIBZHTFGpVJBp9PxqTL5RalUDqjrwoyO4LFOR2RgoCOO2e32qBjAOBwONDc3cynZINlsNjQ0NKCzs9P9mrfvI2sxxCZXnY66urqAj+2/3DDRYIxGI9RqdVTVfKI+xcXFAIK7R1BkcxUmdTqdcjeFIpy3Oh3M6AheZmYmMzoiAAMdcSxalpY1mUzIycmJiqBMJLHb7WhsbERjYyPS09PdcwZ9YSHS2JSZmQmtVhtUnQ6TycRpK+QXvV6PnJwcuZtBQWBGR+ySJAk6nY4rZ9CQvGVvJCcnM6MjSMzoiAwcOcaxaAl0pKSkyN2EqOJwONDa2gqLxYKcnBy/B6oWi4Xf6xgkSRJKSkqCDnRkZmaGoVUUS0wmE1QqVVT8PaGBkpOTkZmZyYyOGJWeno66ujqkpaXJ3RSKYImJiQOmuHLqSvAyMzMZ6IgAzOiIY9ES6KDApaamoqysLKCn8TabjdMUYlRpaSnq6+vhcDgCOs5isfCaoCGxNkf048orsUupVEKtVgdVp4nihyRJUCgUHtOcXIGOaKrpFykyMjI4dSUCMNARxyI50CGEQEtLC2+ufnA4HDAYDO7/VyqVQS8Hyhoosam4uBh2ux2tra1+H+N0OiFJEq8JGpTZbIZCoWBALMoVFxczoyOGcdBF/khOTvaoyZGcnAwhBCwWi4ytik6cuhIZGOiIY5Ec6NDr9VCpVBxkDcLhcKClpQW1tbVQKIb3q8yAUmzLz8+HJEloaGjw+xiLxeKxKg+RN62trazNEQOY0RHbkpOTYbVaA87qo/ii0Wg8lpl2ZQVz+krgWIw0MrBGRxwTQgx7gBwOJpMJZrPZXQmePDkcDrS3t6OnpwfZ2dnIyckZdkCIq2vENrVajZycHI+Vd4ZiNBpZiJQGZTabIUkS7x0x4Nxzz2WNphiXnp4Og8HAukvkU3JyMvR6vfv/MzIycOqpp0KpVMrYqujEjI7IwEAHRRSHw4GmpiaUlJQwm8OH5uZmpKSkIDs7O2TfIwY6Yt+iRYsC6qyYTCYWr6NBcaWV2LFgwQIsWLBA7mZQGOl0OlRXVyMjI4P9K/LK9fBTCAFJkpCeno4rrrhC5lZFJwY6IkPkPc6nERGpa6o3NTVxKdnjOJ1Oj6klhYWF0Ol0Ie2oMNAR+wJ9ImO32/l7SD655mxzSWqi6KBQKAbUYCA6XmJiImtyhIBOp0NXV5fczYh7DHTEKbvdHnH1OZxOJ5KTk5k+e4zT6URbWxuqq6tht9vD+l6RXK+FRp7D4WCqKg2qtbWVK60QRRnWDaChHF+ng4Kj0+nQ3d0tdzPiHgMdccrhcETc01qFQsG5o+gLcLS3t6O6uhoKhQLl5eVhD0Iwo4P6M5lMLERKPtlsNjidTl4jRFEmISEBTqcz7A9PKHq5lpSl4WFGR2RgoCNO2e12PrGNQD09PaiuroYkSSgvLx+xubSRWpiW5GE2mzmIJZ8MBgMyMjLkbgYRBSE9PZ21A8gnlUrF1XlCIDU1Fd3d3VzVUGYc2cSpSJp/39bWxvmAxyQlJaGsrIzFwkhWXFqWBtPd3c0phkRRKjU1FT09PRyAkU8qlQo2m03uZkQ1nU4HIQSnAcmMgY445XQ6IyKjw2QywWg0xuW0CSEEOjs7YTAY3K+pVKoRz6xwOBzM5ogTFosFlZWVQ3ZwIykQSpHFle3DQGzsWbduHT766CO5m0FhJkkSUlJS0NPTI3dTKEIlJibCarUCAA4ePIh9+/bJ3KLok5qaCgCcviIzjm7iVCQMZJxOJ5qamlBQUBBXnWYhBAwGA6qqqmC32903Q7mwEGn8qK2txeuvv47Ozk6f+7iCIPH0O0n+6+zs5LLDMer555/Hiy++KHczaARw6UsaTEJCgjvQ8d1332HHjh0ytyj6qFQqJCcnsyCpzBjoiFORsKpCY2NjXC0lK4RAV1cXqqqqYLPZUFZWhuzsbNmzKRjoiB+5ubkAgJaWFp/7WK1WXg/klRACJpMJycnJcjeFwiA7Oxt6vV7uZtAIUKlUkCTJPZgl6q9/oKP/vykwLEgqPwY64pTcGR0GgwFKpTKu5nnb7XZYLBaUlpZGRIDDhYGO+JGamorExMRBAx2sz0G+uIIczPaJTdnZ2Whra5O7GTRCMjMzmdVBXjHQERqugqQkn8gYaZEs5O6sup4uxyohhEeRVbVajZycHNkzaY7HQEf8kCQJubm5aG1t9bkPV1whXwwGA9LT0+VuBoVJVlYWMzriiGsZUafTKXdTKMIolUr3daFWq1mYNEjM6JAfAx0ki7S0tIjJaAg1IYR7mdhouMEx0BFfcnJyBs3oMJvNSExMHMEWUTQQQvDaiHHZ2dlob2/nwDdOSJIEnU7HJ840KGZ0BI8ZHfKLzZEmkUx6e3tRU1OD3t5eFBcXIycnR+4mDSkS6rXQyMnNzYVer/c5mImUFZkosvT29kKr1cqeCUjhk5WVBYfD4bESGMW29PT0QYtTU/xSKBSw2+3uQAeXIw4cMzrkx0AHjRiTyRTTabH19fXo7u5GUVER8vLyoqrIKgcv8SM3NxcOhwPt7e0DtgkheC2QVwaDgautxLjs7GwAYJ2OOKJUKqFWq2E2m+VuCkUYV4AjISEBTqcTDodD7iZFHQY65MdAR5wa6Se2rqVkY3l+d2FhIfLz86MqwEHxZ7DBjKtTQ9Sf0+mEzWbjtJUY57o3xPIDCRooPT2dWTw0QGJiokefgHU6ApeamspAh8wY6IhTIz0Yj7WlZE0mE2pqajxu/NH4JNzpdEZluyl4KSkpUKlUXjM6GOggb3p7e+Nqhax4lZWVBYCBjniTnJzMjA4aoH9GBwDW6QiCVquF0WiUuxlxjYGOODWSAYeurq6YWUrWbDajpqYGHR0dyM/Pj/oinnIvM0wjT5Ikn8sKMtBB3nDaSnxwBTo4dSW+uB52sAgt9cdAx/BpNBqYTCa5mxHXOMKJUyO14onNZkNbWxvKyspG5P3CxWKxoKWlBQqFAvn5+TEzGGSgIz5lZmZ6zeiwWCxITU2VoUUUqZxOJ+x2e9QHdWloCQkJSE1NZUZHHEpOTobJZIJWq5W7KRQhlEolHA6He8oiAx2BS05OZkaHzJjREadGanDrdDpRWFgY9UvJOp1O5ObmoqioKGaCHAADHfEqIyPDa0YHlxqm45nNZmg0GrmbQSMkOzubGR1xSKvVore3V+5mUARxZfowoyN4Go2GgQ6ZcYQTp0aqGGm0Fq+zWCxwOp1ITk4GAPd/Yw0DHfGpoqICFRUVXrexZgv119vby0BHHNm7dy+f6seh5ORkZvLQAJIkIS0tDQ8//DCXnQ8CMzrkF92P2Slo4R7cRut621arFfX19e5pKrGOgY74pNVqBwxmovV3lsLLaDQy0BFHUlJSGOyMQ67+Dv8OUH8JCQmw2WwMcgSJNTrkxxFOnArnTcvpdKKurg4lJSVR02GyWq3Q6/VwOBzIyclBUlKS3E0aEQx0kAsLkdLxhBAQQsRF0Jco3iUlJcFsNsdsBisFzlWQNF76xKHGqSvy4wgnToWz49rY2IjMzMyoCXLYbDY0NTUhJycn7v7AM9BBLqzPQcczm83s4BLFCY1Gg97e3rjrB5FvCQkJXHp4GDh1RX58TBOnwhWEiJalZPunZ6rVapSWlsblH3c+rSUXBjroeEajkfUaiOIEnz7T8VwZHRQcTl2RH0c4FDKupWRzc3PlbopPdrsdTU1NaGhokLspRBGFgQ46HguREsUPpVIJp9PJOh3kplarYbPZ5G5G1GJGh/yYs04hIYRAQ0NDxC4la7fbodfrYbFYkJ2dzaeURAAcDoe7Xo/dbmegg9yEEHA6nSxCF2ecTid6e3uRmpoqd1NIBomJibBYLJyyRgB+zP622+1wOp2s4xUgZknJL/JGpBS1cnNzI3I52dbWVtTV1SElJQVlZWUMchzDpzbx7fPPP8df/vIX9//bbDbWayE3q9UakfdzCq/XX38dOp2O6epxigMz8ubVV1/FJ598Inczog6nrsiPgQ4KCUmSIrbGhU6nQ1lZWcTXDRlprM8R3zQaDbq6ujwCXtFSQJjCj9NW4pPr72Rvb6/MLSE5aLVa/uzJQ0JCAtRqNYOfQUhOTobdbuf0HxlxlEPD4lp+MFI4HA60trZ63FQSExM5gPOi/7QFij+pqamw2WywWCxyN4UiEAuRxidXoKOnp0fmlpAcVCoVHA6H3M2gCJKQkAClUslARxBcDwuYJSUfBjriTKiDEo2NjRGx9JTT6YRer0dNTQ0SExOZgu8HBjrim06nA9C3UpLT6WQwkDxw6en45Apu8al+/OLTe+qPgY7guWrdcPqKfNiLiTNOpzNk5+rq6oJCoZB1yorT6UR7ezu6u7uRmZmJ8vJyDtj8xEBHfHMFOrq7u5Gens5BLblZrVYWpo1TzOggrVYLo9HIwpMEgIGO4XD9HeXUFfkwoyPOhColMVKWku3u7oZKpUJ5eTnS0tIY5AiAw+FgjY445lpVoauri0vLkgeTycT6HHGKgQ7SaDTM6CG3hIQESJLEQEcQFAoFVCoVAx0y4iO8OBOKjA45l5J1Op1wOp3up89paWkj+v6xhBkd8U2pVCIxMRFGoxEOh4MZHeRmtVoZ6IhTnLpCarWaAzNykyQJCoUipBnh8SQhIYFBIhnxcW6cCcWNqq2tDampqSO69KAQAh0dHaiuro6ImiCxwOl0MqMjzrmWErTb7Qx6kZvVamXaepxiRge5BrYsSkoukiRF1MID0YSBDnnxEV6cCUWgQ6fTjViauxACnZ2d6OzsRFpaGsrKyjg4DxFmdJBrjXeHw+EumkXEQqTxy5XJw0BHfEtOTobJZHIHvii+MaMjeAx0yIsjxjgTihuVa75euNntdlRVVcHpdKKsrAyZmZkMcoQQMzooOTmZGR3kFesdxSelUgmNRsNAR5xzBcGJAAY6hoNTweTFUU6cGc6NaqTTGJVKJcrKypCVlcUBeRg4nU4ObuNc/4wOXgsEgEsNE7RaLWt0xDk+hab+JElioCNI/F2SF0ePcSbYG1VXVxf0en2IW/MjIQS6urrQ0NDgfs01T5TCgxkd5KrRwUAHubA+B6WkpDCjI84plUrW6CA3ZnQEj4EOeXESbpwJppiQaynZsrKysLSnu7sbbW1tSElJQV5eXsjfg7xjoIMmTJiA7OxsAJyqQH0Y6KCHHnoI48aNk7sZJCOFQsHik+SWn5+PrKwsuZsRlRjokBcDHXEm0IhsOJeSdQU4NBoNSktL+UR5hAkhOLiNc+Xl5SgvL0d1dbXcTaEIYbVaWZg2zt12221yN4GIIkhubi4KCgrkbkZUSkhIYI0OGTHQEWcCjdCHcylZp9OJkpISBjiIiCKExWJBWlqa3M0gIqII4Zq6wv564JjRIS/mrceZQAIdZrMZRqMRGRkZIXnv3t5ejzmfaWlpvGkSEUUQLi1LRC6cvkIAa3QMBwMd8mJvhnxKTExEUVHRsKc3GI1GtLa2IjExkSnRRBGGU5joeLweiIhP8cmFgY7gqdVqBjpkxEBHnAkkOi9J0rD+wLkCHAkJCSgqKuJTQqIIxKK05MKlZYnIRaVSwW63M9BBDHQMAwMd8mLvNs6YzWYAffOwfQlF0ZzOzk50dnaisLAQBQUFDHJEGIvFgqeeemrQ64Dig8lk4rVAAICenh6sXLmS10Kcs1gsWLJkCa+DOKdUKmE0GnktEBQKBUwmE6+FICiVSk4BkxEDHXHGFcTwdaOy2Wyoq6sL6pey/zHp6ekoLCyEWq0OrqEUVhaLhQMagsViwQcffIAnn3yS1wLBaDTyWiA899xzWLp0Ka+DOKdSqWA0GnktEPR6PT7++GNeC0FgNoy8GOiIM4MFMPovJRtI+rLZbEZtbS0MBkMomkhEI2jfvn1yN4EiBDtjBABbtmyRuwkUAZRKJex2u9zNoAjQ29uLAwcOyN2MqMRAh7w4nyDODBboCHQpWYvFgpaWFkiShNzc3LAsQUvhwTQ6AsCMK/LAzhgBYM0eAtAX6OA9gQCwTsswMNAhL/418+Ljjz/GxRdfjMzMTGi1WkydOhXPPPNM0Bfq119/jSuvvBI5OTlITk7GxIkTsWzZMne9DF8OHDiAG264AQUFBUhKSsKYMWNw3333obOzM6h2AL4HuCaTye+lZO12O+rq6tDa2orc3FwUFxczyEEUhRQKBTsw5MbOGAFgTS0C0HcdOBwOuZtBEYD9hOANJ9BRVVWFF198EYsWLcKUKVOgVquhUCjw6KOPDqtNrnFpbm4uNBoNJk2ahOXLl8fktCQGOo7z2GOPYfbs2fj888+RkZGBsWPHYs+ePVi8eDHmzp0b8MW6evVq/OQnP8EHH3yAxMREnHjiiTh8+DAeeeQRnHvuuTAajV6P27hxI6ZNm4Y1a9bA4XBg0qRJaGpqwhNPPIFp06ahubk5FB8XQF/wo7m52e8pKwqFAtnZ2QxwRDFmdJALBzXkwkAHAbwnUB9OXSEXBjqCN5xAx8qVK7Fo0SK89NJL2LdvX0hWRlu9ejXOPfdc/OMf/0BSUhImTpyII0eO4JFHHsF555035EP4aMNARz9ff/01HnzwQSgUCqxZswZHjhzBnj17sHPnTuTl5bmL9vmrqqoKt912GxwOB1asWIHa2lrs3LkThw4dwoQJE7B9+3b85je/GXBcd3c3rrvuOphMJixevBj19fXYsWMHampqUFFRgcrKStx2221BfUZvA1xJklBaWuqzc2O1WqHX693/r1AokJSUFNT7U2RgoINcmKZOLrwvEMBAB/VRKpXM6CAADHQMx3ACHdnZ2bj88suxbNkyfPLJJ7jqqquG1Zbq6mrcfvvtcDqdePzxx1FTU4NvvvlmyHFpNGMPt5/ly5dDCIHbb78dP/vZz9yvT5482R3geOyxx/xefvXxxx+HxWLBjBkzcP/997ujcGVlZXj55ZcBAM8///yA7Iy//vWvaG1txYknnognn3zSPY8+KysLa9asgUqlwkcffYSdO3cG/Bl9dWS9DXZsNhsaGhrQ1NQErVYb8HsRUeRjoINcmNFBAAc11EehUDD4SQAY/ByO4QQ6HnroIbz//vt48MEHMWPGDKSkpAyrLStWrIDFYsHMmTNxzz33uF8vKSnByy+/DCEEnn/+ebS2tg7rfSIJe7jHdHV1YcOGDQDgNVvimmuugU6nQ1tbGzZu3Djk+YQQeO+993ye7+yzz8YJJ5wAm82G999/32Pbu+++CwC4+eabB3Q4SktLcfHFFwMA1q5d68cn881ut3tNS7TZbGhsbERjYyPS09NRWlqK5OTkYb0XRRZ2XshluGmQFDsY6CCAgxoi8sTgZ/AiqRjpunXrIEkSbr311gHbzjrrLJ/j0mjGQMcxu3btgtVqRVJSEqZOnTpgu1qtxumnnw4A2LZt25Dnq6mpQWNjIwCgoqLC6z6u1/ufz263Y8eOHQEfFyghBOrr670GOtrb25GWlobS0lJoNJqg34MiFwMd5MKMDnKJlM4YyYuBDiLqj4GO4EVKoMPfcakQYljjy0jDHu4xhw4dAoBBa1WMHj3aY19/zpeYmIjCwkK/z1dVVeWeGuPaPpx2+NLR0YHU1FQkJSXBbrd7DHzz8vIY4CCKE8zoIJdI6IyR/DioIaL+eE8IXqQEOvqPSwsKCrzuE4rxZaRhoOOYjo4OABh0eVXXNte+/pwvPT3d50DC2/n6/9tXWwJphy8mkwk6nQ7Nzc2oq6tjZe04w4wOcmFGB7lEQmeM5MeMDnLh3wcCeB0MR6QEOvqPS30Jxfgy0vCv2TGu5XQSEhJ87uNaStVkMoXtfP2X9fF1bCDtOJ5rgJuQkIC6ujpkZWUhNzeXT3WJiOIcA6AE8Okt/YhBLwIY6BiOSAl0hHqcGy14BzvGtVyq1Wr1uY/FYgEAvwpzBnu+/su2umqGDKcdvo41GAzIzs6GwWCAwWDw69jExET3LwFFt56eHgB9RXgpvrkGNbwWyNW54bUQ31z9Dl4H5Boc8VqIb729vewroG8M5RpH+ctoNKK7uxtCCFkfKod6nBstGOg4xp90HX+mtxx/vs7OTp8Xt7fz9f93R0eH13lUgbTjeK56IRdccEHAx1LsKSkpkbsJFCF4LZALrwUCeB3Qj3gtkAuvheAsWbIEOp1OtvfvPy71ZTjjy0jFQMcx48aNA9BXldZut3tN16usrPTY15/zWSwWNDQ0oKioyK/zlZeXQ61Ww2azobKy0mugI5B2HG/s2LE4cuQI1Gp1wJFFZnQQEREREVG8CSajA+gbP6WmpoahRf7rPy5tbGwM+fgyUjHQccypp54KtVoNs9mMnTt34owzzvDYbrPZsH37dgDAmWeeOeT5SktLkZ+fj6amJmzZsgXXXnvtgH22bNky4HwqlQpTp07Ftm3bsGXLFq9LAHk7zl8KhcLnai5EREREREQUO1zj0ubmZmzZsgXz5s0bsM+WLVsgSVJQ48tIxeoyx+h0Olx88cUAgJdeemnA9rfffhtdXV3IysrC+eefP+T5JEnC3LlzfZ5v69atOHjwINRqNa644gqPbVdddRUAYNWqVXA4HB7bampqsGHDBgDA1VdfPfQHIyIiIiIiorg1d+5cCCECHpdGMwY6+nnooYcgSRJefPFFvPHGG+7X9+zZg3vuuQcA8Jvf/MajYu3TTz+N8vJyzJ8/f8D57r//fiQkJOCzzz7D448/7q5oX11djVtvvRUAcPvttyM/P9/juDvvvBPZ2dk4cOAA7rnnHthsNgBAW1sbrr/+etjtdsyaNQvTpk0L7TeAiIiIiIiIos7KlSsxatQoXH/99QO29R+X/uEPf3C/7hqXSpKEn//858jNzR3JJoeVJLienIff/e53ePjhhwEAo0ePRkpKCvbv3w+n04nZs2fj/fff91h6bcmSJVi6dCnOO+88fPnllwPO99prr+GWW26B0+lEUVERcnNzsX//fthsNkybNg3/+te/oNVqBxz3+eef47LLLoPZbEZOTg5KS0tx4MABGI1GlJeX4+uvvx4QICEiIiIiIqLotnXrVlxxxRXumoo9PT2wWCzQaDQeK6Ps3r3bXQty6dKlWLp0Kc4//3x88cUXA875+uuv49Zbb4XD4fAYl9rtdpx22mn48ssvY2rVFWZ0HOehhx7Chx9+iAsvvBBtbW04fPgwTj75ZDz99NMDghz+uOmmm7Bp0yZcdtllMJlM+O677zB69GgsWbIEmzdv9hrkAICLLroI33zzDebPnw9JkrBv3z7k5eXhnnvuwc6dOxnkICIiIiIiikE2mw0dHR1ob29He3s7rFYrJEmCyWRyv9bR0TGgzIEkST4XnFiwYAE2bdqEyy+/HGazGQcOHMCYMWOwdOlSbNq0KaaCHAAzOoiIiIiIiIgohjCjg4iIiIiIiIhiBgMdRERERERERBQzGOggIiIiIiIiopjBQAcRERERERERxQwGOiLcxx9/jIsvvhiZmZnQarWYOnUqnnnmGTidzqDO9/XXX+PKK69ETk4OkpOTMXHiRCxbtgxms3nQ4w4cOIAbbrgBBQUFSEpKwpgxY3Dfffehs7MzqHZQ4EJ1LezatQuPPPIIzjvvPGRnZ0OtViM3NxezZs3Ce++95/O4VatWuSs5+/pav379cD8m+SFU18KSJUuG/JkePHjQ5/G8L8grVNfBUNeA6+vVV1/1OI73hMhSXl4+4PuflJSEUaNG4cYbb8T27du9HnfzzTf79fO/+eabAz5uzpw54f/gBAA4evQoXnjhBfz85z/H5MmToVKpIEkSli9fHtT52FeITqG+DthPoGimkrsB5Ntjjz2G//3f/wUAjB49GikpKdizZw8WL16MDRs24L333oNC4X+savXq1Vi4cKF77eSSkhLs378fjzzyCD788EN8+eWX0Gg0A47buHEjZs+eDZPJhJycHEyaNAkHDx7EE088gffeew9bt25FXl5eyD43DRSqa+HIkSOYOnWq+/9HjRqF8vJyVFZWYv369Vi/fj0WLlyIl19+2ef5cnNzMW7cOK/bMjIygvh0FIhQ3xcAoKSkBKWlpV63ebsnALwvyC2U10FFRYXPbR0dHfjuu+8AANOnT/e6D+8JkWXcuHHIzc0FABgMBhw+fBirV6/Gm2++iVdeeQULFizwetxgP0cAGD9+fMDHTZw4McDWU7BWrlyJlStXhuRc7CtEr1BeB/2xn0BRSVBE2rp1q5AkSSgUCrFmzRr367t37xZ5eXkCgHj88cf9Pt/Ro0dFYmKiACBWrFghnE6nEEKIqqoqMWHCBAFA3H333QOO6+rqEjk5OQKAWLx4sbBarUIIIfR6vaioqBAAxOzZs4f5aWkwobwWDh06JAoKCsTvf/970dDQ4H7d4XCIZ555RkiSJACIZ555ZsCxr7zyigAgFi5cOOzPRMEJ9X3ht7/9rQAgfvvb3wbUDt4X5BXq62AwDz30kAAgzjjjjAHbeE+ILGVlZQKAeOWVVzxeb29vF/PmzRMARGpqqmhvb/fYvnDhwqB+jsEeR+GxbNkycdlll4n/+7//E5988om4+uqrBQCxbNmygM/FvkL0CuV1IAT7CRTdGOiIUJdeeqkAIBYtWjRg2+rVqwUAkZWV5b5xDOUXv/iFACBmzJgxYNuWLVsEAKFWq0VTU5PHthUrVggA4sQTTxR2u91jW3V1tVCpVAKA2LFjRwCfjgIRymvBZDKJ3t5en9vvvPNOAUCccsopA7ax8yK/UN8Xgu3A8L4gr1BfB744nU5RXl7OAU2U8BXoEEIIg8EgtFqtACDefPNNj20MdMQm188nmAEu+wqxYzjXgRDsJ1B0Y42OCNTV1YUNGzYAAG677bYB26+55hrodDq0tbVh48aNQ55PCOGeT+ntfGeffTZOOOEE2Gw2vP/++x7b3n33XQB9c3GVSqXHttLSUlx88cUAgLVr1/rxyShQob4WkpKSfKYYAsCMGTMAAD/88EOQLaZwCfW1MBy8L8hnJK+DTZs2oaqqCmq1GvPnzx/WuUheOp3OPfWkqqpK3sZQxGNfgYaL/QSKBAx0RKBdu3bBarUiKSnJY46ki1qtxumnnw4A2LZt25Dnq6mpQWNjIwDfc7Fdr/c/n91ux44dOwI+jkIn1NfCUFxFaZOTk33us2fPHlx//fW48MILMWfOHCxduhRHjhwZ9nvT4MJ5LWzcuBHXXHMNLrzwQsybNw8rVqxAU1OT1315X5DXSN4T/va3vwEALrnkEmRnZ/vcj/eE6GA0GgH4nk9P5C/2FeIP+wkUjRjoiECHDh0C0BfxVKm814sdPXq0x77+nC8xMRGFhYV+n6+qqgo2m81j+3DaQYEL9bUwlL///e8ABi9OuHv3brzxxhvYuHEj3n//fSxZsgQTJkzA7373u2G/P/kWzmvhq6++wtq1a7Fx40a88847+J//+R+MHj0aq1atGrAv7wvyGql7gsViwdtvvw0APotXuvCeEPkOHTrkHmROmTJF3sZQ1GNfIf6wn0DRiIGOCNTR0QFg8KrUrm2uff05X3p6OiRJ8vt8/f/tqy2BtIMCF+prYTCfffYZ1q1bBwC4//77B2xPT0/HL3/5S2zZsgXNzc0wm83YtWsXFixYAIfDgYcffhh/+tOfhtUG8i0c10JBQQEefPBBbN++HW1tbTAajdiyZQtmzZoFk8mEW2+9FR9++KHXdgzWFt4Xwmek7gkffvghOjs7kZaWhssvv9zrPrwnRD7XVKc5c+bAbrejoqICP/nJT7zu++qrrw66hKTr70Mgx1HsYV8hvrCfQNGMy8tGIFdKYEJCgs99EhMTAQAmkyls53MdN9ixgbSDAhfqa8GXmpoa3HDDDQCAX/ziFzj33HMH7DNnzhzMmTPH47UpU6bgtddeQ1ZWFp5++mk8/PDDWLhwIVJTU4NuC3kXjmvhjjvuGPDa2WefjY8++ghXX3013nvvPfz3f/83LrvsMveghfcFeY3UPcE1beWaa65BUlKS1314T4hMt9xyC2655RaP1xQKBa677jr85S9/8XncUMvLZmVlBXUcxQ72FeIP+wkUzZjREYFcnUqr1epzH4vFAmDw+ZHDPV//zq2vYwNpBwUu1NeCN+3t7Zg1axb0ej3OP/98PPnkkwGfY+nSpUhMTITBYMAXX3wRVDtocCNxLbhIkoTHHnsMAHDkyBHs3bt3QDsGawvvC+EzEtdBW1sbPv74YwDATTfdFNQ5eE+Qz7hx41BRUYGzzz7bnR7uqt0yWCbQrFmzsHnzZp9fvjJBBjuOYgf7CtQf+wkUDRjoiED+pHP5k758/Pk6OzshhPD7fP3/7astgbSDAhfqa+F4PT09uPTSS/Hdd99h2rRp+OCDD9xR9kDodDpMmjQJAHD48OGAj6ehhftaON748eORmZkJwPNnyvuCvEbiOnjrrbdgs9lQXl6Oc845J6hz8J4gnwcffBCbN2/Gli1bcOTIEWzevBmpqam477773Jk6RIFgX4G8YT+BIh0DHRHIlQJaU1MDu93udZ/KykqPff05n8ViQUNDg9/nKy8vh1qt9tg+nHZQ4EJ9LfRnsVhw5ZVXYtu2bZg4cSLWr18/rDRS17Xiq500POG8Fnzx9jPlfUFeI3EduAbDN95447DqLPCeEBkqKirwwgsvAAB+9atfoaurS+YWUTRhX4EGw34CRTIGOiLQqaeeCrVaDbPZjJ07dw7YbrPZsH37dgDAmWeeOeT5SktLkZ+fDwDYsmWL131cr/c/n0qlci9fGMhxFDqhvhZc7HY7rr32WnzxxRcYPXo0/vnPfw66fORQHA4Hvv/+ewBAcXFx0Och38J1Lfii1+vR0tICwPNnyvuCvMJ9HRw5cgRff/01gL5AR7B4T4gsc+bMwfTp09He3h7UlAOKT+wr0GDYT6BIx0BHBNLpdLj44osBAC+99NKA7W+//Ta6urqQlZWF888/f8jzSZKEuXPn+jzf1q1bcfDgQajValxxxRUe26666ioAwKpVq+BwODy21dTUYMOGDQCAq6++eugPRgEL9bUAAEII3Hzzzfjggw9QWFiIDRs2+Fx22F8vvfQSOjs7oVQq/W4HBSYc18JgnnzySQghkJaWhtNPP91jG+8L8gn3dfD6668DAM444wxMmDAh6HbynhB5HnjgAQDAH//4R/T09MjcGop07CvQUNhPoIgnKCJt3rxZSJIkFAqFWLNmjfv13bt3i7y8PAFA/P73v/c45qmnnhJlZWXiuuuuG3C+yspKkZCQIACIFStWCKfTKYQQoqqqSkyYMEEAEHfdddeA4wwGg8jOzhYAxOLFi4XVahVCCKHX60VFRYUAIGbNmhXKj07HCfW18Mtf/lIAENnZ2eK7777zqw0Gg0HMnz9fbNu2zeN1u90unn/+eZGUlCQAiEWLFgXxCclfobwW9u/fL+666y6xf/9+j9dNJpP43e9+JxQKhQAgHn300QHt4H1BXqG+J/Q3duxYAUA888wzg+7He0LkKSsrEwDEK6+84nW70+kUJ554orsf4LJw4UIBQCxcuDCg9wv2OBoZrp/PsmXLfO7DvkLsG851wH4CRTsGOiLY8uXLBQABQIwePVqccsop7pvK7Nmzhd1u99j/t7/9rQAgzjvvPK/ne/XVV93HFxUViVNPPVWo1WoBQEybNk309PR4PW7Dhg3uP045OTli2rRpQqPRCACivLxcNDY2hvqj03FCdS1s3brVfZ6SkhJRUVHh86u/jo4O93Hp6eni1FNPFaeffrpIT093vz5r1ixhMpnC/a2Ie6G6Fnbt2uU+j+v3uv/vNgBx2223uYOix+N9QV6h/vsgxI/3B7VaLVpbWwd9f94TIs9QgQ4hhHjppZcEAJGfn+/+2bgGQrm5uYP+Tbj55ps9zsVAR2TZvHmzyMrKcn8lJiYKAEKj0Xi8XlNT4z6GfYXYE8rrgP0EinYMdES4Dz/8UFx44YUiLS1NaDQaMXnyZPH0008P6MQK4V9HdsuWLeKyyy4TmZmZIjExUUyYMEEsWbJkyD86+/fvF/Pnzxe5ubkiISFBjBo1Stxzzz2ivb19uB+R/BSKa2Hjxo3uP05DffVntVrFihUrxJw5c8TYsWOFTqcTarVa5Ofni9mzZ4u33nrL5x86Cr1QXAsdHR1i2bJlYtasWWLUqFEiJSVFJCQkiOLiYjFv3jyxfv36IdvB+4K8Qv334a677hIAxOWXXz7ke/OeEHn8CXRYLBZRWFgoAIhnn31WCPFjwGKor8mTJ3uci4GOyOLv3/ejR4+6j2FfIfaE8jpgP4GinSSEj/VGiYiIiIiIiIiiDIuREhEREREREVHMYKCDiIiIiIiIiGIGAx1EREREREREFDMY6CAiIiIiIiKimMFABxERERERERHFDAY6iIiIiIiIiChmMNBBRERERERERDGDgQ4iIiIiIiIiihkMdBARERERERFRzGCgg4iIiIiIiIhiBgMdRERERERERBQzGOggIiIiIiIiopjBQAcRERERERERxYz/D+6EQYpBDDaNAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Create figure and Taylor Diagram instance\n", - "fig = plt.figure(figsize=(12, 12))\n", - "taylor = gv.TaylorDiagram(fig=fig, label='REF')\n", - "ax = plt.gca()\n", - "\n", - "# Draw diagonal dashed lines from origin to correlation values\n", - "# Also enforces proper X-Y ratio\n", - "taylor.add_xgrid(np.array([0.6, 0.9]))\n", - "\n", - "# Add model sets for p and t datasets\n", - "taylor.add_model_set(\n", - " a_std,\n", - " a_cc,\n", - " fontsize=20,\n", - " xytext=(-5, 10), # marker label location, in pixels\n", - " color='red',\n", - " marker='o',\n", - " facecolors='none',\n", - " label='Case A',\n", - " s=100) # marker size\n", - "taylor.add_model_set(\n", - " b_std,\n", - " b_cc,\n", - " fontsize=20,\n", - " xytext=(-5, 10), # marker label location, in pixels\n", - " color='blue',\n", - " marker='D',\n", - " facecolors='none',\n", - " label='Case B',\n", - " s=100)\n", - "\n", - "# Add Add constant centered RMS difference contours.\n", - "taylor.add_contours(levels=np.arange(0, 1.1, 0.25),\n", - " colors='lightgrey',\n", - " linewidths=0.5)\n", - "\n", - "# Add more standard deviation grid lines\n", - "taylor.add_ygrid(np.array([0.5, 1.5]), color='grey')\n", - "\n", - "# Add figure title\n", - "plt.title(\"Example\", size=26, pad=45);\n", - "\n", - "# Add model name\n", - "namearr = ['SLP', 'Tsfc', 'Prc', 'Prc 30S-30N', 'LW', 'SW', 'U300', 'Guess']\n", - "taylor.add_model_name(namearr, fontsize=16)\n", - "\n", - "# Add figure legend\n", - "taylor.add_legend(fontsize=16);" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "---" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Summary\n", - "\n", - "### What's next?\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Resources and references\n", - "\n", - "- [Karl E. Taylor - \"Summarizing multiple aspects of model performance in a single diagram\", AGU 2001](https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2000JD900719)\n", - "- [Plotting with GeoCAT Tutorial](https://github.com/anissa111/plotting-with-geocat-tutorial/blob/main/notebooks/02-geocat-viz.ipyn)\n", - "- [NCL Graphics: Taylor Diagrams](https://www.ncl.ucar.edu/Applications/taylor.shtml)" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.12" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/_preview/21/_sphinx_design_static/design-style.4045f2051d55cab465a707391d5b2007.min.css b/_preview/21/_sphinx_design_static/design-style.4045f2051d55cab465a707391d5b2007.min.css deleted file mode 100644 index 3225661..0000000 --- a/_preview/21/_sphinx_design_static/design-style.4045f2051d55cab465a707391d5b2007.min.css +++ /dev/null @@ -1 +0,0 @@ -.sd-bg-primary{background-color:var(--sd-color-primary) !important}.sd-bg-text-primary{color:var(--sd-color-primary-text) !important}button.sd-bg-primary:focus,button.sd-bg-primary:hover{background-color:var(--sd-color-primary-highlight) !important}a.sd-bg-primary:focus,a.sd-bg-primary:hover{background-color:var(--sd-color-primary-highlight) !important}.sd-bg-secondary{background-color:var(--sd-color-secondary) !important}.sd-bg-text-secondary{color:var(--sd-color-secondary-text) !important}button.sd-bg-secondary:focus,button.sd-bg-secondary:hover{background-color:var(--sd-color-secondary-highlight) !important}a.sd-bg-secondary:focus,a.sd-bg-secondary:hover{background-color:var(--sd-color-secondary-highlight) !important}.sd-bg-success{background-color:var(--sd-color-success) !important}.sd-bg-text-success{color:var(--sd-color-success-text) !important}button.sd-bg-success:focus,button.sd-bg-success:hover{background-color:var(--sd-color-success-highlight) !important}a.sd-bg-success:focus,a.sd-bg-success:hover{background-color:var(--sd-color-success-highlight) !important}.sd-bg-info{background-color:var(--sd-color-info) !important}.sd-bg-text-info{color:var(--sd-color-info-text) !important}button.sd-bg-info:focus,button.sd-bg-info:hover{background-color:var(--sd-color-info-highlight) !important}a.sd-bg-info:focus,a.sd-bg-info:hover{background-color:var(--sd-color-info-highlight) !important}.sd-bg-warning{background-color:var(--sd-color-warning) !important}.sd-bg-text-warning{color:var(--sd-color-warning-text) !important}button.sd-bg-warning:focus,button.sd-bg-warning:hover{background-color:var(--sd-color-warning-highlight) !important}a.sd-bg-warning:focus,a.sd-bg-warning:hover{background-color:var(--sd-color-warning-highlight) !important}.sd-bg-danger{background-color:var(--sd-color-danger) !important}.sd-bg-text-danger{color:var(--sd-color-danger-text) !important}button.sd-bg-danger:focus,button.sd-bg-danger:hover{background-color:var(--sd-color-danger-highlight) !important}a.sd-bg-danger:focus,a.sd-bg-danger:hover{background-color:var(--sd-color-danger-highlight) !important}.sd-bg-light{background-color:var(--sd-color-light) !important}.sd-bg-text-light{color:var(--sd-color-light-text) !important}button.sd-bg-light:focus,button.sd-bg-light:hover{background-color:var(--sd-color-light-highlight) !important}a.sd-bg-light:focus,a.sd-bg-light:hover{background-color:var(--sd-color-light-highlight) !important}.sd-bg-muted{background-color:var(--sd-color-muted) !important}.sd-bg-text-muted{color:var(--sd-color-muted-text) !important}button.sd-bg-muted:focus,button.sd-bg-muted:hover{background-color:var(--sd-color-muted-highlight) !important}a.sd-bg-muted:focus,a.sd-bg-muted:hover{background-color:var(--sd-color-muted-highlight) !important}.sd-bg-dark{background-color:var(--sd-color-dark) !important}.sd-bg-text-dark{color:var(--sd-color-dark-text) !important}button.sd-bg-dark:focus,button.sd-bg-dark:hover{background-color:var(--sd-color-dark-highlight) !important}a.sd-bg-dark:focus,a.sd-bg-dark:hover{background-color:var(--sd-color-dark-highlight) !important}.sd-bg-black{background-color:var(--sd-color-black) !important}.sd-bg-text-black{color:var(--sd-color-black-text) !important}button.sd-bg-black:focus,button.sd-bg-black:hover{background-color:var(--sd-color-black-highlight) !important}a.sd-bg-black:focus,a.sd-bg-black:hover{background-color:var(--sd-color-black-highlight) !important}.sd-bg-white{background-color:var(--sd-color-white) !important}.sd-bg-text-white{color:var(--sd-color-white-text) !important}button.sd-bg-white:focus,button.sd-bg-white:hover{background-color:var(--sd-color-white-highlight) !important}a.sd-bg-white:focus,a.sd-bg-white:hover{background-color:var(--sd-color-white-highlight) !important}.sd-text-primary,.sd-text-primary>p{color:var(--sd-color-primary) !important}a.sd-text-primary:focus,a.sd-text-primary:hover{color:var(--sd-color-primary-highlight) !important}.sd-text-secondary,.sd-text-secondary>p{color:var(--sd-color-secondary) !important}a.sd-text-secondary:focus,a.sd-text-secondary:hover{color:var(--sd-color-secondary-highlight) !important}.sd-text-success,.sd-text-success>p{color:var(--sd-color-success) !important}a.sd-text-success:focus,a.sd-text-success:hover{color:var(--sd-color-success-highlight) !important}.sd-text-info,.sd-text-info>p{color:var(--sd-color-info) !important}a.sd-text-info:focus,a.sd-text-info:hover{color:var(--sd-color-info-highlight) !important}.sd-text-warning,.sd-text-warning>p{color:var(--sd-color-warning) !important}a.sd-text-warning:focus,a.sd-text-warning:hover{color:var(--sd-color-warning-highlight) !important}.sd-text-danger,.sd-text-danger>p{color:var(--sd-color-danger) !important}a.sd-text-danger:focus,a.sd-text-danger:hover{color:var(--sd-color-danger-highlight) !important}.sd-text-light,.sd-text-light>p{color:var(--sd-color-light) !important}a.sd-text-light:focus,a.sd-text-light:hover{color:var(--sd-color-light-highlight) !important}.sd-text-muted,.sd-text-muted>p{color:var(--sd-color-muted) !important}a.sd-text-muted:focus,a.sd-text-muted:hover{color:var(--sd-color-muted-highlight) !important}.sd-text-dark,.sd-text-dark>p{color:var(--sd-color-dark) !important}a.sd-text-dark:focus,a.sd-text-dark:hover{color:var(--sd-color-dark-highlight) !important}.sd-text-black,.sd-text-black>p{color:var(--sd-color-black) !important}a.sd-text-black:focus,a.sd-text-black:hover{color:var(--sd-color-black-highlight) !important}.sd-text-white,.sd-text-white>p{color:var(--sd-color-white) !important}a.sd-text-white:focus,a.sd-text-white:hover{color:var(--sd-color-white-highlight) !important}.sd-outline-primary{border-color:var(--sd-color-primary) !important;border-style:solid !important;border-width:1px !important}a.sd-outline-primary:focus,a.sd-outline-primary:hover{border-color:var(--sd-color-primary-highlight) !important}.sd-outline-secondary{border-color:var(--sd-color-secondary) !important;border-style:solid !important;border-width:1px !important}a.sd-outline-secondary:focus,a.sd-outline-secondary:hover{border-color:var(--sd-color-secondary-highlight) !important}.sd-outline-success{border-color:var(--sd-color-success) !important;border-style:solid !important;border-width:1px !important}a.sd-outline-success:focus,a.sd-outline-success:hover{border-color:var(--sd-color-success-highlight) !important}.sd-outline-info{border-color:var(--sd-color-info) !important;border-style:solid !important;border-width:1px !important}a.sd-outline-info:focus,a.sd-outline-info:hover{border-color:var(--sd-color-info-highlight) !important}.sd-outline-warning{border-color:var(--sd-color-warning) !important;border-style:solid !important;border-width:1px !important}a.sd-outline-warning:focus,a.sd-outline-warning:hover{border-color:var(--sd-color-warning-highlight) !important}.sd-outline-danger{border-color:var(--sd-color-danger) !important;border-style:solid !important;border-width:1px !important}a.sd-outline-danger:focus,a.sd-outline-danger:hover{border-color:var(--sd-color-danger-highlight) !important}.sd-outline-light{border-color:var(--sd-color-light) !important;border-style:solid !important;border-width:1px !important}a.sd-outline-light:focus,a.sd-outline-light:hover{border-color:var(--sd-color-light-highlight) !important}.sd-outline-muted{border-color:var(--sd-color-muted) !important;border-style:solid !important;border-width:1px !important}a.sd-outline-muted:focus,a.sd-outline-muted:hover{border-color:var(--sd-color-muted-highlight) !important}.sd-outline-dark{border-color:var(--sd-color-dark) !important;border-style:solid !important;border-width:1px !important}a.sd-outline-dark:focus,a.sd-outline-dark:hover{border-color:var(--sd-color-dark-highlight) !important}.sd-outline-black{border-color:var(--sd-color-black) !important;border-style:solid !important;border-width:1px !important}a.sd-outline-black:focus,a.sd-outline-black:hover{border-color:var(--sd-color-black-highlight) !important}.sd-outline-white{border-color:var(--sd-color-white) !important;border-style:solid !important;border-width:1px !important}a.sd-outline-white:focus,a.sd-outline-white:hover{border-color:var(--sd-color-white-highlight) !important}.sd-bg-transparent{background-color:transparent !important}.sd-outline-transparent{border-color:transparent !important}.sd-text-transparent{color:transparent !important}.sd-p-0{padding:0 !important}.sd-pt-0,.sd-py-0{padding-top:0 !important}.sd-pr-0,.sd-px-0{padding-right:0 !important}.sd-pb-0,.sd-py-0{padding-bottom:0 !important}.sd-pl-0,.sd-px-0{padding-left:0 !important}.sd-p-1{padding:.25rem !important}.sd-pt-1,.sd-py-1{padding-top:.25rem !important}.sd-pr-1,.sd-px-1{padding-right:.25rem !important}.sd-pb-1,.sd-py-1{padding-bottom:.25rem !important}.sd-pl-1,.sd-px-1{padding-left:.25rem !important}.sd-p-2{padding:.5rem !important}.sd-pt-2,.sd-py-2{padding-top:.5rem !important}.sd-pr-2,.sd-px-2{padding-right:.5rem !important}.sd-pb-2,.sd-py-2{padding-bottom:.5rem !important}.sd-pl-2,.sd-px-2{padding-left:.5rem !important}.sd-p-3{padding:1rem !important}.sd-pt-3,.sd-py-3{padding-top:1rem !important}.sd-pr-3,.sd-px-3{padding-right:1rem !important}.sd-pb-3,.sd-py-3{padding-bottom:1rem !important}.sd-pl-3,.sd-px-3{padding-left:1rem !important}.sd-p-4{padding:1.5rem !important}.sd-pt-4,.sd-py-4{padding-top:1.5rem !important}.sd-pr-4,.sd-px-4{padding-right:1.5rem !important}.sd-pb-4,.sd-py-4{padding-bottom:1.5rem !important}.sd-pl-4,.sd-px-4{padding-left:1.5rem !important}.sd-p-5{padding:3rem !important}.sd-pt-5,.sd-py-5{padding-top:3rem !important}.sd-pr-5,.sd-px-5{padding-right:3rem !important}.sd-pb-5,.sd-py-5{padding-bottom:3rem !important}.sd-pl-5,.sd-px-5{padding-left:3rem !important}.sd-m-auto{margin:auto !important}.sd-mt-auto,.sd-my-auto{margin-top:auto !important}.sd-mr-auto,.sd-mx-auto{margin-right:auto !important}.sd-mb-auto,.sd-my-auto{margin-bottom:auto !important}.sd-ml-auto,.sd-mx-auto{margin-left:auto !important}.sd-m-0{margin:0 !important}.sd-mt-0,.sd-my-0{margin-top:0 !important}.sd-mr-0,.sd-mx-0{margin-right:0 !important}.sd-mb-0,.sd-my-0{margin-bottom:0 !important}.sd-ml-0,.sd-mx-0{margin-left:0 !important}.sd-m-1{margin:.25rem !important}.sd-mt-1,.sd-my-1{margin-top:.25rem !important}.sd-mr-1,.sd-mx-1{margin-right:.25rem !important}.sd-mb-1,.sd-my-1{margin-bottom:.25rem !important}.sd-ml-1,.sd-mx-1{margin-left:.25rem !important}.sd-m-2{margin:.5rem !important}.sd-mt-2,.sd-my-2{margin-top:.5rem !important}.sd-mr-2,.sd-mx-2{margin-right:.5rem !important}.sd-mb-2,.sd-my-2{margin-bottom:.5rem !important}.sd-ml-2,.sd-mx-2{margin-left:.5rem !important}.sd-m-3{margin:1rem !important}.sd-mt-3,.sd-my-3{margin-top:1rem !important}.sd-mr-3,.sd-mx-3{margin-right:1rem !important}.sd-mb-3,.sd-my-3{margin-bottom:1rem !important}.sd-ml-3,.sd-mx-3{margin-left:1rem !important}.sd-m-4{margin:1.5rem !important}.sd-mt-4,.sd-my-4{margin-top:1.5rem !important}.sd-mr-4,.sd-mx-4{margin-right:1.5rem !important}.sd-mb-4,.sd-my-4{margin-bottom:1.5rem !important}.sd-ml-4,.sd-mx-4{margin-left:1.5rem !important}.sd-m-5{margin:3rem !important}.sd-mt-5,.sd-my-5{margin-top:3rem !important}.sd-mr-5,.sd-mx-5{margin-right:3rem !important}.sd-mb-5,.sd-my-5{margin-bottom:3rem !important}.sd-ml-5,.sd-mx-5{margin-left:3rem !important}.sd-w-25{width:25% !important}.sd-w-50{width:50% !important}.sd-w-75{width:75% !important}.sd-w-100{width:100% !important}.sd-w-auto{width:auto !important}.sd-h-25{height:25% !important}.sd-h-50{height:50% !important}.sd-h-75{height:75% !important}.sd-h-100{height:100% !important}.sd-h-auto{height:auto !important}.sd-d-none{display:none !important}.sd-d-inline{display:inline !important}.sd-d-inline-block{display:inline-block !important}.sd-d-block{display:block !important}.sd-d-grid{display:grid !important}.sd-d-flex-row{display:-ms-flexbox !important;display:flex !important;flex-direction:row !important}.sd-d-flex-column{display:-ms-flexbox !important;display:flex !important;flex-direction:column !important}.sd-d-inline-flex{display:-ms-inline-flexbox !important;display:inline-flex !important}@media(min-width: 576px){.sd-d-sm-none{display:none !important}.sd-d-sm-inline{display:inline !important}.sd-d-sm-inline-block{display:inline-block !important}.sd-d-sm-block{display:block !important}.sd-d-sm-grid{display:grid !important}.sd-d-sm-flex{display:-ms-flexbox !important;display:flex !important}.sd-d-sm-inline-flex{display:-ms-inline-flexbox !important;display:inline-flex !important}}@media(min-width: 768px){.sd-d-md-none{display:none !important}.sd-d-md-inline{display:inline !important}.sd-d-md-inline-block{display:inline-block !important}.sd-d-md-block{display:block !important}.sd-d-md-grid{display:grid !important}.sd-d-md-flex{display:-ms-flexbox !important;display:flex !important}.sd-d-md-inline-flex{display:-ms-inline-flexbox !important;display:inline-flex !important}}@media(min-width: 992px){.sd-d-lg-none{display:none !important}.sd-d-lg-inline{display:inline !important}.sd-d-lg-inline-block{display:inline-block !important}.sd-d-lg-block{display:block !important}.sd-d-lg-grid{display:grid !important}.sd-d-lg-flex{display:-ms-flexbox !important;display:flex !important}.sd-d-lg-inline-flex{display:-ms-inline-flexbox !important;display:inline-flex !important}}@media(min-width: 1200px){.sd-d-xl-none{display:none !important}.sd-d-xl-inline{display:inline !important}.sd-d-xl-inline-block{display:inline-block !important}.sd-d-xl-block{display:block !important}.sd-d-xl-grid{display:grid !important}.sd-d-xl-flex{display:-ms-flexbox !important;display:flex !important}.sd-d-xl-inline-flex{display:-ms-inline-flexbox !important;display:inline-flex !important}}.sd-align-major-start{justify-content:flex-start !important}.sd-align-major-end{justify-content:flex-end !important}.sd-align-major-center{justify-content:center !important}.sd-align-major-justify{justify-content:space-between !important}.sd-align-major-spaced{justify-content:space-evenly !important}.sd-align-minor-start{align-items:flex-start !important}.sd-align-minor-end{align-items:flex-end !important}.sd-align-minor-center{align-items:center !important}.sd-align-minor-stretch{align-items:stretch !important}.sd-text-justify{text-align:justify !important}.sd-text-left{text-align:left !important}.sd-text-right{text-align:right !important}.sd-text-center{text-align:center !important}.sd-font-weight-light{font-weight:300 !important}.sd-font-weight-lighter{font-weight:lighter !important}.sd-font-weight-normal{font-weight:400 !important}.sd-font-weight-bold{font-weight:700 !important}.sd-font-weight-bolder{font-weight:bolder !important}.sd-font-italic{font-style:italic !important}.sd-text-decoration-none{text-decoration:none !important}.sd-text-lowercase{text-transform:lowercase !important}.sd-text-uppercase{text-transform:uppercase !important}.sd-text-capitalize{text-transform:capitalize !important}.sd-text-wrap{white-space:normal !important}.sd-text-nowrap{white-space:nowrap !important}.sd-text-truncate{overflow:hidden;text-overflow:ellipsis;white-space:nowrap}.sd-fs-1,.sd-fs-1>p{font-size:calc(1.375rem + 1.5vw) !important;line-height:unset !important}.sd-fs-2,.sd-fs-2>p{font-size:calc(1.325rem + 0.9vw) !important;line-height:unset !important}.sd-fs-3,.sd-fs-3>p{font-size:calc(1.3rem + 0.6vw) !important;line-height:unset !important}.sd-fs-4,.sd-fs-4>p{font-size:calc(1.275rem + 0.3vw) !important;line-height:unset !important}.sd-fs-5,.sd-fs-5>p{font-size:1.25rem !important;line-height:unset !important}.sd-fs-6,.sd-fs-6>p{font-size:1rem !important;line-height:unset !important}.sd-border-0{border:0 solid !important}.sd-border-top-0{border-top:0 solid !important}.sd-border-bottom-0{border-bottom:0 solid !important}.sd-border-right-0{border-right:0 solid !important}.sd-border-left-0{border-left:0 solid !important}.sd-border-1{border:1px solid !important}.sd-border-top-1{border-top:1px solid !important}.sd-border-bottom-1{border-bottom:1px solid !important}.sd-border-right-1{border-right:1px solid !important}.sd-border-left-1{border-left:1px solid !important}.sd-border-2{border:2px solid !important}.sd-border-top-2{border-top:2px solid !important}.sd-border-bottom-2{border-bottom:2px solid !important}.sd-border-right-2{border-right:2px solid !important}.sd-border-left-2{border-left:2px solid !important}.sd-border-3{border:3px solid !important}.sd-border-top-3{border-top:3px solid !important}.sd-border-bottom-3{border-bottom:3px solid !important}.sd-border-right-3{border-right:3px solid !important}.sd-border-left-3{border-left:3px solid !important}.sd-border-4{border:4px solid !important}.sd-border-top-4{border-top:4px solid !important}.sd-border-bottom-4{border-bottom:4px solid !important}.sd-border-right-4{border-right:4px solid !important}.sd-border-left-4{border-left:4px solid !important}.sd-border-5{border:5px solid !important}.sd-border-top-5{border-top:5px solid !important}.sd-border-bottom-5{border-bottom:5px solid !important}.sd-border-right-5{border-right:5px solid !important}.sd-border-left-5{border-left:5px solid !important}.sd-rounded-0{border-radius:0 !important}.sd-rounded-1{border-radius:.2rem !important}.sd-rounded-2{border-radius:.3rem !important}.sd-rounded-3{border-radius:.5rem !important}.sd-rounded-pill{border-radius:50rem !important}.sd-rounded-circle{border-radius:50% !important}.shadow-none{box-shadow:none !important}.sd-shadow-sm{box-shadow:0 .125rem .25rem var(--sd-color-shadow) !important}.sd-shadow-md{box-shadow:0 .5rem 1rem var(--sd-color-shadow) !important}.sd-shadow-lg{box-shadow:0 1rem 3rem var(--sd-color-shadow) !important}@keyframes sd-slide-from-left{0%{transform:translateX(-100%)}100%{transform:translateX(0)}}@keyframes sd-slide-from-right{0%{transform:translateX(200%)}100%{transform:translateX(0)}}@keyframes sd-grow100{0%{transform:scale(0);opacity:.5}100%{transform:scale(1);opacity:1}}@keyframes sd-grow50{0%{transform:scale(0.5);opacity:.5}100%{transform:scale(1);opacity:1}}@keyframes sd-grow50-rot20{0%{transform:scale(0.5) rotateZ(-20deg);opacity:.5}75%{transform:scale(1) rotateZ(5deg);opacity:1}95%{transform:scale(1) rotateZ(-1deg);opacity:1}100%{transform:scale(1) rotateZ(0);opacity:1}}.sd-animate-slide-from-left{animation:1s ease-out 0s 1 normal none running sd-slide-from-left}.sd-animate-slide-from-right{animation:1s ease-out 0s 1 normal none running sd-slide-from-right}.sd-animate-grow100{animation:1s ease-out 0s 1 normal none running sd-grow100}.sd-animate-grow50{animation:1s ease-out 0s 1 normal none running sd-grow50}.sd-animate-grow50-rot20{animation:1s ease-out 0s 1 normal none running sd-grow50-rot20}.sd-badge{display:inline-block;padding:.35em .65em;font-size:.75em;font-weight:700;line-height:1;text-align:center;white-space:nowrap;vertical-align:baseline;border-radius:.25rem}.sd-badge:empty{display:none}a.sd-badge{text-decoration:none}.sd-btn .sd-badge{position:relative;top:-1px}.sd-btn{background-color:transparent;border:1px solid transparent;border-radius:.25rem;cursor:pointer;display:inline-block;font-weight:400;font-size:1rem;line-height:1.5;padding:.375rem .75rem;text-align:center;text-decoration:none;transition:color .15s ease-in-out,background-color .15s ease-in-out,border-color .15s ease-in-out,box-shadow .15s ease-in-out;vertical-align:middle;user-select:none;-moz-user-select:none;-ms-user-select:none;-webkit-user-select:none}.sd-btn:hover{text-decoration:none}@media(prefers-reduced-motion: reduce){.sd-btn{transition:none}}.sd-btn-primary,.sd-btn-outline-primary:hover,.sd-btn-outline-primary:focus{color:var(--sd-color-primary-text) !important;background-color:var(--sd-color-primary) !important;border-color:var(--sd-color-primary) !important;border-width:1px !important;border-style:solid !important}.sd-btn-primary:hover,.sd-btn-primary:focus{color:var(--sd-color-primary-text) !important;background-color:var(--sd-color-primary-highlight) !important;border-color:var(--sd-color-primary-highlight) !important;border-width:1px !important;border-style:solid !important}.sd-btn-outline-primary{color:var(--sd-color-primary) !important;border-color:var(--sd-color-primary) !important;border-width:1px !important;border-style:solid !important}.sd-btn-secondary,.sd-btn-outline-secondary:hover,.sd-btn-outline-secondary:focus{color:var(--sd-color-secondary-text) !important;background-color:var(--sd-color-secondary) !important;border-color:var(--sd-color-secondary) !important;border-width:1px !important;border-style:solid !important}.sd-btn-secondary:hover,.sd-btn-secondary:focus{color:var(--sd-color-secondary-text) !important;background-color:var(--sd-color-secondary-highlight) !important;border-color:var(--sd-color-secondary-highlight) !important;border-width:1px !important;border-style:solid !important}.sd-btn-outline-secondary{color:var(--sd-color-secondary) !important;border-color:var(--sd-color-secondary) !important;border-width:1px !important;border-style:solid !important}.sd-btn-success,.sd-btn-outline-success:hover,.sd-btn-outline-success:focus{color:var(--sd-color-success-text) !important;background-color:var(--sd-color-success) !important;border-color:var(--sd-color-success) !important;border-width:1px !important;border-style:solid !important}.sd-btn-success:hover,.sd-btn-success:focus{color:var(--sd-color-success-text) !important;background-color:var(--sd-color-success-highlight) !important;border-color:var(--sd-color-success-highlight) !important;border-width:1px !important;border-style:solid !important}.sd-btn-outline-success{color:var(--sd-color-success) !important;border-color:var(--sd-color-success) !important;border-width:1px !important;border-style:solid !important}.sd-btn-info,.sd-btn-outline-info:hover,.sd-btn-outline-info:focus{color:var(--sd-color-info-text) !important;background-color:var(--sd-color-info) !important;border-color:var(--sd-color-info) !important;border-width:1px !important;border-style:solid !important}.sd-btn-info:hover,.sd-btn-info:focus{color:var(--sd-color-info-text) !important;background-color:var(--sd-color-info-highlight) !important;border-color:var(--sd-color-info-highlight) !important;border-width:1px !important;border-style:solid !important}.sd-btn-outline-info{color:var(--sd-color-info) !important;border-color:var(--sd-color-info) !important;border-width:1px !important;border-style:solid !important}.sd-btn-warning,.sd-btn-outline-warning:hover,.sd-btn-outline-warning:focus{color:var(--sd-color-warning-text) !important;background-color:var(--sd-color-warning) !important;border-color:var(--sd-color-warning) !important;border-width:1px !important;border-style:solid !important}.sd-btn-warning:hover,.sd-btn-warning:focus{color:var(--sd-color-warning-text) !important;background-color:var(--sd-color-warning-highlight) !important;border-color:var(--sd-color-warning-highlight) !important;border-width:1px !important;border-style:solid !important}.sd-btn-outline-warning{color:var(--sd-color-warning) !important;border-color:var(--sd-color-warning) !important;border-width:1px !important;border-style:solid !important}.sd-btn-danger,.sd-btn-outline-danger:hover,.sd-btn-outline-danger:focus{color:var(--sd-color-danger-text) !important;background-color:var(--sd-color-danger) !important;border-color:var(--sd-color-danger) !important;border-width:1px !important;border-style:solid !important}.sd-btn-danger:hover,.sd-btn-danger:focus{color:var(--sd-color-danger-text) !important;background-color:var(--sd-color-danger-highlight) !important;border-color:var(--sd-color-danger-highlight) !important;border-width:1px !important;border-style:solid !important}.sd-btn-outline-danger{color:var(--sd-color-danger) !important;border-color:var(--sd-color-danger) !important;border-width:1px !important;border-style:solid !important}.sd-btn-light,.sd-btn-outline-light:hover,.sd-btn-outline-light:focus{color:var(--sd-color-light-text) !important;background-color:var(--sd-color-light) !important;border-color:var(--sd-color-light) !important;border-width:1px !important;border-style:solid !important}.sd-btn-light:hover,.sd-btn-light:focus{color:var(--sd-color-light-text) !important;background-color:var(--sd-color-light-highlight) !important;border-color:var(--sd-color-light-highlight) !important;border-width:1px !important;border-style:solid !important}.sd-btn-outline-light{color:var(--sd-color-light) !important;border-color:var(--sd-color-light) !important;border-width:1px !important;border-style:solid !important}.sd-btn-muted,.sd-btn-outline-muted:hover,.sd-btn-outline-muted:focus{color:var(--sd-color-muted-text) !important;background-color:var(--sd-color-muted) !important;border-color:var(--sd-color-muted) !important;border-width:1px !important;border-style:solid !important}.sd-btn-muted:hover,.sd-btn-muted:focus{color:var(--sd-color-muted-text) !important;background-color:var(--sd-color-muted-highlight) !important;border-color:var(--sd-color-muted-highlight) !important;border-width:1px !important;border-style:solid !important}.sd-btn-outline-muted{color:var(--sd-color-muted) !important;border-color:var(--sd-color-muted) !important;border-width:1px !important;border-style:solid !important}.sd-btn-dark,.sd-btn-outline-dark:hover,.sd-btn-outline-dark:focus{color:var(--sd-color-dark-text) !important;background-color:var(--sd-color-dark) !important;border-color:var(--sd-color-dark) !important;border-width:1px !important;border-style:solid !important}.sd-btn-dark:hover,.sd-btn-dark:focus{color:var(--sd-color-dark-text) !important;background-color:var(--sd-color-dark-highlight) !important;border-color:var(--sd-color-dark-highlight) !important;border-width:1px !important;border-style:solid !important}.sd-btn-outline-dark{color:var(--sd-color-dark) !important;border-color:var(--sd-color-dark) !important;border-width:1px !important;border-style:solid !important}.sd-btn-black,.sd-btn-outline-black:hover,.sd-btn-outline-black:focus{color:var(--sd-color-black-text) !important;background-color:var(--sd-color-black) !important;border-color:var(--sd-color-black) !important;border-width:1px !important;border-style:solid !important}.sd-btn-black:hover,.sd-btn-black:focus{color:var(--sd-color-black-text) !important;background-color:var(--sd-color-black-highlight) !important;border-color:var(--sd-color-black-highlight) !important;border-width:1px !important;border-style:solid !important}.sd-btn-outline-black{color:var(--sd-color-black) !important;border-color:var(--sd-color-black) !important;border-width:1px !important;border-style:solid !important}.sd-btn-white,.sd-btn-outline-white:hover,.sd-btn-outline-white:focus{color:var(--sd-color-white-text) !important;background-color:var(--sd-color-white) !important;border-color:var(--sd-color-white) !important;border-width:1px !important;border-style:solid !important}.sd-btn-white:hover,.sd-btn-white:focus{color:var(--sd-color-white-text) !important;background-color:var(--sd-color-white-highlight) !important;border-color:var(--sd-color-white-highlight) !important;border-width:1px !important;border-style:solid !important}.sd-btn-outline-white{color:var(--sd-color-white) !important;border-color:var(--sd-color-white) !important;border-width:1px !important;border-style:solid !important}.sd-stretched-link::after{position:absolute;top:0;right:0;bottom:0;left:0;z-index:1;content:""}.sd-hide-link-text{font-size:0}.sd-octicon,.sd-material-icon{display:inline-block;fill:currentColor;vertical-align:middle}.sd-avatar-xs{border-radius:50%;object-fit:cover;object-position:center;width:1rem;height:1rem}.sd-avatar-sm{border-radius:50%;object-fit:cover;object-position:center;width:3rem;height:3rem}.sd-avatar-md{border-radius:50%;object-fit:cover;object-position:center;width:5rem;height:5rem}.sd-avatar-lg{border-radius:50%;object-fit:cover;object-position:center;width:7rem;height:7rem}.sd-avatar-xl{border-radius:50%;object-fit:cover;object-position:center;width:10rem;height:10rem}.sd-avatar-inherit{border-radius:50%;object-fit:cover;object-position:center;width:inherit;height:inherit}.sd-avatar-initial{border-radius:50%;object-fit:cover;object-position:center;width:initial;height:initial}.sd-card{background-clip:border-box;background-color:var(--sd-color-card-background);border:1px solid var(--sd-color-card-border);border-radius:.25rem;color:var(--sd-color-card-text);display:-ms-flexbox;display:flex;-ms-flex-direction:column;flex-direction:column;min-width:0;position:relative;word-wrap:break-word}.sd-card>hr{margin-left:0;margin-right:0}.sd-card-hover:hover{border-color:var(--sd-color-card-border-hover);transform:scale(1.01)}.sd-card-body{-ms-flex:1 1 auto;flex:1 1 auto;padding:1rem 1rem}.sd-card-title{margin-bottom:.5rem}.sd-card-subtitle{margin-top:-0.25rem;margin-bottom:0}.sd-card-text:last-child{margin-bottom:0}.sd-card-link:hover{text-decoration:none}.sd-card-link+.card-link{margin-left:1rem}.sd-card-header{padding:.5rem 1rem;margin-bottom:0;background-color:var(--sd-color-card-header);border-bottom:1px solid var(--sd-color-card-border)}.sd-card-header:first-child{border-radius:calc(0.25rem - 1px) calc(0.25rem - 1px) 0 0}.sd-card-footer{padding:.5rem 1rem;background-color:var(--sd-color-card-footer);border-top:1px solid var(--sd-color-card-border)}.sd-card-footer:last-child{border-radius:0 0 calc(0.25rem - 1px) calc(0.25rem - 1px)}.sd-card-header-tabs{margin-right:-0.5rem;margin-bottom:-0.5rem;margin-left:-0.5rem;border-bottom:0}.sd-card-header-pills{margin-right:-0.5rem;margin-left:-0.5rem}.sd-card-img-overlay{position:absolute;top:0;right:0;bottom:0;left:0;padding:1rem;border-radius:calc(0.25rem - 1px)}.sd-card-img,.sd-card-img-bottom,.sd-card-img-top{width:100%}.sd-card-img,.sd-card-img-top{border-top-left-radius:calc(0.25rem - 1px);border-top-right-radius:calc(0.25rem - 1px)}.sd-card-img,.sd-card-img-bottom{border-bottom-left-radius:calc(0.25rem - 1px);border-bottom-right-radius:calc(0.25rem - 1px)}.sd-cards-carousel{width:100%;display:flex;flex-wrap:nowrap;-ms-flex-direction:row;flex-direction:row;overflow-x:hidden;scroll-snap-type:x mandatory}.sd-cards-carousel.sd-show-scrollbar{overflow-x:auto}.sd-cards-carousel:hover,.sd-cards-carousel:focus{overflow-x:auto}.sd-cards-carousel>.sd-card{flex-shrink:0;scroll-snap-align:start}.sd-cards-carousel>.sd-card:not(:last-child){margin-right:3px}.sd-card-cols-1>.sd-card{width:90%}.sd-card-cols-2>.sd-card{width:45%}.sd-card-cols-3>.sd-card{width:30%}.sd-card-cols-4>.sd-card{width:22.5%}.sd-card-cols-5>.sd-card{width:18%}.sd-card-cols-6>.sd-card{width:15%}.sd-card-cols-7>.sd-card{width:12.8571428571%}.sd-card-cols-8>.sd-card{width:11.25%}.sd-card-cols-9>.sd-card{width:10%}.sd-card-cols-10>.sd-card{width:9%}.sd-card-cols-11>.sd-card{width:8.1818181818%}.sd-card-cols-12>.sd-card{width:7.5%}.sd-container,.sd-container-fluid,.sd-container-lg,.sd-container-md,.sd-container-sm,.sd-container-xl{margin-left:auto;margin-right:auto;padding-left:var(--sd-gutter-x, 0.75rem);padding-right:var(--sd-gutter-x, 0.75rem);width:100%}@media(min-width: 576px){.sd-container-sm,.sd-container{max-width:540px}}@media(min-width: 768px){.sd-container-md,.sd-container-sm,.sd-container{max-width:720px}}@media(min-width: 992px){.sd-container-lg,.sd-container-md,.sd-container-sm,.sd-container{max-width:960px}}@media(min-width: 1200px){.sd-container-xl,.sd-container-lg,.sd-container-md,.sd-container-sm,.sd-container{max-width:1140px}}.sd-row{--sd-gutter-x: 1.5rem;--sd-gutter-y: 0;display:-ms-flexbox;display:flex;-ms-flex-wrap:wrap;flex-wrap:wrap;margin-top:calc(var(--sd-gutter-y) * -1);margin-right:calc(var(--sd-gutter-x) * -0.5);margin-left:calc(var(--sd-gutter-x) * -0.5)}.sd-row>*{box-sizing:border-box;flex-shrink:0;width:100%;max-width:100%;padding-right:calc(var(--sd-gutter-x) * 0.5);padding-left:calc(var(--sd-gutter-x) * 0.5);margin-top:var(--sd-gutter-y)}.sd-col{flex:1 0 0%;-ms-flex:1 0 0%}.sd-row-cols-auto>*{flex:0 0 auto;width:auto}.sd-row-cols-1>*{flex:0 0 auto;-ms-flex:0 0 auto;width:100%}.sd-row-cols-2>*{flex:0 0 auto;-ms-flex:0 0 auto;width:50%}.sd-row-cols-3>*{flex:0 0 auto;-ms-flex:0 0 auto;width:33.3333333333%}.sd-row-cols-4>*{flex:0 0 auto;-ms-flex:0 0 auto;width:25%}.sd-row-cols-5>*{flex:0 0 auto;-ms-flex:0 0 auto;width:20%}.sd-row-cols-6>*{flex:0 0 auto;-ms-flex:0 0 auto;width:16.6666666667%}.sd-row-cols-7>*{flex:0 0 auto;-ms-flex:0 0 auto;width:14.2857142857%}.sd-row-cols-8>*{flex:0 0 auto;-ms-flex:0 0 auto;width:12.5%}.sd-row-cols-9>*{flex:0 0 auto;-ms-flex:0 0 auto;width:11.1111111111%}.sd-row-cols-10>*{flex:0 0 auto;-ms-flex:0 0 auto;width:10%}.sd-row-cols-11>*{flex:0 0 auto;-ms-flex:0 0 auto;width:9.0909090909%}.sd-row-cols-12>*{flex:0 0 auto;-ms-flex:0 0 auto;width:8.3333333333%}@media(min-width: 576px){.sd-col-sm{flex:1 0 0%;-ms-flex:1 0 0%}.sd-row-cols-sm-auto{flex:1 0 auto;-ms-flex:1 0 auto;width:100%}.sd-row-cols-sm-1>*{flex:0 0 auto;-ms-flex:0 0 auto;width:100%}.sd-row-cols-sm-2>*{flex:0 0 auto;-ms-flex:0 0 auto;width:50%}.sd-row-cols-sm-3>*{flex:0 0 auto;-ms-flex:0 0 auto;width:33.3333333333%}.sd-row-cols-sm-4>*{flex:0 0 auto;-ms-flex:0 0 auto;width:25%}.sd-row-cols-sm-5>*{flex:0 0 auto;-ms-flex:0 0 auto;width:20%}.sd-row-cols-sm-6>*{flex:0 0 auto;-ms-flex:0 0 auto;width:16.6666666667%}.sd-row-cols-sm-7>*{flex:0 0 auto;-ms-flex:0 0 auto;width:14.2857142857%}.sd-row-cols-sm-8>*{flex:0 0 auto;-ms-flex:0 0 auto;width:12.5%}.sd-row-cols-sm-9>*{flex:0 0 auto;-ms-flex:0 0 auto;width:11.1111111111%}.sd-row-cols-sm-10>*{flex:0 0 auto;-ms-flex:0 0 auto;width:10%}.sd-row-cols-sm-11>*{flex:0 0 auto;-ms-flex:0 0 auto;width:9.0909090909%}.sd-row-cols-sm-12>*{flex:0 0 auto;-ms-flex:0 0 auto;width:8.3333333333%}}@media(min-width: 768px){.sd-col-md{flex:1 0 0%;-ms-flex:1 0 0%}.sd-row-cols-md-auto{flex:1 0 auto;-ms-flex:1 0 auto;width:100%}.sd-row-cols-md-1>*{flex:0 0 auto;-ms-flex:0 0 auto;width:100%}.sd-row-cols-md-2>*{flex:0 0 auto;-ms-flex:0 0 auto;width:50%}.sd-row-cols-md-3>*{flex:0 0 auto;-ms-flex:0 0 auto;width:33.3333333333%}.sd-row-cols-md-4>*{flex:0 0 auto;-ms-flex:0 0 auto;width:25%}.sd-row-cols-md-5>*{flex:0 0 auto;-ms-flex:0 0 auto;width:20%}.sd-row-cols-md-6>*{flex:0 0 auto;-ms-flex:0 0 auto;width:16.6666666667%}.sd-row-cols-md-7>*{flex:0 0 auto;-ms-flex:0 0 auto;width:14.2857142857%}.sd-row-cols-md-8>*{flex:0 0 auto;-ms-flex:0 0 auto;width:12.5%}.sd-row-cols-md-9>*{flex:0 0 auto;-ms-flex:0 0 auto;width:11.1111111111%}.sd-row-cols-md-10>*{flex:0 0 auto;-ms-flex:0 0 auto;width:10%}.sd-row-cols-md-11>*{flex:0 0 auto;-ms-flex:0 0 auto;width:9.0909090909%}.sd-row-cols-md-12>*{flex:0 0 auto;-ms-flex:0 0 auto;width:8.3333333333%}}@media(min-width: 992px){.sd-col-lg{flex:1 0 0%;-ms-flex:1 0 0%}.sd-row-cols-lg-auto{flex:1 0 auto;-ms-flex:1 0 auto;width:100%}.sd-row-cols-lg-1>*{flex:0 0 auto;-ms-flex:0 0 auto;width:100%}.sd-row-cols-lg-2>*{flex:0 0 auto;-ms-flex:0 0 auto;width:50%}.sd-row-cols-lg-3>*{flex:0 0 auto;-ms-flex:0 0 auto;width:33.3333333333%}.sd-row-cols-lg-4>*{flex:0 0 auto;-ms-flex:0 0 auto;width:25%}.sd-row-cols-lg-5>*{flex:0 0 auto;-ms-flex:0 0 auto;width:20%}.sd-row-cols-lg-6>*{flex:0 0 auto;-ms-flex:0 0 auto;width:16.6666666667%}.sd-row-cols-lg-7>*{flex:0 0 auto;-ms-flex:0 0 auto;width:14.2857142857%}.sd-row-cols-lg-8>*{flex:0 0 auto;-ms-flex:0 0 auto;width:12.5%}.sd-row-cols-lg-9>*{flex:0 0 auto;-ms-flex:0 0 auto;width:11.1111111111%}.sd-row-cols-lg-10>*{flex:0 0 auto;-ms-flex:0 0 auto;width:10%}.sd-row-cols-lg-11>*{flex:0 0 auto;-ms-flex:0 0 auto;width:9.0909090909%}.sd-row-cols-lg-12>*{flex:0 0 auto;-ms-flex:0 0 auto;width:8.3333333333%}}@media(min-width: 1200px){.sd-col-xl{flex:1 0 0%;-ms-flex:1 0 0%}.sd-row-cols-xl-auto{flex:1 0 auto;-ms-flex:1 0 auto;width:100%}.sd-row-cols-xl-1>*{flex:0 0 auto;-ms-flex:0 0 auto;width:100%}.sd-row-cols-xl-2>*{flex:0 0 auto;-ms-flex:0 0 auto;width:50%}.sd-row-cols-xl-3>*{flex:0 0 auto;-ms-flex:0 0 auto;width:33.3333333333%}.sd-row-cols-xl-4>*{flex:0 0 auto;-ms-flex:0 0 auto;width:25%}.sd-row-cols-xl-5>*{flex:0 0 auto;-ms-flex:0 0 auto;width:20%}.sd-row-cols-xl-6>*{flex:0 0 auto;-ms-flex:0 0 auto;width:16.6666666667%}.sd-row-cols-xl-7>*{flex:0 0 auto;-ms-flex:0 0 auto;width:14.2857142857%}.sd-row-cols-xl-8>*{flex:0 0 auto;-ms-flex:0 0 auto;width:12.5%}.sd-row-cols-xl-9>*{flex:0 0 auto;-ms-flex:0 0 auto;width:11.1111111111%}.sd-row-cols-xl-10>*{flex:0 0 auto;-ms-flex:0 0 auto;width:10%}.sd-row-cols-xl-11>*{flex:0 0 auto;-ms-flex:0 0 auto;width:9.0909090909%}.sd-row-cols-xl-12>*{flex:0 0 auto;-ms-flex:0 0 auto;width:8.3333333333%}}.sd-col-auto{flex:0 0 auto;-ms-flex:0 0 auto;width:auto}.sd-col-1{flex:0 0 auto;-ms-flex:0 0 auto;width:8.3333333333%}.sd-col-2{flex:0 0 auto;-ms-flex:0 0 auto;width:16.6666666667%}.sd-col-3{flex:0 0 auto;-ms-flex:0 0 auto;width:25%}.sd-col-4{flex:0 0 auto;-ms-flex:0 0 auto;width:33.3333333333%}.sd-col-5{flex:0 0 auto;-ms-flex:0 0 auto;width:41.6666666667%}.sd-col-6{flex:0 0 auto;-ms-flex:0 0 auto;width:50%}.sd-col-7{flex:0 0 auto;-ms-flex:0 0 auto;width:58.3333333333%}.sd-col-8{flex:0 0 auto;-ms-flex:0 0 auto;width:66.6666666667%}.sd-col-9{flex:0 0 auto;-ms-flex:0 0 auto;width:75%}.sd-col-10{flex:0 0 auto;-ms-flex:0 0 auto;width:83.3333333333%}.sd-col-11{flex:0 0 auto;-ms-flex:0 0 auto;width:91.6666666667%}.sd-col-12{flex:0 0 auto;-ms-flex:0 0 auto;width:100%}.sd-g-0,.sd-gy-0{--sd-gutter-y: 0}.sd-g-0,.sd-gx-0{--sd-gutter-x: 0}.sd-g-1,.sd-gy-1{--sd-gutter-y: 0.25rem}.sd-g-1,.sd-gx-1{--sd-gutter-x: 0.25rem}.sd-g-2,.sd-gy-2{--sd-gutter-y: 0.5rem}.sd-g-2,.sd-gx-2{--sd-gutter-x: 0.5rem}.sd-g-3,.sd-gy-3{--sd-gutter-y: 1rem}.sd-g-3,.sd-gx-3{--sd-gutter-x: 1rem}.sd-g-4,.sd-gy-4{--sd-gutter-y: 1.5rem}.sd-g-4,.sd-gx-4{--sd-gutter-x: 1.5rem}.sd-g-5,.sd-gy-5{--sd-gutter-y: 3rem}.sd-g-5,.sd-gx-5{--sd-gutter-x: 3rem}@media(min-width: 576px){.sd-col-sm-auto{-ms-flex:0 0 auto;flex:0 0 auto;width:auto}.sd-col-sm-1{-ms-flex:0 0 auto;flex:0 0 auto;width:8.3333333333%}.sd-col-sm-2{-ms-flex:0 0 auto;flex:0 0 auto;width:16.6666666667%}.sd-col-sm-3{-ms-flex:0 0 auto;flex:0 0 auto;width:25%}.sd-col-sm-4{-ms-flex:0 0 auto;flex:0 0 auto;width:33.3333333333%}.sd-col-sm-5{-ms-flex:0 0 auto;flex:0 0 auto;width:41.6666666667%}.sd-col-sm-6{-ms-flex:0 0 auto;flex:0 0 auto;width:50%}.sd-col-sm-7{-ms-flex:0 0 auto;flex:0 0 auto;width:58.3333333333%}.sd-col-sm-8{-ms-flex:0 0 auto;flex:0 0 auto;width:66.6666666667%}.sd-col-sm-9{-ms-flex:0 0 auto;flex:0 0 auto;width:75%}.sd-col-sm-10{-ms-flex:0 0 auto;flex:0 0 auto;width:83.3333333333%}.sd-col-sm-11{-ms-flex:0 0 auto;flex:0 0 auto;width:91.6666666667%}.sd-col-sm-12{-ms-flex:0 0 auto;flex:0 0 auto;width:100%}.sd-g-sm-0,.sd-gy-sm-0{--sd-gutter-y: 0}.sd-g-sm-0,.sd-gx-sm-0{--sd-gutter-x: 0}.sd-g-sm-1,.sd-gy-sm-1{--sd-gutter-y: 0.25rem}.sd-g-sm-1,.sd-gx-sm-1{--sd-gutter-x: 0.25rem}.sd-g-sm-2,.sd-gy-sm-2{--sd-gutter-y: 0.5rem}.sd-g-sm-2,.sd-gx-sm-2{--sd-gutter-x: 0.5rem}.sd-g-sm-3,.sd-gy-sm-3{--sd-gutter-y: 1rem}.sd-g-sm-3,.sd-gx-sm-3{--sd-gutter-x: 1rem}.sd-g-sm-4,.sd-gy-sm-4{--sd-gutter-y: 1.5rem}.sd-g-sm-4,.sd-gx-sm-4{--sd-gutter-x: 1.5rem}.sd-g-sm-5,.sd-gy-sm-5{--sd-gutter-y: 3rem}.sd-g-sm-5,.sd-gx-sm-5{--sd-gutter-x: 3rem}}@media(min-width: 768px){.sd-col-md-auto{-ms-flex:0 0 auto;flex:0 0 auto;width:auto}.sd-col-md-1{-ms-flex:0 0 auto;flex:0 0 auto;width:8.3333333333%}.sd-col-md-2{-ms-flex:0 0 auto;flex:0 0 auto;width:16.6666666667%}.sd-col-md-3{-ms-flex:0 0 auto;flex:0 0 auto;width:25%}.sd-col-md-4{-ms-flex:0 0 auto;flex:0 0 auto;width:33.3333333333%}.sd-col-md-5{-ms-flex:0 0 auto;flex:0 0 auto;width:41.6666666667%}.sd-col-md-6{-ms-flex:0 0 auto;flex:0 0 auto;width:50%}.sd-col-md-7{-ms-flex:0 0 auto;flex:0 0 auto;width:58.3333333333%}.sd-col-md-8{-ms-flex:0 0 auto;flex:0 0 auto;width:66.6666666667%}.sd-col-md-9{-ms-flex:0 0 auto;flex:0 0 auto;width:75%}.sd-col-md-10{-ms-flex:0 0 auto;flex:0 0 auto;width:83.3333333333%}.sd-col-md-11{-ms-flex:0 0 auto;flex:0 0 auto;width:91.6666666667%}.sd-col-md-12{-ms-flex:0 0 auto;flex:0 0 auto;width:100%}.sd-g-md-0,.sd-gy-md-0{--sd-gutter-y: 0}.sd-g-md-0,.sd-gx-md-0{--sd-gutter-x: 0}.sd-g-md-1,.sd-gy-md-1{--sd-gutter-y: 0.25rem}.sd-g-md-1,.sd-gx-md-1{--sd-gutter-x: 0.25rem}.sd-g-md-2,.sd-gy-md-2{--sd-gutter-y: 0.5rem}.sd-g-md-2,.sd-gx-md-2{--sd-gutter-x: 0.5rem}.sd-g-md-3,.sd-gy-md-3{--sd-gutter-y: 1rem}.sd-g-md-3,.sd-gx-md-3{--sd-gutter-x: 1rem}.sd-g-md-4,.sd-gy-md-4{--sd-gutter-y: 1.5rem}.sd-g-md-4,.sd-gx-md-4{--sd-gutter-x: 1.5rem}.sd-g-md-5,.sd-gy-md-5{--sd-gutter-y: 3rem}.sd-g-md-5,.sd-gx-md-5{--sd-gutter-x: 3rem}}@media(min-width: 992px){.sd-col-lg-auto{-ms-flex:0 0 auto;flex:0 0 auto;width:auto}.sd-col-lg-1{-ms-flex:0 0 auto;flex:0 0 auto;width:8.3333333333%}.sd-col-lg-2{-ms-flex:0 0 auto;flex:0 0 auto;width:16.6666666667%}.sd-col-lg-3{-ms-flex:0 0 auto;flex:0 0 auto;width:25%}.sd-col-lg-4{-ms-flex:0 0 auto;flex:0 0 auto;width:33.3333333333%}.sd-col-lg-5{-ms-flex:0 0 auto;flex:0 0 auto;width:41.6666666667%}.sd-col-lg-6{-ms-flex:0 0 auto;flex:0 0 auto;width:50%}.sd-col-lg-7{-ms-flex:0 0 auto;flex:0 0 auto;width:58.3333333333%}.sd-col-lg-8{-ms-flex:0 0 auto;flex:0 0 auto;width:66.6666666667%}.sd-col-lg-9{-ms-flex:0 0 auto;flex:0 0 auto;width:75%}.sd-col-lg-10{-ms-flex:0 0 auto;flex:0 0 auto;width:83.3333333333%}.sd-col-lg-11{-ms-flex:0 0 auto;flex:0 0 auto;width:91.6666666667%}.sd-col-lg-12{-ms-flex:0 0 auto;flex:0 0 auto;width:100%}.sd-g-lg-0,.sd-gy-lg-0{--sd-gutter-y: 0}.sd-g-lg-0,.sd-gx-lg-0{--sd-gutter-x: 0}.sd-g-lg-1,.sd-gy-lg-1{--sd-gutter-y: 0.25rem}.sd-g-lg-1,.sd-gx-lg-1{--sd-gutter-x: 0.25rem}.sd-g-lg-2,.sd-gy-lg-2{--sd-gutter-y: 0.5rem}.sd-g-lg-2,.sd-gx-lg-2{--sd-gutter-x: 0.5rem}.sd-g-lg-3,.sd-gy-lg-3{--sd-gutter-y: 1rem}.sd-g-lg-3,.sd-gx-lg-3{--sd-gutter-x: 1rem}.sd-g-lg-4,.sd-gy-lg-4{--sd-gutter-y: 1.5rem}.sd-g-lg-4,.sd-gx-lg-4{--sd-gutter-x: 1.5rem}.sd-g-lg-5,.sd-gy-lg-5{--sd-gutter-y: 3rem}.sd-g-lg-5,.sd-gx-lg-5{--sd-gutter-x: 3rem}}@media(min-width: 1200px){.sd-col-xl-auto{-ms-flex:0 0 auto;flex:0 0 auto;width:auto}.sd-col-xl-1{-ms-flex:0 0 auto;flex:0 0 auto;width:8.3333333333%}.sd-col-xl-2{-ms-flex:0 0 auto;flex:0 0 auto;width:16.6666666667%}.sd-col-xl-3{-ms-flex:0 0 auto;flex:0 0 auto;width:25%}.sd-col-xl-4{-ms-flex:0 0 auto;flex:0 0 auto;width:33.3333333333%}.sd-col-xl-5{-ms-flex:0 0 auto;flex:0 0 auto;width:41.6666666667%}.sd-col-xl-6{-ms-flex:0 0 auto;flex:0 0 auto;width:50%}.sd-col-xl-7{-ms-flex:0 0 auto;flex:0 0 auto;width:58.3333333333%}.sd-col-xl-8{-ms-flex:0 0 auto;flex:0 0 auto;width:66.6666666667%}.sd-col-xl-9{-ms-flex:0 0 auto;flex:0 0 auto;width:75%}.sd-col-xl-10{-ms-flex:0 0 auto;flex:0 0 auto;width:83.3333333333%}.sd-col-xl-11{-ms-flex:0 0 auto;flex:0 0 auto;width:91.6666666667%}.sd-col-xl-12{-ms-flex:0 0 auto;flex:0 0 auto;width:100%}.sd-g-xl-0,.sd-gy-xl-0{--sd-gutter-y: 0}.sd-g-xl-0,.sd-gx-xl-0{--sd-gutter-x: 0}.sd-g-xl-1,.sd-gy-xl-1{--sd-gutter-y: 0.25rem}.sd-g-xl-1,.sd-gx-xl-1{--sd-gutter-x: 0.25rem}.sd-g-xl-2,.sd-gy-xl-2{--sd-gutter-y: 0.5rem}.sd-g-xl-2,.sd-gx-xl-2{--sd-gutter-x: 0.5rem}.sd-g-xl-3,.sd-gy-xl-3{--sd-gutter-y: 1rem}.sd-g-xl-3,.sd-gx-xl-3{--sd-gutter-x: 1rem}.sd-g-xl-4,.sd-gy-xl-4{--sd-gutter-y: 1.5rem}.sd-g-xl-4,.sd-gx-xl-4{--sd-gutter-x: 1.5rem}.sd-g-xl-5,.sd-gy-xl-5{--sd-gutter-y: 3rem}.sd-g-xl-5,.sd-gx-xl-5{--sd-gutter-x: 3rem}}.sd-flex-row-reverse{flex-direction:row-reverse !important}details.sd-dropdown{position:relative}details.sd-dropdown .sd-summary-title{font-weight:700;padding-right:3em !important;-moz-user-select:none;-ms-user-select:none;-webkit-user-select:none;user-select:none}details.sd-dropdown:hover{cursor:pointer}details.sd-dropdown .sd-summary-content{cursor:default}details.sd-dropdown summary{list-style:none;padding:1em}details.sd-dropdown summary .sd-octicon.no-title{vertical-align:middle}details.sd-dropdown[open] summary .sd-octicon.no-title{visibility:hidden}details.sd-dropdown summary::-webkit-details-marker{display:none}details.sd-dropdown summary:focus{outline:none}details.sd-dropdown .sd-summary-icon{margin-right:.5em}details.sd-dropdown .sd-summary-icon svg{opacity:.8}details.sd-dropdown summary:hover .sd-summary-up svg,details.sd-dropdown summary:hover .sd-summary-down svg{opacity:1;transform:scale(1.1)}details.sd-dropdown .sd-summary-up svg,details.sd-dropdown .sd-summary-down svg{display:block;opacity:.6}details.sd-dropdown .sd-summary-up,details.sd-dropdown .sd-summary-down{pointer-events:none;position:absolute;right:1em;top:1em}details.sd-dropdown[open]>.sd-summary-title .sd-summary-down{visibility:hidden}details.sd-dropdown:not([open])>.sd-summary-title .sd-summary-up{visibility:hidden}details.sd-dropdown:not([open]).sd-card{border:none}details.sd-dropdown:not([open])>.sd-card-header{border:1px solid var(--sd-color-card-border);border-radius:.25rem}details.sd-dropdown.sd-fade-in[open] summary~*{-moz-animation:sd-fade-in .5s ease-in-out;-webkit-animation:sd-fade-in .5s ease-in-out;animation:sd-fade-in .5s ease-in-out}details.sd-dropdown.sd-fade-in-slide-down[open] summary~*{-moz-animation:sd-fade-in .5s ease-in-out,sd-slide-down .5s ease-in-out;-webkit-animation:sd-fade-in .5s ease-in-out,sd-slide-down .5s ease-in-out;animation:sd-fade-in .5s ease-in-out,sd-slide-down .5s ease-in-out}.sd-col>.sd-dropdown{width:100%}.sd-summary-content>.sd-tab-set:first-child{margin-top:0}@keyframes sd-fade-in{0%{opacity:0}100%{opacity:1}}@keyframes sd-slide-down{0%{transform:translate(0, -10px)}100%{transform:translate(0, 0)}}.sd-tab-set{border-radius:.125rem;display:flex;flex-wrap:wrap;margin:1em 0;position:relative}.sd-tab-set>input{opacity:0;position:absolute}.sd-tab-set>input:checked+label{border-color:var(--sd-color-tabs-underline-active);color:var(--sd-color-tabs-label-active)}.sd-tab-set>input:checked+label+.sd-tab-content{display:block}.sd-tab-set>input:not(:checked)+label:hover{color:var(--sd-color-tabs-label-hover);border-color:var(--sd-color-tabs-underline-hover)}.sd-tab-set>input:focus+label{outline-style:auto}.sd-tab-set>input:not(.focus-visible)+label{outline:none;-webkit-tap-highlight-color:transparent}.sd-tab-set>label{border-bottom:.125rem solid transparent;margin-bottom:0;color:var(--sd-color-tabs-label-inactive);border-color:var(--sd-color-tabs-underline-inactive);cursor:pointer;font-size:var(--sd-fontsize-tabs-label);font-weight:700;padding:1em 1.25em .5em;transition:color 250ms;width:auto;z-index:1}html .sd-tab-set>label:hover{color:var(--sd-color-tabs-label-active)}.sd-col>.sd-tab-set{width:100%}.sd-tab-content{box-shadow:0 -0.0625rem var(--sd-color-tabs-overline),0 .0625rem var(--sd-color-tabs-underline);display:none;order:99;padding-bottom:.75rem;padding-top:.75rem;width:100%}.sd-tab-content>:first-child{margin-top:0 !important}.sd-tab-content>:last-child{margin-bottom:0 !important}.sd-tab-content>.sd-tab-set{margin:0}.sd-sphinx-override,.sd-sphinx-override *{-moz-box-sizing:border-box;-webkit-box-sizing:border-box;box-sizing:border-box}.sd-sphinx-override p{margin-top:0}:root{--sd-color-primary: #007bff;--sd-color-secondary: #6c757d;--sd-color-success: #28a745;--sd-color-info: #17a2b8;--sd-color-warning: #f0b37e;--sd-color-danger: #dc3545;--sd-color-light: #f8f9fa;--sd-color-muted: #6c757d;--sd-color-dark: #212529;--sd-color-black: black;--sd-color-white: white;--sd-color-primary-highlight: #0069d9;--sd-color-secondary-highlight: #5c636a;--sd-color-success-highlight: #228e3b;--sd-color-info-highlight: #148a9c;--sd-color-warning-highlight: #cc986b;--sd-color-danger-highlight: #bb2d3b;--sd-color-light-highlight: #d3d4d5;--sd-color-muted-highlight: #5c636a;--sd-color-dark-highlight: #1c1f23;--sd-color-black-highlight: black;--sd-color-white-highlight: #d9d9d9;--sd-color-primary-text: #fff;--sd-color-secondary-text: #fff;--sd-color-success-text: #fff;--sd-color-info-text: #fff;--sd-color-warning-text: #212529;--sd-color-danger-text: #fff;--sd-color-light-text: #212529;--sd-color-muted-text: #fff;--sd-color-dark-text: #fff;--sd-color-black-text: #fff;--sd-color-white-text: #212529;--sd-color-shadow: rgba(0, 0, 0, 0.15);--sd-color-card-border: rgba(0, 0, 0, 0.125);--sd-color-card-border-hover: hsla(231, 99%, 66%, 1);--sd-color-card-background: transparent;--sd-color-card-text: inherit;--sd-color-card-header: transparent;--sd-color-card-footer: transparent;--sd-color-tabs-label-active: hsla(231, 99%, 66%, 1);--sd-color-tabs-label-hover: hsla(231, 99%, 66%, 1);--sd-color-tabs-label-inactive: hsl(0, 0%, 66%);--sd-color-tabs-underline-active: hsla(231, 99%, 66%, 1);--sd-color-tabs-underline-hover: rgba(178, 206, 245, 0.62);--sd-color-tabs-underline-inactive: transparent;--sd-color-tabs-overline: rgb(222, 222, 222);--sd-color-tabs-underline: rgb(222, 222, 222);--sd-fontsize-tabs-label: 1rem} diff --git a/_preview/21/_sphinx_design_static/design-tabs.js b/_preview/21/_sphinx_design_static/design-tabs.js deleted file mode 100644 index 36b38cf..0000000 --- a/_preview/21/_sphinx_design_static/design-tabs.js +++ /dev/null @@ -1,27 +0,0 @@ -var sd_labels_by_text = {}; - -function ready() { - const li = document.getElementsByClassName("sd-tab-label"); - for (const label of li) { - syncId = label.getAttribute("data-sync-id"); - if (syncId) { - label.onclick = onLabelClick; - if (!sd_labels_by_text[syncId]) { - sd_labels_by_text[syncId] = []; - } - sd_labels_by_text[syncId].push(label); - } - } -} - -function onLabelClick() { - // Activate other inputs with the same sync id. - syncId = this.getAttribute("data-sync-id"); - for (label of sd_labels_by_text[syncId]) { - if (label === this) continue; - label.previousElementSibling.checked = true; - } - window.localStorage.setItem("sphinx-design-last-tab", syncId); -} - -document.addEventListener("DOMContentLoaded", ready, false); diff --git a/_preview/21/_static/__init__.py b/_preview/21/_static/__init__.py deleted file mode 100644 index e69de29..0000000 diff --git a/_preview/21/_static/basic.css b/_preview/21/_static/basic.css deleted file mode 100644 index d54be80..0000000 --- a/_preview/21/_static/basic.css +++ /dev/null @@ -1,906 +0,0 @@ -/* - * basic.css - * ~~~~~~~~~ - * - * Sphinx stylesheet -- basic theme. - * - * :copyright: Copyright 2007-2022 by the Sphinx team, see AUTHORS. - * :license: BSD, see LICENSE for details. - * - */ - -/* -- main layout ----------------------------------------------------------- */ - -div.clearer { - clear: both; -} - -div.section::after { - display: block; - content: ''; - clear: left; -} - -/* -- relbar ---------------------------------------------------------------- */ - -div.related { - width: 100%; - font-size: 90%; -} - -div.related h3 { - display: none; -} - -div.related ul { - margin: 0; - padding: 0 0 0 10px; - list-style: none; -} - -div.related li { - display: inline; -} - -div.related li.right { - float: right; - margin-right: 5px; -} - -/* -- sidebar --------------------------------------------------------------- */ - -div.sphinxsidebarwrapper { - padding: 10px 5px 0 10px; -} - -div.sphinxsidebar { - float: left; - width: 270px; - margin-left: -100%; - font-size: 90%; - word-wrap: break-word; - overflow-wrap : break-word; -} - -div.sphinxsidebar ul { - list-style: none; -} - -div.sphinxsidebar ul ul, -div.sphinxsidebar ul.want-points { - margin-left: 20px; - list-style: square; -} - -div.sphinxsidebar ul ul { - margin-top: 0; - margin-bottom: 0; -} - -div.sphinxsidebar form { - margin-top: 10px; -} - -div.sphinxsidebar input { - border: 1px solid #98dbcc; - font-family: sans-serif; - font-size: 1em; -} - -div.sphinxsidebar #searchbox form.search { - overflow: hidden; -} - -div.sphinxsidebar #searchbox input[type="text"] { - float: left; - width: 80%; - padding: 0.25em; - box-sizing: border-box; -} - -div.sphinxsidebar #searchbox input[type="submit"] { - float: left; - width: 20%; - border-left: none; - padding: 0.25em; - box-sizing: border-box; -} - - -img { - border: 0; - max-width: 100%; -} - -/* -- search page ----------------------------------------------------------- */ - -ul.search { - margin: 10px 0 0 20px; - padding: 0; -} - -ul.search li { - padding: 5px 0 5px 20px; - background-image: url(file.png); - background-repeat: no-repeat; - background-position: 0 7px; -} - -ul.search li a { - font-weight: bold; -} - -ul.search li p.context { - color: #888; - margin: 2px 0 0 30px; - text-align: left; -} - -ul.keywordmatches li.goodmatch a { - font-weight: bold; -} - -/* -- index page ------------------------------------------------------------ */ - -table.contentstable { - width: 90%; - margin-left: auto; - margin-right: auto; -} - -table.contentstable p.biglink { - line-height: 150%; -} - -a.biglink { - font-size: 1.3em; -} - -span.linkdescr { - font-style: italic; - padding-top: 5px; - font-size: 90%; -} - -/* -- general index --------------------------------------------------------- */ - -table.indextable { - width: 100%; -} - -table.indextable td { - text-align: left; - vertical-align: top; -} - -table.indextable ul { - margin-top: 0; - margin-bottom: 0; - list-style-type: none; -} - -table.indextable > tbody > tr > td > ul { - padding-left: 0em; -} - -table.indextable tr.pcap { - height: 10px; -} - -table.indextable tr.cap { - margin-top: 10px; - background-color: #f2f2f2; -} - -img.toggler { - margin-right: 3px; - margin-top: 3px; - cursor: pointer; -} - -div.modindex-jumpbox { - border-top: 1px solid #ddd; - border-bottom: 1px solid #ddd; - margin: 1em 0 1em 0; - padding: 0.4em; -} - -div.genindex-jumpbox { - border-top: 1px solid #ddd; - border-bottom: 1px solid #ddd; - margin: 1em 0 1em 0; - padding: 0.4em; -} - -/* -- domain module index --------------------------------------------------- */ - -table.modindextable td { - padding: 2px; - border-collapse: collapse; -} - -/* -- general body styles --------------------------------------------------- */ - -div.body { - min-width: 450px; - max-width: 800px; -} - -div.body p, div.body dd, div.body li, div.body blockquote { - -moz-hyphens: auto; - -ms-hyphens: auto; - -webkit-hyphens: auto; - hyphens: auto; -} - -a.headerlink { - visibility: hidden; -} - -a.brackets:before, -span.brackets > a:before{ - content: "["; -} - -a.brackets:after, -span.brackets > a:after { - content: "]"; -} - -h1:hover > a.headerlink, -h2:hover > a.headerlink, -h3:hover > a.headerlink, -h4:hover > a.headerlink, -h5:hover > a.headerlink, -h6:hover > a.headerlink, -dt:hover > a.headerlink, -caption:hover > a.headerlink, -p.caption:hover > a.headerlink, -div.code-block-caption:hover > a.headerlink { - visibility: visible; -} - -div.body p.caption { - text-align: inherit; -} - -div.body td { - text-align: left; -} - -.first { - margin-top: 0 !important; -} - -p.rubric { - margin-top: 30px; - font-weight: bold; -} - -img.align-left, figure.align-left, .figure.align-left, object.align-left { - clear: left; - float: left; - margin-right: 1em; -} - -img.align-right, figure.align-right, .figure.align-right, object.align-right { - clear: right; - float: right; - margin-left: 1em; -} - -img.align-center, figure.align-center, .figure.align-center, object.align-center { - display: block; - margin-left: auto; - margin-right: auto; -} - -img.align-default, figure.align-default, .figure.align-default { - display: block; - margin-left: auto; - margin-right: auto; -} - -.align-left { - text-align: left; -} - -.align-center { - text-align: center; -} - -.align-default { - text-align: center; -} - -.align-right { - text-align: right; -} - -/* -- sidebars -------------------------------------------------------------- */ - -div.sidebar, -aside.sidebar { - margin: 0 0 0.5em 1em; - border: 1px solid #ddb; - padding: 7px; - background-color: #ffe; - width: 40%; - float: right; - clear: right; - overflow-x: auto; -} - -p.sidebar-title { - font-weight: bold; -} - -div.admonition, div.topic, blockquote { - clear: left; -} - -/* -- topics ---------------------------------------------------------------- */ - -div.topic { - border: 1px solid #ccc; - padding: 7px; - margin: 10px 0 10px 0; -} - -p.topic-title { - font-size: 1.1em; - font-weight: bold; - margin-top: 10px; -} - -/* -- admonitions ----------------------------------------------------------- */ - -div.admonition { - margin-top: 10px; - margin-bottom: 10px; - padding: 7px; -} - -div.admonition dt { - font-weight: bold; -} - -p.admonition-title { - margin: 0px 10px 5px 0px; - font-weight: bold; -} - -div.body p.centered { - text-align: center; - margin-top: 25px; -} - -/* -- content of sidebars/topics/admonitions -------------------------------- */ - -div.sidebar > :last-child, -aside.sidebar > :last-child, -div.topic > :last-child, -div.admonition > :last-child { - margin-bottom: 0; -} - -div.sidebar::after, -aside.sidebar::after, -div.topic::after, -div.admonition::after, -blockquote::after { - display: block; - content: ''; - clear: both; -} - -/* -- tables ---------------------------------------------------------------- */ - -table.docutils { - margin-top: 10px; - margin-bottom: 10px; - border: 0; - border-collapse: collapse; -} - -table.align-center { - margin-left: auto; - margin-right: auto; -} - -table.align-default { - margin-left: auto; - margin-right: auto; -} - -table caption span.caption-number { - font-style: italic; -} - -table caption span.caption-text { -} - -table.docutils td, table.docutils th { - padding: 1px 8px 1px 5px; - border-top: 0; - border-left: 0; - border-right: 0; - border-bottom: 1px solid #aaa; -} - -table.footnote td, table.footnote th { - border: 0 !important; -} - -th { - text-align: left; - padding-right: 5px; -} - -table.citation { - border-left: solid 1px gray; - margin-left: 1px; -} - -table.citation td { - border-bottom: none; -} - -th > :first-child, -td > :first-child { - margin-top: 0px; -} - -th > :last-child, -td > :last-child { - margin-bottom: 0px; -} - -/* -- figures --------------------------------------------------------------- */ - -div.figure, figure { - margin: 0.5em; - padding: 0.5em; -} - -div.figure p.caption, figcaption { - padding: 0.3em; -} - -div.figure p.caption span.caption-number, -figcaption span.caption-number { - font-style: italic; -} - -div.figure p.caption span.caption-text, -figcaption span.caption-text { -} - -/* -- field list styles ----------------------------------------------------- */ - -table.field-list td, table.field-list th { - border: 0 !important; -} - -.field-list ul { - margin: 0; - padding-left: 1em; -} - -.field-list p { - margin: 0; -} - -.field-name { - -moz-hyphens: manual; - -ms-hyphens: manual; - -webkit-hyphens: manual; - hyphens: manual; -} - -/* -- hlist styles ---------------------------------------------------------- */ - -table.hlist { - margin: 1em 0; -} - -table.hlist td { - vertical-align: top; -} - -/* -- object description styles --------------------------------------------- */ - -.sig { - font-family: 'Consolas', 'Menlo', 'DejaVu Sans Mono', 'Bitstream Vera Sans Mono', monospace; -} - -.sig-name, code.descname { - background-color: transparent; - font-weight: bold; -} - -.sig-name { - font-size: 1.1em; -} - -code.descname { - font-size: 1.2em; -} - -.sig-prename, code.descclassname { - background-color: transparent; -} - -.optional { - font-size: 1.3em; -} - -.sig-paren { - font-size: larger; -} - -.sig-param.n { - font-style: italic; -} - -/* C++ specific styling */ - -.sig-inline.c-texpr, -.sig-inline.cpp-texpr { - font-family: unset; -} - -.sig.c .k, .sig.c .kt, -.sig.cpp .k, .sig.cpp .kt { - color: #0033B3; -} - -.sig.c .m, -.sig.cpp .m { - color: #1750EB; -} - -.sig.c .s, .sig.c .sc, -.sig.cpp .s, .sig.cpp .sc { - color: #067D17; -} - - -/* -- other body styles ----------------------------------------------------- */ - -ol.arabic { - list-style: decimal; -} - -ol.loweralpha { - list-style: lower-alpha; -} - -ol.upperalpha { - list-style: upper-alpha; -} - -ol.lowerroman { - list-style: lower-roman; -} - -ol.upperroman { - list-style: upper-roman; -} - -:not(li) > ol > li:first-child > :first-child, -:not(li) > ul > li:first-child > :first-child { - margin-top: 0px; -} - -:not(li) > ol > li:last-child > :last-child, -:not(li) > ul > li:last-child > :last-child { - margin-bottom: 0px; -} - -ol.simple ol p, -ol.simple ul p, -ul.simple ol p, -ul.simple ul p { - margin-top: 0; -} - -ol.simple > li:not(:first-child) > p, -ul.simple > li:not(:first-child) > p { - margin-top: 0; -} - -ol.simple p, -ul.simple p { - margin-bottom: 0; -} - -dl.footnote > dt, -dl.citation > dt { - float: left; - margin-right: 0.5em; -} - -dl.footnote > dd, -dl.citation > dd { - margin-bottom: 0em; -} - -dl.footnote > dd:after, -dl.citation > dd:after { - content: ""; - clear: both; -} - -dl.field-list { - display: grid; - grid-template-columns: fit-content(30%) auto; -} - -dl.field-list > dt { - font-weight: bold; - word-break: break-word; - padding-left: 0.5em; - padding-right: 5px; -} - -dl.field-list > dt:after { - content: ":"; -} - -dl.field-list > dd { - padding-left: 0.5em; - margin-top: 0em; - margin-left: 0em; - margin-bottom: 0em; -} - -dl { - margin-bottom: 15px; -} - -dd > :first-child { - margin-top: 0px; -} - -dd ul, dd table { - margin-bottom: 10px; -} - -dd { - margin-top: 3px; - margin-bottom: 10px; - margin-left: 30px; -} - -dl > dd:last-child, -dl > dd:last-child > :last-child { - margin-bottom: 0; -} - -dt:target, span.highlighted { - background-color: #fbe54e; -} - -rect.highlighted { - fill: #fbe54e; -} - -dl.glossary dt { - font-weight: bold; - font-size: 1.1em; -} - -.versionmodified { - font-style: italic; -} - -.system-message { - background-color: #fda; - padding: 5px; - border: 3px solid red; -} - -.footnote:target { - background-color: #ffa; -} - -.line-block { - display: block; - margin-top: 1em; - margin-bottom: 1em; -} - -.line-block .line-block { - margin-top: 0; - margin-bottom: 0; - margin-left: 1.5em; -} - -.guilabel, .menuselection { - font-family: sans-serif; -} - -.accelerator { - text-decoration: underline; -} - -.classifier { - font-style: oblique; -} - -.classifier:before { - font-style: normal; - margin: 0 0.5em; - content: ":"; - display: inline-block; -} - -abbr, acronym { - border-bottom: dotted 1px; - cursor: help; -} - -/* -- code displays --------------------------------------------------------- */ - -pre { - overflow: auto; - overflow-y: hidden; /* fixes display issues on Chrome browsers */ -} - -pre, div[class*="highlight-"] { - clear: both; -} - -span.pre { - -moz-hyphens: none; - -ms-hyphens: none; - -webkit-hyphens: none; - hyphens: none; - white-space: nowrap; -} - -div[class*="highlight-"] { - margin: 1em 0; -} - -td.linenos pre { - border: 0; - background-color: transparent; - color: #aaa; -} - -table.highlighttable { - display: block; -} - -table.highlighttable tbody { - display: block; -} - -table.highlighttable tr { - display: flex; -} - -table.highlighttable td { - margin: 0; - padding: 0; -} - -table.highlighttable td.linenos { - padding-right: 0.5em; -} - -table.highlighttable td.code { - flex: 1; - overflow: hidden; -} - -.highlight .hll { - display: block; -} - -div.highlight pre, -table.highlighttable pre { - margin: 0; -} - -div.code-block-caption + div { - margin-top: 0; -} - -div.code-block-caption { - margin-top: 1em; - padding: 2px 5px; - font-size: small; -} - -div.code-block-caption code { - background-color: transparent; -} - -table.highlighttable td.linenos, -span.linenos, -div.highlight span.gp { /* gp: Generic.Prompt */ - user-select: none; - -webkit-user-select: text; /* Safari fallback only */ - -webkit-user-select: none; /* Chrome/Safari */ - -moz-user-select: none; /* Firefox */ - -ms-user-select: none; /* IE10+ */ -} - -div.code-block-caption span.caption-number { - padding: 0.1em 0.3em; - font-style: italic; -} - -div.code-block-caption span.caption-text { -} - -div.literal-block-wrapper { - margin: 1em 0; -} - -code.xref, a code { - background-color: transparent; - font-weight: bold; -} - -h1 code, h2 code, h3 code, h4 code, h5 code, h6 code { - background-color: transparent; -} - -.viewcode-link { - float: right; -} - -.viewcode-back { - float: right; - font-family: sans-serif; -} - -div.viewcode-block:target { - margin: -1px -10px; - padding: 0 10px; -} - -/* -- math display ---------------------------------------------------------- */ - -img.math { - vertical-align: middle; -} - -div.body div.math p { - text-align: center; -} - -span.eqno { - float: right; -} - -span.eqno a.headerlink { - position: absolute; - z-index: 1; -} - -div.math:hover a.headerlink { - visibility: visible; -} - -/* -- printout stylesheet --------------------------------------------------- */ - -@media print { - div.document, - div.documentwrapper, - div.bodywrapper { - margin: 0 !important; - width: 100%; - } - - div.sphinxsidebar, - div.related, - div.footer, - #top-link { - display: none; - } -} \ No newline at end of file diff --git a/_preview/21/_static/check-solid.svg b/_preview/21/_static/check-solid.svg deleted file mode 100644 index 92fad4b..0000000 --- a/_preview/21/_static/check-solid.svg +++ /dev/null @@ -1,4 +0,0 @@ - - - - diff --git a/_preview/21/_static/clipboard.min.js b/_preview/21/_static/clipboard.min.js deleted file mode 100644 index 54b3c46..0000000 --- a/_preview/21/_static/clipboard.min.js +++ /dev/null @@ -1,7 +0,0 @@ -/*! - * clipboard.js v2.0.8 - * https://clipboardjs.com/ - * - * Licensed MIT © Zeno Rocha - */ -!function(t,e){"object"==typeof exports&&"object"==typeof module?module.exports=e():"function"==typeof define&&define.amd?define([],e):"object"==typeof exports?exports.ClipboardJS=e():t.ClipboardJS=e()}(this,function(){return n={686:function(t,e,n){"use strict";n.d(e,{default:function(){return o}});var e=n(279),i=n.n(e),e=n(370),u=n.n(e),e=n(817),c=n.n(e);function a(t){try{return document.execCommand(t)}catch(t){return}}var f=function(t){t=c()(t);return a("cut"),t};var l=function(t){var e,n,o,r=1 - - - - diff --git a/_preview/21/_static/copybutton.css b/_preview/21/_static/copybutton.css deleted file mode 100644 index f1916ec..0000000 --- a/_preview/21/_static/copybutton.css +++ /dev/null @@ -1,94 +0,0 @@ -/* Copy buttons */ -button.copybtn { - position: absolute; - display: flex; - top: .3em; - right: .3em; - width: 1.7em; - height: 1.7em; - opacity: 0; - transition: opacity 0.3s, border .3s, background-color .3s; - user-select: none; - padding: 0; - border: none; - outline: none; - border-radius: 0.4em; - /* The colors that GitHub uses */ - border: #1b1f2426 1px solid; - background-color: #f6f8fa; - color: #57606a; -} - -button.copybtn.success { - border-color: #22863a; - color: #22863a; -} - -button.copybtn svg { - stroke: currentColor; - width: 1.5em; - height: 1.5em; - padding: 0.1em; -} - -div.highlight { - position: relative; -} - -/* Show the copybutton */ -.highlight:hover button.copybtn, button.copybtn.success { - opacity: 1; -} - -.highlight button.copybtn:hover { - background-color: rgb(235, 235, 235); -} - -.highlight button.copybtn:active { - background-color: rgb(187, 187, 187); -} - -/** - * A minimal CSS-only tooltip copied from: - * https://codepen.io/mildrenben/pen/rVBrpK - * - * To use, write HTML like the following: - * - *

Short

- */ - .o-tooltip--left { - position: relative; - } - - .o-tooltip--left:after { - opacity: 0; - visibility: hidden; - position: absolute; - content: attr(data-tooltip); - padding: .2em; - font-size: .8em; - left: -.2em; - background: grey; - color: white; - white-space: nowrap; - z-index: 2; - border-radius: 2px; - transform: translateX(-102%) translateY(0); - transition: opacity 0.2s cubic-bezier(0.64, 0.09, 0.08, 1), transform 0.2s cubic-bezier(0.64, 0.09, 0.08, 1); -} - -.o-tooltip--left:hover:after { - display: block; - opacity: 1; - visibility: visible; - transform: translateX(-100%) translateY(0); - transition: opacity 0.2s cubic-bezier(0.64, 0.09, 0.08, 1), transform 0.2s cubic-bezier(0.64, 0.09, 0.08, 1); - transition-delay: .5s; -} - -/* By default the copy button shouldn't show up when printing a page */ -@media print { - button.copybtn { - display: none; - } -} diff --git a/_preview/21/_static/copybutton.js b/_preview/21/_static/copybutton.js deleted file mode 100644 index 2ea7ff3..0000000 --- a/_preview/21/_static/copybutton.js +++ /dev/null @@ -1,248 +0,0 @@ -// Localization support -const messages = { - 'en': { - 'copy': 'Copy', - 'copy_to_clipboard': 'Copy to clipboard', - 'copy_success': 'Copied!', - 'copy_failure': 'Failed to copy', - }, - 'es' : { - 'copy': 'Copiar', - 'copy_to_clipboard': 'Copiar al portapapeles', - 'copy_success': '¡Copiado!', - 'copy_failure': 'Error al copiar', - }, - 'de' : { - 'copy': 'Kopieren', - 'copy_to_clipboard': 'In die Zwischenablage kopieren', - 'copy_success': 'Kopiert!', - 'copy_failure': 'Fehler beim Kopieren', - }, - 'fr' : { - 'copy': 'Copier', - 'copy_to_clipboard': 'Copier dans le presse-papier', - 'copy_success': 'Copié !', - 'copy_failure': 'Échec de la copie', - }, - 'ru': { - 'copy': 'Скопировать', - 'copy_to_clipboard': 'Скопировать в буфер', - 'copy_success': 'Скопировано!', - 'copy_failure': 'Не удалось скопировать', - }, - 'zh-CN': { - 'copy': '复制', - 'copy_to_clipboard': '复制到剪贴板', - 'copy_success': '复制成功!', - 'copy_failure': '复制失败', - }, - 'it' : { - 'copy': 'Copiare', - 'copy_to_clipboard': 'Copiato negli appunti', - 'copy_success': 'Copiato!', - 'copy_failure': 'Errore durante la copia', - } -} - -let locale = 'en' -if( document.documentElement.lang !== undefined - && messages[document.documentElement.lang] !== undefined ) { - locale = document.documentElement.lang -} - -let doc_url_root = DOCUMENTATION_OPTIONS.URL_ROOT; -if (doc_url_root == '#') { - doc_url_root = ''; -} - -/** - * SVG files for our copy buttons - */ -let iconCheck = ` - ${messages[locale]['copy_success']} - - -` - -// If the user specified their own SVG use that, otherwise use the default -let iconCopy = ``; -if (!iconCopy) { - iconCopy = ` - ${messages[locale]['copy_to_clipboard']} - - - -` -} - -/** - * Set up copy/paste for code blocks - */ - -const runWhenDOMLoaded = cb => { - if (document.readyState != 'loading') { - cb() - } else if (document.addEventListener) { - document.addEventListener('DOMContentLoaded', cb) - } else { - document.attachEvent('onreadystatechange', function() { - if (document.readyState == 'complete') cb() - }) - } -} - -const codeCellId = index => `codecell${index}` - -// Clears selected text since ClipboardJS will select the text when copying -const clearSelection = () => { - if (window.getSelection) { - window.getSelection().removeAllRanges() - } else if (document.selection) { - document.selection.empty() - } -} - -// Changes tooltip text for a moment, then changes it back -// We want the timeout of our `success` class to be a bit shorter than the -// tooltip and icon change, so that we can hide the icon before changing back. -var timeoutIcon = 2000; -var timeoutSuccessClass = 1500; - -const temporarilyChangeTooltip = (el, oldText, newText) => { - el.setAttribute('data-tooltip', newText) - el.classList.add('success') - // Remove success a little bit sooner than we change the tooltip - // So that we can use CSS to hide the copybutton first - setTimeout(() => el.classList.remove('success'), timeoutSuccessClass) - setTimeout(() => el.setAttribute('data-tooltip', oldText), timeoutIcon) -} - -// Changes the copy button icon for two seconds, then changes it back -const temporarilyChangeIcon = (el) => { - el.innerHTML = iconCheck; - setTimeout(() => {el.innerHTML = iconCopy}, timeoutIcon) -} - -const addCopyButtonToCodeCells = () => { - // If ClipboardJS hasn't loaded, wait a bit and try again. This - // happens because we load ClipboardJS asynchronously. - if (window.ClipboardJS === undefined) { - setTimeout(addCopyButtonToCodeCells, 250) - return - } - - // Add copybuttons to all of our code cells - const COPYBUTTON_SELECTOR = 'div.highlight pre'; - const codeCells = document.querySelectorAll(COPYBUTTON_SELECTOR) - codeCells.forEach((codeCell, index) => { - const id = codeCellId(index) - codeCell.setAttribute('id', id) - - const clipboardButton = id => - `` - codeCell.insertAdjacentHTML('afterend', clipboardButton(id)) - }) - -function escapeRegExp(string) { - return string.replace(/[.*+?^${}()|[\]\\]/g, '\\$&'); // $& means the whole matched string -} - -/** - * Removes excluded text from a Node. - * - * @param {Node} target Node to filter. - * @param {string} exclude CSS selector of nodes to exclude. - * @returns {DOMString} Text from `target` with text removed. - */ -function filterText(target, exclude) { - const clone = target.cloneNode(true); // clone as to not modify the live DOM - if (exclude) { - // remove excluded nodes - clone.querySelectorAll(exclude).forEach(node => node.remove()); - } - return clone.innerText; -} - -// Callback when a copy button is clicked. Will be passed the node that was clicked -// should then grab the text and replace pieces of text that shouldn't be used in output -function formatCopyText(textContent, copybuttonPromptText, isRegexp = false, onlyCopyPromptLines = true, removePrompts = true, copyEmptyLines = true, lineContinuationChar = "", hereDocDelim = "") { - var regexp; - var match; - - // Do we check for line continuation characters and "HERE-documents"? - var useLineCont = !!lineContinuationChar - var useHereDoc = !!hereDocDelim - - // create regexp to capture prompt and remaining line - if (isRegexp) { - regexp = new RegExp('^(' + copybuttonPromptText + ')(.*)') - } else { - regexp = new RegExp('^(' + escapeRegExp(copybuttonPromptText) + ')(.*)') - } - - const outputLines = []; - var promptFound = false; - var gotLineCont = false; - var gotHereDoc = false; - const lineGotPrompt = []; - for (const line of textContent.split('\n')) { - match = line.match(regexp) - if (match || gotLineCont || gotHereDoc) { - promptFound = regexp.test(line) - lineGotPrompt.push(promptFound) - if (removePrompts && promptFound) { - outputLines.push(match[2]) - } else { - outputLines.push(line) - } - gotLineCont = line.endsWith(lineContinuationChar) & useLineCont - if (line.includes(hereDocDelim) & useHereDoc) - gotHereDoc = !gotHereDoc - } else if (!onlyCopyPromptLines) { - outputLines.push(line) - } else if (copyEmptyLines && line.trim() === '') { - outputLines.push(line) - } - } - - // If no lines with the prompt were found then just use original lines - if (lineGotPrompt.some(v => v === true)) { - textContent = outputLines.join('\n'); - } - - // Remove a trailing newline to avoid auto-running when pasting - if (textContent.endsWith("\n")) { - textContent = textContent.slice(0, -1) - } - return textContent -} - - -var copyTargetText = (trigger) => { - var target = document.querySelector(trigger.attributes['data-clipboard-target'].value); - - // get filtered text - let exclude = '.linenos'; - - let text = filterText(target, exclude); - return formatCopyText(text, '', false, true, true, true, '', '') -} - - // Initialize with a callback so we can modify the text before copy - const clipboard = new ClipboardJS('.copybtn', {text: copyTargetText}) - - // Update UI with error/success messages - clipboard.on('success', event => { - clearSelection() - temporarilyChangeTooltip(event.trigger, messages[locale]['copy'], messages[locale]['copy_success']) - temporarilyChangeIcon(event.trigger) - }) - - clipboard.on('error', event => { - temporarilyChangeTooltip(event.trigger, messages[locale]['copy'], messages[locale]['copy_failure']) - }) -} - -runWhenDOMLoaded(addCopyButtonToCodeCells) \ No newline at end of file diff --git a/_preview/21/_static/copybutton_funcs.js b/_preview/21/_static/copybutton_funcs.js deleted file mode 100644 index dbe1aaa..0000000 --- a/_preview/21/_static/copybutton_funcs.js +++ /dev/null @@ -1,73 +0,0 @@ -function escapeRegExp(string) { - return string.replace(/[.*+?^${}()|[\]\\]/g, '\\$&'); // $& means the whole matched string -} - -/** - * Removes excluded text from a Node. - * - * @param {Node} target Node to filter. - * @param {string} exclude CSS selector of nodes to exclude. - * @returns {DOMString} Text from `target` with text removed. - */ -export function filterText(target, exclude) { - const clone = target.cloneNode(true); // clone as to not modify the live DOM - if (exclude) { - // remove excluded nodes - clone.querySelectorAll(exclude).forEach(node => node.remove()); - } - return clone.innerText; -} - -// Callback when a copy button is clicked. Will be passed the node that was clicked -// should then grab the text and replace pieces of text that shouldn't be used in output -export function formatCopyText(textContent, copybuttonPromptText, isRegexp = false, onlyCopyPromptLines = true, removePrompts = true, copyEmptyLines = true, lineContinuationChar = "", hereDocDelim = "") { - var regexp; - var match; - - // Do we check for line continuation characters and "HERE-documents"? - var useLineCont = !!lineContinuationChar - var useHereDoc = !!hereDocDelim - - // create regexp to capture prompt and remaining line - if (isRegexp) { - regexp = new RegExp('^(' + copybuttonPromptText + ')(.*)') - } else { - regexp = new RegExp('^(' + escapeRegExp(copybuttonPromptText) + ')(.*)') - } - - const outputLines = []; - var promptFound = false; - var gotLineCont = false; - var gotHereDoc = false; - const lineGotPrompt = []; - for (const line of textContent.split('\n')) { - match = line.match(regexp) - if (match || gotLineCont || gotHereDoc) { - promptFound = regexp.test(line) - lineGotPrompt.push(promptFound) - if (removePrompts && promptFound) { - outputLines.push(match[2]) - } else { - outputLines.push(line) - } - gotLineCont = line.endsWith(lineContinuationChar) & useLineCont - if (line.includes(hereDocDelim) & useHereDoc) - gotHereDoc = !gotHereDoc - } else if (!onlyCopyPromptLines) { - outputLines.push(line) - } else if (copyEmptyLines && line.trim() === '') { - outputLines.push(line) - } - } - - // If no lines with the prompt were found then just use original lines - if (lineGotPrompt.some(v => v === true)) { - textContent = outputLines.join('\n'); - } - - // Remove a trailing newline to avoid auto-running when pasting - if (textContent.endsWith("\n")) { - textContent = textContent.slice(0, -1) - } - return textContent -} diff --git a/_preview/21/_static/css/blank.css b/_preview/21/_static/css/blank.css deleted file mode 100644 index 8a686ec..0000000 --- a/_preview/21/_static/css/blank.css +++ /dev/null @@ -1,2 +0,0 @@ -/* This file is intentionally left blank to override the stylesheet of the -parent theme via theme.conf. The parent style we import directly in theme.css */ \ No newline at end of file diff --git a/_preview/21/_static/css/index.ff1ffe594081f20da1ef19478df9384b.css b/_preview/21/_static/css/index.ff1ffe594081f20da1ef19478df9384b.css deleted file mode 100644 index 9b1c5d7..0000000 --- a/_preview/21/_static/css/index.ff1ffe594081f20da1ef19478df9384b.css +++ /dev/null @@ -1,6 +0,0 @@ -/*! - * Bootstrap v4.5.0 (https://getbootstrap.com/) - * Copyright 2011-2020 The Bootstrap Authors - * Copyright 2011-2020 Twitter, Inc. - * Licensed under MIT (https://github.com/twbs/bootstrap/blob/master/LICENSE) - */:root{--blue:#007bff;--indigo:#6610f2;--purple:#6f42c1;--pink:#e83e8c;--red:#dc3545;--orange:#fd7e14;--yellow:#ffc107;--green:#28a745;--teal:#20c997;--cyan:#17a2b8;--white:#fff;--gray:#6c757d;--gray-dark:#343a40;--primary:#007bff;--secondary:#6c757d;--success:#28a745;--info:#17a2b8;--warning:#ffc107;--danger:#dc3545;--light:#f8f9fa;--dark:#343a40;--breakpoint-xs:0;--breakpoint-sm:540px;--breakpoint-md:720px;--breakpoint-lg:960px;--breakpoint-xl:1200px;--font-family-sans-serif:-apple-system,BlinkMacSystemFont,"Segoe UI",Roboto,"Helvetica Neue",Arial,"Noto Sans",sans-serif,"Apple Color Emoji","Segoe UI Emoji","Segoe UI Symbol","Noto Color Emoji";--font-family-monospace:SFMono-Regular,Menlo,Monaco,Consolas,"Liberation Mono","Courier New",monospace}*,:after,:before{box-sizing:border-box}html{font-family:sans-serif;line-height:1.15;-webkit-text-size-adjust:100%;-webkit-tap-highlight-color:rgba(0,0,0,0)}article,aside,figcaption,figure,footer,header,hgroup,main,nav,section{display:block}body{margin:0;font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Helvetica Neue,Arial,Noto Sans,sans-serif,Apple Color Emoji,Segoe UI Emoji,Segoe UI Symbol,Noto Color Emoji;font-size:1rem;line-height:1.5;color:#212529;text-align:left}[tabindex="-1"]:focus:not(:focus-visible){outline:0!important}hr{box-sizing:content-box;height:0;overflow:visible}h1,h2,h3,h4,h5,h6{margin-top:0;margin-bottom:.5rem}p{margin-top:0;margin-bottom:1rem}abbr[data-original-title],abbr[title]{text-decoration:underline;text-decoration:underline dotted;cursor:help;border-bottom:0;text-decoration-skip-ink:none}address{font-style:normal;line-height:inherit}address,dl,ol,ul{margin-bottom:1rem}dl,ol,ul{margin-top:0}ol ol,ol ul,ul ol,ul ul{margin-bottom:0}dt{font-weight:700}dd{margin-bottom:.5rem;margin-left:0}blockquote{margin:0 0 1rem}b,strong{font-weight:bolder}small{font-size:80%}sub,sup{position:relative;font-size:75%;line-height:0;vertical-align:baseline}sub{bottom:-.25em}sup{top:-.5em}a{color:#007bff;background-color:transparent}a:hover{color:#0056b3}a:not([href]),a:not([href]):hover{color:inherit;text-decoration:none}code,kbd,pre,samp{font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,monospace;font-size:1em}pre{margin-top:0;margin-bottom:1rem;overflow:auto;-ms-overflow-style:scrollbar}figure{margin:0 0 1rem}img{border-style:none}img,svg{vertical-align:middle}svg{overflow:hidden}table{border-collapse:collapse}caption{padding-top:.75rem;padding-bottom:.75rem;color:#6c757d;text-align:left;caption-side:bottom}th{text-align:inherit}label{display:inline-block;margin-bottom:.5rem}button{border-radius:0}button:focus{outline:1px dotted;outline:5px auto -webkit-focus-ring-color}button,input,optgroup,select,textarea{margin:0;font-family:inherit;font-size:inherit;line-height:inherit}button,input{overflow:visible}button,select{text-transform:none}[role=button]{cursor:pointer}select{word-wrap:normal}[type=button],[type=reset],[type=submit],button{-webkit-appearance:button}[type=button]:not(:disabled),[type=reset]:not(:disabled),[type=submit]:not(:disabled),button:not(:disabled){cursor:pointer}[type=button]::-moz-focus-inner,[type=reset]::-moz-focus-inner,[type=submit]::-moz-focus-inner,button::-moz-focus-inner{padding:0;border-style:none}input[type=checkbox],input[type=radio]{box-sizing:border-box;padding:0}textarea{overflow:auto;resize:vertical}fieldset{min-width:0;padding:0;margin:0;border:0}legend{display:block;width:100%;max-width:100%;padding:0;margin-bottom:.5rem;font-size:1.5rem;line-height:inherit;color:inherit;white-space:normal}progress{vertical-align:baseline}[type=number]::-webkit-inner-spin-button,[type=number]::-webkit-outer-spin-button{height:auto}[type=search]{outline-offset:-2px;-webkit-appearance:none}[type=search]::-webkit-search-decoration{-webkit-appearance:none}::-webkit-file-upload-button{font:inherit;-webkit-appearance:button}output{display:inline-block}summary{display:list-item;cursor:pointer}template{display:none}[hidden]{display:none!important}.h1,.h2,.h3,.h4,.h5,.h6,h1,h2,h3,h4,h5,h6{margin-bottom:.5rem;font-weight:500;line-height:1.2}.h1,h1{font-size:2.5rem}.h2,h2{font-size:2rem}.h3,h3{font-size:1.75rem}.h4,h4{font-size:1.5rem}.h5,h5{font-size:1.25rem}.h6,h6{font-size:1rem}.lead{font-size:1.25rem;font-weight:300}.display-1{font-size:6rem}.display-1,.display-2{font-weight:300;line-height:1.2}.display-2{font-size:5.5rem}.display-3{font-size:4.5rem}.display-3,.display-4{font-weight:300;line-height:1.2}.display-4{font-size:3.5rem}hr{margin-top:1rem;margin-bottom:1rem;border-top:1px solid rgba(0,0,0,.1)}.small,small{font-size:80%;font-weight:400}.mark,mark{padding:.2em;background-color:#fcf8e3}.list-inline,.list-unstyled{padding-left:0;list-style:none}.list-inline-item{display:inline-block}.list-inline-item:not(:last-child){margin-right:.5rem}.initialism{font-size:90%;text-transform:uppercase}.blockquote{margin-bottom:1rem;font-size:1.25rem}.blockquote-footer{display:block;font-size:80%;color:#6c757d}.blockquote-footer:before{content:"\2014\00A0"}.img-fluid,.img-thumbnail{max-width:100%;height:auto}.img-thumbnail{padding:.25rem;background-color:#fff;border:1px solid #dee2e6;border-radius:.25rem}.figure{display:inline-block}.figure-img{margin-bottom:.5rem;line-height:1}.figure-caption{font-size:90%;color:#6c757d}code{font-size:87.5%;color:#e83e8c;word-wrap:break-word}a>code{color:inherit}kbd{padding:.2rem .4rem;font-size:87.5%;color:#fff;background-color:#212529;border-radius:.2rem}kbd kbd{padding:0;font-size:100%;font-weight:700}pre{display:block;font-size:87.5%;color:#212529}pre code{font-size:inherit;color:inherit;word-break:normal}.pre-scrollable{max-height:340px;overflow-y:scroll}.container{width:100%;padding-right:15px;padding-left:15px;margin-right:auto;margin-left:auto}@media (min-width:540px){.container{max-width:540px}}@media (min-width:720px){.container{max-width:720px}}@media (min-width:960px){.container{max-width:960px}}@media (min-width:1200px){.container{max-width:1400px}}.container-fluid,.container-lg,.container-md,.container-sm,.container-xl{width:100%;padding-right:15px;padding-left:15px;margin-right:auto;margin-left:auto}@media (min-width:540px){.container,.container-sm{max-width:540px}}@media (min-width:720px){.container,.container-md,.container-sm{max-width:720px}}@media (min-width:960px){.container,.container-lg,.container-md,.container-sm{max-width:960px}}@media (min-width:1200px){.container,.container-lg,.container-md,.container-sm,.container-xl{max-width:1400px}}.row{display:flex;flex-wrap:wrap;margin-right:-15px;margin-left:-15px}.no-gutters{margin-right:0;margin-left:0}.no-gutters>.col,.no-gutters>[class*=col-]{padding-right:0;padding-left:0}.col,.col-1,.col-2,.col-3,.col-4,.col-5,.col-6,.col-7,.col-8,.col-9,.col-10,.col-11,.col-12,.col-auto,.col-lg,.col-lg-1,.col-lg-2,.col-lg-3,.col-lg-4,.col-lg-5,.col-lg-6,.col-lg-7,.col-lg-8,.col-lg-9,.col-lg-10,.col-lg-11,.col-lg-12,.col-lg-auto,.col-md,.col-md-1,.col-md-2,.col-md-3,.col-md-4,.col-md-5,.col-md-6,.col-md-7,.col-md-8,.col-md-9,.col-md-10,.col-md-11,.col-md-12,.col-md-auto,.col-sm,.col-sm-1,.col-sm-2,.col-sm-3,.col-sm-4,.col-sm-5,.col-sm-6,.col-sm-7,.col-sm-8,.col-sm-9,.col-sm-10,.col-sm-11,.col-sm-12,.col-sm-auto,.col-xl,.col-xl-1,.col-xl-2,.col-xl-3,.col-xl-4,.col-xl-5,.col-xl-6,.col-xl-7,.col-xl-8,.col-xl-9,.col-xl-10,.col-xl-11,.col-xl-12,.col-xl-auto{position:relative;width:100%;padding-right:15px;padding-left:15px}.col{flex-basis:0;flex-grow:1;min-width:0;max-width:100%}.row-cols-1>*{flex:0 0 100%;max-width:100%}.row-cols-2>*{flex:0 0 50%;max-width:50%}.row-cols-3>*{flex:0 0 33.33333%;max-width:33.33333%}.row-cols-4>*{flex:0 0 25%;max-width:25%}.row-cols-5>*{flex:0 0 20%;max-width:20%}.row-cols-6>*{flex:0 0 16.66667%;max-width:16.66667%}.col-auto{flex:0 0 auto;width:auto;max-width:100%}.col-1{flex:0 0 8.33333%;max-width:8.33333%}.col-2{flex:0 0 16.66667%;max-width:16.66667%}.col-3{flex:0 0 25%;max-width:25%}.col-4{flex:0 0 33.33333%;max-width:33.33333%}.col-5{flex:0 0 41.66667%;max-width:41.66667%}.col-6{flex:0 0 50%;max-width:50%}.col-7{flex:0 0 58.33333%;max-width:58.33333%}.col-8{flex:0 0 66.66667%;max-width:66.66667%}.col-9{flex:0 0 75%;max-width:75%}.col-10{flex:0 0 83.33333%;max-width:83.33333%}.col-11{flex:0 0 91.66667%;max-width:91.66667%}.col-12{flex:0 0 100%;max-width:100%}.order-first{order:-1}.order-last{order:13}.order-0{order:0}.order-1{order:1}.order-2{order:2}.order-3{order:3}.order-4{order:4}.order-5{order:5}.order-6{order:6}.order-7{order:7}.order-8{order:8}.order-9{order:9}.order-10{order:10}.order-11{order:11}.order-12{order:12}.offset-1{margin-left:8.33333%}.offset-2{margin-left:16.66667%}.offset-3{margin-left:25%}.offset-4{margin-left:33.33333%}.offset-5{margin-left:41.66667%}.offset-6{margin-left:50%}.offset-7{margin-left:58.33333%}.offset-8{margin-left:66.66667%}.offset-9{margin-left:75%}.offset-10{margin-left:83.33333%}.offset-11{margin-left:91.66667%}@media (min-width:540px){.col-sm{flex-basis:0;flex-grow:1;min-width:0;max-width:100%}.row-cols-sm-1>*{flex:0 0 100%;max-width:100%}.row-cols-sm-2>*{flex:0 0 50%;max-width:50%}.row-cols-sm-3>*{flex:0 0 33.33333%;max-width:33.33333%}.row-cols-sm-4>*{flex:0 0 25%;max-width:25%}.row-cols-sm-5>*{flex:0 0 20%;max-width:20%}.row-cols-sm-6>*{flex:0 0 16.66667%;max-width:16.66667%}.col-sm-auto{flex:0 0 auto;width:auto;max-width:100%}.col-sm-1{flex:0 0 8.33333%;max-width:8.33333%}.col-sm-2{flex:0 0 16.66667%;max-width:16.66667%}.col-sm-3{flex:0 0 25%;max-width:25%}.col-sm-4{flex:0 0 33.33333%;max-width:33.33333%}.col-sm-5{flex:0 0 41.66667%;max-width:41.66667%}.col-sm-6{flex:0 0 50%;max-width:50%}.col-sm-7{flex:0 0 58.33333%;max-width:58.33333%}.col-sm-8{flex:0 0 66.66667%;max-width:66.66667%}.col-sm-9{flex:0 0 75%;max-width:75%}.col-sm-10{flex:0 0 83.33333%;max-width:83.33333%}.col-sm-11{flex:0 0 91.66667%;max-width:91.66667%}.col-sm-12{flex:0 0 100%;max-width:100%}.order-sm-first{order:-1}.order-sm-last{order:13}.order-sm-0{order:0}.order-sm-1{order:1}.order-sm-2{order:2}.order-sm-3{order:3}.order-sm-4{order:4}.order-sm-5{order:5}.order-sm-6{order:6}.order-sm-7{order:7}.order-sm-8{order:8}.order-sm-9{order:9}.order-sm-10{order:10}.order-sm-11{order:11}.order-sm-12{order:12}.offset-sm-0{margin-left:0}.offset-sm-1{margin-left:8.33333%}.offset-sm-2{margin-left:16.66667%}.offset-sm-3{margin-left:25%}.offset-sm-4{margin-left:33.33333%}.offset-sm-5{margin-left:41.66667%}.offset-sm-6{margin-left:50%}.offset-sm-7{margin-left:58.33333%}.offset-sm-8{margin-left:66.66667%}.offset-sm-9{margin-left:75%}.offset-sm-10{margin-left:83.33333%}.offset-sm-11{margin-left:91.66667%}}@media (min-width:720px){.col-md{flex-basis:0;flex-grow:1;min-width:0;max-width:100%}.row-cols-md-1>*{flex:0 0 100%;max-width:100%}.row-cols-md-2>*{flex:0 0 50%;max-width:50%}.row-cols-md-3>*{flex:0 0 33.33333%;max-width:33.33333%}.row-cols-md-4>*{flex:0 0 25%;max-width:25%}.row-cols-md-5>*{flex:0 0 20%;max-width:20%}.row-cols-md-6>*{flex:0 0 16.66667%;max-width:16.66667%}.col-md-auto{flex:0 0 auto;width:auto;max-width:100%}.col-md-1{flex:0 0 8.33333%;max-width:8.33333%}.col-md-2{flex:0 0 16.66667%;max-width:16.66667%}.col-md-3{flex:0 0 25%;max-width:25%}.col-md-4{flex:0 0 33.33333%;max-width:33.33333%}.col-md-5{flex:0 0 41.66667%;max-width:41.66667%}.col-md-6{flex:0 0 50%;max-width:50%}.col-md-7{flex:0 0 58.33333%;max-width:58.33333%}.col-md-8{flex:0 0 66.66667%;max-width:66.66667%}.col-md-9{flex:0 0 75%;max-width:75%}.col-md-10{flex:0 0 83.33333%;max-width:83.33333%}.col-md-11{flex:0 0 91.66667%;max-width:91.66667%}.col-md-12{flex:0 0 100%;max-width:100%}.order-md-first{order:-1}.order-md-last{order:13}.order-md-0{order:0}.order-md-1{order:1}.order-md-2{order:2}.order-md-3{order:3}.order-md-4{order:4}.order-md-5{order:5}.order-md-6{order:6}.order-md-7{order:7}.order-md-8{order:8}.order-md-9{order:9}.order-md-10{order:10}.order-md-11{order:11}.order-md-12{order:12}.offset-md-0{margin-left:0}.offset-md-1{margin-left:8.33333%}.offset-md-2{margin-left:16.66667%}.offset-md-3{margin-left:25%}.offset-md-4{margin-left:33.33333%}.offset-md-5{margin-left:41.66667%}.offset-md-6{margin-left:50%}.offset-md-7{margin-left:58.33333%}.offset-md-8{margin-left:66.66667%}.offset-md-9{margin-left:75%}.offset-md-10{margin-left:83.33333%}.offset-md-11{margin-left:91.66667%}}@media (min-width:960px){.col-lg{flex-basis:0;flex-grow:1;min-width:0;max-width:100%}.row-cols-lg-1>*{flex:0 0 100%;max-width:100%}.row-cols-lg-2>*{flex:0 0 50%;max-width:50%}.row-cols-lg-3>*{flex:0 0 33.33333%;max-width:33.33333%}.row-cols-lg-4>*{flex:0 0 25%;max-width:25%}.row-cols-lg-5>*{flex:0 0 20%;max-width:20%}.row-cols-lg-6>*{flex:0 0 16.66667%;max-width:16.66667%}.col-lg-auto{flex:0 0 auto;width:auto;max-width:100%}.col-lg-1{flex:0 0 8.33333%;max-width:8.33333%}.col-lg-2{flex:0 0 16.66667%;max-width:16.66667%}.col-lg-3{flex:0 0 25%;max-width:25%}.col-lg-4{flex:0 0 33.33333%;max-width:33.33333%}.col-lg-5{flex:0 0 41.66667%;max-width:41.66667%}.col-lg-6{flex:0 0 50%;max-width:50%}.col-lg-7{flex:0 0 58.33333%;max-width:58.33333%}.col-lg-8{flex:0 0 66.66667%;max-width:66.66667%}.col-lg-9{flex:0 0 75%;max-width:75%}.col-lg-10{flex:0 0 83.33333%;max-width:83.33333%}.col-lg-11{flex:0 0 91.66667%;max-width:91.66667%}.col-lg-12{flex:0 0 100%;max-width:100%}.order-lg-first{order:-1}.order-lg-last{order:13}.order-lg-0{order:0}.order-lg-1{order:1}.order-lg-2{order:2}.order-lg-3{order:3}.order-lg-4{order:4}.order-lg-5{order:5}.order-lg-6{order:6}.order-lg-7{order:7}.order-lg-8{order:8}.order-lg-9{order:9}.order-lg-10{order:10}.order-lg-11{order:11}.order-lg-12{order:12}.offset-lg-0{margin-left:0}.offset-lg-1{margin-left:8.33333%}.offset-lg-2{margin-left:16.66667%}.offset-lg-3{margin-left:25%}.offset-lg-4{margin-left:33.33333%}.offset-lg-5{margin-left:41.66667%}.offset-lg-6{margin-left:50%}.offset-lg-7{margin-left:58.33333%}.offset-lg-8{margin-left:66.66667%}.offset-lg-9{margin-left:75%}.offset-lg-10{margin-left:83.33333%}.offset-lg-11{margin-left:91.66667%}}@media (min-width:1200px){.col-xl{flex-basis:0;flex-grow:1;min-width:0;max-width:100%}.row-cols-xl-1>*{flex:0 0 100%;max-width:100%}.row-cols-xl-2>*{flex:0 0 50%;max-width:50%}.row-cols-xl-3>*{flex:0 0 33.33333%;max-width:33.33333%}.row-cols-xl-4>*{flex:0 0 25%;max-width:25%}.row-cols-xl-5>*{flex:0 0 20%;max-width:20%}.row-cols-xl-6>*{flex:0 0 16.66667%;max-width:16.66667%}.col-xl-auto{flex:0 0 auto;width:auto;max-width:100%}.col-xl-1{flex:0 0 8.33333%;max-width:8.33333%}.col-xl-2{flex:0 0 16.66667%;max-width:16.66667%}.col-xl-3{flex:0 0 25%;max-width:25%}.col-xl-4{flex:0 0 33.33333%;max-width:33.33333%}.col-xl-5{flex:0 0 41.66667%;max-width:41.66667%}.col-xl-6{flex:0 0 50%;max-width:50%}.col-xl-7{flex:0 0 58.33333%;max-width:58.33333%}.col-xl-8{flex:0 0 66.66667%;max-width:66.66667%}.col-xl-9{flex:0 0 75%;max-width:75%}.col-xl-10{flex:0 0 83.33333%;max-width:83.33333%}.col-xl-11{flex:0 0 91.66667%;max-width:91.66667%}.col-xl-12{flex:0 0 100%;max-width:100%}.order-xl-first{order:-1}.order-xl-last{order:13}.order-xl-0{order:0}.order-xl-1{order:1}.order-xl-2{order:2}.order-xl-3{order:3}.order-xl-4{order:4}.order-xl-5{order:5}.order-xl-6{order:6}.order-xl-7{order:7}.order-xl-8{order:8}.order-xl-9{order:9}.order-xl-10{order:10}.order-xl-11{order:11}.order-xl-12{order:12}.offset-xl-0{margin-left:0}.offset-xl-1{margin-left:8.33333%}.offset-xl-2{margin-left:16.66667%}.offset-xl-3{margin-left:25%}.offset-xl-4{margin-left:33.33333%}.offset-xl-5{margin-left:41.66667%}.offset-xl-6{margin-left:50%}.offset-xl-7{margin-left:58.33333%}.offset-xl-8{margin-left:66.66667%}.offset-xl-9{margin-left:75%}.offset-xl-10{margin-left:83.33333%}.offset-xl-11{margin-left:91.66667%}}.table{width:100%;margin-bottom:1rem;color:#212529}.table td,.table th{padding:.75rem;vertical-align:top;border-top:1px solid #dee2e6}.table thead th{vertical-align:bottom;border-bottom:2px solid #dee2e6}.table tbody+tbody{border-top:2px solid #dee2e6}.table-sm td,.table-sm th{padding:.3rem}.table-bordered,.table-bordered td,.table-bordered th{border:1px solid #dee2e6}.table-bordered thead td,.table-bordered thead th{border-bottom-width:2px}.table-borderless tbody+tbody,.table-borderless td,.table-borderless th,.table-borderless thead th{border:0}.table-striped tbody tr:nth-of-type(odd){background-color:rgba(0,0,0,.05)}.table-hover tbody tr:hover{color:#212529;background-color:rgba(0,0,0,.075)}.table-primary,.table-primary>td,.table-primary>th{background-color:#b8daff}.table-primary tbody+tbody,.table-primary td,.table-primary th,.table-primary thead th{border-color:#7abaff}.table-hover .table-primary:hover,.table-hover .table-primary:hover>td,.table-hover .table-primary:hover>th{background-color:#9fcdff}.table-secondary,.table-secondary>td,.table-secondary>th{background-color:#d6d8db}.table-secondary tbody+tbody,.table-secondary td,.table-secondary th,.table-secondary thead th{border-color:#b3b7bb}.table-hover .table-secondary:hover,.table-hover .table-secondary:hover>td,.table-hover .table-secondary:hover>th{background-color:#c8cbcf}.table-success,.table-success>td,.table-success>th{background-color:#c3e6cb}.table-success tbody+tbody,.table-success td,.table-success th,.table-success thead th{border-color:#8fd19e}.table-hover .table-success:hover,.table-hover .table-success:hover>td,.table-hover .table-success:hover>th{background-color:#b1dfbb}.table-info,.table-info>td,.table-info>th{background-color:#bee5eb}.table-info tbody+tbody,.table-info td,.table-info th,.table-info thead th{border-color:#86cfda}.table-hover .table-info:hover,.table-hover .table-info:hover>td,.table-hover .table-info:hover>th{background-color:#abdde5}.table-warning,.table-warning>td,.table-warning>th{background-color:#ffeeba}.table-warning tbody+tbody,.table-warning td,.table-warning th,.table-warning thead th{border-color:#ffdf7e}.table-hover .table-warning:hover,.table-hover .table-warning:hover>td,.table-hover .table-warning:hover>th{background-color:#ffe8a1}.table-danger,.table-danger>td,.table-danger>th{background-color:#f5c6cb}.table-danger tbody+tbody,.table-danger td,.table-danger th,.table-danger thead th{border-color:#ed969e}.table-hover .table-danger:hover,.table-hover .table-danger:hover>td,.table-hover .table-danger:hover>th{background-color:#f1b0b7}.table-light,.table-light>td,.table-light>th{background-color:#fdfdfe}.table-light tbody+tbody,.table-light td,.table-light th,.table-light thead th{border-color:#fbfcfc}.table-hover .table-light:hover,.table-hover .table-light:hover>td,.table-hover .table-light:hover>th{background-color:#ececf6}.table-dark,.table-dark>td,.table-dark>th{background-color:#c6c8ca}.table-dark tbody+tbody,.table-dark td,.table-dark th,.table-dark thead th{border-color:#95999c}.table-hover .table-dark:hover,.table-hover .table-dark:hover>td,.table-hover .table-dark:hover>th{background-color:#b9bbbe}.table-active,.table-active>td,.table-active>th,.table-hover .table-active:hover,.table-hover .table-active:hover>td,.table-hover .table-active:hover>th{background-color:rgba(0,0,0,.075)}.table .thead-dark th{color:#fff;background-color:#343a40;border-color:#454d55}.table .thead-light th{color:#495057;background-color:#e9ecef;border-color:#dee2e6}.table-dark{color:#fff;background-color:#343a40}.table-dark td,.table-dark th,.table-dark thead th{border-color:#454d55}.table-dark.table-bordered{border:0}.table-dark.table-striped tbody tr:nth-of-type(odd){background-color:hsla(0,0%,100%,.05)}.table-dark.table-hover tbody tr:hover{color:#fff;background-color:hsla(0,0%,100%,.075)}@media (max-width:539.98px){.table-responsive-sm{display:block;width:100%;overflow-x:auto;-webkit-overflow-scrolling:touch}.table-responsive-sm>.table-bordered{border:0}}@media (max-width:719.98px){.table-responsive-md{display:block;width:100%;overflow-x:auto;-webkit-overflow-scrolling:touch}.table-responsive-md>.table-bordered{border:0}}@media (max-width:959.98px){.table-responsive-lg{display:block;width:100%;overflow-x:auto;-webkit-overflow-scrolling:touch}.table-responsive-lg>.table-bordered{border:0}}@media (max-width:1199.98px){.table-responsive-xl{display:block;width:100%;overflow-x:auto;-webkit-overflow-scrolling:touch}.table-responsive-xl>.table-bordered{border:0}}.table-responsive{display:block;width:100%;overflow-x:auto;-webkit-overflow-scrolling:touch}.table-responsive>.table-bordered{border:0}.form-control{display:block;width:100%;height:calc(1.5em + .75rem + 2px);padding:.375rem .75rem;font-size:1rem;font-weight:400;line-height:1.5;color:#495057;background-color:#fff;background-clip:padding-box;border:1px solid #ced4da;border-radius:.25rem;transition:border-color .15s ease-in-out,box-shadow .15s ease-in-out}@media (prefers-reduced-motion:reduce){.form-control{transition:none}}.form-control::-ms-expand{background-color:transparent;border:0}.form-control:-moz-focusring{color:transparent;text-shadow:0 0 0 #495057}.form-control:focus{color:#495057;background-color:#fff;border-color:#80bdff;outline:0;box-shadow:0 0 0 .2rem rgba(0,123,255,.25)}.form-control::placeholder{color:#6c757d;opacity:1}.form-control:disabled,.form-control[readonly]{background-color:#e9ecef;opacity:1}input[type=date].form-control,input[type=datetime-local].form-control,input[type=month].form-control,input[type=time].form-control{appearance:none}select.form-control:focus::-ms-value{color:#495057;background-color:#fff}.form-control-file,.form-control-range{display:block;width:100%}.col-form-label{padding-top:calc(.375rem + 1px);padding-bottom:calc(.375rem + 1px);margin-bottom:0;font-size:inherit;line-height:1.5}.col-form-label-lg{padding-top:calc(.5rem + 1px);padding-bottom:calc(.5rem + 1px);font-size:1.25rem;line-height:1.5}.col-form-label-sm{padding-top:calc(.25rem + 1px);padding-bottom:calc(.25rem + 1px);font-size:.875rem;line-height:1.5}.form-control-plaintext{display:block;width:100%;padding:.375rem 0;margin-bottom:0;font-size:1rem;line-height:1.5;color:#212529;background-color:transparent;border:solid transparent;border-width:1px 0}.form-control-plaintext.form-control-lg,.form-control-plaintext.form-control-sm{padding-right:0;padding-left:0}.form-control-sm{height:calc(1.5em + .5rem + 2px);padding:.25rem .5rem;font-size:.875rem;line-height:1.5;border-radius:.2rem}.form-control-lg{height:calc(1.5em + 1rem + 2px);padding:.5rem 1rem;font-size:1.25rem;line-height:1.5;border-radius:.3rem}select.form-control[multiple],select.form-control[size],textarea.form-control{height:auto}.form-group{margin-bottom:1rem}.form-text{display:block;margin-top:.25rem}.form-row{display:flex;flex-wrap:wrap;margin-right:-5px;margin-left:-5px}.form-row>.col,.form-row>[class*=col-]{padding-right:5px;padding-left:5px}.form-check{position:relative;display:block;padding-left:1.25rem}.form-check-input{position:absolute;margin-top:.3rem;margin-left:-1.25rem}.form-check-input:disabled~.form-check-label,.form-check-input[disabled]~.form-check-label{color:#6c757d}.form-check-label{margin-bottom:0}.form-check-inline{display:inline-flex;align-items:center;padding-left:0;margin-right:.75rem}.form-check-inline .form-check-input{position:static;margin-top:0;margin-right:.3125rem;margin-left:0}.valid-feedback{display:none;width:100%;margin-top:.25rem;font-size:80%;color:#28a745}.valid-tooltip{position:absolute;top:100%;z-index:5;display:none;max-width:100%;padding:.25rem .5rem;margin-top:.1rem;font-size:.875rem;line-height:1.5;color:#fff;background-color:rgba(40,167,69,.9);border-radius:.25rem}.is-valid~.valid-feedback,.is-valid~.valid-tooltip,.was-validated :valid~.valid-feedback,.was-validated :valid~.valid-tooltip{display:block}.form-control.is-valid,.was-validated .form-control:valid{border-color:#28a745;padding-right:calc(1.5em + .75rem);background-image:url("data:image/svg+xml;charset=utf-8,%3Csvg xmlns='http://www.w3.org/2000/svg' width='8' height='8'%3E%3Cpath fill='%2328a745' d='M2.3 6.73L.6 4.53c-.4-1.04.46-1.4 1.1-.8l1.1 1.4 3.4-3.8c.6-.63 1.6-.27 1.2.7l-4 4.6c-.43.5-.8.4-1.1.1z'/%3E%3C/svg%3E");background-repeat:no-repeat;background-position:right calc(.375em + .1875rem) center;background-size:calc(.75em + .375rem) calc(.75em + .375rem)}.form-control.is-valid:focus,.was-validated .form-control:valid:focus{border-color:#28a745;box-shadow:0 0 0 .2rem rgba(40,167,69,.25)}.was-validated textarea.form-control:valid,textarea.form-control.is-valid{padding-right:calc(1.5em + .75rem);background-position:top calc(.375em + .1875rem) right calc(.375em + .1875rem)}.custom-select.is-valid,.was-validated .custom-select:valid{border-color:#28a745;padding-right:calc(.75em + 2.3125rem);background:url("data:image/svg+xml;charset=utf-8,%3Csvg xmlns='http://www.w3.org/2000/svg' width='4' height='5'%3E%3Cpath fill='%23343a40' d='M2 0L0 2h4zm0 5L0 3h4z'/%3E%3C/svg%3E") no-repeat right .75rem center/8px 10px,url("data:image/svg+xml;charset=utf-8,%3Csvg xmlns='http://www.w3.org/2000/svg' width='8' height='8'%3E%3Cpath fill='%2328a745' d='M2.3 6.73L.6 4.53c-.4-1.04.46-1.4 1.1-.8l1.1 1.4 3.4-3.8c.6-.63 1.6-.27 1.2.7l-4 4.6c-.43.5-.8.4-1.1.1z'/%3E%3C/svg%3E") #fff no-repeat center right 1.75rem/calc(.75em + .375rem) calc(.75em + .375rem)}.custom-select.is-valid:focus,.was-validated .custom-select:valid:focus{border-color:#28a745;box-shadow:0 0 0 .2rem rgba(40,167,69,.25)}.form-check-input.is-valid~.form-check-label,.was-validated .form-check-input:valid~.form-check-label{color:#28a745}.form-check-input.is-valid~.valid-feedback,.form-check-input.is-valid~.valid-tooltip,.was-validated .form-check-input:valid~.valid-feedback,.was-validated .form-check-input:valid~.valid-tooltip{display:block}.custom-control-input.is-valid~.custom-control-label,.was-validated .custom-control-input:valid~.custom-control-label{color:#28a745}.custom-control-input.is-valid~.custom-control-label:before,.was-validated .custom-control-input:valid~.custom-control-label:before{border-color:#28a745}.custom-control-input.is-valid:checked~.custom-control-label:before,.was-validated .custom-control-input:valid:checked~.custom-control-label:before{border-color:#34ce57;background-color:#34ce57}.custom-control-input.is-valid:focus~.custom-control-label:before,.was-validated .custom-control-input:valid:focus~.custom-control-label:before{box-shadow:0 0 0 .2rem rgba(40,167,69,.25)}.custom-control-input.is-valid:focus:not(:checked)~.custom-control-label:before,.custom-file-input.is-valid~.custom-file-label,.was-validated .custom-control-input:valid:focus:not(:checked)~.custom-control-label:before,.was-validated .custom-file-input:valid~.custom-file-label{border-color:#28a745}.custom-file-input.is-valid:focus~.custom-file-label,.was-validated .custom-file-input:valid:focus~.custom-file-label{border-color:#28a745;box-shadow:0 0 0 .2rem rgba(40,167,69,.25)}.invalid-feedback{display:none;width:100%;margin-top:.25rem;font-size:80%;color:#dc3545}.invalid-tooltip{position:absolute;top:100%;z-index:5;display:none;max-width:100%;padding:.25rem .5rem;margin-top:.1rem;font-size:.875rem;line-height:1.5;color:#fff;background-color:rgba(220,53,69,.9);border-radius:.25rem}.is-invalid~.invalid-feedback,.is-invalid~.invalid-tooltip,.was-validated :invalid~.invalid-feedback,.was-validated :invalid~.invalid-tooltip{display:block}.form-control.is-invalid,.was-validated .form-control:invalid{border-color:#dc3545;padding-right:calc(1.5em + .75rem);background-image:url("data:image/svg+xml;charset=utf-8,%3Csvg xmlns='http://www.w3.org/2000/svg' width='12' height='12' fill='none' stroke='%23dc3545'%3E%3Ccircle cx='6' cy='6' r='4.5'/%3E%3Cpath stroke-linejoin='round' d='M5.8 3.6h.4L6 6.5z'/%3E%3Ccircle cx='6' cy='8.2' r='.6' fill='%23dc3545' stroke='none'/%3E%3C/svg%3E");background-repeat:no-repeat;background-position:right calc(.375em + .1875rem) center;background-size:calc(.75em + .375rem) calc(.75em + .375rem)}.form-control.is-invalid:focus,.was-validated .form-control:invalid:focus{border-color:#dc3545;box-shadow:0 0 0 .2rem rgba(220,53,69,.25)}.was-validated textarea.form-control:invalid,textarea.form-control.is-invalid{padding-right:calc(1.5em + .75rem);background-position:top calc(.375em + .1875rem) right calc(.375em + .1875rem)}.custom-select.is-invalid,.was-validated .custom-select:invalid{border-color:#dc3545;padding-right:calc(.75em + 2.3125rem);background:url("data:image/svg+xml;charset=utf-8,%3Csvg xmlns='http://www.w3.org/2000/svg' width='4' height='5'%3E%3Cpath fill='%23343a40' d='M2 0L0 2h4zm0 5L0 3h4z'/%3E%3C/svg%3E") no-repeat right .75rem center/8px 10px,url("data:image/svg+xml;charset=utf-8,%3Csvg xmlns='http://www.w3.org/2000/svg' width='12' height='12' fill='none' stroke='%23dc3545'%3E%3Ccircle cx='6' cy='6' r='4.5'/%3E%3Cpath stroke-linejoin='round' d='M5.8 3.6h.4L6 6.5z'/%3E%3Ccircle cx='6' cy='8.2' r='.6' fill='%23dc3545' stroke='none'/%3E%3C/svg%3E") #fff no-repeat center right 1.75rem/calc(.75em + .375rem) calc(.75em + .375rem)}.custom-select.is-invalid:focus,.was-validated .custom-select:invalid:focus{border-color:#dc3545;box-shadow:0 0 0 .2rem rgba(220,53,69,.25)}.form-check-input.is-invalid~.form-check-label,.was-validated .form-check-input:invalid~.form-check-label{color:#dc3545}.form-check-input.is-invalid~.invalid-feedback,.form-check-input.is-invalid~.invalid-tooltip,.was-validated .form-check-input:invalid~.invalid-feedback,.was-validated .form-check-input:invalid~.invalid-tooltip{display:block}.custom-control-input.is-invalid~.custom-control-label,.was-validated .custom-control-input:invalid~.custom-control-label{color:#dc3545}.custom-control-input.is-invalid~.custom-control-label:before,.was-validated .custom-control-input:invalid~.custom-control-label:before{border-color:#dc3545}.custom-control-input.is-invalid:checked~.custom-control-label:before,.was-validated .custom-control-input:invalid:checked~.custom-control-label:before{border-color:#e4606d;background-color:#e4606d}.custom-control-input.is-invalid:focus~.custom-control-label:before,.was-validated .custom-control-input:invalid:focus~.custom-control-label:before{box-shadow:0 0 0 .2rem rgba(220,53,69,.25)}.custom-control-input.is-invalid:focus:not(:checked)~.custom-control-label:before,.custom-file-input.is-invalid~.custom-file-label,.was-validated .custom-control-input:invalid:focus:not(:checked)~.custom-control-label:before,.was-validated .custom-file-input:invalid~.custom-file-label{border-color:#dc3545}.custom-file-input.is-invalid:focus~.custom-file-label,.was-validated .custom-file-input:invalid:focus~.custom-file-label{border-color:#dc3545;box-shadow:0 0 0 .2rem rgba(220,53,69,.25)}.form-inline{display:flex;flex-flow:row wrap;align-items:center}.form-inline .form-check{width:100%}@media (min-width:540px){.form-inline label{justify-content:center}.form-inline .form-group,.form-inline label{display:flex;align-items:center;margin-bottom:0}.form-inline .form-group{flex:0 0 auto;flex-flow:row wrap}.form-inline .form-control{display:inline-block;width:auto;vertical-align:middle}.form-inline .form-control-plaintext{display:inline-block}.form-inline .custom-select,.form-inline .input-group{width:auto}.form-inline .form-check{display:flex;align-items:center;justify-content:center;width:auto;padding-left:0}.form-inline .form-check-input{position:relative;flex-shrink:0;margin-top:0;margin-right:.25rem;margin-left:0}.form-inline .custom-control{align-items:center;justify-content:center}.form-inline .custom-control-label{margin-bottom:0}}.btn{display:inline-block;font-weight:400;color:#212529;text-align:center;vertical-align:middle;user-select:none;background-color:transparent;border:1px solid transparent;padding:.375rem .75rem;font-size:1rem;line-height:1.5;border-radius:.25rem;transition:color .15s ease-in-out,background-color .15s ease-in-out,border-color .15s ease-in-out,box-shadow .15s ease-in-out}@media (prefers-reduced-motion:reduce){.btn{transition:none}}.btn:hover{color:#212529;text-decoration:none}.btn.focus,.btn:focus{outline:0;box-shadow:0 0 0 .2rem rgba(0,123,255,.25)}.btn.disabled,.btn:disabled{opacity:.65}.btn:not(:disabled):not(.disabled){cursor:pointer}a.btn.disabled,fieldset:disabled a.btn{pointer-events:none}.btn-primary{color:#fff;background-color:#007bff;border-color:#007bff}.btn-primary.focus,.btn-primary:focus,.btn-primary:hover{color:#fff;background-color:#0069d9;border-color:#0062cc}.btn-primary.focus,.btn-primary:focus{box-shadow:0 0 0 .2rem rgba(38,143,255,.5)}.btn-primary.disabled,.btn-primary:disabled{color:#fff;background-color:#007bff;border-color:#007bff}.btn-primary:not(:disabled):not(.disabled).active,.btn-primary:not(:disabled):not(.disabled):active,.show>.btn-primary.dropdown-toggle{color:#fff;background-color:#0062cc;border-color:#005cbf}.btn-primary:not(:disabled):not(.disabled).active:focus,.btn-primary:not(:disabled):not(.disabled):active:focus,.show>.btn-primary.dropdown-toggle:focus{box-shadow:0 0 0 .2rem rgba(38,143,255,.5)}.btn-secondary{color:#fff;background-color:#6c757d;border-color:#6c757d}.btn-secondary.focus,.btn-secondary:focus,.btn-secondary:hover{color:#fff;background-color:#5a6268;border-color:#545b62}.btn-secondary.focus,.btn-secondary:focus{box-shadow:0 0 0 .2rem rgba(130,138,145,.5)}.btn-secondary.disabled,.btn-secondary:disabled{color:#fff;background-color:#6c757d;border-color:#6c757d}.btn-secondary:not(:disabled):not(.disabled).active,.btn-secondary:not(:disabled):not(.disabled):active,.show>.btn-secondary.dropdown-toggle{color:#fff;background-color:#545b62;border-color:#4e555b}.btn-secondary:not(:disabled):not(.disabled).active:focus,.btn-secondary:not(:disabled):not(.disabled):active:focus,.show>.btn-secondary.dropdown-toggle:focus{box-shadow:0 0 0 .2rem rgba(130,138,145,.5)}.btn-success{color:#fff;background-color:#28a745;border-color:#28a745}.btn-success.focus,.btn-success:focus,.btn-success:hover{color:#fff;background-color:#218838;border-color:#1e7e34}.btn-success.focus,.btn-success:focus{box-shadow:0 0 0 .2rem rgba(72,180,97,.5)}.btn-success.disabled,.btn-success:disabled{color:#fff;background-color:#28a745;border-color:#28a745}.btn-success:not(:disabled):not(.disabled).active,.btn-success:not(:disabled):not(.disabled):active,.show>.btn-success.dropdown-toggle{color:#fff;background-color:#1e7e34;border-color:#1c7430}.btn-success:not(:disabled):not(.disabled).active:focus,.btn-success:not(:disabled):not(.disabled):active:focus,.show>.btn-success.dropdown-toggle:focus{box-shadow:0 0 0 .2rem rgba(72,180,97,.5)}.btn-info{color:#fff;background-color:#17a2b8;border-color:#17a2b8}.btn-info.focus,.btn-info:focus,.btn-info:hover{color:#fff;background-color:#138496;border-color:#117a8b}.btn-info.focus,.btn-info:focus{box-shadow:0 0 0 .2rem rgba(58,176,195,.5)}.btn-info.disabled,.btn-info:disabled{color:#fff;background-color:#17a2b8;border-color:#17a2b8}.btn-info:not(:disabled):not(.disabled).active,.btn-info:not(:disabled):not(.disabled):active,.show>.btn-info.dropdown-toggle{color:#fff;background-color:#117a8b;border-color:#10707f}.btn-info:not(:disabled):not(.disabled).active:focus,.btn-info:not(:disabled):not(.disabled):active:focus,.show>.btn-info.dropdown-toggle:focus{box-shadow:0 0 0 .2rem rgba(58,176,195,.5)}.btn-warning{color:#212529;background-color:#ffc107;border-color:#ffc107}.btn-warning.focus,.btn-warning:focus,.btn-warning:hover{color:#212529;background-color:#e0a800;border-color:#d39e00}.btn-warning.focus,.btn-warning:focus{box-shadow:0 0 0 .2rem rgba(222,170,12,.5)}.btn-warning.disabled,.btn-warning:disabled{color:#212529;background-color:#ffc107;border-color:#ffc107}.btn-warning:not(:disabled):not(.disabled).active,.btn-warning:not(:disabled):not(.disabled):active,.show>.btn-warning.dropdown-toggle{color:#212529;background-color:#d39e00;border-color:#c69500}.btn-warning:not(:disabled):not(.disabled).active:focus,.btn-warning:not(:disabled):not(.disabled):active:focus,.show>.btn-warning.dropdown-toggle:focus{box-shadow:0 0 0 .2rem rgba(222,170,12,.5)}.btn-danger{color:#fff;background-color:#dc3545;border-color:#dc3545}.btn-danger.focus,.btn-danger:focus,.btn-danger:hover{color:#fff;background-color:#c82333;border-color:#bd2130}.btn-danger.focus,.btn-danger:focus{box-shadow:0 0 0 .2rem rgba(225,83,97,.5)}.btn-danger.disabled,.btn-danger:disabled{color:#fff;background-color:#dc3545;border-color:#dc3545}.btn-danger:not(:disabled):not(.disabled).active,.btn-danger:not(:disabled):not(.disabled):active,.show>.btn-danger.dropdown-toggle{color:#fff;background-color:#bd2130;border-color:#b21f2d}.btn-danger:not(:disabled):not(.disabled).active:focus,.btn-danger:not(:disabled):not(.disabled):active:focus,.show>.btn-danger.dropdown-toggle:focus{box-shadow:0 0 0 .2rem rgba(225,83,97,.5)}.btn-light{color:#212529;background-color:#f8f9fa;border-color:#f8f9fa}.btn-light.focus,.btn-light:focus,.btn-light:hover{color:#212529;background-color:#e2e6ea;border-color:#dae0e5}.btn-light.focus,.btn-light:focus{box-shadow:0 0 0 .2rem rgba(216,217,219,.5)}.btn-light.disabled,.btn-light:disabled{color:#212529;background-color:#f8f9fa;border-color:#f8f9fa}.btn-light:not(:disabled):not(.disabled).active,.btn-light:not(:disabled):not(.disabled):active,.show>.btn-light.dropdown-toggle{color:#212529;background-color:#dae0e5;border-color:#d3d9df}.btn-light:not(:disabled):not(.disabled).active:focus,.btn-light:not(:disabled):not(.disabled):active:focus,.show>.btn-light.dropdown-toggle:focus{box-shadow:0 0 0 .2rem rgba(216,217,219,.5)}.btn-dark{color:#fff;background-color:#343a40;border-color:#343a40}.btn-dark.focus,.btn-dark:focus,.btn-dark:hover{color:#fff;background-color:#23272b;border-color:#1d2124}.btn-dark.focus,.btn-dark:focus{box-shadow:0 0 0 .2rem rgba(82,88,93,.5)}.btn-dark.disabled,.btn-dark:disabled{color:#fff;background-color:#343a40;border-color:#343a40}.btn-dark:not(:disabled):not(.disabled).active,.btn-dark:not(:disabled):not(.disabled):active,.show>.btn-dark.dropdown-toggle{color:#fff;background-color:#1d2124;border-color:#171a1d}.btn-dark:not(:disabled):not(.disabled).active:focus,.btn-dark:not(:disabled):not(.disabled):active:focus,.show>.btn-dark.dropdown-toggle:focus{box-shadow:0 0 0 .2rem rgba(82,88,93,.5)}.btn-outline-primary{color:#007bff;border-color:#007bff}.btn-outline-primary:hover{color:#fff;background-color:#007bff;border-color:#007bff}.btn-outline-primary.focus,.btn-outline-primary:focus{box-shadow:0 0 0 .2rem rgba(0,123,255,.5)}.btn-outline-primary.disabled,.btn-outline-primary:disabled{color:#007bff;background-color:transparent}.btn-outline-primary:not(:disabled):not(.disabled).active,.btn-outline-primary:not(:disabled):not(.disabled):active,.show>.btn-outline-primary.dropdown-toggle{color:#fff;background-color:#007bff;border-color:#007bff}.btn-outline-primary:not(:disabled):not(.disabled).active:focus,.btn-outline-primary:not(:disabled):not(.disabled):active:focus,.show>.btn-outline-primary.dropdown-toggle:focus{box-shadow:0 0 0 .2rem rgba(0,123,255,.5)}.btn-outline-secondary{color:#6c757d;border-color:#6c757d}.btn-outline-secondary:hover{color:#fff;background-color:#6c757d;border-color:#6c757d}.btn-outline-secondary.focus,.btn-outline-secondary:focus{box-shadow:0 0 0 .2rem rgba(108,117,125,.5)}.btn-outline-secondary.disabled,.btn-outline-secondary:disabled{color:#6c757d;background-color:transparent}.btn-outline-secondary:not(:disabled):not(.disabled).active,.btn-outline-secondary:not(:disabled):not(.disabled):active,.show>.btn-outline-secondary.dropdown-toggle{color:#fff;background-color:#6c757d;border-color:#6c757d}.btn-outline-secondary:not(:disabled):not(.disabled).active:focus,.btn-outline-secondary:not(:disabled):not(.disabled):active:focus,.show>.btn-outline-secondary.dropdown-toggle:focus{box-shadow:0 0 0 .2rem rgba(108,117,125,.5)}.btn-outline-success{color:#28a745;border-color:#28a745}.btn-outline-success:hover{color:#fff;background-color:#28a745;border-color:#28a745}.btn-outline-success.focus,.btn-outline-success:focus{box-shadow:0 0 0 .2rem rgba(40,167,69,.5)}.btn-outline-success.disabled,.btn-outline-success:disabled{color:#28a745;background-color:transparent}.btn-outline-success:not(:disabled):not(.disabled).active,.btn-outline-success:not(:disabled):not(.disabled):active,.show>.btn-outline-success.dropdown-toggle{color:#fff;background-color:#28a745;border-color:#28a745}.btn-outline-success:not(:disabled):not(.disabled).active:focus,.btn-outline-success:not(:disabled):not(.disabled):active:focus,.show>.btn-outline-success.dropdown-toggle:focus{box-shadow:0 0 0 .2rem rgba(40,167,69,.5)}.btn-outline-info{color:#17a2b8;border-color:#17a2b8}.btn-outline-info:hover{color:#fff;background-color:#17a2b8;border-color:#17a2b8}.btn-outline-info.focus,.btn-outline-info:focus{box-shadow:0 0 0 .2rem rgba(23,162,184,.5)}.btn-outline-info.disabled,.btn-outline-info:disabled{color:#17a2b8;background-color:transparent}.btn-outline-info:not(:disabled):not(.disabled).active,.btn-outline-info:not(:disabled):not(.disabled):active,.show>.btn-outline-info.dropdown-toggle{color:#fff;background-color:#17a2b8;border-color:#17a2b8}.btn-outline-info:not(:disabled):not(.disabled).active:focus,.btn-outline-info:not(:disabled):not(.disabled):active:focus,.show>.btn-outline-info.dropdown-toggle:focus{box-shadow:0 0 0 .2rem rgba(23,162,184,.5)}.btn-outline-warning{color:#ffc107;border-color:#ffc107}.btn-outline-warning:hover{color:#212529;background-color:#ffc107;border-color:#ffc107}.btn-outline-warning.focus,.btn-outline-warning:focus{box-shadow:0 0 0 .2rem rgba(255,193,7,.5)}.btn-outline-warning.disabled,.btn-outline-warning:disabled{color:#ffc107;background-color:transparent}.btn-outline-warning:not(:disabled):not(.disabled).active,.btn-outline-warning:not(:disabled):not(.disabled):active,.show>.btn-outline-warning.dropdown-toggle{color:#212529;background-color:#ffc107;border-color:#ffc107}.btn-outline-warning:not(:disabled):not(.disabled).active:focus,.btn-outline-warning:not(:disabled):not(.disabled):active:focus,.show>.btn-outline-warning.dropdown-toggle:focus{box-shadow:0 0 0 .2rem rgba(255,193,7,.5)}.btn-outline-danger{color:#dc3545;border-color:#dc3545}.btn-outline-danger:hover{color:#fff;background-color:#dc3545;border-color:#dc3545}.btn-outline-danger.focus,.btn-outline-danger:focus{box-shadow:0 0 0 .2rem rgba(220,53,69,.5)}.btn-outline-danger.disabled,.btn-outline-danger:disabled{color:#dc3545;background-color:transparent}.btn-outline-danger:not(:disabled):not(.disabled).active,.btn-outline-danger:not(:disabled):not(.disabled):active,.show>.btn-outline-danger.dropdown-toggle{color:#fff;background-color:#dc3545;border-color:#dc3545}.btn-outline-danger:not(:disabled):not(.disabled).active:focus,.btn-outline-danger:not(:disabled):not(.disabled):active:focus,.show>.btn-outline-danger.dropdown-toggle:focus{box-shadow:0 0 0 .2rem rgba(220,53,69,.5)}.btn-outline-light{color:#f8f9fa;border-color:#f8f9fa}.btn-outline-light:hover{color:#212529;background-color:#f8f9fa;border-color:#f8f9fa}.btn-outline-light.focus,.btn-outline-light:focus{box-shadow:0 0 0 .2rem rgba(248,249,250,.5)}.btn-outline-light.disabled,.btn-outline-light:disabled{color:#f8f9fa;background-color:transparent}.btn-outline-light:not(:disabled):not(.disabled).active,.btn-outline-light:not(:disabled):not(.disabled):active,.show>.btn-outline-light.dropdown-toggle{color:#212529;background-color:#f8f9fa;border-color:#f8f9fa}.btn-outline-light:not(:disabled):not(.disabled).active:focus,.btn-outline-light:not(:disabled):not(.disabled):active:focus,.show>.btn-outline-light.dropdown-toggle:focus{box-shadow:0 0 0 .2rem rgba(248,249,250,.5)}.btn-outline-dark{color:#343a40;border-color:#343a40}.btn-outline-dark:hover{color:#fff;background-color:#343a40;border-color:#343a40}.btn-outline-dark.focus,.btn-outline-dark:focus{box-shadow:0 0 0 .2rem rgba(52,58,64,.5)}.btn-outline-dark.disabled,.btn-outline-dark:disabled{color:#343a40;background-color:transparent}.btn-outline-dark:not(:disabled):not(.disabled).active,.btn-outline-dark:not(:disabled):not(.disabled):active,.show>.btn-outline-dark.dropdown-toggle{color:#fff;background-color:#343a40;border-color:#343a40}.btn-outline-dark:not(:disabled):not(.disabled).active:focus,.btn-outline-dark:not(:disabled):not(.disabled):active:focus,.show>.btn-outline-dark.dropdown-toggle:focus{box-shadow:0 0 0 .2rem rgba(52,58,64,.5)}.btn-link{font-weight:400;color:#007bff;text-decoration:none}.btn-link:hover{color:#0056b3}.btn-link.focus,.btn-link:focus,.btn-link:hover{text-decoration:underline}.btn-link.disabled,.btn-link:disabled{color:#6c757d;pointer-events:none}.btn-group-lg>.btn,.btn-lg{padding:.5rem 1rem;font-size:1.25rem;line-height:1.5;border-radius:.3rem}.btn-group-sm>.btn,.btn-sm{padding:.25rem .5rem;font-size:.875rem;line-height:1.5;border-radius:.2rem}.btn-block{display:block;width:100%}.btn-block+.btn-block{margin-top:.5rem}input[type=button].btn-block,input[type=reset].btn-block,input[type=submit].btn-block{width:100%}.fade{transition:opacity .15s linear}@media (prefers-reduced-motion:reduce){.fade{transition:none}}.fade:not(.show){opacity:0}.collapse:not(.show){display:none}.collapsing{position:relative;height:0;overflow:hidden;transition:height .35s ease}@media (prefers-reduced-motion:reduce){.collapsing{transition:none}}.dropdown,.dropleft,.dropright,.dropup{position:relative}.dropdown-toggle{white-space:nowrap}.dropdown-toggle:after{display:inline-block;margin-left:.255em;vertical-align:.255em;content:"";border-top:.3em solid;border-right:.3em solid transparent;border-bottom:0;border-left:.3em solid transparent}.dropdown-toggle:empty:after{margin-left:0}.dropdown-menu{position:absolute;top:100%;left:0;z-index:1000;display:none;float:left;min-width:10rem;padding:.5rem 0;margin:.125rem 0 0;font-size:1rem;color:#212529;text-align:left;list-style:none;background-color:#fff;background-clip:padding-box;border:1px solid rgba(0,0,0,.15);border-radius:.25rem}.dropdown-menu-left{right:auto;left:0}.dropdown-menu-right{right:0;left:auto}@media (min-width:540px){.dropdown-menu-sm-left{right:auto;left:0}.dropdown-menu-sm-right{right:0;left:auto}}@media (min-width:720px){.dropdown-menu-md-left{right:auto;left:0}.dropdown-menu-md-right{right:0;left:auto}}@media (min-width:960px){.dropdown-menu-lg-left{right:auto;left:0}.dropdown-menu-lg-right{right:0;left:auto}}@media (min-width:1200px){.dropdown-menu-xl-left{right:auto;left:0}.dropdown-menu-xl-right{right:0;left:auto}}.dropup .dropdown-menu{top:auto;bottom:100%;margin-top:0;margin-bottom:.125rem}.dropup .dropdown-toggle:after{display:inline-block;margin-left:.255em;vertical-align:.255em;content:"";border-top:0;border-right:.3em solid transparent;border-bottom:.3em solid;border-left:.3em solid transparent}.dropup .dropdown-toggle:empty:after{margin-left:0}.dropright .dropdown-menu{top:0;right:auto;left:100%;margin-top:0;margin-left:.125rem}.dropright .dropdown-toggle:after{display:inline-block;margin-left:.255em;vertical-align:.255em;content:"";border-top:.3em solid transparent;border-right:0;border-bottom:.3em solid transparent;border-left:.3em solid}.dropright .dropdown-toggle:empty:after{margin-left:0}.dropright .dropdown-toggle:after{vertical-align:0}.dropleft .dropdown-menu{top:0;right:100%;left:auto;margin-top:0;margin-right:.125rem}.dropleft .dropdown-toggle:after{display:inline-block;margin-left:.255em;vertical-align:.255em;content:"";display:none}.dropleft .dropdown-toggle:before{display:inline-block;margin-right:.255em;vertical-align:.255em;content:"";border-top:.3em solid transparent;border-right:.3em solid;border-bottom:.3em solid transparent}.dropleft .dropdown-toggle:empty:after{margin-left:0}.dropleft .dropdown-toggle:before{vertical-align:0}.dropdown-menu[x-placement^=bottom],.dropdown-menu[x-placement^=left],.dropdown-menu[x-placement^=right],.dropdown-menu[x-placement^=top]{right:auto;bottom:auto}.dropdown-divider{height:0;margin:.5rem 0;overflow:hidden;border-top:1px solid #e9ecef}.dropdown-item{display:block;width:100%;padding:.25rem 1.5rem;clear:both;font-weight:400;color:#212529;text-align:inherit;white-space:nowrap;background-color:transparent;border:0}.dropdown-item:focus,.dropdown-item:hover{color:#16181b;text-decoration:none;background-color:#f8f9fa}.dropdown-item.active,.dropdown-item:active{color:#fff;text-decoration:none;background-color:#007bff}.dropdown-item.disabled,.dropdown-item:disabled{color:#6c757d;pointer-events:none;background-color:transparent}.dropdown-menu.show{display:block}.dropdown-header{display:block;padding:.5rem 1.5rem;margin-bottom:0;font-size:.875rem;color:#6c757d;white-space:nowrap}.dropdown-item-text{display:block;padding:.25rem 1.5rem;color:#212529}.btn-group,.btn-group-vertical{position:relative;display:inline-flex;vertical-align:middle}.btn-group-vertical>.btn,.btn-group>.btn{position:relative;flex:1 1 auto}.btn-group-vertical>.btn.active,.btn-group-vertical>.btn:active,.btn-group-vertical>.btn:focus,.btn-group-vertical>.btn:hover,.btn-group>.btn.active,.btn-group>.btn:active,.btn-group>.btn:focus,.btn-group>.btn:hover{z-index:1}.btn-toolbar{display:flex;flex-wrap:wrap;justify-content:flex-start}.btn-toolbar .input-group{width:auto}.btn-group>.btn-group:not(:first-child),.btn-group>.btn:not(:first-child){margin-left:-1px}.btn-group>.btn-group:not(:last-child)>.btn,.btn-group>.btn:not(:last-child):not(.dropdown-toggle){border-top-right-radius:0;border-bottom-right-radius:0}.btn-group>.btn-group:not(:first-child)>.btn,.btn-group>.btn:not(:first-child){border-top-left-radius:0;border-bottom-left-radius:0}.dropdown-toggle-split{padding-right:.5625rem;padding-left:.5625rem}.dropdown-toggle-split:after,.dropright .dropdown-toggle-split:after,.dropup .dropdown-toggle-split:after{margin-left:0}.dropleft .dropdown-toggle-split:before{margin-right:0}.btn-group-sm>.btn+.dropdown-toggle-split,.btn-sm+.dropdown-toggle-split{padding-right:.375rem;padding-left:.375rem}.btn-group-lg>.btn+.dropdown-toggle-split,.btn-lg+.dropdown-toggle-split{padding-right:.75rem;padding-left:.75rem}.btn-group-vertical{flex-direction:column;align-items:flex-start;justify-content:center}.btn-group-vertical>.btn,.btn-group-vertical>.btn-group{width:100%}.btn-group-vertical>.btn-group:not(:first-child),.btn-group-vertical>.btn:not(:first-child){margin-top:-1px}.btn-group-vertical>.btn-group:not(:last-child)>.btn,.btn-group-vertical>.btn:not(:last-child):not(.dropdown-toggle){border-bottom-right-radius:0;border-bottom-left-radius:0}.btn-group-vertical>.btn-group:not(:first-child)>.btn,.btn-group-vertical>.btn:not(:first-child){border-top-left-radius:0;border-top-right-radius:0}.btn-group-toggle>.btn,.btn-group-toggle>.btn-group>.btn{margin-bottom:0}.btn-group-toggle>.btn-group>.btn input[type=checkbox],.btn-group-toggle>.btn-group>.btn input[type=radio],.btn-group-toggle>.btn input[type=checkbox],.btn-group-toggle>.btn input[type=radio]{position:absolute;clip:rect(0,0,0,0);pointer-events:none}.input-group{position:relative;display:flex;flex-wrap:wrap;align-items:stretch;width:100%}.input-group>.custom-file,.input-group>.custom-select,.input-group>.form-control,.input-group>.form-control-plaintext{position:relative;flex:1 1 auto;width:1%;min-width:0;margin-bottom:0}.input-group>.custom-file+.custom-file,.input-group>.custom-file+.custom-select,.input-group>.custom-file+.form-control,.input-group>.custom-select+.custom-file,.input-group>.custom-select+.custom-select,.input-group>.custom-select+.form-control,.input-group>.form-control+.custom-file,.input-group>.form-control+.custom-select,.input-group>.form-control+.form-control,.input-group>.form-control-plaintext+.custom-file,.input-group>.form-control-plaintext+.custom-select,.input-group>.form-control-plaintext+.form-control{margin-left:-1px}.input-group>.custom-file .custom-file-input:focus~.custom-file-label,.input-group>.custom-select:focus,.input-group>.form-control:focus{z-index:3}.input-group>.custom-file .custom-file-input:focus{z-index:4}.input-group>.custom-select:not(:last-child),.input-group>.form-control:not(:last-child){border-top-right-radius:0;border-bottom-right-radius:0}.input-group>.custom-select:not(:first-child),.input-group>.form-control:not(:first-child){border-top-left-radius:0;border-bottom-left-radius:0}.input-group>.custom-file{display:flex;align-items:center}.input-group>.custom-file:not(:last-child) .custom-file-label,.input-group>.custom-file:not(:last-child) .custom-file-label:after{border-top-right-radius:0;border-bottom-right-radius:0}.input-group>.custom-file:not(:first-child) .custom-file-label{border-top-left-radius:0;border-bottom-left-radius:0}.input-group-append,.input-group-prepend{display:flex}.input-group-append .btn,.input-group-prepend .btn{position:relative;z-index:2}.input-group-append .btn:focus,.input-group-prepend .btn:focus{z-index:3}.input-group-append .btn+.btn,.input-group-append .btn+.input-group-text,.input-group-append .input-group-text+.btn,.input-group-append .input-group-text+.input-group-text,.input-group-prepend .btn+.btn,.input-group-prepend .btn+.input-group-text,.input-group-prepend .input-group-text+.btn,.input-group-prepend .input-group-text+.input-group-text{margin-left:-1px}.input-group-prepend{margin-right:-1px}.input-group-append{margin-left:-1px}.input-group-text{display:flex;align-items:center;padding:.375rem .75rem;margin-bottom:0;font-size:1rem;font-weight:400;line-height:1.5;color:#495057;text-align:center;white-space:nowrap;background-color:#e9ecef;border:1px solid #ced4da;border-radius:.25rem}.input-group-text input[type=checkbox],.input-group-text input[type=radio]{margin-top:0}.input-group-lg>.custom-select,.input-group-lg>.form-control:not(textarea){height:calc(1.5em + 1rem + 2px)}.input-group-lg>.custom-select,.input-group-lg>.form-control,.input-group-lg>.input-group-append>.btn,.input-group-lg>.input-group-append>.input-group-text,.input-group-lg>.input-group-prepend>.btn,.input-group-lg>.input-group-prepend>.input-group-text{padding:.5rem 1rem;font-size:1.25rem;line-height:1.5;border-radius:.3rem}.input-group-sm>.custom-select,.input-group-sm>.form-control:not(textarea){height:calc(1.5em + .5rem + 2px)}.input-group-sm>.custom-select,.input-group-sm>.form-control,.input-group-sm>.input-group-append>.btn,.input-group-sm>.input-group-append>.input-group-text,.input-group-sm>.input-group-prepend>.btn,.input-group-sm>.input-group-prepend>.input-group-text{padding:.25rem .5rem;font-size:.875rem;line-height:1.5;border-radius:.2rem}.input-group-lg>.custom-select,.input-group-sm>.custom-select{padding-right:1.75rem}.input-group>.input-group-append:last-child>.btn:not(:last-child):not(.dropdown-toggle),.input-group>.input-group-append:last-child>.input-group-text:not(:last-child),.input-group>.input-group-append:not(:last-child)>.btn,.input-group>.input-group-append:not(:last-child)>.input-group-text,.input-group>.input-group-prepend>.btn,.input-group>.input-group-prepend>.input-group-text{border-top-right-radius:0;border-bottom-right-radius:0}.input-group>.input-group-append>.btn,.input-group>.input-group-append>.input-group-text,.input-group>.input-group-prepend:first-child>.btn:not(:first-child),.input-group>.input-group-prepend:first-child>.input-group-text:not(:first-child),.input-group>.input-group-prepend:not(:first-child)>.btn,.input-group>.input-group-prepend:not(:first-child)>.input-group-text{border-top-left-radius:0;border-bottom-left-radius:0}.custom-control{position:relative;display:block;min-height:1.5rem;padding-left:1.5rem}.custom-control-inline{display:inline-flex;margin-right:1rem}.custom-control-input{position:absolute;left:0;z-index:-1;width:1rem;height:1.25rem;opacity:0}.custom-control-input:checked~.custom-control-label:before{color:#fff;border-color:#007bff;background-color:#007bff}.custom-control-input:focus~.custom-control-label:before{box-shadow:0 0 0 .2rem rgba(0,123,255,.25)}.custom-control-input:focus:not(:checked)~.custom-control-label:before{border-color:#80bdff}.custom-control-input:not(:disabled):active~.custom-control-label:before{color:#fff;background-color:#b3d7ff;border-color:#b3d7ff}.custom-control-input:disabled~.custom-control-label,.custom-control-input[disabled]~.custom-control-label{color:#6c757d}.custom-control-input:disabled~.custom-control-label:before,.custom-control-input[disabled]~.custom-control-label:before{background-color:#e9ecef}.custom-control-label{position:relative;margin-bottom:0;vertical-align:top}.custom-control-label:before{pointer-events:none;background-color:#fff;border:1px solid #adb5bd}.custom-control-label:after,.custom-control-label:before{position:absolute;top:.25rem;left:-1.5rem;display:block;width:1rem;height:1rem;content:""}.custom-control-label:after{background:no-repeat 50%/50% 50%}.custom-checkbox .custom-control-label:before{border-radius:.25rem}.custom-checkbox .custom-control-input:checked~.custom-control-label:after{background-image:url("data:image/svg+xml;charset=utf-8,%3Csvg xmlns='http://www.w3.org/2000/svg' width='8' height='8'%3E%3Cpath fill='%23fff' d='M6.564.75l-3.59 3.612-1.538-1.55L0 4.26l2.974 2.99L8 2.193z'/%3E%3C/svg%3E")}.custom-checkbox .custom-control-input:indeterminate~.custom-control-label:before{border-color:#007bff;background-color:#007bff}.custom-checkbox .custom-control-input:indeterminate~.custom-control-label:after{background-image:url("data:image/svg+xml;charset=utf-8,%3Csvg xmlns='http://www.w3.org/2000/svg' width='4' height='4'%3E%3Cpath stroke='%23fff' d='M0 2h4'/%3E%3C/svg%3E")}.custom-checkbox .custom-control-input:disabled:checked~.custom-control-label:before{background-color:rgba(0,123,255,.5)}.custom-checkbox .custom-control-input:disabled:indeterminate~.custom-control-label:before{background-color:rgba(0,123,255,.5)}.custom-radio .custom-control-label:before{border-radius:50%}.custom-radio .custom-control-input:checked~.custom-control-label:after{background-image:url("data:image/svg+xml;charset=utf-8,%3Csvg xmlns='http://www.w3.org/2000/svg' width='12' height='12' viewBox='-4 -4 8 8'%3E%3Ccircle r='3' fill='%23fff'/%3E%3C/svg%3E")}.custom-radio .custom-control-input:disabled:checked~.custom-control-label:before{background-color:rgba(0,123,255,.5)}.custom-switch{padding-left:2.25rem}.custom-switch .custom-control-label:before{left:-2.25rem;width:1.75rem;pointer-events:all;border-radius:.5rem}.custom-switch .custom-control-label:after{top:calc(.25rem + 2px);left:calc(-2.25rem + 2px);width:calc(1rem - 4px);height:calc(1rem - 4px);background-color:#adb5bd;border-radius:.5rem;transition:transform .15s ease-in-out,background-color .15s ease-in-out,border-color .15s ease-in-out,box-shadow .15s ease-in-out}@media (prefers-reduced-motion:reduce){.custom-switch .custom-control-label:after{transition:none}}.custom-switch .custom-control-input:checked~.custom-control-label:after{background-color:#fff;transform:translateX(.75rem)}.custom-switch .custom-control-input:disabled:checked~.custom-control-label:before{background-color:rgba(0,123,255,.5)}.custom-select{display:inline-block;width:100%;height:calc(1.5em + .75rem + 2px);padding:.375rem 1.75rem .375rem .75rem;font-size:1rem;font-weight:400;line-height:1.5;color:#495057;vertical-align:middle;background:#fff url("data:image/svg+xml;charset=utf-8,%3Csvg xmlns='http://www.w3.org/2000/svg' width='4' height='5'%3E%3Cpath fill='%23343a40' d='M2 0L0 2h4zm0 5L0 3h4z'/%3E%3C/svg%3E") no-repeat right .75rem center/8px 10px;border:1px solid #ced4da;border-radius:.25rem;appearance:none}.custom-select:focus{border-color:#80bdff;outline:0;box-shadow:0 0 0 .2rem rgba(0,123,255,.25)}.custom-select:focus::-ms-value{color:#495057;background-color:#fff}.custom-select[multiple],.custom-select[size]:not([size="1"]){height:auto;padding-right:.75rem;background-image:none}.custom-select:disabled{color:#6c757d;background-color:#e9ecef}.custom-select::-ms-expand{display:none}.custom-select:-moz-focusring{color:transparent;text-shadow:0 0 0 #495057}.custom-select-sm{height:calc(1.5em + .5rem + 2px);padding-top:.25rem;padding-bottom:.25rem;padding-left:.5rem;font-size:.875rem}.custom-select-lg{height:calc(1.5em + 1rem + 2px);padding-top:.5rem;padding-bottom:.5rem;padding-left:1rem;font-size:1.25rem}.custom-file{display:inline-block;margin-bottom:0}.custom-file,.custom-file-input{position:relative;width:100%;height:calc(1.5em + .75rem + 2px)}.custom-file-input{z-index:2;margin:0;opacity:0}.custom-file-input:focus~.custom-file-label{border-color:#80bdff;box-shadow:0 0 0 .2rem rgba(0,123,255,.25)}.custom-file-input:disabled~.custom-file-label,.custom-file-input[disabled]~.custom-file-label{background-color:#e9ecef}.custom-file-input:lang(en)~.custom-file-label:after{content:"Browse"}.custom-file-input~.custom-file-label[data-browse]:after{content:attr(data-browse)}.custom-file-label{left:0;z-index:1;height:calc(1.5em + .75rem + 2px);font-weight:400;background-color:#fff;border:1px solid #ced4da;border-radius:.25rem}.custom-file-label,.custom-file-label:after{position:absolute;top:0;right:0;padding:.375rem .75rem;line-height:1.5;color:#495057}.custom-file-label:after{bottom:0;z-index:3;display:block;height:calc(1.5em + .75rem);content:"Browse";background-color:#e9ecef;border-left:inherit;border-radius:0 .25rem .25rem 0}.custom-range{width:100%;height:1.4rem;padding:0;background-color:transparent;appearance:none}.custom-range:focus{outline:none}.custom-range:focus::-webkit-slider-thumb{box-shadow:0 0 0 1px #fff,0 0 0 .2rem rgba(0,123,255,.25)}.custom-range:focus::-moz-range-thumb{box-shadow:0 0 0 1px #fff,0 0 0 .2rem rgba(0,123,255,.25)}.custom-range:focus::-ms-thumb{box-shadow:0 0 0 1px #fff,0 0 0 .2rem rgba(0,123,255,.25)}.custom-range::-moz-focus-outer{border:0}.custom-range::-webkit-slider-thumb{width:1rem;height:1rem;margin-top:-.25rem;background-color:#007bff;border:0;border-radius:1rem;transition:background-color .15s ease-in-out,border-color .15s ease-in-out,box-shadow .15s ease-in-out;appearance:none}@media (prefers-reduced-motion:reduce){.custom-range::-webkit-slider-thumb{transition:none}}.custom-range::-webkit-slider-thumb:active{background-color:#b3d7ff}.custom-range::-webkit-slider-runnable-track{width:100%;height:.5rem;color:transparent;cursor:pointer;background-color:#dee2e6;border-color:transparent;border-radius:1rem}.custom-range::-moz-range-thumb{width:1rem;height:1rem;background-color:#007bff;border:0;border-radius:1rem;transition:background-color .15s ease-in-out,border-color .15s ease-in-out,box-shadow .15s ease-in-out;appearance:none}@media (prefers-reduced-motion:reduce){.custom-range::-moz-range-thumb{transition:none}}.custom-range::-moz-range-thumb:active{background-color:#b3d7ff}.custom-range::-moz-range-track{width:100%;height:.5rem;color:transparent;cursor:pointer;background-color:#dee2e6;border-color:transparent;border-radius:1rem}.custom-range::-ms-thumb{width:1rem;height:1rem;margin-top:0;margin-right:.2rem;margin-left:.2rem;background-color:#007bff;border:0;border-radius:1rem;transition:background-color .15s ease-in-out,border-color .15s ease-in-out,box-shadow .15s ease-in-out;appearance:none}@media (prefers-reduced-motion:reduce){.custom-range::-ms-thumb{transition:none}}.custom-range::-ms-thumb:active{background-color:#b3d7ff}.custom-range::-ms-track{width:100%;height:.5rem;color:transparent;cursor:pointer;background-color:transparent;border-color:transparent;border-width:.5rem}.custom-range::-ms-fill-lower,.custom-range::-ms-fill-upper{background-color:#dee2e6;border-radius:1rem}.custom-range::-ms-fill-upper{margin-right:15px}.custom-range:disabled::-webkit-slider-thumb{background-color:#adb5bd}.custom-range:disabled::-webkit-slider-runnable-track{cursor:default}.custom-range:disabled::-moz-range-thumb{background-color:#adb5bd}.custom-range:disabled::-moz-range-track{cursor:default}.custom-range:disabled::-ms-thumb{background-color:#adb5bd}.custom-control-label:before,.custom-file-label,.custom-select{transition:background-color .15s ease-in-out,border-color .15s ease-in-out,box-shadow .15s ease-in-out}@media (prefers-reduced-motion:reduce){.custom-control-label:before,.custom-file-label,.custom-select{transition:none}}.nav{display:flex;flex-wrap:wrap;padding-left:0;margin-bottom:0;list-style:none}.nav-link{display:block;padding:.5rem 1rem}.nav-link:focus,.nav-link:hover{text-decoration:none}.nav-link.disabled{color:#6c757d;pointer-events:none;cursor:default}.nav-tabs{border-bottom:1px solid #dee2e6}.nav-tabs .nav-item{margin-bottom:-1px}.nav-tabs .nav-link{border:1px solid transparent;border-top-left-radius:.25rem;border-top-right-radius:.25rem}.nav-tabs .nav-link:focus,.nav-tabs .nav-link:hover{border-color:#e9ecef #e9ecef #dee2e6}.nav-tabs .nav-link.disabled{color:#6c757d;background-color:transparent;border-color:transparent}.nav-tabs .nav-item.show .nav-link,.nav-tabs .nav-link.active{color:#495057;background-color:#fff;border-color:#dee2e6 #dee2e6 #fff}.nav-tabs .dropdown-menu{margin-top:-1px;border-top-left-radius:0;border-top-right-radius:0}.nav-pills .nav-link{border-radius:.25rem}.nav-pills .nav-link.active,.nav-pills .show>.nav-link{color:#fff;background-color:#007bff}.nav-fill .nav-item{flex:1 1 auto;text-align:center}.nav-justified .nav-item{flex-basis:0;flex-grow:1;text-align:center}.tab-content>.tab-pane{display:none}.tab-content>.active{display:block}.navbar{position:relative;padding:.5rem 1rem}.navbar,.navbar .container,.navbar .container-fluid,.navbar .container-lg,.navbar .container-md,.navbar .container-sm,.navbar .container-xl{display:flex;flex-wrap:wrap;align-items:center;justify-content:space-between}.navbar-brand{display:inline-block;padding-top:.3125rem;padding-bottom:.3125rem;margin-right:1rem;font-size:1.25rem;line-height:inherit;white-space:nowrap}.navbar-brand:focus,.navbar-brand:hover{text-decoration:none}.navbar-nav{display:flex;flex-direction:column;padding-left:0;margin-bottom:0;list-style:none}.navbar-nav .nav-link{padding-right:0;padding-left:0}.navbar-nav .dropdown-menu{position:static;float:none}.navbar-text{display:inline-block;padding-top:.5rem;padding-bottom:.5rem}.navbar-collapse{flex-basis:100%;flex-grow:1;align-items:center}.navbar-toggler{padding:.25rem .75rem;font-size:1.25rem;line-height:1;background-color:transparent;border:1px solid transparent;border-radius:.25rem}.navbar-toggler:focus,.navbar-toggler:hover{text-decoration:none}.navbar-toggler-icon{display:inline-block;width:1.5em;height:1.5em;vertical-align:middle;content:"";background:no-repeat 50%;background-size:100% 100%}@media (max-width:539.98px){.navbar-expand-sm>.container,.navbar-expand-sm>.container-fluid,.navbar-expand-sm>.container-lg,.navbar-expand-sm>.container-md,.navbar-expand-sm>.container-sm,.navbar-expand-sm>.container-xl{padding-right:0;padding-left:0}}@media (min-width:540px){.navbar-expand-sm{flex-flow:row nowrap;justify-content:flex-start}.navbar-expand-sm .navbar-nav{flex-direction:row}.navbar-expand-sm .navbar-nav .dropdown-menu{position:absolute}.navbar-expand-sm .navbar-nav .nav-link{padding-right:.5rem;padding-left:.5rem}.navbar-expand-sm>.container,.navbar-expand-sm>.container-fluid,.navbar-expand-sm>.container-lg,.navbar-expand-sm>.container-md,.navbar-expand-sm>.container-sm,.navbar-expand-sm>.container-xl{flex-wrap:nowrap}.navbar-expand-sm .navbar-collapse{display:flex!important;flex-basis:auto}.navbar-expand-sm .navbar-toggler{display:none}}@media (max-width:719.98px){.navbar-expand-md>.container,.navbar-expand-md>.container-fluid,.navbar-expand-md>.container-lg,.navbar-expand-md>.container-md,.navbar-expand-md>.container-sm,.navbar-expand-md>.container-xl{padding-right:0;padding-left:0}}@media (min-width:720px){.navbar-expand-md{flex-flow:row nowrap;justify-content:flex-start}.navbar-expand-md .navbar-nav{flex-direction:row}.navbar-expand-md .navbar-nav .dropdown-menu{position:absolute}.navbar-expand-md .navbar-nav .nav-link{padding-right:.5rem;padding-left:.5rem}.navbar-expand-md>.container,.navbar-expand-md>.container-fluid,.navbar-expand-md>.container-lg,.navbar-expand-md>.container-md,.navbar-expand-md>.container-sm,.navbar-expand-md>.container-xl{flex-wrap:nowrap}.navbar-expand-md .navbar-collapse{display:flex!important;flex-basis:auto}.navbar-expand-md .navbar-toggler{display:none}}@media (max-width:959.98px){.navbar-expand-lg>.container,.navbar-expand-lg>.container-fluid,.navbar-expand-lg>.container-lg,.navbar-expand-lg>.container-md,.navbar-expand-lg>.container-sm,.navbar-expand-lg>.container-xl{padding-right:0;padding-left:0}}@media (min-width:960px){.navbar-expand-lg{flex-flow:row nowrap;justify-content:flex-start}.navbar-expand-lg .navbar-nav{flex-direction:row}.navbar-expand-lg .navbar-nav .dropdown-menu{position:absolute}.navbar-expand-lg .navbar-nav .nav-link{padding-right:.5rem;padding-left:.5rem}.navbar-expand-lg>.container,.navbar-expand-lg>.container-fluid,.navbar-expand-lg>.container-lg,.navbar-expand-lg>.container-md,.navbar-expand-lg>.container-sm,.navbar-expand-lg>.container-xl{flex-wrap:nowrap}.navbar-expand-lg .navbar-collapse{display:flex!important;flex-basis:auto}.navbar-expand-lg .navbar-toggler{display:none}}@media (max-width:1199.98px){.navbar-expand-xl>.container,.navbar-expand-xl>.container-fluid,.navbar-expand-xl>.container-lg,.navbar-expand-xl>.container-md,.navbar-expand-xl>.container-sm,.navbar-expand-xl>.container-xl{padding-right:0;padding-left:0}}@media (min-width:1200px){.navbar-expand-xl{flex-flow:row nowrap;justify-content:flex-start}.navbar-expand-xl .navbar-nav{flex-direction:row}.navbar-expand-xl .navbar-nav .dropdown-menu{position:absolute}.navbar-expand-xl .navbar-nav .nav-link{padding-right:.5rem;padding-left:.5rem}.navbar-expand-xl>.container,.navbar-expand-xl>.container-fluid,.navbar-expand-xl>.container-lg,.navbar-expand-xl>.container-md,.navbar-expand-xl>.container-sm,.navbar-expand-xl>.container-xl{flex-wrap:nowrap}.navbar-expand-xl .navbar-collapse{display:flex!important;flex-basis:auto}.navbar-expand-xl .navbar-toggler{display:none}}.navbar-expand{flex-flow:row nowrap;justify-content:flex-start}.navbar-expand>.container,.navbar-expand>.container-fluid,.navbar-expand>.container-lg,.navbar-expand>.container-md,.navbar-expand>.container-sm,.navbar-expand>.container-xl{padding-right:0;padding-left:0}.navbar-expand .navbar-nav{flex-direction:row}.navbar-expand .navbar-nav .dropdown-menu{position:absolute}.navbar-expand .navbar-nav .nav-link{padding-right:.5rem;padding-left:.5rem}.navbar-expand>.container,.navbar-expand>.container-fluid,.navbar-expand>.container-lg,.navbar-expand>.container-md,.navbar-expand>.container-sm,.navbar-expand>.container-xl{flex-wrap:nowrap}.navbar-expand .navbar-collapse{display:flex!important;flex-basis:auto}.navbar-expand .navbar-toggler{display:none}.navbar-light .navbar-brand,.navbar-light .navbar-brand:focus,.navbar-light .navbar-brand:hover{color:rgba(0,0,0,.9)}.navbar-light .navbar-nav .nav-link{color:rgba(0,0,0,.5)}.navbar-light .navbar-nav .nav-link:focus,.navbar-light .navbar-nav .nav-link:hover{color:rgba(0,0,0,.7)}.navbar-light .navbar-nav .nav-link.disabled{color:rgba(0,0,0,.3)}.navbar-light .navbar-nav .active>.nav-link,.navbar-light .navbar-nav .nav-link.active,.navbar-light .navbar-nav .nav-link.show,.navbar-light .navbar-nav .show>.nav-link{color:rgba(0,0,0,.9)}.navbar-light .navbar-toggler{color:rgba(0,0,0,.5);border-color:rgba(0,0,0,.1)}.navbar-light .navbar-toggler-icon{background-image:url("data:image/svg+xml;charset=utf-8,%3Csvg xmlns='http://www.w3.org/2000/svg' width='30' height='30'%3E%3Cpath stroke='rgba(0,0,0,0.5)' stroke-linecap='round' stroke-miterlimit='10' stroke-width='2' d='M4 7h22M4 15h22M4 23h22'/%3E%3C/svg%3E")}.navbar-light .navbar-text{color:rgba(0,0,0,.5)}.navbar-light .navbar-text a,.navbar-light .navbar-text a:focus,.navbar-light .navbar-text a:hover{color:rgba(0,0,0,.9)}.navbar-dark .navbar-brand,.navbar-dark .navbar-brand:focus,.navbar-dark .navbar-brand:hover{color:#fff}.navbar-dark .navbar-nav .nav-link{color:hsla(0,0%,100%,.5)}.navbar-dark .navbar-nav .nav-link:focus,.navbar-dark .navbar-nav .nav-link:hover{color:hsla(0,0%,100%,.75)}.navbar-dark .navbar-nav .nav-link.disabled{color:hsla(0,0%,100%,.25)}.navbar-dark .navbar-nav .active>.nav-link,.navbar-dark .navbar-nav .nav-link.active,.navbar-dark .navbar-nav .nav-link.show,.navbar-dark .navbar-nav .show>.nav-link{color:#fff}.navbar-dark .navbar-toggler{color:hsla(0,0%,100%,.5);border-color:hsla(0,0%,100%,.1)}.navbar-dark .navbar-toggler-icon{background-image:url("data:image/svg+xml;charset=utf-8,%3Csvg xmlns='http://www.w3.org/2000/svg' width='30' height='30'%3E%3Cpath stroke='rgba(255,255,255,0.5)' stroke-linecap='round' stroke-miterlimit='10' stroke-width='2' d='M4 7h22M4 15h22M4 23h22'/%3E%3C/svg%3E")}.navbar-dark .navbar-text{color:hsla(0,0%,100%,.5)}.navbar-dark .navbar-text a,.navbar-dark .navbar-text a:focus,.navbar-dark .navbar-text a:hover{color:#fff}.card{position:relative;display:flex;flex-direction:column;min-width:0;word-wrap:break-word;background-color:#fff;background-clip:border-box;border:1px solid rgba(0,0,0,.125);border-radius:.25rem}.card>hr{margin-right:0;margin-left:0}.card>.list-group{border-top:inherit;border-bottom:inherit}.card>.list-group:first-child{border-top-width:0;border-top-left-radius:calc(.25rem - 1px);border-top-right-radius:calc(.25rem - 1px)}.card>.list-group:last-child{border-bottom-width:0;border-bottom-right-radius:calc(.25rem - 1px);border-bottom-left-radius:calc(.25rem - 1px)}.card-body{flex:1 1 auto;min-height:1px;padding:1.25rem}.card-title{margin-bottom:.75rem}.card-subtitle{margin-top:-.375rem}.card-subtitle,.card-text:last-child{margin-bottom:0}.card-link:hover{text-decoration:none}.card-link+.card-link{margin-left:1.25rem}.card-header{padding:.75rem 1.25rem;margin-bottom:0;background-color:rgba(0,0,0,.03);border-bottom:1px solid rgba(0,0,0,.125)}.card-header:first-child{border-radius:calc(.25rem - 1px) calc(.25rem - 1px) 0 0}.card-header+.list-group .list-group-item:first-child{border-top:0}.card-footer{padding:.75rem 1.25rem;background-color:rgba(0,0,0,.03);border-top:1px solid rgba(0,0,0,.125)}.card-footer:last-child{border-radius:0 0 calc(.25rem - 1px) calc(.25rem - 1px)}.card-header-tabs{margin-bottom:-.75rem;border-bottom:0}.card-header-pills,.card-header-tabs{margin-right:-.625rem;margin-left:-.625rem}.card-img-overlay{position:absolute;top:0;right:0;bottom:0;left:0;padding:1.25rem}.card-img,.card-img-bottom,.card-img-top{flex-shrink:0;width:100%}.card-img,.card-img-top{border-top-left-radius:calc(.25rem - 1px);border-top-right-radius:calc(.25rem - 1px)}.card-img,.card-img-bottom{border-bottom-right-radius:calc(.25rem - 1px);border-bottom-left-radius:calc(.25rem - 1px)}.card-deck .card{margin-bottom:15px}@media (min-width:540px){.card-deck{display:flex;flex-flow:row wrap;margin-right:-15px;margin-left:-15px}.card-deck .card{flex:1 0 0%;margin-right:15px;margin-bottom:0;margin-left:15px}}.card-group>.card{margin-bottom:15px}@media (min-width:540px){.card-group{display:flex;flex-flow:row wrap}.card-group>.card{flex:1 0 0%;margin-bottom:0}.card-group>.card+.card{margin-left:0;border-left:0}.card-group>.card:not(:last-child){border-top-right-radius:0;border-bottom-right-radius:0}.card-group>.card:not(:last-child) .card-header,.card-group>.card:not(:last-child) .card-img-top{border-top-right-radius:0}.card-group>.card:not(:last-child) .card-footer,.card-group>.card:not(:last-child) .card-img-bottom{border-bottom-right-radius:0}.card-group>.card:not(:first-child){border-top-left-radius:0;border-bottom-left-radius:0}.card-group>.card:not(:first-child) .card-header,.card-group>.card:not(:first-child) .card-img-top{border-top-left-radius:0}.card-group>.card:not(:first-child) .card-footer,.card-group>.card:not(:first-child) .card-img-bottom{border-bottom-left-radius:0}}.card-columns .card{margin-bottom:.75rem}@media (min-width:540px){.card-columns{column-count:3;column-gap:1.25rem;orphans:1;widows:1}.card-columns .card{display:inline-block;width:100%}}.accordion>.card{overflow:hidden}.accordion>.card:not(:last-of-type){border-bottom:0;border-bottom-right-radius:0;border-bottom-left-radius:0}.accordion>.card:not(:first-of-type){border-top-left-radius:0;border-top-right-radius:0}.accordion>.card>.card-header{border-radius:0;margin-bottom:-1px}.breadcrumb{flex-wrap:wrap;padding:.75rem 1rem;margin-bottom:1rem;list-style:none;background-color:#e9ecef;border-radius:.25rem}.breadcrumb,.breadcrumb-item{display:flex}.breadcrumb-item+.breadcrumb-item{padding-left:.5rem}.breadcrumb-item+.breadcrumb-item:before{display:inline-block;padding-right:.5rem;color:#6c757d;content:"/"}.breadcrumb-item+.breadcrumb-item:hover:before{text-decoration:underline;text-decoration:none}.breadcrumb-item.active{color:#6c757d}.pagination{display:flex;padding-left:0;list-style:none;border-radius:.25rem}.page-link{position:relative;display:block;padding:.5rem .75rem;margin-left:-1px;line-height:1.25;color:#007bff;background-color:#fff;border:1px solid #dee2e6}.page-link:hover{z-index:2;color:#0056b3;text-decoration:none;background-color:#e9ecef;border-color:#dee2e6}.page-link:focus{z-index:3;outline:0;box-shadow:0 0 0 .2rem rgba(0,123,255,.25)}.page-item:first-child .page-link{margin-left:0;border-top-left-radius:.25rem;border-bottom-left-radius:.25rem}.page-item:last-child .page-link{border-top-right-radius:.25rem;border-bottom-right-radius:.25rem}.page-item.active .page-link{z-index:3;color:#fff;background-color:#007bff;border-color:#007bff}.page-item.disabled .page-link{color:#6c757d;pointer-events:none;cursor:auto;background-color:#fff;border-color:#dee2e6}.pagination-lg .page-link{padding:.75rem 1.5rem;font-size:1.25rem;line-height:1.5}.pagination-lg .page-item:first-child .page-link{border-top-left-radius:.3rem;border-bottom-left-radius:.3rem}.pagination-lg .page-item:last-child .page-link{border-top-right-radius:.3rem;border-bottom-right-radius:.3rem}.pagination-sm .page-link{padding:.25rem .5rem;font-size:.875rem;line-height:1.5}.pagination-sm .page-item:first-child .page-link{border-top-left-radius:.2rem;border-bottom-left-radius:.2rem}.pagination-sm .page-item:last-child .page-link{border-top-right-radius:.2rem;border-bottom-right-radius:.2rem}.badge{display:inline-block;padding:.25em .4em;font-size:75%;font-weight:700;line-height:1;text-align:center;white-space:nowrap;vertical-align:baseline;border-radius:.25rem;transition:color .15s ease-in-out,background-color .15s ease-in-out,border-color .15s ease-in-out,box-shadow .15s ease-in-out}@media (prefers-reduced-motion:reduce){.badge{transition:none}}a.badge:focus,a.badge:hover{text-decoration:none}.badge:empty{display:none}.btn .badge{position:relative;top:-1px}.badge-pill{padding-right:.6em;padding-left:.6em;border-radius:10rem}.badge-primary{color:#fff;background-color:#007bff}a.badge-primary:focus,a.badge-primary:hover{color:#fff;background-color:#0062cc}a.badge-primary.focus,a.badge-primary:focus{outline:0;box-shadow:0 0 0 .2rem rgba(0,123,255,.5)}.badge-secondary{color:#fff;background-color:#6c757d}a.badge-secondary:focus,a.badge-secondary:hover{color:#fff;background-color:#545b62}a.badge-secondary.focus,a.badge-secondary:focus{outline:0;box-shadow:0 0 0 .2rem rgba(108,117,125,.5)}.badge-success{color:#fff;background-color:#28a745}a.badge-success:focus,a.badge-success:hover{color:#fff;background-color:#1e7e34}a.badge-success.focus,a.badge-success:focus{outline:0;box-shadow:0 0 0 .2rem rgba(40,167,69,.5)}.badge-info{color:#fff;background-color:#17a2b8}a.badge-info:focus,a.badge-info:hover{color:#fff;background-color:#117a8b}a.badge-info.focus,a.badge-info:focus{outline:0;box-shadow:0 0 0 .2rem rgba(23,162,184,.5)}.badge-warning{color:#212529;background-color:#ffc107}a.badge-warning:focus,a.badge-warning:hover{color:#212529;background-color:#d39e00}a.badge-warning.focus,a.badge-warning:focus{outline:0;box-shadow:0 0 0 .2rem rgba(255,193,7,.5)}.badge-danger{color:#fff;background-color:#dc3545}a.badge-danger:focus,a.badge-danger:hover{color:#fff;background-color:#bd2130}a.badge-danger.focus,a.badge-danger:focus{outline:0;box-shadow:0 0 0 .2rem rgba(220,53,69,.5)}.badge-light{color:#212529;background-color:#f8f9fa}a.badge-light:focus,a.badge-light:hover{color:#212529;background-color:#dae0e5}a.badge-light.focus,a.badge-light:focus{outline:0;box-shadow:0 0 0 .2rem rgba(248,249,250,.5)}.badge-dark{color:#fff;background-color:#343a40}a.badge-dark:focus,a.badge-dark:hover{color:#fff;background-color:#1d2124}a.badge-dark.focus,a.badge-dark:focus{outline:0;box-shadow:0 0 0 .2rem rgba(52,58,64,.5)}.jumbotron{padding:2rem 1rem;margin-bottom:2rem;background-color:#e9ecef;border-radius:.3rem}@media (min-width:540px){.jumbotron{padding:4rem 2rem}}.jumbotron-fluid{padding-right:0;padding-left:0;border-radius:0}.alert{position:relative;padding:.75rem 1.25rem;margin-bottom:1rem;border:1px solid transparent;border-radius:.25rem}.alert-heading{color:inherit}.alert-link{font-weight:700}.alert-dismissible{padding-right:4rem}.alert-dismissible .close{position:absolute;top:0;right:0;padding:.75rem 1.25rem;color:inherit}.alert-primary{color:#004085;background-color:#cce5ff;border-color:#b8daff}.alert-primary hr{border-top-color:#9fcdff}.alert-primary .alert-link{color:#002752}.alert-secondary{color:#383d41;background-color:#e2e3e5;border-color:#d6d8db}.alert-secondary hr{border-top-color:#c8cbcf}.alert-secondary .alert-link{color:#202326}.alert-success{color:#155724;background-color:#d4edda;border-color:#c3e6cb}.alert-success hr{border-top-color:#b1dfbb}.alert-success .alert-link{color:#0b2e13}.alert-info{color:#0c5460;background-color:#d1ecf1;border-color:#bee5eb}.alert-info hr{border-top-color:#abdde5}.alert-info .alert-link{color:#062c33}.alert-warning{color:#856404;background-color:#fff3cd;border-color:#ffeeba}.alert-warning hr{border-top-color:#ffe8a1}.alert-warning .alert-link{color:#533f03}.alert-danger{color:#721c24;background-color:#f8d7da;border-color:#f5c6cb}.alert-danger hr{border-top-color:#f1b0b7}.alert-danger .alert-link{color:#491217}.alert-light{color:#818182;background-color:#fefefe;border-color:#fdfdfe}.alert-light hr{border-top-color:#ececf6}.alert-light .alert-link{color:#686868}.alert-dark{color:#1b1e21;background-color:#d6d8d9;border-color:#c6c8ca}.alert-dark hr{border-top-color:#b9bbbe}.alert-dark .alert-link{color:#040505}@keyframes progress-bar-stripes{0%{background-position:1rem 0}to{background-position:0 0}}.progress{height:1rem;line-height:0;font-size:.75rem;background-color:#e9ecef;border-radius:.25rem}.progress,.progress-bar{display:flex;overflow:hidden}.progress-bar{flex-direction:column;justify-content:center;color:#fff;text-align:center;white-space:nowrap;background-color:#007bff;transition:width .6s ease}@media (prefers-reduced-motion:reduce){.progress-bar{transition:none}}.progress-bar-striped{background-image:linear-gradient(45deg,hsla(0,0%,100%,.15) 25%,transparent 0,transparent 50%,hsla(0,0%,100%,.15) 0,hsla(0,0%,100%,.15) 75%,transparent 0,transparent);background-size:1rem 1rem}.progress-bar-animated{animation:progress-bar-stripes 1s linear infinite}@media (prefers-reduced-motion:reduce){.progress-bar-animated{animation:none}}.media{display:flex;align-items:flex-start}.media-body{flex:1}.list-group{display:flex;flex-direction:column;padding-left:0;margin-bottom:0;border-radius:.25rem}.list-group-item-action{width:100%;color:#495057;text-align:inherit}.list-group-item-action:focus,.list-group-item-action:hover{z-index:1;color:#495057;text-decoration:none;background-color:#f8f9fa}.list-group-item-action:active{color:#212529;background-color:#e9ecef}.list-group-item{position:relative;display:block;padding:.75rem 1.25rem;background-color:#fff;border:1px solid rgba(0,0,0,.125)}.list-group-item:first-child{border-top-left-radius:inherit;border-top-right-radius:inherit}.list-group-item:last-child{border-bottom-right-radius:inherit;border-bottom-left-radius:inherit}.list-group-item.disabled,.list-group-item:disabled{color:#6c757d;pointer-events:none;background-color:#fff}.list-group-item.active{z-index:2;color:#fff;background-color:#007bff;border-color:#007bff}.list-group-item+.list-group-item{border-top-width:0}.list-group-item+.list-group-item.active{margin-top:-1px;border-top-width:1px}.list-group-horizontal{flex-direction:row}.list-group-horizontal>.list-group-item:first-child{border-bottom-left-radius:.25rem;border-top-right-radius:0}.list-group-horizontal>.list-group-item:last-child{border-top-right-radius:.25rem;border-bottom-left-radius:0}.list-group-horizontal>.list-group-item.active{margin-top:0}.list-group-horizontal>.list-group-item+.list-group-item{border-top-width:1px;border-left-width:0}.list-group-horizontal>.list-group-item+.list-group-item.active{margin-left:-1px;border-left-width:1px}@media (min-width:540px){.list-group-horizontal-sm{flex-direction:row}.list-group-horizontal-sm>.list-group-item:first-child{border-bottom-left-radius:.25rem;border-top-right-radius:0}.list-group-horizontal-sm>.list-group-item:last-child{border-top-right-radius:.25rem;border-bottom-left-radius:0}.list-group-horizontal-sm>.list-group-item.active{margin-top:0}.list-group-horizontal-sm>.list-group-item+.list-group-item{border-top-width:1px;border-left-width:0}.list-group-horizontal-sm>.list-group-item+.list-group-item.active{margin-left:-1px;border-left-width:1px}}@media (min-width:720px){.list-group-horizontal-md{flex-direction:row}.list-group-horizontal-md>.list-group-item:first-child{border-bottom-left-radius:.25rem;border-top-right-radius:0}.list-group-horizontal-md>.list-group-item:last-child{border-top-right-radius:.25rem;border-bottom-left-radius:0}.list-group-horizontal-md>.list-group-item.active{margin-top:0}.list-group-horizontal-md>.list-group-item+.list-group-item{border-top-width:1px;border-left-width:0}.list-group-horizontal-md>.list-group-item+.list-group-item.active{margin-left:-1px;border-left-width:1px}}@media (min-width:960px){.list-group-horizontal-lg{flex-direction:row}.list-group-horizontal-lg>.list-group-item:first-child{border-bottom-left-radius:.25rem;border-top-right-radius:0}.list-group-horizontal-lg>.list-group-item:last-child{border-top-right-radius:.25rem;border-bottom-left-radius:0}.list-group-horizontal-lg>.list-group-item.active{margin-top:0}.list-group-horizontal-lg>.list-group-item+.list-group-item{border-top-width:1px;border-left-width:0}.list-group-horizontal-lg>.list-group-item+.list-group-item.active{margin-left:-1px;border-left-width:1px}}@media (min-width:1200px){.list-group-horizontal-xl{flex-direction:row}.list-group-horizontal-xl>.list-group-item:first-child{border-bottom-left-radius:.25rem;border-top-right-radius:0}.list-group-horizontal-xl>.list-group-item:last-child{border-top-right-radius:.25rem;border-bottom-left-radius:0}.list-group-horizontal-xl>.list-group-item.active{margin-top:0}.list-group-horizontal-xl>.list-group-item+.list-group-item{border-top-width:1px;border-left-width:0}.list-group-horizontal-xl>.list-group-item+.list-group-item.active{margin-left:-1px;border-left-width:1px}}.list-group-flush{border-radius:0}.list-group-flush>.list-group-item{border-width:0 0 1px}.list-group-flush>.list-group-item:last-child{border-bottom-width:0}.list-group-item-primary{color:#004085;background-color:#b8daff}.list-group-item-primary.list-group-item-action:focus,.list-group-item-primary.list-group-item-action:hover{color:#004085;background-color:#9fcdff}.list-group-item-primary.list-group-item-action.active{color:#fff;background-color:#004085;border-color:#004085}.list-group-item-secondary{color:#383d41;background-color:#d6d8db}.list-group-item-secondary.list-group-item-action:focus,.list-group-item-secondary.list-group-item-action:hover{color:#383d41;background-color:#c8cbcf}.list-group-item-secondary.list-group-item-action.active{color:#fff;background-color:#383d41;border-color:#383d41}.list-group-item-success{color:#155724;background-color:#c3e6cb}.list-group-item-success.list-group-item-action:focus,.list-group-item-success.list-group-item-action:hover{color:#155724;background-color:#b1dfbb}.list-group-item-success.list-group-item-action.active{color:#fff;background-color:#155724;border-color:#155724}.list-group-item-info{color:#0c5460;background-color:#bee5eb}.list-group-item-info.list-group-item-action:focus,.list-group-item-info.list-group-item-action:hover{color:#0c5460;background-color:#abdde5}.list-group-item-info.list-group-item-action.active{color:#fff;background-color:#0c5460;border-color:#0c5460}.list-group-item-warning{color:#856404;background-color:#ffeeba}.list-group-item-warning.list-group-item-action:focus,.list-group-item-warning.list-group-item-action:hover{color:#856404;background-color:#ffe8a1}.list-group-item-warning.list-group-item-action.active{color:#fff;background-color:#856404;border-color:#856404}.list-group-item-danger{color:#721c24;background-color:#f5c6cb}.list-group-item-danger.list-group-item-action:focus,.list-group-item-danger.list-group-item-action:hover{color:#721c24;background-color:#f1b0b7}.list-group-item-danger.list-group-item-action.active{color:#fff;background-color:#721c24;border-color:#721c24}.list-group-item-light{color:#818182;background-color:#fdfdfe}.list-group-item-light.list-group-item-action:focus,.list-group-item-light.list-group-item-action:hover{color:#818182;background-color:#ececf6}.list-group-item-light.list-group-item-action.active{color:#fff;background-color:#818182;border-color:#818182}.list-group-item-dark{color:#1b1e21;background-color:#c6c8ca}.list-group-item-dark.list-group-item-action:focus,.list-group-item-dark.list-group-item-action:hover{color:#1b1e21;background-color:#b9bbbe}.list-group-item-dark.list-group-item-action.active{color:#fff;background-color:#1b1e21;border-color:#1b1e21}.close{float:right;font-size:1.5rem;font-weight:700;line-height:1;color:#000;text-shadow:0 1px 0 #fff;opacity:.5}.close:hover{color:#000;text-decoration:none}.close:not(:disabled):not(.disabled):focus,.close:not(:disabled):not(.disabled):hover{opacity:.75}button.close{padding:0;background-color:transparent;border:0}a.close.disabled{pointer-events:none}.toast{max-width:350px;overflow:hidden;font-size:.875rem;background-color:hsla(0,0%,100%,.85);background-clip:padding-box;border:1px solid rgba(0,0,0,.1);box-shadow:0 .25rem .75rem rgba(0,0,0,.1);backdrop-filter:blur(10px);opacity:0;border-radius:.25rem}.toast:not(:last-child){margin-bottom:.75rem}.toast.showing{opacity:1}.toast.show{display:block;opacity:1}.toast.hide{display:none}.toast-header{display:flex;align-items:center;padding:.25rem .75rem;color:#6c757d;background-color:hsla(0,0%,100%,.85);background-clip:padding-box;border-bottom:1px solid rgba(0,0,0,.05)}.toast-body{padding:.75rem}.modal-open{overflow:hidden}.modal-open .modal{overflow-x:hidden;overflow-y:auto}.modal{position:fixed;top:0;left:0;z-index:1050;display:none;width:100%;height:100%;overflow:hidden;outline:0}.modal-dialog{position:relative;width:auto;margin:.5rem;pointer-events:none}.modal.fade .modal-dialog{transition:transform .3s ease-out;transform:translateY(-50px)}@media (prefers-reduced-motion:reduce){.modal.fade .modal-dialog{transition:none}}.modal.show .modal-dialog{transform:none}.modal.modal-static .modal-dialog{transform:scale(1.02)}.modal-dialog-scrollable{display:flex;max-height:calc(100% - 1rem)}.modal-dialog-scrollable .modal-content{max-height:calc(100vh - 1rem);overflow:hidden}.modal-dialog-scrollable .modal-footer,.modal-dialog-scrollable .modal-header{flex-shrink:0}.modal-dialog-scrollable .modal-body{overflow-y:auto}.modal-dialog-centered{display:flex;align-items:center;min-height:calc(100% - 1rem)}.modal-dialog-centered:before{display:block;height:calc(100vh - 1rem);height:min-content;content:""}.modal-dialog-centered.modal-dialog-scrollable{flex-direction:column;justify-content:center;height:100%}.modal-dialog-centered.modal-dialog-scrollable .modal-content{max-height:none}.modal-dialog-centered.modal-dialog-scrollable:before{content:none}.modal-content{position:relative;display:flex;flex-direction:column;width:100%;pointer-events:auto;background-color:#fff;background-clip:padding-box;border:1px solid rgba(0,0,0,.2);border-radius:.3rem;outline:0}.modal-backdrop{position:fixed;top:0;left:0;z-index:1040;width:100vw;height:100vh;background-color:#000}.modal-backdrop.fade{opacity:0}.modal-backdrop.show{opacity:.5}.modal-header{display:flex;align-items:flex-start;justify-content:space-between;padding:1rem;border-bottom:1px solid #dee2e6;border-top-left-radius:calc(.3rem - 1px);border-top-right-radius:calc(.3rem - 1px)}.modal-header .close{padding:1rem;margin:-1rem -1rem -1rem auto}.modal-title{margin-bottom:0;line-height:1.5}.modal-body{position:relative;flex:1 1 auto;padding:1rem}.modal-footer{display:flex;flex-wrap:wrap;align-items:center;justify-content:flex-end;padding:.75rem;border-top:1px solid #dee2e6;border-bottom-right-radius:calc(.3rem - 1px);border-bottom-left-radius:calc(.3rem - 1px)}.modal-footer>*{margin:.25rem}.modal-scrollbar-measure{position:absolute;top:-9999px;width:50px;height:50px;overflow:scroll}@media (min-width:540px){.modal-dialog{max-width:500px;margin:1.75rem auto}.modal-dialog-scrollable{max-height:calc(100% - 3.5rem)}.modal-dialog-scrollable .modal-content{max-height:calc(100vh - 3.5rem)}.modal-dialog-centered{min-height:calc(100% - 3.5rem)}.modal-dialog-centered:before{height:calc(100vh - 3.5rem);height:min-content}.modal-sm{max-width:300px}}@media (min-width:960px){.modal-lg,.modal-xl{max-width:800px}}@media (min-width:1200px){.modal-xl{max-width:1140px}}.tooltip{position:absolute;z-index:1070;display:block;margin:0;font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Helvetica Neue,Arial,Noto Sans,sans-serif,Apple Color Emoji,Segoe UI Emoji,Segoe UI Symbol,Noto Color Emoji;font-style:normal;font-weight:400;line-height:1.5;text-align:left;text-align:start;text-decoration:none;text-shadow:none;text-transform:none;letter-spacing:normal;word-break:normal;word-spacing:normal;white-space:normal;line-break:auto;font-size:.875rem;word-wrap:break-word;opacity:0}.tooltip.show{opacity:.9}.tooltip .arrow{position:absolute;display:block;width:.8rem;height:.4rem}.tooltip .arrow:before{position:absolute;content:"";border-color:transparent;border-style:solid}.bs-tooltip-auto[x-placement^=top],.bs-tooltip-top{padding:.4rem 0}.bs-tooltip-auto[x-placement^=top] .arrow,.bs-tooltip-top .arrow{bottom:0}.bs-tooltip-auto[x-placement^=top] .arrow:before,.bs-tooltip-top .arrow:before{top:0;border-width:.4rem .4rem 0;border-top-color:#000}.bs-tooltip-auto[x-placement^=right],.bs-tooltip-right{padding:0 .4rem}.bs-tooltip-auto[x-placement^=right] .arrow,.bs-tooltip-right .arrow{left:0;width:.4rem;height:.8rem}.bs-tooltip-auto[x-placement^=right] .arrow:before,.bs-tooltip-right .arrow:before{right:0;border-width:.4rem .4rem .4rem 0;border-right-color:#000}.bs-tooltip-auto[x-placement^=bottom],.bs-tooltip-bottom{padding:.4rem 0}.bs-tooltip-auto[x-placement^=bottom] .arrow,.bs-tooltip-bottom .arrow{top:0}.bs-tooltip-auto[x-placement^=bottom] .arrow:before,.bs-tooltip-bottom .arrow:before{bottom:0;border-width:0 .4rem .4rem;border-bottom-color:#000}.bs-tooltip-auto[x-placement^=left],.bs-tooltip-left{padding:0 .4rem}.bs-tooltip-auto[x-placement^=left] .arrow,.bs-tooltip-left .arrow{right:0;width:.4rem;height:.8rem}.bs-tooltip-auto[x-placement^=left] .arrow:before,.bs-tooltip-left .arrow:before{left:0;border-width:.4rem 0 .4rem .4rem;border-left-color:#000}.tooltip-inner{max-width:200px;padding:.25rem .5rem;color:#fff;text-align:center;background-color:#000;border-radius:.25rem}.popover{top:0;left:0;z-index:1060;max-width:276px;font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Helvetica Neue,Arial,Noto Sans,sans-serif,Apple Color Emoji,Segoe UI Emoji,Segoe UI Symbol,Noto Color Emoji;font-style:normal;font-weight:400;line-height:1.5;text-align:left;text-align:start;text-decoration:none;text-shadow:none;text-transform:none;letter-spacing:normal;word-break:normal;word-spacing:normal;white-space:normal;line-break:auto;font-size:.875rem;word-wrap:break-word;background-color:#fff;background-clip:padding-box;border:1px solid rgba(0,0,0,.2);border-radius:.3rem}.popover,.popover .arrow{position:absolute;display:block}.popover .arrow{width:1rem;height:.5rem;margin:0 .3rem}.popover .arrow:after,.popover .arrow:before{position:absolute;display:block;content:"";border-color:transparent;border-style:solid}.bs-popover-auto[x-placement^=top],.bs-popover-top{margin-bottom:.5rem}.bs-popover-auto[x-placement^=top]>.arrow,.bs-popover-top>.arrow{bottom:calc(-.5rem - 1px)}.bs-popover-auto[x-placement^=top]>.arrow:before,.bs-popover-top>.arrow:before{bottom:0;border-width:.5rem .5rem 0;border-top-color:rgba(0,0,0,.25)}.bs-popover-auto[x-placement^=top]>.arrow:after,.bs-popover-top>.arrow:after{bottom:1px;border-width:.5rem .5rem 0;border-top-color:#fff}.bs-popover-auto[x-placement^=right],.bs-popover-right{margin-left:.5rem}.bs-popover-auto[x-placement^=right]>.arrow,.bs-popover-right>.arrow{left:calc(-.5rem - 1px);width:.5rem;height:1rem;margin:.3rem 0}.bs-popover-auto[x-placement^=right]>.arrow:before,.bs-popover-right>.arrow:before{left:0;border-width:.5rem .5rem .5rem 0;border-right-color:rgba(0,0,0,.25)}.bs-popover-auto[x-placement^=right]>.arrow:after,.bs-popover-right>.arrow:after{left:1px;border-width:.5rem .5rem .5rem 0;border-right-color:#fff}.bs-popover-auto[x-placement^=bottom],.bs-popover-bottom{margin-top:.5rem}.bs-popover-auto[x-placement^=bottom]>.arrow,.bs-popover-bottom>.arrow{top:calc(-.5rem - 1px)}.bs-popover-auto[x-placement^=bottom]>.arrow:before,.bs-popover-bottom>.arrow:before{top:0;border-width:0 .5rem .5rem;border-bottom-color:rgba(0,0,0,.25)}.bs-popover-auto[x-placement^=bottom]>.arrow:after,.bs-popover-bottom>.arrow:after{top:1px;border-width:0 .5rem .5rem;border-bottom-color:#fff}.bs-popover-auto[x-placement^=bottom] .popover-header:before,.bs-popover-bottom .popover-header:before{position:absolute;top:0;left:50%;display:block;width:1rem;margin-left:-.5rem;content:"";border-bottom:1px solid #f7f7f7}.bs-popover-auto[x-placement^=left],.bs-popover-left{margin-right:.5rem}.bs-popover-auto[x-placement^=left]>.arrow,.bs-popover-left>.arrow{right:calc(-.5rem - 1px);width:.5rem;height:1rem;margin:.3rem 0}.bs-popover-auto[x-placement^=left]>.arrow:before,.bs-popover-left>.arrow:before{right:0;border-width:.5rem 0 .5rem .5rem;border-left-color:rgba(0,0,0,.25)}.bs-popover-auto[x-placement^=left]>.arrow:after,.bs-popover-left>.arrow:after{right:1px;border-width:.5rem 0 .5rem .5rem;border-left-color:#fff}.popover-header{padding:.5rem .75rem;margin-bottom:0;font-size:1rem;background-color:#f7f7f7;border-bottom:1px solid #ebebeb;border-top-left-radius:calc(.3rem - 1px);border-top-right-radius:calc(.3rem - 1px)}.popover-header:empty{display:none}.popover-body{padding:.5rem .75rem;color:#212529}.carousel{position:relative}.carousel.pointer-event{touch-action:pan-y}.carousel-inner{position:relative;width:100%;overflow:hidden}.carousel-inner:after{display:block;clear:both;content:""}.carousel-item{position:relative;display:none;float:left;width:100%;margin-right:-100%;backface-visibility:hidden;transition:transform .6s ease-in-out}@media (prefers-reduced-motion:reduce){.carousel-item{transition:none}}.carousel-item-next,.carousel-item-prev,.carousel-item.active{display:block}.active.carousel-item-right,.carousel-item-next:not(.carousel-item-left){transform:translateX(100%)}.active.carousel-item-left,.carousel-item-prev:not(.carousel-item-right){transform:translateX(-100%)}.carousel-fade .carousel-item{opacity:0;transition-property:opacity;transform:none}.carousel-fade .carousel-item-next.carousel-item-left,.carousel-fade .carousel-item-prev.carousel-item-right,.carousel-fade .carousel-item.active{z-index:1;opacity:1}.carousel-fade .active.carousel-item-left,.carousel-fade .active.carousel-item-right{z-index:0;opacity:0;transition:opacity 0s .6s}@media (prefers-reduced-motion:reduce){.carousel-fade .active.carousel-item-left,.carousel-fade .active.carousel-item-right{transition:none}}.carousel-control-next,.carousel-control-prev{position:absolute;top:0;bottom:0;z-index:1;display:flex;align-items:center;justify-content:center;width:15%;color:#fff;text-align:center;opacity:.5;transition:opacity .15s ease}@media (prefers-reduced-motion:reduce){.carousel-control-next,.carousel-control-prev{transition:none}}.carousel-control-next:focus,.carousel-control-next:hover,.carousel-control-prev:focus,.carousel-control-prev:hover{color:#fff;text-decoration:none;outline:0;opacity:.9}.carousel-control-prev{left:0}.carousel-control-next{right:0}.carousel-control-next-icon,.carousel-control-prev-icon{display:inline-block;width:20px;height:20px;background:no-repeat 50%/100% 100%}.carousel-control-prev-icon{background-image:url("data:image/svg+xml;charset=utf-8,%3Csvg xmlns='http://www.w3.org/2000/svg' fill='%23fff' width='8' height='8'%3E%3Cpath d='M5.25 0l-4 4 4 4 1.5-1.5L4.25 4l2.5-2.5L5.25 0z'/%3E%3C/svg%3E")}.carousel-control-next-icon{background-image:url("data:image/svg+xml;charset=utf-8,%3Csvg xmlns='http://www.w3.org/2000/svg' fill='%23fff' width='8' height='8'%3E%3Cpath d='M2.75 0l-1.5 1.5L3.75 4l-2.5 2.5L2.75 8l4-4-4-4z'/%3E%3C/svg%3E")}.carousel-indicators{position:absolute;right:0;bottom:0;left:0;z-index:15;display:flex;justify-content:center;padding-left:0;margin-right:15%;margin-left:15%;list-style:none}.carousel-indicators li{box-sizing:content-box;flex:0 1 auto;width:30px;height:3px;margin-right:3px;margin-left:3px;text-indent:-999px;cursor:pointer;background-color:#fff;background-clip:padding-box;border-top:10px solid transparent;border-bottom:10px solid transparent;opacity:.5;transition:opacity .6s ease}@media (prefers-reduced-motion:reduce){.carousel-indicators li{transition:none}}.carousel-indicators .active{opacity:1}.carousel-caption{position:absolute;right:15%;bottom:20px;left:15%;z-index:10;padding-top:20px;padding-bottom:20px;color:#fff;text-align:center}@keyframes spinner-border{to{transform:rotate(1turn)}}.spinner-border{display:inline-block;width:2rem;height:2rem;vertical-align:text-bottom;border:.25em solid;border-right:.25em solid transparent;border-radius:50%;animation:spinner-border .75s linear infinite}.spinner-border-sm{width:1rem;height:1rem;border-width:.2em}@keyframes spinner-grow{0%{transform:scale(0)}50%{opacity:1;transform:none}}.spinner-grow{display:inline-block;width:2rem;height:2rem;vertical-align:text-bottom;background-color:currentColor;border-radius:50%;opacity:0;animation:spinner-grow .75s linear infinite}.spinner-grow-sm{width:1rem;height:1rem}.align-baseline{vertical-align:baseline!important}.align-top{vertical-align:top!important}.align-middle{vertical-align:middle!important}.align-bottom{vertical-align:bottom!important}.align-text-bottom{vertical-align:text-bottom!important}.align-text-top{vertical-align:text-top!important}.bg-primary{background-color:#007bff!important}a.bg-primary:focus,a.bg-primary:hover,button.bg-primary:focus,button.bg-primary:hover{background-color:#0062cc!important}.bg-secondary{background-color:#6c757d!important}a.bg-secondary:focus,a.bg-secondary:hover,button.bg-secondary:focus,button.bg-secondary:hover{background-color:#545b62!important}.bg-success{background-color:#28a745!important}a.bg-success:focus,a.bg-success:hover,button.bg-success:focus,button.bg-success:hover{background-color:#1e7e34!important}.bg-info{background-color:#17a2b8!important}a.bg-info:focus,a.bg-info:hover,button.bg-info:focus,button.bg-info:hover{background-color:#117a8b!important}.bg-warning{background-color:#ffc107!important}a.bg-warning:focus,a.bg-warning:hover,button.bg-warning:focus,button.bg-warning:hover{background-color:#d39e00!important}.bg-danger{background-color:#dc3545!important}a.bg-danger:focus,a.bg-danger:hover,button.bg-danger:focus,button.bg-danger:hover{background-color:#bd2130!important}.bg-light{background-color:#f8f9fa!important}a.bg-light:focus,a.bg-light:hover,button.bg-light:focus,button.bg-light:hover{background-color:#dae0e5!important}.bg-dark{background-color:#343a40!important}a.bg-dark:focus,a.bg-dark:hover,button.bg-dark:focus,button.bg-dark:hover{background-color:#1d2124!important}.bg-white{background-color:#fff!important}.bg-transparent{background-color:transparent!important}.border{border:1px solid #dee2e6!important}.border-top{border-top:1px solid #dee2e6!important}.border-right{border-right:1px solid #dee2e6!important}.border-bottom{border-bottom:1px solid #dee2e6!important}.border-left{border-left:1px solid #dee2e6!important}.border-0{border:0!important}.border-top-0{border-top:0!important}.border-right-0{border-right:0!important}.border-bottom-0{border-bottom:0!important}.border-left-0{border-left:0!important}.border-primary{border-color:#007bff!important}.border-secondary{border-color:#6c757d!important}.border-success{border-color:#28a745!important}.border-info{border-color:#17a2b8!important}.border-warning{border-color:#ffc107!important}.border-danger{border-color:#dc3545!important}.border-light{border-color:#f8f9fa!important}.border-dark{border-color:#343a40!important}.border-white{border-color:#fff!important}.rounded-sm{border-radius:.2rem!important}.rounded{border-radius:.25rem!important}.rounded-top{border-top-left-radius:.25rem!important}.rounded-right,.rounded-top{border-top-right-radius:.25rem!important}.rounded-bottom,.rounded-right{border-bottom-right-radius:.25rem!important}.rounded-bottom,.rounded-left{border-bottom-left-radius:.25rem!important}.rounded-left{border-top-left-radius:.25rem!important}.rounded-lg{border-radius:.3rem!important}.rounded-circle{border-radius:50%!important}.rounded-pill{border-radius:50rem!important}.rounded-0{border-radius:0!important}.clearfix:after{display:block;clear:both;content:""}.d-none{display:none!important}.d-inline{display:inline!important}.d-inline-block{display:inline-block!important}.d-block{display:block!important}.d-table{display:table!important}.d-table-row{display:table-row!important}.d-table-cell{display:table-cell!important}.d-flex{display:flex!important}.d-inline-flex{display:inline-flex!important}@media (min-width:540px){.d-sm-none{display:none!important}.d-sm-inline{display:inline!important}.d-sm-inline-block{display:inline-block!important}.d-sm-block{display:block!important}.d-sm-table{display:table!important}.d-sm-table-row{display:table-row!important}.d-sm-table-cell{display:table-cell!important}.d-sm-flex{display:flex!important}.d-sm-inline-flex{display:inline-flex!important}}@media (min-width:720px){.d-md-none{display:none!important}.d-md-inline{display:inline!important}.d-md-inline-block{display:inline-block!important}.d-md-block{display:block!important}.d-md-table{display:table!important}.d-md-table-row{display:table-row!important}.d-md-table-cell{display:table-cell!important}.d-md-flex{display:flex!important}.d-md-inline-flex{display:inline-flex!important}}@media (min-width:960px){.d-lg-none{display:none!important}.d-lg-inline{display:inline!important}.d-lg-inline-block{display:inline-block!important}.d-lg-block{display:block!important}.d-lg-table{display:table!important}.d-lg-table-row{display:table-row!important}.d-lg-table-cell{display:table-cell!important}.d-lg-flex{display:flex!important}.d-lg-inline-flex{display:inline-flex!important}}@media (min-width:1200px){.d-xl-none{display:none!important}.d-xl-inline{display:inline!important}.d-xl-inline-block{display:inline-block!important}.d-xl-block{display:block!important}.d-xl-table{display:table!important}.d-xl-table-row{display:table-row!important}.d-xl-table-cell{display:table-cell!important}.d-xl-flex{display:flex!important}.d-xl-inline-flex{display:inline-flex!important}}@media print{.d-print-none{display:none!important}.d-print-inline{display:inline!important}.d-print-inline-block{display:inline-block!important}.d-print-block{display:block!important}.d-print-table{display:table!important}.d-print-table-row{display:table-row!important}.d-print-table-cell{display:table-cell!important}.d-print-flex{display:flex!important}.d-print-inline-flex{display:inline-flex!important}}.embed-responsive{position:relative;display:block;width:100%;padding:0;overflow:hidden}.embed-responsive:before{display:block;content:""}.embed-responsive .embed-responsive-item,.embed-responsive embed,.embed-responsive iframe,.embed-responsive object,.embed-responsive video{position:absolute;top:0;bottom:0;left:0;width:100%;height:100%;border:0}.embed-responsive-21by9:before{padding-top:42.85714%}.embed-responsive-16by9:before{padding-top:56.25%}.embed-responsive-4by3:before{padding-top:75%}.embed-responsive-1by1:before{padding-top:100%}.flex-row{flex-direction:row!important}.flex-column{flex-direction:column!important}.flex-row-reverse{flex-direction:row-reverse!important}.flex-column-reverse{flex-direction:column-reverse!important}.flex-wrap{flex-wrap:wrap!important}.flex-nowrap{flex-wrap:nowrap!important}.flex-wrap-reverse{flex-wrap:wrap-reverse!important}.flex-fill{flex:1 1 auto!important}.flex-grow-0{flex-grow:0!important}.flex-grow-1{flex-grow:1!important}.flex-shrink-0{flex-shrink:0!important}.flex-shrink-1{flex-shrink:1!important}.justify-content-start{justify-content:flex-start!important}.justify-content-end{justify-content:flex-end!important}.justify-content-center{justify-content:center!important}.justify-content-between{justify-content:space-between!important}.justify-content-around{justify-content:space-around!important}.align-items-start{align-items:flex-start!important}.align-items-end{align-items:flex-end!important}.align-items-center{align-items:center!important}.align-items-baseline{align-items:baseline!important}.align-items-stretch{align-items:stretch!important}.align-content-start{align-content:flex-start!important}.align-content-end{align-content:flex-end!important}.align-content-center{align-content:center!important}.align-content-between{align-content:space-between!important}.align-content-around{align-content:space-around!important}.align-content-stretch{align-content:stretch!important}.align-self-auto{align-self:auto!important}.align-self-start{align-self:flex-start!important}.align-self-end{align-self:flex-end!important}.align-self-center{align-self:center!important}.align-self-baseline{align-self:baseline!important}.align-self-stretch{align-self:stretch!important}@media (min-width:540px){.flex-sm-row{flex-direction:row!important}.flex-sm-column{flex-direction:column!important}.flex-sm-row-reverse{flex-direction:row-reverse!important}.flex-sm-column-reverse{flex-direction:column-reverse!important}.flex-sm-wrap{flex-wrap:wrap!important}.flex-sm-nowrap{flex-wrap:nowrap!important}.flex-sm-wrap-reverse{flex-wrap:wrap-reverse!important}.flex-sm-fill{flex:1 1 auto!important}.flex-sm-grow-0{flex-grow:0!important}.flex-sm-grow-1{flex-grow:1!important}.flex-sm-shrink-0{flex-shrink:0!important}.flex-sm-shrink-1{flex-shrink:1!important}.justify-content-sm-start{justify-content:flex-start!important}.justify-content-sm-end{justify-content:flex-end!important}.justify-content-sm-center{justify-content:center!important}.justify-content-sm-between{justify-content:space-between!important}.justify-content-sm-around{justify-content:space-around!important}.align-items-sm-start{align-items:flex-start!important}.align-items-sm-end{align-items:flex-end!important}.align-items-sm-center{align-items:center!important}.align-items-sm-baseline{align-items:baseline!important}.align-items-sm-stretch{align-items:stretch!important}.align-content-sm-start{align-content:flex-start!important}.align-content-sm-end{align-content:flex-end!important}.align-content-sm-center{align-content:center!important}.align-content-sm-between{align-content:space-between!important}.align-content-sm-around{align-content:space-around!important}.align-content-sm-stretch{align-content:stretch!important}.align-self-sm-auto{align-self:auto!important}.align-self-sm-start{align-self:flex-start!important}.align-self-sm-end{align-self:flex-end!important}.align-self-sm-center{align-self:center!important}.align-self-sm-baseline{align-self:baseline!important}.align-self-sm-stretch{align-self:stretch!important}}@media (min-width:720px){.flex-md-row{flex-direction:row!important}.flex-md-column{flex-direction:column!important}.flex-md-row-reverse{flex-direction:row-reverse!important}.flex-md-column-reverse{flex-direction:column-reverse!important}.flex-md-wrap{flex-wrap:wrap!important}.flex-md-nowrap{flex-wrap:nowrap!important}.flex-md-wrap-reverse{flex-wrap:wrap-reverse!important}.flex-md-fill{flex:1 1 auto!important}.flex-md-grow-0{flex-grow:0!important}.flex-md-grow-1{flex-grow:1!important}.flex-md-shrink-0{flex-shrink:0!important}.flex-md-shrink-1{flex-shrink:1!important}.justify-content-md-start{justify-content:flex-start!important}.justify-content-md-end{justify-content:flex-end!important}.justify-content-md-center{justify-content:center!important}.justify-content-md-between{justify-content:space-between!important}.justify-content-md-around{justify-content:space-around!important}.align-items-md-start{align-items:flex-start!important}.align-items-md-end{align-items:flex-end!important}.align-items-md-center{align-items:center!important}.align-items-md-baseline{align-items:baseline!important}.align-items-md-stretch{align-items:stretch!important}.align-content-md-start{align-content:flex-start!important}.align-content-md-end{align-content:flex-end!important}.align-content-md-center{align-content:center!important}.align-content-md-between{align-content:space-between!important}.align-content-md-around{align-content:space-around!important}.align-content-md-stretch{align-content:stretch!important}.align-self-md-auto{align-self:auto!important}.align-self-md-start{align-self:flex-start!important}.align-self-md-end{align-self:flex-end!important}.align-self-md-center{align-self:center!important}.align-self-md-baseline{align-self:baseline!important}.align-self-md-stretch{align-self:stretch!important}}@media (min-width:960px){.flex-lg-row{flex-direction:row!important}.flex-lg-column{flex-direction:column!important}.flex-lg-row-reverse{flex-direction:row-reverse!important}.flex-lg-column-reverse{flex-direction:column-reverse!important}.flex-lg-wrap{flex-wrap:wrap!important}.flex-lg-nowrap{flex-wrap:nowrap!important}.flex-lg-wrap-reverse{flex-wrap:wrap-reverse!important}.flex-lg-fill{flex:1 1 auto!important}.flex-lg-grow-0{flex-grow:0!important}.flex-lg-grow-1{flex-grow:1!important}.flex-lg-shrink-0{flex-shrink:0!important}.flex-lg-shrink-1{flex-shrink:1!important}.justify-content-lg-start{justify-content:flex-start!important}.justify-content-lg-end{justify-content:flex-end!important}.justify-content-lg-center{justify-content:center!important}.justify-content-lg-between{justify-content:space-between!important}.justify-content-lg-around{justify-content:space-around!important}.align-items-lg-start{align-items:flex-start!important}.align-items-lg-end{align-items:flex-end!important}.align-items-lg-center{align-items:center!important}.align-items-lg-baseline{align-items:baseline!important}.align-items-lg-stretch{align-items:stretch!important}.align-content-lg-start{align-content:flex-start!important}.align-content-lg-end{align-content:flex-end!important}.align-content-lg-center{align-content:center!important}.align-content-lg-between{align-content:space-between!important}.align-content-lg-around{align-content:space-around!important}.align-content-lg-stretch{align-content:stretch!important}.align-self-lg-auto{align-self:auto!important}.align-self-lg-start{align-self:flex-start!important}.align-self-lg-end{align-self:flex-end!important}.align-self-lg-center{align-self:center!important}.align-self-lg-baseline{align-self:baseline!important}.align-self-lg-stretch{align-self:stretch!important}}@media (min-width:1200px){.flex-xl-row{flex-direction:row!important}.flex-xl-column{flex-direction:column!important}.flex-xl-row-reverse{flex-direction:row-reverse!important}.flex-xl-column-reverse{flex-direction:column-reverse!important}.flex-xl-wrap{flex-wrap:wrap!important}.flex-xl-nowrap{flex-wrap:nowrap!important}.flex-xl-wrap-reverse{flex-wrap:wrap-reverse!important}.flex-xl-fill{flex:1 1 auto!important}.flex-xl-grow-0{flex-grow:0!important}.flex-xl-grow-1{flex-grow:1!important}.flex-xl-shrink-0{flex-shrink:0!important}.flex-xl-shrink-1{flex-shrink:1!important}.justify-content-xl-start{justify-content:flex-start!important}.justify-content-xl-end{justify-content:flex-end!important}.justify-content-xl-center{justify-content:center!important}.justify-content-xl-between{justify-content:space-between!important}.justify-content-xl-around{justify-content:space-around!important}.align-items-xl-start{align-items:flex-start!important}.align-items-xl-end{align-items:flex-end!important}.align-items-xl-center{align-items:center!important}.align-items-xl-baseline{align-items:baseline!important}.align-items-xl-stretch{align-items:stretch!important}.align-content-xl-start{align-content:flex-start!important}.align-content-xl-end{align-content:flex-end!important}.align-content-xl-center{align-content:center!important}.align-content-xl-between{align-content:space-between!important}.align-content-xl-around{align-content:space-around!important}.align-content-xl-stretch{align-content:stretch!important}.align-self-xl-auto{align-self:auto!important}.align-self-xl-start{align-self:flex-start!important}.align-self-xl-end{align-self:flex-end!important}.align-self-xl-center{align-self:center!important}.align-self-xl-baseline{align-self:baseline!important}.align-self-xl-stretch{align-self:stretch!important}}.float-left{float:left!important}.float-right{float:right!important}.float-none{float:none!important}@media (min-width:540px){.float-sm-left{float:left!important}.float-sm-right{float:right!important}.float-sm-none{float:none!important}}@media (min-width:720px){.float-md-left{float:left!important}.float-md-right{float:right!important}.float-md-none{float:none!important}}@media (min-width:960px){.float-lg-left{float:left!important}.float-lg-right{float:right!important}.float-lg-none{float:none!important}}@media (min-width:1200px){.float-xl-left{float:left!important}.float-xl-right{float:right!important}.float-xl-none{float:none!important}}.user-select-all{user-select:all!important}.user-select-auto{user-select:auto!important}.user-select-none{user-select:none!important}.overflow-auto{overflow:auto!important}.overflow-hidden{overflow:hidden!important}.position-static{position:static!important}.position-relative{position:relative!important}.position-absolute{position:absolute!important}.position-fixed{position:fixed!important}.position-sticky{position:sticky!important}.fixed-top{top:0}.fixed-bottom,.fixed-top{position:fixed;right:0;left:0;z-index:1030}.fixed-bottom{bottom:0}@supports (position:sticky){.sticky-top{position:sticky;top:0;z-index:1020}}.sr-only{position:absolute;width:1px;height:1px;padding:0;margin:-1px;overflow:hidden;clip:rect(0,0,0,0);white-space:nowrap;border:0}.sr-only-focusable:active,.sr-only-focusable:focus{position:static;width:auto;height:auto;overflow:visible;clip:auto;white-space:normal}.shadow-sm{box-shadow:0 .125rem .25rem rgba(0,0,0,.075)!important}.shadow{box-shadow:0 .5rem 1rem rgba(0,0,0,.15)!important}.shadow-lg{box-shadow:0 1rem 3rem rgba(0,0,0,.175)!important}.shadow-none{box-shadow:none!important}.w-25{width:25%!important}.w-50{width:50%!important}.w-75{width:75%!important}.w-100{width:100%!important}.w-auto{width:auto!important}.h-25{height:25%!important}.h-50{height:50%!important}.h-75{height:75%!important}.h-100{height:100%!important}.h-auto{height:auto!important}.mw-100{max-width:100%!important}.mh-100{max-height:100%!important}.min-vw-100{min-width:100vw!important}.min-vh-100{min-height:100vh!important}.vw-100{width:100vw!important}.vh-100{height:100vh!important}.m-0{margin:0!important}.mt-0,.my-0{margin-top:0!important}.mr-0,.mx-0{margin-right:0!important}.mb-0,.my-0{margin-bottom:0!important}.ml-0,.mx-0{margin-left:0!important}.m-1{margin:.25rem!important}.mt-1,.my-1{margin-top:.25rem!important}.mr-1,.mx-1{margin-right:.25rem!important}.mb-1,.my-1{margin-bottom:.25rem!important}.ml-1,.mx-1{margin-left:.25rem!important}.m-2{margin:.5rem!important}.mt-2,.my-2{margin-top:.5rem!important}.mr-2,.mx-2{margin-right:.5rem!important}.mb-2,.my-2{margin-bottom:.5rem!important}.ml-2,.mx-2{margin-left:.5rem!important}.m-3{margin:1rem!important}.mt-3,.my-3{margin-top:1rem!important}.mr-3,.mx-3{margin-right:1rem!important}.mb-3,.my-3{margin-bottom:1rem!important}.ml-3,.mx-3{margin-left:1rem!important}.m-4{margin:1.5rem!important}.mt-4,.my-4{margin-top:1.5rem!important}.mr-4,.mx-4{margin-right:1.5rem!important}.mb-4,.my-4{margin-bottom:1.5rem!important}.ml-4,.mx-4{margin-left:1.5rem!important}.m-5{margin:3rem!important}.mt-5,.my-5{margin-top:3rem!important}.mr-5,.mx-5{margin-right:3rem!important}.mb-5,.my-5{margin-bottom:3rem!important}.ml-5,.mx-5{margin-left:3rem!important}.p-0{padding:0!important}.pt-0,.py-0{padding-top:0!important}.pr-0,.px-0{padding-right:0!important}.pb-0,.py-0{padding-bottom:0!important}.pl-0,.px-0{padding-left:0!important}.p-1{padding:.25rem!important}.pt-1,.py-1{padding-top:.25rem!important}.pr-1,.px-1{padding-right:.25rem!important}.pb-1,.py-1{padding-bottom:.25rem!important}.pl-1,.px-1{padding-left:.25rem!important}.p-2{padding:.5rem!important}.pt-2,.py-2{padding-top:.5rem!important}.pr-2,.px-2{padding-right:.5rem!important}.pb-2,.py-2{padding-bottom:.5rem!important}.pl-2,.px-2{padding-left:.5rem!important}.p-3{padding:1rem!important}.pt-3,.py-3{padding-top:1rem!important}.pr-3,.px-3{padding-right:1rem!important}.pb-3,.py-3{padding-bottom:1rem!important}.pl-3,.px-3{padding-left:1rem!important}.p-4{padding:1.5rem!important}.pt-4,.py-4{padding-top:1.5rem!important}.pr-4,.px-4{padding-right:1.5rem!important}.pb-4,.py-4{padding-bottom:1.5rem!important}.pl-4,.px-4{padding-left:1.5rem!important}.p-5{padding:3rem!important}.pt-5,.py-5{padding-top:3rem!important}.pr-5,.px-5{padding-right:3rem!important}.pb-5,.py-5{padding-bottom:3rem!important}.pl-5,.px-5{padding-left:3rem!important}.m-n1{margin:-.25rem!important}.mt-n1,.my-n1{margin-top:-.25rem!important}.mr-n1,.mx-n1{margin-right:-.25rem!important}.mb-n1,.my-n1{margin-bottom:-.25rem!important}.ml-n1,.mx-n1{margin-left:-.25rem!important}.m-n2{margin:-.5rem!important}.mt-n2,.my-n2{margin-top:-.5rem!important}.mr-n2,.mx-n2{margin-right:-.5rem!important}.mb-n2,.my-n2{margin-bottom:-.5rem!important}.ml-n2,.mx-n2{margin-left:-.5rem!important}.m-n3{margin:-1rem!important}.mt-n3,.my-n3{margin-top:-1rem!important}.mr-n3,.mx-n3{margin-right:-1rem!important}.mb-n3,.my-n3{margin-bottom:-1rem!important}.ml-n3,.mx-n3{margin-left:-1rem!important}.m-n4{margin:-1.5rem!important}.mt-n4,.my-n4{margin-top:-1.5rem!important}.mr-n4,.mx-n4{margin-right:-1.5rem!important}.mb-n4,.my-n4{margin-bottom:-1.5rem!important}.ml-n4,.mx-n4{margin-left:-1.5rem!important}.m-n5{margin:-3rem!important}.mt-n5,.my-n5{margin-top:-3rem!important}.mr-n5,.mx-n5{margin-right:-3rem!important}.mb-n5,.my-n5{margin-bottom:-3rem!important}.ml-n5,.mx-n5{margin-left:-3rem!important}.m-auto{margin:auto!important}.mt-auto,.my-auto{margin-top:auto!important}.mr-auto,.mx-auto{margin-right:auto!important}.mb-auto,.my-auto{margin-bottom:auto!important}.ml-auto,.mx-auto{margin-left:auto!important}@media (min-width:540px){.m-sm-0{margin:0!important}.mt-sm-0,.my-sm-0{margin-top:0!important}.mr-sm-0,.mx-sm-0{margin-right:0!important}.mb-sm-0,.my-sm-0{margin-bottom:0!important}.ml-sm-0,.mx-sm-0{margin-left:0!important}.m-sm-1{margin:.25rem!important}.mt-sm-1,.my-sm-1{margin-top:.25rem!important}.mr-sm-1,.mx-sm-1{margin-right:.25rem!important}.mb-sm-1,.my-sm-1{margin-bottom:.25rem!important}.ml-sm-1,.mx-sm-1{margin-left:.25rem!important}.m-sm-2{margin:.5rem!important}.mt-sm-2,.my-sm-2{margin-top:.5rem!important}.mr-sm-2,.mx-sm-2{margin-right:.5rem!important}.mb-sm-2,.my-sm-2{margin-bottom:.5rem!important}.ml-sm-2,.mx-sm-2{margin-left:.5rem!important}.m-sm-3{margin:1rem!important}.mt-sm-3,.my-sm-3{margin-top:1rem!important}.mr-sm-3,.mx-sm-3{margin-right:1rem!important}.mb-sm-3,.my-sm-3{margin-bottom:1rem!important}.ml-sm-3,.mx-sm-3{margin-left:1rem!important}.m-sm-4{margin:1.5rem!important}.mt-sm-4,.my-sm-4{margin-top:1.5rem!important}.mr-sm-4,.mx-sm-4{margin-right:1.5rem!important}.mb-sm-4,.my-sm-4{margin-bottom:1.5rem!important}.ml-sm-4,.mx-sm-4{margin-left:1.5rem!important}.m-sm-5{margin:3rem!important}.mt-sm-5,.my-sm-5{margin-top:3rem!important}.mr-sm-5,.mx-sm-5{margin-right:3rem!important}.mb-sm-5,.my-sm-5{margin-bottom:3rem!important}.ml-sm-5,.mx-sm-5{margin-left:3rem!important}.p-sm-0{padding:0!important}.pt-sm-0,.py-sm-0{padding-top:0!important}.pr-sm-0,.px-sm-0{padding-right:0!important}.pb-sm-0,.py-sm-0{padding-bottom:0!important}.pl-sm-0,.px-sm-0{padding-left:0!important}.p-sm-1{padding:.25rem!important}.pt-sm-1,.py-sm-1{padding-top:.25rem!important}.pr-sm-1,.px-sm-1{padding-right:.25rem!important}.pb-sm-1,.py-sm-1{padding-bottom:.25rem!important}.pl-sm-1,.px-sm-1{padding-left:.25rem!important}.p-sm-2{padding:.5rem!important}.pt-sm-2,.py-sm-2{padding-top:.5rem!important}.pr-sm-2,.px-sm-2{padding-right:.5rem!important}.pb-sm-2,.py-sm-2{padding-bottom:.5rem!important}.pl-sm-2,.px-sm-2{padding-left:.5rem!important}.p-sm-3{padding:1rem!important}.pt-sm-3,.py-sm-3{padding-top:1rem!important}.pr-sm-3,.px-sm-3{padding-right:1rem!important}.pb-sm-3,.py-sm-3{padding-bottom:1rem!important}.pl-sm-3,.px-sm-3{padding-left:1rem!important}.p-sm-4{padding:1.5rem!important}.pt-sm-4,.py-sm-4{padding-top:1.5rem!important}.pr-sm-4,.px-sm-4{padding-right:1.5rem!important}.pb-sm-4,.py-sm-4{padding-bottom:1.5rem!important}.pl-sm-4,.px-sm-4{padding-left:1.5rem!important}.p-sm-5{padding:3rem!important}.pt-sm-5,.py-sm-5{padding-top:3rem!important}.pr-sm-5,.px-sm-5{padding-right:3rem!important}.pb-sm-5,.py-sm-5{padding-bottom:3rem!important}.pl-sm-5,.px-sm-5{padding-left:3rem!important}.m-sm-n1{margin:-.25rem!important}.mt-sm-n1,.my-sm-n1{margin-top:-.25rem!important}.mr-sm-n1,.mx-sm-n1{margin-right:-.25rem!important}.mb-sm-n1,.my-sm-n1{margin-bottom:-.25rem!important}.ml-sm-n1,.mx-sm-n1{margin-left:-.25rem!important}.m-sm-n2{margin:-.5rem!important}.mt-sm-n2,.my-sm-n2{margin-top:-.5rem!important}.mr-sm-n2,.mx-sm-n2{margin-right:-.5rem!important}.mb-sm-n2,.my-sm-n2{margin-bottom:-.5rem!important}.ml-sm-n2,.mx-sm-n2{margin-left:-.5rem!important}.m-sm-n3{margin:-1rem!important}.mt-sm-n3,.my-sm-n3{margin-top:-1rem!important}.mr-sm-n3,.mx-sm-n3{margin-right:-1rem!important}.mb-sm-n3,.my-sm-n3{margin-bottom:-1rem!important}.ml-sm-n3,.mx-sm-n3{margin-left:-1rem!important}.m-sm-n4{margin:-1.5rem!important}.mt-sm-n4,.my-sm-n4{margin-top:-1.5rem!important}.mr-sm-n4,.mx-sm-n4{margin-right:-1.5rem!important}.mb-sm-n4,.my-sm-n4{margin-bottom:-1.5rem!important}.ml-sm-n4,.mx-sm-n4{margin-left:-1.5rem!important}.m-sm-n5{margin:-3rem!important}.mt-sm-n5,.my-sm-n5{margin-top:-3rem!important}.mr-sm-n5,.mx-sm-n5{margin-right:-3rem!important}.mb-sm-n5,.my-sm-n5{margin-bottom:-3rem!important}.ml-sm-n5,.mx-sm-n5{margin-left:-3rem!important}.m-sm-auto{margin:auto!important}.mt-sm-auto,.my-sm-auto{margin-top:auto!important}.mr-sm-auto,.mx-sm-auto{margin-right:auto!important}.mb-sm-auto,.my-sm-auto{margin-bottom:auto!important}.ml-sm-auto,.mx-sm-auto{margin-left:auto!important}}@media (min-width:720px){.m-md-0{margin:0!important}.mt-md-0,.my-md-0{margin-top:0!important}.mr-md-0,.mx-md-0{margin-right:0!important}.mb-md-0,.my-md-0{margin-bottom:0!important}.ml-md-0,.mx-md-0{margin-left:0!important}.m-md-1{margin:.25rem!important}.mt-md-1,.my-md-1{margin-top:.25rem!important}.mr-md-1,.mx-md-1{margin-right:.25rem!important}.mb-md-1,.my-md-1{margin-bottom:.25rem!important}.ml-md-1,.mx-md-1{margin-left:.25rem!important}.m-md-2{margin:.5rem!important}.mt-md-2,.my-md-2{margin-top:.5rem!important}.mr-md-2,.mx-md-2{margin-right:.5rem!important}.mb-md-2,.my-md-2{margin-bottom:.5rem!important}.ml-md-2,.mx-md-2{margin-left:.5rem!important}.m-md-3{margin:1rem!important}.mt-md-3,.my-md-3{margin-top:1rem!important}.mr-md-3,.mx-md-3{margin-right:1rem!important}.mb-md-3,.my-md-3{margin-bottom:1rem!important}.ml-md-3,.mx-md-3{margin-left:1rem!important}.m-md-4{margin:1.5rem!important}.mt-md-4,.my-md-4{margin-top:1.5rem!important}.mr-md-4,.mx-md-4{margin-right:1.5rem!important}.mb-md-4,.my-md-4{margin-bottom:1.5rem!important}.ml-md-4,.mx-md-4{margin-left:1.5rem!important}.m-md-5{margin:3rem!important}.mt-md-5,.my-md-5{margin-top:3rem!important}.mr-md-5,.mx-md-5{margin-right:3rem!important}.mb-md-5,.my-md-5{margin-bottom:3rem!important}.ml-md-5,.mx-md-5{margin-left:3rem!important}.p-md-0{padding:0!important}.pt-md-0,.py-md-0{padding-top:0!important}.pr-md-0,.px-md-0{padding-right:0!important}.pb-md-0,.py-md-0{padding-bottom:0!important}.pl-md-0,.px-md-0{padding-left:0!important}.p-md-1{padding:.25rem!important}.pt-md-1,.py-md-1{padding-top:.25rem!important}.pr-md-1,.px-md-1{padding-right:.25rem!important}.pb-md-1,.py-md-1{padding-bottom:.25rem!important}.pl-md-1,.px-md-1{padding-left:.25rem!important}.p-md-2{padding:.5rem!important}.pt-md-2,.py-md-2{padding-top:.5rem!important}.pr-md-2,.px-md-2{padding-right:.5rem!important}.pb-md-2,.py-md-2{padding-bottom:.5rem!important}.pl-md-2,.px-md-2{padding-left:.5rem!important}.p-md-3{padding:1rem!important}.pt-md-3,.py-md-3{padding-top:1rem!important}.pr-md-3,.px-md-3{padding-right:1rem!important}.pb-md-3,.py-md-3{padding-bottom:1rem!important}.pl-md-3,.px-md-3{padding-left:1rem!important}.p-md-4{padding:1.5rem!important}.pt-md-4,.py-md-4{padding-top:1.5rem!important}.pr-md-4,.px-md-4{padding-right:1.5rem!important}.pb-md-4,.py-md-4{padding-bottom:1.5rem!important}.pl-md-4,.px-md-4{padding-left:1.5rem!important}.p-md-5{padding:3rem!important}.pt-md-5,.py-md-5{padding-top:3rem!important}.pr-md-5,.px-md-5{padding-right:3rem!important}.pb-md-5,.py-md-5{padding-bottom:3rem!important}.pl-md-5,.px-md-5{padding-left:3rem!important}.m-md-n1{margin:-.25rem!important}.mt-md-n1,.my-md-n1{margin-top:-.25rem!important}.mr-md-n1,.mx-md-n1{margin-right:-.25rem!important}.mb-md-n1,.my-md-n1{margin-bottom:-.25rem!important}.ml-md-n1,.mx-md-n1{margin-left:-.25rem!important}.m-md-n2{margin:-.5rem!important}.mt-md-n2,.my-md-n2{margin-top:-.5rem!important}.mr-md-n2,.mx-md-n2{margin-right:-.5rem!important}.mb-md-n2,.my-md-n2{margin-bottom:-.5rem!important}.ml-md-n2,.mx-md-n2{margin-left:-.5rem!important}.m-md-n3{margin:-1rem!important}.mt-md-n3,.my-md-n3{margin-top:-1rem!important}.mr-md-n3,.mx-md-n3{margin-right:-1rem!important}.mb-md-n3,.my-md-n3{margin-bottom:-1rem!important}.ml-md-n3,.mx-md-n3{margin-left:-1rem!important}.m-md-n4{margin:-1.5rem!important}.mt-md-n4,.my-md-n4{margin-top:-1.5rem!important}.mr-md-n4,.mx-md-n4{margin-right:-1.5rem!important}.mb-md-n4,.my-md-n4{margin-bottom:-1.5rem!important}.ml-md-n4,.mx-md-n4{margin-left:-1.5rem!important}.m-md-n5{margin:-3rem!important}.mt-md-n5,.my-md-n5{margin-top:-3rem!important}.mr-md-n5,.mx-md-n5{margin-right:-3rem!important}.mb-md-n5,.my-md-n5{margin-bottom:-3rem!important}.ml-md-n5,.mx-md-n5{margin-left:-3rem!important}.m-md-auto{margin:auto!important}.mt-md-auto,.my-md-auto{margin-top:auto!important}.mr-md-auto,.mx-md-auto{margin-right:auto!important}.mb-md-auto,.my-md-auto{margin-bottom:auto!important}.ml-md-auto,.mx-md-auto{margin-left:auto!important}}@media (min-width:960px){.m-lg-0{margin:0!important}.mt-lg-0,.my-lg-0{margin-top:0!important}.mr-lg-0,.mx-lg-0{margin-right:0!important}.mb-lg-0,.my-lg-0{margin-bottom:0!important}.ml-lg-0,.mx-lg-0{margin-left:0!important}.m-lg-1{margin:.25rem!important}.mt-lg-1,.my-lg-1{margin-top:.25rem!important}.mr-lg-1,.mx-lg-1{margin-right:.25rem!important}.mb-lg-1,.my-lg-1{margin-bottom:.25rem!important}.ml-lg-1,.mx-lg-1{margin-left:.25rem!important}.m-lg-2{margin:.5rem!important}.mt-lg-2,.my-lg-2{margin-top:.5rem!important}.mr-lg-2,.mx-lg-2{margin-right:.5rem!important}.mb-lg-2,.my-lg-2{margin-bottom:.5rem!important}.ml-lg-2,.mx-lg-2{margin-left:.5rem!important}.m-lg-3{margin:1rem!important}.mt-lg-3,.my-lg-3{margin-top:1rem!important}.mr-lg-3,.mx-lg-3{margin-right:1rem!important}.mb-lg-3,.my-lg-3{margin-bottom:1rem!important}.ml-lg-3,.mx-lg-3{margin-left:1rem!important}.m-lg-4{margin:1.5rem!important}.mt-lg-4,.my-lg-4{margin-top:1.5rem!important}.mr-lg-4,.mx-lg-4{margin-right:1.5rem!important}.mb-lg-4,.my-lg-4{margin-bottom:1.5rem!important}.ml-lg-4,.mx-lg-4{margin-left:1.5rem!important}.m-lg-5{margin:3rem!important}.mt-lg-5,.my-lg-5{margin-top:3rem!important}.mr-lg-5,.mx-lg-5{margin-right:3rem!important}.mb-lg-5,.my-lg-5{margin-bottom:3rem!important}.ml-lg-5,.mx-lg-5{margin-left:3rem!important}.p-lg-0{padding:0!important}.pt-lg-0,.py-lg-0{padding-top:0!important}.pr-lg-0,.px-lg-0{padding-right:0!important}.pb-lg-0,.py-lg-0{padding-bottom:0!important}.pl-lg-0,.px-lg-0{padding-left:0!important}.p-lg-1{padding:.25rem!important}.pt-lg-1,.py-lg-1{padding-top:.25rem!important}.pr-lg-1,.px-lg-1{padding-right:.25rem!important}.pb-lg-1,.py-lg-1{padding-bottom:.25rem!important}.pl-lg-1,.px-lg-1{padding-left:.25rem!important}.p-lg-2{padding:.5rem!important}.pt-lg-2,.py-lg-2{padding-top:.5rem!important}.pr-lg-2,.px-lg-2{padding-right:.5rem!important}.pb-lg-2,.py-lg-2{padding-bottom:.5rem!important}.pl-lg-2,.px-lg-2{padding-left:.5rem!important}.p-lg-3{padding:1rem!important}.pt-lg-3,.py-lg-3{padding-top:1rem!important}.pr-lg-3,.px-lg-3{padding-right:1rem!important}.pb-lg-3,.py-lg-3{padding-bottom:1rem!important}.pl-lg-3,.px-lg-3{padding-left:1rem!important}.p-lg-4{padding:1.5rem!important}.pt-lg-4,.py-lg-4{padding-top:1.5rem!important}.pr-lg-4,.px-lg-4{padding-right:1.5rem!important}.pb-lg-4,.py-lg-4{padding-bottom:1.5rem!important}.pl-lg-4,.px-lg-4{padding-left:1.5rem!important}.p-lg-5{padding:3rem!important}.pt-lg-5,.py-lg-5{padding-top:3rem!important}.pr-lg-5,.px-lg-5{padding-right:3rem!important}.pb-lg-5,.py-lg-5{padding-bottom:3rem!important}.pl-lg-5,.px-lg-5{padding-left:3rem!important}.m-lg-n1{margin:-.25rem!important}.mt-lg-n1,.my-lg-n1{margin-top:-.25rem!important}.mr-lg-n1,.mx-lg-n1{margin-right:-.25rem!important}.mb-lg-n1,.my-lg-n1{margin-bottom:-.25rem!important}.ml-lg-n1,.mx-lg-n1{margin-left:-.25rem!important}.m-lg-n2{margin:-.5rem!important}.mt-lg-n2,.my-lg-n2{margin-top:-.5rem!important}.mr-lg-n2,.mx-lg-n2{margin-right:-.5rem!important}.mb-lg-n2,.my-lg-n2{margin-bottom:-.5rem!important}.ml-lg-n2,.mx-lg-n2{margin-left:-.5rem!important}.m-lg-n3{margin:-1rem!important}.mt-lg-n3,.my-lg-n3{margin-top:-1rem!important}.mr-lg-n3,.mx-lg-n3{margin-right:-1rem!important}.mb-lg-n3,.my-lg-n3{margin-bottom:-1rem!important}.ml-lg-n3,.mx-lg-n3{margin-left:-1rem!important}.m-lg-n4{margin:-1.5rem!important}.mt-lg-n4,.my-lg-n4{margin-top:-1.5rem!important}.mr-lg-n4,.mx-lg-n4{margin-right:-1.5rem!important}.mb-lg-n4,.my-lg-n4{margin-bottom:-1.5rem!important}.ml-lg-n4,.mx-lg-n4{margin-left:-1.5rem!important}.m-lg-n5{margin:-3rem!important}.mt-lg-n5,.my-lg-n5{margin-top:-3rem!important}.mr-lg-n5,.mx-lg-n5{margin-right:-3rem!important}.mb-lg-n5,.my-lg-n5{margin-bottom:-3rem!important}.ml-lg-n5,.mx-lg-n5{margin-left:-3rem!important}.m-lg-auto{margin:auto!important}.mt-lg-auto,.my-lg-auto{margin-top:auto!important}.mr-lg-auto,.mx-lg-auto{margin-right:auto!important}.mb-lg-auto,.my-lg-auto{margin-bottom:auto!important}.ml-lg-auto,.mx-lg-auto{margin-left:auto!important}}@media (min-width:1200px){.m-xl-0{margin:0!important}.mt-xl-0,.my-xl-0{margin-top:0!important}.mr-xl-0,.mx-xl-0{margin-right:0!important}.mb-xl-0,.my-xl-0{margin-bottom:0!important}.ml-xl-0,.mx-xl-0{margin-left:0!important}.m-xl-1{margin:.25rem!important}.mt-xl-1,.my-xl-1{margin-top:.25rem!important}.mr-xl-1,.mx-xl-1{margin-right:.25rem!important}.mb-xl-1,.my-xl-1{margin-bottom:.25rem!important}.ml-xl-1,.mx-xl-1{margin-left:.25rem!important}.m-xl-2{margin:.5rem!important}.mt-xl-2,.my-xl-2{margin-top:.5rem!important}.mr-xl-2,.mx-xl-2{margin-right:.5rem!important}.mb-xl-2,.my-xl-2{margin-bottom:.5rem!important}.ml-xl-2,.mx-xl-2{margin-left:.5rem!important}.m-xl-3{margin:1rem!important}.mt-xl-3,.my-xl-3{margin-top:1rem!important}.mr-xl-3,.mx-xl-3{margin-right:1rem!important}.mb-xl-3,.my-xl-3{margin-bottom:1rem!important}.ml-xl-3,.mx-xl-3{margin-left:1rem!important}.m-xl-4{margin:1.5rem!important}.mt-xl-4,.my-xl-4{margin-top:1.5rem!important}.mr-xl-4,.mx-xl-4{margin-right:1.5rem!important}.mb-xl-4,.my-xl-4{margin-bottom:1.5rem!important}.ml-xl-4,.mx-xl-4{margin-left:1.5rem!important}.m-xl-5{margin:3rem!important}.mt-xl-5,.my-xl-5{margin-top:3rem!important}.mr-xl-5,.mx-xl-5{margin-right:3rem!important}.mb-xl-5,.my-xl-5{margin-bottom:3rem!important}.ml-xl-5,.mx-xl-5{margin-left:3rem!important}.p-xl-0{padding:0!important}.pt-xl-0,.py-xl-0{padding-top:0!important}.pr-xl-0,.px-xl-0{padding-right:0!important}.pb-xl-0,.py-xl-0{padding-bottom:0!important}.pl-xl-0,.px-xl-0{padding-left:0!important}.p-xl-1{padding:.25rem!important}.pt-xl-1,.py-xl-1{padding-top:.25rem!important}.pr-xl-1,.px-xl-1{padding-right:.25rem!important}.pb-xl-1,.py-xl-1{padding-bottom:.25rem!important}.pl-xl-1,.px-xl-1{padding-left:.25rem!important}.p-xl-2{padding:.5rem!important}.pt-xl-2,.py-xl-2{padding-top:.5rem!important}.pr-xl-2,.px-xl-2{padding-right:.5rem!important}.pb-xl-2,.py-xl-2{padding-bottom:.5rem!important}.pl-xl-2,.px-xl-2{padding-left:.5rem!important}.p-xl-3{padding:1rem!important}.pt-xl-3,.py-xl-3{padding-top:1rem!important}.pr-xl-3,.px-xl-3{padding-right:1rem!important}.pb-xl-3,.py-xl-3{padding-bottom:1rem!important}.pl-xl-3,.px-xl-3{padding-left:1rem!important}.p-xl-4{padding:1.5rem!important}.pt-xl-4,.py-xl-4{padding-top:1.5rem!important}.pr-xl-4,.px-xl-4{padding-right:1.5rem!important}.pb-xl-4,.py-xl-4{padding-bottom:1.5rem!important}.pl-xl-4,.px-xl-4{padding-left:1.5rem!important}.p-xl-5{padding:3rem!important}.pt-xl-5,.py-xl-5{padding-top:3rem!important}.pr-xl-5,.px-xl-5{padding-right:3rem!important}.pb-xl-5,.py-xl-5{padding-bottom:3rem!important}.pl-xl-5,.px-xl-5{padding-left:3rem!important}.m-xl-n1{margin:-.25rem!important}.mt-xl-n1,.my-xl-n1{margin-top:-.25rem!important}.mr-xl-n1,.mx-xl-n1{margin-right:-.25rem!important}.mb-xl-n1,.my-xl-n1{margin-bottom:-.25rem!important}.ml-xl-n1,.mx-xl-n1{margin-left:-.25rem!important}.m-xl-n2{margin:-.5rem!important}.mt-xl-n2,.my-xl-n2{margin-top:-.5rem!important}.mr-xl-n2,.mx-xl-n2{margin-right:-.5rem!important}.mb-xl-n2,.my-xl-n2{margin-bottom:-.5rem!important}.ml-xl-n2,.mx-xl-n2{margin-left:-.5rem!important}.m-xl-n3{margin:-1rem!important}.mt-xl-n3,.my-xl-n3{margin-top:-1rem!important}.mr-xl-n3,.mx-xl-n3{margin-right:-1rem!important}.mb-xl-n3,.my-xl-n3{margin-bottom:-1rem!important}.ml-xl-n3,.mx-xl-n3{margin-left:-1rem!important}.m-xl-n4{margin:-1.5rem!important}.mt-xl-n4,.my-xl-n4{margin-top:-1.5rem!important}.mr-xl-n4,.mx-xl-n4{margin-right:-1.5rem!important}.mb-xl-n4,.my-xl-n4{margin-bottom:-1.5rem!important}.ml-xl-n4,.mx-xl-n4{margin-left:-1.5rem!important}.m-xl-n5{margin:-3rem!important}.mt-xl-n5,.my-xl-n5{margin-top:-3rem!important}.mr-xl-n5,.mx-xl-n5{margin-right:-3rem!important}.mb-xl-n5,.my-xl-n5{margin-bottom:-3rem!important}.ml-xl-n5,.mx-xl-n5{margin-left:-3rem!important}.m-xl-auto{margin:auto!important}.mt-xl-auto,.my-xl-auto{margin-top:auto!important}.mr-xl-auto,.mx-xl-auto{margin-right:auto!important}.mb-xl-auto,.my-xl-auto{margin-bottom:auto!important}.ml-xl-auto,.mx-xl-auto{margin-left:auto!important}}.stretched-link:after{position:absolute;top:0;right:0;bottom:0;left:0;z-index:1;pointer-events:auto;content:"";background-color:transparent}.text-monospace{font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,monospace!important}.text-justify{text-align:justify!important}.text-wrap{white-space:normal!important}.text-nowrap{white-space:nowrap!important}.text-truncate{overflow:hidden;text-overflow:ellipsis;white-space:nowrap}.text-left{text-align:left!important}.text-right{text-align:right!important}.text-center{text-align:center!important}@media (min-width:540px){.text-sm-left{text-align:left!important}.text-sm-right{text-align:right!important}.text-sm-center{text-align:center!important}}@media (min-width:720px){.text-md-left{text-align:left!important}.text-md-right{text-align:right!important}.text-md-center{text-align:center!important}}@media (min-width:960px){.text-lg-left{text-align:left!important}.text-lg-right{text-align:right!important}.text-lg-center{text-align:center!important}}@media (min-width:1200px){.text-xl-left{text-align:left!important}.text-xl-right{text-align:right!important}.text-xl-center{text-align:center!important}}.text-lowercase{text-transform:lowercase!important}.text-uppercase{text-transform:uppercase!important}.text-capitalize{text-transform:capitalize!important}.font-weight-light{font-weight:300!important}.font-weight-lighter{font-weight:lighter!important}.font-weight-normal{font-weight:400!important}.font-weight-bold{font-weight:700!important}.font-weight-bolder{font-weight:bolder!important}.font-italic{font-style:italic!important}.text-white{color:#fff!important}.text-primary{color:#007bff!important}a.text-primary:focus,a.text-primary:hover{color:#0056b3!important}.text-secondary{color:#6c757d!important}a.text-secondary:focus,a.text-secondary:hover{color:#494f54!important}.text-success{color:#28a745!important}a.text-success:focus,a.text-success:hover{color:#19692c!important}.text-info{color:#17a2b8!important}a.text-info:focus,a.text-info:hover{color:#0f6674!important}.text-warning{color:#ffc107!important}a.text-warning:focus,a.text-warning:hover{color:#ba8b00!important}.text-danger{color:#dc3545!important}a.text-danger:focus,a.text-danger:hover{color:#a71d2a!important}.text-light{color:#f8f9fa!important}a.text-light:focus,a.text-light:hover{color:#cbd3da!important}.text-dark{color:#343a40!important}a.text-dark:focus,a.text-dark:hover{color:#121416!important}.text-body{color:#212529!important}.text-muted{color:#6c757d!important}.text-black-50{color:rgba(0,0,0,.5)!important}.text-white-50{color:hsla(0,0%,100%,.5)!important}.text-hide{font:0/0 a;color:transparent;text-shadow:none;background-color:transparent;border:0}.text-decoration-none{text-decoration:none!important}.text-break{word-wrap:break-word!important}.text-reset{color:inherit!important}.visible{visibility:visible!important}.invisible{visibility:hidden!important}@media print{*,:after,:before{text-shadow:none!important;box-shadow:none!important}a:not(.btn){text-decoration:underline}abbr[title]:after{content:" (" attr(title) ")"}pre{white-space:pre-wrap!important}blockquote,pre{border:1px solid #adb5bd;page-break-inside:avoid}thead{display:table-header-group}img,tr{page-break-inside:avoid}h2,h3,p{orphans:3;widows:3}h2,h3{page-break-after:avoid}@page{size:a3}.container,body{min-width:960px!important}.navbar{display:none}.badge{border:1px solid #000}.table{border-collapse:collapse!important}.table td,.table th{background-color:#fff!important}.table-bordered td,.table-bordered th{border:1px solid #dee2e6!important}.table-dark{color:inherit}.table-dark tbody+tbody,.table-dark td,.table-dark th,.table-dark thead th{border-color:#dee2e6}.table .thead-dark th{color:inherit;border-color:#dee2e6}}html{font-size:var(--pst-font-size-base);scroll-padding-top:calc(var(--pst-header-height) + 12px)}body{padding-top:calc(var(--pst-header-height) + 20px);background-color:#fff;font-family:var(--pst-font-family-base);font-weight:400;line-height:1.65;color:rgba(var(--pst-color-text-base),1)}p{margin-bottom:1.15rem;font-size:1em;color:rgba(var(--pst-color-paragraph),1)}p.rubric{border-bottom:1px solid #c9c9c9}a{color:rgba(var(--pst-color-link),1);text-decoration:none}a:hover{color:rgba(var(--pst-color-link-hover),1);text-decoration:underline}a.headerlink{color:rgba(var(--pst-color-headerlink),1);font-size:.8em;padding:0 4px;text-decoration:none}a.headerlink:hover{background-color:rgba(var(--pst-color-headerlink),1);color:rgba(var(--pst-color-headerlink-hover),1)}.heading-style,h1,h2,h3,h4,h5,h6{margin:2.75rem 0 1.05rem;font-family:var(--pst-font-family-heading);font-weight:400;line-height:1.15}h1{margin-top:0;font-size:var(--pst-font-size-h1);color:rgba(var(--pst-color-h1),1)}h2{font-size:var(--pst-font-size-h2);color:rgba(var(--pst-color-h2),1)}h3{font-size:var(--pst-font-size-h3);color:rgba(var(--pst-color-h3),1)}h4{font-size:var(--pst-font-size-h4);color:rgba(var(--pst-color-h4),1)}h5{font-size:var(--pst-font-size-h5);color:rgba(var(--pst-color-h5),1)}h6{font-size:var(--pst-font-size-h6);color:rgba(var(--pst-color-h6),1)}.text_small,small{font-size:var(--pst-font-size-milli)}hr{border:0;border-top:1px solid #e5e5e5}code,kbd,pre,samp{font-family:var(--pst-font-family-monospace)}code{color:rgba(var(--pst-color-inline-code),1)}pre{margin:1.5em 0;padding:10px;background-color:rgba(var(--pst-color-preformatted-background),1);color:rgba(var(--pst-color-preformatted-text),1);line-height:1.2em;border:1px solid #c9c9c9;border-radius:.2rem;box-shadow:1px 1px 1px #d8d8d8}dd{margin-top:3px;margin-bottom:10px;margin-left:30px}.navbar{position:fixed;min-height:var(--pst-header-height);width:100%;padding:0}.navbar .container-xl{height:100%}@media (min-width:960px){.navbar #navbar-end>.navbar-end-item{display:inline-block}}.navbar-brand{position:relative;height:var(--pst-header-height);width:auto;padding:.5rem 0}.navbar-brand img{max-width:100%;height:100%;width:auto}.navbar-light{background:#fff!important;box-shadow:0 .125rem .25rem 0 rgba(0,0,0,.11)}.navbar-light .navbar-nav li a.nav-link{padding:0 .5rem;color:rgba(var(--pst-color-navbar-link),1)}.navbar-light .navbar-nav li a.nav-link:hover{color:rgba(var(--pst-color-navbar-link-hover),1)}.navbar-light .navbar-nav>.active>.nav-link{font-weight:600;color:rgba(var(--pst-color-navbar-link-active),1)}.navbar-header a{padding:0 15px}.admonition,div.admonition{margin:1.5625em auto;padding:0 .6rem .8rem;overflow:hidden;page-break-inside:avoid;border-left:.2rem solid;border-left-color:rgba(var(--pst-color-admonition-default),1);border-bottom-color:rgba(var(--pst-color-admonition-default),1);border-right-color:rgba(var(--pst-color-admonition-default),1);border-top-color:rgba(var(--pst-color-admonition-default),1);border-radius:.2rem;box-shadow:0 .2rem .5rem rgba(0,0,0,.05),0 0 .0625rem rgba(0,0,0,.1);transition:color .25s,background-color .25s,border-color .25s}.admonition :last-child,div.admonition :last-child{margin-bottom:0}.admonition p.admonition-title~*,div.admonition p.admonition-title~*{padding:0 1.4rem}.admonition>ol,.admonition>ul,div.admonition>ol,div.admonition>ul{margin-left:1em}.admonition>.admonition-title,div.admonition>.admonition-title{position:relative;margin:0 -.6rem;padding:.4rem .6rem .4rem 2rem;font-weight:700;background-color:rgba(var(--pst-color-admonition-default),.1)}.admonition>.admonition-title:before,div.admonition>.admonition-title:before{position:absolute;left:.6rem;width:1rem;height:1rem;color:rgba(var(--pst-color-admonition-default),1);font-family:Font Awesome\ 5 Free;font-weight:900;content:var(--pst-icon-admonition-default)}.admonition>.admonition-title+*,div.admonition>.admonition-title+*{margin-top:.4em}.admonition.attention,div.admonition.attention{border-color:rgba(var(--pst-color-admonition-attention),1)}.admonition.attention>.admonition-title,div.admonition.attention>.admonition-title{background-color:rgba(var(--pst-color-admonition-attention),.1)}.admonition.attention>.admonition-title:before,div.admonition.attention>.admonition-title:before{color:rgba(var(--pst-color-admonition-attention),1);content:var(--pst-icon-admonition-attention)}.admonition.caution,div.admonition.caution{border-color:rgba(var(--pst-color-admonition-caution),1)}.admonition.caution>.admonition-title,div.admonition.caution>.admonition-title{background-color:rgba(var(--pst-color-admonition-caution),.1)}.admonition.caution>.admonition-title:before,div.admonition.caution>.admonition-title:before{color:rgba(var(--pst-color-admonition-caution),1);content:var(--pst-icon-admonition-caution)}.admonition.warning,div.admonition.warning{border-color:rgba(var(--pst-color-admonition-warning),1)}.admonition.warning>.admonition-title,div.admonition.warning>.admonition-title{background-color:rgba(var(--pst-color-admonition-warning),.1)}.admonition.warning>.admonition-title:before,div.admonition.warning>.admonition-title:before{color:rgba(var(--pst-color-admonition-warning),1);content:var(--pst-icon-admonition-warning)}.admonition.danger,div.admonition.danger{border-color:rgba(var(--pst-color-admonition-danger),1)}.admonition.danger>.admonition-title,div.admonition.danger>.admonition-title{background-color:rgba(var(--pst-color-admonition-danger),.1)}.admonition.danger>.admonition-title:before,div.admonition.danger>.admonition-title:before{color:rgba(var(--pst-color-admonition-danger),1);content:var(--pst-icon-admonition-danger)}.admonition.error,div.admonition.error{border-color:rgba(var(--pst-color-admonition-error),1)}.admonition.error>.admonition-title,div.admonition.error>.admonition-title{background-color:rgba(var(--pst-color-admonition-error),.1)}.admonition.error>.admonition-title:before,div.admonition.error>.admonition-title:before{color:rgba(var(--pst-color-admonition-error),1);content:var(--pst-icon-admonition-error)}.admonition.hint,div.admonition.hint{border-color:rgba(var(--pst-color-admonition-hint),1)}.admonition.hint>.admonition-title,div.admonition.hint>.admonition-title{background-color:rgba(var(--pst-color-admonition-hint),.1)}.admonition.hint>.admonition-title:before,div.admonition.hint>.admonition-title:before{color:rgba(var(--pst-color-admonition-hint),1);content:var(--pst-icon-admonition-hint)}.admonition.tip,div.admonition.tip{border-color:rgba(var(--pst-color-admonition-tip),1)}.admonition.tip>.admonition-title,div.admonition.tip>.admonition-title{background-color:rgba(var(--pst-color-admonition-tip),.1)}.admonition.tip>.admonition-title:before,div.admonition.tip>.admonition-title:before{color:rgba(var(--pst-color-admonition-tip),1);content:var(--pst-icon-admonition-tip)}.admonition.important,div.admonition.important{border-color:rgba(var(--pst-color-admonition-important),1)}.admonition.important>.admonition-title,div.admonition.important>.admonition-title{background-color:rgba(var(--pst-color-admonition-important),.1)}.admonition.important>.admonition-title:before,div.admonition.important>.admonition-title:before{color:rgba(var(--pst-color-admonition-important),1);content:var(--pst-icon-admonition-important)}.admonition.note,div.admonition.note{border-color:rgba(var(--pst-color-admonition-note),1)}.admonition.note>.admonition-title,div.admonition.note>.admonition-title{background-color:rgba(var(--pst-color-admonition-note),.1)}.admonition.note>.admonition-title:before,div.admonition.note>.admonition-title:before{color:rgba(var(--pst-color-admonition-note),1);content:var(--pst-icon-admonition-note)}table.field-list{border-collapse:separate;border-spacing:10px;margin-left:1px}table.field-list th.field-name{padding:1px 8px 1px 5px;white-space:nowrap;background-color:#eee}table.field-list td.field-body p{font-style:italic}table.field-list td.field-body p>strong{font-style:normal}table.field-list td.field-body blockquote{border-left:none;margin:0 0 .3em;padding-left:30px}.table.autosummary td:first-child{white-space:nowrap}.sig{font-family:var(--pst-font-family-monospace)}.sig-inline.c-texpr,.sig-inline.cpp-texpr{font-family:unset}.sig.c .k,.sig.c .kt,.sig.c .m,.sig.c .s,.sig.c .sc,.sig.cpp .k,.sig.cpp .kt,.sig.cpp .m,.sig.cpp .s,.sig.cpp .sc{color:rgba(var(--pst-color-text-base),1)}.sig-name{color:rgba(var(--pst-color-inline-code),1)}blockquote{padding:0 1em;color:#6a737d;border-left:.25em solid #dfe2e5}dt.label>span.brackets:not(:only-child):before{content:"["}dt.label>span.brackets:not(:only-child):after{content:"]"}a.footnote-reference{vertical-align:super;font-size:small}div.deprecated{margin-bottom:10px;margin-top:10px;padding:7px;background-color:#f3e5e5;border:1px solid #eed3d7;border-radius:.5rem}div.deprecated p{color:#b94a48;display:inline}.topic{background-color:#eee}.seealso dd{margin-top:0;margin-bottom:0}.viewcode-back{font-family:var(--pst-font-family-base)}.viewcode-block:target{background-color:#f4debf;border-top:1px solid #ac9;border-bottom:1px solid #ac9}span.guilabel{border:1px solid #7fbbe3;background:#e7f2fa;font-size:80%;font-weight:700;border-radius:4px;padding:2.4px 6px;margin:auto 2px}footer{width:100%;border-top:1px solid #ccc;padding:10px}footer .footer-item p{margin-bottom:0}.bd-search{position:relative;padding:1rem 15px;margin-right:-15px;margin-left:-15px}.bd-search .icon{position:absolute;color:#a4a6a7;left:25px;top:25px}.bd-search input{border-radius:0;border:0;border-bottom:1px solid #e5e5e5;padding-left:35px}.bd-toc{-ms-flex-order:2;order:2;height:calc(100vh - 2rem);overflow-y:auto}@supports (position:-webkit-sticky) or (position:sticky){.bd-toc{position:-webkit-sticky;position:sticky;top:calc(var(--pst-header-height) + 20px);height:calc(100vh - 5rem);overflow-y:auto}}.bd-toc .onthispage{color:#a4a6a7}.section-nav{padding-left:0;border-left:1px solid #eee;border-bottom:none}.section-nav ul{padding-left:1rem}.toc-entry,.toc-entry a{display:block}.toc-entry a{padding:.125rem 1.5rem;color:rgba(var(--pst-color-toc-link),1)}@media (min-width:1200px){.toc-entry a{padding-right:0}}.toc-entry a:hover{color:rgba(var(--pst-color-toc-link-hover),1);text-decoration:none}.bd-sidebar{padding-top:1em}@media (min-width:720px){.bd-sidebar{border-right:1px solid rgba(0,0,0,.1)}@supports (position:-webkit-sticky) or (position:sticky){.bd-sidebar{position:-webkit-sticky;position:sticky;top:calc(var(--pst-header-height) + 20px);z-index:1000;height:calc(100vh - var(--pst-header-height) - 20px)}}}.bd-sidebar.no-sidebar{border-right:0}.bd-links{padding-top:1rem;padding-bottom:1rem;margin-right:-15px;margin-left:-15px}@media (min-width:720px){.bd-links{display:block}@supports (position:-webkit-sticky) or (position:sticky){.bd-links{max-height:calc(100vh - 11rem);overflow-y:auto}}}.bd-sidenav{display:none}.bd-content{padding-top:20px}.bd-content .section{max-width:100%}.bd-content .section table{display:block;overflow:auto}.bd-toc-link{display:block;padding:.25rem 1.5rem;font-weight:600;color:rgba(0,0,0,.65)}.bd-toc-link:hover{color:rgba(0,0,0,.85);text-decoration:none}.bd-toc-item.active{margin-bottom:1rem}.bd-toc-item.active:not(:first-child){margin-top:1rem}.bd-toc-item.active>.bd-toc-link{color:rgba(0,0,0,.85)}.bd-toc-item.active>.bd-toc-link:hover{background-color:transparent}.bd-toc-item.active>.bd-sidenav{display:block}nav.bd-links p.caption{font-size:var(--pst-sidebar-caption-font-size);text-transform:uppercase;font-weight:700;position:relative;margin-top:1.25em;margin-bottom:.5em;padding:0 1.5rem;color:rgba(var(--pst-color-sidebar-caption),1)}nav.bd-links p.caption:first-child{margin-top:0}.bd-sidebar .nav{font-size:var(--pst-sidebar-font-size)}.bd-sidebar .nav ul{list-style:none;padding:0 0 0 1.5rem}.bd-sidebar .nav li>a{display:block;padding:.25rem 1.5rem;color:rgba(var(--pst-color-sidebar-link),1)}.bd-sidebar .nav li>a:hover{color:rgba(var(--pst-color-sidebar-link-hover),1);text-decoration:none;background-color:transparent}.bd-sidebar .nav li>a.reference.external:after{font-family:Font Awesome\ 5 Free;font-weight:900;content:"\f35d";font-size:.75em;margin-left:.3em}.bd-sidebar .nav .active:hover>a,.bd-sidebar .nav .active>a{font-weight:600;color:rgba(var(--pst-color-sidebar-link-active),1)}.toc-h2{font-size:.85rem}.toc-h3{font-size:.75rem}.toc-h4{font-size:.65rem}.toc-entry>.nav-link.active{font-weight:600;color:#130654;color:rgba(var(--pst-color-toc-link-active),1);background-color:transparent;border-left:2px solid rgba(var(--pst-color-toc-link-active),1)}.nav-link:hover{border-style:none}#navbar-main-elements li.nav-item i{font-size:.7rem;padding-left:2px;vertical-align:middle}.bd-toc .nav .nav{display:none}.bd-toc .nav .nav.visible,.bd-toc .nav>.active>ul{display:block}.prev-next-area{margin:20px 0}.prev-next-area p{margin:0 .3em;line-height:1.3em}.prev-next-area i{font-size:1.2em}.prev-next-area a{display:flex;align-items:center;border:none;padding:10px;max-width:45%;overflow-x:hidden;color:rgba(0,0,0,.65);text-decoration:none}.prev-next-area a p.prev-next-title{color:rgba(var(--pst-color-link),1);font-weight:600;font-size:1.1em}.prev-next-area a:hover p.prev-next-title{text-decoration:underline}.prev-next-area a .prev-next-info{flex-direction:column;margin:0 .5em}.prev-next-area a .prev-next-info .prev-next-subtitle{text-transform:capitalize}.prev-next-area a.left-prev{float:left}.prev-next-area a.right-next{float:right}.prev-next-area a.right-next div.prev-next-info{text-align:right}.alert{padding-bottom:0}.alert-info a{color:#e83e8c}#navbar-icon-links i.fa,#navbar-icon-links i.fab,#navbar-icon-links i.far,#navbar-icon-links i.fas{vertical-align:middle;font-style:normal;font-size:1.5rem;line-height:1.25}#navbar-icon-links i.fa-github-square:before{color:#333}#navbar-icon-links i.fa-twitter-square:before{color:#55acee}#navbar-icon-links i.fa-gitlab:before{color:#548}#navbar-icon-links i.fa-bitbucket:before{color:#0052cc}.tocsection{border-left:1px solid #eee;padding:.3rem 1.5rem}.tocsection i{padding-right:.5rem}.editthispage{padding-top:2rem}.editthispage a{color:var(--pst-color-sidebar-link-active)}.xr-wrap[hidden]{display:block!important}.toctree-checkbox{position:absolute;display:none}.toctree-checkbox~ul{display:none}.toctree-checkbox~label i{transform:rotate(0deg)}.toctree-checkbox:checked~ul{display:block}.toctree-checkbox:checked~label i{transform:rotate(180deg)}.bd-sidebar li{position:relative}.bd-sidebar label{position:absolute;top:0;right:0;height:30px;width:30px;cursor:pointer;display:flex;justify-content:center;align-items:center}.bd-sidebar label:hover{background:rgba(var(--pst-color-sidebar-expander-background-hover),1)}.bd-sidebar label i{display:inline-block;font-size:.75rem;text-align:center}.bd-sidebar label i:hover{color:rgba(var(--pst-color-sidebar-link-hover),1)}.bd-sidebar li.has-children>.reference{padding-right:30px}div.doctest>div.highlight span.gp,span.linenos,table.highlighttable td.linenos{user-select:none;-webkit-user-select:text;-webkit-user-select:none;-moz-user-select:none;-ms-user-select:none}.docutils.container{padding-left:unset;padding-right:unset} \ No newline at end of file diff --git a/_preview/21/_static/css/theme.css b/_preview/21/_static/css/theme.css deleted file mode 100644 index 2e03fe3..0000000 --- a/_preview/21/_static/css/theme.css +++ /dev/null @@ -1,120 +0,0 @@ -/* Provided by the Sphinx base theme template at build time */ -@import "../basic.css"; - -:root { - /***************************************************************************** - * Theme config - **/ - --pst-header-height: 60px; - - /***************************************************************************** - * Font size - **/ - --pst-font-size-base: 15px; /* base font size - applied at body / html level */ - - /* heading font sizes */ - --pst-font-size-h1: 36px; - --pst-font-size-h2: 32px; - --pst-font-size-h3: 26px; - --pst-font-size-h4: 21px; - --pst-font-size-h5: 18px; - --pst-font-size-h6: 16px; - - /* smaller then heading font sizes*/ - --pst-font-size-milli: 12px; - - --pst-sidebar-font-size: .9em; - --pst-sidebar-caption-font-size: .9em; - - /***************************************************************************** - * Font family - **/ - /* These are adapted from https://systemfontstack.com/ */ - --pst-font-family-base-system: -apple-system, BlinkMacSystemFont, Segoe UI, "Helvetica Neue", - Arial, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol; - --pst-font-family-monospace-system: "SFMono-Regular", Menlo, Consolas, Monaco, - Liberation Mono, Lucida Console, monospace; - - --pst-font-family-base: var(--pst-font-family-base-system); - --pst-font-family-heading: var(--pst-font-family-base); - --pst-font-family-monospace: var(--pst-font-family-monospace-system); - - /***************************************************************************** - * Color - * - * Colors are defined in rgb string way, "red, green, blue" - **/ - --pst-color-primary: 19, 6, 84; - --pst-color-success: 40, 167, 69; - --pst-color-info: 0, 123, 255; /*23, 162, 184;*/ - --pst-color-warning: 255, 193, 7; - --pst-color-danger: 220, 53, 69; - --pst-color-text-base: 51, 51, 51; - - --pst-color-h1: var(--pst-color-primary); - --pst-color-h2: var(--pst-color-primary); - --pst-color-h3: var(--pst-color-text-base); - --pst-color-h4: var(--pst-color-text-base); - --pst-color-h5: var(--pst-color-text-base); - --pst-color-h6: var(--pst-color-text-base); - --pst-color-paragraph: var(--pst-color-text-base); - --pst-color-link: 0, 91, 129; - --pst-color-link-hover: 227, 46, 0; - --pst-color-headerlink: 198, 15, 15; - --pst-color-headerlink-hover: 255, 255, 255; - --pst-color-preformatted-text: 34, 34, 34; - --pst-color-preformatted-background: 250, 250, 250; - --pst-color-inline-code: 232, 62, 140; - - --pst-color-active-navigation: 19, 6, 84; - --pst-color-navbar-link: 77, 77, 77; - --pst-color-navbar-link-hover: var(--pst-color-active-navigation); - --pst-color-navbar-link-active: var(--pst-color-active-navigation); - --pst-color-sidebar-link: 77, 77, 77; - --pst-color-sidebar-link-hover: var(--pst-color-active-navigation); - --pst-color-sidebar-link-active: var(--pst-color-active-navigation); - --pst-color-sidebar-expander-background-hover: 244, 244, 244; - --pst-color-sidebar-caption: 77, 77, 77; - --pst-color-toc-link: 119, 117, 122; - --pst-color-toc-link-hover: var(--pst-color-active-navigation); - --pst-color-toc-link-active: var(--pst-color-active-navigation); - - /***************************************************************************** - * Icon - **/ - - /* font awesome icons*/ - --pst-icon-check-circle: '\f058'; - --pst-icon-info-circle: '\f05a'; - --pst-icon-exclamation-triangle: '\f071'; - --pst-icon-exclamation-circle: '\f06a'; - --pst-icon-times-circle: '\f057'; - --pst-icon-lightbulb: '\f0eb'; - - /***************************************************************************** - * Admonitions - **/ - - --pst-color-admonition-default: var(--pst-color-info); - --pst-color-admonition-note: var(--pst-color-info); - --pst-color-admonition-attention: var(--pst-color-warning); - --pst-color-admonition-caution: var(--pst-color-warning); - --pst-color-admonition-warning: var(--pst-color-warning); - --pst-color-admonition-danger: var(--pst-color-danger); - --pst-color-admonition-error: var(--pst-color-danger); - --pst-color-admonition-hint: var(--pst-color-success); - --pst-color-admonition-tip: var(--pst-color-success); - --pst-color-admonition-important: var(--pst-color-success); - - --pst-icon-admonition-default: var(--pst-icon-info-circle); - --pst-icon-admonition-note: var(--pst-icon-info-circle); - --pst-icon-admonition-attention: var(--pst-icon-exclamation-circle); - --pst-icon-admonition-caution: var(--pst-icon-exclamation-triangle); - --pst-icon-admonition-warning: var(--pst-icon-exclamation-triangle); - --pst-icon-admonition-danger: var(--pst-icon-exclamation-triangle); - --pst-icon-admonition-error: var(--pst-icon-times-circle); - --pst-icon-admonition-hint: var(--pst-icon-lightbulb); - --pst-icon-admonition-tip: var(--pst-icon-lightbulb); - --pst-icon-admonition-important: var(--pst-icon-exclamation-circle); - -} diff --git a/_preview/21/_static/design-style.4045f2051d55cab465a707391d5b2007.min.css b/_preview/21/_static/design-style.4045f2051d55cab465a707391d5b2007.min.css deleted file mode 100644 index 3225661..0000000 --- a/_preview/21/_static/design-style.4045f2051d55cab465a707391d5b2007.min.css +++ /dev/null @@ -1 +0,0 @@ -.sd-bg-primary{background-color:var(--sd-color-primary) !important}.sd-bg-text-primary{color:var(--sd-color-primary-text) !important}button.sd-bg-primary:focus,button.sd-bg-primary:hover{background-color:var(--sd-color-primary-highlight) !important}a.sd-bg-primary:focus,a.sd-bg-primary:hover{background-color:var(--sd-color-primary-highlight) !important}.sd-bg-secondary{background-color:var(--sd-color-secondary) !important}.sd-bg-text-secondary{color:var(--sd-color-secondary-text) !important}button.sd-bg-secondary:focus,button.sd-bg-secondary:hover{background-color:var(--sd-color-secondary-highlight) !important}a.sd-bg-secondary:focus,a.sd-bg-secondary:hover{background-color:var(--sd-color-secondary-highlight) !important}.sd-bg-success{background-color:var(--sd-color-success) !important}.sd-bg-text-success{color:var(--sd-color-success-text) !important}button.sd-bg-success:focus,button.sd-bg-success:hover{background-color:var(--sd-color-success-highlight) !important}a.sd-bg-success:focus,a.sd-bg-success:hover{background-color:var(--sd-color-success-highlight) !important}.sd-bg-info{background-color:var(--sd-color-info) !important}.sd-bg-text-info{color:var(--sd-color-info-text) !important}button.sd-bg-info:focus,button.sd-bg-info:hover{background-color:var(--sd-color-info-highlight) !important}a.sd-bg-info:focus,a.sd-bg-info:hover{background-color:var(--sd-color-info-highlight) !important}.sd-bg-warning{background-color:var(--sd-color-warning) !important}.sd-bg-text-warning{color:var(--sd-color-warning-text) !important}button.sd-bg-warning:focus,button.sd-bg-warning:hover{background-color:var(--sd-color-warning-highlight) !important}a.sd-bg-warning:focus,a.sd-bg-warning:hover{background-color:var(--sd-color-warning-highlight) !important}.sd-bg-danger{background-color:var(--sd-color-danger) !important}.sd-bg-text-danger{color:var(--sd-color-danger-text) !important}button.sd-bg-danger:focus,button.sd-bg-danger:hover{background-color:var(--sd-color-danger-highlight) !important}a.sd-bg-danger:focus,a.sd-bg-danger:hover{background-color:var(--sd-color-danger-highlight) !important}.sd-bg-light{background-color:var(--sd-color-light) !important}.sd-bg-text-light{color:var(--sd-color-light-text) !important}button.sd-bg-light:focus,button.sd-bg-light:hover{background-color:var(--sd-color-light-highlight) !important}a.sd-bg-light:focus,a.sd-bg-light:hover{background-color:var(--sd-color-light-highlight) !important}.sd-bg-muted{background-color:var(--sd-color-muted) !important}.sd-bg-text-muted{color:var(--sd-color-muted-text) !important}button.sd-bg-muted:focus,button.sd-bg-muted:hover{background-color:var(--sd-color-muted-highlight) !important}a.sd-bg-muted:focus,a.sd-bg-muted:hover{background-color:var(--sd-color-muted-highlight) !important}.sd-bg-dark{background-color:var(--sd-color-dark) !important}.sd-bg-text-dark{color:var(--sd-color-dark-text) !important}button.sd-bg-dark:focus,button.sd-bg-dark:hover{background-color:var(--sd-color-dark-highlight) !important}a.sd-bg-dark:focus,a.sd-bg-dark:hover{background-color:var(--sd-color-dark-highlight) !important}.sd-bg-black{background-color:var(--sd-color-black) !important}.sd-bg-text-black{color:var(--sd-color-black-text) !important}button.sd-bg-black:focus,button.sd-bg-black:hover{background-color:var(--sd-color-black-highlight) !important}a.sd-bg-black:focus,a.sd-bg-black:hover{background-color:var(--sd-color-black-highlight) !important}.sd-bg-white{background-color:var(--sd-color-white) !important}.sd-bg-text-white{color:var(--sd-color-white-text) !important}button.sd-bg-white:focus,button.sd-bg-white:hover{background-color:var(--sd-color-white-highlight) !important}a.sd-bg-white:focus,a.sd-bg-white:hover{background-color:var(--sd-color-white-highlight) !important}.sd-text-primary,.sd-text-primary>p{color:var(--sd-color-primary) !important}a.sd-text-primary:focus,a.sd-text-primary:hover{color:var(--sd-color-primary-highlight) !important}.sd-text-secondary,.sd-text-secondary>p{color:var(--sd-color-secondary) !important}a.sd-text-secondary:focus,a.sd-text-secondary:hover{color:var(--sd-color-secondary-highlight) !important}.sd-text-success,.sd-text-success>p{color:var(--sd-color-success) !important}a.sd-text-success:focus,a.sd-text-success:hover{color:var(--sd-color-success-highlight) !important}.sd-text-info,.sd-text-info>p{color:var(--sd-color-info) !important}a.sd-text-info:focus,a.sd-text-info:hover{color:var(--sd-color-info-highlight) !important}.sd-text-warning,.sd-text-warning>p{color:var(--sd-color-warning) !important}a.sd-text-warning:focus,a.sd-text-warning:hover{color:var(--sd-color-warning-highlight) !important}.sd-text-danger,.sd-text-danger>p{color:var(--sd-color-danger) !important}a.sd-text-danger:focus,a.sd-text-danger:hover{color:var(--sd-color-danger-highlight) !important}.sd-text-light,.sd-text-light>p{color:var(--sd-color-light) !important}a.sd-text-light:focus,a.sd-text-light:hover{color:var(--sd-color-light-highlight) !important}.sd-text-muted,.sd-text-muted>p{color:var(--sd-color-muted) !important}a.sd-text-muted:focus,a.sd-text-muted:hover{color:var(--sd-color-muted-highlight) !important}.sd-text-dark,.sd-text-dark>p{color:var(--sd-color-dark) !important}a.sd-text-dark:focus,a.sd-text-dark:hover{color:var(--sd-color-dark-highlight) !important}.sd-text-black,.sd-text-black>p{color:var(--sd-color-black) !important}a.sd-text-black:focus,a.sd-text-black:hover{color:var(--sd-color-black-highlight) !important}.sd-text-white,.sd-text-white>p{color:var(--sd-color-white) !important}a.sd-text-white:focus,a.sd-text-white:hover{color:var(--sd-color-white-highlight) !important}.sd-outline-primary{border-color:var(--sd-color-primary) !important;border-style:solid !important;border-width:1px !important}a.sd-outline-primary:focus,a.sd-outline-primary:hover{border-color:var(--sd-color-primary-highlight) !important}.sd-outline-secondary{border-color:var(--sd-color-secondary) !important;border-style:solid !important;border-width:1px !important}a.sd-outline-secondary:focus,a.sd-outline-secondary:hover{border-color:var(--sd-color-secondary-highlight) !important}.sd-outline-success{border-color:var(--sd-color-success) !important;border-style:solid !important;border-width:1px !important}a.sd-outline-success:focus,a.sd-outline-success:hover{border-color:var(--sd-color-success-highlight) !important}.sd-outline-info{border-color:var(--sd-color-info) !important;border-style:solid !important;border-width:1px !important}a.sd-outline-info:focus,a.sd-outline-info:hover{border-color:var(--sd-color-info-highlight) !important}.sd-outline-warning{border-color:var(--sd-color-warning) !important;border-style:solid !important;border-width:1px !important}a.sd-outline-warning:focus,a.sd-outline-warning:hover{border-color:var(--sd-color-warning-highlight) !important}.sd-outline-danger{border-color:var(--sd-color-danger) !important;border-style:solid !important;border-width:1px !important}a.sd-outline-danger:focus,a.sd-outline-danger:hover{border-color:var(--sd-color-danger-highlight) !important}.sd-outline-light{border-color:var(--sd-color-light) !important;border-style:solid !important;border-width:1px !important}a.sd-outline-light:focus,a.sd-outline-light:hover{border-color:var(--sd-color-light-highlight) !important}.sd-outline-muted{border-color:var(--sd-color-muted) !important;border-style:solid !important;border-width:1px !important}a.sd-outline-muted:focus,a.sd-outline-muted:hover{border-color:var(--sd-color-muted-highlight) !important}.sd-outline-dark{border-color:var(--sd-color-dark) !important;border-style:solid !important;border-width:1px !important}a.sd-outline-dark:focus,a.sd-outline-dark:hover{border-color:var(--sd-color-dark-highlight) !important}.sd-outline-black{border-color:var(--sd-color-black) !important;border-style:solid !important;border-width:1px !important}a.sd-outline-black:focus,a.sd-outline-black:hover{border-color:var(--sd-color-black-highlight) !important}.sd-outline-white{border-color:var(--sd-color-white) !important;border-style:solid !important;border-width:1px !important}a.sd-outline-white:focus,a.sd-outline-white:hover{border-color:var(--sd-color-white-highlight) !important}.sd-bg-transparent{background-color:transparent !important}.sd-outline-transparent{border-color:transparent !important}.sd-text-transparent{color:transparent !important}.sd-p-0{padding:0 !important}.sd-pt-0,.sd-py-0{padding-top:0 !important}.sd-pr-0,.sd-px-0{padding-right:0 !important}.sd-pb-0,.sd-py-0{padding-bottom:0 !important}.sd-pl-0,.sd-px-0{padding-left:0 !important}.sd-p-1{padding:.25rem !important}.sd-pt-1,.sd-py-1{padding-top:.25rem !important}.sd-pr-1,.sd-px-1{padding-right:.25rem !important}.sd-pb-1,.sd-py-1{padding-bottom:.25rem !important}.sd-pl-1,.sd-px-1{padding-left:.25rem !important}.sd-p-2{padding:.5rem !important}.sd-pt-2,.sd-py-2{padding-top:.5rem !important}.sd-pr-2,.sd-px-2{padding-right:.5rem !important}.sd-pb-2,.sd-py-2{padding-bottom:.5rem !important}.sd-pl-2,.sd-px-2{padding-left:.5rem !important}.sd-p-3{padding:1rem !important}.sd-pt-3,.sd-py-3{padding-top:1rem !important}.sd-pr-3,.sd-px-3{padding-right:1rem !important}.sd-pb-3,.sd-py-3{padding-bottom:1rem !important}.sd-pl-3,.sd-px-3{padding-left:1rem !important}.sd-p-4{padding:1.5rem !important}.sd-pt-4,.sd-py-4{padding-top:1.5rem !important}.sd-pr-4,.sd-px-4{padding-right:1.5rem !important}.sd-pb-4,.sd-py-4{padding-bottom:1.5rem !important}.sd-pl-4,.sd-px-4{padding-left:1.5rem !important}.sd-p-5{padding:3rem !important}.sd-pt-5,.sd-py-5{padding-top:3rem !important}.sd-pr-5,.sd-px-5{padding-right:3rem !important}.sd-pb-5,.sd-py-5{padding-bottom:3rem !important}.sd-pl-5,.sd-px-5{padding-left:3rem !important}.sd-m-auto{margin:auto !important}.sd-mt-auto,.sd-my-auto{margin-top:auto !important}.sd-mr-auto,.sd-mx-auto{margin-right:auto !important}.sd-mb-auto,.sd-my-auto{margin-bottom:auto !important}.sd-ml-auto,.sd-mx-auto{margin-left:auto !important}.sd-m-0{margin:0 !important}.sd-mt-0,.sd-my-0{margin-top:0 !important}.sd-mr-0,.sd-mx-0{margin-right:0 !important}.sd-mb-0,.sd-my-0{margin-bottom:0 !important}.sd-ml-0,.sd-mx-0{margin-left:0 !important}.sd-m-1{margin:.25rem !important}.sd-mt-1,.sd-my-1{margin-top:.25rem !important}.sd-mr-1,.sd-mx-1{margin-right:.25rem !important}.sd-mb-1,.sd-my-1{margin-bottom:.25rem !important}.sd-ml-1,.sd-mx-1{margin-left:.25rem !important}.sd-m-2{margin:.5rem !important}.sd-mt-2,.sd-my-2{margin-top:.5rem !important}.sd-mr-2,.sd-mx-2{margin-right:.5rem !important}.sd-mb-2,.sd-my-2{margin-bottom:.5rem !important}.sd-ml-2,.sd-mx-2{margin-left:.5rem !important}.sd-m-3{margin:1rem !important}.sd-mt-3,.sd-my-3{margin-top:1rem !important}.sd-mr-3,.sd-mx-3{margin-right:1rem !important}.sd-mb-3,.sd-my-3{margin-bottom:1rem !important}.sd-ml-3,.sd-mx-3{margin-left:1rem !important}.sd-m-4{margin:1.5rem !important}.sd-mt-4,.sd-my-4{margin-top:1.5rem !important}.sd-mr-4,.sd-mx-4{margin-right:1.5rem !important}.sd-mb-4,.sd-my-4{margin-bottom:1.5rem !important}.sd-ml-4,.sd-mx-4{margin-left:1.5rem !important}.sd-m-5{margin:3rem !important}.sd-mt-5,.sd-my-5{margin-top:3rem !important}.sd-mr-5,.sd-mx-5{margin-right:3rem !important}.sd-mb-5,.sd-my-5{margin-bottom:3rem !important}.sd-ml-5,.sd-mx-5{margin-left:3rem !important}.sd-w-25{width:25% !important}.sd-w-50{width:50% !important}.sd-w-75{width:75% !important}.sd-w-100{width:100% !important}.sd-w-auto{width:auto !important}.sd-h-25{height:25% !important}.sd-h-50{height:50% !important}.sd-h-75{height:75% !important}.sd-h-100{height:100% !important}.sd-h-auto{height:auto !important}.sd-d-none{display:none !important}.sd-d-inline{display:inline !important}.sd-d-inline-block{display:inline-block !important}.sd-d-block{display:block !important}.sd-d-grid{display:grid !important}.sd-d-flex-row{display:-ms-flexbox !important;display:flex !important;flex-direction:row !important}.sd-d-flex-column{display:-ms-flexbox !important;display:flex !important;flex-direction:column !important}.sd-d-inline-flex{display:-ms-inline-flexbox !important;display:inline-flex !important}@media(min-width: 576px){.sd-d-sm-none{display:none !important}.sd-d-sm-inline{display:inline !important}.sd-d-sm-inline-block{display:inline-block !important}.sd-d-sm-block{display:block !important}.sd-d-sm-grid{display:grid !important}.sd-d-sm-flex{display:-ms-flexbox !important;display:flex !important}.sd-d-sm-inline-flex{display:-ms-inline-flexbox !important;display:inline-flex !important}}@media(min-width: 768px){.sd-d-md-none{display:none !important}.sd-d-md-inline{display:inline !important}.sd-d-md-inline-block{display:inline-block !important}.sd-d-md-block{display:block !important}.sd-d-md-grid{display:grid !important}.sd-d-md-flex{display:-ms-flexbox !important;display:flex !important}.sd-d-md-inline-flex{display:-ms-inline-flexbox !important;display:inline-flex !important}}@media(min-width: 992px){.sd-d-lg-none{display:none !important}.sd-d-lg-inline{display:inline !important}.sd-d-lg-inline-block{display:inline-block !important}.sd-d-lg-block{display:block !important}.sd-d-lg-grid{display:grid !important}.sd-d-lg-flex{display:-ms-flexbox !important;display:flex !important}.sd-d-lg-inline-flex{display:-ms-inline-flexbox !important;display:inline-flex !important}}@media(min-width: 1200px){.sd-d-xl-none{display:none !important}.sd-d-xl-inline{display:inline !important}.sd-d-xl-inline-block{display:inline-block !important}.sd-d-xl-block{display:block !important}.sd-d-xl-grid{display:grid !important}.sd-d-xl-flex{display:-ms-flexbox !important;display:flex !important}.sd-d-xl-inline-flex{display:-ms-inline-flexbox !important;display:inline-flex !important}}.sd-align-major-start{justify-content:flex-start !important}.sd-align-major-end{justify-content:flex-end !important}.sd-align-major-center{justify-content:center !important}.sd-align-major-justify{justify-content:space-between !important}.sd-align-major-spaced{justify-content:space-evenly !important}.sd-align-minor-start{align-items:flex-start !important}.sd-align-minor-end{align-items:flex-end !important}.sd-align-minor-center{align-items:center !important}.sd-align-minor-stretch{align-items:stretch !important}.sd-text-justify{text-align:justify !important}.sd-text-left{text-align:left !important}.sd-text-right{text-align:right !important}.sd-text-center{text-align:center !important}.sd-font-weight-light{font-weight:300 !important}.sd-font-weight-lighter{font-weight:lighter !important}.sd-font-weight-normal{font-weight:400 !important}.sd-font-weight-bold{font-weight:700 !important}.sd-font-weight-bolder{font-weight:bolder !important}.sd-font-italic{font-style:italic !important}.sd-text-decoration-none{text-decoration:none !important}.sd-text-lowercase{text-transform:lowercase !important}.sd-text-uppercase{text-transform:uppercase !important}.sd-text-capitalize{text-transform:capitalize !important}.sd-text-wrap{white-space:normal !important}.sd-text-nowrap{white-space:nowrap !important}.sd-text-truncate{overflow:hidden;text-overflow:ellipsis;white-space:nowrap}.sd-fs-1,.sd-fs-1>p{font-size:calc(1.375rem + 1.5vw) !important;line-height:unset !important}.sd-fs-2,.sd-fs-2>p{font-size:calc(1.325rem + 0.9vw) !important;line-height:unset !important}.sd-fs-3,.sd-fs-3>p{font-size:calc(1.3rem + 0.6vw) !important;line-height:unset !important}.sd-fs-4,.sd-fs-4>p{font-size:calc(1.275rem + 0.3vw) !important;line-height:unset !important}.sd-fs-5,.sd-fs-5>p{font-size:1.25rem !important;line-height:unset !important}.sd-fs-6,.sd-fs-6>p{font-size:1rem !important;line-height:unset !important}.sd-border-0{border:0 solid !important}.sd-border-top-0{border-top:0 solid !important}.sd-border-bottom-0{border-bottom:0 solid !important}.sd-border-right-0{border-right:0 solid !important}.sd-border-left-0{border-left:0 solid !important}.sd-border-1{border:1px solid !important}.sd-border-top-1{border-top:1px solid !important}.sd-border-bottom-1{border-bottom:1px solid !important}.sd-border-right-1{border-right:1px solid !important}.sd-border-left-1{border-left:1px solid !important}.sd-border-2{border:2px solid !important}.sd-border-top-2{border-top:2px solid !important}.sd-border-bottom-2{border-bottom:2px solid !important}.sd-border-right-2{border-right:2px solid !important}.sd-border-left-2{border-left:2px solid !important}.sd-border-3{border:3px solid !important}.sd-border-top-3{border-top:3px solid !important}.sd-border-bottom-3{border-bottom:3px solid !important}.sd-border-right-3{border-right:3px solid !important}.sd-border-left-3{border-left:3px solid !important}.sd-border-4{border:4px solid !important}.sd-border-top-4{border-top:4px solid !important}.sd-border-bottom-4{border-bottom:4px solid !important}.sd-border-right-4{border-right:4px solid !important}.sd-border-left-4{border-left:4px solid !important}.sd-border-5{border:5px solid !important}.sd-border-top-5{border-top:5px solid !important}.sd-border-bottom-5{border-bottom:5px solid !important}.sd-border-right-5{border-right:5px solid !important}.sd-border-left-5{border-left:5px solid !important}.sd-rounded-0{border-radius:0 !important}.sd-rounded-1{border-radius:.2rem !important}.sd-rounded-2{border-radius:.3rem !important}.sd-rounded-3{border-radius:.5rem !important}.sd-rounded-pill{border-radius:50rem !important}.sd-rounded-circle{border-radius:50% !important}.shadow-none{box-shadow:none !important}.sd-shadow-sm{box-shadow:0 .125rem .25rem var(--sd-color-shadow) !important}.sd-shadow-md{box-shadow:0 .5rem 1rem var(--sd-color-shadow) !important}.sd-shadow-lg{box-shadow:0 1rem 3rem var(--sd-color-shadow) !important}@keyframes sd-slide-from-left{0%{transform:translateX(-100%)}100%{transform:translateX(0)}}@keyframes sd-slide-from-right{0%{transform:translateX(200%)}100%{transform:translateX(0)}}@keyframes sd-grow100{0%{transform:scale(0);opacity:.5}100%{transform:scale(1);opacity:1}}@keyframes sd-grow50{0%{transform:scale(0.5);opacity:.5}100%{transform:scale(1);opacity:1}}@keyframes sd-grow50-rot20{0%{transform:scale(0.5) rotateZ(-20deg);opacity:.5}75%{transform:scale(1) rotateZ(5deg);opacity:1}95%{transform:scale(1) rotateZ(-1deg);opacity:1}100%{transform:scale(1) rotateZ(0);opacity:1}}.sd-animate-slide-from-left{animation:1s ease-out 0s 1 normal none running sd-slide-from-left}.sd-animate-slide-from-right{animation:1s ease-out 0s 1 normal none running sd-slide-from-right}.sd-animate-grow100{animation:1s ease-out 0s 1 normal none running sd-grow100}.sd-animate-grow50{animation:1s ease-out 0s 1 normal none running sd-grow50}.sd-animate-grow50-rot20{animation:1s ease-out 0s 1 normal none running sd-grow50-rot20}.sd-badge{display:inline-block;padding:.35em .65em;font-size:.75em;font-weight:700;line-height:1;text-align:center;white-space:nowrap;vertical-align:baseline;border-radius:.25rem}.sd-badge:empty{display:none}a.sd-badge{text-decoration:none}.sd-btn .sd-badge{position:relative;top:-1px}.sd-btn{background-color:transparent;border:1px solid transparent;border-radius:.25rem;cursor:pointer;display:inline-block;font-weight:400;font-size:1rem;line-height:1.5;padding:.375rem .75rem;text-align:center;text-decoration:none;transition:color .15s ease-in-out,background-color .15s ease-in-out,border-color .15s ease-in-out,box-shadow .15s ease-in-out;vertical-align:middle;user-select:none;-moz-user-select:none;-ms-user-select:none;-webkit-user-select:none}.sd-btn:hover{text-decoration:none}@media(prefers-reduced-motion: reduce){.sd-btn{transition:none}}.sd-btn-primary,.sd-btn-outline-primary:hover,.sd-btn-outline-primary:focus{color:var(--sd-color-primary-text) !important;background-color:var(--sd-color-primary) !important;border-color:var(--sd-color-primary) !important;border-width:1px !important;border-style:solid !important}.sd-btn-primary:hover,.sd-btn-primary:focus{color:var(--sd-color-primary-text) !important;background-color:var(--sd-color-primary-highlight) !important;border-color:var(--sd-color-primary-highlight) !important;border-width:1px !important;border-style:solid !important}.sd-btn-outline-primary{color:var(--sd-color-primary) !important;border-color:var(--sd-color-primary) !important;border-width:1px !important;border-style:solid !important}.sd-btn-secondary,.sd-btn-outline-secondary:hover,.sd-btn-outline-secondary:focus{color:var(--sd-color-secondary-text) !important;background-color:var(--sd-color-secondary) !important;border-color:var(--sd-color-secondary) !important;border-width:1px !important;border-style:solid !important}.sd-btn-secondary:hover,.sd-btn-secondary:focus{color:var(--sd-color-secondary-text) !important;background-color:var(--sd-color-secondary-highlight) !important;border-color:var(--sd-color-secondary-highlight) !important;border-width:1px !important;border-style:solid !important}.sd-btn-outline-secondary{color:var(--sd-color-secondary) !important;border-color:var(--sd-color-secondary) !important;border-width:1px !important;border-style:solid !important}.sd-btn-success,.sd-btn-outline-success:hover,.sd-btn-outline-success:focus{color:var(--sd-color-success-text) !important;background-color:var(--sd-color-success) !important;border-color:var(--sd-color-success) !important;border-width:1px !important;border-style:solid !important}.sd-btn-success:hover,.sd-btn-success:focus{color:var(--sd-color-success-text) !important;background-color:var(--sd-color-success-highlight) !important;border-color:var(--sd-color-success-highlight) !important;border-width:1px !important;border-style:solid !important}.sd-btn-outline-success{color:var(--sd-color-success) !important;border-color:var(--sd-color-success) !important;border-width:1px !important;border-style:solid !important}.sd-btn-info,.sd-btn-outline-info:hover,.sd-btn-outline-info:focus{color:var(--sd-color-info-text) !important;background-color:var(--sd-color-info) !important;border-color:var(--sd-color-info) !important;border-width:1px !important;border-style:solid !important}.sd-btn-info:hover,.sd-btn-info:focus{color:var(--sd-color-info-text) !important;background-color:var(--sd-color-info-highlight) !important;border-color:var(--sd-color-info-highlight) !important;border-width:1px !important;border-style:solid !important}.sd-btn-outline-info{color:var(--sd-color-info) !important;border-color:var(--sd-color-info) !important;border-width:1px !important;border-style:solid !important}.sd-btn-warning,.sd-btn-outline-warning:hover,.sd-btn-outline-warning:focus{color:var(--sd-color-warning-text) !important;background-color:var(--sd-color-warning) !important;border-color:var(--sd-color-warning) !important;border-width:1px !important;border-style:solid !important}.sd-btn-warning:hover,.sd-btn-warning:focus{color:var(--sd-color-warning-text) !important;background-color:var(--sd-color-warning-highlight) !important;border-color:var(--sd-color-warning-highlight) !important;border-width:1px !important;border-style:solid !important}.sd-btn-outline-warning{color:var(--sd-color-warning) !important;border-color:var(--sd-color-warning) !important;border-width:1px !important;border-style:solid !important}.sd-btn-danger,.sd-btn-outline-danger:hover,.sd-btn-outline-danger:focus{color:var(--sd-color-danger-text) !important;background-color:var(--sd-color-danger) !important;border-color:var(--sd-color-danger) !important;border-width:1px !important;border-style:solid !important}.sd-btn-danger:hover,.sd-btn-danger:focus{color:var(--sd-color-danger-text) !important;background-color:var(--sd-color-danger-highlight) !important;border-color:var(--sd-color-danger-highlight) !important;border-width:1px !important;border-style:solid !important}.sd-btn-outline-danger{color:var(--sd-color-danger) !important;border-color:var(--sd-color-danger) !important;border-width:1px !important;border-style:solid !important}.sd-btn-light,.sd-btn-outline-light:hover,.sd-btn-outline-light:focus{color:var(--sd-color-light-text) !important;background-color:var(--sd-color-light) !important;border-color:var(--sd-color-light) !important;border-width:1px !important;border-style:solid !important}.sd-btn-light:hover,.sd-btn-light:focus{color:var(--sd-color-light-text) !important;background-color:var(--sd-color-light-highlight) !important;border-color:var(--sd-color-light-highlight) !important;border-width:1px !important;border-style:solid !important}.sd-btn-outline-light{color:var(--sd-color-light) !important;border-color:var(--sd-color-light) !important;border-width:1px !important;border-style:solid !important}.sd-btn-muted,.sd-btn-outline-muted:hover,.sd-btn-outline-muted:focus{color:var(--sd-color-muted-text) !important;background-color:var(--sd-color-muted) !important;border-color:var(--sd-color-muted) !important;border-width:1px !important;border-style:solid !important}.sd-btn-muted:hover,.sd-btn-muted:focus{color:var(--sd-color-muted-text) !important;background-color:var(--sd-color-muted-highlight) !important;border-color:var(--sd-color-muted-highlight) !important;border-width:1px !important;border-style:solid !important}.sd-btn-outline-muted{color:var(--sd-color-muted) !important;border-color:var(--sd-color-muted) !important;border-width:1px !important;border-style:solid !important}.sd-btn-dark,.sd-btn-outline-dark:hover,.sd-btn-outline-dark:focus{color:var(--sd-color-dark-text) !important;background-color:var(--sd-color-dark) !important;border-color:var(--sd-color-dark) !important;border-width:1px !important;border-style:solid !important}.sd-btn-dark:hover,.sd-btn-dark:focus{color:var(--sd-color-dark-text) !important;background-color:var(--sd-color-dark-highlight) !important;border-color:var(--sd-color-dark-highlight) !important;border-width:1px !important;border-style:solid !important}.sd-btn-outline-dark{color:var(--sd-color-dark) !important;border-color:var(--sd-color-dark) !important;border-width:1px !important;border-style:solid !important}.sd-btn-black,.sd-btn-outline-black:hover,.sd-btn-outline-black:focus{color:var(--sd-color-black-text) !important;background-color:var(--sd-color-black) !important;border-color:var(--sd-color-black) !important;border-width:1px !important;border-style:solid !important}.sd-btn-black:hover,.sd-btn-black:focus{color:var(--sd-color-black-text) !important;background-color:var(--sd-color-black-highlight) !important;border-color:var(--sd-color-black-highlight) !important;border-width:1px !important;border-style:solid !important}.sd-btn-outline-black{color:var(--sd-color-black) !important;border-color:var(--sd-color-black) !important;border-width:1px !important;border-style:solid !important}.sd-btn-white,.sd-btn-outline-white:hover,.sd-btn-outline-white:focus{color:var(--sd-color-white-text) !important;background-color:var(--sd-color-white) !important;border-color:var(--sd-color-white) !important;border-width:1px !important;border-style:solid !important}.sd-btn-white:hover,.sd-btn-white:focus{color:var(--sd-color-white-text) !important;background-color:var(--sd-color-white-highlight) !important;border-color:var(--sd-color-white-highlight) !important;border-width:1px !important;border-style:solid !important}.sd-btn-outline-white{color:var(--sd-color-white) !important;border-color:var(--sd-color-white) !important;border-width:1px !important;border-style:solid !important}.sd-stretched-link::after{position:absolute;top:0;right:0;bottom:0;left:0;z-index:1;content:""}.sd-hide-link-text{font-size:0}.sd-octicon,.sd-material-icon{display:inline-block;fill:currentColor;vertical-align:middle}.sd-avatar-xs{border-radius:50%;object-fit:cover;object-position:center;width:1rem;height:1rem}.sd-avatar-sm{border-radius:50%;object-fit:cover;object-position:center;width:3rem;height:3rem}.sd-avatar-md{border-radius:50%;object-fit:cover;object-position:center;width:5rem;height:5rem}.sd-avatar-lg{border-radius:50%;object-fit:cover;object-position:center;width:7rem;height:7rem}.sd-avatar-xl{border-radius:50%;object-fit:cover;object-position:center;width:10rem;height:10rem}.sd-avatar-inherit{border-radius:50%;object-fit:cover;object-position:center;width:inherit;height:inherit}.sd-avatar-initial{border-radius:50%;object-fit:cover;object-position:center;width:initial;height:initial}.sd-card{background-clip:border-box;background-color:var(--sd-color-card-background);border:1px solid var(--sd-color-card-border);border-radius:.25rem;color:var(--sd-color-card-text);display:-ms-flexbox;display:flex;-ms-flex-direction:column;flex-direction:column;min-width:0;position:relative;word-wrap:break-word}.sd-card>hr{margin-left:0;margin-right:0}.sd-card-hover:hover{border-color:var(--sd-color-card-border-hover);transform:scale(1.01)}.sd-card-body{-ms-flex:1 1 auto;flex:1 1 auto;padding:1rem 1rem}.sd-card-title{margin-bottom:.5rem}.sd-card-subtitle{margin-top:-0.25rem;margin-bottom:0}.sd-card-text:last-child{margin-bottom:0}.sd-card-link:hover{text-decoration:none}.sd-card-link+.card-link{margin-left:1rem}.sd-card-header{padding:.5rem 1rem;margin-bottom:0;background-color:var(--sd-color-card-header);border-bottom:1px solid var(--sd-color-card-border)}.sd-card-header:first-child{border-radius:calc(0.25rem - 1px) calc(0.25rem - 1px) 0 0}.sd-card-footer{padding:.5rem 1rem;background-color:var(--sd-color-card-footer);border-top:1px solid var(--sd-color-card-border)}.sd-card-footer:last-child{border-radius:0 0 calc(0.25rem - 1px) calc(0.25rem - 1px)}.sd-card-header-tabs{margin-right:-0.5rem;margin-bottom:-0.5rem;margin-left:-0.5rem;border-bottom:0}.sd-card-header-pills{margin-right:-0.5rem;margin-left:-0.5rem}.sd-card-img-overlay{position:absolute;top:0;right:0;bottom:0;left:0;padding:1rem;border-radius:calc(0.25rem - 1px)}.sd-card-img,.sd-card-img-bottom,.sd-card-img-top{width:100%}.sd-card-img,.sd-card-img-top{border-top-left-radius:calc(0.25rem - 1px);border-top-right-radius:calc(0.25rem - 1px)}.sd-card-img,.sd-card-img-bottom{border-bottom-left-radius:calc(0.25rem - 1px);border-bottom-right-radius:calc(0.25rem - 1px)}.sd-cards-carousel{width:100%;display:flex;flex-wrap:nowrap;-ms-flex-direction:row;flex-direction:row;overflow-x:hidden;scroll-snap-type:x mandatory}.sd-cards-carousel.sd-show-scrollbar{overflow-x:auto}.sd-cards-carousel:hover,.sd-cards-carousel:focus{overflow-x:auto}.sd-cards-carousel>.sd-card{flex-shrink:0;scroll-snap-align:start}.sd-cards-carousel>.sd-card:not(:last-child){margin-right:3px}.sd-card-cols-1>.sd-card{width:90%}.sd-card-cols-2>.sd-card{width:45%}.sd-card-cols-3>.sd-card{width:30%}.sd-card-cols-4>.sd-card{width:22.5%}.sd-card-cols-5>.sd-card{width:18%}.sd-card-cols-6>.sd-card{width:15%}.sd-card-cols-7>.sd-card{width:12.8571428571%}.sd-card-cols-8>.sd-card{width:11.25%}.sd-card-cols-9>.sd-card{width:10%}.sd-card-cols-10>.sd-card{width:9%}.sd-card-cols-11>.sd-card{width:8.1818181818%}.sd-card-cols-12>.sd-card{width:7.5%}.sd-container,.sd-container-fluid,.sd-container-lg,.sd-container-md,.sd-container-sm,.sd-container-xl{margin-left:auto;margin-right:auto;padding-left:var(--sd-gutter-x, 0.75rem);padding-right:var(--sd-gutter-x, 0.75rem);width:100%}@media(min-width: 576px){.sd-container-sm,.sd-container{max-width:540px}}@media(min-width: 768px){.sd-container-md,.sd-container-sm,.sd-container{max-width:720px}}@media(min-width: 992px){.sd-container-lg,.sd-container-md,.sd-container-sm,.sd-container{max-width:960px}}@media(min-width: 1200px){.sd-container-xl,.sd-container-lg,.sd-container-md,.sd-container-sm,.sd-container{max-width:1140px}}.sd-row{--sd-gutter-x: 1.5rem;--sd-gutter-y: 0;display:-ms-flexbox;display:flex;-ms-flex-wrap:wrap;flex-wrap:wrap;margin-top:calc(var(--sd-gutter-y) * -1);margin-right:calc(var(--sd-gutter-x) * -0.5);margin-left:calc(var(--sd-gutter-x) * -0.5)}.sd-row>*{box-sizing:border-box;flex-shrink:0;width:100%;max-width:100%;padding-right:calc(var(--sd-gutter-x) * 0.5);padding-left:calc(var(--sd-gutter-x) * 0.5);margin-top:var(--sd-gutter-y)}.sd-col{flex:1 0 0%;-ms-flex:1 0 0%}.sd-row-cols-auto>*{flex:0 0 auto;width:auto}.sd-row-cols-1>*{flex:0 0 auto;-ms-flex:0 0 auto;width:100%}.sd-row-cols-2>*{flex:0 0 auto;-ms-flex:0 0 auto;width:50%}.sd-row-cols-3>*{flex:0 0 auto;-ms-flex:0 0 auto;width:33.3333333333%}.sd-row-cols-4>*{flex:0 0 auto;-ms-flex:0 0 auto;width:25%}.sd-row-cols-5>*{flex:0 0 auto;-ms-flex:0 0 auto;width:20%}.sd-row-cols-6>*{flex:0 0 auto;-ms-flex:0 0 auto;width:16.6666666667%}.sd-row-cols-7>*{flex:0 0 auto;-ms-flex:0 0 auto;width:14.2857142857%}.sd-row-cols-8>*{flex:0 0 auto;-ms-flex:0 0 auto;width:12.5%}.sd-row-cols-9>*{flex:0 0 auto;-ms-flex:0 0 auto;width:11.1111111111%}.sd-row-cols-10>*{flex:0 0 auto;-ms-flex:0 0 auto;width:10%}.sd-row-cols-11>*{flex:0 0 auto;-ms-flex:0 0 auto;width:9.0909090909%}.sd-row-cols-12>*{flex:0 0 auto;-ms-flex:0 0 auto;width:8.3333333333%}@media(min-width: 576px){.sd-col-sm{flex:1 0 0%;-ms-flex:1 0 0%}.sd-row-cols-sm-auto{flex:1 0 auto;-ms-flex:1 0 auto;width:100%}.sd-row-cols-sm-1>*{flex:0 0 auto;-ms-flex:0 0 auto;width:100%}.sd-row-cols-sm-2>*{flex:0 0 auto;-ms-flex:0 0 auto;width:50%}.sd-row-cols-sm-3>*{flex:0 0 auto;-ms-flex:0 0 auto;width:33.3333333333%}.sd-row-cols-sm-4>*{flex:0 0 auto;-ms-flex:0 0 auto;width:25%}.sd-row-cols-sm-5>*{flex:0 0 auto;-ms-flex:0 0 auto;width:20%}.sd-row-cols-sm-6>*{flex:0 0 auto;-ms-flex:0 0 auto;width:16.6666666667%}.sd-row-cols-sm-7>*{flex:0 0 auto;-ms-flex:0 0 auto;width:14.2857142857%}.sd-row-cols-sm-8>*{flex:0 0 auto;-ms-flex:0 0 auto;width:12.5%}.sd-row-cols-sm-9>*{flex:0 0 auto;-ms-flex:0 0 auto;width:11.1111111111%}.sd-row-cols-sm-10>*{flex:0 0 auto;-ms-flex:0 0 auto;width:10%}.sd-row-cols-sm-11>*{flex:0 0 auto;-ms-flex:0 0 auto;width:9.0909090909%}.sd-row-cols-sm-12>*{flex:0 0 auto;-ms-flex:0 0 auto;width:8.3333333333%}}@media(min-width: 768px){.sd-col-md{flex:1 0 0%;-ms-flex:1 0 0%}.sd-row-cols-md-auto{flex:1 0 auto;-ms-flex:1 0 auto;width:100%}.sd-row-cols-md-1>*{flex:0 0 auto;-ms-flex:0 0 auto;width:100%}.sd-row-cols-md-2>*{flex:0 0 auto;-ms-flex:0 0 auto;width:50%}.sd-row-cols-md-3>*{flex:0 0 auto;-ms-flex:0 0 auto;width:33.3333333333%}.sd-row-cols-md-4>*{flex:0 0 auto;-ms-flex:0 0 auto;width:25%}.sd-row-cols-md-5>*{flex:0 0 auto;-ms-flex:0 0 auto;width:20%}.sd-row-cols-md-6>*{flex:0 0 auto;-ms-flex:0 0 auto;width:16.6666666667%}.sd-row-cols-md-7>*{flex:0 0 auto;-ms-flex:0 0 auto;width:14.2857142857%}.sd-row-cols-md-8>*{flex:0 0 auto;-ms-flex:0 0 auto;width:12.5%}.sd-row-cols-md-9>*{flex:0 0 auto;-ms-flex:0 0 auto;width:11.1111111111%}.sd-row-cols-md-10>*{flex:0 0 auto;-ms-flex:0 0 auto;width:10%}.sd-row-cols-md-11>*{flex:0 0 auto;-ms-flex:0 0 auto;width:9.0909090909%}.sd-row-cols-md-12>*{flex:0 0 auto;-ms-flex:0 0 auto;width:8.3333333333%}}@media(min-width: 992px){.sd-col-lg{flex:1 0 0%;-ms-flex:1 0 0%}.sd-row-cols-lg-auto{flex:1 0 auto;-ms-flex:1 0 auto;width:100%}.sd-row-cols-lg-1>*{flex:0 0 auto;-ms-flex:0 0 auto;width:100%}.sd-row-cols-lg-2>*{flex:0 0 auto;-ms-flex:0 0 auto;width:50%}.sd-row-cols-lg-3>*{flex:0 0 auto;-ms-flex:0 0 auto;width:33.3333333333%}.sd-row-cols-lg-4>*{flex:0 0 auto;-ms-flex:0 0 auto;width:25%}.sd-row-cols-lg-5>*{flex:0 0 auto;-ms-flex:0 0 auto;width:20%}.sd-row-cols-lg-6>*{flex:0 0 auto;-ms-flex:0 0 auto;width:16.6666666667%}.sd-row-cols-lg-7>*{flex:0 0 auto;-ms-flex:0 0 auto;width:14.2857142857%}.sd-row-cols-lg-8>*{flex:0 0 auto;-ms-flex:0 0 auto;width:12.5%}.sd-row-cols-lg-9>*{flex:0 0 auto;-ms-flex:0 0 auto;width:11.1111111111%}.sd-row-cols-lg-10>*{flex:0 0 auto;-ms-flex:0 0 auto;width:10%}.sd-row-cols-lg-11>*{flex:0 0 auto;-ms-flex:0 0 auto;width:9.0909090909%}.sd-row-cols-lg-12>*{flex:0 0 auto;-ms-flex:0 0 auto;width:8.3333333333%}}@media(min-width: 1200px){.sd-col-xl{flex:1 0 0%;-ms-flex:1 0 0%}.sd-row-cols-xl-auto{flex:1 0 auto;-ms-flex:1 0 auto;width:100%}.sd-row-cols-xl-1>*{flex:0 0 auto;-ms-flex:0 0 auto;width:100%}.sd-row-cols-xl-2>*{flex:0 0 auto;-ms-flex:0 0 auto;width:50%}.sd-row-cols-xl-3>*{flex:0 0 auto;-ms-flex:0 0 auto;width:33.3333333333%}.sd-row-cols-xl-4>*{flex:0 0 auto;-ms-flex:0 0 auto;width:25%}.sd-row-cols-xl-5>*{flex:0 0 auto;-ms-flex:0 0 auto;width:20%}.sd-row-cols-xl-6>*{flex:0 0 auto;-ms-flex:0 0 auto;width:16.6666666667%}.sd-row-cols-xl-7>*{flex:0 0 auto;-ms-flex:0 0 auto;width:14.2857142857%}.sd-row-cols-xl-8>*{flex:0 0 auto;-ms-flex:0 0 auto;width:12.5%}.sd-row-cols-xl-9>*{flex:0 0 auto;-ms-flex:0 0 auto;width:11.1111111111%}.sd-row-cols-xl-10>*{flex:0 0 auto;-ms-flex:0 0 auto;width:10%}.sd-row-cols-xl-11>*{flex:0 0 auto;-ms-flex:0 0 auto;width:9.0909090909%}.sd-row-cols-xl-12>*{flex:0 0 auto;-ms-flex:0 0 auto;width:8.3333333333%}}.sd-col-auto{flex:0 0 auto;-ms-flex:0 0 auto;width:auto}.sd-col-1{flex:0 0 auto;-ms-flex:0 0 auto;width:8.3333333333%}.sd-col-2{flex:0 0 auto;-ms-flex:0 0 auto;width:16.6666666667%}.sd-col-3{flex:0 0 auto;-ms-flex:0 0 auto;width:25%}.sd-col-4{flex:0 0 auto;-ms-flex:0 0 auto;width:33.3333333333%}.sd-col-5{flex:0 0 auto;-ms-flex:0 0 auto;width:41.6666666667%}.sd-col-6{flex:0 0 auto;-ms-flex:0 0 auto;width:50%}.sd-col-7{flex:0 0 auto;-ms-flex:0 0 auto;width:58.3333333333%}.sd-col-8{flex:0 0 auto;-ms-flex:0 0 auto;width:66.6666666667%}.sd-col-9{flex:0 0 auto;-ms-flex:0 0 auto;width:75%}.sd-col-10{flex:0 0 auto;-ms-flex:0 0 auto;width:83.3333333333%}.sd-col-11{flex:0 0 auto;-ms-flex:0 0 auto;width:91.6666666667%}.sd-col-12{flex:0 0 auto;-ms-flex:0 0 auto;width:100%}.sd-g-0,.sd-gy-0{--sd-gutter-y: 0}.sd-g-0,.sd-gx-0{--sd-gutter-x: 0}.sd-g-1,.sd-gy-1{--sd-gutter-y: 0.25rem}.sd-g-1,.sd-gx-1{--sd-gutter-x: 0.25rem}.sd-g-2,.sd-gy-2{--sd-gutter-y: 0.5rem}.sd-g-2,.sd-gx-2{--sd-gutter-x: 0.5rem}.sd-g-3,.sd-gy-3{--sd-gutter-y: 1rem}.sd-g-3,.sd-gx-3{--sd-gutter-x: 1rem}.sd-g-4,.sd-gy-4{--sd-gutter-y: 1.5rem}.sd-g-4,.sd-gx-4{--sd-gutter-x: 1.5rem}.sd-g-5,.sd-gy-5{--sd-gutter-y: 3rem}.sd-g-5,.sd-gx-5{--sd-gutter-x: 3rem}@media(min-width: 576px){.sd-col-sm-auto{-ms-flex:0 0 auto;flex:0 0 auto;width:auto}.sd-col-sm-1{-ms-flex:0 0 auto;flex:0 0 auto;width:8.3333333333%}.sd-col-sm-2{-ms-flex:0 0 auto;flex:0 0 auto;width:16.6666666667%}.sd-col-sm-3{-ms-flex:0 0 auto;flex:0 0 auto;width:25%}.sd-col-sm-4{-ms-flex:0 0 auto;flex:0 0 auto;width:33.3333333333%}.sd-col-sm-5{-ms-flex:0 0 auto;flex:0 0 auto;width:41.6666666667%}.sd-col-sm-6{-ms-flex:0 0 auto;flex:0 0 auto;width:50%}.sd-col-sm-7{-ms-flex:0 0 auto;flex:0 0 auto;width:58.3333333333%}.sd-col-sm-8{-ms-flex:0 0 auto;flex:0 0 auto;width:66.6666666667%}.sd-col-sm-9{-ms-flex:0 0 auto;flex:0 0 auto;width:75%}.sd-col-sm-10{-ms-flex:0 0 auto;flex:0 0 auto;width:83.3333333333%}.sd-col-sm-11{-ms-flex:0 0 auto;flex:0 0 auto;width:91.6666666667%}.sd-col-sm-12{-ms-flex:0 0 auto;flex:0 0 auto;width:100%}.sd-g-sm-0,.sd-gy-sm-0{--sd-gutter-y: 0}.sd-g-sm-0,.sd-gx-sm-0{--sd-gutter-x: 0}.sd-g-sm-1,.sd-gy-sm-1{--sd-gutter-y: 0.25rem}.sd-g-sm-1,.sd-gx-sm-1{--sd-gutter-x: 0.25rem}.sd-g-sm-2,.sd-gy-sm-2{--sd-gutter-y: 0.5rem}.sd-g-sm-2,.sd-gx-sm-2{--sd-gutter-x: 0.5rem}.sd-g-sm-3,.sd-gy-sm-3{--sd-gutter-y: 1rem}.sd-g-sm-3,.sd-gx-sm-3{--sd-gutter-x: 1rem}.sd-g-sm-4,.sd-gy-sm-4{--sd-gutter-y: 1.5rem}.sd-g-sm-4,.sd-gx-sm-4{--sd-gutter-x: 1.5rem}.sd-g-sm-5,.sd-gy-sm-5{--sd-gutter-y: 3rem}.sd-g-sm-5,.sd-gx-sm-5{--sd-gutter-x: 3rem}}@media(min-width: 768px){.sd-col-md-auto{-ms-flex:0 0 auto;flex:0 0 auto;width:auto}.sd-col-md-1{-ms-flex:0 0 auto;flex:0 0 auto;width:8.3333333333%}.sd-col-md-2{-ms-flex:0 0 auto;flex:0 0 auto;width:16.6666666667%}.sd-col-md-3{-ms-flex:0 0 auto;flex:0 0 auto;width:25%}.sd-col-md-4{-ms-flex:0 0 auto;flex:0 0 auto;width:33.3333333333%}.sd-col-md-5{-ms-flex:0 0 auto;flex:0 0 auto;width:41.6666666667%}.sd-col-md-6{-ms-flex:0 0 auto;flex:0 0 auto;width:50%}.sd-col-md-7{-ms-flex:0 0 auto;flex:0 0 auto;width:58.3333333333%}.sd-col-md-8{-ms-flex:0 0 auto;flex:0 0 auto;width:66.6666666667%}.sd-col-md-9{-ms-flex:0 0 auto;flex:0 0 auto;width:75%}.sd-col-md-10{-ms-flex:0 0 auto;flex:0 0 auto;width:83.3333333333%}.sd-col-md-11{-ms-flex:0 0 auto;flex:0 0 auto;width:91.6666666667%}.sd-col-md-12{-ms-flex:0 0 auto;flex:0 0 auto;width:100%}.sd-g-md-0,.sd-gy-md-0{--sd-gutter-y: 0}.sd-g-md-0,.sd-gx-md-0{--sd-gutter-x: 0}.sd-g-md-1,.sd-gy-md-1{--sd-gutter-y: 0.25rem}.sd-g-md-1,.sd-gx-md-1{--sd-gutter-x: 0.25rem}.sd-g-md-2,.sd-gy-md-2{--sd-gutter-y: 0.5rem}.sd-g-md-2,.sd-gx-md-2{--sd-gutter-x: 0.5rem}.sd-g-md-3,.sd-gy-md-3{--sd-gutter-y: 1rem}.sd-g-md-3,.sd-gx-md-3{--sd-gutter-x: 1rem}.sd-g-md-4,.sd-gy-md-4{--sd-gutter-y: 1.5rem}.sd-g-md-4,.sd-gx-md-4{--sd-gutter-x: 1.5rem}.sd-g-md-5,.sd-gy-md-5{--sd-gutter-y: 3rem}.sd-g-md-5,.sd-gx-md-5{--sd-gutter-x: 3rem}}@media(min-width: 992px){.sd-col-lg-auto{-ms-flex:0 0 auto;flex:0 0 auto;width:auto}.sd-col-lg-1{-ms-flex:0 0 auto;flex:0 0 auto;width:8.3333333333%}.sd-col-lg-2{-ms-flex:0 0 auto;flex:0 0 auto;width:16.6666666667%}.sd-col-lg-3{-ms-flex:0 0 auto;flex:0 0 auto;width:25%}.sd-col-lg-4{-ms-flex:0 0 auto;flex:0 0 auto;width:33.3333333333%}.sd-col-lg-5{-ms-flex:0 0 auto;flex:0 0 auto;width:41.6666666667%}.sd-col-lg-6{-ms-flex:0 0 auto;flex:0 0 auto;width:50%}.sd-col-lg-7{-ms-flex:0 0 auto;flex:0 0 auto;width:58.3333333333%}.sd-col-lg-8{-ms-flex:0 0 auto;flex:0 0 auto;width:66.6666666667%}.sd-col-lg-9{-ms-flex:0 0 auto;flex:0 0 auto;width:75%}.sd-col-lg-10{-ms-flex:0 0 auto;flex:0 0 auto;width:83.3333333333%}.sd-col-lg-11{-ms-flex:0 0 auto;flex:0 0 auto;width:91.6666666667%}.sd-col-lg-12{-ms-flex:0 0 auto;flex:0 0 auto;width:100%}.sd-g-lg-0,.sd-gy-lg-0{--sd-gutter-y: 0}.sd-g-lg-0,.sd-gx-lg-0{--sd-gutter-x: 0}.sd-g-lg-1,.sd-gy-lg-1{--sd-gutter-y: 0.25rem}.sd-g-lg-1,.sd-gx-lg-1{--sd-gutter-x: 0.25rem}.sd-g-lg-2,.sd-gy-lg-2{--sd-gutter-y: 0.5rem}.sd-g-lg-2,.sd-gx-lg-2{--sd-gutter-x: 0.5rem}.sd-g-lg-3,.sd-gy-lg-3{--sd-gutter-y: 1rem}.sd-g-lg-3,.sd-gx-lg-3{--sd-gutter-x: 1rem}.sd-g-lg-4,.sd-gy-lg-4{--sd-gutter-y: 1.5rem}.sd-g-lg-4,.sd-gx-lg-4{--sd-gutter-x: 1.5rem}.sd-g-lg-5,.sd-gy-lg-5{--sd-gutter-y: 3rem}.sd-g-lg-5,.sd-gx-lg-5{--sd-gutter-x: 3rem}}@media(min-width: 1200px){.sd-col-xl-auto{-ms-flex:0 0 auto;flex:0 0 auto;width:auto}.sd-col-xl-1{-ms-flex:0 0 auto;flex:0 0 auto;width:8.3333333333%}.sd-col-xl-2{-ms-flex:0 0 auto;flex:0 0 auto;width:16.6666666667%}.sd-col-xl-3{-ms-flex:0 0 auto;flex:0 0 auto;width:25%}.sd-col-xl-4{-ms-flex:0 0 auto;flex:0 0 auto;width:33.3333333333%}.sd-col-xl-5{-ms-flex:0 0 auto;flex:0 0 auto;width:41.6666666667%}.sd-col-xl-6{-ms-flex:0 0 auto;flex:0 0 auto;width:50%}.sd-col-xl-7{-ms-flex:0 0 auto;flex:0 0 auto;width:58.3333333333%}.sd-col-xl-8{-ms-flex:0 0 auto;flex:0 0 auto;width:66.6666666667%}.sd-col-xl-9{-ms-flex:0 0 auto;flex:0 0 auto;width:75%}.sd-col-xl-10{-ms-flex:0 0 auto;flex:0 0 auto;width:83.3333333333%}.sd-col-xl-11{-ms-flex:0 0 auto;flex:0 0 auto;width:91.6666666667%}.sd-col-xl-12{-ms-flex:0 0 auto;flex:0 0 auto;width:100%}.sd-g-xl-0,.sd-gy-xl-0{--sd-gutter-y: 0}.sd-g-xl-0,.sd-gx-xl-0{--sd-gutter-x: 0}.sd-g-xl-1,.sd-gy-xl-1{--sd-gutter-y: 0.25rem}.sd-g-xl-1,.sd-gx-xl-1{--sd-gutter-x: 0.25rem}.sd-g-xl-2,.sd-gy-xl-2{--sd-gutter-y: 0.5rem}.sd-g-xl-2,.sd-gx-xl-2{--sd-gutter-x: 0.5rem}.sd-g-xl-3,.sd-gy-xl-3{--sd-gutter-y: 1rem}.sd-g-xl-3,.sd-gx-xl-3{--sd-gutter-x: 1rem}.sd-g-xl-4,.sd-gy-xl-4{--sd-gutter-y: 1.5rem}.sd-g-xl-4,.sd-gx-xl-4{--sd-gutter-x: 1.5rem}.sd-g-xl-5,.sd-gy-xl-5{--sd-gutter-y: 3rem}.sd-g-xl-5,.sd-gx-xl-5{--sd-gutter-x: 3rem}}.sd-flex-row-reverse{flex-direction:row-reverse !important}details.sd-dropdown{position:relative}details.sd-dropdown .sd-summary-title{font-weight:700;padding-right:3em !important;-moz-user-select:none;-ms-user-select:none;-webkit-user-select:none;user-select:none}details.sd-dropdown:hover{cursor:pointer}details.sd-dropdown .sd-summary-content{cursor:default}details.sd-dropdown summary{list-style:none;padding:1em}details.sd-dropdown summary .sd-octicon.no-title{vertical-align:middle}details.sd-dropdown[open] summary .sd-octicon.no-title{visibility:hidden}details.sd-dropdown summary::-webkit-details-marker{display:none}details.sd-dropdown summary:focus{outline:none}details.sd-dropdown .sd-summary-icon{margin-right:.5em}details.sd-dropdown .sd-summary-icon svg{opacity:.8}details.sd-dropdown summary:hover .sd-summary-up svg,details.sd-dropdown summary:hover .sd-summary-down svg{opacity:1;transform:scale(1.1)}details.sd-dropdown .sd-summary-up svg,details.sd-dropdown .sd-summary-down svg{display:block;opacity:.6}details.sd-dropdown .sd-summary-up,details.sd-dropdown .sd-summary-down{pointer-events:none;position:absolute;right:1em;top:1em}details.sd-dropdown[open]>.sd-summary-title .sd-summary-down{visibility:hidden}details.sd-dropdown:not([open])>.sd-summary-title .sd-summary-up{visibility:hidden}details.sd-dropdown:not([open]).sd-card{border:none}details.sd-dropdown:not([open])>.sd-card-header{border:1px solid var(--sd-color-card-border);border-radius:.25rem}details.sd-dropdown.sd-fade-in[open] summary~*{-moz-animation:sd-fade-in .5s ease-in-out;-webkit-animation:sd-fade-in .5s ease-in-out;animation:sd-fade-in .5s ease-in-out}details.sd-dropdown.sd-fade-in-slide-down[open] summary~*{-moz-animation:sd-fade-in .5s ease-in-out,sd-slide-down .5s ease-in-out;-webkit-animation:sd-fade-in .5s ease-in-out,sd-slide-down .5s ease-in-out;animation:sd-fade-in .5s ease-in-out,sd-slide-down .5s ease-in-out}.sd-col>.sd-dropdown{width:100%}.sd-summary-content>.sd-tab-set:first-child{margin-top:0}@keyframes sd-fade-in{0%{opacity:0}100%{opacity:1}}@keyframes sd-slide-down{0%{transform:translate(0, -10px)}100%{transform:translate(0, 0)}}.sd-tab-set{border-radius:.125rem;display:flex;flex-wrap:wrap;margin:1em 0;position:relative}.sd-tab-set>input{opacity:0;position:absolute}.sd-tab-set>input:checked+label{border-color:var(--sd-color-tabs-underline-active);color:var(--sd-color-tabs-label-active)}.sd-tab-set>input:checked+label+.sd-tab-content{display:block}.sd-tab-set>input:not(:checked)+label:hover{color:var(--sd-color-tabs-label-hover);border-color:var(--sd-color-tabs-underline-hover)}.sd-tab-set>input:focus+label{outline-style:auto}.sd-tab-set>input:not(.focus-visible)+label{outline:none;-webkit-tap-highlight-color:transparent}.sd-tab-set>label{border-bottom:.125rem solid transparent;margin-bottom:0;color:var(--sd-color-tabs-label-inactive);border-color:var(--sd-color-tabs-underline-inactive);cursor:pointer;font-size:var(--sd-fontsize-tabs-label);font-weight:700;padding:1em 1.25em .5em;transition:color 250ms;width:auto;z-index:1}html .sd-tab-set>label:hover{color:var(--sd-color-tabs-label-active)}.sd-col>.sd-tab-set{width:100%}.sd-tab-content{box-shadow:0 -0.0625rem var(--sd-color-tabs-overline),0 .0625rem var(--sd-color-tabs-underline);display:none;order:99;padding-bottom:.75rem;padding-top:.75rem;width:100%}.sd-tab-content>:first-child{margin-top:0 !important}.sd-tab-content>:last-child{margin-bottom:0 !important}.sd-tab-content>.sd-tab-set{margin:0}.sd-sphinx-override,.sd-sphinx-override *{-moz-box-sizing:border-box;-webkit-box-sizing:border-box;box-sizing:border-box}.sd-sphinx-override p{margin-top:0}:root{--sd-color-primary: #007bff;--sd-color-secondary: #6c757d;--sd-color-success: #28a745;--sd-color-info: #17a2b8;--sd-color-warning: #f0b37e;--sd-color-danger: #dc3545;--sd-color-light: #f8f9fa;--sd-color-muted: #6c757d;--sd-color-dark: #212529;--sd-color-black: black;--sd-color-white: white;--sd-color-primary-highlight: #0069d9;--sd-color-secondary-highlight: #5c636a;--sd-color-success-highlight: #228e3b;--sd-color-info-highlight: #148a9c;--sd-color-warning-highlight: #cc986b;--sd-color-danger-highlight: #bb2d3b;--sd-color-light-highlight: #d3d4d5;--sd-color-muted-highlight: #5c636a;--sd-color-dark-highlight: #1c1f23;--sd-color-black-highlight: black;--sd-color-white-highlight: #d9d9d9;--sd-color-primary-text: #fff;--sd-color-secondary-text: #fff;--sd-color-success-text: #fff;--sd-color-info-text: #fff;--sd-color-warning-text: #212529;--sd-color-danger-text: #fff;--sd-color-light-text: #212529;--sd-color-muted-text: #fff;--sd-color-dark-text: #fff;--sd-color-black-text: #fff;--sd-color-white-text: #212529;--sd-color-shadow: rgba(0, 0, 0, 0.15);--sd-color-card-border: rgba(0, 0, 0, 0.125);--sd-color-card-border-hover: hsla(231, 99%, 66%, 1);--sd-color-card-background: transparent;--sd-color-card-text: inherit;--sd-color-card-header: transparent;--sd-color-card-footer: transparent;--sd-color-tabs-label-active: hsla(231, 99%, 66%, 1);--sd-color-tabs-label-hover: hsla(231, 99%, 66%, 1);--sd-color-tabs-label-inactive: hsl(0, 0%, 66%);--sd-color-tabs-underline-active: hsla(231, 99%, 66%, 1);--sd-color-tabs-underline-hover: rgba(178, 206, 245, 0.62);--sd-color-tabs-underline-inactive: transparent;--sd-color-tabs-overline: rgb(222, 222, 222);--sd-color-tabs-underline: rgb(222, 222, 222);--sd-fontsize-tabs-label: 1rem} diff --git a/_preview/21/_static/design-tabs.js b/_preview/21/_static/design-tabs.js deleted file mode 100644 index 36b38cf..0000000 --- a/_preview/21/_static/design-tabs.js +++ /dev/null @@ -1,27 +0,0 @@ -var sd_labels_by_text = {}; - -function ready() { - const li = document.getElementsByClassName("sd-tab-label"); - for (const label of li) { - syncId = label.getAttribute("data-sync-id"); - if (syncId) { - label.onclick = onLabelClick; - if (!sd_labels_by_text[syncId]) { - sd_labels_by_text[syncId] = []; - } - sd_labels_by_text[syncId].push(label); - } - } -} - -function onLabelClick() { - // Activate other inputs with the same sync id. - syncId = this.getAttribute("data-sync-id"); - for (label of sd_labels_by_text[syncId]) { - if (label === this) continue; - label.previousElementSibling.checked = true; - } - window.localStorage.setItem("sphinx-design-last-tab", syncId); -} - -document.addEventListener("DOMContentLoaded", ready, false); diff --git a/_preview/21/_static/doctools.js b/_preview/21/_static/doctools.js deleted file mode 100644 index e1bfd70..0000000 --- a/_preview/21/_static/doctools.js +++ /dev/null @@ -1,358 +0,0 @@ -/* - * doctools.js - * ~~~~~~~~~~~ - * - * Sphinx JavaScript utilities for all documentation. - * - * :copyright: Copyright 2007-2022 by the Sphinx team, see AUTHORS. - * :license: BSD, see LICENSE for details. - * - */ - -/** - * select a different prefix for underscore - */ -$u = _.noConflict(); - -/** - * make the code below compatible with browsers without - * an installed firebug like debugger -if (!window.console || !console.firebug) { - var names = ["log", "debug", "info", "warn", "error", "assert", "dir", - "dirxml", "group", "groupEnd", "time", "timeEnd", "count", "trace", - "profile", "profileEnd"]; - window.console = {}; - for (var i = 0; i < names.length; ++i) - window.console[names[i]] = function() {}; -} - */ - -/** - * small helper function to urldecode strings - * - * See https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/decodeURIComponent#Decoding_query_parameters_from_a_URL - */ -jQuery.urldecode = function(x) { - if (!x) { - return x - } - return decodeURIComponent(x.replace(/\+/g, ' ')); -}; - -/** - * small helper function to urlencode strings - */ -jQuery.urlencode = encodeURIComponent; - -/** - * This function returns the parsed url parameters of the - * current request. Multiple values per key are supported, - * it will always return arrays of strings for the value parts. - */ -jQuery.getQueryParameters = function(s) { - if (typeof s === 'undefined') - s = document.location.search; - var parts = s.substr(s.indexOf('?') + 1).split('&'); - var result = {}; - for (var i = 0; i < parts.length; i++) { - var tmp = parts[i].split('=', 2); - var key = jQuery.urldecode(tmp[0]); - var value = jQuery.urldecode(tmp[1]); - if (key in result) - result[key].push(value); - else - result[key] = [value]; - } - return result; -}; - -/** - * highlight a given string on a jquery object by wrapping it in - * span elements with the given class name. - */ -jQuery.fn.highlightText = function(text, className) { - function highlight(node, addItems) { - if (node.nodeType === 3) { - var val = node.nodeValue; - var pos = val.toLowerCase().indexOf(text); - if (pos >= 0 && - !jQuery(node.parentNode).hasClass(className) && - !jQuery(node.parentNode).hasClass("nohighlight")) { - var span; - var isInSVG = jQuery(node).closest("body, svg, foreignObject").is("svg"); - if (isInSVG) { - span = document.createElementNS("http://www.w3.org/2000/svg", "tspan"); - } else { - span = document.createElement("span"); - span.className = className; - } - span.appendChild(document.createTextNode(val.substr(pos, text.length))); - node.parentNode.insertBefore(span, node.parentNode.insertBefore( - document.createTextNode(val.substr(pos + text.length)), - node.nextSibling)); - node.nodeValue = val.substr(0, pos); - if (isInSVG) { - var rect = document.createElementNS("http://www.w3.org/2000/svg", "rect"); - var bbox = node.parentElement.getBBox(); - rect.x.baseVal.value = bbox.x; - rect.y.baseVal.value = bbox.y; - rect.width.baseVal.value = bbox.width; - rect.height.baseVal.value = bbox.height; - rect.setAttribute('class', className); - addItems.push({ - "parent": node.parentNode, - "target": rect}); - } - } - } - else if (!jQuery(node).is("button, select, textarea")) { - jQuery.each(node.childNodes, function() { - highlight(this, addItems); - }); - } - } - var addItems = []; - var result = this.each(function() { - highlight(this, addItems); - }); - for (var i = 0; i < addItems.length; ++i) { - jQuery(addItems[i].parent).before(addItems[i].target); - } - return result; -}; - -/* - * backward compatibility for jQuery.browser - * This will be supported until firefox bug is fixed. - */ -if (!jQuery.browser) { - jQuery.uaMatch = function(ua) { - ua = ua.toLowerCase(); - - var match = /(chrome)[ \/]([\w.]+)/.exec(ua) || - /(webkit)[ \/]([\w.]+)/.exec(ua) || - /(opera)(?:.*version|)[ \/]([\w.]+)/.exec(ua) || - /(msie) ([\w.]+)/.exec(ua) || - ua.indexOf("compatible") < 0 && /(mozilla)(?:.*? rv:([\w.]+)|)/.exec(ua) || - []; - - return { - browser: match[ 1 ] || "", - version: match[ 2 ] || "0" - }; - }; - jQuery.browser = {}; - jQuery.browser[jQuery.uaMatch(navigator.userAgent).browser] = true; -} - -/** - * Small JavaScript module for the documentation. - */ -var Documentation = { - - init : function() { - this.fixFirefoxAnchorBug(); - this.highlightSearchWords(); - this.initIndexTable(); - this.initOnKeyListeners(); - }, - - /** - * i18n support - */ - TRANSLATIONS : {}, - PLURAL_EXPR : function(n) { return n === 1 ? 0 : 1; }, - LOCALE : 'unknown', - - // gettext and ngettext don't access this so that the functions - // can safely bound to a different name (_ = Documentation.gettext) - gettext : function(string) { - var translated = Documentation.TRANSLATIONS[string]; - if (typeof translated === 'undefined') - return string; - return (typeof translated === 'string') ? translated : translated[0]; - }, - - ngettext : function(singular, plural, n) { - var translated = Documentation.TRANSLATIONS[singular]; - if (typeof translated === 'undefined') - return (n == 1) ? singular : plural; - return translated[Documentation.PLURALEXPR(n)]; - }, - - addTranslations : function(catalog) { - for (var key in catalog.messages) - this.TRANSLATIONS[key] = catalog.messages[key]; - this.PLURAL_EXPR = new Function('n', 'return +(' + catalog.plural_expr + ')'); - this.LOCALE = catalog.locale; - }, - - /** - * add context elements like header anchor links - */ - addContextElements : function() { - $('div[id] > :header:first').each(function() { - $('\u00B6'). - attr('href', '#' + this.id). - attr('title', _('Permalink to this headline')). - appendTo(this); - }); - $('dt[id]').each(function() { - $('\u00B6'). - attr('href', '#' + this.id). - attr('title', _('Permalink to this definition')). - appendTo(this); - }); - }, - - /** - * workaround a firefox stupidity - * see: https://bugzilla.mozilla.org/show_bug.cgi?id=645075 - */ - fixFirefoxAnchorBug : function() { - if (document.location.hash && $.browser.mozilla) - window.setTimeout(function() { - document.location.href += ''; - }, 10); - }, - - /** - * highlight the search words provided in the url in the text - */ - highlightSearchWords : function() { - var params = $.getQueryParameters(); - var terms = (params.highlight) ? params.highlight[0].split(/\s+/) : []; - if (terms.length) { - var body = $('div.body'); - if (!body.length) { - body = $('body'); - } - window.setTimeout(function() { - $.each(terms, function() { - body.highlightText(this.toLowerCase(), 'highlighted'); - }); - }, 10); - $('') - .appendTo($('#searchbox')); - } - }, - - /** - * init the domain index toggle buttons - */ - initIndexTable : function() { - var togglers = $('img.toggler').click(function() { - var src = $(this).attr('src'); - var idnum = $(this).attr('id').substr(7); - $('tr.cg-' + idnum).toggle(); - if (src.substr(-9) === 'minus.png') - $(this).attr('src', src.substr(0, src.length-9) + 'plus.png'); - else - $(this).attr('src', src.substr(0, src.length-8) + 'minus.png'); - }).css('display', ''); - if (DOCUMENTATION_OPTIONS.COLLAPSE_INDEX) { - togglers.click(); - } - }, - - /** - * helper function to hide the search marks again - */ - hideSearchWords : function() { - $('#searchbox .highlight-link').fadeOut(300); - $('span.highlighted').removeClass('highlighted'); - var url = new URL(window.location); - url.searchParams.delete('highlight'); - window.history.replaceState({}, '', url); - }, - - /** - * helper function to focus on search bar - */ - focusSearchBar : function() { - $('input[name=q]').first().focus(); - }, - - /** - * make the url absolute - */ - makeURL : function(relativeURL) { - return DOCUMENTATION_OPTIONS.URL_ROOT + '/' + relativeURL; - }, - - /** - * get the current relative url - */ - getCurrentURL : function() { - var path = document.location.pathname; - var parts = path.split(/\//); - $.each(DOCUMENTATION_OPTIONS.URL_ROOT.split(/\//), function() { - if (this === '..') - parts.pop(); - }); - var url = parts.join('/'); - return path.substring(url.lastIndexOf('/') + 1, path.length - 1); - }, - - initOnKeyListeners: function() { - // only install a listener if it is really needed - if (!DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS && - !DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS) - return; - - $(document).keydown(function(event) { - var activeElementType = document.activeElement.tagName; - // don't navigate when in search box, textarea, dropdown or button - if (activeElementType !== 'TEXTAREA' && activeElementType !== 'INPUT' && activeElementType !== 'SELECT' - && activeElementType !== 'BUTTON') { - if (event.altKey || event.ctrlKey || event.metaKey) - return; - - if (!event.shiftKey) { - switch (event.key) { - case 'ArrowLeft': - if (!DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS) - break; - var prevHref = $('link[rel="prev"]').prop('href'); - if (prevHref) { - window.location.href = prevHref; - return false; - } - break; - case 'ArrowRight': - if (!DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS) - break; - var nextHref = $('link[rel="next"]').prop('href'); - if (nextHref) { - window.location.href = nextHref; - return false; - } - break; - case 'Escape': - if (!DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS) - break; - Documentation.hideSearchWords(); - return false; - } - } - - // some keyboard layouts may need Shift to get / - switch (event.key) { - case '/': - if (!DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS) - break; - Documentation.focusSearchBar(); - return false; - } - } - }); - } -}; - -// quick alias for translations -_ = Documentation.gettext; - -$(document).ready(function() { - Documentation.init(); -}); diff --git a/_preview/21/_static/documentation_options.js b/_preview/21/_static/documentation_options.js deleted file mode 100644 index 877e3c3..0000000 --- a/_preview/21/_static/documentation_options.js +++ /dev/null @@ -1,14 +0,0 @@ -var DOCUMENTATION_OPTIONS = { - URL_ROOT: document.getElementById("documentation_options").getAttribute('data-url_root'), - VERSION: '', - LANGUAGE: 'None', - COLLAPSE_INDEX: false, - BUILDER: 'html', - FILE_SUFFIX: '.html', - LINK_SUFFIX: '.html', - HAS_SOURCE: true, - SOURCELINK_SUFFIX: '', - NAVIGATION_WITH_KEYS: true, - SHOW_SEARCH_SUMMARY: true, - ENABLE_SEARCH_SHORTCUTS: true, -}; \ No newline at end of file diff --git a/_preview/21/_static/favicon.ico b/_preview/21/_static/favicon.ico deleted file mode 100644 index da6ac73..0000000 Binary files a/_preview/21/_static/favicon.ico and /dev/null differ diff --git a/_preview/21/_static/file.png b/_preview/21/_static/file.png deleted file mode 100644 index a858a41..0000000 Binary files a/_preview/21/_static/file.png and /dev/null differ diff --git a/_preview/21/_static/images/logo_binder.svg b/_preview/21/_static/images/logo_binder.svg deleted file mode 100644 index 45fecf7..0000000 --- a/_preview/21/_static/images/logo_binder.svg +++ /dev/null @@ -1,19 +0,0 @@ - - - - -logo - - - - - - - - diff --git a/_preview/21/_static/images/logo_colab.png b/_preview/21/_static/images/logo_colab.png deleted file mode 100644 index b7560ec..0000000 Binary files a/_preview/21/_static/images/logo_colab.png and /dev/null differ diff --git a/_preview/21/_static/images/logo_jupyterhub.svg b/_preview/21/_static/images/logo_jupyterhub.svg deleted file mode 100644 index 60cfe9f..0000000 --- a/_preview/21/_static/images/logo_jupyterhub.svg +++ /dev/null @@ -1 +0,0 @@ -logo_jupyterhubHub diff --git a/_preview/21/_static/jquery-3.5.1.js b/_preview/21/_static/jquery-3.5.1.js deleted file mode 100644 index 5093733..0000000 --- a/_preview/21/_static/jquery-3.5.1.js +++ /dev/null @@ -1,10872 +0,0 @@ -/*! - * jQuery JavaScript Library v3.5.1 - * https://jquery.com/ - * - * Includes Sizzle.js - * https://sizzlejs.com/ - * - * Copyright JS Foundation and other contributors - * Released under the MIT license - * https://jquery.org/license - * - * Date: 2020-05-04T22:49Z - */ -( function( global, factory ) { - - "use strict"; - - if ( typeof module === "object" && typeof module.exports === "object" ) { - - // For CommonJS and CommonJS-like environments where a proper `window` - // is present, execute the factory and get jQuery. - // For environments that do not have a `window` with a `document` - // (such as Node.js), expose a factory as module.exports. - // This accentuates the need for the creation of a real `window`. - // e.g. var jQuery = require("jquery")(window); - // See ticket #14549 for more info. - module.exports = global.document ? - factory( global, true ) : - function( w ) { - if ( !w.document ) { - throw new Error( "jQuery requires a window with a document" ); - } - return factory( w ); - }; - } else { - factory( global ); - } - -// Pass this if window is not defined yet -} )( typeof window !== "undefined" ? window : this, function( window, noGlobal ) { - -// Edge <= 12 - 13+, Firefox <=18 - 45+, IE 10 - 11, Safari 5.1 - 9+, iOS 6 - 9.1 -// throw exceptions when non-strict code (e.g., ASP.NET 4.5) accesses strict mode -// arguments.callee.caller (trac-13335). But as of jQuery 3.0 (2016), strict mode should be common -// enough that all such attempts are guarded in a try block. -"use strict"; - -var arr = []; - -var getProto = Object.getPrototypeOf; - -var slice = arr.slice; - -var flat = arr.flat ? function( array ) { - return arr.flat.call( array ); -} : function( array ) { - return arr.concat.apply( [], array ); -}; - - -var push = arr.push; - -var indexOf = arr.indexOf; - -var class2type = {}; - -var toString = class2type.toString; - -var hasOwn = class2type.hasOwnProperty; - -var fnToString = hasOwn.toString; - -var ObjectFunctionString = fnToString.call( Object ); - -var support = {}; - -var isFunction = function isFunction( obj ) { - - // Support: Chrome <=57, Firefox <=52 - // In some browsers, typeof returns "function" for HTML elements - // (i.e., `typeof document.createElement( "object" ) === "function"`). - // We don't want to classify *any* DOM node as a function. - return typeof obj === "function" && typeof obj.nodeType !== "number"; - }; - - -var isWindow = function isWindow( obj ) { - return obj != null && obj === obj.window; - }; - - -var document = window.document; - - - - var preservedScriptAttributes = { - type: true, - src: true, - nonce: true, - noModule: true - }; - - function DOMEval( code, node, doc ) { - doc = doc || document; - - var i, val, - script = doc.createElement( "script" ); - - script.text = code; - if ( node ) { - for ( i in preservedScriptAttributes ) { - - // Support: Firefox 64+, Edge 18+ - // Some browsers don't support the "nonce" property on scripts. - // On the other hand, just using `getAttribute` is not enough as - // the `nonce` attribute is reset to an empty string whenever it - // becomes browsing-context connected. - // See https://github.com/whatwg/html/issues/2369 - // See https://html.spec.whatwg.org/#nonce-attributes - // The `node.getAttribute` check was added for the sake of - // `jQuery.globalEval` so that it can fake a nonce-containing node - // via an object. - val = node[ i ] || node.getAttribute && node.getAttribute( i ); - if ( val ) { - script.setAttribute( i, val ); - } - } - } - doc.head.appendChild( script ).parentNode.removeChild( script ); - } - - -function toType( obj ) { - if ( obj == null ) { - return obj + ""; - } - - // Support: Android <=2.3 only (functionish RegExp) - return typeof obj === "object" || typeof obj === "function" ? - class2type[ toString.call( obj ) ] || "object" : - typeof obj; -} -/* global Symbol */ -// Defining this global in .eslintrc.json would create a danger of using the global -// unguarded in another place, it seems safer to define global only for this module - - - -var - version = "3.5.1", - - // Define a local copy of jQuery - jQuery = function( selector, context ) { - - // The jQuery object is actually just the init constructor 'enhanced' - // Need init if jQuery is called (just allow error to be thrown if not included) - return new jQuery.fn.init( selector, context ); - }; - -jQuery.fn = jQuery.prototype = { - - // The current version of jQuery being used - jquery: version, - - constructor: jQuery, - - // The default length of a jQuery object is 0 - length: 0, - - toArray: function() { - return slice.call( this ); - }, - - // Get the Nth element in the matched element set OR - // Get the whole matched element set as a clean array - get: function( num ) { - - // Return all the elements in a clean array - if ( num == null ) { - return slice.call( this ); - } - - // Return just the one element from the set - return num < 0 ? this[ num + this.length ] : this[ num ]; - }, - - // Take an array of elements and push it onto the stack - // (returning the new matched element set) - pushStack: function( elems ) { - - // Build a new jQuery matched element set - var ret = jQuery.merge( this.constructor(), elems ); - - // Add the old object onto the stack (as a reference) - ret.prevObject = this; - - // Return the newly-formed element set - return ret; - }, - - // Execute a callback for every element in the matched set. - each: function( callback ) { - return jQuery.each( this, callback ); - }, - - map: function( callback ) { - return this.pushStack( jQuery.map( this, function( elem, i ) { - return callback.call( elem, i, elem ); - } ) ); - }, - - slice: function() { - return this.pushStack( slice.apply( this, arguments ) ); - }, - - first: function() { - return this.eq( 0 ); - }, - - last: function() { - return this.eq( -1 ); - }, - - even: function() { - return this.pushStack( jQuery.grep( this, function( _elem, i ) { - return ( i + 1 ) % 2; - } ) ); - }, - - odd: function() { - return this.pushStack( jQuery.grep( this, function( _elem, i ) { - return i % 2; - } ) ); - }, - - eq: function( i ) { - var len = this.length, - j = +i + ( i < 0 ? len : 0 ); - return this.pushStack( j >= 0 && j < len ? [ this[ j ] ] : [] ); - }, - - end: function() { - return this.prevObject || this.constructor(); - }, - - // For internal use only. - // Behaves like an Array's method, not like a jQuery method. - push: push, - sort: arr.sort, - splice: arr.splice -}; - -jQuery.extend = jQuery.fn.extend = function() { - var options, name, src, copy, copyIsArray, clone, - target = arguments[ 0 ] || {}, - i = 1, - length = arguments.length, - deep = false; - - // Handle a deep copy situation - if ( typeof target === "boolean" ) { - deep = target; - - // Skip the boolean and the target - target = arguments[ i ] || {}; - i++; - } - - // Handle case when target is a string or something (possible in deep copy) - if ( typeof target !== "object" && !isFunction( target ) ) { - target = {}; - } - - // Extend jQuery itself if only one argument is passed - if ( i === length ) { - target = this; - i--; - } - - for ( ; i < length; i++ ) { - - // Only deal with non-null/undefined values - if ( ( options = arguments[ i ] ) != null ) { - - // Extend the base object - for ( name in options ) { - copy = options[ name ]; - - // Prevent Object.prototype pollution - // Prevent never-ending loop - if ( name === "__proto__" || target === copy ) { - continue; - } - - // Recurse if we're merging plain objects or arrays - if ( deep && copy && ( jQuery.isPlainObject( copy ) || - ( copyIsArray = Array.isArray( copy ) ) ) ) { - src = target[ name ]; - - // Ensure proper type for the source value - if ( copyIsArray && !Array.isArray( src ) ) { - clone = []; - } else if ( !copyIsArray && !jQuery.isPlainObject( src ) ) { - clone = {}; - } else { - clone = src; - } - copyIsArray = false; - - // Never move original objects, clone them - target[ name ] = jQuery.extend( deep, clone, copy ); - - // Don't bring in undefined values - } else if ( copy !== undefined ) { - target[ name ] = copy; - } - } - } - } - - // Return the modified object - return target; -}; - -jQuery.extend( { - - // Unique for each copy of jQuery on the page - expando: "jQuery" + ( version + Math.random() ).replace( /\D/g, "" ), - - // Assume jQuery is ready without the ready module - isReady: true, - - error: function( msg ) { - throw new Error( msg ); - }, - - noop: function() {}, - - isPlainObject: function( obj ) { - var proto, Ctor; - - // Detect obvious negatives - // Use toString instead of jQuery.type to catch host objects - if ( !obj || toString.call( obj ) !== "[object Object]" ) { - return false; - } - - proto = getProto( obj ); - - // Objects with no prototype (e.g., `Object.create( null )`) are plain - if ( !proto ) { - return true; - } - - // Objects with prototype are plain iff they were constructed by a global Object function - Ctor = hasOwn.call( proto, "constructor" ) && proto.constructor; - return typeof Ctor === "function" && fnToString.call( Ctor ) === ObjectFunctionString; - }, - - isEmptyObject: function( obj ) { - var name; - - for ( name in obj ) { - return false; - } - return true; - }, - - // Evaluates a script in a provided context; falls back to the global one - // if not specified. - globalEval: function( code, options, doc ) { - DOMEval( code, { nonce: options && options.nonce }, doc ); - }, - - each: function( obj, callback ) { - var length, i = 0; - - if ( isArrayLike( obj ) ) { - length = obj.length; - for ( ; i < length; i++ ) { - if ( callback.call( obj[ i ], i, obj[ i ] ) === false ) { - break; - } - } - } else { - for ( i in obj ) { - if ( callback.call( obj[ i ], i, obj[ i ] ) === false ) { - break; - } - } - } - - return obj; - }, - - // results is for internal usage only - makeArray: function( arr, results ) { - var ret = results || []; - - if ( arr != null ) { - if ( isArrayLike( Object( arr ) ) ) { - jQuery.merge( ret, - typeof arr === "string" ? - [ arr ] : arr - ); - } else { - push.call( ret, arr ); - } - } - - return ret; - }, - - inArray: function( elem, arr, i ) { - return arr == null ? -1 : indexOf.call( arr, elem, i ); - }, - - // Support: Android <=4.0 only, PhantomJS 1 only - // push.apply(_, arraylike) throws on ancient WebKit - merge: function( first, second ) { - var len = +second.length, - j = 0, - i = first.length; - - for ( ; j < len; j++ ) { - first[ i++ ] = second[ j ]; - } - - first.length = i; - - return first; - }, - - grep: function( elems, callback, invert ) { - var callbackInverse, - matches = [], - i = 0, - length = elems.length, - callbackExpect = !invert; - - // Go through the array, only saving the items - // that pass the validator function - for ( ; i < length; i++ ) { - callbackInverse = !callback( elems[ i ], i ); - if ( callbackInverse !== callbackExpect ) { - matches.push( elems[ i ] ); - } - } - - return matches; - }, - - // arg is for internal usage only - map: function( elems, callback, arg ) { - var length, value, - i = 0, - ret = []; - - // Go through the array, translating each of the items to their new values - if ( isArrayLike( elems ) ) { - length = elems.length; - for ( ; i < length; i++ ) { - value = callback( elems[ i ], i, arg ); - - if ( value != null ) { - ret.push( value ); - } - } - - // Go through every key on the object, - } else { - for ( i in elems ) { - value = callback( elems[ i ], i, arg ); - - if ( value != null ) { - ret.push( value ); - } - } - } - - // Flatten any nested arrays - return flat( ret ); - }, - - // A global GUID counter for objects - guid: 1, - - // jQuery.support is not used in Core but other projects attach their - // properties to it so it needs to exist. - support: support -} ); - -if ( typeof Symbol === "function" ) { - jQuery.fn[ Symbol.iterator ] = arr[ Symbol.iterator ]; -} - -// Populate the class2type map -jQuery.each( "Boolean Number String Function Array Date RegExp Object Error Symbol".split( " " ), -function( _i, name ) { - class2type[ "[object " + name + "]" ] = name.toLowerCase(); -} ); - -function isArrayLike( obj ) { - - // Support: real iOS 8.2 only (not reproducible in simulator) - // `in` check used to prevent JIT error (gh-2145) - // hasOwn isn't used here due to false negatives - // regarding Nodelist length in IE - var length = !!obj && "length" in obj && obj.length, - type = toType( obj ); - - if ( isFunction( obj ) || isWindow( obj ) ) { - return false; - } - - return type === "array" || length === 0 || - typeof length === "number" && length > 0 && ( length - 1 ) in obj; -} -var Sizzle = -/*! - * Sizzle CSS Selector Engine v2.3.5 - * https://sizzlejs.com/ - * - * Copyright JS Foundation and other contributors - * Released under the MIT license - * https://js.foundation/ - * - * Date: 2020-03-14 - */ -( function( window ) { -var i, - support, - Expr, - getText, - isXML, - tokenize, - compile, - select, - outermostContext, - sortInput, - hasDuplicate, - - // Local document vars - setDocument, - document, - docElem, - documentIsHTML, - rbuggyQSA, - rbuggyMatches, - matches, - contains, - - // Instance-specific data - expando = "sizzle" + 1 * new Date(), - preferredDoc = window.document, - dirruns = 0, - done = 0, - classCache = createCache(), - tokenCache = createCache(), - compilerCache = createCache(), - nonnativeSelectorCache = createCache(), - sortOrder = function( a, b ) { - if ( a === b ) { - hasDuplicate = true; - } - return 0; - }, - - // Instance methods - hasOwn = ( {} ).hasOwnProperty, - arr = [], - pop = arr.pop, - pushNative = arr.push, - push = arr.push, - slice = arr.slice, - - // Use a stripped-down indexOf as it's faster than native - // https://jsperf.com/thor-indexof-vs-for/5 - indexOf = function( list, elem ) { - var i = 0, - len = list.length; - for ( ; i < len; i++ ) { - if ( list[ i ] === elem ) { - return i; - } - } - return -1; - }, - - booleans = "checked|selected|async|autofocus|autoplay|controls|defer|disabled|hidden|" + - "ismap|loop|multiple|open|readonly|required|scoped", - - // Regular expressions - - // http://www.w3.org/TR/css3-selectors/#whitespace - whitespace = "[\\x20\\t\\r\\n\\f]", - - // https://www.w3.org/TR/css-syntax-3/#ident-token-diagram - identifier = "(?:\\\\[\\da-fA-F]{1,6}" + whitespace + - "?|\\\\[^\\r\\n\\f]|[\\w-]|[^\0-\\x7f])+", - - // Attribute selectors: http://www.w3.org/TR/selectors/#attribute-selectors - attributes = "\\[" + whitespace + "*(" + identifier + ")(?:" + whitespace + - - // Operator (capture 2) - "*([*^$|!~]?=)" + whitespace + - - // "Attribute values must be CSS identifiers [capture 5] - // or strings [capture 3 or capture 4]" - "*(?:'((?:\\\\.|[^\\\\'])*)'|\"((?:\\\\.|[^\\\\\"])*)\"|(" + identifier + "))|)" + - whitespace + "*\\]", - - pseudos = ":(" + identifier + ")(?:\\((" + - - // To reduce the number of selectors needing tokenize in the preFilter, prefer arguments: - // 1. quoted (capture 3; capture 4 or capture 5) - "('((?:\\\\.|[^\\\\'])*)'|\"((?:\\\\.|[^\\\\\"])*)\")|" + - - // 2. simple (capture 6) - "((?:\\\\.|[^\\\\()[\\]]|" + attributes + ")*)|" + - - // 3. anything else (capture 2) - ".*" + - ")\\)|)", - - // Leading and non-escaped trailing whitespace, capturing some non-whitespace characters preceding the latter - rwhitespace = new RegExp( whitespace + "+", "g" ), - rtrim = new RegExp( "^" + whitespace + "+|((?:^|[^\\\\])(?:\\\\.)*)" + - whitespace + "+$", "g" ), - - rcomma = new RegExp( "^" + whitespace + "*," + whitespace + "*" ), - rcombinators = new RegExp( "^" + whitespace + "*([>+~]|" + whitespace + ")" + whitespace + - "*" ), - rdescend = new RegExp( whitespace + "|>" ), - - rpseudo = new RegExp( pseudos ), - ridentifier = new RegExp( "^" + identifier + "$" ), - - matchExpr = { - "ID": new RegExp( "^#(" + identifier + ")" ), - "CLASS": new RegExp( "^\\.(" + identifier + ")" ), - "TAG": new RegExp( "^(" + identifier + "|[*])" ), - "ATTR": new RegExp( "^" + attributes ), - "PSEUDO": new RegExp( "^" + pseudos ), - "CHILD": new RegExp( "^:(only|first|last|nth|nth-last)-(child|of-type)(?:\\(" + - whitespace + "*(even|odd|(([+-]|)(\\d*)n|)" + whitespace + "*(?:([+-]|)" + - whitespace + "*(\\d+)|))" + whitespace + "*\\)|)", "i" ), - "bool": new RegExp( "^(?:" + booleans + ")$", "i" ), - - // For use in libraries implementing .is() - // We use this for POS matching in `select` - "needsContext": new RegExp( "^" + whitespace + - "*[>+~]|:(even|odd|eq|gt|lt|nth|first|last)(?:\\(" + whitespace + - "*((?:-\\d)?\\d*)" + whitespace + "*\\)|)(?=[^-]|$)", "i" ) - }, - - rhtml = /HTML$/i, - rinputs = /^(?:input|select|textarea|button)$/i, - rheader = /^h\d$/i, - - rnative = /^[^{]+\{\s*\[native \w/, - - // Easily-parseable/retrievable ID or TAG or CLASS selectors - rquickExpr = /^(?:#([\w-]+)|(\w+)|\.([\w-]+))$/, - - rsibling = /[+~]/, - - // CSS escapes - // http://www.w3.org/TR/CSS21/syndata.html#escaped-characters - runescape = new RegExp( "\\\\[\\da-fA-F]{1,6}" + whitespace + "?|\\\\([^\\r\\n\\f])", "g" ), - funescape = function( escape, nonHex ) { - var high = "0x" + escape.slice( 1 ) - 0x10000; - - return nonHex ? - - // Strip the backslash prefix from a non-hex escape sequence - nonHex : - - // Replace a hexadecimal escape sequence with the encoded Unicode code point - // Support: IE <=11+ - // For values outside the Basic Multilingual Plane (BMP), manually construct a - // surrogate pair - high < 0 ? - String.fromCharCode( high + 0x10000 ) : - String.fromCharCode( high >> 10 | 0xD800, high & 0x3FF | 0xDC00 ); - }, - - // CSS string/identifier serialization - // https://drafts.csswg.org/cssom/#common-serializing-idioms - rcssescape = /([\0-\x1f\x7f]|^-?\d)|^-$|[^\0-\x1f\x7f-\uFFFF\w-]/g, - fcssescape = function( ch, asCodePoint ) { - if ( asCodePoint ) { - - // U+0000 NULL becomes U+FFFD REPLACEMENT CHARACTER - if ( ch === "\0" ) { - return "\uFFFD"; - } - - // Control characters and (dependent upon position) numbers get escaped as code points - return ch.slice( 0, -1 ) + "\\" + - ch.charCodeAt( ch.length - 1 ).toString( 16 ) + " "; - } - - // Other potentially-special ASCII characters get backslash-escaped - return "\\" + ch; - }, - - // Used for iframes - // See setDocument() - // Removing the function wrapper causes a "Permission Denied" - // error in IE - unloadHandler = function() { - setDocument(); - }, - - inDisabledFieldset = addCombinator( - function( elem ) { - return elem.disabled === true && elem.nodeName.toLowerCase() === "fieldset"; - }, - { dir: "parentNode", next: "legend" } - ); - -// Optimize for push.apply( _, NodeList ) -try { - push.apply( - ( arr = slice.call( preferredDoc.childNodes ) ), - preferredDoc.childNodes - ); - - // Support: Android<4.0 - // Detect silently failing push.apply - // eslint-disable-next-line no-unused-expressions - arr[ preferredDoc.childNodes.length ].nodeType; -} catch ( e ) { - push = { apply: arr.length ? - - // Leverage slice if possible - function( target, els ) { - pushNative.apply( target, slice.call( els ) ); - } : - - // Support: IE<9 - // Otherwise append directly - function( target, els ) { - var j = target.length, - i = 0; - - // Can't trust NodeList.length - while ( ( target[ j++ ] = els[ i++ ] ) ) {} - target.length = j - 1; - } - }; -} - -function Sizzle( selector, context, results, seed ) { - var m, i, elem, nid, match, groups, newSelector, - newContext = context && context.ownerDocument, - - // nodeType defaults to 9, since context defaults to document - nodeType = context ? context.nodeType : 9; - - results = results || []; - - // Return early from calls with invalid selector or context - if ( typeof selector !== "string" || !selector || - nodeType !== 1 && nodeType !== 9 && nodeType !== 11 ) { - - return results; - } - - // Try to shortcut find operations (as opposed to filters) in HTML documents - if ( !seed ) { - setDocument( context ); - context = context || document; - - if ( documentIsHTML ) { - - // If the selector is sufficiently simple, try using a "get*By*" DOM method - // (excepting DocumentFragment context, where the methods don't exist) - if ( nodeType !== 11 && ( match = rquickExpr.exec( selector ) ) ) { - - // ID selector - if ( ( m = match[ 1 ] ) ) { - - // Document context - if ( nodeType === 9 ) { - if ( ( elem = context.getElementById( m ) ) ) { - - // Support: IE, Opera, Webkit - // TODO: identify versions - // getElementById can match elements by name instead of ID - if ( elem.id === m ) { - results.push( elem ); - return results; - } - } else { - return results; - } - - // Element context - } else { - - // Support: IE, Opera, Webkit - // TODO: identify versions - // getElementById can match elements by name instead of ID - if ( newContext && ( elem = newContext.getElementById( m ) ) && - contains( context, elem ) && - elem.id === m ) { - - results.push( elem ); - return results; - } - } - - // Type selector - } else if ( match[ 2 ] ) { - push.apply( results, context.getElementsByTagName( selector ) ); - return results; - - // Class selector - } else if ( ( m = match[ 3 ] ) && support.getElementsByClassName && - context.getElementsByClassName ) { - - push.apply( results, context.getElementsByClassName( m ) ); - return results; - } - } - - // Take advantage of querySelectorAll - if ( support.qsa && - !nonnativeSelectorCache[ selector + " " ] && - ( !rbuggyQSA || !rbuggyQSA.test( selector ) ) && - - // Support: IE 8 only - // Exclude object elements - ( nodeType !== 1 || context.nodeName.toLowerCase() !== "object" ) ) { - - newSelector = selector; - newContext = context; - - // qSA considers elements outside a scoping root when evaluating child or - // descendant combinators, which is not what we want. - // In such cases, we work around the behavior by prefixing every selector in the - // list with an ID selector referencing the scope context. - // The technique has to be used as well when a leading combinator is used - // as such selectors are not recognized by querySelectorAll. - // Thanks to Andrew Dupont for this technique. - if ( nodeType === 1 && - ( rdescend.test( selector ) || rcombinators.test( selector ) ) ) { - - // Expand context for sibling selectors - newContext = rsibling.test( selector ) && testContext( context.parentNode ) || - context; - - // We can use :scope instead of the ID hack if the browser - // supports it & if we're not changing the context. - if ( newContext !== context || !support.scope ) { - - // Capture the context ID, setting it first if necessary - if ( ( nid = context.getAttribute( "id" ) ) ) { - nid = nid.replace( rcssescape, fcssescape ); - } else { - context.setAttribute( "id", ( nid = expando ) ); - } - } - - // Prefix every selector in the list - groups = tokenize( selector ); - i = groups.length; - while ( i-- ) { - groups[ i ] = ( nid ? "#" + nid : ":scope" ) + " " + - toSelector( groups[ i ] ); - } - newSelector = groups.join( "," ); - } - - try { - push.apply( results, - newContext.querySelectorAll( newSelector ) - ); - return results; - } catch ( qsaError ) { - nonnativeSelectorCache( selector, true ); - } finally { - if ( nid === expando ) { - context.removeAttribute( "id" ); - } - } - } - } - } - - // All others - return select( selector.replace( rtrim, "$1" ), context, results, seed ); -} - -/** - * Create key-value caches of limited size - * @returns {function(string, object)} Returns the Object data after storing it on itself with - * property name the (space-suffixed) string and (if the cache is larger than Expr.cacheLength) - * deleting the oldest entry - */ -function createCache() { - var keys = []; - - function cache( key, value ) { - - // Use (key + " ") to avoid collision with native prototype properties (see Issue #157) - if ( keys.push( key + " " ) > Expr.cacheLength ) { - - // Only keep the most recent entries - delete cache[ keys.shift() ]; - } - return ( cache[ key + " " ] = value ); - } - return cache; -} - -/** - * Mark a function for special use by Sizzle - * @param {Function} fn The function to mark - */ -function markFunction( fn ) { - fn[ expando ] = true; - return fn; -} - -/** - * Support testing using an element - * @param {Function} fn Passed the created element and returns a boolean result - */ -function assert( fn ) { - var el = document.createElement( "fieldset" ); - - try { - return !!fn( el ); - } catch ( e ) { - return false; - } finally { - - // Remove from its parent by default - if ( el.parentNode ) { - el.parentNode.removeChild( el ); - } - - // release memory in IE - el = null; - } -} - -/** - * Adds the same handler for all of the specified attrs - * @param {String} attrs Pipe-separated list of attributes - * @param {Function} handler The method that will be applied - */ -function addHandle( attrs, handler ) { - var arr = attrs.split( "|" ), - i = arr.length; - - while ( i-- ) { - Expr.attrHandle[ arr[ i ] ] = handler; - } -} - -/** - * Checks document order of two siblings - * @param {Element} a - * @param {Element} b - * @returns {Number} Returns less than 0 if a precedes b, greater than 0 if a follows b - */ -function siblingCheck( a, b ) { - var cur = b && a, - diff = cur && a.nodeType === 1 && b.nodeType === 1 && - a.sourceIndex - b.sourceIndex; - - // Use IE sourceIndex if available on both nodes - if ( diff ) { - return diff; - } - - // Check if b follows a - if ( cur ) { - while ( ( cur = cur.nextSibling ) ) { - if ( cur === b ) { - return -1; - } - } - } - - return a ? 1 : -1; -} - -/** - * Returns a function to use in pseudos for input types - * @param {String} type - */ -function createInputPseudo( type ) { - return function( elem ) { - var name = elem.nodeName.toLowerCase(); - return name === "input" && elem.type === type; - }; -} - -/** - * Returns a function to use in pseudos for buttons - * @param {String} type - */ -function createButtonPseudo( type ) { - return function( elem ) { - var name = elem.nodeName.toLowerCase(); - return ( name === "input" || name === "button" ) && elem.type === type; - }; -} - -/** - * Returns a function to use in pseudos for :enabled/:disabled - * @param {Boolean} disabled true for :disabled; false for :enabled - */ -function createDisabledPseudo( disabled ) { - - // Known :disabled false positives: fieldset[disabled] > legend:nth-of-type(n+2) :can-disable - return function( elem ) { - - // Only certain elements can match :enabled or :disabled - // https://html.spec.whatwg.org/multipage/scripting.html#selector-enabled - // https://html.spec.whatwg.org/multipage/scripting.html#selector-disabled - if ( "form" in elem ) { - - // Check for inherited disabledness on relevant non-disabled elements: - // * listed form-associated elements in a disabled fieldset - // https://html.spec.whatwg.org/multipage/forms.html#category-listed - // https://html.spec.whatwg.org/multipage/forms.html#concept-fe-disabled - // * option elements in a disabled optgroup - // https://html.spec.whatwg.org/multipage/forms.html#concept-option-disabled - // All such elements have a "form" property. - if ( elem.parentNode && elem.disabled === false ) { - - // Option elements defer to a parent optgroup if present - if ( "label" in elem ) { - if ( "label" in elem.parentNode ) { - return elem.parentNode.disabled === disabled; - } else { - return elem.disabled === disabled; - } - } - - // Support: IE 6 - 11 - // Use the isDisabled shortcut property to check for disabled fieldset ancestors - return elem.isDisabled === disabled || - - // Where there is no isDisabled, check manually - /* jshint -W018 */ - elem.isDisabled !== !disabled && - inDisabledFieldset( elem ) === disabled; - } - - return elem.disabled === disabled; - - // Try to winnow out elements that can't be disabled before trusting the disabled property. - // Some victims get caught in our net (label, legend, menu, track), but it shouldn't - // even exist on them, let alone have a boolean value. - } else if ( "label" in elem ) { - return elem.disabled === disabled; - } - - // Remaining elements are neither :enabled nor :disabled - return false; - }; -} - -/** - * Returns a function to use in pseudos for positionals - * @param {Function} fn - */ -function createPositionalPseudo( fn ) { - return markFunction( function( argument ) { - argument = +argument; - return markFunction( function( seed, matches ) { - var j, - matchIndexes = fn( [], seed.length, argument ), - i = matchIndexes.length; - - // Match elements found at the specified indexes - while ( i-- ) { - if ( seed[ ( j = matchIndexes[ i ] ) ] ) { - seed[ j ] = !( matches[ j ] = seed[ j ] ); - } - } - } ); - } ); -} - -/** - * Checks a node for validity as a Sizzle context - * @param {Element|Object=} context - * @returns {Element|Object|Boolean} The input node if acceptable, otherwise a falsy value - */ -function testContext( context ) { - return context && typeof context.getElementsByTagName !== "undefined" && context; -} - -// Expose support vars for convenience -support = Sizzle.support = {}; - -/** - * Detects XML nodes - * @param {Element|Object} elem An element or a document - * @returns {Boolean} True iff elem is a non-HTML XML node - */ -isXML = Sizzle.isXML = function( elem ) { - var namespace = elem.namespaceURI, - docElem = ( elem.ownerDocument || elem ).documentElement; - - // Support: IE <=8 - // Assume HTML when documentElement doesn't yet exist, such as inside loading iframes - // https://bugs.jquery.com/ticket/4833 - return !rhtml.test( namespace || docElem && docElem.nodeName || "HTML" ); -}; - -/** - * Sets document-related variables once based on the current document - * @param {Element|Object} [doc] An element or document object to use to set the document - * @returns {Object} Returns the current document - */ -setDocument = Sizzle.setDocument = function( node ) { - var hasCompare, subWindow, - doc = node ? node.ownerDocument || node : preferredDoc; - - // Return early if doc is invalid or already selected - // Support: IE 11+, Edge 17 - 18+ - // IE/Edge sometimes throw a "Permission denied" error when strict-comparing - // two documents; shallow comparisons work. - // eslint-disable-next-line eqeqeq - if ( doc == document || doc.nodeType !== 9 || !doc.documentElement ) { - return document; - } - - // Update global variables - document = doc; - docElem = document.documentElement; - documentIsHTML = !isXML( document ); - - // Support: IE 9 - 11+, Edge 12 - 18+ - // Accessing iframe documents after unload throws "permission denied" errors (jQuery #13936) - // Support: IE 11+, Edge 17 - 18+ - // IE/Edge sometimes throw a "Permission denied" error when strict-comparing - // two documents; shallow comparisons work. - // eslint-disable-next-line eqeqeq - if ( preferredDoc != document && - ( subWindow = document.defaultView ) && subWindow.top !== subWindow ) { - - // Support: IE 11, Edge - if ( subWindow.addEventListener ) { - subWindow.addEventListener( "unload", unloadHandler, false ); - - // Support: IE 9 - 10 only - } else if ( subWindow.attachEvent ) { - subWindow.attachEvent( "onunload", unloadHandler ); - } - } - - // Support: IE 8 - 11+, Edge 12 - 18+, Chrome <=16 - 25 only, Firefox <=3.6 - 31 only, - // Safari 4 - 5 only, Opera <=11.6 - 12.x only - // IE/Edge & older browsers don't support the :scope pseudo-class. - // Support: Safari 6.0 only - // Safari 6.0 supports :scope but it's an alias of :root there. - support.scope = assert( function( el ) { - docElem.appendChild( el ).appendChild( document.createElement( "div" ) ); - return typeof el.querySelectorAll !== "undefined" && - !el.querySelectorAll( ":scope fieldset div" ).length; - } ); - - /* Attributes - ---------------------------------------------------------------------- */ - - // Support: IE<8 - // Verify that getAttribute really returns attributes and not properties - // (excepting IE8 booleans) - support.attributes = assert( function( el ) { - el.className = "i"; - return !el.getAttribute( "className" ); - } ); - - /* getElement(s)By* - ---------------------------------------------------------------------- */ - - // Check if getElementsByTagName("*") returns only elements - support.getElementsByTagName = assert( function( el ) { - el.appendChild( document.createComment( "" ) ); - return !el.getElementsByTagName( "*" ).length; - } ); - - // Support: IE<9 - support.getElementsByClassName = rnative.test( document.getElementsByClassName ); - - // Support: IE<10 - // Check if getElementById returns elements by name - // The broken getElementById methods don't pick up programmatically-set names, - // so use a roundabout getElementsByName test - support.getById = assert( function( el ) { - docElem.appendChild( el ).id = expando; - return !document.getElementsByName || !document.getElementsByName( expando ).length; - } ); - - // ID filter and find - if ( support.getById ) { - Expr.filter[ "ID" ] = function( id ) { - var attrId = id.replace( runescape, funescape ); - return function( elem ) { - return elem.getAttribute( "id" ) === attrId; - }; - }; - Expr.find[ "ID" ] = function( id, context ) { - if ( typeof context.getElementById !== "undefined" && documentIsHTML ) { - var elem = context.getElementById( id ); - return elem ? [ elem ] : []; - } - }; - } else { - Expr.filter[ "ID" ] = function( id ) { - var attrId = id.replace( runescape, funescape ); - return function( elem ) { - var node = typeof elem.getAttributeNode !== "undefined" && - elem.getAttributeNode( "id" ); - return node && node.value === attrId; - }; - }; - - // Support: IE 6 - 7 only - // getElementById is not reliable as a find shortcut - Expr.find[ "ID" ] = function( id, context ) { - if ( typeof context.getElementById !== "undefined" && documentIsHTML ) { - var node, i, elems, - elem = context.getElementById( id ); - - if ( elem ) { - - // Verify the id attribute - node = elem.getAttributeNode( "id" ); - if ( node && node.value === id ) { - return [ elem ]; - } - - // Fall back on getElementsByName - elems = context.getElementsByName( id ); - i = 0; - while ( ( elem = elems[ i++ ] ) ) { - node = elem.getAttributeNode( "id" ); - if ( node && node.value === id ) { - return [ elem ]; - } - } - } - - return []; - } - }; - } - - // Tag - Expr.find[ "TAG" ] = support.getElementsByTagName ? - function( tag, context ) { - if ( typeof context.getElementsByTagName !== "undefined" ) { - return context.getElementsByTagName( tag ); - - // DocumentFragment nodes don't have gEBTN - } else if ( support.qsa ) { - return context.querySelectorAll( tag ); - } - } : - - function( tag, context ) { - var elem, - tmp = [], - i = 0, - - // By happy coincidence, a (broken) gEBTN appears on DocumentFragment nodes too - results = context.getElementsByTagName( tag ); - - // Filter out possible comments - if ( tag === "*" ) { - while ( ( elem = results[ i++ ] ) ) { - if ( elem.nodeType === 1 ) { - tmp.push( elem ); - } - } - - return tmp; - } - return results; - }; - - // Class - Expr.find[ "CLASS" ] = support.getElementsByClassName && function( className, context ) { - if ( typeof context.getElementsByClassName !== "undefined" && documentIsHTML ) { - return context.getElementsByClassName( className ); - } - }; - - /* QSA/matchesSelector - ---------------------------------------------------------------------- */ - - // QSA and matchesSelector support - - // matchesSelector(:active) reports false when true (IE9/Opera 11.5) - rbuggyMatches = []; - - // qSa(:focus) reports false when true (Chrome 21) - // We allow this because of a bug in IE8/9 that throws an error - // whenever `document.activeElement` is accessed on an iframe - // So, we allow :focus to pass through QSA all the time to avoid the IE error - // See https://bugs.jquery.com/ticket/13378 - rbuggyQSA = []; - - if ( ( support.qsa = rnative.test( document.querySelectorAll ) ) ) { - - // Build QSA regex - // Regex strategy adopted from Diego Perini - assert( function( el ) { - - var input; - - // Select is set to empty string on purpose - // This is to test IE's treatment of not explicitly - // setting a boolean content attribute, - // since its presence should be enough - // https://bugs.jquery.com/ticket/12359 - docElem.appendChild( el ).innerHTML = "" + - ""; - - // Support: IE8, Opera 11-12.16 - // Nothing should be selected when empty strings follow ^= or $= or *= - // The test attribute must be unknown in Opera but "safe" for WinRT - // https://msdn.microsoft.com/en-us/library/ie/hh465388.aspx#attribute_section - if ( el.querySelectorAll( "[msallowcapture^='']" ).length ) { - rbuggyQSA.push( "[*^$]=" + whitespace + "*(?:''|\"\")" ); - } - - // Support: IE8 - // Boolean attributes and "value" are not treated correctly - if ( !el.querySelectorAll( "[selected]" ).length ) { - rbuggyQSA.push( "\\[" + whitespace + "*(?:value|" + booleans + ")" ); - } - - // Support: Chrome<29, Android<4.4, Safari<7.0+, iOS<7.0+, PhantomJS<1.9.8+ - if ( !el.querySelectorAll( "[id~=" + expando + "-]" ).length ) { - rbuggyQSA.push( "~=" ); - } - - // Support: IE 11+, Edge 15 - 18+ - // IE 11/Edge don't find elements on a `[name='']` query in some cases. - // Adding a temporary attribute to the document before the selection works - // around the issue. - // Interestingly, IE 10 & older don't seem to have the issue. - input = document.createElement( "input" ); - input.setAttribute( "name", "" ); - el.appendChild( input ); - if ( !el.querySelectorAll( "[name='']" ).length ) { - rbuggyQSA.push( "\\[" + whitespace + "*name" + whitespace + "*=" + - whitespace + "*(?:''|\"\")" ); - } - - // Webkit/Opera - :checked should return selected option elements - // http://www.w3.org/TR/2011/REC-css3-selectors-20110929/#checked - // IE8 throws error here and will not see later tests - if ( !el.querySelectorAll( ":checked" ).length ) { - rbuggyQSA.push( ":checked" ); - } - - // Support: Safari 8+, iOS 8+ - // https://bugs.webkit.org/show_bug.cgi?id=136851 - // In-page `selector#id sibling-combinator selector` fails - if ( !el.querySelectorAll( "a#" + expando + "+*" ).length ) { - rbuggyQSA.push( ".#.+[+~]" ); - } - - // Support: Firefox <=3.6 - 5 only - // Old Firefox doesn't throw on a badly-escaped identifier. - el.querySelectorAll( "\\\f" ); - rbuggyQSA.push( "[\\r\\n\\f]" ); - } ); - - assert( function( el ) { - el.innerHTML = "" + - ""; - - // Support: Windows 8 Native Apps - // The type and name attributes are restricted during .innerHTML assignment - var input = document.createElement( "input" ); - input.setAttribute( "type", "hidden" ); - el.appendChild( input ).setAttribute( "name", "D" ); - - // Support: IE8 - // Enforce case-sensitivity of name attribute - if ( el.querySelectorAll( "[name=d]" ).length ) { - rbuggyQSA.push( "name" + whitespace + "*[*^$|!~]?=" ); - } - - // FF 3.5 - :enabled/:disabled and hidden elements (hidden elements are still enabled) - // IE8 throws error here and will not see later tests - if ( el.querySelectorAll( ":enabled" ).length !== 2 ) { - rbuggyQSA.push( ":enabled", ":disabled" ); - } - - // Support: IE9-11+ - // IE's :disabled selector does not pick up the children of disabled fieldsets - docElem.appendChild( el ).disabled = true; - if ( el.querySelectorAll( ":disabled" ).length !== 2 ) { - rbuggyQSA.push( ":enabled", ":disabled" ); - } - - // Support: Opera 10 - 11 only - // Opera 10-11 does not throw on post-comma invalid pseudos - el.querySelectorAll( "*,:x" ); - rbuggyQSA.push( ",.*:" ); - } ); - } - - if ( ( support.matchesSelector = rnative.test( ( matches = docElem.matches || - docElem.webkitMatchesSelector || - docElem.mozMatchesSelector || - docElem.oMatchesSelector || - docElem.msMatchesSelector ) ) ) ) { - - assert( function( el ) { - - // Check to see if it's possible to do matchesSelector - // on a disconnected node (IE 9) - support.disconnectedMatch = matches.call( el, "*" ); - - // This should fail with an exception - // Gecko does not error, returns false instead - matches.call( el, "[s!='']:x" ); - rbuggyMatches.push( "!=", pseudos ); - } ); - } - - rbuggyQSA = rbuggyQSA.length && new RegExp( rbuggyQSA.join( "|" ) ); - rbuggyMatches = rbuggyMatches.length && new RegExp( rbuggyMatches.join( "|" ) ); - - /* Contains - ---------------------------------------------------------------------- */ - hasCompare = rnative.test( docElem.compareDocumentPosition ); - - // Element contains another - // Purposefully self-exclusive - // As in, an element does not contain itself - contains = hasCompare || rnative.test( docElem.contains ) ? - function( a, b ) { - var adown = a.nodeType === 9 ? a.documentElement : a, - bup = b && b.parentNode; - return a === bup || !!( bup && bup.nodeType === 1 && ( - adown.contains ? - adown.contains( bup ) : - a.compareDocumentPosition && a.compareDocumentPosition( bup ) & 16 - ) ); - } : - function( a, b ) { - if ( b ) { - while ( ( b = b.parentNode ) ) { - if ( b === a ) { - return true; - } - } - } - return false; - }; - - /* Sorting - ---------------------------------------------------------------------- */ - - // Document order sorting - sortOrder = hasCompare ? - function( a, b ) { - - // Flag for duplicate removal - if ( a === b ) { - hasDuplicate = true; - return 0; - } - - // Sort on method existence if only one input has compareDocumentPosition - var compare = !a.compareDocumentPosition - !b.compareDocumentPosition; - if ( compare ) { - return compare; - } - - // Calculate position if both inputs belong to the same document - // Support: IE 11+, Edge 17 - 18+ - // IE/Edge sometimes throw a "Permission denied" error when strict-comparing - // two documents; shallow comparisons work. - // eslint-disable-next-line eqeqeq - compare = ( a.ownerDocument || a ) == ( b.ownerDocument || b ) ? - a.compareDocumentPosition( b ) : - - // Otherwise we know they are disconnected - 1; - - // Disconnected nodes - if ( compare & 1 || - ( !support.sortDetached && b.compareDocumentPosition( a ) === compare ) ) { - - // Choose the first element that is related to our preferred document - // Support: IE 11+, Edge 17 - 18+ - // IE/Edge sometimes throw a "Permission denied" error when strict-comparing - // two documents; shallow comparisons work. - // eslint-disable-next-line eqeqeq - if ( a == document || a.ownerDocument == preferredDoc && - contains( preferredDoc, a ) ) { - return -1; - } - - // Support: IE 11+, Edge 17 - 18+ - // IE/Edge sometimes throw a "Permission denied" error when strict-comparing - // two documents; shallow comparisons work. - // eslint-disable-next-line eqeqeq - if ( b == document || b.ownerDocument == preferredDoc && - contains( preferredDoc, b ) ) { - return 1; - } - - // Maintain original order - return sortInput ? - ( indexOf( sortInput, a ) - indexOf( sortInput, b ) ) : - 0; - } - - return compare & 4 ? -1 : 1; - } : - function( a, b ) { - - // Exit early if the nodes are identical - if ( a === b ) { - hasDuplicate = true; - return 0; - } - - var cur, - i = 0, - aup = a.parentNode, - bup = b.parentNode, - ap = [ a ], - bp = [ b ]; - - // Parentless nodes are either documents or disconnected - if ( !aup || !bup ) { - - // Support: IE 11+, Edge 17 - 18+ - // IE/Edge sometimes throw a "Permission denied" error when strict-comparing - // two documents; shallow comparisons work. - /* eslint-disable eqeqeq */ - return a == document ? -1 : - b == document ? 1 : - /* eslint-enable eqeqeq */ - aup ? -1 : - bup ? 1 : - sortInput ? - ( indexOf( sortInput, a ) - indexOf( sortInput, b ) ) : - 0; - - // If the nodes are siblings, we can do a quick check - } else if ( aup === bup ) { - return siblingCheck( a, b ); - } - - // Otherwise we need full lists of their ancestors for comparison - cur = a; - while ( ( cur = cur.parentNode ) ) { - ap.unshift( cur ); - } - cur = b; - while ( ( cur = cur.parentNode ) ) { - bp.unshift( cur ); - } - - // Walk down the tree looking for a discrepancy - while ( ap[ i ] === bp[ i ] ) { - i++; - } - - return i ? - - // Do a sibling check if the nodes have a common ancestor - siblingCheck( ap[ i ], bp[ i ] ) : - - // Otherwise nodes in our document sort first - // Support: IE 11+, Edge 17 - 18+ - // IE/Edge sometimes throw a "Permission denied" error when strict-comparing - // two documents; shallow comparisons work. - /* eslint-disable eqeqeq */ - ap[ i ] == preferredDoc ? -1 : - bp[ i ] == preferredDoc ? 1 : - /* eslint-enable eqeqeq */ - 0; - }; - - return document; -}; - -Sizzle.matches = function( expr, elements ) { - return Sizzle( expr, null, null, elements ); -}; - -Sizzle.matchesSelector = function( elem, expr ) { - setDocument( elem ); - - if ( support.matchesSelector && documentIsHTML && - !nonnativeSelectorCache[ expr + " " ] && - ( !rbuggyMatches || !rbuggyMatches.test( expr ) ) && - ( !rbuggyQSA || !rbuggyQSA.test( expr ) ) ) { - - try { - var ret = matches.call( elem, expr ); - - // IE 9's matchesSelector returns false on disconnected nodes - if ( ret || support.disconnectedMatch || - - // As well, disconnected nodes are said to be in a document - // fragment in IE 9 - elem.document && elem.document.nodeType !== 11 ) { - return ret; - } - } catch ( e ) { - nonnativeSelectorCache( expr, true ); - } - } - - return Sizzle( expr, document, null, [ elem ] ).length > 0; -}; - -Sizzle.contains = function( context, elem ) { - - // Set document vars if needed - // Support: IE 11+, Edge 17 - 18+ - // IE/Edge sometimes throw a "Permission denied" error when strict-comparing - // two documents; shallow comparisons work. - // eslint-disable-next-line eqeqeq - if ( ( context.ownerDocument || context ) != document ) { - setDocument( context ); - } - return contains( context, elem ); -}; - -Sizzle.attr = function( elem, name ) { - - // Set document vars if needed - // Support: IE 11+, Edge 17 - 18+ - // IE/Edge sometimes throw a "Permission denied" error when strict-comparing - // two documents; shallow comparisons work. - // eslint-disable-next-line eqeqeq - if ( ( elem.ownerDocument || elem ) != document ) { - setDocument( elem ); - } - - var fn = Expr.attrHandle[ name.toLowerCase() ], - - // Don't get fooled by Object.prototype properties (jQuery #13807) - val = fn && hasOwn.call( Expr.attrHandle, name.toLowerCase() ) ? - fn( elem, name, !documentIsHTML ) : - undefined; - - return val !== undefined ? - val : - support.attributes || !documentIsHTML ? - elem.getAttribute( name ) : - ( val = elem.getAttributeNode( name ) ) && val.specified ? - val.value : - null; -}; - -Sizzle.escape = function( sel ) { - return ( sel + "" ).replace( rcssescape, fcssescape ); -}; - -Sizzle.error = function( msg ) { - throw new Error( "Syntax error, unrecognized expression: " + msg ); -}; - -/** - * Document sorting and removing duplicates - * @param {ArrayLike} results - */ -Sizzle.uniqueSort = function( results ) { - var elem, - duplicates = [], - j = 0, - i = 0; - - // Unless we *know* we can detect duplicates, assume their presence - hasDuplicate = !support.detectDuplicates; - sortInput = !support.sortStable && results.slice( 0 ); - results.sort( sortOrder ); - - if ( hasDuplicate ) { - while ( ( elem = results[ i++ ] ) ) { - if ( elem === results[ i ] ) { - j = duplicates.push( i ); - } - } - while ( j-- ) { - results.splice( duplicates[ j ], 1 ); - } - } - - // Clear input after sorting to release objects - // See https://github.com/jquery/sizzle/pull/225 - sortInput = null; - - return results; -}; - -/** - * Utility function for retrieving the text value of an array of DOM nodes - * @param {Array|Element} elem - */ -getText = Sizzle.getText = function( elem ) { - var node, - ret = "", - i = 0, - nodeType = elem.nodeType; - - if ( !nodeType ) { - - // If no nodeType, this is expected to be an array - while ( ( node = elem[ i++ ] ) ) { - - // Do not traverse comment nodes - ret += getText( node ); - } - } else if ( nodeType === 1 || nodeType === 9 || nodeType === 11 ) { - - // Use textContent for elements - // innerText usage removed for consistency of new lines (jQuery #11153) - if ( typeof elem.textContent === "string" ) { - return elem.textContent; - } else { - - // Traverse its children - for ( elem = elem.firstChild; elem; elem = elem.nextSibling ) { - ret += getText( elem ); - } - } - } else if ( nodeType === 3 || nodeType === 4 ) { - return elem.nodeValue; - } - - // Do not include comment or processing instruction nodes - - return ret; -}; - -Expr = Sizzle.selectors = { - - // Can be adjusted by the user - cacheLength: 50, - - createPseudo: markFunction, - - match: matchExpr, - - attrHandle: {}, - - find: {}, - - relative: { - ">": { dir: "parentNode", first: true }, - " ": { dir: "parentNode" }, - "+": { dir: "previousSibling", first: true }, - "~": { dir: "previousSibling" } - }, - - preFilter: { - "ATTR": function( match ) { - match[ 1 ] = match[ 1 ].replace( runescape, funescape ); - - // Move the given value to match[3] whether quoted or unquoted - match[ 3 ] = ( match[ 3 ] || match[ 4 ] || - match[ 5 ] || "" ).replace( runescape, funescape ); - - if ( match[ 2 ] === "~=" ) { - match[ 3 ] = " " + match[ 3 ] + " "; - } - - return match.slice( 0, 4 ); - }, - - "CHILD": function( match ) { - - /* matches from matchExpr["CHILD"] - 1 type (only|nth|...) - 2 what (child|of-type) - 3 argument (even|odd|\d*|\d*n([+-]\d+)?|...) - 4 xn-component of xn+y argument ([+-]?\d*n|) - 5 sign of xn-component - 6 x of xn-component - 7 sign of y-component - 8 y of y-component - */ - match[ 1 ] = match[ 1 ].toLowerCase(); - - if ( match[ 1 ].slice( 0, 3 ) === "nth" ) { - - // nth-* requires argument - if ( !match[ 3 ] ) { - Sizzle.error( match[ 0 ] ); - } - - // numeric x and y parameters for Expr.filter.CHILD - // remember that false/true cast respectively to 0/1 - match[ 4 ] = +( match[ 4 ] ? - match[ 5 ] + ( match[ 6 ] || 1 ) : - 2 * ( match[ 3 ] === "even" || match[ 3 ] === "odd" ) ); - match[ 5 ] = +( ( match[ 7 ] + match[ 8 ] ) || match[ 3 ] === "odd" ); - - // other types prohibit arguments - } else if ( match[ 3 ] ) { - Sizzle.error( match[ 0 ] ); - } - - return match; - }, - - "PSEUDO": function( match ) { - var excess, - unquoted = !match[ 6 ] && match[ 2 ]; - - if ( matchExpr[ "CHILD" ].test( match[ 0 ] ) ) { - return null; - } - - // Accept quoted arguments as-is - if ( match[ 3 ] ) { - match[ 2 ] = match[ 4 ] || match[ 5 ] || ""; - - // Strip excess characters from unquoted arguments - } else if ( unquoted && rpseudo.test( unquoted ) && - - // Get excess from tokenize (recursively) - ( excess = tokenize( unquoted, true ) ) && - - // advance to the next closing parenthesis - ( excess = unquoted.indexOf( ")", unquoted.length - excess ) - unquoted.length ) ) { - - // excess is a negative index - match[ 0 ] = match[ 0 ].slice( 0, excess ); - match[ 2 ] = unquoted.slice( 0, excess ); - } - - // Return only captures needed by the pseudo filter method (type and argument) - return match.slice( 0, 3 ); - } - }, - - filter: { - - "TAG": function( nodeNameSelector ) { - var nodeName = nodeNameSelector.replace( runescape, funescape ).toLowerCase(); - return nodeNameSelector === "*" ? - function() { - return true; - } : - function( elem ) { - return elem.nodeName && elem.nodeName.toLowerCase() === nodeName; - }; - }, - - "CLASS": function( className ) { - var pattern = classCache[ className + " " ]; - - return pattern || - ( pattern = new RegExp( "(^|" + whitespace + - ")" + className + "(" + whitespace + "|$)" ) ) && classCache( - className, function( elem ) { - return pattern.test( - typeof elem.className === "string" && elem.className || - typeof elem.getAttribute !== "undefined" && - elem.getAttribute( "class" ) || - "" - ); - } ); - }, - - "ATTR": function( name, operator, check ) { - return function( elem ) { - var result = Sizzle.attr( elem, name ); - - if ( result == null ) { - return operator === "!="; - } - if ( !operator ) { - return true; - } - - result += ""; - - /* eslint-disable max-len */ - - return operator === "=" ? result === check : - operator === "!=" ? result !== check : - operator === "^=" ? check && result.indexOf( check ) === 0 : - operator === "*=" ? check && result.indexOf( check ) > -1 : - operator === "$=" ? check && result.slice( -check.length ) === check : - operator === "~=" ? ( " " + result.replace( rwhitespace, " " ) + " " ).indexOf( check ) > -1 : - operator === "|=" ? result === check || result.slice( 0, check.length + 1 ) === check + "-" : - false; - /* eslint-enable max-len */ - - }; - }, - - "CHILD": function( type, what, _argument, first, last ) { - var simple = type.slice( 0, 3 ) !== "nth", - forward = type.slice( -4 ) !== "last", - ofType = what === "of-type"; - - return first === 1 && last === 0 ? - - // Shortcut for :nth-*(n) - function( elem ) { - return !!elem.parentNode; - } : - - function( elem, _context, xml ) { - var cache, uniqueCache, outerCache, node, nodeIndex, start, - dir = simple !== forward ? "nextSibling" : "previousSibling", - parent = elem.parentNode, - name = ofType && elem.nodeName.toLowerCase(), - useCache = !xml && !ofType, - diff = false; - - if ( parent ) { - - // :(first|last|only)-(child|of-type) - if ( simple ) { - while ( dir ) { - node = elem; - while ( ( node = node[ dir ] ) ) { - if ( ofType ? - node.nodeName.toLowerCase() === name : - node.nodeType === 1 ) { - - return false; - } - } - - // Reverse direction for :only-* (if we haven't yet done so) - start = dir = type === "only" && !start && "nextSibling"; - } - return true; - } - - start = [ forward ? parent.firstChild : parent.lastChild ]; - - // non-xml :nth-child(...) stores cache data on `parent` - if ( forward && useCache ) { - - // Seek `elem` from a previously-cached index - - // ...in a gzip-friendly way - node = parent; - outerCache = node[ expando ] || ( node[ expando ] = {} ); - - // Support: IE <9 only - // Defend against cloned attroperties (jQuery gh-1709) - uniqueCache = outerCache[ node.uniqueID ] || - ( outerCache[ node.uniqueID ] = {} ); - - cache = uniqueCache[ type ] || []; - nodeIndex = cache[ 0 ] === dirruns && cache[ 1 ]; - diff = nodeIndex && cache[ 2 ]; - node = nodeIndex && parent.childNodes[ nodeIndex ]; - - while ( ( node = ++nodeIndex && node && node[ dir ] || - - // Fallback to seeking `elem` from the start - ( diff = nodeIndex = 0 ) || start.pop() ) ) { - - // When found, cache indexes on `parent` and break - if ( node.nodeType === 1 && ++diff && node === elem ) { - uniqueCache[ type ] = [ dirruns, nodeIndex, diff ]; - break; - } - } - - } else { - - // Use previously-cached element index if available - if ( useCache ) { - - // ...in a gzip-friendly way - node = elem; - outerCache = node[ expando ] || ( node[ expando ] = {} ); - - // Support: IE <9 only - // Defend against cloned attroperties (jQuery gh-1709) - uniqueCache = outerCache[ node.uniqueID ] || - ( outerCache[ node.uniqueID ] = {} ); - - cache = uniqueCache[ type ] || []; - nodeIndex = cache[ 0 ] === dirruns && cache[ 1 ]; - diff = nodeIndex; - } - - // xml :nth-child(...) - // or :nth-last-child(...) or :nth(-last)?-of-type(...) - if ( diff === false ) { - - // Use the same loop as above to seek `elem` from the start - while ( ( node = ++nodeIndex && node && node[ dir ] || - ( diff = nodeIndex = 0 ) || start.pop() ) ) { - - if ( ( ofType ? - node.nodeName.toLowerCase() === name : - node.nodeType === 1 ) && - ++diff ) { - - // Cache the index of each encountered element - if ( useCache ) { - outerCache = node[ expando ] || - ( node[ expando ] = {} ); - - // Support: IE <9 only - // Defend against cloned attroperties (jQuery gh-1709) - uniqueCache = outerCache[ node.uniqueID ] || - ( outerCache[ node.uniqueID ] = {} ); - - uniqueCache[ type ] = [ dirruns, diff ]; - } - - if ( node === elem ) { - break; - } - } - } - } - } - - // Incorporate the offset, then check against cycle size - diff -= last; - return diff === first || ( diff % first === 0 && diff / first >= 0 ); - } - }; - }, - - "PSEUDO": function( pseudo, argument ) { - - // pseudo-class names are case-insensitive - // http://www.w3.org/TR/selectors/#pseudo-classes - // Prioritize by case sensitivity in case custom pseudos are added with uppercase letters - // Remember that setFilters inherits from pseudos - var args, - fn = Expr.pseudos[ pseudo ] || Expr.setFilters[ pseudo.toLowerCase() ] || - Sizzle.error( "unsupported pseudo: " + pseudo ); - - // The user may use createPseudo to indicate that - // arguments are needed to create the filter function - // just as Sizzle does - if ( fn[ expando ] ) { - return fn( argument ); - } - - // But maintain support for old signatures - if ( fn.length > 1 ) { - args = [ pseudo, pseudo, "", argument ]; - return Expr.setFilters.hasOwnProperty( pseudo.toLowerCase() ) ? - markFunction( function( seed, matches ) { - var idx, - matched = fn( seed, argument ), - i = matched.length; - while ( i-- ) { - idx = indexOf( seed, matched[ i ] ); - seed[ idx ] = !( matches[ idx ] = matched[ i ] ); - } - } ) : - function( elem ) { - return fn( elem, 0, args ); - }; - } - - return fn; - } - }, - - pseudos: { - - // Potentially complex pseudos - "not": markFunction( function( selector ) { - - // Trim the selector passed to compile - // to avoid treating leading and trailing - // spaces as combinators - var input = [], - results = [], - matcher = compile( selector.replace( rtrim, "$1" ) ); - - return matcher[ expando ] ? - markFunction( function( seed, matches, _context, xml ) { - var elem, - unmatched = matcher( seed, null, xml, [] ), - i = seed.length; - - // Match elements unmatched by `matcher` - while ( i-- ) { - if ( ( elem = unmatched[ i ] ) ) { - seed[ i ] = !( matches[ i ] = elem ); - } - } - } ) : - function( elem, _context, xml ) { - input[ 0 ] = elem; - matcher( input, null, xml, results ); - - // Don't keep the element (issue #299) - input[ 0 ] = null; - return !results.pop(); - }; - } ), - - "has": markFunction( function( selector ) { - return function( elem ) { - return Sizzle( selector, elem ).length > 0; - }; - } ), - - "contains": markFunction( function( text ) { - text = text.replace( runescape, funescape ); - return function( elem ) { - return ( elem.textContent || getText( elem ) ).indexOf( text ) > -1; - }; - } ), - - // "Whether an element is represented by a :lang() selector - // is based solely on the element's language value - // being equal to the identifier C, - // or beginning with the identifier C immediately followed by "-". - // The matching of C against the element's language value is performed case-insensitively. - // The identifier C does not have to be a valid language name." - // http://www.w3.org/TR/selectors/#lang-pseudo - "lang": markFunction( function( lang ) { - - // lang value must be a valid identifier - if ( !ridentifier.test( lang || "" ) ) { - Sizzle.error( "unsupported lang: " + lang ); - } - lang = lang.replace( runescape, funescape ).toLowerCase(); - return function( elem ) { - var elemLang; - do { - if ( ( elemLang = documentIsHTML ? - elem.lang : - elem.getAttribute( "xml:lang" ) || elem.getAttribute( "lang" ) ) ) { - - elemLang = elemLang.toLowerCase(); - return elemLang === lang || elemLang.indexOf( lang + "-" ) === 0; - } - } while ( ( elem = elem.parentNode ) && elem.nodeType === 1 ); - return false; - }; - } ), - - // Miscellaneous - "target": function( elem ) { - var hash = window.location && window.location.hash; - return hash && hash.slice( 1 ) === elem.id; - }, - - "root": function( elem ) { - return elem === docElem; - }, - - "focus": function( elem ) { - return elem === document.activeElement && - ( !document.hasFocus || document.hasFocus() ) && - !!( elem.type || elem.href || ~elem.tabIndex ); - }, - - // Boolean properties - "enabled": createDisabledPseudo( false ), - "disabled": createDisabledPseudo( true ), - - "checked": function( elem ) { - - // In CSS3, :checked should return both checked and selected elements - // http://www.w3.org/TR/2011/REC-css3-selectors-20110929/#checked - var nodeName = elem.nodeName.toLowerCase(); - return ( nodeName === "input" && !!elem.checked ) || - ( nodeName === "option" && !!elem.selected ); - }, - - "selected": function( elem ) { - - // Accessing this property makes selected-by-default - // options in Safari work properly - if ( elem.parentNode ) { - // eslint-disable-next-line no-unused-expressions - elem.parentNode.selectedIndex; - } - - return elem.selected === true; - }, - - // Contents - "empty": function( elem ) { - - // http://www.w3.org/TR/selectors/#empty-pseudo - // :empty is negated by element (1) or content nodes (text: 3; cdata: 4; entity ref: 5), - // but not by others (comment: 8; processing instruction: 7; etc.) - // nodeType < 6 works because attributes (2) do not appear as children - for ( elem = elem.firstChild; elem; elem = elem.nextSibling ) { - if ( elem.nodeType < 6 ) { - return false; - } - } - return true; - }, - - "parent": function( elem ) { - return !Expr.pseudos[ "empty" ]( elem ); - }, - - // Element/input types - "header": function( elem ) { - return rheader.test( elem.nodeName ); - }, - - "input": function( elem ) { - return rinputs.test( elem.nodeName ); - }, - - "button": function( elem ) { - var name = elem.nodeName.toLowerCase(); - return name === "input" && elem.type === "button" || name === "button"; - }, - - "text": function( elem ) { - var attr; - return elem.nodeName.toLowerCase() === "input" && - elem.type === "text" && - - // Support: IE<8 - // New HTML5 attribute values (e.g., "search") appear with elem.type === "text" - ( ( attr = elem.getAttribute( "type" ) ) == null || - attr.toLowerCase() === "text" ); - }, - - // Position-in-collection - "first": createPositionalPseudo( function() { - return [ 0 ]; - } ), - - "last": createPositionalPseudo( function( _matchIndexes, length ) { - return [ length - 1 ]; - } ), - - "eq": createPositionalPseudo( function( _matchIndexes, length, argument ) { - return [ argument < 0 ? argument + length : argument ]; - } ), - - "even": createPositionalPseudo( function( matchIndexes, length ) { - var i = 0; - for ( ; i < length; i += 2 ) { - matchIndexes.push( i ); - } - return matchIndexes; - } ), - - "odd": createPositionalPseudo( function( matchIndexes, length ) { - var i = 1; - for ( ; i < length; i += 2 ) { - matchIndexes.push( i ); - } - return matchIndexes; - } ), - - "lt": createPositionalPseudo( function( matchIndexes, length, argument ) { - var i = argument < 0 ? - argument + length : - argument > length ? - length : - argument; - for ( ; --i >= 0; ) { - matchIndexes.push( i ); - } - return matchIndexes; - } ), - - "gt": createPositionalPseudo( function( matchIndexes, length, argument ) { - var i = argument < 0 ? argument + length : argument; - for ( ; ++i < length; ) { - matchIndexes.push( i ); - } - return matchIndexes; - } ) - } -}; - -Expr.pseudos[ "nth" ] = Expr.pseudos[ "eq" ]; - -// Add button/input type pseudos -for ( i in { radio: true, checkbox: true, file: true, password: true, image: true } ) { - Expr.pseudos[ i ] = createInputPseudo( i ); -} -for ( i in { submit: true, reset: true } ) { - Expr.pseudos[ i ] = createButtonPseudo( i ); -} - -// Easy API for creating new setFilters -function setFilters() {} -setFilters.prototype = Expr.filters = Expr.pseudos; -Expr.setFilters = new setFilters(); - -tokenize = Sizzle.tokenize = function( selector, parseOnly ) { - var matched, match, tokens, type, - soFar, groups, preFilters, - cached = tokenCache[ selector + " " ]; - - if ( cached ) { - return parseOnly ? 0 : cached.slice( 0 ); - } - - soFar = selector; - groups = []; - preFilters = Expr.preFilter; - - while ( soFar ) { - - // Comma and first run - if ( !matched || ( match = rcomma.exec( soFar ) ) ) { - if ( match ) { - - // Don't consume trailing commas as valid - soFar = soFar.slice( match[ 0 ].length ) || soFar; - } - groups.push( ( tokens = [] ) ); - } - - matched = false; - - // Combinators - if ( ( match = rcombinators.exec( soFar ) ) ) { - matched = match.shift(); - tokens.push( { - value: matched, - - // Cast descendant combinators to space - type: match[ 0 ].replace( rtrim, " " ) - } ); - soFar = soFar.slice( matched.length ); - } - - // Filters - for ( type in Expr.filter ) { - if ( ( match = matchExpr[ type ].exec( soFar ) ) && ( !preFilters[ type ] || - ( match = preFilters[ type ]( match ) ) ) ) { - matched = match.shift(); - tokens.push( { - value: matched, - type: type, - matches: match - } ); - soFar = soFar.slice( matched.length ); - } - } - - if ( !matched ) { - break; - } - } - - // Return the length of the invalid excess - // if we're just parsing - // Otherwise, throw an error or return tokens - return parseOnly ? - soFar.length : - soFar ? - Sizzle.error( selector ) : - - // Cache the tokens - tokenCache( selector, groups ).slice( 0 ); -}; - -function toSelector( tokens ) { - var i = 0, - len = tokens.length, - selector = ""; - for ( ; i < len; i++ ) { - selector += tokens[ i ].value; - } - return selector; -} - -function addCombinator( matcher, combinator, base ) { - var dir = combinator.dir, - skip = combinator.next, - key = skip || dir, - checkNonElements = base && key === "parentNode", - doneName = done++; - - return combinator.first ? - - // Check against closest ancestor/preceding element - function( elem, context, xml ) { - while ( ( elem = elem[ dir ] ) ) { - if ( elem.nodeType === 1 || checkNonElements ) { - return matcher( elem, context, xml ); - } - } - return false; - } : - - // Check against all ancestor/preceding elements - function( elem, context, xml ) { - var oldCache, uniqueCache, outerCache, - newCache = [ dirruns, doneName ]; - - // We can't set arbitrary data on XML nodes, so they don't benefit from combinator caching - if ( xml ) { - while ( ( elem = elem[ dir ] ) ) { - if ( elem.nodeType === 1 || checkNonElements ) { - if ( matcher( elem, context, xml ) ) { - return true; - } - } - } - } else { - while ( ( elem = elem[ dir ] ) ) { - if ( elem.nodeType === 1 || checkNonElements ) { - outerCache = elem[ expando ] || ( elem[ expando ] = {} ); - - // Support: IE <9 only - // Defend against cloned attroperties (jQuery gh-1709) - uniqueCache = outerCache[ elem.uniqueID ] || - ( outerCache[ elem.uniqueID ] = {} ); - - if ( skip && skip === elem.nodeName.toLowerCase() ) { - elem = elem[ dir ] || elem; - } else if ( ( oldCache = uniqueCache[ key ] ) && - oldCache[ 0 ] === dirruns && oldCache[ 1 ] === doneName ) { - - // Assign to newCache so results back-propagate to previous elements - return ( newCache[ 2 ] = oldCache[ 2 ] ); - } else { - - // Reuse newcache so results back-propagate to previous elements - uniqueCache[ key ] = newCache; - - // A match means we're done; a fail means we have to keep checking - if ( ( newCache[ 2 ] = matcher( elem, context, xml ) ) ) { - return true; - } - } - } - } - } - return false; - }; -} - -function elementMatcher( matchers ) { - return matchers.length > 1 ? - function( elem, context, xml ) { - var i = matchers.length; - while ( i-- ) { - if ( !matchers[ i ]( elem, context, xml ) ) { - return false; - } - } - return true; - } : - matchers[ 0 ]; -} - -function multipleContexts( selector, contexts, results ) { - var i = 0, - len = contexts.length; - for ( ; i < len; i++ ) { - Sizzle( selector, contexts[ i ], results ); - } - return results; -} - -function condense( unmatched, map, filter, context, xml ) { - var elem, - newUnmatched = [], - i = 0, - len = unmatched.length, - mapped = map != null; - - for ( ; i < len; i++ ) { - if ( ( elem = unmatched[ i ] ) ) { - if ( !filter || filter( elem, context, xml ) ) { - newUnmatched.push( elem ); - if ( mapped ) { - map.push( i ); - } - } - } - } - - return newUnmatched; -} - -function setMatcher( preFilter, selector, matcher, postFilter, postFinder, postSelector ) { - if ( postFilter && !postFilter[ expando ] ) { - postFilter = setMatcher( postFilter ); - } - if ( postFinder && !postFinder[ expando ] ) { - postFinder = setMatcher( postFinder, postSelector ); - } - return markFunction( function( seed, results, context, xml ) { - var temp, i, elem, - preMap = [], - postMap = [], - preexisting = results.length, - - // Get initial elements from seed or context - elems = seed || multipleContexts( - selector || "*", - context.nodeType ? [ context ] : context, - [] - ), - - // Prefilter to get matcher input, preserving a map for seed-results synchronization - matcherIn = preFilter && ( seed || !selector ) ? - condense( elems, preMap, preFilter, context, xml ) : - elems, - - matcherOut = matcher ? - - // If we have a postFinder, or filtered seed, or non-seed postFilter or preexisting results, - postFinder || ( seed ? preFilter : preexisting || postFilter ) ? - - // ...intermediate processing is necessary - [] : - - // ...otherwise use results directly - results : - matcherIn; - - // Find primary matches - if ( matcher ) { - matcher( matcherIn, matcherOut, context, xml ); - } - - // Apply postFilter - if ( postFilter ) { - temp = condense( matcherOut, postMap ); - postFilter( temp, [], context, xml ); - - // Un-match failing elements by moving them back to matcherIn - i = temp.length; - while ( i-- ) { - if ( ( elem = temp[ i ] ) ) { - matcherOut[ postMap[ i ] ] = !( matcherIn[ postMap[ i ] ] = elem ); - } - } - } - - if ( seed ) { - if ( postFinder || preFilter ) { - if ( postFinder ) { - - // Get the final matcherOut by condensing this intermediate into postFinder contexts - temp = []; - i = matcherOut.length; - while ( i-- ) { - if ( ( elem = matcherOut[ i ] ) ) { - - // Restore matcherIn since elem is not yet a final match - temp.push( ( matcherIn[ i ] = elem ) ); - } - } - postFinder( null, ( matcherOut = [] ), temp, xml ); - } - - // Move matched elements from seed to results to keep them synchronized - i = matcherOut.length; - while ( i-- ) { - if ( ( elem = matcherOut[ i ] ) && - ( temp = postFinder ? indexOf( seed, elem ) : preMap[ i ] ) > -1 ) { - - seed[ temp ] = !( results[ temp ] = elem ); - } - } - } - - // Add elements to results, through postFinder if defined - } else { - matcherOut = condense( - matcherOut === results ? - matcherOut.splice( preexisting, matcherOut.length ) : - matcherOut - ); - if ( postFinder ) { - postFinder( null, results, matcherOut, xml ); - } else { - push.apply( results, matcherOut ); - } - } - } ); -} - -function matcherFromTokens( tokens ) { - var checkContext, matcher, j, - len = tokens.length, - leadingRelative = Expr.relative[ tokens[ 0 ].type ], - implicitRelative = leadingRelative || Expr.relative[ " " ], - i = leadingRelative ? 1 : 0, - - // The foundational matcher ensures that elements are reachable from top-level context(s) - matchContext = addCombinator( function( elem ) { - return elem === checkContext; - }, implicitRelative, true ), - matchAnyContext = addCombinator( function( elem ) { - return indexOf( checkContext, elem ) > -1; - }, implicitRelative, true ), - matchers = [ function( elem, context, xml ) { - var ret = ( !leadingRelative && ( xml || context !== outermostContext ) ) || ( - ( checkContext = context ).nodeType ? - matchContext( elem, context, xml ) : - matchAnyContext( elem, context, xml ) ); - - // Avoid hanging onto element (issue #299) - checkContext = null; - return ret; - } ]; - - for ( ; i < len; i++ ) { - if ( ( matcher = Expr.relative[ tokens[ i ].type ] ) ) { - matchers = [ addCombinator( elementMatcher( matchers ), matcher ) ]; - } else { - matcher = Expr.filter[ tokens[ i ].type ].apply( null, tokens[ i ].matches ); - - // Return special upon seeing a positional matcher - if ( matcher[ expando ] ) { - - // Find the next relative operator (if any) for proper handling - j = ++i; - for ( ; j < len; j++ ) { - if ( Expr.relative[ tokens[ j ].type ] ) { - break; - } - } - return setMatcher( - i > 1 && elementMatcher( matchers ), - i > 1 && toSelector( - - // If the preceding token was a descendant combinator, insert an implicit any-element `*` - tokens - .slice( 0, i - 1 ) - .concat( { value: tokens[ i - 2 ].type === " " ? "*" : "" } ) - ).replace( rtrim, "$1" ), - matcher, - i < j && matcherFromTokens( tokens.slice( i, j ) ), - j < len && matcherFromTokens( ( tokens = tokens.slice( j ) ) ), - j < len && toSelector( tokens ) - ); - } - matchers.push( matcher ); - } - } - - return elementMatcher( matchers ); -} - -function matcherFromGroupMatchers( elementMatchers, setMatchers ) { - var bySet = setMatchers.length > 0, - byElement = elementMatchers.length > 0, - superMatcher = function( seed, context, xml, results, outermost ) { - var elem, j, matcher, - matchedCount = 0, - i = "0", - unmatched = seed && [], - setMatched = [], - contextBackup = outermostContext, - - // We must always have either seed elements or outermost context - elems = seed || byElement && Expr.find[ "TAG" ]( "*", outermost ), - - // Use integer dirruns iff this is the outermost matcher - dirrunsUnique = ( dirruns += contextBackup == null ? 1 : Math.random() || 0.1 ), - len = elems.length; - - if ( outermost ) { - - // Support: IE 11+, Edge 17 - 18+ - // IE/Edge sometimes throw a "Permission denied" error when strict-comparing - // two documents; shallow comparisons work. - // eslint-disable-next-line eqeqeq - outermostContext = context == document || context || outermost; - } - - // Add elements passing elementMatchers directly to results - // Support: IE<9, Safari - // Tolerate NodeList properties (IE: "length"; Safari: ) matching elements by id - for ( ; i !== len && ( elem = elems[ i ] ) != null; i++ ) { - if ( byElement && elem ) { - j = 0; - - // Support: IE 11+, Edge 17 - 18+ - // IE/Edge sometimes throw a "Permission denied" error when strict-comparing - // two documents; shallow comparisons work. - // eslint-disable-next-line eqeqeq - if ( !context && elem.ownerDocument != document ) { - setDocument( elem ); - xml = !documentIsHTML; - } - while ( ( matcher = elementMatchers[ j++ ] ) ) { - if ( matcher( elem, context || document, xml ) ) { - results.push( elem ); - break; - } - } - if ( outermost ) { - dirruns = dirrunsUnique; - } - } - - // Track unmatched elements for set filters - if ( bySet ) { - - // They will have gone through all possible matchers - if ( ( elem = !matcher && elem ) ) { - matchedCount--; - } - - // Lengthen the array for every element, matched or not - if ( seed ) { - unmatched.push( elem ); - } - } - } - - // `i` is now the count of elements visited above, and adding it to `matchedCount` - // makes the latter nonnegative. - matchedCount += i; - - // Apply set filters to unmatched elements - // NOTE: This can be skipped if there are no unmatched elements (i.e., `matchedCount` - // equals `i`), unless we didn't visit _any_ elements in the above loop because we have - // no element matchers and no seed. - // Incrementing an initially-string "0" `i` allows `i` to remain a string only in that - // case, which will result in a "00" `matchedCount` that differs from `i` but is also - // numerically zero. - if ( bySet && i !== matchedCount ) { - j = 0; - while ( ( matcher = setMatchers[ j++ ] ) ) { - matcher( unmatched, setMatched, context, xml ); - } - - if ( seed ) { - - // Reintegrate element matches to eliminate the need for sorting - if ( matchedCount > 0 ) { - while ( i-- ) { - if ( !( unmatched[ i ] || setMatched[ i ] ) ) { - setMatched[ i ] = pop.call( results ); - } - } - } - - // Discard index placeholder values to get only actual matches - setMatched = condense( setMatched ); - } - - // Add matches to results - push.apply( results, setMatched ); - - // Seedless set matches succeeding multiple successful matchers stipulate sorting - if ( outermost && !seed && setMatched.length > 0 && - ( matchedCount + setMatchers.length ) > 1 ) { - - Sizzle.uniqueSort( results ); - } - } - - // Override manipulation of globals by nested matchers - if ( outermost ) { - dirruns = dirrunsUnique; - outermostContext = contextBackup; - } - - return unmatched; - }; - - return bySet ? - markFunction( superMatcher ) : - superMatcher; -} - -compile = Sizzle.compile = function( selector, match /* Internal Use Only */ ) { - var i, - setMatchers = [], - elementMatchers = [], - cached = compilerCache[ selector + " " ]; - - if ( !cached ) { - - // Generate a function of recursive functions that can be used to check each element - if ( !match ) { - match = tokenize( selector ); - } - i = match.length; - while ( i-- ) { - cached = matcherFromTokens( match[ i ] ); - if ( cached[ expando ] ) { - setMatchers.push( cached ); - } else { - elementMatchers.push( cached ); - } - } - - // Cache the compiled function - cached = compilerCache( - selector, - matcherFromGroupMatchers( elementMatchers, setMatchers ) - ); - - // Save selector and tokenization - cached.selector = selector; - } - return cached; -}; - -/** - * A low-level selection function that works with Sizzle's compiled - * selector functions - * @param {String|Function} selector A selector or a pre-compiled - * selector function built with Sizzle.compile - * @param {Element} context - * @param {Array} [results] - * @param {Array} [seed] A set of elements to match against - */ -select = Sizzle.select = function( selector, context, results, seed ) { - var i, tokens, token, type, find, - compiled = typeof selector === "function" && selector, - match = !seed && tokenize( ( selector = compiled.selector || selector ) ); - - results = results || []; - - // Try to minimize operations if there is only one selector in the list and no seed - // (the latter of which guarantees us context) - if ( match.length === 1 ) { - - // Reduce context if the leading compound selector is an ID - tokens = match[ 0 ] = match[ 0 ].slice( 0 ); - if ( tokens.length > 2 && ( token = tokens[ 0 ] ).type === "ID" && - context.nodeType === 9 && documentIsHTML && Expr.relative[ tokens[ 1 ].type ] ) { - - context = ( Expr.find[ "ID" ]( token.matches[ 0 ] - .replace( runescape, funescape ), context ) || [] )[ 0 ]; - if ( !context ) { - return results; - - // Precompiled matchers will still verify ancestry, so step up a level - } else if ( compiled ) { - context = context.parentNode; - } - - selector = selector.slice( tokens.shift().value.length ); - } - - // Fetch a seed set for right-to-left matching - i = matchExpr[ "needsContext" ].test( selector ) ? 0 : tokens.length; - while ( i-- ) { - token = tokens[ i ]; - - // Abort if we hit a combinator - if ( Expr.relative[ ( type = token.type ) ] ) { - break; - } - if ( ( find = Expr.find[ type ] ) ) { - - // Search, expanding context for leading sibling combinators - if ( ( seed = find( - token.matches[ 0 ].replace( runescape, funescape ), - rsibling.test( tokens[ 0 ].type ) && testContext( context.parentNode ) || - context - ) ) ) { - - // If seed is empty or no tokens remain, we can return early - tokens.splice( i, 1 ); - selector = seed.length && toSelector( tokens ); - if ( !selector ) { - push.apply( results, seed ); - return results; - } - - break; - } - } - } - } - - // Compile and execute a filtering function if one is not provided - // Provide `match` to avoid retokenization if we modified the selector above - ( compiled || compile( selector, match ) )( - seed, - context, - !documentIsHTML, - results, - !context || rsibling.test( selector ) && testContext( context.parentNode ) || context - ); - return results; -}; - -// One-time assignments - -// Sort stability -support.sortStable = expando.split( "" ).sort( sortOrder ).join( "" ) === expando; - -// Support: Chrome 14-35+ -// Always assume duplicates if they aren't passed to the comparison function -support.detectDuplicates = !!hasDuplicate; - -// Initialize against the default document -setDocument(); - -// Support: Webkit<537.32 - Safari 6.0.3/Chrome 25 (fixed in Chrome 27) -// Detached nodes confoundingly follow *each other* -support.sortDetached = assert( function( el ) { - - // Should return 1, but returns 4 (following) - return el.compareDocumentPosition( document.createElement( "fieldset" ) ) & 1; -} ); - -// Support: IE<8 -// Prevent attribute/property "interpolation" -// https://msdn.microsoft.com/en-us/library/ms536429%28VS.85%29.aspx -if ( !assert( function( el ) { - el.innerHTML = ""; - return el.firstChild.getAttribute( "href" ) === "#"; -} ) ) { - addHandle( "type|href|height|width", function( elem, name, isXML ) { - if ( !isXML ) { - return elem.getAttribute( name, name.toLowerCase() === "type" ? 1 : 2 ); - } - } ); -} - -// Support: IE<9 -// Use defaultValue in place of getAttribute("value") -if ( !support.attributes || !assert( function( el ) { - el.innerHTML = ""; - el.firstChild.setAttribute( "value", "" ); - return el.firstChild.getAttribute( "value" ) === ""; -} ) ) { - addHandle( "value", function( elem, _name, isXML ) { - if ( !isXML && elem.nodeName.toLowerCase() === "input" ) { - return elem.defaultValue; - } - } ); -} - -// Support: IE<9 -// Use getAttributeNode to fetch booleans when getAttribute lies -if ( !assert( function( el ) { - return el.getAttribute( "disabled" ) == null; -} ) ) { - addHandle( booleans, function( elem, name, isXML ) { - var val; - if ( !isXML ) { - return elem[ name ] === true ? name.toLowerCase() : - ( val = elem.getAttributeNode( name ) ) && val.specified ? - val.value : - null; - } - } ); -} - -return Sizzle; - -} )( window ); - - - -jQuery.find = Sizzle; -jQuery.expr = Sizzle.selectors; - -// Deprecated -jQuery.expr[ ":" ] = jQuery.expr.pseudos; -jQuery.uniqueSort = jQuery.unique = Sizzle.uniqueSort; -jQuery.text = Sizzle.getText; -jQuery.isXMLDoc = Sizzle.isXML; -jQuery.contains = Sizzle.contains; -jQuery.escapeSelector = Sizzle.escape; - - - - -var dir = function( elem, dir, until ) { - var matched = [], - truncate = until !== undefined; - - while ( ( elem = elem[ dir ] ) && elem.nodeType !== 9 ) { - if ( elem.nodeType === 1 ) { - if ( truncate && jQuery( elem ).is( until ) ) { - break; - } - matched.push( elem ); - } - } - return matched; -}; - - -var siblings = function( n, elem ) { - var matched = []; - - for ( ; n; n = n.nextSibling ) { - if ( n.nodeType === 1 && n !== elem ) { - matched.push( n ); - } - } - - return matched; -}; - - -var rneedsContext = jQuery.expr.match.needsContext; - - - -function nodeName( elem, name ) { - - return elem.nodeName && elem.nodeName.toLowerCase() === name.toLowerCase(); - -}; -var rsingleTag = ( /^<([a-z][^\/\0>:\x20\t\r\n\f]*)[\x20\t\r\n\f]*\/?>(?:<\/\1>|)$/i ); - - - -// Implement the identical functionality for filter and not -function winnow( elements, qualifier, not ) { - if ( isFunction( qualifier ) ) { - return jQuery.grep( elements, function( elem, i ) { - return !!qualifier.call( elem, i, elem ) !== not; - } ); - } - - // Single element - if ( qualifier.nodeType ) { - return jQuery.grep( elements, function( elem ) { - return ( elem === qualifier ) !== not; - } ); - } - - // Arraylike of elements (jQuery, arguments, Array) - if ( typeof qualifier !== "string" ) { - return jQuery.grep( elements, function( elem ) { - return ( indexOf.call( qualifier, elem ) > -1 ) !== not; - } ); - } - - // Filtered directly for both simple and complex selectors - return jQuery.filter( qualifier, elements, not ); -} - -jQuery.filter = function( expr, elems, not ) { - var elem = elems[ 0 ]; - - if ( not ) { - expr = ":not(" + expr + ")"; - } - - if ( elems.length === 1 && elem.nodeType === 1 ) { - return jQuery.find.matchesSelector( elem, expr ) ? [ elem ] : []; - } - - return jQuery.find.matches( expr, jQuery.grep( elems, function( elem ) { - return elem.nodeType === 1; - } ) ); -}; - -jQuery.fn.extend( { - find: function( selector ) { - var i, ret, - len = this.length, - self = this; - - if ( typeof selector !== "string" ) { - return this.pushStack( jQuery( selector ).filter( function() { - for ( i = 0; i < len; i++ ) { - if ( jQuery.contains( self[ i ], this ) ) { - return true; - } - } - } ) ); - } - - ret = this.pushStack( [] ); - - for ( i = 0; i < len; i++ ) { - jQuery.find( selector, self[ i ], ret ); - } - - return len > 1 ? jQuery.uniqueSort( ret ) : ret; - }, - filter: function( selector ) { - return this.pushStack( winnow( this, selector || [], false ) ); - }, - not: function( selector ) { - return this.pushStack( winnow( this, selector || [], true ) ); - }, - is: function( selector ) { - return !!winnow( - this, - - // If this is a positional/relative selector, check membership in the returned set - // so $("p:first").is("p:last") won't return true for a doc with two "p". - typeof selector === "string" && rneedsContext.test( selector ) ? - jQuery( selector ) : - selector || [], - false - ).length; - } -} ); - - -// Initialize a jQuery object - - -// A central reference to the root jQuery(document) -var rootjQuery, - - // A simple way to check for HTML strings - // Prioritize #id over to avoid XSS via location.hash (#9521) - // Strict HTML recognition (#11290: must start with <) - // Shortcut simple #id case for speed - rquickExpr = /^(?:\s*(<[\w\W]+>)[^>]*|#([\w-]+))$/, - - init = jQuery.fn.init = function( selector, context, root ) { - var match, elem; - - // HANDLE: $(""), $(null), $(undefined), $(false) - if ( !selector ) { - return this; - } - - // Method init() accepts an alternate rootjQuery - // so migrate can support jQuery.sub (gh-2101) - root = root || rootjQuery; - - // Handle HTML strings - if ( typeof selector === "string" ) { - if ( selector[ 0 ] === "<" && - selector[ selector.length - 1 ] === ">" && - selector.length >= 3 ) { - - // Assume that strings that start and end with <> are HTML and skip the regex check - match = [ null, selector, null ]; - - } else { - match = rquickExpr.exec( selector ); - } - - // Match html or make sure no context is specified for #id - if ( match && ( match[ 1 ] || !context ) ) { - - // HANDLE: $(html) -> $(array) - if ( match[ 1 ] ) { - context = context instanceof jQuery ? context[ 0 ] : context; - - // Option to run scripts is true for back-compat - // Intentionally let the error be thrown if parseHTML is not present - jQuery.merge( this, jQuery.parseHTML( - match[ 1 ], - context && context.nodeType ? context.ownerDocument || context : document, - true - ) ); - - // HANDLE: $(html, props) - if ( rsingleTag.test( match[ 1 ] ) && jQuery.isPlainObject( context ) ) { - for ( match in context ) { - - // Properties of context are called as methods if possible - if ( isFunction( this[ match ] ) ) { - this[ match ]( context[ match ] ); - - // ...and otherwise set as attributes - } else { - this.attr( match, context[ match ] ); - } - } - } - - return this; - - // HANDLE: $(#id) - } else { - elem = document.getElementById( match[ 2 ] ); - - if ( elem ) { - - // Inject the element directly into the jQuery object - this[ 0 ] = elem; - this.length = 1; - } - return this; - } - - // HANDLE: $(expr, $(...)) - } else if ( !context || context.jquery ) { - return ( context || root ).find( selector ); - - // HANDLE: $(expr, context) - // (which is just equivalent to: $(context).find(expr) - } else { - return this.constructor( context ).find( selector ); - } - - // HANDLE: $(DOMElement) - } else if ( selector.nodeType ) { - this[ 0 ] = selector; - this.length = 1; - return this; - - // HANDLE: $(function) - // Shortcut for document ready - } else if ( isFunction( selector ) ) { - return root.ready !== undefined ? - root.ready( selector ) : - - // Execute immediately if ready is not present - selector( jQuery ); - } - - return jQuery.makeArray( selector, this ); - }; - -// Give the init function the jQuery prototype for later instantiation -init.prototype = jQuery.fn; - -// Initialize central reference -rootjQuery = jQuery( document ); - - -var rparentsprev = /^(?:parents|prev(?:Until|All))/, - - // Methods guaranteed to produce a unique set when starting from a unique set - guaranteedUnique = { - children: true, - contents: true, - next: true, - prev: true - }; - -jQuery.fn.extend( { - has: function( target ) { - var targets = jQuery( target, this ), - l = targets.length; - - return this.filter( function() { - var i = 0; - for ( ; i < l; i++ ) { - if ( jQuery.contains( this, targets[ i ] ) ) { - return true; - } - } - } ); - }, - - closest: function( selectors, context ) { - var cur, - i = 0, - l = this.length, - matched = [], - targets = typeof selectors !== "string" && jQuery( selectors ); - - // Positional selectors never match, since there's no _selection_ context - if ( !rneedsContext.test( selectors ) ) { - for ( ; i < l; i++ ) { - for ( cur = this[ i ]; cur && cur !== context; cur = cur.parentNode ) { - - // Always skip document fragments - if ( cur.nodeType < 11 && ( targets ? - targets.index( cur ) > -1 : - - // Don't pass non-elements to Sizzle - cur.nodeType === 1 && - jQuery.find.matchesSelector( cur, selectors ) ) ) { - - matched.push( cur ); - break; - } - } - } - } - - return this.pushStack( matched.length > 1 ? jQuery.uniqueSort( matched ) : matched ); - }, - - // Determine the position of an element within the set - index: function( elem ) { - - // No argument, return index in parent - if ( !elem ) { - return ( this[ 0 ] && this[ 0 ].parentNode ) ? this.first().prevAll().length : -1; - } - - // Index in selector - if ( typeof elem === "string" ) { - return indexOf.call( jQuery( elem ), this[ 0 ] ); - } - - // Locate the position of the desired element - return indexOf.call( this, - - // If it receives a jQuery object, the first element is used - elem.jquery ? elem[ 0 ] : elem - ); - }, - - add: function( selector, context ) { - return this.pushStack( - jQuery.uniqueSort( - jQuery.merge( this.get(), jQuery( selector, context ) ) - ) - ); - }, - - addBack: function( selector ) { - return this.add( selector == null ? - this.prevObject : this.prevObject.filter( selector ) - ); - } -} ); - -function sibling( cur, dir ) { - while ( ( cur = cur[ dir ] ) && cur.nodeType !== 1 ) {} - return cur; -} - -jQuery.each( { - parent: function( elem ) { - var parent = elem.parentNode; - return parent && parent.nodeType !== 11 ? parent : null; - }, - parents: function( elem ) { - return dir( elem, "parentNode" ); - }, - parentsUntil: function( elem, _i, until ) { - return dir( elem, "parentNode", until ); - }, - next: function( elem ) { - return sibling( elem, "nextSibling" ); - }, - prev: function( elem ) { - return sibling( elem, "previousSibling" ); - }, - nextAll: function( elem ) { - return dir( elem, "nextSibling" ); - }, - prevAll: function( elem ) { - return dir( elem, "previousSibling" ); - }, - nextUntil: function( elem, _i, until ) { - return dir( elem, "nextSibling", until ); - }, - prevUntil: function( elem, _i, until ) { - return dir( elem, "previousSibling", until ); - }, - siblings: function( elem ) { - return siblings( ( elem.parentNode || {} ).firstChild, elem ); - }, - children: function( elem ) { - return siblings( elem.firstChild ); - }, - contents: function( elem ) { - if ( elem.contentDocument != null && - - // Support: IE 11+ - // elements with no `data` attribute has an object - // `contentDocument` with a `null` prototype. - getProto( elem.contentDocument ) ) { - - return elem.contentDocument; - } - - // Support: IE 9 - 11 only, iOS 7 only, Android Browser <=4.3 only - // Treat the template element as a regular one in browsers that - // don't support it. - if ( nodeName( elem, "template" ) ) { - elem = elem.content || elem; - } - - return jQuery.merge( [], elem.childNodes ); - } -}, function( name, fn ) { - jQuery.fn[ name ] = function( until, selector ) { - var matched = jQuery.map( this, fn, until ); - - if ( name.slice( -5 ) !== "Until" ) { - selector = until; - } - - if ( selector && typeof selector === "string" ) { - matched = jQuery.filter( selector, matched ); - } - - if ( this.length > 1 ) { - - // Remove duplicates - if ( !guaranteedUnique[ name ] ) { - jQuery.uniqueSort( matched ); - } - - // Reverse order for parents* and prev-derivatives - if ( rparentsprev.test( name ) ) { - matched.reverse(); - } - } - - return this.pushStack( matched ); - }; -} ); -var rnothtmlwhite = ( /[^\x20\t\r\n\f]+/g ); - - - -// Convert String-formatted options into Object-formatted ones -function createOptions( options ) { - var object = {}; - jQuery.each( options.match( rnothtmlwhite ) || [], function( _, flag ) { - object[ flag ] = true; - } ); - return object; -} - -/* - * Create a callback list using the following parameters: - * - * options: an optional list of space-separated options that will change how - * the callback list behaves or a more traditional option object - * - * By default a callback list will act like an event callback list and can be - * "fired" multiple times. - * - * Possible options: - * - * once: will ensure the callback list can only be fired once (like a Deferred) - * - * memory: will keep track of previous values and will call any callback added - * after the list has been fired right away with the latest "memorized" - * values (like a Deferred) - * - * unique: will ensure a callback can only be added once (no duplicate in the list) - * - * stopOnFalse: interrupt callings when a callback returns false - * - */ -jQuery.Callbacks = function( options ) { - - // Convert options from String-formatted to Object-formatted if needed - // (we check in cache first) - options = typeof options === "string" ? - createOptions( options ) : - jQuery.extend( {}, options ); - - var // Flag to know if list is currently firing - firing, - - // Last fire value for non-forgettable lists - memory, - - // Flag to know if list was already fired - fired, - - // Flag to prevent firing - locked, - - // Actual callback list - list = [], - - // Queue of execution data for repeatable lists - queue = [], - - // Index of currently firing callback (modified by add/remove as needed) - firingIndex = -1, - - // Fire callbacks - fire = function() { - - // Enforce single-firing - locked = locked || options.once; - - // Execute callbacks for all pending executions, - // respecting firingIndex overrides and runtime changes - fired = firing = true; - for ( ; queue.length; firingIndex = -1 ) { - memory = queue.shift(); - while ( ++firingIndex < list.length ) { - - // Run callback and check for early termination - if ( list[ firingIndex ].apply( memory[ 0 ], memory[ 1 ] ) === false && - options.stopOnFalse ) { - - // Jump to end and forget the data so .add doesn't re-fire - firingIndex = list.length; - memory = false; - } - } - } - - // Forget the data if we're done with it - if ( !options.memory ) { - memory = false; - } - - firing = false; - - // Clean up if we're done firing for good - if ( locked ) { - - // Keep an empty list if we have data for future add calls - if ( memory ) { - list = []; - - // Otherwise, this object is spent - } else { - list = ""; - } - } - }, - - // Actual Callbacks object - self = { - - // Add a callback or a collection of callbacks to the list - add: function() { - if ( list ) { - - // If we have memory from a past run, we should fire after adding - if ( memory && !firing ) { - firingIndex = list.length - 1; - queue.push( memory ); - } - - ( function add( args ) { - jQuery.each( args, function( _, arg ) { - if ( isFunction( arg ) ) { - if ( !options.unique || !self.has( arg ) ) { - list.push( arg ); - } - } else if ( arg && arg.length && toType( arg ) !== "string" ) { - - // Inspect recursively - add( arg ); - } - } ); - } )( arguments ); - - if ( memory && !firing ) { - fire(); - } - } - return this; - }, - - // Remove a callback from the list - remove: function() { - jQuery.each( arguments, function( _, arg ) { - var index; - while ( ( index = jQuery.inArray( arg, list, index ) ) > -1 ) { - list.splice( index, 1 ); - - // Handle firing indexes - if ( index <= firingIndex ) { - firingIndex--; - } - } - } ); - return this; - }, - - // Check if a given callback is in the list. - // If no argument is given, return whether or not list has callbacks attached. - has: function( fn ) { - return fn ? - jQuery.inArray( fn, list ) > -1 : - list.length > 0; - }, - - // Remove all callbacks from the list - empty: function() { - if ( list ) { - list = []; - } - return this; - }, - - // Disable .fire and .add - // Abort any current/pending executions - // Clear all callbacks and values - disable: function() { - locked = queue = []; - list = memory = ""; - return this; - }, - disabled: function() { - return !list; - }, - - // Disable .fire - // Also disable .add unless we have memory (since it would have no effect) - // Abort any pending executions - lock: function() { - locked = queue = []; - if ( !memory && !firing ) { - list = memory = ""; - } - return this; - }, - locked: function() { - return !!locked; - }, - - // Call all callbacks with the given context and arguments - fireWith: function( context, args ) { - if ( !locked ) { - args = args || []; - args = [ context, args.slice ? args.slice() : args ]; - queue.push( args ); - if ( !firing ) { - fire(); - } - } - return this; - }, - - // Call all the callbacks with the given arguments - fire: function() { - self.fireWith( this, arguments ); - return this; - }, - - // To know if the callbacks have already been called at least once - fired: function() { - return !!fired; - } - }; - - return self; -}; - - -function Identity( v ) { - return v; -} -function Thrower( ex ) { - throw ex; -} - -function adoptValue( value, resolve, reject, noValue ) { - var method; - - try { - - // Check for promise aspect first to privilege synchronous behavior - if ( value && isFunction( ( method = value.promise ) ) ) { - method.call( value ).done( resolve ).fail( reject ); - - // Other thenables - } else if ( value && isFunction( ( method = value.then ) ) ) { - method.call( value, resolve, reject ); - - // Other non-thenables - } else { - - // Control `resolve` arguments by letting Array#slice cast boolean `noValue` to integer: - // * false: [ value ].slice( 0 ) => resolve( value ) - // * true: [ value ].slice( 1 ) => resolve() - resolve.apply( undefined, [ value ].slice( noValue ) ); - } - - // For Promises/A+, convert exceptions into rejections - // Since jQuery.when doesn't unwrap thenables, we can skip the extra checks appearing in - // Deferred#then to conditionally suppress rejection. - } catch ( value ) { - - // Support: Android 4.0 only - // Strict mode functions invoked without .call/.apply get global-object context - reject.apply( undefined, [ value ] ); - } -} - -jQuery.extend( { - - Deferred: function( func ) { - var tuples = [ - - // action, add listener, callbacks, - // ... .then handlers, argument index, [final state] - [ "notify", "progress", jQuery.Callbacks( "memory" ), - jQuery.Callbacks( "memory" ), 2 ], - [ "resolve", "done", jQuery.Callbacks( "once memory" ), - jQuery.Callbacks( "once memory" ), 0, "resolved" ], - [ "reject", "fail", jQuery.Callbacks( "once memory" ), - jQuery.Callbacks( "once memory" ), 1, "rejected" ] - ], - state = "pending", - promise = { - state: function() { - return state; - }, - always: function() { - deferred.done( arguments ).fail( arguments ); - return this; - }, - "catch": function( fn ) { - return promise.then( null, fn ); - }, - - // Keep pipe for back-compat - pipe: function( /* fnDone, fnFail, fnProgress */ ) { - var fns = arguments; - - return jQuery.Deferred( function( newDefer ) { - jQuery.each( tuples, function( _i, tuple ) { - - // Map tuples (progress, done, fail) to arguments (done, fail, progress) - var fn = isFunction( fns[ tuple[ 4 ] ] ) && fns[ tuple[ 4 ] ]; - - // deferred.progress(function() { bind to newDefer or newDefer.notify }) - // deferred.done(function() { bind to newDefer or newDefer.resolve }) - // deferred.fail(function() { bind to newDefer or newDefer.reject }) - deferred[ tuple[ 1 ] ]( function() { - var returned = fn && fn.apply( this, arguments ); - if ( returned && isFunction( returned.promise ) ) { - returned.promise() - .progress( newDefer.notify ) - .done( newDefer.resolve ) - .fail( newDefer.reject ); - } else { - newDefer[ tuple[ 0 ] + "With" ]( - this, - fn ? [ returned ] : arguments - ); - } - } ); - } ); - fns = null; - } ).promise(); - }, - then: function( onFulfilled, onRejected, onProgress ) { - var maxDepth = 0; - function resolve( depth, deferred, handler, special ) { - return function() { - var that = this, - args = arguments, - mightThrow = function() { - var returned, then; - - // Support: Promises/A+ section 2.3.3.3.3 - // https://promisesaplus.com/#point-59 - // Ignore double-resolution attempts - if ( depth < maxDepth ) { - return; - } - - returned = handler.apply( that, args ); - - // Support: Promises/A+ section 2.3.1 - // https://promisesaplus.com/#point-48 - if ( returned === deferred.promise() ) { - throw new TypeError( "Thenable self-resolution" ); - } - - // Support: Promises/A+ sections 2.3.3.1, 3.5 - // https://promisesaplus.com/#point-54 - // https://promisesaplus.com/#point-75 - // Retrieve `then` only once - then = returned && - - // Support: Promises/A+ section 2.3.4 - // https://promisesaplus.com/#point-64 - // Only check objects and functions for thenability - ( typeof returned === "object" || - typeof returned === "function" ) && - returned.then; - - // Handle a returned thenable - if ( isFunction( then ) ) { - - // Special processors (notify) just wait for resolution - if ( special ) { - then.call( - returned, - resolve( maxDepth, deferred, Identity, special ), - resolve( maxDepth, deferred, Thrower, special ) - ); - - // Normal processors (resolve) also hook into progress - } else { - - // ...and disregard older resolution values - maxDepth++; - - then.call( - returned, - resolve( maxDepth, deferred, Identity, special ), - resolve( maxDepth, deferred, Thrower, special ), - resolve( maxDepth, deferred, Identity, - deferred.notifyWith ) - ); - } - - // Handle all other returned values - } else { - - // Only substitute handlers pass on context - // and multiple values (non-spec behavior) - if ( handler !== Identity ) { - that = undefined; - args = [ returned ]; - } - - // Process the value(s) - // Default process is resolve - ( special || deferred.resolveWith )( that, args ); - } - }, - - // Only normal processors (resolve) catch and reject exceptions - process = special ? - mightThrow : - function() { - try { - mightThrow(); - } catch ( e ) { - - if ( jQuery.Deferred.exceptionHook ) { - jQuery.Deferred.exceptionHook( e, - process.stackTrace ); - } - - // Support: Promises/A+ section 2.3.3.3.4.1 - // https://promisesaplus.com/#point-61 - // Ignore post-resolution exceptions - if ( depth + 1 >= maxDepth ) { - - // Only substitute handlers pass on context - // and multiple values (non-spec behavior) - if ( handler !== Thrower ) { - that = undefined; - args = [ e ]; - } - - deferred.rejectWith( that, args ); - } - } - }; - - // Support: Promises/A+ section 2.3.3.3.1 - // https://promisesaplus.com/#point-57 - // Re-resolve promises immediately to dodge false rejection from - // subsequent errors - if ( depth ) { - process(); - } else { - - // Call an optional hook to record the stack, in case of exception - // since it's otherwise lost when execution goes async - if ( jQuery.Deferred.getStackHook ) { - process.stackTrace = jQuery.Deferred.getStackHook(); - } - window.setTimeout( process ); - } - }; - } - - return jQuery.Deferred( function( newDefer ) { - - // progress_handlers.add( ... ) - tuples[ 0 ][ 3 ].add( - resolve( - 0, - newDefer, - isFunction( onProgress ) ? - onProgress : - Identity, - newDefer.notifyWith - ) - ); - - // fulfilled_handlers.add( ... ) - tuples[ 1 ][ 3 ].add( - resolve( - 0, - newDefer, - isFunction( onFulfilled ) ? - onFulfilled : - Identity - ) - ); - - // rejected_handlers.add( ... ) - tuples[ 2 ][ 3 ].add( - resolve( - 0, - newDefer, - isFunction( onRejected ) ? - onRejected : - Thrower - ) - ); - } ).promise(); - }, - - // Get a promise for this deferred - // If obj is provided, the promise aspect is added to the object - promise: function( obj ) { - return obj != null ? jQuery.extend( obj, promise ) : promise; - } - }, - deferred = {}; - - // Add list-specific methods - jQuery.each( tuples, function( i, tuple ) { - var list = tuple[ 2 ], - stateString = tuple[ 5 ]; - - // promise.progress = list.add - // promise.done = list.add - // promise.fail = list.add - promise[ tuple[ 1 ] ] = list.add; - - // Handle state - if ( stateString ) { - list.add( - function() { - - // state = "resolved" (i.e., fulfilled) - // state = "rejected" - state = stateString; - }, - - // rejected_callbacks.disable - // fulfilled_callbacks.disable - tuples[ 3 - i ][ 2 ].disable, - - // rejected_handlers.disable - // fulfilled_handlers.disable - tuples[ 3 - i ][ 3 ].disable, - - // progress_callbacks.lock - tuples[ 0 ][ 2 ].lock, - - // progress_handlers.lock - tuples[ 0 ][ 3 ].lock - ); - } - - // progress_handlers.fire - // fulfilled_handlers.fire - // rejected_handlers.fire - list.add( tuple[ 3 ].fire ); - - // deferred.notify = function() { deferred.notifyWith(...) } - // deferred.resolve = function() { deferred.resolveWith(...) } - // deferred.reject = function() { deferred.rejectWith(...) } - deferred[ tuple[ 0 ] ] = function() { - deferred[ tuple[ 0 ] + "With" ]( this === deferred ? undefined : this, arguments ); - return this; - }; - - // deferred.notifyWith = list.fireWith - // deferred.resolveWith = list.fireWith - // deferred.rejectWith = list.fireWith - deferred[ tuple[ 0 ] + "With" ] = list.fireWith; - } ); - - // Make the deferred a promise - promise.promise( deferred ); - - // Call given func if any - if ( func ) { - func.call( deferred, deferred ); - } - - // All done! - return deferred; - }, - - // Deferred helper - when: function( singleValue ) { - var - - // count of uncompleted subordinates - remaining = arguments.length, - - // count of unprocessed arguments - i = remaining, - - // subordinate fulfillment data - resolveContexts = Array( i ), - resolveValues = slice.call( arguments ), - - // the master Deferred - master = jQuery.Deferred(), - - // subordinate callback factory - updateFunc = function( i ) { - return function( value ) { - resolveContexts[ i ] = this; - resolveValues[ i ] = arguments.length > 1 ? slice.call( arguments ) : value; - if ( !( --remaining ) ) { - master.resolveWith( resolveContexts, resolveValues ); - } - }; - }; - - // Single- and empty arguments are adopted like Promise.resolve - if ( remaining <= 1 ) { - adoptValue( singleValue, master.done( updateFunc( i ) ).resolve, master.reject, - !remaining ); - - // Use .then() to unwrap secondary thenables (cf. gh-3000) - if ( master.state() === "pending" || - isFunction( resolveValues[ i ] && resolveValues[ i ].then ) ) { - - return master.then(); - } - } - - // Multiple arguments are aggregated like Promise.all array elements - while ( i-- ) { - adoptValue( resolveValues[ i ], updateFunc( i ), master.reject ); - } - - return master.promise(); - } -} ); - - -// These usually indicate a programmer mistake during development, -// warn about them ASAP rather than swallowing them by default. -var rerrorNames = /^(Eval|Internal|Range|Reference|Syntax|Type|URI)Error$/; - -jQuery.Deferred.exceptionHook = function( error, stack ) { - - // Support: IE 8 - 9 only - // Console exists when dev tools are open, which can happen at any time - if ( window.console && window.console.warn && error && rerrorNames.test( error.name ) ) { - window.console.warn( "jQuery.Deferred exception: " + error.message, error.stack, stack ); - } -}; - - - - -jQuery.readyException = function( error ) { - window.setTimeout( function() { - throw error; - } ); -}; - - - - -// The deferred used on DOM ready -var readyList = jQuery.Deferred(); - -jQuery.fn.ready = function( fn ) { - - readyList - .then( fn ) - - // Wrap jQuery.readyException in a function so that the lookup - // happens at the time of error handling instead of callback - // registration. - .catch( function( error ) { - jQuery.readyException( error ); - } ); - - return this; -}; - -jQuery.extend( { - - // Is the DOM ready to be used? Set to true once it occurs. - isReady: false, - - // A counter to track how many items to wait for before - // the ready event fires. See #6781 - readyWait: 1, - - // Handle when the DOM is ready - ready: function( wait ) { - - // Abort if there are pending holds or we're already ready - if ( wait === true ? --jQuery.readyWait : jQuery.isReady ) { - return; - } - - // Remember that the DOM is ready - jQuery.isReady = true; - - // If a normal DOM Ready event fired, decrement, and wait if need be - if ( wait !== true && --jQuery.readyWait > 0 ) { - return; - } - - // If there are functions bound, to execute - readyList.resolveWith( document, [ jQuery ] ); - } -} ); - -jQuery.ready.then = readyList.then; - -// The ready event handler and self cleanup method -function completed() { - document.removeEventListener( "DOMContentLoaded", completed ); - window.removeEventListener( "load", completed ); - jQuery.ready(); -} - -// Catch cases where $(document).ready() is called -// after the browser event has already occurred. -// Support: IE <=9 - 10 only -// Older IE sometimes signals "interactive" too soon -if ( document.readyState === "complete" || - ( document.readyState !== "loading" && !document.documentElement.doScroll ) ) { - - // Handle it asynchronously to allow scripts the opportunity to delay ready - window.setTimeout( jQuery.ready ); - -} else { - - // Use the handy event callback - document.addEventListener( "DOMContentLoaded", completed ); - - // A fallback to window.onload, that will always work - window.addEventListener( "load", completed ); -} - - - - -// Multifunctional method to get and set values of a collection -// The value/s can optionally be executed if it's a function -var access = function( elems, fn, key, value, chainable, emptyGet, raw ) { - var i = 0, - len = elems.length, - bulk = key == null; - - // Sets many values - if ( toType( key ) === "object" ) { - chainable = true; - for ( i in key ) { - access( elems, fn, i, key[ i ], true, emptyGet, raw ); - } - - // Sets one value - } else if ( value !== undefined ) { - chainable = true; - - if ( !isFunction( value ) ) { - raw = true; - } - - if ( bulk ) { - - // Bulk operations run against the entire set - if ( raw ) { - fn.call( elems, value ); - fn = null; - - // ...except when executing function values - } else { - bulk = fn; - fn = function( elem, _key, value ) { - return bulk.call( jQuery( elem ), value ); - }; - } - } - - if ( fn ) { - for ( ; i < len; i++ ) { - fn( - elems[ i ], key, raw ? - value : - value.call( elems[ i ], i, fn( elems[ i ], key ) ) - ); - } - } - } - - if ( chainable ) { - return elems; - } - - // Gets - if ( bulk ) { - return fn.call( elems ); - } - - return len ? fn( elems[ 0 ], key ) : emptyGet; -}; - - -// Matches dashed string for camelizing -var rmsPrefix = /^-ms-/, - rdashAlpha = /-([a-z])/g; - -// Used by camelCase as callback to replace() -function fcamelCase( _all, letter ) { - return letter.toUpperCase(); -} - -// Convert dashed to camelCase; used by the css and data modules -// Support: IE <=9 - 11, Edge 12 - 15 -// Microsoft forgot to hump their vendor prefix (#9572) -function camelCase( string ) { - return string.replace( rmsPrefix, "ms-" ).replace( rdashAlpha, fcamelCase ); -} -var acceptData = function( owner ) { - - // Accepts only: - // - Node - // - Node.ELEMENT_NODE - // - Node.DOCUMENT_NODE - // - Object - // - Any - return owner.nodeType === 1 || owner.nodeType === 9 || !( +owner.nodeType ); -}; - - - - -function Data() { - this.expando = jQuery.expando + Data.uid++; -} - -Data.uid = 1; - -Data.prototype = { - - cache: function( owner ) { - - // Check if the owner object already has a cache - var value = owner[ this.expando ]; - - // If not, create one - if ( !value ) { - value = {}; - - // We can accept data for non-element nodes in modern browsers, - // but we should not, see #8335. - // Always return an empty object. - if ( acceptData( owner ) ) { - - // If it is a node unlikely to be stringify-ed or looped over - // use plain assignment - if ( owner.nodeType ) { - owner[ this.expando ] = value; - - // Otherwise secure it in a non-enumerable property - // configurable must be true to allow the property to be - // deleted when data is removed - } else { - Object.defineProperty( owner, this.expando, { - value: value, - configurable: true - } ); - } - } - } - - return value; - }, - set: function( owner, data, value ) { - var prop, - cache = this.cache( owner ); - - // Handle: [ owner, key, value ] args - // Always use camelCase key (gh-2257) - if ( typeof data === "string" ) { - cache[ camelCase( data ) ] = value; - - // Handle: [ owner, { properties } ] args - } else { - - // Copy the properties one-by-one to the cache object - for ( prop in data ) { - cache[ camelCase( prop ) ] = data[ prop ]; - } - } - return cache; - }, - get: function( owner, key ) { - return key === undefined ? - this.cache( owner ) : - - // Always use camelCase key (gh-2257) - owner[ this.expando ] && owner[ this.expando ][ camelCase( key ) ]; - }, - access: function( owner, key, value ) { - - // In cases where either: - // - // 1. No key was specified - // 2. A string key was specified, but no value provided - // - // Take the "read" path and allow the get method to determine - // which value to return, respectively either: - // - // 1. The entire cache object - // 2. The data stored at the key - // - if ( key === undefined || - ( ( key && typeof key === "string" ) && value === undefined ) ) { - - return this.get( owner, key ); - } - - // When the key is not a string, or both a key and value - // are specified, set or extend (existing objects) with either: - // - // 1. An object of properties - // 2. A key and value - // - this.set( owner, key, value ); - - // Since the "set" path can have two possible entry points - // return the expected data based on which path was taken[*] - return value !== undefined ? value : key; - }, - remove: function( owner, key ) { - var i, - cache = owner[ this.expando ]; - - if ( cache === undefined ) { - return; - } - - if ( key !== undefined ) { - - // Support array or space separated string of keys - if ( Array.isArray( key ) ) { - - // If key is an array of keys... - // We always set camelCase keys, so remove that. - key = key.map( camelCase ); - } else { - key = camelCase( key ); - - // If a key with the spaces exists, use it. - // Otherwise, create an array by matching non-whitespace - key = key in cache ? - [ key ] : - ( key.match( rnothtmlwhite ) || [] ); - } - - i = key.length; - - while ( i-- ) { - delete cache[ key[ i ] ]; - } - } - - // Remove the expando if there's no more data - if ( key === undefined || jQuery.isEmptyObject( cache ) ) { - - // Support: Chrome <=35 - 45 - // Webkit & Blink performance suffers when deleting properties - // from DOM nodes, so set to undefined instead - // https://bugs.chromium.org/p/chromium/issues/detail?id=378607 (bug restricted) - if ( owner.nodeType ) { - owner[ this.expando ] = undefined; - } else { - delete owner[ this.expando ]; - } - } - }, - hasData: function( owner ) { - var cache = owner[ this.expando ]; - return cache !== undefined && !jQuery.isEmptyObject( cache ); - } -}; -var dataPriv = new Data(); - -var dataUser = new Data(); - - - -// Implementation Summary -// -// 1. Enforce API surface and semantic compatibility with 1.9.x branch -// 2. Improve the module's maintainability by reducing the storage -// paths to a single mechanism. -// 3. Use the same single mechanism to support "private" and "user" data. -// 4. _Never_ expose "private" data to user code (TODO: Drop _data, _removeData) -// 5. Avoid exposing implementation details on user objects (eg. expando properties) -// 6. Provide a clear path for implementation upgrade to WeakMap in 2014 - -var rbrace = /^(?:\{[\w\W]*\}|\[[\w\W]*\])$/, - rmultiDash = /[A-Z]/g; - -function getData( data ) { - if ( data === "true" ) { - return true; - } - - if ( data === "false" ) { - return false; - } - - if ( data === "null" ) { - return null; - } - - // Only convert to a number if it doesn't change the string - if ( data === +data + "" ) { - return +data; - } - - if ( rbrace.test( data ) ) { - return JSON.parse( data ); - } - - return data; -} - -function dataAttr( elem, key, data ) { - var name; - - // If nothing was found internally, try to fetch any - // data from the HTML5 data-* attribute - if ( data === undefined && elem.nodeType === 1 ) { - name = "data-" + key.replace( rmultiDash, "-$&" ).toLowerCase(); - data = elem.getAttribute( name ); - - if ( typeof data === "string" ) { - try { - data = getData( data ); - } catch ( e ) {} - - // Make sure we set the data so it isn't changed later - dataUser.set( elem, key, data ); - } else { - data = undefined; - } - } - return data; -} - -jQuery.extend( { - hasData: function( elem ) { - return dataUser.hasData( elem ) || dataPriv.hasData( elem ); - }, - - data: function( elem, name, data ) { - return dataUser.access( elem, name, data ); - }, - - removeData: function( elem, name ) { - dataUser.remove( elem, name ); - }, - - // TODO: Now that all calls to _data and _removeData have been replaced - // with direct calls to dataPriv methods, these can be deprecated. - _data: function( elem, name, data ) { - return dataPriv.access( elem, name, data ); - }, - - _removeData: function( elem, name ) { - dataPriv.remove( elem, name ); - } -} ); - -jQuery.fn.extend( { - data: function( key, value ) { - var i, name, data, - elem = this[ 0 ], - attrs = elem && elem.attributes; - - // Gets all values - if ( key === undefined ) { - if ( this.length ) { - data = dataUser.get( elem ); - - if ( elem.nodeType === 1 && !dataPriv.get( elem, "hasDataAttrs" ) ) { - i = attrs.length; - while ( i-- ) { - - // Support: IE 11 only - // The attrs elements can be null (#14894) - if ( attrs[ i ] ) { - name = attrs[ i ].name; - if ( name.indexOf( "data-" ) === 0 ) { - name = camelCase( name.slice( 5 ) ); - dataAttr( elem, name, data[ name ] ); - } - } - } - dataPriv.set( elem, "hasDataAttrs", true ); - } - } - - return data; - } - - // Sets multiple values - if ( typeof key === "object" ) { - return this.each( function() { - dataUser.set( this, key ); - } ); - } - - return access( this, function( value ) { - var data; - - // The calling jQuery object (element matches) is not empty - // (and therefore has an element appears at this[ 0 ]) and the - // `value` parameter was not undefined. An empty jQuery object - // will result in `undefined` for elem = this[ 0 ] which will - // throw an exception if an attempt to read a data cache is made. - if ( elem && value === undefined ) { - - // Attempt to get data from the cache - // The key will always be camelCased in Data - data = dataUser.get( elem, key ); - if ( data !== undefined ) { - return data; - } - - // Attempt to "discover" the data in - // HTML5 custom data-* attrs - data = dataAttr( elem, key ); - if ( data !== undefined ) { - return data; - } - - // We tried really hard, but the data doesn't exist. - return; - } - - // Set the data... - this.each( function() { - - // We always store the camelCased key - dataUser.set( this, key, value ); - } ); - }, null, value, arguments.length > 1, null, true ); - }, - - removeData: function( key ) { - return this.each( function() { - dataUser.remove( this, key ); - } ); - } -} ); - - -jQuery.extend( { - queue: function( elem, type, data ) { - var queue; - - if ( elem ) { - type = ( type || "fx" ) + "queue"; - queue = dataPriv.get( elem, type ); - - // Speed up dequeue by getting out quickly if this is just a lookup - if ( data ) { - if ( !queue || Array.isArray( data ) ) { - queue = dataPriv.access( elem, type, jQuery.makeArray( data ) ); - } else { - queue.push( data ); - } - } - return queue || []; - } - }, - - dequeue: function( elem, type ) { - type = type || "fx"; - - var queue = jQuery.queue( elem, type ), - startLength = queue.length, - fn = queue.shift(), - hooks = jQuery._queueHooks( elem, type ), - next = function() { - jQuery.dequeue( elem, type ); - }; - - // If the fx queue is dequeued, always remove the progress sentinel - if ( fn === "inprogress" ) { - fn = queue.shift(); - startLength--; - } - - if ( fn ) { - - // Add a progress sentinel to prevent the fx queue from being - // automatically dequeued - if ( type === "fx" ) { - queue.unshift( "inprogress" ); - } - - // Clear up the last queue stop function - delete hooks.stop; - fn.call( elem, next, hooks ); - } - - if ( !startLength && hooks ) { - hooks.empty.fire(); - } - }, - - // Not public - generate a queueHooks object, or return the current one - _queueHooks: function( elem, type ) { - var key = type + "queueHooks"; - return dataPriv.get( elem, key ) || dataPriv.access( elem, key, { - empty: jQuery.Callbacks( "once memory" ).add( function() { - dataPriv.remove( elem, [ type + "queue", key ] ); - } ) - } ); - } -} ); - -jQuery.fn.extend( { - queue: function( type, data ) { - var setter = 2; - - if ( typeof type !== "string" ) { - data = type; - type = "fx"; - setter--; - } - - if ( arguments.length < setter ) { - return jQuery.queue( this[ 0 ], type ); - } - - return data === undefined ? - this : - this.each( function() { - var queue = jQuery.queue( this, type, data ); - - // Ensure a hooks for this queue - jQuery._queueHooks( this, type ); - - if ( type === "fx" && queue[ 0 ] !== "inprogress" ) { - jQuery.dequeue( this, type ); - } - } ); - }, - dequeue: function( type ) { - return this.each( function() { - jQuery.dequeue( this, type ); - } ); - }, - clearQueue: function( type ) { - return this.queue( type || "fx", [] ); - }, - - // Get a promise resolved when queues of a certain type - // are emptied (fx is the type by default) - promise: function( type, obj ) { - var tmp, - count = 1, - defer = jQuery.Deferred(), - elements = this, - i = this.length, - resolve = function() { - if ( !( --count ) ) { - defer.resolveWith( elements, [ elements ] ); - } - }; - - if ( typeof type !== "string" ) { - obj = type; - type = undefined; - } - type = type || "fx"; - - while ( i-- ) { - tmp = dataPriv.get( elements[ i ], type + "queueHooks" ); - if ( tmp && tmp.empty ) { - count++; - tmp.empty.add( resolve ); - } - } - resolve(); - return defer.promise( obj ); - } -} ); -var pnum = ( /[+-]?(?:\d*\.|)\d+(?:[eE][+-]?\d+|)/ ).source; - -var rcssNum = new RegExp( "^(?:([+-])=|)(" + pnum + ")([a-z%]*)$", "i" ); - - -var cssExpand = [ "Top", "Right", "Bottom", "Left" ]; - -var documentElement = document.documentElement; - - - - var isAttached = function( elem ) { - return jQuery.contains( elem.ownerDocument, elem ); - }, - composed = { composed: true }; - - // Support: IE 9 - 11+, Edge 12 - 18+, iOS 10.0 - 10.2 only - // Check attachment across shadow DOM boundaries when possible (gh-3504) - // Support: iOS 10.0-10.2 only - // Early iOS 10 versions support `attachShadow` but not `getRootNode`, - // leading to errors. We need to check for `getRootNode`. - if ( documentElement.getRootNode ) { - isAttached = function( elem ) { - return jQuery.contains( elem.ownerDocument, elem ) || - elem.getRootNode( composed ) === elem.ownerDocument; - }; - } -var isHiddenWithinTree = function( elem, el ) { - - // isHiddenWithinTree might be called from jQuery#filter function; - // in that case, element will be second argument - elem = el || elem; - - // Inline style trumps all - return elem.style.display === "none" || - elem.style.display === "" && - - // Otherwise, check computed style - // Support: Firefox <=43 - 45 - // Disconnected elements can have computed display: none, so first confirm that elem is - // in the document. - isAttached( elem ) && - - jQuery.css( elem, "display" ) === "none"; - }; - - - -function adjustCSS( elem, prop, valueParts, tween ) { - var adjusted, scale, - maxIterations = 20, - currentValue = tween ? - function() { - return tween.cur(); - } : - function() { - return jQuery.css( elem, prop, "" ); - }, - initial = currentValue(), - unit = valueParts && valueParts[ 3 ] || ( jQuery.cssNumber[ prop ] ? "" : "px" ), - - // Starting value computation is required for potential unit mismatches - initialInUnit = elem.nodeType && - ( jQuery.cssNumber[ prop ] || unit !== "px" && +initial ) && - rcssNum.exec( jQuery.css( elem, prop ) ); - - if ( initialInUnit && initialInUnit[ 3 ] !== unit ) { - - // Support: Firefox <=54 - // Halve the iteration target value to prevent interference from CSS upper bounds (gh-2144) - initial = initial / 2; - - // Trust units reported by jQuery.css - unit = unit || initialInUnit[ 3 ]; - - // Iteratively approximate from a nonzero starting point - initialInUnit = +initial || 1; - - while ( maxIterations-- ) { - - // Evaluate and update our best guess (doubling guesses that zero out). - // Finish if the scale equals or crosses 1 (making the old*new product non-positive). - jQuery.style( elem, prop, initialInUnit + unit ); - if ( ( 1 - scale ) * ( 1 - ( scale = currentValue() / initial || 0.5 ) ) <= 0 ) { - maxIterations = 0; - } - initialInUnit = initialInUnit / scale; - - } - - initialInUnit = initialInUnit * 2; - jQuery.style( elem, prop, initialInUnit + unit ); - - // Make sure we update the tween properties later on - valueParts = valueParts || []; - } - - if ( valueParts ) { - initialInUnit = +initialInUnit || +initial || 0; - - // Apply relative offset (+=/-=) if specified - adjusted = valueParts[ 1 ] ? - initialInUnit + ( valueParts[ 1 ] + 1 ) * valueParts[ 2 ] : - +valueParts[ 2 ]; - if ( tween ) { - tween.unit = unit; - tween.start = initialInUnit; - tween.end = adjusted; - } - } - return adjusted; -} - - -var defaultDisplayMap = {}; - -function getDefaultDisplay( elem ) { - var temp, - doc = elem.ownerDocument, - nodeName = elem.nodeName, - display = defaultDisplayMap[ nodeName ]; - - if ( display ) { - return display; - } - - temp = doc.body.appendChild( doc.createElement( nodeName ) ); - display = jQuery.css( temp, "display" ); - - temp.parentNode.removeChild( temp ); - - if ( display === "none" ) { - display = "block"; - } - defaultDisplayMap[ nodeName ] = display; - - return display; -} - -function showHide( elements, show ) { - var display, elem, - values = [], - index = 0, - length = elements.length; - - // Determine new display value for elements that need to change - for ( ; index < length; index++ ) { - elem = elements[ index ]; - if ( !elem.style ) { - continue; - } - - display = elem.style.display; - if ( show ) { - - // Since we force visibility upon cascade-hidden elements, an immediate (and slow) - // check is required in this first loop unless we have a nonempty display value (either - // inline or about-to-be-restored) - if ( display === "none" ) { - values[ index ] = dataPriv.get( elem, "display" ) || null; - if ( !values[ index ] ) { - elem.style.display = ""; - } - } - if ( elem.style.display === "" && isHiddenWithinTree( elem ) ) { - values[ index ] = getDefaultDisplay( elem ); - } - } else { - if ( display !== "none" ) { - values[ index ] = "none"; - - // Remember what we're overwriting - dataPriv.set( elem, "display", display ); - } - } - } - - // Set the display of the elements in a second loop to avoid constant reflow - for ( index = 0; index < length; index++ ) { - if ( values[ index ] != null ) { - elements[ index ].style.display = values[ index ]; - } - } - - return elements; -} - -jQuery.fn.extend( { - show: function() { - return showHide( this, true ); - }, - hide: function() { - return showHide( this ); - }, - toggle: function( state ) { - if ( typeof state === "boolean" ) { - return state ? this.show() : this.hide(); - } - - return this.each( function() { - if ( isHiddenWithinTree( this ) ) { - jQuery( this ).show(); - } else { - jQuery( this ).hide(); - } - } ); - } -} ); -var rcheckableType = ( /^(?:checkbox|radio)$/i ); - -var rtagName = ( /<([a-z][^\/\0>\x20\t\r\n\f]*)/i ); - -var rscriptType = ( /^$|^module$|\/(?:java|ecma)script/i ); - - - -( function() { - var fragment = document.createDocumentFragment(), - div = fragment.appendChild( document.createElement( "div" ) ), - input = document.createElement( "input" ); - - // Support: Android 4.0 - 4.3 only - // Check state lost if the name is set (#11217) - // Support: Windows Web Apps (WWA) - // `name` and `type` must use .setAttribute for WWA (#14901) - input.setAttribute( "type", "radio" ); - input.setAttribute( "checked", "checked" ); - input.setAttribute( "name", "t" ); - - div.appendChild( input ); - - // Support: Android <=4.1 only - // Older WebKit doesn't clone checked state correctly in fragments - support.checkClone = div.cloneNode( true ).cloneNode( true ).lastChild.checked; - - // Support: IE <=11 only - // Make sure textarea (and checkbox) defaultValue is properly cloned - div.innerHTML = ""; - support.noCloneChecked = !!div.cloneNode( true ).lastChild.defaultValue; - - // Support: IE <=9 only - // IE <=9 replaces "; - support.option = !!div.lastChild; -} )(); - - -// We have to close these tags to support XHTML (#13200) -var wrapMap = { - - // XHTML parsers do not magically insert elements in the - // same way that tag soup parsers do. So we cannot shorten - // this by omitting or other required elements. - thead: [ 1, "", "
" ], - col: [ 2, "", "
" ], - tr: [ 2, "", "
" ], - td: [ 3, "", "
" ], - - _default: [ 0, "", "" ] -}; - -wrapMap.tbody = wrapMap.tfoot = wrapMap.colgroup = wrapMap.caption = wrapMap.thead; -wrapMap.th = wrapMap.td; - -// Support: IE <=9 only -if ( !support.option ) { - wrapMap.optgroup = wrapMap.option = [ 1, "" ]; -} - - -function getAll( context, tag ) { - - // Support: IE <=9 - 11 only - // Use typeof to avoid zero-argument method invocation on host objects (#15151) - var ret; - - if ( typeof context.getElementsByTagName !== "undefined" ) { - ret = context.getElementsByTagName( tag || "*" ); - - } else if ( typeof context.querySelectorAll !== "undefined" ) { - ret = context.querySelectorAll( tag || "*" ); - - } else { - ret = []; - } - - if ( tag === undefined || tag && nodeName( context, tag ) ) { - return jQuery.merge( [ context ], ret ); - } - - return ret; -} - - -// Mark scripts as having already been evaluated -function setGlobalEval( elems, refElements ) { - var i = 0, - l = elems.length; - - for ( ; i < l; i++ ) { - dataPriv.set( - elems[ i ], - "globalEval", - !refElements || dataPriv.get( refElements[ i ], "globalEval" ) - ); - } -} - - -var rhtml = /<|&#?\w+;/; - -function buildFragment( elems, context, scripts, selection, ignored ) { - var elem, tmp, tag, wrap, attached, j, - fragment = context.createDocumentFragment(), - nodes = [], - i = 0, - l = elems.length; - - for ( ; i < l; i++ ) { - elem = elems[ i ]; - - if ( elem || elem === 0 ) { - - // Add nodes directly - if ( toType( elem ) === "object" ) { - - // Support: Android <=4.0 only, PhantomJS 1 only - // push.apply(_, arraylike) throws on ancient WebKit - jQuery.merge( nodes, elem.nodeType ? [ elem ] : elem ); - - // Convert non-html into a text node - } else if ( !rhtml.test( elem ) ) { - nodes.push( context.createTextNode( elem ) ); - - // Convert html into DOM nodes - } else { - tmp = tmp || fragment.appendChild( context.createElement( "div" ) ); - - // Deserialize a standard representation - tag = ( rtagName.exec( elem ) || [ "", "" ] )[ 1 ].toLowerCase(); - wrap = wrapMap[ tag ] || wrapMap._default; - tmp.innerHTML = wrap[ 1 ] + jQuery.htmlPrefilter( elem ) + wrap[ 2 ]; - - // Descend through wrappers to the right content - j = wrap[ 0 ]; - while ( j-- ) { - tmp = tmp.lastChild; - } - - // Support: Android <=4.0 only, PhantomJS 1 only - // push.apply(_, arraylike) throws on ancient WebKit - jQuery.merge( nodes, tmp.childNodes ); - - // Remember the top-level container - tmp = fragment.firstChild; - - // Ensure the created nodes are orphaned (#12392) - tmp.textContent = ""; - } - } - } - - // Remove wrapper from fragment - fragment.textContent = ""; - - i = 0; - while ( ( elem = nodes[ i++ ] ) ) { - - // Skip elements already in the context collection (trac-4087) - if ( selection && jQuery.inArray( elem, selection ) > -1 ) { - if ( ignored ) { - ignored.push( elem ); - } - continue; - } - - attached = isAttached( elem ); - - // Append to fragment - tmp = getAll( fragment.appendChild( elem ), "script" ); - - // Preserve script evaluation history - if ( attached ) { - setGlobalEval( tmp ); - } - - // Capture executables - if ( scripts ) { - j = 0; - while ( ( elem = tmp[ j++ ] ) ) { - if ( rscriptType.test( elem.type || "" ) ) { - scripts.push( elem ); - } - } - } - } - - return fragment; -} - - -var - rkeyEvent = /^key/, - rmouseEvent = /^(?:mouse|pointer|contextmenu|drag|drop)|click/, - rtypenamespace = /^([^.]*)(?:\.(.+)|)/; - -function returnTrue() { - return true; -} - -function returnFalse() { - return false; -} - -// Support: IE <=9 - 11+ -// focus() and blur() are asynchronous, except when they are no-op. -// So expect focus to be synchronous when the element is already active, -// and blur to be synchronous when the element is not already active. -// (focus and blur are always synchronous in other supported browsers, -// this just defines when we can count on it). -function expectSync( elem, type ) { - return ( elem === safeActiveElement() ) === ( type === "focus" ); -} - -// Support: IE <=9 only -// Accessing document.activeElement can throw unexpectedly -// https://bugs.jquery.com/ticket/13393 -function safeActiveElement() { - try { - return document.activeElement; - } catch ( err ) { } -} - -function on( elem, types, selector, data, fn, one ) { - var origFn, type; - - // Types can be a map of types/handlers - if ( typeof types === "object" ) { - - // ( types-Object, selector, data ) - if ( typeof selector !== "string" ) { - - // ( types-Object, data ) - data = data || selector; - selector = undefined; - } - for ( type in types ) { - on( elem, type, selector, data, types[ type ], one ); - } - return elem; - } - - if ( data == null && fn == null ) { - - // ( types, fn ) - fn = selector; - data = selector = undefined; - } else if ( fn == null ) { - if ( typeof selector === "string" ) { - - // ( types, selector, fn ) - fn = data; - data = undefined; - } else { - - // ( types, data, fn ) - fn = data; - data = selector; - selector = undefined; - } - } - if ( fn === false ) { - fn = returnFalse; - } else if ( !fn ) { - return elem; - } - - if ( one === 1 ) { - origFn = fn; - fn = function( event ) { - - // Can use an empty set, since event contains the info - jQuery().off( event ); - return origFn.apply( this, arguments ); - }; - - // Use same guid so caller can remove using origFn - fn.guid = origFn.guid || ( origFn.guid = jQuery.guid++ ); - } - return elem.each( function() { - jQuery.event.add( this, types, fn, data, selector ); - } ); -} - -/* - * Helper functions for managing events -- not part of the public interface. - * Props to Dean Edwards' addEvent library for many of the ideas. - */ -jQuery.event = { - - global: {}, - - add: function( elem, types, handler, data, selector ) { - - var handleObjIn, eventHandle, tmp, - events, t, handleObj, - special, handlers, type, namespaces, origType, - elemData = dataPriv.get( elem ); - - // Only attach events to objects that accept data - if ( !acceptData( elem ) ) { - return; - } - - // Caller can pass in an object of custom data in lieu of the handler - if ( handler.handler ) { - handleObjIn = handler; - handler = handleObjIn.handler; - selector = handleObjIn.selector; - } - - // Ensure that invalid selectors throw exceptions at attach time - // Evaluate against documentElement in case elem is a non-element node (e.g., document) - if ( selector ) { - jQuery.find.matchesSelector( documentElement, selector ); - } - - // Make sure that the handler has a unique ID, used to find/remove it later - if ( !handler.guid ) { - handler.guid = jQuery.guid++; - } - - // Init the element's event structure and main handler, if this is the first - if ( !( events = elemData.events ) ) { - events = elemData.events = Object.create( null ); - } - if ( !( eventHandle = elemData.handle ) ) { - eventHandle = elemData.handle = function( e ) { - - // Discard the second event of a jQuery.event.trigger() and - // when an event is called after a page has unloaded - return typeof jQuery !== "undefined" && jQuery.event.triggered !== e.type ? - jQuery.event.dispatch.apply( elem, arguments ) : undefined; - }; - } - - // Handle multiple events separated by a space - types = ( types || "" ).match( rnothtmlwhite ) || [ "" ]; - t = types.length; - while ( t-- ) { - tmp = rtypenamespace.exec( types[ t ] ) || []; - type = origType = tmp[ 1 ]; - namespaces = ( tmp[ 2 ] || "" ).split( "." ).sort(); - - // There *must* be a type, no attaching namespace-only handlers - if ( !type ) { - continue; - } - - // If event changes its type, use the special event handlers for the changed type - special = jQuery.event.special[ type ] || {}; - - // If selector defined, determine special event api type, otherwise given type - type = ( selector ? special.delegateType : special.bindType ) || type; - - // Update special based on newly reset type - special = jQuery.event.special[ type ] || {}; - - // handleObj is passed to all event handlers - handleObj = jQuery.extend( { - type: type, - origType: origType, - data: data, - handler: handler, - guid: handler.guid, - selector: selector, - needsContext: selector && jQuery.expr.match.needsContext.test( selector ), - namespace: namespaces.join( "." ) - }, handleObjIn ); - - // Init the event handler queue if we're the first - if ( !( handlers = events[ type ] ) ) { - handlers = events[ type ] = []; - handlers.delegateCount = 0; - - // Only use addEventListener if the special events handler returns false - if ( !special.setup || - special.setup.call( elem, data, namespaces, eventHandle ) === false ) { - - if ( elem.addEventListener ) { - elem.addEventListener( type, eventHandle ); - } - } - } - - if ( special.add ) { - special.add.call( elem, handleObj ); - - if ( !handleObj.handler.guid ) { - handleObj.handler.guid = handler.guid; - } - } - - // Add to the element's handler list, delegates in front - if ( selector ) { - handlers.splice( handlers.delegateCount++, 0, handleObj ); - } else { - handlers.push( handleObj ); - } - - // Keep track of which events have ever been used, for event optimization - jQuery.event.global[ type ] = true; - } - - }, - - // Detach an event or set of events from an element - remove: function( elem, types, handler, selector, mappedTypes ) { - - var j, origCount, tmp, - events, t, handleObj, - special, handlers, type, namespaces, origType, - elemData = dataPriv.hasData( elem ) && dataPriv.get( elem ); - - if ( !elemData || !( events = elemData.events ) ) { - return; - } - - // Once for each type.namespace in types; type may be omitted - types = ( types || "" ).match( rnothtmlwhite ) || [ "" ]; - t = types.length; - while ( t-- ) { - tmp = rtypenamespace.exec( types[ t ] ) || []; - type = origType = tmp[ 1 ]; - namespaces = ( tmp[ 2 ] || "" ).split( "." ).sort(); - - // Unbind all events (on this namespace, if provided) for the element - if ( !type ) { - for ( type in events ) { - jQuery.event.remove( elem, type + types[ t ], handler, selector, true ); - } - continue; - } - - special = jQuery.event.special[ type ] || {}; - type = ( selector ? special.delegateType : special.bindType ) || type; - handlers = events[ type ] || []; - tmp = tmp[ 2 ] && - new RegExp( "(^|\\.)" + namespaces.join( "\\.(?:.*\\.|)" ) + "(\\.|$)" ); - - // Remove matching events - origCount = j = handlers.length; - while ( j-- ) { - handleObj = handlers[ j ]; - - if ( ( mappedTypes || origType === handleObj.origType ) && - ( !handler || handler.guid === handleObj.guid ) && - ( !tmp || tmp.test( handleObj.namespace ) ) && - ( !selector || selector === handleObj.selector || - selector === "**" && handleObj.selector ) ) { - handlers.splice( j, 1 ); - - if ( handleObj.selector ) { - handlers.delegateCount--; - } - if ( special.remove ) { - special.remove.call( elem, handleObj ); - } - } - } - - // Remove generic event handler if we removed something and no more handlers exist - // (avoids potential for endless recursion during removal of special event handlers) - if ( origCount && !handlers.length ) { - if ( !special.teardown || - special.teardown.call( elem, namespaces, elemData.handle ) === false ) { - - jQuery.removeEvent( elem, type, elemData.handle ); - } - - delete events[ type ]; - } - } - - // Remove data and the expando if it's no longer used - if ( jQuery.isEmptyObject( events ) ) { - dataPriv.remove( elem, "handle events" ); - } - }, - - dispatch: function( nativeEvent ) { - - var i, j, ret, matched, handleObj, handlerQueue, - args = new Array( arguments.length ), - - // Make a writable jQuery.Event from the native event object - event = jQuery.event.fix( nativeEvent ), - - handlers = ( - dataPriv.get( this, "events" ) || Object.create( null ) - )[ event.type ] || [], - special = jQuery.event.special[ event.type ] || {}; - - // Use the fix-ed jQuery.Event rather than the (read-only) native event - args[ 0 ] = event; - - for ( i = 1; i < arguments.length; i++ ) { - args[ i ] = arguments[ i ]; - } - - event.delegateTarget = this; - - // Call the preDispatch hook for the mapped type, and let it bail if desired - if ( special.preDispatch && special.preDispatch.call( this, event ) === false ) { - return; - } - - // Determine handlers - handlerQueue = jQuery.event.handlers.call( this, event, handlers ); - - // Run delegates first; they may want to stop propagation beneath us - i = 0; - while ( ( matched = handlerQueue[ i++ ] ) && !event.isPropagationStopped() ) { - event.currentTarget = matched.elem; - - j = 0; - while ( ( handleObj = matched.handlers[ j++ ] ) && - !event.isImmediatePropagationStopped() ) { - - // If the event is namespaced, then each handler is only invoked if it is - // specially universal or its namespaces are a superset of the event's. - if ( !event.rnamespace || handleObj.namespace === false || - event.rnamespace.test( handleObj.namespace ) ) { - - event.handleObj = handleObj; - event.data = handleObj.data; - - ret = ( ( jQuery.event.special[ handleObj.origType ] || {} ).handle || - handleObj.handler ).apply( matched.elem, args ); - - if ( ret !== undefined ) { - if ( ( event.result = ret ) === false ) { - event.preventDefault(); - event.stopPropagation(); - } - } - } - } - } - - // Call the postDispatch hook for the mapped type - if ( special.postDispatch ) { - special.postDispatch.call( this, event ); - } - - return event.result; - }, - - handlers: function( event, handlers ) { - var i, handleObj, sel, matchedHandlers, matchedSelectors, - handlerQueue = [], - delegateCount = handlers.delegateCount, - cur = event.target; - - // Find delegate handlers - if ( delegateCount && - - // Support: IE <=9 - // Black-hole SVG instance trees (trac-13180) - cur.nodeType && - - // Support: Firefox <=42 - // Suppress spec-violating clicks indicating a non-primary pointer button (trac-3861) - // https://www.w3.org/TR/DOM-Level-3-Events/#event-type-click - // Support: IE 11 only - // ...but not arrow key "clicks" of radio inputs, which can have `button` -1 (gh-2343) - !( event.type === "click" && event.button >= 1 ) ) { - - for ( ; cur !== this; cur = cur.parentNode || this ) { - - // Don't check non-elements (#13208) - // Don't process clicks on disabled elements (#6911, #8165, #11382, #11764) - if ( cur.nodeType === 1 && !( event.type === "click" && cur.disabled === true ) ) { - matchedHandlers = []; - matchedSelectors = {}; - for ( i = 0; i < delegateCount; i++ ) { - handleObj = handlers[ i ]; - - // Don't conflict with Object.prototype properties (#13203) - sel = handleObj.selector + " "; - - if ( matchedSelectors[ sel ] === undefined ) { - matchedSelectors[ sel ] = handleObj.needsContext ? - jQuery( sel, this ).index( cur ) > -1 : - jQuery.find( sel, this, null, [ cur ] ).length; - } - if ( matchedSelectors[ sel ] ) { - matchedHandlers.push( handleObj ); - } - } - if ( matchedHandlers.length ) { - handlerQueue.push( { elem: cur, handlers: matchedHandlers } ); - } - } - } - } - - // Add the remaining (directly-bound) handlers - cur = this; - if ( delegateCount < handlers.length ) { - handlerQueue.push( { elem: cur, handlers: handlers.slice( delegateCount ) } ); - } - - return handlerQueue; - }, - - addProp: function( name, hook ) { - Object.defineProperty( jQuery.Event.prototype, name, { - enumerable: true, - configurable: true, - - get: isFunction( hook ) ? - function() { - if ( this.originalEvent ) { - return hook( this.originalEvent ); - } - } : - function() { - if ( this.originalEvent ) { - return this.originalEvent[ name ]; - } - }, - - set: function( value ) { - Object.defineProperty( this, name, { - enumerable: true, - configurable: true, - writable: true, - value: value - } ); - } - } ); - }, - - fix: function( originalEvent ) { - return originalEvent[ jQuery.expando ] ? - originalEvent : - new jQuery.Event( originalEvent ); - }, - - special: { - load: { - - // Prevent triggered image.load events from bubbling to window.load - noBubble: true - }, - click: { - - // Utilize native event to ensure correct state for checkable inputs - setup: function( data ) { - - // For mutual compressibility with _default, replace `this` access with a local var. - // `|| data` is dead code meant only to preserve the variable through minification. - var el = this || data; - - // Claim the first handler - if ( rcheckableType.test( el.type ) && - el.click && nodeName( el, "input" ) ) { - - // dataPriv.set( el, "click", ... ) - leverageNative( el, "click", returnTrue ); - } - - // Return false to allow normal processing in the caller - return false; - }, - trigger: function( data ) { - - // For mutual compressibility with _default, replace `this` access with a local var. - // `|| data` is dead code meant only to preserve the variable through minification. - var el = this || data; - - // Force setup before triggering a click - if ( rcheckableType.test( el.type ) && - el.click && nodeName( el, "input" ) ) { - - leverageNative( el, "click" ); - } - - // Return non-false to allow normal event-path propagation - return true; - }, - - // For cross-browser consistency, suppress native .click() on links - // Also prevent it if we're currently inside a leveraged native-event stack - _default: function( event ) { - var target = event.target; - return rcheckableType.test( target.type ) && - target.click && nodeName( target, "input" ) && - dataPriv.get( target, "click" ) || - nodeName( target, "a" ); - } - }, - - beforeunload: { - postDispatch: function( event ) { - - // Support: Firefox 20+ - // Firefox doesn't alert if the returnValue field is not set. - if ( event.result !== undefined && event.originalEvent ) { - event.originalEvent.returnValue = event.result; - } - } - } - } -}; - -// Ensure the presence of an event listener that handles manually-triggered -// synthetic events by interrupting progress until reinvoked in response to -// *native* events that it fires directly, ensuring that state changes have -// already occurred before other listeners are invoked. -function leverageNative( el, type, expectSync ) { - - // Missing expectSync indicates a trigger call, which must force setup through jQuery.event.add - if ( !expectSync ) { - if ( dataPriv.get( el, type ) === undefined ) { - jQuery.event.add( el, type, returnTrue ); - } - return; - } - - // Register the controller as a special universal handler for all event namespaces - dataPriv.set( el, type, false ); - jQuery.event.add( el, type, { - namespace: false, - handler: function( event ) { - var notAsync, result, - saved = dataPriv.get( this, type ); - - if ( ( event.isTrigger & 1 ) && this[ type ] ) { - - // Interrupt processing of the outer synthetic .trigger()ed event - // Saved data should be false in such cases, but might be a leftover capture object - // from an async native handler (gh-4350) - if ( !saved.length ) { - - // Store arguments for use when handling the inner native event - // There will always be at least one argument (an event object), so this array - // will not be confused with a leftover capture object. - saved = slice.call( arguments ); - dataPriv.set( this, type, saved ); - - // Trigger the native event and capture its result - // Support: IE <=9 - 11+ - // focus() and blur() are asynchronous - notAsync = expectSync( this, type ); - this[ type ](); - result = dataPriv.get( this, type ); - if ( saved !== result || notAsync ) { - dataPriv.set( this, type, false ); - } else { - result = {}; - } - if ( saved !== result ) { - - // Cancel the outer synthetic event - event.stopImmediatePropagation(); - event.preventDefault(); - return result.value; - } - - // If this is an inner synthetic event for an event with a bubbling surrogate - // (focus or blur), assume that the surrogate already propagated from triggering the - // native event and prevent that from happening again here. - // This technically gets the ordering wrong w.r.t. to `.trigger()` (in which the - // bubbling surrogate propagates *after* the non-bubbling base), but that seems - // less bad than duplication. - } else if ( ( jQuery.event.special[ type ] || {} ).delegateType ) { - event.stopPropagation(); - } - - // If this is a native event triggered above, everything is now in order - // Fire an inner synthetic event with the original arguments - } else if ( saved.length ) { - - // ...and capture the result - dataPriv.set( this, type, { - value: jQuery.event.trigger( - - // Support: IE <=9 - 11+ - // Extend with the prototype to reset the above stopImmediatePropagation() - jQuery.extend( saved[ 0 ], jQuery.Event.prototype ), - saved.slice( 1 ), - this - ) - } ); - - // Abort handling of the native event - event.stopImmediatePropagation(); - } - } - } ); -} - -jQuery.removeEvent = function( elem, type, handle ) { - - // This "if" is needed for plain objects - if ( elem.removeEventListener ) { - elem.removeEventListener( type, handle ); - } -}; - -jQuery.Event = function( src, props ) { - - // Allow instantiation without the 'new' keyword - if ( !( this instanceof jQuery.Event ) ) { - return new jQuery.Event( src, props ); - } - - // Event object - if ( src && src.type ) { - this.originalEvent = src; - this.type = src.type; - - // Events bubbling up the document may have been marked as prevented - // by a handler lower down the tree; reflect the correct value. - this.isDefaultPrevented = src.defaultPrevented || - src.defaultPrevented === undefined && - - // Support: Android <=2.3 only - src.returnValue === false ? - returnTrue : - returnFalse; - - // Create target properties - // Support: Safari <=6 - 7 only - // Target should not be a text node (#504, #13143) - this.target = ( src.target && src.target.nodeType === 3 ) ? - src.target.parentNode : - src.target; - - this.currentTarget = src.currentTarget; - this.relatedTarget = src.relatedTarget; - - // Event type - } else { - this.type = src; - } - - // Put explicitly provided properties onto the event object - if ( props ) { - jQuery.extend( this, props ); - } - - // Create a timestamp if incoming event doesn't have one - this.timeStamp = src && src.timeStamp || Date.now(); - - // Mark it as fixed - this[ jQuery.expando ] = true; -}; - -// jQuery.Event is based on DOM3 Events as specified by the ECMAScript Language Binding -// https://www.w3.org/TR/2003/WD-DOM-Level-3-Events-20030331/ecma-script-binding.html -jQuery.Event.prototype = { - constructor: jQuery.Event, - isDefaultPrevented: returnFalse, - isPropagationStopped: returnFalse, - isImmediatePropagationStopped: returnFalse, - isSimulated: false, - - preventDefault: function() { - var e = this.originalEvent; - - this.isDefaultPrevented = returnTrue; - - if ( e && !this.isSimulated ) { - e.preventDefault(); - } - }, - stopPropagation: function() { - var e = this.originalEvent; - - this.isPropagationStopped = returnTrue; - - if ( e && !this.isSimulated ) { - e.stopPropagation(); - } - }, - stopImmediatePropagation: function() { - var e = this.originalEvent; - - this.isImmediatePropagationStopped = returnTrue; - - if ( e && !this.isSimulated ) { - e.stopImmediatePropagation(); - } - - this.stopPropagation(); - } -}; - -// Includes all common event props including KeyEvent and MouseEvent specific props -jQuery.each( { - altKey: true, - bubbles: true, - cancelable: true, - changedTouches: true, - ctrlKey: true, - detail: true, - eventPhase: true, - metaKey: true, - pageX: true, - pageY: true, - shiftKey: true, - view: true, - "char": true, - code: true, - charCode: true, - key: true, - keyCode: true, - button: true, - buttons: true, - clientX: true, - clientY: true, - offsetX: true, - offsetY: true, - pointerId: true, - pointerType: true, - screenX: true, - screenY: true, - targetTouches: true, - toElement: true, - touches: true, - - which: function( event ) { - var button = event.button; - - // Add which for key events - if ( event.which == null && rkeyEvent.test( event.type ) ) { - return event.charCode != null ? event.charCode : event.keyCode; - } - - // Add which for click: 1 === left; 2 === middle; 3 === right - if ( !event.which && button !== undefined && rmouseEvent.test( event.type ) ) { - if ( button & 1 ) { - return 1; - } - - if ( button & 2 ) { - return 3; - } - - if ( button & 4 ) { - return 2; - } - - return 0; - } - - return event.which; - } -}, jQuery.event.addProp ); - -jQuery.each( { focus: "focusin", blur: "focusout" }, function( type, delegateType ) { - jQuery.event.special[ type ] = { - - // Utilize native event if possible so blur/focus sequence is correct - setup: function() { - - // Claim the first handler - // dataPriv.set( this, "focus", ... ) - // dataPriv.set( this, "blur", ... ) - leverageNative( this, type, expectSync ); - - // Return false to allow normal processing in the caller - return false; - }, - trigger: function() { - - // Force setup before trigger - leverageNative( this, type ); - - // Return non-false to allow normal event-path propagation - return true; - }, - - delegateType: delegateType - }; -} ); - -// Create mouseenter/leave events using mouseover/out and event-time checks -// so that event delegation works in jQuery. -// Do the same for pointerenter/pointerleave and pointerover/pointerout -// -// Support: Safari 7 only -// Safari sends mouseenter too often; see: -// https://bugs.chromium.org/p/chromium/issues/detail?id=470258 -// for the description of the bug (it existed in older Chrome versions as well). -jQuery.each( { - mouseenter: "mouseover", - mouseleave: "mouseout", - pointerenter: "pointerover", - pointerleave: "pointerout" -}, function( orig, fix ) { - jQuery.event.special[ orig ] = { - delegateType: fix, - bindType: fix, - - handle: function( event ) { - var ret, - target = this, - related = event.relatedTarget, - handleObj = event.handleObj; - - // For mouseenter/leave call the handler if related is outside the target. - // NB: No relatedTarget if the mouse left/entered the browser window - if ( !related || ( related !== target && !jQuery.contains( target, related ) ) ) { - event.type = handleObj.origType; - ret = handleObj.handler.apply( this, arguments ); - event.type = fix; - } - return ret; - } - }; -} ); - -jQuery.fn.extend( { - - on: function( types, selector, data, fn ) { - return on( this, types, selector, data, fn ); - }, - one: function( types, selector, data, fn ) { - return on( this, types, selector, data, fn, 1 ); - }, - off: function( types, selector, fn ) { - var handleObj, type; - if ( types && types.preventDefault && types.handleObj ) { - - // ( event ) dispatched jQuery.Event - handleObj = types.handleObj; - jQuery( types.delegateTarget ).off( - handleObj.namespace ? - handleObj.origType + "." + handleObj.namespace : - handleObj.origType, - handleObj.selector, - handleObj.handler - ); - return this; - } - if ( typeof types === "object" ) { - - // ( types-object [, selector] ) - for ( type in types ) { - this.off( type, selector, types[ type ] ); - } - return this; - } - if ( selector === false || typeof selector === "function" ) { - - // ( types [, fn] ) - fn = selector; - selector = undefined; - } - if ( fn === false ) { - fn = returnFalse; - } - return this.each( function() { - jQuery.event.remove( this, types, fn, selector ); - } ); - } -} ); - - -var - - // Support: IE <=10 - 11, Edge 12 - 13 only - // In IE/Edge using regex groups here causes severe slowdowns. - // See https://connect.microsoft.com/IE/feedback/details/1736512/ - rnoInnerhtml = /\s*$/g; - -// Prefer a tbody over its parent table for containing new rows -function manipulationTarget( elem, content ) { - if ( nodeName( elem, "table" ) && - nodeName( content.nodeType !== 11 ? content : content.firstChild, "tr" ) ) { - - return jQuery( elem ).children( "tbody" )[ 0 ] || elem; - } - - return elem; -} - -// Replace/restore the type attribute of script elements for safe DOM manipulation -function disableScript( elem ) { - elem.type = ( elem.getAttribute( "type" ) !== null ) + "/" + elem.type; - return elem; -} -function restoreScript( elem ) { - if ( ( elem.type || "" ).slice( 0, 5 ) === "true/" ) { - elem.type = elem.type.slice( 5 ); - } else { - elem.removeAttribute( "type" ); - } - - return elem; -} - -function cloneCopyEvent( src, dest ) { - var i, l, type, pdataOld, udataOld, udataCur, events; - - if ( dest.nodeType !== 1 ) { - return; - } - - // 1. Copy private data: events, handlers, etc. - if ( dataPriv.hasData( src ) ) { - pdataOld = dataPriv.get( src ); - events = pdataOld.events; - - if ( events ) { - dataPriv.remove( dest, "handle events" ); - - for ( type in events ) { - for ( i = 0, l = events[ type ].length; i < l; i++ ) { - jQuery.event.add( dest, type, events[ type ][ i ] ); - } - } - } - } - - // 2. Copy user data - if ( dataUser.hasData( src ) ) { - udataOld = dataUser.access( src ); - udataCur = jQuery.extend( {}, udataOld ); - - dataUser.set( dest, udataCur ); - } -} - -// Fix IE bugs, see support tests -function fixInput( src, dest ) { - var nodeName = dest.nodeName.toLowerCase(); - - // Fails to persist the checked state of a cloned checkbox or radio button. - if ( nodeName === "input" && rcheckableType.test( src.type ) ) { - dest.checked = src.checked; - - // Fails to return the selected option to the default selected state when cloning options - } else if ( nodeName === "input" || nodeName === "textarea" ) { - dest.defaultValue = src.defaultValue; - } -} - -function domManip( collection, args, callback, ignored ) { - - // Flatten any nested arrays - args = flat( args ); - - var fragment, first, scripts, hasScripts, node, doc, - i = 0, - l = collection.length, - iNoClone = l - 1, - value = args[ 0 ], - valueIsFunction = isFunction( value ); - - // We can't cloneNode fragments that contain checked, in WebKit - if ( valueIsFunction || - ( l > 1 && typeof value === "string" && - !support.checkClone && rchecked.test( value ) ) ) { - return collection.each( function( index ) { - var self = collection.eq( index ); - if ( valueIsFunction ) { - args[ 0 ] = value.call( this, index, self.html() ); - } - domManip( self, args, callback, ignored ); - } ); - } - - if ( l ) { - fragment = buildFragment( args, collection[ 0 ].ownerDocument, false, collection, ignored ); - first = fragment.firstChild; - - if ( fragment.childNodes.length === 1 ) { - fragment = first; - } - - // Require either new content or an interest in ignored elements to invoke the callback - if ( first || ignored ) { - scripts = jQuery.map( getAll( fragment, "script" ), disableScript ); - hasScripts = scripts.length; - - // Use the original fragment for the last item - // instead of the first because it can end up - // being emptied incorrectly in certain situations (#8070). - for ( ; i < l; i++ ) { - node = fragment; - - if ( i !== iNoClone ) { - node = jQuery.clone( node, true, true ); - - // Keep references to cloned scripts for later restoration - if ( hasScripts ) { - - // Support: Android <=4.0 only, PhantomJS 1 only - // push.apply(_, arraylike) throws on ancient WebKit - jQuery.merge( scripts, getAll( node, "script" ) ); - } - } - - callback.call( collection[ i ], node, i ); - } - - if ( hasScripts ) { - doc = scripts[ scripts.length - 1 ].ownerDocument; - - // Reenable scripts - jQuery.map( scripts, restoreScript ); - - // Evaluate executable scripts on first document insertion - for ( i = 0; i < hasScripts; i++ ) { - node = scripts[ i ]; - if ( rscriptType.test( node.type || "" ) && - !dataPriv.access( node, "globalEval" ) && - jQuery.contains( doc, node ) ) { - - if ( node.src && ( node.type || "" ).toLowerCase() !== "module" ) { - - // Optional AJAX dependency, but won't run scripts if not present - if ( jQuery._evalUrl && !node.noModule ) { - jQuery._evalUrl( node.src, { - nonce: node.nonce || node.getAttribute( "nonce" ) - }, doc ); - } - } else { - DOMEval( node.textContent.replace( rcleanScript, "" ), node, doc ); - } - } - } - } - } - } - - return collection; -} - -function remove( elem, selector, keepData ) { - var node, - nodes = selector ? jQuery.filter( selector, elem ) : elem, - i = 0; - - for ( ; ( node = nodes[ i ] ) != null; i++ ) { - if ( !keepData && node.nodeType === 1 ) { - jQuery.cleanData( getAll( node ) ); - } - - if ( node.parentNode ) { - if ( keepData && isAttached( node ) ) { - setGlobalEval( getAll( node, "script" ) ); - } - node.parentNode.removeChild( node ); - } - } - - return elem; -} - -jQuery.extend( { - htmlPrefilter: function( html ) { - return html; - }, - - clone: function( elem, dataAndEvents, deepDataAndEvents ) { - var i, l, srcElements, destElements, - clone = elem.cloneNode( true ), - inPage = isAttached( elem ); - - // Fix IE cloning issues - if ( !support.noCloneChecked && ( elem.nodeType === 1 || elem.nodeType === 11 ) && - !jQuery.isXMLDoc( elem ) ) { - - // We eschew Sizzle here for performance reasons: https://jsperf.com/getall-vs-sizzle/2 - destElements = getAll( clone ); - srcElements = getAll( elem ); - - for ( i = 0, l = srcElements.length; i < l; i++ ) { - fixInput( srcElements[ i ], destElements[ i ] ); - } - } - - // Copy the events from the original to the clone - if ( dataAndEvents ) { - if ( deepDataAndEvents ) { - srcElements = srcElements || getAll( elem ); - destElements = destElements || getAll( clone ); - - for ( i = 0, l = srcElements.length; i < l; i++ ) { - cloneCopyEvent( srcElements[ i ], destElements[ i ] ); - } - } else { - cloneCopyEvent( elem, clone ); - } - } - - // Preserve script evaluation history - destElements = getAll( clone, "script" ); - if ( destElements.length > 0 ) { - setGlobalEval( destElements, !inPage && getAll( elem, "script" ) ); - } - - // Return the cloned set - return clone; - }, - - cleanData: function( elems ) { - var data, elem, type, - special = jQuery.event.special, - i = 0; - - for ( ; ( elem = elems[ i ] ) !== undefined; i++ ) { - if ( acceptData( elem ) ) { - if ( ( data = elem[ dataPriv.expando ] ) ) { - if ( data.events ) { - for ( type in data.events ) { - if ( special[ type ] ) { - jQuery.event.remove( elem, type ); - - // This is a shortcut to avoid jQuery.event.remove's overhead - } else { - jQuery.removeEvent( elem, type, data.handle ); - } - } - } - - // Support: Chrome <=35 - 45+ - // Assign undefined instead of using delete, see Data#remove - elem[ dataPriv.expando ] = undefined; - } - if ( elem[ dataUser.expando ] ) { - - // Support: Chrome <=35 - 45+ - // Assign undefined instead of using delete, see Data#remove - elem[ dataUser.expando ] = undefined; - } - } - } - } -} ); - -jQuery.fn.extend( { - detach: function( selector ) { - return remove( this, selector, true ); - }, - - remove: function( selector ) { - return remove( this, selector ); - }, - - text: function( value ) { - return access( this, function( value ) { - return value === undefined ? - jQuery.text( this ) : - this.empty().each( function() { - if ( this.nodeType === 1 || this.nodeType === 11 || this.nodeType === 9 ) { - this.textContent = value; - } - } ); - }, null, value, arguments.length ); - }, - - append: function() { - return domManip( this, arguments, function( elem ) { - if ( this.nodeType === 1 || this.nodeType === 11 || this.nodeType === 9 ) { - var target = manipulationTarget( this, elem ); - target.appendChild( elem ); - } - } ); - }, - - prepend: function() { - return domManip( this, arguments, function( elem ) { - if ( this.nodeType === 1 || this.nodeType === 11 || this.nodeType === 9 ) { - var target = manipulationTarget( this, elem ); - target.insertBefore( elem, target.firstChild ); - } - } ); - }, - - before: function() { - return domManip( this, arguments, function( elem ) { - if ( this.parentNode ) { - this.parentNode.insertBefore( elem, this ); - } - } ); - }, - - after: function() { - return domManip( this, arguments, function( elem ) { - if ( this.parentNode ) { - this.parentNode.insertBefore( elem, this.nextSibling ); - } - } ); - }, - - empty: function() { - var elem, - i = 0; - - for ( ; ( elem = this[ i ] ) != null; i++ ) { - if ( elem.nodeType === 1 ) { - - // Prevent memory leaks - jQuery.cleanData( getAll( elem, false ) ); - - // Remove any remaining nodes - elem.textContent = ""; - } - } - - return this; - }, - - clone: function( dataAndEvents, deepDataAndEvents ) { - dataAndEvents = dataAndEvents == null ? false : dataAndEvents; - deepDataAndEvents = deepDataAndEvents == null ? dataAndEvents : deepDataAndEvents; - - return this.map( function() { - return jQuery.clone( this, dataAndEvents, deepDataAndEvents ); - } ); - }, - - html: function( value ) { - return access( this, function( value ) { - var elem = this[ 0 ] || {}, - i = 0, - l = this.length; - - if ( value === undefined && elem.nodeType === 1 ) { - return elem.innerHTML; - } - - // See if we can take a shortcut and just use innerHTML - if ( typeof value === "string" && !rnoInnerhtml.test( value ) && - !wrapMap[ ( rtagName.exec( value ) || [ "", "" ] )[ 1 ].toLowerCase() ] ) { - - value = jQuery.htmlPrefilter( value ); - - try { - for ( ; i < l; i++ ) { - elem = this[ i ] || {}; - - // Remove element nodes and prevent memory leaks - if ( elem.nodeType === 1 ) { - jQuery.cleanData( getAll( elem, false ) ); - elem.innerHTML = value; - } - } - - elem = 0; - - // If using innerHTML throws an exception, use the fallback method - } catch ( e ) {} - } - - if ( elem ) { - this.empty().append( value ); - } - }, null, value, arguments.length ); - }, - - replaceWith: function() { - var ignored = []; - - // Make the changes, replacing each non-ignored context element with the new content - return domManip( this, arguments, function( elem ) { - var parent = this.parentNode; - - if ( jQuery.inArray( this, ignored ) < 0 ) { - jQuery.cleanData( getAll( this ) ); - if ( parent ) { - parent.replaceChild( elem, this ); - } - } - - // Force callback invocation - }, ignored ); - } -} ); - -jQuery.each( { - appendTo: "append", - prependTo: "prepend", - insertBefore: "before", - insertAfter: "after", - replaceAll: "replaceWith" -}, function( name, original ) { - jQuery.fn[ name ] = function( selector ) { - var elems, - ret = [], - insert = jQuery( selector ), - last = insert.length - 1, - i = 0; - - for ( ; i <= last; i++ ) { - elems = i === last ? this : this.clone( true ); - jQuery( insert[ i ] )[ original ]( elems ); - - // Support: Android <=4.0 only, PhantomJS 1 only - // .get() because push.apply(_, arraylike) throws on ancient WebKit - push.apply( ret, elems.get() ); - } - - return this.pushStack( ret ); - }; -} ); -var rnumnonpx = new RegExp( "^(" + pnum + ")(?!px)[a-z%]+$", "i" ); - -var getStyles = function( elem ) { - - // Support: IE <=11 only, Firefox <=30 (#15098, #14150) - // IE throws on elements created in popups - // FF meanwhile throws on frame elements through "defaultView.getComputedStyle" - var view = elem.ownerDocument.defaultView; - - if ( !view || !view.opener ) { - view = window; - } - - return view.getComputedStyle( elem ); - }; - -var swap = function( elem, options, callback ) { - var ret, name, - old = {}; - - // Remember the old values, and insert the new ones - for ( name in options ) { - old[ name ] = elem.style[ name ]; - elem.style[ name ] = options[ name ]; - } - - ret = callback.call( elem ); - - // Revert the old values - for ( name in options ) { - elem.style[ name ] = old[ name ]; - } - - return ret; -}; - - -var rboxStyle = new RegExp( cssExpand.join( "|" ), "i" ); - - - -( function() { - - // Executing both pixelPosition & boxSizingReliable tests require only one layout - // so they're executed at the same time to save the second computation. - function computeStyleTests() { - - // This is a singleton, we need to execute it only once - if ( !div ) { - return; - } - - container.style.cssText = "position:absolute;left:-11111px;width:60px;" + - "margin-top:1px;padding:0;border:0"; - div.style.cssText = - "position:relative;display:block;box-sizing:border-box;overflow:scroll;" + - "margin:auto;border:1px;padding:1px;" + - "width:60%;top:1%"; - documentElement.appendChild( container ).appendChild( div ); - - var divStyle = window.getComputedStyle( div ); - pixelPositionVal = divStyle.top !== "1%"; - - // Support: Android 4.0 - 4.3 only, Firefox <=3 - 44 - reliableMarginLeftVal = roundPixelMeasures( divStyle.marginLeft ) === 12; - - // Support: Android 4.0 - 4.3 only, Safari <=9.1 - 10.1, iOS <=7.0 - 9.3 - // Some styles come back with percentage values, even though they shouldn't - div.style.right = "60%"; - pixelBoxStylesVal = roundPixelMeasures( divStyle.right ) === 36; - - // Support: IE 9 - 11 only - // Detect misreporting of content dimensions for box-sizing:border-box elements - boxSizingReliableVal = roundPixelMeasures( divStyle.width ) === 36; - - // Support: IE 9 only - // Detect overflow:scroll screwiness (gh-3699) - // Support: Chrome <=64 - // Don't get tricked when zoom affects offsetWidth (gh-4029) - div.style.position = "absolute"; - scrollboxSizeVal = roundPixelMeasures( div.offsetWidth / 3 ) === 12; - - documentElement.removeChild( container ); - - // Nullify the div so it wouldn't be stored in the memory and - // it will also be a sign that checks already performed - div = null; - } - - function roundPixelMeasures( measure ) { - return Math.round( parseFloat( measure ) ); - } - - var pixelPositionVal, boxSizingReliableVal, scrollboxSizeVal, pixelBoxStylesVal, - reliableTrDimensionsVal, reliableMarginLeftVal, - container = document.createElement( "div" ), - div = document.createElement( "div" ); - - // Finish early in limited (non-browser) environments - if ( !div.style ) { - return; - } - - // Support: IE <=9 - 11 only - // Style of cloned element affects source element cloned (#8908) - div.style.backgroundClip = "content-box"; - div.cloneNode( true ).style.backgroundClip = ""; - support.clearCloneStyle = div.style.backgroundClip === "content-box"; - - jQuery.extend( support, { - boxSizingReliable: function() { - computeStyleTests(); - return boxSizingReliableVal; - }, - pixelBoxStyles: function() { - computeStyleTests(); - return pixelBoxStylesVal; - }, - pixelPosition: function() { - computeStyleTests(); - return pixelPositionVal; - }, - reliableMarginLeft: function() { - computeStyleTests(); - return reliableMarginLeftVal; - }, - scrollboxSize: function() { - computeStyleTests(); - return scrollboxSizeVal; - }, - - // Support: IE 9 - 11+, Edge 15 - 18+ - // IE/Edge misreport `getComputedStyle` of table rows with width/height - // set in CSS while `offset*` properties report correct values. - // Behavior in IE 9 is more subtle than in newer versions & it passes - // some versions of this test; make sure not to make it pass there! - reliableTrDimensions: function() { - var table, tr, trChild, trStyle; - if ( reliableTrDimensionsVal == null ) { - table = document.createElement( "table" ); - tr = document.createElement( "tr" ); - trChild = document.createElement( "div" ); - - table.style.cssText = "position:absolute;left:-11111px"; - tr.style.height = "1px"; - trChild.style.height = "9px"; - - documentElement - .appendChild( table ) - .appendChild( tr ) - .appendChild( trChild ); - - trStyle = window.getComputedStyle( tr ); - reliableTrDimensionsVal = parseInt( trStyle.height ) > 3; - - documentElement.removeChild( table ); - } - return reliableTrDimensionsVal; - } - } ); -} )(); - - -function curCSS( elem, name, computed ) { - var width, minWidth, maxWidth, ret, - - // Support: Firefox 51+ - // Retrieving style before computed somehow - // fixes an issue with getting wrong values - // on detached elements - style = elem.style; - - computed = computed || getStyles( elem ); - - // getPropertyValue is needed for: - // .css('filter') (IE 9 only, #12537) - // .css('--customProperty) (#3144) - if ( computed ) { - ret = computed.getPropertyValue( name ) || computed[ name ]; - - if ( ret === "" && !isAttached( elem ) ) { - ret = jQuery.style( elem, name ); - } - - // A tribute to the "awesome hack by Dean Edwards" - // Android Browser returns percentage for some values, - // but width seems to be reliably pixels. - // This is against the CSSOM draft spec: - // https://drafts.csswg.org/cssom/#resolved-values - if ( !support.pixelBoxStyles() && rnumnonpx.test( ret ) && rboxStyle.test( name ) ) { - - // Remember the original values - width = style.width; - minWidth = style.minWidth; - maxWidth = style.maxWidth; - - // Put in the new values to get a computed value out - style.minWidth = style.maxWidth = style.width = ret; - ret = computed.width; - - // Revert the changed values - style.width = width; - style.minWidth = minWidth; - style.maxWidth = maxWidth; - } - } - - return ret !== undefined ? - - // Support: IE <=9 - 11 only - // IE returns zIndex value as an integer. - ret + "" : - ret; -} - - -function addGetHookIf( conditionFn, hookFn ) { - - // Define the hook, we'll check on the first run if it's really needed. - return { - get: function() { - if ( conditionFn() ) { - - // Hook not needed (or it's not possible to use it due - // to missing dependency), remove it. - delete this.get; - return; - } - - // Hook needed; redefine it so that the support test is not executed again. - return ( this.get = hookFn ).apply( this, arguments ); - } - }; -} - - -var cssPrefixes = [ "Webkit", "Moz", "ms" ], - emptyStyle = document.createElement( "div" ).style, - vendorProps = {}; - -// Return a vendor-prefixed property or undefined -function vendorPropName( name ) { - - // Check for vendor prefixed names - var capName = name[ 0 ].toUpperCase() + name.slice( 1 ), - i = cssPrefixes.length; - - while ( i-- ) { - name = cssPrefixes[ i ] + capName; - if ( name in emptyStyle ) { - return name; - } - } -} - -// Return a potentially-mapped jQuery.cssProps or vendor prefixed property -function finalPropName( name ) { - var final = jQuery.cssProps[ name ] || vendorProps[ name ]; - - if ( final ) { - return final; - } - if ( name in emptyStyle ) { - return name; - } - return vendorProps[ name ] = vendorPropName( name ) || name; -} - - -var - - // Swappable if display is none or starts with table - // except "table", "table-cell", or "table-caption" - // See here for display values: https://developer.mozilla.org/en-US/docs/CSS/display - rdisplayswap = /^(none|table(?!-c[ea]).+)/, - rcustomProp = /^--/, - cssShow = { position: "absolute", visibility: "hidden", display: "block" }, - cssNormalTransform = { - letterSpacing: "0", - fontWeight: "400" - }; - -function setPositiveNumber( _elem, value, subtract ) { - - // Any relative (+/-) values have already been - // normalized at this point - var matches = rcssNum.exec( value ); - return matches ? - - // Guard against undefined "subtract", e.g., when used as in cssHooks - Math.max( 0, matches[ 2 ] - ( subtract || 0 ) ) + ( matches[ 3 ] || "px" ) : - value; -} - -function boxModelAdjustment( elem, dimension, box, isBorderBox, styles, computedVal ) { - var i = dimension === "width" ? 1 : 0, - extra = 0, - delta = 0; - - // Adjustment may not be necessary - if ( box === ( isBorderBox ? "border" : "content" ) ) { - return 0; - } - - for ( ; i < 4; i += 2 ) { - - // Both box models exclude margin - if ( box === "margin" ) { - delta += jQuery.css( elem, box + cssExpand[ i ], true, styles ); - } - - // If we get here with a content-box, we're seeking "padding" or "border" or "margin" - if ( !isBorderBox ) { - - // Add padding - delta += jQuery.css( elem, "padding" + cssExpand[ i ], true, styles ); - - // For "border" or "margin", add border - if ( box !== "padding" ) { - delta += jQuery.css( elem, "border" + cssExpand[ i ] + "Width", true, styles ); - - // But still keep track of it otherwise - } else { - extra += jQuery.css( elem, "border" + cssExpand[ i ] + "Width", true, styles ); - } - - // If we get here with a border-box (content + padding + border), we're seeking "content" or - // "padding" or "margin" - } else { - - // For "content", subtract padding - if ( box === "content" ) { - delta -= jQuery.css( elem, "padding" + cssExpand[ i ], true, styles ); - } - - // For "content" or "padding", subtract border - if ( box !== "margin" ) { - delta -= jQuery.css( elem, "border" + cssExpand[ i ] + "Width", true, styles ); - } - } - } - - // Account for positive content-box scroll gutter when requested by providing computedVal - if ( !isBorderBox && computedVal >= 0 ) { - - // offsetWidth/offsetHeight is a rounded sum of content, padding, scroll gutter, and border - // Assuming integer scroll gutter, subtract the rest and round down - delta += Math.max( 0, Math.ceil( - elem[ "offset" + dimension[ 0 ].toUpperCase() + dimension.slice( 1 ) ] - - computedVal - - delta - - extra - - 0.5 - - // If offsetWidth/offsetHeight is unknown, then we can't determine content-box scroll gutter - // Use an explicit zero to avoid NaN (gh-3964) - ) ) || 0; - } - - return delta; -} - -function getWidthOrHeight( elem, dimension, extra ) { - - // Start with computed style - var styles = getStyles( elem ), - - // To avoid forcing a reflow, only fetch boxSizing if we need it (gh-4322). - // Fake content-box until we know it's needed to know the true value. - boxSizingNeeded = !support.boxSizingReliable() || extra, - isBorderBox = boxSizingNeeded && - jQuery.css( elem, "boxSizing", false, styles ) === "border-box", - valueIsBorderBox = isBorderBox, - - val = curCSS( elem, dimension, styles ), - offsetProp = "offset" + dimension[ 0 ].toUpperCase() + dimension.slice( 1 ); - - // Support: Firefox <=54 - // Return a confounding non-pixel value or feign ignorance, as appropriate. - if ( rnumnonpx.test( val ) ) { - if ( !extra ) { - return val; - } - val = "auto"; - } - - - // Support: IE 9 - 11 only - // Use offsetWidth/offsetHeight for when box sizing is unreliable. - // In those cases, the computed value can be trusted to be border-box. - if ( ( !support.boxSizingReliable() && isBorderBox || - - // Support: IE 10 - 11+, Edge 15 - 18+ - // IE/Edge misreport `getComputedStyle` of table rows with width/height - // set in CSS while `offset*` properties report correct values. - // Interestingly, in some cases IE 9 doesn't suffer from this issue. - !support.reliableTrDimensions() && nodeName( elem, "tr" ) || - - // Fall back to offsetWidth/offsetHeight when value is "auto" - // This happens for inline elements with no explicit setting (gh-3571) - val === "auto" || - - // Support: Android <=4.1 - 4.3 only - // Also use offsetWidth/offsetHeight for misreported inline dimensions (gh-3602) - !parseFloat( val ) && jQuery.css( elem, "display", false, styles ) === "inline" ) && - - // Make sure the element is visible & connected - elem.getClientRects().length ) { - - isBorderBox = jQuery.css( elem, "boxSizing", false, styles ) === "border-box"; - - // Where available, offsetWidth/offsetHeight approximate border box dimensions. - // Where not available (e.g., SVG), assume unreliable box-sizing and interpret the - // retrieved value as a content box dimension. - valueIsBorderBox = offsetProp in elem; - if ( valueIsBorderBox ) { - val = elem[ offsetProp ]; - } - } - - // Normalize "" and auto - val = parseFloat( val ) || 0; - - // Adjust for the element's box model - return ( val + - boxModelAdjustment( - elem, - dimension, - extra || ( isBorderBox ? "border" : "content" ), - valueIsBorderBox, - styles, - - // Provide the current computed size to request scroll gutter calculation (gh-3589) - val - ) - ) + "px"; -} - -jQuery.extend( { - - // Add in style property hooks for overriding the default - // behavior of getting and setting a style property - cssHooks: { - opacity: { - get: function( elem, computed ) { - if ( computed ) { - - // We should always get a number back from opacity - var ret = curCSS( elem, "opacity" ); - return ret === "" ? "1" : ret; - } - } - } - }, - - // Don't automatically add "px" to these possibly-unitless properties - cssNumber: { - "animationIterationCount": true, - "columnCount": true, - "fillOpacity": true, - "flexGrow": true, - "flexShrink": true, - "fontWeight": true, - "gridArea": true, - "gridColumn": true, - "gridColumnEnd": true, - "gridColumnStart": true, - "gridRow": true, - "gridRowEnd": true, - "gridRowStart": true, - "lineHeight": true, - "opacity": true, - "order": true, - "orphans": true, - "widows": true, - "zIndex": true, - "zoom": true - }, - - // Add in properties whose names you wish to fix before - // setting or getting the value - cssProps: {}, - - // Get and set the style property on a DOM Node - style: function( elem, name, value, extra ) { - - // Don't set styles on text and comment nodes - if ( !elem || elem.nodeType === 3 || elem.nodeType === 8 || !elem.style ) { - return; - } - - // Make sure that we're working with the right name - var ret, type, hooks, - origName = camelCase( name ), - isCustomProp = rcustomProp.test( name ), - style = elem.style; - - // Make sure that we're working with the right name. We don't - // want to query the value if it is a CSS custom property - // since they are user-defined. - if ( !isCustomProp ) { - name = finalPropName( origName ); - } - - // Gets hook for the prefixed version, then unprefixed version - hooks = jQuery.cssHooks[ name ] || jQuery.cssHooks[ origName ]; - - // Check if we're setting a value - if ( value !== undefined ) { - type = typeof value; - - // Convert "+=" or "-=" to relative numbers (#7345) - if ( type === "string" && ( ret = rcssNum.exec( value ) ) && ret[ 1 ] ) { - value = adjustCSS( elem, name, ret ); - - // Fixes bug #9237 - type = "number"; - } - - // Make sure that null and NaN values aren't set (#7116) - if ( value == null || value !== value ) { - return; - } - - // If a number was passed in, add the unit (except for certain CSS properties) - // The isCustomProp check can be removed in jQuery 4.0 when we only auto-append - // "px" to a few hardcoded values. - if ( type === "number" && !isCustomProp ) { - value += ret && ret[ 3 ] || ( jQuery.cssNumber[ origName ] ? "" : "px" ); - } - - // background-* props affect original clone's values - if ( !support.clearCloneStyle && value === "" && name.indexOf( "background" ) === 0 ) { - style[ name ] = "inherit"; - } - - // If a hook was provided, use that value, otherwise just set the specified value - if ( !hooks || !( "set" in hooks ) || - ( value = hooks.set( elem, value, extra ) ) !== undefined ) { - - if ( isCustomProp ) { - style.setProperty( name, value ); - } else { - style[ name ] = value; - } - } - - } else { - - // If a hook was provided get the non-computed value from there - if ( hooks && "get" in hooks && - ( ret = hooks.get( elem, false, extra ) ) !== undefined ) { - - return ret; - } - - // Otherwise just get the value from the style object - return style[ name ]; - } - }, - - css: function( elem, name, extra, styles ) { - var val, num, hooks, - origName = camelCase( name ), - isCustomProp = rcustomProp.test( name ); - - // Make sure that we're working with the right name. We don't - // want to modify the value if it is a CSS custom property - // since they are user-defined. - if ( !isCustomProp ) { - name = finalPropName( origName ); - } - - // Try prefixed name followed by the unprefixed name - hooks = jQuery.cssHooks[ name ] || jQuery.cssHooks[ origName ]; - - // If a hook was provided get the computed value from there - if ( hooks && "get" in hooks ) { - val = hooks.get( elem, true, extra ); - } - - // Otherwise, if a way to get the computed value exists, use that - if ( val === undefined ) { - val = curCSS( elem, name, styles ); - } - - // Convert "normal" to computed value - if ( val === "normal" && name in cssNormalTransform ) { - val = cssNormalTransform[ name ]; - } - - // Make numeric if forced or a qualifier was provided and val looks numeric - if ( extra === "" || extra ) { - num = parseFloat( val ); - return extra === true || isFinite( num ) ? num || 0 : val; - } - - return val; - } -} ); - -jQuery.each( [ "height", "width" ], function( _i, dimension ) { - jQuery.cssHooks[ dimension ] = { - get: function( elem, computed, extra ) { - if ( computed ) { - - // Certain elements can have dimension info if we invisibly show them - // but it must have a current display style that would benefit - return rdisplayswap.test( jQuery.css( elem, "display" ) ) && - - // Support: Safari 8+ - // Table columns in Safari have non-zero offsetWidth & zero - // getBoundingClientRect().width unless display is changed. - // Support: IE <=11 only - // Running getBoundingClientRect on a disconnected node - // in IE throws an error. - ( !elem.getClientRects().length || !elem.getBoundingClientRect().width ) ? - swap( elem, cssShow, function() { - return getWidthOrHeight( elem, dimension, extra ); - } ) : - getWidthOrHeight( elem, dimension, extra ); - } - }, - - set: function( elem, value, extra ) { - var matches, - styles = getStyles( elem ), - - // Only read styles.position if the test has a chance to fail - // to avoid forcing a reflow. - scrollboxSizeBuggy = !support.scrollboxSize() && - styles.position === "absolute", - - // To avoid forcing a reflow, only fetch boxSizing if we need it (gh-3991) - boxSizingNeeded = scrollboxSizeBuggy || extra, - isBorderBox = boxSizingNeeded && - jQuery.css( elem, "boxSizing", false, styles ) === "border-box", - subtract = extra ? - boxModelAdjustment( - elem, - dimension, - extra, - isBorderBox, - styles - ) : - 0; - - // Account for unreliable border-box dimensions by comparing offset* to computed and - // faking a content-box to get border and padding (gh-3699) - if ( isBorderBox && scrollboxSizeBuggy ) { - subtract -= Math.ceil( - elem[ "offset" + dimension[ 0 ].toUpperCase() + dimension.slice( 1 ) ] - - parseFloat( styles[ dimension ] ) - - boxModelAdjustment( elem, dimension, "border", false, styles ) - - 0.5 - ); - } - - // Convert to pixels if value adjustment is needed - if ( subtract && ( matches = rcssNum.exec( value ) ) && - ( matches[ 3 ] || "px" ) !== "px" ) { - - elem.style[ dimension ] = value; - value = jQuery.css( elem, dimension ); - } - - return setPositiveNumber( elem, value, subtract ); - } - }; -} ); - -jQuery.cssHooks.marginLeft = addGetHookIf( support.reliableMarginLeft, - function( elem, computed ) { - if ( computed ) { - return ( parseFloat( curCSS( elem, "marginLeft" ) ) || - elem.getBoundingClientRect().left - - swap( elem, { marginLeft: 0 }, function() { - return elem.getBoundingClientRect().left; - } ) - ) + "px"; - } - } -); - -// These hooks are used by animate to expand properties -jQuery.each( { - margin: "", - padding: "", - border: "Width" -}, function( prefix, suffix ) { - jQuery.cssHooks[ prefix + suffix ] = { - expand: function( value ) { - var i = 0, - expanded = {}, - - // Assumes a single number if not a string - parts = typeof value === "string" ? value.split( " " ) : [ value ]; - - for ( ; i < 4; i++ ) { - expanded[ prefix + cssExpand[ i ] + suffix ] = - parts[ i ] || parts[ i - 2 ] || parts[ 0 ]; - } - - return expanded; - } - }; - - if ( prefix !== "margin" ) { - jQuery.cssHooks[ prefix + suffix ].set = setPositiveNumber; - } -} ); - -jQuery.fn.extend( { - css: function( name, value ) { - return access( this, function( elem, name, value ) { - var styles, len, - map = {}, - i = 0; - - if ( Array.isArray( name ) ) { - styles = getStyles( elem ); - len = name.length; - - for ( ; i < len; i++ ) { - map[ name[ i ] ] = jQuery.css( elem, name[ i ], false, styles ); - } - - return map; - } - - return value !== undefined ? - jQuery.style( elem, name, value ) : - jQuery.css( elem, name ); - }, name, value, arguments.length > 1 ); - } -} ); - - -function Tween( elem, options, prop, end, easing ) { - return new Tween.prototype.init( elem, options, prop, end, easing ); -} -jQuery.Tween = Tween; - -Tween.prototype = { - constructor: Tween, - init: function( elem, options, prop, end, easing, unit ) { - this.elem = elem; - this.prop = prop; - this.easing = easing || jQuery.easing._default; - this.options = options; - this.start = this.now = this.cur(); - this.end = end; - this.unit = unit || ( jQuery.cssNumber[ prop ] ? "" : "px" ); - }, - cur: function() { - var hooks = Tween.propHooks[ this.prop ]; - - return hooks && hooks.get ? - hooks.get( this ) : - Tween.propHooks._default.get( this ); - }, - run: function( percent ) { - var eased, - hooks = Tween.propHooks[ this.prop ]; - - if ( this.options.duration ) { - this.pos = eased = jQuery.easing[ this.easing ]( - percent, this.options.duration * percent, 0, 1, this.options.duration - ); - } else { - this.pos = eased = percent; - } - this.now = ( this.end - this.start ) * eased + this.start; - - if ( this.options.step ) { - this.options.step.call( this.elem, this.now, this ); - } - - if ( hooks && hooks.set ) { - hooks.set( this ); - } else { - Tween.propHooks._default.set( this ); - } - return this; - } -}; - -Tween.prototype.init.prototype = Tween.prototype; - -Tween.propHooks = { - _default: { - get: function( tween ) { - var result; - - // Use a property on the element directly when it is not a DOM element, - // or when there is no matching style property that exists. - if ( tween.elem.nodeType !== 1 || - tween.elem[ tween.prop ] != null && tween.elem.style[ tween.prop ] == null ) { - return tween.elem[ tween.prop ]; - } - - // Passing an empty string as a 3rd parameter to .css will automatically - // attempt a parseFloat and fallback to a string if the parse fails. - // Simple values such as "10px" are parsed to Float; - // complex values such as "rotate(1rad)" are returned as-is. - result = jQuery.css( tween.elem, tween.prop, "" ); - - // Empty strings, null, undefined and "auto" are converted to 0. - return !result || result === "auto" ? 0 : result; - }, - set: function( tween ) { - - // Use step hook for back compat. - // Use cssHook if its there. - // Use .style if available and use plain properties where available. - if ( jQuery.fx.step[ tween.prop ] ) { - jQuery.fx.step[ tween.prop ]( tween ); - } else if ( tween.elem.nodeType === 1 && ( - jQuery.cssHooks[ tween.prop ] || - tween.elem.style[ finalPropName( tween.prop ) ] != null ) ) { - jQuery.style( tween.elem, tween.prop, tween.now + tween.unit ); - } else { - tween.elem[ tween.prop ] = tween.now; - } - } - } -}; - -// Support: IE <=9 only -// Panic based approach to setting things on disconnected nodes -Tween.propHooks.scrollTop = Tween.propHooks.scrollLeft = { - set: function( tween ) { - if ( tween.elem.nodeType && tween.elem.parentNode ) { - tween.elem[ tween.prop ] = tween.now; - } - } -}; - -jQuery.easing = { - linear: function( p ) { - return p; - }, - swing: function( p ) { - return 0.5 - Math.cos( p * Math.PI ) / 2; - }, - _default: "swing" -}; - -jQuery.fx = Tween.prototype.init; - -// Back compat <1.8 extension point -jQuery.fx.step = {}; - - - - -var - fxNow, inProgress, - rfxtypes = /^(?:toggle|show|hide)$/, - rrun = /queueHooks$/; - -function schedule() { - if ( inProgress ) { - if ( document.hidden === false && window.requestAnimationFrame ) { - window.requestAnimationFrame( schedule ); - } else { - window.setTimeout( schedule, jQuery.fx.interval ); - } - - jQuery.fx.tick(); - } -} - -// Animations created synchronously will run synchronously -function createFxNow() { - window.setTimeout( function() { - fxNow = undefined; - } ); - return ( fxNow = Date.now() ); -} - -// Generate parameters to create a standard animation -function genFx( type, includeWidth ) { - var which, - i = 0, - attrs = { height: type }; - - // If we include width, step value is 1 to do all cssExpand values, - // otherwise step value is 2 to skip over Left and Right - includeWidth = includeWidth ? 1 : 0; - for ( ; i < 4; i += 2 - includeWidth ) { - which = cssExpand[ i ]; - attrs[ "margin" + which ] = attrs[ "padding" + which ] = type; - } - - if ( includeWidth ) { - attrs.opacity = attrs.width = type; - } - - return attrs; -} - -function createTween( value, prop, animation ) { - var tween, - collection = ( Animation.tweeners[ prop ] || [] ).concat( Animation.tweeners[ "*" ] ), - index = 0, - length = collection.length; - for ( ; index < length; index++ ) { - if ( ( tween = collection[ index ].call( animation, prop, value ) ) ) { - - // We're done with this property - return tween; - } - } -} - -function defaultPrefilter( elem, props, opts ) { - var prop, value, toggle, hooks, oldfire, propTween, restoreDisplay, display, - isBox = "width" in props || "height" in props, - anim = this, - orig = {}, - style = elem.style, - hidden = elem.nodeType && isHiddenWithinTree( elem ), - dataShow = dataPriv.get( elem, "fxshow" ); - - // Queue-skipping animations hijack the fx hooks - if ( !opts.queue ) { - hooks = jQuery._queueHooks( elem, "fx" ); - if ( hooks.unqueued == null ) { - hooks.unqueued = 0; - oldfire = hooks.empty.fire; - hooks.empty.fire = function() { - if ( !hooks.unqueued ) { - oldfire(); - } - }; - } - hooks.unqueued++; - - anim.always( function() { - - // Ensure the complete handler is called before this completes - anim.always( function() { - hooks.unqueued--; - if ( !jQuery.queue( elem, "fx" ).length ) { - hooks.empty.fire(); - } - } ); - } ); - } - - // Detect show/hide animations - for ( prop in props ) { - value = props[ prop ]; - if ( rfxtypes.test( value ) ) { - delete props[ prop ]; - toggle = toggle || value === "toggle"; - if ( value === ( hidden ? "hide" : "show" ) ) { - - // Pretend to be hidden if this is a "show" and - // there is still data from a stopped show/hide - if ( value === "show" && dataShow && dataShow[ prop ] !== undefined ) { - hidden = true; - - // Ignore all other no-op show/hide data - } else { - continue; - } - } - orig[ prop ] = dataShow && dataShow[ prop ] || jQuery.style( elem, prop ); - } - } - - // Bail out if this is a no-op like .hide().hide() - propTween = !jQuery.isEmptyObject( props ); - if ( !propTween && jQuery.isEmptyObject( orig ) ) { - return; - } - - // Restrict "overflow" and "display" styles during box animations - if ( isBox && elem.nodeType === 1 ) { - - // Support: IE <=9 - 11, Edge 12 - 15 - // Record all 3 overflow attributes because IE does not infer the shorthand - // from identically-valued overflowX and overflowY and Edge just mirrors - // the overflowX value there. - opts.overflow = [ style.overflow, style.overflowX, style.overflowY ]; - - // Identify a display type, preferring old show/hide data over the CSS cascade - restoreDisplay = dataShow && dataShow.display; - if ( restoreDisplay == null ) { - restoreDisplay = dataPriv.get( elem, "display" ); - } - display = jQuery.css( elem, "display" ); - if ( display === "none" ) { - if ( restoreDisplay ) { - display = restoreDisplay; - } else { - - // Get nonempty value(s) by temporarily forcing visibility - showHide( [ elem ], true ); - restoreDisplay = elem.style.display || restoreDisplay; - display = jQuery.css( elem, "display" ); - showHide( [ elem ] ); - } - } - - // Animate inline elements as inline-block - if ( display === "inline" || display === "inline-block" && restoreDisplay != null ) { - if ( jQuery.css( elem, "float" ) === "none" ) { - - // Restore the original display value at the end of pure show/hide animations - if ( !propTween ) { - anim.done( function() { - style.display = restoreDisplay; - } ); - if ( restoreDisplay == null ) { - display = style.display; - restoreDisplay = display === "none" ? "" : display; - } - } - style.display = "inline-block"; - } - } - } - - if ( opts.overflow ) { - style.overflow = "hidden"; - anim.always( function() { - style.overflow = opts.overflow[ 0 ]; - style.overflowX = opts.overflow[ 1 ]; - style.overflowY = opts.overflow[ 2 ]; - } ); - } - - // Implement show/hide animations - propTween = false; - for ( prop in orig ) { - - // General show/hide setup for this element animation - if ( !propTween ) { - if ( dataShow ) { - if ( "hidden" in dataShow ) { - hidden = dataShow.hidden; - } - } else { - dataShow = dataPriv.access( elem, "fxshow", { display: restoreDisplay } ); - } - - // Store hidden/visible for toggle so `.stop().toggle()` "reverses" - if ( toggle ) { - dataShow.hidden = !hidden; - } - - // Show elements before animating them - if ( hidden ) { - showHide( [ elem ], true ); - } - - /* eslint-disable no-loop-func */ - - anim.done( function() { - - /* eslint-enable no-loop-func */ - - // The final step of a "hide" animation is actually hiding the element - if ( !hidden ) { - showHide( [ elem ] ); - } - dataPriv.remove( elem, "fxshow" ); - for ( prop in orig ) { - jQuery.style( elem, prop, orig[ prop ] ); - } - } ); - } - - // Per-property setup - propTween = createTween( hidden ? dataShow[ prop ] : 0, prop, anim ); - if ( !( prop in dataShow ) ) { - dataShow[ prop ] = propTween.start; - if ( hidden ) { - propTween.end = propTween.start; - propTween.start = 0; - } - } - } -} - -function propFilter( props, specialEasing ) { - var index, name, easing, value, hooks; - - // camelCase, specialEasing and expand cssHook pass - for ( index in props ) { - name = camelCase( index ); - easing = specialEasing[ name ]; - value = props[ index ]; - if ( Array.isArray( value ) ) { - easing = value[ 1 ]; - value = props[ index ] = value[ 0 ]; - } - - if ( index !== name ) { - props[ name ] = value; - delete props[ index ]; - } - - hooks = jQuery.cssHooks[ name ]; - if ( hooks && "expand" in hooks ) { - value = hooks.expand( value ); - delete props[ name ]; - - // Not quite $.extend, this won't overwrite existing keys. - // Reusing 'index' because we have the correct "name" - for ( index in value ) { - if ( !( index in props ) ) { - props[ index ] = value[ index ]; - specialEasing[ index ] = easing; - } - } - } else { - specialEasing[ name ] = easing; - } - } -} - -function Animation( elem, properties, options ) { - var result, - stopped, - index = 0, - length = Animation.prefilters.length, - deferred = jQuery.Deferred().always( function() { - - // Don't match elem in the :animated selector - delete tick.elem; - } ), - tick = function() { - if ( stopped ) { - return false; - } - var currentTime = fxNow || createFxNow(), - remaining = Math.max( 0, animation.startTime + animation.duration - currentTime ), - - // Support: Android 2.3 only - // Archaic crash bug won't allow us to use `1 - ( 0.5 || 0 )` (#12497) - temp = remaining / animation.duration || 0, - percent = 1 - temp, - index = 0, - length = animation.tweens.length; - - for ( ; index < length; index++ ) { - animation.tweens[ index ].run( percent ); - } - - deferred.notifyWith( elem, [ animation, percent, remaining ] ); - - // If there's more to do, yield - if ( percent < 1 && length ) { - return remaining; - } - - // If this was an empty animation, synthesize a final progress notification - if ( !length ) { - deferred.notifyWith( elem, [ animation, 1, 0 ] ); - } - - // Resolve the animation and report its conclusion - deferred.resolveWith( elem, [ animation ] ); - return false; - }, - animation = deferred.promise( { - elem: elem, - props: jQuery.extend( {}, properties ), - opts: jQuery.extend( true, { - specialEasing: {}, - easing: jQuery.easing._default - }, options ), - originalProperties: properties, - originalOptions: options, - startTime: fxNow || createFxNow(), - duration: options.duration, - tweens: [], - createTween: function( prop, end ) { - var tween = jQuery.Tween( elem, animation.opts, prop, end, - animation.opts.specialEasing[ prop ] || animation.opts.easing ); - animation.tweens.push( tween ); - return tween; - }, - stop: function( gotoEnd ) { - var index = 0, - - // If we are going to the end, we want to run all the tweens - // otherwise we skip this part - length = gotoEnd ? animation.tweens.length : 0; - if ( stopped ) { - return this; - } - stopped = true; - for ( ; index < length; index++ ) { - animation.tweens[ index ].run( 1 ); - } - - // Resolve when we played the last frame; otherwise, reject - if ( gotoEnd ) { - deferred.notifyWith( elem, [ animation, 1, 0 ] ); - deferred.resolveWith( elem, [ animation, gotoEnd ] ); - } else { - deferred.rejectWith( elem, [ animation, gotoEnd ] ); - } - return this; - } - } ), - props = animation.props; - - propFilter( props, animation.opts.specialEasing ); - - for ( ; index < length; index++ ) { - result = Animation.prefilters[ index ].call( animation, elem, props, animation.opts ); - if ( result ) { - if ( isFunction( result.stop ) ) { - jQuery._queueHooks( animation.elem, animation.opts.queue ).stop = - result.stop.bind( result ); - } - return result; - } - } - - jQuery.map( props, createTween, animation ); - - if ( isFunction( animation.opts.start ) ) { - animation.opts.start.call( elem, animation ); - } - - // Attach callbacks from options - animation - .progress( animation.opts.progress ) - .done( animation.opts.done, animation.opts.complete ) - .fail( animation.opts.fail ) - .always( animation.opts.always ); - - jQuery.fx.timer( - jQuery.extend( tick, { - elem: elem, - anim: animation, - queue: animation.opts.queue - } ) - ); - - return animation; -} - -jQuery.Animation = jQuery.extend( Animation, { - - tweeners: { - "*": [ function( prop, value ) { - var tween = this.createTween( prop, value ); - adjustCSS( tween.elem, prop, rcssNum.exec( value ), tween ); - return tween; - } ] - }, - - tweener: function( props, callback ) { - if ( isFunction( props ) ) { - callback = props; - props = [ "*" ]; - } else { - props = props.match( rnothtmlwhite ); - } - - var prop, - index = 0, - length = props.length; - - for ( ; index < length; index++ ) { - prop = props[ index ]; - Animation.tweeners[ prop ] = Animation.tweeners[ prop ] || []; - Animation.tweeners[ prop ].unshift( callback ); - } - }, - - prefilters: [ defaultPrefilter ], - - prefilter: function( callback, prepend ) { - if ( prepend ) { - Animation.prefilters.unshift( callback ); - } else { - Animation.prefilters.push( callback ); - } - } -} ); - -jQuery.speed = function( speed, easing, fn ) { - var opt = speed && typeof speed === "object" ? jQuery.extend( {}, speed ) : { - complete: fn || !fn && easing || - isFunction( speed ) && speed, - duration: speed, - easing: fn && easing || easing && !isFunction( easing ) && easing - }; - - // Go to the end state if fx are off - if ( jQuery.fx.off ) { - opt.duration = 0; - - } else { - if ( typeof opt.duration !== "number" ) { - if ( opt.duration in jQuery.fx.speeds ) { - opt.duration = jQuery.fx.speeds[ opt.duration ]; - - } else { - opt.duration = jQuery.fx.speeds._default; - } - } - } - - // Normalize opt.queue - true/undefined/null -> "fx" - if ( opt.queue == null || opt.queue === true ) { - opt.queue = "fx"; - } - - // Queueing - opt.old = opt.complete; - - opt.complete = function() { - if ( isFunction( opt.old ) ) { - opt.old.call( this ); - } - - if ( opt.queue ) { - jQuery.dequeue( this, opt.queue ); - } - }; - - return opt; -}; - -jQuery.fn.extend( { - fadeTo: function( speed, to, easing, callback ) { - - // Show any hidden elements after setting opacity to 0 - return this.filter( isHiddenWithinTree ).css( "opacity", 0 ).show() - - // Animate to the value specified - .end().animate( { opacity: to }, speed, easing, callback ); - }, - animate: function( prop, speed, easing, callback ) { - var empty = jQuery.isEmptyObject( prop ), - optall = jQuery.speed( speed, easing, callback ), - doAnimation = function() { - - // Operate on a copy of prop so per-property easing won't be lost - var anim = Animation( this, jQuery.extend( {}, prop ), optall ); - - // Empty animations, or finishing resolves immediately - if ( empty || dataPriv.get( this, "finish" ) ) { - anim.stop( true ); - } - }; - doAnimation.finish = doAnimation; - - return empty || optall.queue === false ? - this.each( doAnimation ) : - this.queue( optall.queue, doAnimation ); - }, - stop: function( type, clearQueue, gotoEnd ) { - var stopQueue = function( hooks ) { - var stop = hooks.stop; - delete hooks.stop; - stop( gotoEnd ); - }; - - if ( typeof type !== "string" ) { - gotoEnd = clearQueue; - clearQueue = type; - type = undefined; - } - if ( clearQueue ) { - this.queue( type || "fx", [] ); - } - - return this.each( function() { - var dequeue = true, - index = type != null && type + "queueHooks", - timers = jQuery.timers, - data = dataPriv.get( this ); - - if ( index ) { - if ( data[ index ] && data[ index ].stop ) { - stopQueue( data[ index ] ); - } - } else { - for ( index in data ) { - if ( data[ index ] && data[ index ].stop && rrun.test( index ) ) { - stopQueue( data[ index ] ); - } - } - } - - for ( index = timers.length; index--; ) { - if ( timers[ index ].elem === this && - ( type == null || timers[ index ].queue === type ) ) { - - timers[ index ].anim.stop( gotoEnd ); - dequeue = false; - timers.splice( index, 1 ); - } - } - - // Start the next in the queue if the last step wasn't forced. - // Timers currently will call their complete callbacks, which - // will dequeue but only if they were gotoEnd. - if ( dequeue || !gotoEnd ) { - jQuery.dequeue( this, type ); - } - } ); - }, - finish: function( type ) { - if ( type !== false ) { - type = type || "fx"; - } - return this.each( function() { - var index, - data = dataPriv.get( this ), - queue = data[ type + "queue" ], - hooks = data[ type + "queueHooks" ], - timers = jQuery.timers, - length = queue ? queue.length : 0; - - // Enable finishing flag on private data - data.finish = true; - - // Empty the queue first - jQuery.queue( this, type, [] ); - - if ( hooks && hooks.stop ) { - hooks.stop.call( this, true ); - } - - // Look for any active animations, and finish them - for ( index = timers.length; index--; ) { - if ( timers[ index ].elem === this && timers[ index ].queue === type ) { - timers[ index ].anim.stop( true ); - timers.splice( index, 1 ); - } - } - - // Look for any animations in the old queue and finish them - for ( index = 0; index < length; index++ ) { - if ( queue[ index ] && queue[ index ].finish ) { - queue[ index ].finish.call( this ); - } - } - - // Turn off finishing flag - delete data.finish; - } ); - } -} ); - -jQuery.each( [ "toggle", "show", "hide" ], function( _i, name ) { - var cssFn = jQuery.fn[ name ]; - jQuery.fn[ name ] = function( speed, easing, callback ) { - return speed == null || typeof speed === "boolean" ? - cssFn.apply( this, arguments ) : - this.animate( genFx( name, true ), speed, easing, callback ); - }; -} ); - -// Generate shortcuts for custom animations -jQuery.each( { - slideDown: genFx( "show" ), - slideUp: genFx( "hide" ), - slideToggle: genFx( "toggle" ), - fadeIn: { opacity: "show" }, - fadeOut: { opacity: "hide" }, - fadeToggle: { opacity: "toggle" } -}, function( name, props ) { - jQuery.fn[ name ] = function( speed, easing, callback ) { - return this.animate( props, speed, easing, callback ); - }; -} ); - -jQuery.timers = []; -jQuery.fx.tick = function() { - var timer, - i = 0, - timers = jQuery.timers; - - fxNow = Date.now(); - - for ( ; i < timers.length; i++ ) { - timer = timers[ i ]; - - // Run the timer and safely remove it when done (allowing for external removal) - if ( !timer() && timers[ i ] === timer ) { - timers.splice( i--, 1 ); - } - } - - if ( !timers.length ) { - jQuery.fx.stop(); - } - fxNow = undefined; -}; - -jQuery.fx.timer = function( timer ) { - jQuery.timers.push( timer ); - jQuery.fx.start(); -}; - -jQuery.fx.interval = 13; -jQuery.fx.start = function() { - if ( inProgress ) { - return; - } - - inProgress = true; - schedule(); -}; - -jQuery.fx.stop = function() { - inProgress = null; -}; - -jQuery.fx.speeds = { - slow: 600, - fast: 200, - - // Default speed - _default: 400 -}; - - -// Based off of the plugin by Clint Helfers, with permission. -// https://web.archive.org/web/20100324014747/http://blindsignals.com/index.php/2009/07/jquery-delay/ -jQuery.fn.delay = function( time, type ) { - time = jQuery.fx ? jQuery.fx.speeds[ time ] || time : time; - type = type || "fx"; - - return this.queue( type, function( next, hooks ) { - var timeout = window.setTimeout( next, time ); - hooks.stop = function() { - window.clearTimeout( timeout ); - }; - } ); -}; - - -( function() { - var input = document.createElement( "input" ), - select = document.createElement( "select" ), - opt = select.appendChild( document.createElement( "option" ) ); - - input.type = "checkbox"; - - // Support: Android <=4.3 only - // Default value for a checkbox should be "on" - support.checkOn = input.value !== ""; - - // Support: IE <=11 only - // Must access selectedIndex to make default options select - support.optSelected = opt.selected; - - // Support: IE <=11 only - // An input loses its value after becoming a radio - input = document.createElement( "input" ); - input.value = "t"; - input.type = "radio"; - support.radioValue = input.value === "t"; -} )(); - - -var boolHook, - attrHandle = jQuery.expr.attrHandle; - -jQuery.fn.extend( { - attr: function( name, value ) { - return access( this, jQuery.attr, name, value, arguments.length > 1 ); - }, - - removeAttr: function( name ) { - return this.each( function() { - jQuery.removeAttr( this, name ); - } ); - } -} ); - -jQuery.extend( { - attr: function( elem, name, value ) { - var ret, hooks, - nType = elem.nodeType; - - // Don't get/set attributes on text, comment and attribute nodes - if ( nType === 3 || nType === 8 || nType === 2 ) { - return; - } - - // Fallback to prop when attributes are not supported - if ( typeof elem.getAttribute === "undefined" ) { - return jQuery.prop( elem, name, value ); - } - - // Attribute hooks are determined by the lowercase version - // Grab necessary hook if one is defined - if ( nType !== 1 || !jQuery.isXMLDoc( elem ) ) { - hooks = jQuery.attrHooks[ name.toLowerCase() ] || - ( jQuery.expr.match.bool.test( name ) ? boolHook : undefined ); - } - - if ( value !== undefined ) { - if ( value === null ) { - jQuery.removeAttr( elem, name ); - return; - } - - if ( hooks && "set" in hooks && - ( ret = hooks.set( elem, value, name ) ) !== undefined ) { - return ret; - } - - elem.setAttribute( name, value + "" ); - return value; - } - - if ( hooks && "get" in hooks && ( ret = hooks.get( elem, name ) ) !== null ) { - return ret; - } - - ret = jQuery.find.attr( elem, name ); - - // Non-existent attributes return null, we normalize to undefined - return ret == null ? undefined : ret; - }, - - attrHooks: { - type: { - set: function( elem, value ) { - if ( !support.radioValue && value === "radio" && - nodeName( elem, "input" ) ) { - var val = elem.value; - elem.setAttribute( "type", value ); - if ( val ) { - elem.value = val; - } - return value; - } - } - } - }, - - removeAttr: function( elem, value ) { - var name, - i = 0, - - // Attribute names can contain non-HTML whitespace characters - // https://html.spec.whatwg.org/multipage/syntax.html#attributes-2 - attrNames = value && value.match( rnothtmlwhite ); - - if ( attrNames && elem.nodeType === 1 ) { - while ( ( name = attrNames[ i++ ] ) ) { - elem.removeAttribute( name ); - } - } - } -} ); - -// Hooks for boolean attributes -boolHook = { - set: function( elem, value, name ) { - if ( value === false ) { - - // Remove boolean attributes when set to false - jQuery.removeAttr( elem, name ); - } else { - elem.setAttribute( name, name ); - } - return name; - } -}; - -jQuery.each( jQuery.expr.match.bool.source.match( /\w+/g ), function( _i, name ) { - var getter = attrHandle[ name ] || jQuery.find.attr; - - attrHandle[ name ] = function( elem, name, isXML ) { - var ret, handle, - lowercaseName = name.toLowerCase(); - - if ( !isXML ) { - - // Avoid an infinite loop by temporarily removing this function from the getter - handle = attrHandle[ lowercaseName ]; - attrHandle[ lowercaseName ] = ret; - ret = getter( elem, name, isXML ) != null ? - lowercaseName : - null; - attrHandle[ lowercaseName ] = handle; - } - return ret; - }; -} ); - - - - -var rfocusable = /^(?:input|select|textarea|button)$/i, - rclickable = /^(?:a|area)$/i; - -jQuery.fn.extend( { - prop: function( name, value ) { - return access( this, jQuery.prop, name, value, arguments.length > 1 ); - }, - - removeProp: function( name ) { - return this.each( function() { - delete this[ jQuery.propFix[ name ] || name ]; - } ); - } -} ); - -jQuery.extend( { - prop: function( elem, name, value ) { - var ret, hooks, - nType = elem.nodeType; - - // Don't get/set properties on text, comment and attribute nodes - if ( nType === 3 || nType === 8 || nType === 2 ) { - return; - } - - if ( nType !== 1 || !jQuery.isXMLDoc( elem ) ) { - - // Fix name and attach hooks - name = jQuery.propFix[ name ] || name; - hooks = jQuery.propHooks[ name ]; - } - - if ( value !== undefined ) { - if ( hooks && "set" in hooks && - ( ret = hooks.set( elem, value, name ) ) !== undefined ) { - return ret; - } - - return ( elem[ name ] = value ); - } - - if ( hooks && "get" in hooks && ( ret = hooks.get( elem, name ) ) !== null ) { - return ret; - } - - return elem[ name ]; - }, - - propHooks: { - tabIndex: { - get: function( elem ) { - - // Support: IE <=9 - 11 only - // elem.tabIndex doesn't always return the - // correct value when it hasn't been explicitly set - // https://web.archive.org/web/20141116233347/http://fluidproject.org/blog/2008/01/09/getting-setting-and-removing-tabindex-values-with-javascript/ - // Use proper attribute retrieval(#12072) - var tabindex = jQuery.find.attr( elem, "tabindex" ); - - if ( tabindex ) { - return parseInt( tabindex, 10 ); - } - - if ( - rfocusable.test( elem.nodeName ) || - rclickable.test( elem.nodeName ) && - elem.href - ) { - return 0; - } - - return -1; - } - } - }, - - propFix: { - "for": "htmlFor", - "class": "className" - } -} ); - -// Support: IE <=11 only -// Accessing the selectedIndex property -// forces the browser to respect setting selected -// on the option -// The getter ensures a default option is selected -// when in an optgroup -// eslint rule "no-unused-expressions" is disabled for this code -// since it considers such accessions noop -if ( !support.optSelected ) { - jQuery.propHooks.selected = { - get: function( elem ) { - - /* eslint no-unused-expressions: "off" */ - - var parent = elem.parentNode; - if ( parent && parent.parentNode ) { - parent.parentNode.selectedIndex; - } - return null; - }, - set: function( elem ) { - - /* eslint no-unused-expressions: "off" */ - - var parent = elem.parentNode; - if ( parent ) { - parent.selectedIndex; - - if ( parent.parentNode ) { - parent.parentNode.selectedIndex; - } - } - } - }; -} - -jQuery.each( [ - "tabIndex", - "readOnly", - "maxLength", - "cellSpacing", - "cellPadding", - "rowSpan", - "colSpan", - "useMap", - "frameBorder", - "contentEditable" -], function() { - jQuery.propFix[ this.toLowerCase() ] = this; -} ); - - - - - // Strip and collapse whitespace according to HTML spec - // https://infra.spec.whatwg.org/#strip-and-collapse-ascii-whitespace - function stripAndCollapse( value ) { - var tokens = value.match( rnothtmlwhite ) || []; - return tokens.join( " " ); - } - - -function getClass( elem ) { - return elem.getAttribute && elem.getAttribute( "class" ) || ""; -} - -function classesToArray( value ) { - if ( Array.isArray( value ) ) { - return value; - } - if ( typeof value === "string" ) { - return value.match( rnothtmlwhite ) || []; - } - return []; -} - -jQuery.fn.extend( { - addClass: function( value ) { - var classes, elem, cur, curValue, clazz, j, finalValue, - i = 0; - - if ( isFunction( value ) ) { - return this.each( function( j ) { - jQuery( this ).addClass( value.call( this, j, getClass( this ) ) ); - } ); - } - - classes = classesToArray( value ); - - if ( classes.length ) { - while ( ( elem = this[ i++ ] ) ) { - curValue = getClass( elem ); - cur = elem.nodeType === 1 && ( " " + stripAndCollapse( curValue ) + " " ); - - if ( cur ) { - j = 0; - while ( ( clazz = classes[ j++ ] ) ) { - if ( cur.indexOf( " " + clazz + " " ) < 0 ) { - cur += clazz + " "; - } - } - - // Only assign if different to avoid unneeded rendering. - finalValue = stripAndCollapse( cur ); - if ( curValue !== finalValue ) { - elem.setAttribute( "class", finalValue ); - } - } - } - } - - return this; - }, - - removeClass: function( value ) { - var classes, elem, cur, curValue, clazz, j, finalValue, - i = 0; - - if ( isFunction( value ) ) { - return this.each( function( j ) { - jQuery( this ).removeClass( value.call( this, j, getClass( this ) ) ); - } ); - } - - if ( !arguments.length ) { - return this.attr( "class", "" ); - } - - classes = classesToArray( value ); - - if ( classes.length ) { - while ( ( elem = this[ i++ ] ) ) { - curValue = getClass( elem ); - - // This expression is here for better compressibility (see addClass) - cur = elem.nodeType === 1 && ( " " + stripAndCollapse( curValue ) + " " ); - - if ( cur ) { - j = 0; - while ( ( clazz = classes[ j++ ] ) ) { - - // Remove *all* instances - while ( cur.indexOf( " " + clazz + " " ) > -1 ) { - cur = cur.replace( " " + clazz + " ", " " ); - } - } - - // Only assign if different to avoid unneeded rendering. - finalValue = stripAndCollapse( cur ); - if ( curValue !== finalValue ) { - elem.setAttribute( "class", finalValue ); - } - } - } - } - - return this; - }, - - toggleClass: function( value, stateVal ) { - var type = typeof value, - isValidValue = type === "string" || Array.isArray( value ); - - if ( typeof stateVal === "boolean" && isValidValue ) { - return stateVal ? this.addClass( value ) : this.removeClass( value ); - } - - if ( isFunction( value ) ) { - return this.each( function( i ) { - jQuery( this ).toggleClass( - value.call( this, i, getClass( this ), stateVal ), - stateVal - ); - } ); - } - - return this.each( function() { - var className, i, self, classNames; - - if ( isValidValue ) { - - // Toggle individual class names - i = 0; - self = jQuery( this ); - classNames = classesToArray( value ); - - while ( ( className = classNames[ i++ ] ) ) { - - // Check each className given, space separated list - if ( self.hasClass( className ) ) { - self.removeClass( className ); - } else { - self.addClass( className ); - } - } - - // Toggle whole class name - } else if ( value === undefined || type === "boolean" ) { - className = getClass( this ); - if ( className ) { - - // Store className if set - dataPriv.set( this, "__className__", className ); - } - - // If the element has a class name or if we're passed `false`, - // then remove the whole classname (if there was one, the above saved it). - // Otherwise bring back whatever was previously saved (if anything), - // falling back to the empty string if nothing was stored. - if ( this.setAttribute ) { - this.setAttribute( "class", - className || value === false ? - "" : - dataPriv.get( this, "__className__" ) || "" - ); - } - } - } ); - }, - - hasClass: function( selector ) { - var className, elem, - i = 0; - - className = " " + selector + " "; - while ( ( elem = this[ i++ ] ) ) { - if ( elem.nodeType === 1 && - ( " " + stripAndCollapse( getClass( elem ) ) + " " ).indexOf( className ) > -1 ) { - return true; - } - } - - return false; - } -} ); - - - - -var rreturn = /\r/g; - -jQuery.fn.extend( { - val: function( value ) { - var hooks, ret, valueIsFunction, - elem = this[ 0 ]; - - if ( !arguments.length ) { - if ( elem ) { - hooks = jQuery.valHooks[ elem.type ] || - jQuery.valHooks[ elem.nodeName.toLowerCase() ]; - - if ( hooks && - "get" in hooks && - ( ret = hooks.get( elem, "value" ) ) !== undefined - ) { - return ret; - } - - ret = elem.value; - - // Handle most common string cases - if ( typeof ret === "string" ) { - return ret.replace( rreturn, "" ); - } - - // Handle cases where value is null/undef or number - return ret == null ? "" : ret; - } - - return; - } - - valueIsFunction = isFunction( value ); - - return this.each( function( i ) { - var val; - - if ( this.nodeType !== 1 ) { - return; - } - - if ( valueIsFunction ) { - val = value.call( this, i, jQuery( this ).val() ); - } else { - val = value; - } - - // Treat null/undefined as ""; convert numbers to string - if ( val == null ) { - val = ""; - - } else if ( typeof val === "number" ) { - val += ""; - - } else if ( Array.isArray( val ) ) { - val = jQuery.map( val, function( value ) { - return value == null ? "" : value + ""; - } ); - } - - hooks = jQuery.valHooks[ this.type ] || jQuery.valHooks[ this.nodeName.toLowerCase() ]; - - // If set returns undefined, fall back to normal setting - if ( !hooks || !( "set" in hooks ) || hooks.set( this, val, "value" ) === undefined ) { - this.value = val; - } - } ); - } -} ); - -jQuery.extend( { - valHooks: { - option: { - get: function( elem ) { - - var val = jQuery.find.attr( elem, "value" ); - return val != null ? - val : - - // Support: IE <=10 - 11 only - // option.text throws exceptions (#14686, #14858) - // Strip and collapse whitespace - // https://html.spec.whatwg.org/#strip-and-collapse-whitespace - stripAndCollapse( jQuery.text( elem ) ); - } - }, - select: { - get: function( elem ) { - var value, option, i, - options = elem.options, - index = elem.selectedIndex, - one = elem.type === "select-one", - values = one ? null : [], - max = one ? index + 1 : options.length; - - if ( index < 0 ) { - i = max; - - } else { - i = one ? index : 0; - } - - // Loop through all the selected options - for ( ; i < max; i++ ) { - option = options[ i ]; - - // Support: IE <=9 only - // IE8-9 doesn't update selected after form reset (#2551) - if ( ( option.selected || i === index ) && - - // Don't return options that are disabled or in a disabled optgroup - !option.disabled && - ( !option.parentNode.disabled || - !nodeName( option.parentNode, "optgroup" ) ) ) { - - // Get the specific value for the option - value = jQuery( option ).val(); - - // We don't need an array for one selects - if ( one ) { - return value; - } - - // Multi-Selects return an array - values.push( value ); - } - } - - return values; - }, - - set: function( elem, value ) { - var optionSet, option, - options = elem.options, - values = jQuery.makeArray( value ), - i = options.length; - - while ( i-- ) { - option = options[ i ]; - - /* eslint-disable no-cond-assign */ - - if ( option.selected = - jQuery.inArray( jQuery.valHooks.option.get( option ), values ) > -1 - ) { - optionSet = true; - } - - /* eslint-enable no-cond-assign */ - } - - // Force browsers to behave consistently when non-matching value is set - if ( !optionSet ) { - elem.selectedIndex = -1; - } - return values; - } - } - } -} ); - -// Radios and checkboxes getter/setter -jQuery.each( [ "radio", "checkbox" ], function() { - jQuery.valHooks[ this ] = { - set: function( elem, value ) { - if ( Array.isArray( value ) ) { - return ( elem.checked = jQuery.inArray( jQuery( elem ).val(), value ) > -1 ); - } - } - }; - if ( !support.checkOn ) { - jQuery.valHooks[ this ].get = function( elem ) { - return elem.getAttribute( "value" ) === null ? "on" : elem.value; - }; - } -} ); - - - - -// Return jQuery for attributes-only inclusion - - -support.focusin = "onfocusin" in window; - - -var rfocusMorph = /^(?:focusinfocus|focusoutblur)$/, - stopPropagationCallback = function( e ) { - e.stopPropagation(); - }; - -jQuery.extend( jQuery.event, { - - trigger: function( event, data, elem, onlyHandlers ) { - - var i, cur, tmp, bubbleType, ontype, handle, special, lastElement, - eventPath = [ elem || document ], - type = hasOwn.call( event, "type" ) ? event.type : event, - namespaces = hasOwn.call( event, "namespace" ) ? event.namespace.split( "." ) : []; - - cur = lastElement = tmp = elem = elem || document; - - // Don't do events on text and comment nodes - if ( elem.nodeType === 3 || elem.nodeType === 8 ) { - return; - } - - // focus/blur morphs to focusin/out; ensure we're not firing them right now - if ( rfocusMorph.test( type + jQuery.event.triggered ) ) { - return; - } - - if ( type.indexOf( "." ) > -1 ) { - - // Namespaced trigger; create a regexp to match event type in handle() - namespaces = type.split( "." ); - type = namespaces.shift(); - namespaces.sort(); - } - ontype = type.indexOf( ":" ) < 0 && "on" + type; - - // Caller can pass in a jQuery.Event object, Object, or just an event type string - event = event[ jQuery.expando ] ? - event : - new jQuery.Event( type, typeof event === "object" && event ); - - // Trigger bitmask: & 1 for native handlers; & 2 for jQuery (always true) - event.isTrigger = onlyHandlers ? 2 : 3; - event.namespace = namespaces.join( "." ); - event.rnamespace = event.namespace ? - new RegExp( "(^|\\.)" + namespaces.join( "\\.(?:.*\\.|)" ) + "(\\.|$)" ) : - null; - - // Clean up the event in case it is being reused - event.result = undefined; - if ( !event.target ) { - event.target = elem; - } - - // Clone any incoming data and prepend the event, creating the handler arg list - data = data == null ? - [ event ] : - jQuery.makeArray( data, [ event ] ); - - // Allow special events to draw outside the lines - special = jQuery.event.special[ type ] || {}; - if ( !onlyHandlers && special.trigger && special.trigger.apply( elem, data ) === false ) { - return; - } - - // Determine event propagation path in advance, per W3C events spec (#9951) - // Bubble up to document, then to window; watch for a global ownerDocument var (#9724) - if ( !onlyHandlers && !special.noBubble && !isWindow( elem ) ) { - - bubbleType = special.delegateType || type; - if ( !rfocusMorph.test( bubbleType + type ) ) { - cur = cur.parentNode; - } - for ( ; cur; cur = cur.parentNode ) { - eventPath.push( cur ); - tmp = cur; - } - - // Only add window if we got to document (e.g., not plain obj or detached DOM) - if ( tmp === ( elem.ownerDocument || document ) ) { - eventPath.push( tmp.defaultView || tmp.parentWindow || window ); - } - } - - // Fire handlers on the event path - i = 0; - while ( ( cur = eventPath[ i++ ] ) && !event.isPropagationStopped() ) { - lastElement = cur; - event.type = i > 1 ? - bubbleType : - special.bindType || type; - - // jQuery handler - handle = ( - dataPriv.get( cur, "events" ) || Object.create( null ) - )[ event.type ] && - dataPriv.get( cur, "handle" ); - if ( handle ) { - handle.apply( cur, data ); - } - - // Native handler - handle = ontype && cur[ ontype ]; - if ( handle && handle.apply && acceptData( cur ) ) { - event.result = handle.apply( cur, data ); - if ( event.result === false ) { - event.preventDefault(); - } - } - } - event.type = type; - - // If nobody prevented the default action, do it now - if ( !onlyHandlers && !event.isDefaultPrevented() ) { - - if ( ( !special._default || - special._default.apply( eventPath.pop(), data ) === false ) && - acceptData( elem ) ) { - - // Call a native DOM method on the target with the same name as the event. - // Don't do default actions on window, that's where global variables be (#6170) - if ( ontype && isFunction( elem[ type ] ) && !isWindow( elem ) ) { - - // Don't re-trigger an onFOO event when we call its FOO() method - tmp = elem[ ontype ]; - - if ( tmp ) { - elem[ ontype ] = null; - } - - // Prevent re-triggering of the same event, since we already bubbled it above - jQuery.event.triggered = type; - - if ( event.isPropagationStopped() ) { - lastElement.addEventListener( type, stopPropagationCallback ); - } - - elem[ type ](); - - if ( event.isPropagationStopped() ) { - lastElement.removeEventListener( type, stopPropagationCallback ); - } - - jQuery.event.triggered = undefined; - - if ( tmp ) { - elem[ ontype ] = tmp; - } - } - } - } - - return event.result; - }, - - // Piggyback on a donor event to simulate a different one - // Used only for `focus(in | out)` events - simulate: function( type, elem, event ) { - var e = jQuery.extend( - new jQuery.Event(), - event, - { - type: type, - isSimulated: true - } - ); - - jQuery.event.trigger( e, null, elem ); - } - -} ); - -jQuery.fn.extend( { - - trigger: function( type, data ) { - return this.each( function() { - jQuery.event.trigger( type, data, this ); - } ); - }, - triggerHandler: function( type, data ) { - var elem = this[ 0 ]; - if ( elem ) { - return jQuery.event.trigger( type, data, elem, true ); - } - } -} ); - - -// Support: Firefox <=44 -// Firefox doesn't have focus(in | out) events -// Related ticket - https://bugzilla.mozilla.org/show_bug.cgi?id=687787 -// -// Support: Chrome <=48 - 49, Safari <=9.0 - 9.1 -// focus(in | out) events fire after focus & blur events, -// which is spec violation - http://www.w3.org/TR/DOM-Level-3-Events/#events-focusevent-event-order -// Related ticket - https://bugs.chromium.org/p/chromium/issues/detail?id=449857 -if ( !support.focusin ) { - jQuery.each( { focus: "focusin", blur: "focusout" }, function( orig, fix ) { - - // Attach a single capturing handler on the document while someone wants focusin/focusout - var handler = function( event ) { - jQuery.event.simulate( fix, event.target, jQuery.event.fix( event ) ); - }; - - jQuery.event.special[ fix ] = { - setup: function() { - - // Handle: regular nodes (via `this.ownerDocument`), window - // (via `this.document`) & document (via `this`). - var doc = this.ownerDocument || this.document || this, - attaches = dataPriv.access( doc, fix ); - - if ( !attaches ) { - doc.addEventListener( orig, handler, true ); - } - dataPriv.access( doc, fix, ( attaches || 0 ) + 1 ); - }, - teardown: function() { - var doc = this.ownerDocument || this.document || this, - attaches = dataPriv.access( doc, fix ) - 1; - - if ( !attaches ) { - doc.removeEventListener( orig, handler, true ); - dataPriv.remove( doc, fix ); - - } else { - dataPriv.access( doc, fix, attaches ); - } - } - }; - } ); -} -var location = window.location; - -var nonce = { guid: Date.now() }; - -var rquery = ( /\?/ ); - - - -// Cross-browser xml parsing -jQuery.parseXML = function( data ) { - var xml; - if ( !data || typeof data !== "string" ) { - return null; - } - - // Support: IE 9 - 11 only - // IE throws on parseFromString with invalid input. - try { - xml = ( new window.DOMParser() ).parseFromString( data, "text/xml" ); - } catch ( e ) { - xml = undefined; - } - - if ( !xml || xml.getElementsByTagName( "parsererror" ).length ) { - jQuery.error( "Invalid XML: " + data ); - } - return xml; -}; - - -var - rbracket = /\[\]$/, - rCRLF = /\r?\n/g, - rsubmitterTypes = /^(?:submit|button|image|reset|file)$/i, - rsubmittable = /^(?:input|select|textarea|keygen)/i; - -function buildParams( prefix, obj, traditional, add ) { - var name; - - if ( Array.isArray( obj ) ) { - - // Serialize array item. - jQuery.each( obj, function( i, v ) { - if ( traditional || rbracket.test( prefix ) ) { - - // Treat each array item as a scalar. - add( prefix, v ); - - } else { - - // Item is non-scalar (array or object), encode its numeric index. - buildParams( - prefix + "[" + ( typeof v === "object" && v != null ? i : "" ) + "]", - v, - traditional, - add - ); - } - } ); - - } else if ( !traditional && toType( obj ) === "object" ) { - - // Serialize object item. - for ( name in obj ) { - buildParams( prefix + "[" + name + "]", obj[ name ], traditional, add ); - } - - } else { - - // Serialize scalar item. - add( prefix, obj ); - } -} - -// Serialize an array of form elements or a set of -// key/values into a query string -jQuery.param = function( a, traditional ) { - var prefix, - s = [], - add = function( key, valueOrFunction ) { - - // If value is a function, invoke it and use its return value - var value = isFunction( valueOrFunction ) ? - valueOrFunction() : - valueOrFunction; - - s[ s.length ] = encodeURIComponent( key ) + "=" + - encodeURIComponent( value == null ? "" : value ); - }; - - if ( a == null ) { - return ""; - } - - // If an array was passed in, assume that it is an array of form elements. - if ( Array.isArray( a ) || ( a.jquery && !jQuery.isPlainObject( a ) ) ) { - - // Serialize the form elements - jQuery.each( a, function() { - add( this.name, this.value ); - } ); - - } else { - - // If traditional, encode the "old" way (the way 1.3.2 or older - // did it), otherwise encode params recursively. - for ( prefix in a ) { - buildParams( prefix, a[ prefix ], traditional, add ); - } - } - - // Return the resulting serialization - return s.join( "&" ); -}; - -jQuery.fn.extend( { - serialize: function() { - return jQuery.param( this.serializeArray() ); - }, - serializeArray: function() { - return this.map( function() { - - // Can add propHook for "elements" to filter or add form elements - var elements = jQuery.prop( this, "elements" ); - return elements ? jQuery.makeArray( elements ) : this; - } ) - .filter( function() { - var type = this.type; - - // Use .is( ":disabled" ) so that fieldset[disabled] works - return this.name && !jQuery( this ).is( ":disabled" ) && - rsubmittable.test( this.nodeName ) && !rsubmitterTypes.test( type ) && - ( this.checked || !rcheckableType.test( type ) ); - } ) - .map( function( _i, elem ) { - var val = jQuery( this ).val(); - - if ( val == null ) { - return null; - } - - if ( Array.isArray( val ) ) { - return jQuery.map( val, function( val ) { - return { name: elem.name, value: val.replace( rCRLF, "\r\n" ) }; - } ); - } - - return { name: elem.name, value: val.replace( rCRLF, "\r\n" ) }; - } ).get(); - } -} ); - - -var - r20 = /%20/g, - rhash = /#.*$/, - rantiCache = /([?&])_=[^&]*/, - rheaders = /^(.*?):[ \t]*([^\r\n]*)$/mg, - - // #7653, #8125, #8152: local protocol detection - rlocalProtocol = /^(?:about|app|app-storage|.+-extension|file|res|widget):$/, - rnoContent = /^(?:GET|HEAD)$/, - rprotocol = /^\/\//, - - /* Prefilters - * 1) They are useful to introduce custom dataTypes (see ajax/jsonp.js for an example) - * 2) These are called: - * - BEFORE asking for a transport - * - AFTER param serialization (s.data is a string if s.processData is true) - * 3) key is the dataType - * 4) the catchall symbol "*" can be used - * 5) execution will start with transport dataType and THEN continue down to "*" if needed - */ - prefilters = {}, - - /* Transports bindings - * 1) key is the dataType - * 2) the catchall symbol "*" can be used - * 3) selection will start with transport dataType and THEN go to "*" if needed - */ - transports = {}, - - // Avoid comment-prolog char sequence (#10098); must appease lint and evade compression - allTypes = "*/".concat( "*" ), - - // Anchor tag for parsing the document origin - originAnchor = document.createElement( "a" ); - originAnchor.href = location.href; - -// Base "constructor" for jQuery.ajaxPrefilter and jQuery.ajaxTransport -function addToPrefiltersOrTransports( structure ) { - - // dataTypeExpression is optional and defaults to "*" - return function( dataTypeExpression, func ) { - - if ( typeof dataTypeExpression !== "string" ) { - func = dataTypeExpression; - dataTypeExpression = "*"; - } - - var dataType, - i = 0, - dataTypes = dataTypeExpression.toLowerCase().match( rnothtmlwhite ) || []; - - if ( isFunction( func ) ) { - - // For each dataType in the dataTypeExpression - while ( ( dataType = dataTypes[ i++ ] ) ) { - - // Prepend if requested - if ( dataType[ 0 ] === "+" ) { - dataType = dataType.slice( 1 ) || "*"; - ( structure[ dataType ] = structure[ dataType ] || [] ).unshift( func ); - - // Otherwise append - } else { - ( structure[ dataType ] = structure[ dataType ] || [] ).push( func ); - } - } - } - }; -} - -// Base inspection function for prefilters and transports -function inspectPrefiltersOrTransports( structure, options, originalOptions, jqXHR ) { - - var inspected = {}, - seekingTransport = ( structure === transports ); - - function inspect( dataType ) { - var selected; - inspected[ dataType ] = true; - jQuery.each( structure[ dataType ] || [], function( _, prefilterOrFactory ) { - var dataTypeOrTransport = prefilterOrFactory( options, originalOptions, jqXHR ); - if ( typeof dataTypeOrTransport === "string" && - !seekingTransport && !inspected[ dataTypeOrTransport ] ) { - - options.dataTypes.unshift( dataTypeOrTransport ); - inspect( dataTypeOrTransport ); - return false; - } else if ( seekingTransport ) { - return !( selected = dataTypeOrTransport ); - } - } ); - return selected; - } - - return inspect( options.dataTypes[ 0 ] ) || !inspected[ "*" ] && inspect( "*" ); -} - -// A special extend for ajax options -// that takes "flat" options (not to be deep extended) -// Fixes #9887 -function ajaxExtend( target, src ) { - var key, deep, - flatOptions = jQuery.ajaxSettings.flatOptions || {}; - - for ( key in src ) { - if ( src[ key ] !== undefined ) { - ( flatOptions[ key ] ? target : ( deep || ( deep = {} ) ) )[ key ] = src[ key ]; - } - } - if ( deep ) { - jQuery.extend( true, target, deep ); - } - - return target; -} - -/* Handles responses to an ajax request: - * - finds the right dataType (mediates between content-type and expected dataType) - * - returns the corresponding response - */ -function ajaxHandleResponses( s, jqXHR, responses ) { - - var ct, type, finalDataType, firstDataType, - contents = s.contents, - dataTypes = s.dataTypes; - - // Remove auto dataType and get content-type in the process - while ( dataTypes[ 0 ] === "*" ) { - dataTypes.shift(); - if ( ct === undefined ) { - ct = s.mimeType || jqXHR.getResponseHeader( "Content-Type" ); - } - } - - // Check if we're dealing with a known content-type - if ( ct ) { - for ( type in contents ) { - if ( contents[ type ] && contents[ type ].test( ct ) ) { - dataTypes.unshift( type ); - break; - } - } - } - - // Check to see if we have a response for the expected dataType - if ( dataTypes[ 0 ] in responses ) { - finalDataType = dataTypes[ 0 ]; - } else { - - // Try convertible dataTypes - for ( type in responses ) { - if ( !dataTypes[ 0 ] || s.converters[ type + " " + dataTypes[ 0 ] ] ) { - finalDataType = type; - break; - } - if ( !firstDataType ) { - firstDataType = type; - } - } - - // Or just use first one - finalDataType = finalDataType || firstDataType; - } - - // If we found a dataType - // We add the dataType to the list if needed - // and return the corresponding response - if ( finalDataType ) { - if ( finalDataType !== dataTypes[ 0 ] ) { - dataTypes.unshift( finalDataType ); - } - return responses[ finalDataType ]; - } -} - -/* Chain conversions given the request and the original response - * Also sets the responseXXX fields on the jqXHR instance - */ -function ajaxConvert( s, response, jqXHR, isSuccess ) { - var conv2, current, conv, tmp, prev, - converters = {}, - - // Work with a copy of dataTypes in case we need to modify it for conversion - dataTypes = s.dataTypes.slice(); - - // Create converters map with lowercased keys - if ( dataTypes[ 1 ] ) { - for ( conv in s.converters ) { - converters[ conv.toLowerCase() ] = s.converters[ conv ]; - } - } - - current = dataTypes.shift(); - - // Convert to each sequential dataType - while ( current ) { - - if ( s.responseFields[ current ] ) { - jqXHR[ s.responseFields[ current ] ] = response; - } - - // Apply the dataFilter if provided - if ( !prev && isSuccess && s.dataFilter ) { - response = s.dataFilter( response, s.dataType ); - } - - prev = current; - current = dataTypes.shift(); - - if ( current ) { - - // There's only work to do if current dataType is non-auto - if ( current === "*" ) { - - current = prev; - - // Convert response if prev dataType is non-auto and differs from current - } else if ( prev !== "*" && prev !== current ) { - - // Seek a direct converter - conv = converters[ prev + " " + current ] || converters[ "* " + current ]; - - // If none found, seek a pair - if ( !conv ) { - for ( conv2 in converters ) { - - // If conv2 outputs current - tmp = conv2.split( " " ); - if ( tmp[ 1 ] === current ) { - - // If prev can be converted to accepted input - conv = converters[ prev + " " + tmp[ 0 ] ] || - converters[ "* " + tmp[ 0 ] ]; - if ( conv ) { - - // Condense equivalence converters - if ( conv === true ) { - conv = converters[ conv2 ]; - - // Otherwise, insert the intermediate dataType - } else if ( converters[ conv2 ] !== true ) { - current = tmp[ 0 ]; - dataTypes.unshift( tmp[ 1 ] ); - } - break; - } - } - } - } - - // Apply converter (if not an equivalence) - if ( conv !== true ) { - - // Unless errors are allowed to bubble, catch and return them - if ( conv && s.throws ) { - response = conv( response ); - } else { - try { - response = conv( response ); - } catch ( e ) { - return { - state: "parsererror", - error: conv ? e : "No conversion from " + prev + " to " + current - }; - } - } - } - } - } - } - - return { state: "success", data: response }; -} - -jQuery.extend( { - - // Counter for holding the number of active queries - active: 0, - - // Last-Modified header cache for next request - lastModified: {}, - etag: {}, - - ajaxSettings: { - url: location.href, - type: "GET", - isLocal: rlocalProtocol.test( location.protocol ), - global: true, - processData: true, - async: true, - contentType: "application/x-www-form-urlencoded; charset=UTF-8", - - /* - timeout: 0, - data: null, - dataType: null, - username: null, - password: null, - cache: null, - throws: false, - traditional: false, - headers: {}, - */ - - accepts: { - "*": allTypes, - text: "text/plain", - html: "text/html", - xml: "application/xml, text/xml", - json: "application/json, text/javascript" - }, - - contents: { - xml: /\bxml\b/, - html: /\bhtml/, - json: /\bjson\b/ - }, - - responseFields: { - xml: "responseXML", - text: "responseText", - json: "responseJSON" - }, - - // Data converters - // Keys separate source (or catchall "*") and destination types with a single space - converters: { - - // Convert anything to text - "* text": String, - - // Text to html (true = no transformation) - "text html": true, - - // Evaluate text as a json expression - "text json": JSON.parse, - - // Parse text as xml - "text xml": jQuery.parseXML - }, - - // For options that shouldn't be deep extended: - // you can add your own custom options here if - // and when you create one that shouldn't be - // deep extended (see ajaxExtend) - flatOptions: { - url: true, - context: true - } - }, - - // Creates a full fledged settings object into target - // with both ajaxSettings and settings fields. - // If target is omitted, writes into ajaxSettings. - ajaxSetup: function( target, settings ) { - return settings ? - - // Building a settings object - ajaxExtend( ajaxExtend( target, jQuery.ajaxSettings ), settings ) : - - // Extending ajaxSettings - ajaxExtend( jQuery.ajaxSettings, target ); - }, - - ajaxPrefilter: addToPrefiltersOrTransports( prefilters ), - ajaxTransport: addToPrefiltersOrTransports( transports ), - - // Main method - ajax: function( url, options ) { - - // If url is an object, simulate pre-1.5 signature - if ( typeof url === "object" ) { - options = url; - url = undefined; - } - - // Force options to be an object - options = options || {}; - - var transport, - - // URL without anti-cache param - cacheURL, - - // Response headers - responseHeadersString, - responseHeaders, - - // timeout handle - timeoutTimer, - - // Url cleanup var - urlAnchor, - - // Request state (becomes false upon send and true upon completion) - completed, - - // To know if global events are to be dispatched - fireGlobals, - - // Loop variable - i, - - // uncached part of the url - uncached, - - // Create the final options object - s = jQuery.ajaxSetup( {}, options ), - - // Callbacks context - callbackContext = s.context || s, - - // Context for global events is callbackContext if it is a DOM node or jQuery collection - globalEventContext = s.context && - ( callbackContext.nodeType || callbackContext.jquery ) ? - jQuery( callbackContext ) : - jQuery.event, - - // Deferreds - deferred = jQuery.Deferred(), - completeDeferred = jQuery.Callbacks( "once memory" ), - - // Status-dependent callbacks - statusCode = s.statusCode || {}, - - // Headers (they are sent all at once) - requestHeaders = {}, - requestHeadersNames = {}, - - // Default abort message - strAbort = "canceled", - - // Fake xhr - jqXHR = { - readyState: 0, - - // Builds headers hashtable if needed - getResponseHeader: function( key ) { - var match; - if ( completed ) { - if ( !responseHeaders ) { - responseHeaders = {}; - while ( ( match = rheaders.exec( responseHeadersString ) ) ) { - responseHeaders[ match[ 1 ].toLowerCase() + " " ] = - ( responseHeaders[ match[ 1 ].toLowerCase() + " " ] || [] ) - .concat( match[ 2 ] ); - } - } - match = responseHeaders[ key.toLowerCase() + " " ]; - } - return match == null ? null : match.join( ", " ); - }, - - // Raw string - getAllResponseHeaders: function() { - return completed ? responseHeadersString : null; - }, - - // Caches the header - setRequestHeader: function( name, value ) { - if ( completed == null ) { - name = requestHeadersNames[ name.toLowerCase() ] = - requestHeadersNames[ name.toLowerCase() ] || name; - requestHeaders[ name ] = value; - } - return this; - }, - - // Overrides response content-type header - overrideMimeType: function( type ) { - if ( completed == null ) { - s.mimeType = type; - } - return this; - }, - - // Status-dependent callbacks - statusCode: function( map ) { - var code; - if ( map ) { - if ( completed ) { - - // Execute the appropriate callbacks - jqXHR.always( map[ jqXHR.status ] ); - } else { - - // Lazy-add the new callbacks in a way that preserves old ones - for ( code in map ) { - statusCode[ code ] = [ statusCode[ code ], map[ code ] ]; - } - } - } - return this; - }, - - // Cancel the request - abort: function( statusText ) { - var finalText = statusText || strAbort; - if ( transport ) { - transport.abort( finalText ); - } - done( 0, finalText ); - return this; - } - }; - - // Attach deferreds - deferred.promise( jqXHR ); - - // Add protocol if not provided (prefilters might expect it) - // Handle falsy url in the settings object (#10093: consistency with old signature) - // We also use the url parameter if available - s.url = ( ( url || s.url || location.href ) + "" ) - .replace( rprotocol, location.protocol + "//" ); - - // Alias method option to type as per ticket #12004 - s.type = options.method || options.type || s.method || s.type; - - // Extract dataTypes list - s.dataTypes = ( s.dataType || "*" ).toLowerCase().match( rnothtmlwhite ) || [ "" ]; - - // A cross-domain request is in order when the origin doesn't match the current origin. - if ( s.crossDomain == null ) { - urlAnchor = document.createElement( "a" ); - - // Support: IE <=8 - 11, Edge 12 - 15 - // IE throws exception on accessing the href property if url is malformed, - // e.g. http://example.com:80x/ - try { - urlAnchor.href = s.url; - - // Support: IE <=8 - 11 only - // Anchor's host property isn't correctly set when s.url is relative - urlAnchor.href = urlAnchor.href; - s.crossDomain = originAnchor.protocol + "//" + originAnchor.host !== - urlAnchor.protocol + "//" + urlAnchor.host; - } catch ( e ) { - - // If there is an error parsing the URL, assume it is crossDomain, - // it can be rejected by the transport if it is invalid - s.crossDomain = true; - } - } - - // Convert data if not already a string - if ( s.data && s.processData && typeof s.data !== "string" ) { - s.data = jQuery.param( s.data, s.traditional ); - } - - // Apply prefilters - inspectPrefiltersOrTransports( prefilters, s, options, jqXHR ); - - // If request was aborted inside a prefilter, stop there - if ( completed ) { - return jqXHR; - } - - // We can fire global events as of now if asked to - // Don't fire events if jQuery.event is undefined in an AMD-usage scenario (#15118) - fireGlobals = jQuery.event && s.global; - - // Watch for a new set of requests - if ( fireGlobals && jQuery.active++ === 0 ) { - jQuery.event.trigger( "ajaxStart" ); - } - - // Uppercase the type - s.type = s.type.toUpperCase(); - - // Determine if request has content - s.hasContent = !rnoContent.test( s.type ); - - // Save the URL in case we're toying with the If-Modified-Since - // and/or If-None-Match header later on - // Remove hash to simplify url manipulation - cacheURL = s.url.replace( rhash, "" ); - - // More options handling for requests with no content - if ( !s.hasContent ) { - - // Remember the hash so we can put it back - uncached = s.url.slice( cacheURL.length ); - - // If data is available and should be processed, append data to url - if ( s.data && ( s.processData || typeof s.data === "string" ) ) { - cacheURL += ( rquery.test( cacheURL ) ? "&" : "?" ) + s.data; - - // #9682: remove data so that it's not used in an eventual retry - delete s.data; - } - - // Add or update anti-cache param if needed - if ( s.cache === false ) { - cacheURL = cacheURL.replace( rantiCache, "$1" ); - uncached = ( rquery.test( cacheURL ) ? "&" : "?" ) + "_=" + ( nonce.guid++ ) + - uncached; - } - - // Put hash and anti-cache on the URL that will be requested (gh-1732) - s.url = cacheURL + uncached; - - // Change '%20' to '+' if this is encoded form body content (gh-2658) - } else if ( s.data && s.processData && - ( s.contentType || "" ).indexOf( "application/x-www-form-urlencoded" ) === 0 ) { - s.data = s.data.replace( r20, "+" ); - } - - // Set the If-Modified-Since and/or If-None-Match header, if in ifModified mode. - if ( s.ifModified ) { - if ( jQuery.lastModified[ cacheURL ] ) { - jqXHR.setRequestHeader( "If-Modified-Since", jQuery.lastModified[ cacheURL ] ); - } - if ( jQuery.etag[ cacheURL ] ) { - jqXHR.setRequestHeader( "If-None-Match", jQuery.etag[ cacheURL ] ); - } - } - - // Set the correct header, if data is being sent - if ( s.data && s.hasContent && s.contentType !== false || options.contentType ) { - jqXHR.setRequestHeader( "Content-Type", s.contentType ); - } - - // Set the Accepts header for the server, depending on the dataType - jqXHR.setRequestHeader( - "Accept", - s.dataTypes[ 0 ] && s.accepts[ s.dataTypes[ 0 ] ] ? - s.accepts[ s.dataTypes[ 0 ] ] + - ( s.dataTypes[ 0 ] !== "*" ? ", " + allTypes + "; q=0.01" : "" ) : - s.accepts[ "*" ] - ); - - // Check for headers option - for ( i in s.headers ) { - jqXHR.setRequestHeader( i, s.headers[ i ] ); - } - - // Allow custom headers/mimetypes and early abort - if ( s.beforeSend && - ( s.beforeSend.call( callbackContext, jqXHR, s ) === false || completed ) ) { - - // Abort if not done already and return - return jqXHR.abort(); - } - - // Aborting is no longer a cancellation - strAbort = "abort"; - - // Install callbacks on deferreds - completeDeferred.add( s.complete ); - jqXHR.done( s.success ); - jqXHR.fail( s.error ); - - // Get transport - transport = inspectPrefiltersOrTransports( transports, s, options, jqXHR ); - - // If no transport, we auto-abort - if ( !transport ) { - done( -1, "No Transport" ); - } else { - jqXHR.readyState = 1; - - // Send global event - if ( fireGlobals ) { - globalEventContext.trigger( "ajaxSend", [ jqXHR, s ] ); - } - - // If request was aborted inside ajaxSend, stop there - if ( completed ) { - return jqXHR; - } - - // Timeout - if ( s.async && s.timeout > 0 ) { - timeoutTimer = window.setTimeout( function() { - jqXHR.abort( "timeout" ); - }, s.timeout ); - } - - try { - completed = false; - transport.send( requestHeaders, done ); - } catch ( e ) { - - // Rethrow post-completion exceptions - if ( completed ) { - throw e; - } - - // Propagate others as results - done( -1, e ); - } - } - - // Callback for when everything is done - function done( status, nativeStatusText, responses, headers ) { - var isSuccess, success, error, response, modified, - statusText = nativeStatusText; - - // Ignore repeat invocations - if ( completed ) { - return; - } - - completed = true; - - // Clear timeout if it exists - if ( timeoutTimer ) { - window.clearTimeout( timeoutTimer ); - } - - // Dereference transport for early garbage collection - // (no matter how long the jqXHR object will be used) - transport = undefined; - - // Cache response headers - responseHeadersString = headers || ""; - - // Set readyState - jqXHR.readyState = status > 0 ? 4 : 0; - - // Determine if successful - isSuccess = status >= 200 && status < 300 || status === 304; - - // Get response data - if ( responses ) { - response = ajaxHandleResponses( s, jqXHR, responses ); - } - - // Use a noop converter for missing script - if ( !isSuccess && jQuery.inArray( "script", s.dataTypes ) > -1 ) { - s.converters[ "text script" ] = function() {}; - } - - // Convert no matter what (that way responseXXX fields are always set) - response = ajaxConvert( s, response, jqXHR, isSuccess ); - - // If successful, handle type chaining - if ( isSuccess ) { - - // Set the If-Modified-Since and/or If-None-Match header, if in ifModified mode. - if ( s.ifModified ) { - modified = jqXHR.getResponseHeader( "Last-Modified" ); - if ( modified ) { - jQuery.lastModified[ cacheURL ] = modified; - } - modified = jqXHR.getResponseHeader( "etag" ); - if ( modified ) { - jQuery.etag[ cacheURL ] = modified; - } - } - - // if no content - if ( status === 204 || s.type === "HEAD" ) { - statusText = "nocontent"; - - // if not modified - } else if ( status === 304 ) { - statusText = "notmodified"; - - // If we have data, let's convert it - } else { - statusText = response.state; - success = response.data; - error = response.error; - isSuccess = !error; - } - } else { - - // Extract error from statusText and normalize for non-aborts - error = statusText; - if ( status || !statusText ) { - statusText = "error"; - if ( status < 0 ) { - status = 0; - } - } - } - - // Set data for the fake xhr object - jqXHR.status = status; - jqXHR.statusText = ( nativeStatusText || statusText ) + ""; - - // Success/Error - if ( isSuccess ) { - deferred.resolveWith( callbackContext, [ success, statusText, jqXHR ] ); - } else { - deferred.rejectWith( callbackContext, [ jqXHR, statusText, error ] ); - } - - // Status-dependent callbacks - jqXHR.statusCode( statusCode ); - statusCode = undefined; - - if ( fireGlobals ) { - globalEventContext.trigger( isSuccess ? "ajaxSuccess" : "ajaxError", - [ jqXHR, s, isSuccess ? success : error ] ); - } - - // Complete - completeDeferred.fireWith( callbackContext, [ jqXHR, statusText ] ); - - if ( fireGlobals ) { - globalEventContext.trigger( "ajaxComplete", [ jqXHR, s ] ); - - // Handle the global AJAX counter - if ( !( --jQuery.active ) ) { - jQuery.event.trigger( "ajaxStop" ); - } - } - } - - return jqXHR; - }, - - getJSON: function( url, data, callback ) { - return jQuery.get( url, data, callback, "json" ); - }, - - getScript: function( url, callback ) { - return jQuery.get( url, undefined, callback, "script" ); - } -} ); - -jQuery.each( [ "get", "post" ], function( _i, method ) { - jQuery[ method ] = function( url, data, callback, type ) { - - // Shift arguments if data argument was omitted - if ( isFunction( data ) ) { - type = type || callback; - callback = data; - data = undefined; - } - - // The url can be an options object (which then must have .url) - return jQuery.ajax( jQuery.extend( { - url: url, - type: method, - dataType: type, - data: data, - success: callback - }, jQuery.isPlainObject( url ) && url ) ); - }; -} ); - -jQuery.ajaxPrefilter( function( s ) { - var i; - for ( i in s.headers ) { - if ( i.toLowerCase() === "content-type" ) { - s.contentType = s.headers[ i ] || ""; - } - } -} ); - - -jQuery._evalUrl = function( url, options, doc ) { - return jQuery.ajax( { - url: url, - - // Make this explicit, since user can override this through ajaxSetup (#11264) - type: "GET", - dataType: "script", - cache: true, - async: false, - global: false, - - // Only evaluate the response if it is successful (gh-4126) - // dataFilter is not invoked for failure responses, so using it instead - // of the default converter is kludgy but it works. - converters: { - "text script": function() {} - }, - dataFilter: function( response ) { - jQuery.globalEval( response, options, doc ); - } - } ); -}; - - -jQuery.fn.extend( { - wrapAll: function( html ) { - var wrap; - - if ( this[ 0 ] ) { - if ( isFunction( html ) ) { - html = html.call( this[ 0 ] ); - } - - // The elements to wrap the target around - wrap = jQuery( html, this[ 0 ].ownerDocument ).eq( 0 ).clone( true ); - - if ( this[ 0 ].parentNode ) { - wrap.insertBefore( this[ 0 ] ); - } - - wrap.map( function() { - var elem = this; - - while ( elem.firstElementChild ) { - elem = elem.firstElementChild; - } - - return elem; - } ).append( this ); - } - - return this; - }, - - wrapInner: function( html ) { - if ( isFunction( html ) ) { - return this.each( function( i ) { - jQuery( this ).wrapInner( html.call( this, i ) ); - } ); - } - - return this.each( function() { - var self = jQuery( this ), - contents = self.contents(); - - if ( contents.length ) { - contents.wrapAll( html ); - - } else { - self.append( html ); - } - } ); - }, - - wrap: function( html ) { - var htmlIsFunction = isFunction( html ); - - return this.each( function( i ) { - jQuery( this ).wrapAll( htmlIsFunction ? html.call( this, i ) : html ); - } ); - }, - - unwrap: function( selector ) { - this.parent( selector ).not( "body" ).each( function() { - jQuery( this ).replaceWith( this.childNodes ); - } ); - return this; - } -} ); - - -jQuery.expr.pseudos.hidden = function( elem ) { - return !jQuery.expr.pseudos.visible( elem ); -}; -jQuery.expr.pseudos.visible = function( elem ) { - return !!( elem.offsetWidth || elem.offsetHeight || elem.getClientRects().length ); -}; - - - - -jQuery.ajaxSettings.xhr = function() { - try { - return new window.XMLHttpRequest(); - } catch ( e ) {} -}; - -var xhrSuccessStatus = { - - // File protocol always yields status code 0, assume 200 - 0: 200, - - // Support: IE <=9 only - // #1450: sometimes IE returns 1223 when it should be 204 - 1223: 204 - }, - xhrSupported = jQuery.ajaxSettings.xhr(); - -support.cors = !!xhrSupported && ( "withCredentials" in xhrSupported ); -support.ajax = xhrSupported = !!xhrSupported; - -jQuery.ajaxTransport( function( options ) { - var callback, errorCallback; - - // Cross domain only allowed if supported through XMLHttpRequest - if ( support.cors || xhrSupported && !options.crossDomain ) { - return { - send: function( headers, complete ) { - var i, - xhr = options.xhr(); - - xhr.open( - options.type, - options.url, - options.async, - options.username, - options.password - ); - - // Apply custom fields if provided - if ( options.xhrFields ) { - for ( i in options.xhrFields ) { - xhr[ i ] = options.xhrFields[ i ]; - } - } - - // Override mime type if needed - if ( options.mimeType && xhr.overrideMimeType ) { - xhr.overrideMimeType( options.mimeType ); - } - - // X-Requested-With header - // For cross-domain requests, seeing as conditions for a preflight are - // akin to a jigsaw puzzle, we simply never set it to be sure. - // (it can always be set on a per-request basis or even using ajaxSetup) - // For same-domain requests, won't change header if already provided. - if ( !options.crossDomain && !headers[ "X-Requested-With" ] ) { - headers[ "X-Requested-With" ] = "XMLHttpRequest"; - } - - // Set headers - for ( i in headers ) { - xhr.setRequestHeader( i, headers[ i ] ); - } - - // Callback - callback = function( type ) { - return function() { - if ( callback ) { - callback = errorCallback = xhr.onload = - xhr.onerror = xhr.onabort = xhr.ontimeout = - xhr.onreadystatechange = null; - - if ( type === "abort" ) { - xhr.abort(); - } else if ( type === "error" ) { - - // Support: IE <=9 only - // On a manual native abort, IE9 throws - // errors on any property access that is not readyState - if ( typeof xhr.status !== "number" ) { - complete( 0, "error" ); - } else { - complete( - - // File: protocol always yields status 0; see #8605, #14207 - xhr.status, - xhr.statusText - ); - } - } else { - complete( - xhrSuccessStatus[ xhr.status ] || xhr.status, - xhr.statusText, - - // Support: IE <=9 only - // IE9 has no XHR2 but throws on binary (trac-11426) - // For XHR2 non-text, let the caller handle it (gh-2498) - ( xhr.responseType || "text" ) !== "text" || - typeof xhr.responseText !== "string" ? - { binary: xhr.response } : - { text: xhr.responseText }, - xhr.getAllResponseHeaders() - ); - } - } - }; - }; - - // Listen to events - xhr.onload = callback(); - errorCallback = xhr.onerror = xhr.ontimeout = callback( "error" ); - - // Support: IE 9 only - // Use onreadystatechange to replace onabort - // to handle uncaught aborts - if ( xhr.onabort !== undefined ) { - xhr.onabort = errorCallback; - } else { - xhr.onreadystatechange = function() { - - // Check readyState before timeout as it changes - if ( xhr.readyState === 4 ) { - - // Allow onerror to be called first, - // but that will not handle a native abort - // Also, save errorCallback to a variable - // as xhr.onerror cannot be accessed - window.setTimeout( function() { - if ( callback ) { - errorCallback(); - } - } ); - } - }; - } - - // Create the abort callback - callback = callback( "abort" ); - - try { - - // Do send the request (this may raise an exception) - xhr.send( options.hasContent && options.data || null ); - } catch ( e ) { - - // #14683: Only rethrow if this hasn't been notified as an error yet - if ( callback ) { - throw e; - } - } - }, - - abort: function() { - if ( callback ) { - callback(); - } - } - }; - } -} ); - - - - -// Prevent auto-execution of scripts when no explicit dataType was provided (See gh-2432) -jQuery.ajaxPrefilter( function( s ) { - if ( s.crossDomain ) { - s.contents.script = false; - } -} ); - -// Install script dataType -jQuery.ajaxSetup( { - accepts: { - script: "text/javascript, application/javascript, " + - "application/ecmascript, application/x-ecmascript" - }, - contents: { - script: /\b(?:java|ecma)script\b/ - }, - converters: { - "text script": function( text ) { - jQuery.globalEval( text ); - return text; - } - } -} ); - -// Handle cache's special case and crossDomain -jQuery.ajaxPrefilter( "script", function( s ) { - if ( s.cache === undefined ) { - s.cache = false; - } - if ( s.crossDomain ) { - s.type = "GET"; - } -} ); - -// Bind script tag hack transport -jQuery.ajaxTransport( "script", function( s ) { - - // This transport only deals with cross domain or forced-by-attrs requests - if ( s.crossDomain || s.scriptAttrs ) { - var script, callback; - return { - send: function( _, complete ) { - script = jQuery( " -{% endmacro %} \ No newline at end of file diff --git a/_preview/21/genindex.html b/_preview/21/genindex.html deleted file mode 100644 index f45e18c..0000000 --- a/_preview/21/genindex.html +++ /dev/null @@ -1,401 +0,0 @@ - - - - - - - - Index — Advanced Visualization Cookbook - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - -
-
- - - - - -
-
- -
- - - - - - - - - - - - - - -
- - -
- -
-
-
-
-
- -
- - -

Index

- -
- -
- - -
- -
-
-
-
-
- -
-
- - - -
-
- - - - - - - - - -
-
- - \ No newline at end of file diff --git a/_preview/21/index.html b/_preview/21/index.html deleted file mode 100644 index 960bb69..0000000 --- a/_preview/21/index.html +++ /dev/null @@ -1 +0,0 @@ - diff --git a/_preview/21/notebooks/animation.html b/_preview/21/notebooks/animation.html deleted file mode 100644 index a9b216c..0000000 --- a/_preview/21/notebooks/animation.html +++ /dev/null @@ -1,173828 +0,0 @@ - - - - - - - - Animation — Advanced Visualization Cookbook - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - -
-
- - - - - -
-
- -
- - - - - - - - - - - - - - - - - - -
- - - -
-
-
-
- -
- -
-

Animation

-

time stamp at 1:19

-
-

Overview

-

Summary text here

-
    -
  1. -
-

NCL_animate_1

-

Please note:

-
    -
  • Executing this script will not display a gif, but you have the option to uncomment a line at the bottom that will save a gif in the same directory as this script.

  • -
-
-
-

Prerequisites

- - - - - - - - - - - - - - - - - -

Concepts

Importance

Notes

Matplotlib

Necessary

Cartopy

Useful

Not necessary for animations in general, but useful for the examples in this notebook

-
    -
  • Time to learn: X minutes

  • -
-
-
-
-

Animation Fundamentals with matplotlib

-

First, let’s go over some of the basics of how animation works with matplotlib.

-

There are two different methods of animating with matplotlib:

-
    -
  1. Function animation iteratively modifies data on a pre-existing frame to produce an animation

  2. -
  3. Artist animations pulls from a list of artists to draw in each frame to produce an animation

  4. -
-
-
-
import cartopy.crs as ccrs
-import matplotlib.animation as animation
-import numpy as np
-import xarray as xr
-from matplotlib import pyplot as plt
-import os
-from PIL import Image
-
-import geocat.datafiles as gdf
-import geocat.viz as gv
-
-
-
-
-
Downloading file 'registry.txt' from 'https://github.com/NCAR/GeoCAT-datafiles/raw/main/registry.txt' to '/home/runner/.cache/geocat'.
-
-
-
-
-
-
-

Artist Animation

-

Before we get into those steps, let’s get some stuff to animate

-
-

Get the images into a list

-

First, we need to ge the images from the directory into a list. We know the only files in this directory are the images we want to plot, so let’s get get a list of all the files from that path using os.listdir().

-
-
-
plt.rcParams["animation.html"] = "jshtml"
-dpi = 100
-im_dir = "./images/goes16_hr/"
-im_paths = sorted([p for p in os.listdir(im_dir) if p.endswith(".jpg")])
-
-
-
-
-
-
-
fig = plt.figure(figsize=tuple(t/dpi for t in Image.open(im_dir + im_paths[0]).size), dpi=dpi)
-ax = fig.add_axes([0, 0, 1, 1])  # span the whole figure
-ax.set_axis_off()
-
-
-
-
-../_images/6c099ce251ddad2e78a37d77977212e5ecc008069bc0894f5575d9f12d5c13a1.png -
-
-
-
-
ims = [[ax.imshow(Image.open(im_dir + im_path), animated=True)] for im_path in im_paths]
-
-
-
-
-
-
-
ani = animation.ArtistAnimation(fig, ims, interval=80, blit=True, repeat_delay=1000)
-ani
-
-
-
-
-
- - - - - -
- -
- -
- - - - - - - - - -
-
- - - - - - -
-
-
- - - -
-
-
-
-
-

Function animation

-

Say we have some images that we want to visualize as an animation. For example, the images in the notebooks/images/goes16 directory of this repository. We can use the FuncAnimation class from matplotlib to create an animation from these images.

-

The steps for function animation in matplotlib are generally:

-
    -
  1. Set up all the artists that will be used in the animation and the initial frame of the animation

  2. -
  3. Create a function that updates the data in the plot to create each frame of the animation

  4. -
  5. Create a FuncAnimation object with the the previously created elements

  6. -
  7. Save and/or display the animation

  8. -
-
-
-
ds = xr.open_dataset(gdf.get("netcdf_files/meccatemp.cdf"))
-tas = ds.t
-
-
-
-
-
Downloading file 'netcdf_files/meccatemp.cdf' from 'https://github.com/NCAR/GeoCAT-datafiles/raw/main/netcdf_files/meccatemp.cdf' to '/home/runner/.cache/geocat'.
-
-
-
-
-
-
-
# Set up Axes with Cartopy Projection
-fig = plt.figure(figsize=(10, 8))
-ax = plt.axes(projection=ccrs.Orthographic(-80, 35))
-ax.coastlines(linewidths=0.5)
-
-vmin = tas.min()
-vmax = tas.max()
-levels = 30
-
-# create initial plot that we will update
-tas[0, :, :].plot.contourf(ax=ax, transform=ccrs.PlateCarree(), vmin=vmin, vmax=vmax, levels=levels, cmap="inferno")
-
-# create function to update plot
-def animate(i):
-    # Calculate the new center longitude for each frame
-    center_longitude = -80 + (i * 12) % 360  # Rotate by 12 degrees per frame
-
-    # Update the projection with the new center longitude
-    ax.projection = ccrs.Orthographic(center_longitude, 35)
-
-    # Clear the previous plot
-    ax.clear()
-    ax.coastlines(linewidths=0.5)
-
-    # Plot the new frame
-    tas[i, :, :].plot.contourf(ax=ax, transform=ccrs.PlateCarree(), vmin=vmin, vmax=vmax, levels=levels, cmap="inferno", add_colorbar=False)
-
-# create animation
-ani = animation.FuncAnimation(fig, animate, frames=30, interval=200)
-
-
-
-
-
/usr/share/miniconda3/envs/cookbook-dev/lib/python3.10/site-packages/cartopy/io/__init__.py:241: DownloadWarning: Downloading: https://naturalearth.s3.amazonaws.com/110m_physical/ne_110m_coastline.zip
-  warnings.warn(f'Downloading: {url}', DownloadWarning)
-
-
-../_images/faaa976c367e60f084d74f10e12fa025f0f913a6e3450eb2a1505137f89a215d.png -
-
-
-
-
ani
-
-
-
-
-
- - - - - -
- -
- -
- - - - - - - - - -
-
- - - - - - -
-
-
- - - -
-
-
-
-

Summary

-
-

What’s next?

-
-
-
-

Resources and references

- -
-
- - - - -
- - -
-
-
- -
-
- - - -
-
- - - - - - - - - -
-
- - \ No newline at end of file diff --git a/_preview/21/notebooks/comparison.html b/_preview/21/notebooks/comparison.html deleted file mode 100644 index 59e8dc2..0000000 --- a/_preview/21/notebooks/comparison.html +++ /dev/null @@ -1,1549 +0,0 @@ - - - - - - - - Comparison of Visualization Packages — Advanced Visualization Cookbook - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - -
-
- - - - - -
-
- -
- - - - - - - - - - - - - - - - - - -
- - - -
-
-
-
- -
- -
-

Comparison of Visualization Packages

-
-

Overview

-

There are nearly endless possibilities when it comes to data visualization in Python. Some of these choices can be overwhelming. This chapter aims to lay out and distinguish different Python visualization libraries so that you are more equipped to make the right choice for your data visualization needs. This Cookbook is not a comprehensive tutorial on these packages, but we can offere enough information and links to documentation or relevant tutorials to help get you started.

-
    -
  1. Matplotlib

  2. -
  3. Cartopy

  4. -
  5. GeoCAT-viz

  6. -
  7. MetPy

  8. -
  9. Vapor

  10. -
  11. Plotly

  12. -
  13. Seaborn

  14. -
  15. Bokeh

  16. -
  17. UXarray

  18. -
  19. hvPlot

  20. -
-
-

Note

-

The plotting libraries mentioned here are either ones used extensively by the authors of this Cookbook OR ones that we get asked about a lot when giving plotting tutorials. This does not cover every library that can be used for plotting in the Python scientific ecosystem, but should cover the more popular packages you might come across.

-
-

Missing a plotting library that you use and want others to know more about? Let us know!

-
-
-

Prerequisites

- - - - - - - - - - - - - - - - - -

Concepts

Importance

Notes

Matplotlib

Necessary

Cartopy

Necessary

-
    -
  • Time to learn: 50 minutes

  • -
-
-
-
-

Matplotlib

-

Matplotlib Logo

-

Matplotlib is the workhorse of Python visualization needs. It is a comprehensive plotting library that has the capacity to make static, animated, or interactive visualizations. It is hard to imagine plotting in Python without first getting comfortable with Matplotlib. Be sure to check out the Matplotlib documentation as well as the Pythia foundations chapter on Matplotlib for guidance.

-

Matplotlib’s syntax should feel familiar to anyone who has plotted data in Matlab.

-

Here is a simple plotting example from Matplotlib:

-
-
-
import matplotlib.pyplot as plt
-import numpy as np
-
-# Data for plotting
-t = np.arange(0.0, 2.0, 0.01)
-s = 1 + np.sin(2 * np.pi * t)
-
-fig, ax = plt.subplots()
-ax.plot(t, s)
-
-ax.set(xlabel='time (s)', ylabel='voltage (mV)',
-       title='About as simple as it gets, folks')
-ax.grid()
-
-plt.show()
-
-
-
-
-../_images/6f2bb0037d03edaa75059ac8c2c36dab9870d53dd42cdd540891d468ea1b0e37.png -
-
-
-
-

Cartopy

-

Cartopy Logo

-

Cartopy is a Python package for plotting data on the globe. It is the go-to package for plotting maps, dealing with different projections, and adding surface features to your plot. Cartopy is buit on top of PROJ, NumPy and Shapely, and Matplotlib. To learn more about what Cartopy can do, check out the Cartopy documentation and the Pythia foundations Cartopy chapter.

-

You may have heard about Basemap, another geoscience plotting library, which was deprecated in favor of Cartopy.

-

Here is a simple plotting example from Cartopy:

-
-
-
import cartopy.crs as ccrs
-
-ax = plt.axes(projection=ccrs.PlateCarree())
-ax.coastlines()
-
-plt.show()
-
-
-
-
-../_images/2891b192d7943dacdc88fa21a2d346977d47742b1b4d76d7ce5ef7f565ebcfeb.png -
-
-
-
-

GeoCAT-Viz

-

GeoCAT Logo

-

The GeoCAT team at the National Center for Atmospheric Research (NCAR) aims to help scientists transitioning from NCL to Python. Out of this team come two different visualization aids: the GeoCAT-examples Visualization Gallery which contains tons of different plotting examples that you can use as a starting place for your figures, and the GeoCAT-Viz package (documentation) which contains many convenience functions that formerly existed in NCL or for making Python plots look publication-ready.

-
-
-

MetPy

-

Metpy Logo

-

Metpy is a collection of tools for data reading, analysis, and visualization with weather data. Matplotlib offers some useful functionality for unique plots such as Skew-T diagrams, as well as declaritive plotting functionality. Check out the MetPy documentation.

-

Here is a simple Skew-T plot from their Getting Started documentation:

-
-
-
import metpy.calc as mpcalc
-from metpy.plots import SkewT
-from metpy.units import units
-
-fig = plt.figure(figsize=(9, 9))
-skew = SkewT(fig)
-
-# Create arrays of pressure, temperature, dewpoint, and wind components
-p = [902, 897, 893, 889, 883, 874, 866, 857, 849, 841, 833, 824, 812, 796, 776, 751,
-     727, 704, 680, 656, 629, 597, 565, 533, 501, 468, 435, 401, 366, 331, 295, 258,
-     220, 182, 144, 106] * units.hPa
-t = [-3, -3.7, -4.1, -4.5, -5.1, -5.8, -6.5, -7.2, -7.9, -8.6, -8.9, -7.6, -6, -5.1,
-     -5.2, -5.6, -5.4, -4.9, -5.2, -6.3, -8.4, -11.5, -14.9, -18.4, -21.9, -25.4,
-     -28, -32, -37, -43, -49, -54, -56, -57, -58, -60] * units.degC
-td = [-22, -22.1, -22.2, -22.3, -22.4, -22.5, -22.6, -22.7, -22.8, -22.9, -22.4,
-      -21.6, -21.6, -21.9, -23.6, -27.1, -31, -38, -44, -46, -43, -37, -34, -36,
-      -42, -46, -49, -48, -47, -49, -55, -63, -72, -88, -93, -92] * units.degC
-
-# Calculate parcel profile
-prof = mpcalc.parcel_profile(p, t[0], td[0]).to('degC')
-u = np.linspace(-10, 10, len(p)) * units.knots
-v = np.linspace(-20, 20, len(p)) * units.knots
-
-skew.plot(p, t, 'r')
-skew.plot(p, td, 'g')
-skew.plot(p, prof, 'k')  # Plot parcel profile
-skew.plot_barbs(p[::5], u[::5], v[::5])
-
-skew.ax.set_xlim(-50, 15)
-skew.ax.set_ylim(1000, 100)
-
-# Add the relevant special lines
-skew.plot_dry_adiabats()
-skew.plot_moist_adiabats()
-skew.plot_mixing_lines()
-
-plt.show();
-
-
-
-
-../_images/a7eecef98bb9b2c4ad67a81d660748391e9950bf54f125417d9d805bc6d34cd8.png -
-
-
-
-

VAPOR

-

VAPOR Logo

-

VAPOR stands for the Visualization and Analysis Platform for Ocean, Atmosphere, and Solar Researchers and is another project from NCAR. VAPOR provides an interactive 3D visualization environment. Learn more at the VAPOR documentation and the VAPOR Pythia Cookbook. VAPORrequires a GPU-enabled environment to run.

-
-
-

Plotly

-

Plotly Logo

-

Plotly is another choice for interactive plotting. Plotly has functionality in several languags. Here is the Plotly Python documentation.

-

Here is an example using their “Express” functionality:

-
-
-
import plotly.express as px
-
-fig = px.scatter(x=[0, 1, 2, 3, 4], y=[0, 1, 4, 9, 16])
-fig.show()
-
-
-
-
-
-
-
-
-
-

Seaborn

-

Seaborn Logo

-

Seaborn is a high level interactive interface for creating statistical visualizations built on matplotlib. Check out the Seaborn documentation.

-

Here is their heatmap example:

-
-
-
import seaborn as sns
-sns.set_theme()
-
-# Load the example flights dataset and convert to long-form
-flights_long = sns.load_dataset("flights")
-flights = flights_long.pivot(index="month", columns="year", values="passengers")
-
-# Draw a heatmap with the numeric values in each cell
-f, ax = plt.subplots(figsize=(9, 6))
-sns.heatmap(flights, annot=True, fmt="d", linewidths=.5, ax=ax)
-
-plt.show();
-
-
-
-
-../_images/dd751eea551d1370a833f4790ce19a686c211266543edc67acfbf08a24b68b25.png -
-
-
-
-

Bokeh

-

Bokeh Logo

-

Bokeh is a Javascript-powered tool for creating interactive visualizations in modern web browsers. Check out the Bokeh documentation.

-

Here is scatter plot example:

-
-
-
from bokeh.plotting import figure, show
-
-N = 4000
-x = np.random.random(size=N) * 100
-y = np.random.random(size=N) * 100
-radii = np.random.random(size=N) * 1.5
-colors = np.array([(r, g, 150) for r, g in zip(50+2*x, 30+2*y)], dtype="uint8")
-
-TOOLS="hover,crosshair,pan,wheel_zoom,zoom_in,zoom_out,box_zoom,undo,redo,reset,tap,save,box_select,poly_select,lasso_select,examine,help"
-
-p = figure(tools=TOOLS)
-
-p.scatter(x, y, radius=radii,
-          fill_color=colors, fill_alpha=0.6,
-          line_color=None)
-
-show(p)
-
-
-
-
-
-
-

UXarray

-

UXarray Logo

-

UXarray specializes in unstructured grids, built around UGRID conventions and Xarray syntax. See the UXarray documentation.

-
-
-

hvPlot

-

Datashader Logo

-

hvPlot wraps both Datashader, a graphics pipeline, and Holoviews, a tool for bundling data and metadata for intuitive interactive plotting, at a higher level. All 3 tools are by Holoviz. Reference the hvPlot documentation.

-

Here is a simple example from their user guide:

-
-
-
import pandas as pd
-import hvplot.pandas
-
-pd.options.plotting.backend = 'holoviews'
-
-index = pd.date_range('1/1/2000', periods=1000)
-df = pd.DataFrame(np.random.randn(1000, 4), index=index, columns=list('ABCD')).cumsum()
-
-df.plot()
-
-
-
-
-
-
-
-
-
-
-
-
-

This useful diagram from hvPlot’s documentation details how different high-level tools for data visualization interact.

-

Datashader Logo

-
-
-
-

Summary

-

Each Python plotting library offers a slightly different niche in the data visualization world. Some are better for creating publication figures (matplotlib, cartopy, metpy, geocat-viz, uxarray) while others offer interactive functionality that is great for websites, demonstrations, and other forms of engagement (holoviews, seaborn, plotly, bokeh, and vapor). Hopefully the mini examples on this page allow you to play around and see which user interfaces you like best for your visualization needs.

-
-

What’s next?

-

Next up let’s discuss elements of good data visualization.

-
-
- -
- - - - -
- - -
-
- - -
- - - - -
-
- - - - - - - - - -
-
- - \ No newline at end of file diff --git a/_preview/21/notebooks/good-viz.html b/_preview/21/notebooks/good-viz.html deleted file mode 100644 index 4fe9831..0000000 --- a/_preview/21/notebooks/good-viz.html +++ /dev/null @@ -1,1122 +0,0 @@ - - - - - - - - What Makes for Good Data Visualization? — Advanced Visualization Cookbook - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - -
-
- - - - - -
-
-
- -
- -
-

What Makes for Good Data Visualization?

-
-

Overview

-

What Makes a Good Visualization? We want graphics to be eye catching and informative. In this chapter we’ll discuss different aspects that can affect the quality of your figures and specific considerations relevant to the geosciences.

-
    -
  1. The Importance of Data Visualization

  2. -
  3. Publication Ready Figures

  4. -
  5. The Problem with Rainbow Colormaps

  6. -
  7. Misleading Visualizations

  8. -
-
-
-

Prerequisites

- - - - - - - - - - - - - - - - - -

Concepts

Importance

Notes

Matplotlib

Necessary

Cartopy

Necessary

-
    -
  • Time to learn: 3 hours

  • -
-
-
-
-
import matplotlib as mpl
-import matplotlib.pyplot as plt
-import numpy as np
-import geocat.viz as gv
-
-
-
-
-
-
-

The Importance of Data Visualization

-

It is important to use pictures to show data because we can visually detect patterns that could be lost in statistical analysis. All scientific disciplines use data visualizations to communicate concepts.

-

Here we have a figure from Autodesk that shows a “Datasaurus” and 12 other datasets that share the same statistical information (mean, standard deviation, etc). We can see immediately that visually are telling very different stories: be it a dinosaur, a star, an oval, concentric ovals, or a series of lines (perhaps weather fronts).

-

Same Stats

-
-
-

Publication Ready Figures

-

For your figure to be publication rady, you probably want to change some of Matplotlib’s default plotting settings: selecting fontsizes for your titles and labels, changing figure sizes, or subplot/colormap layout.

-

To demonstrate this, let’s look at an example:

-
-
-
# fake data
-x = [0, 1, 2, 3, 4, 5]
-y = [0, 3, 6, 9, 12, 15]
- 
-# plot
-plt.plot(x, y)
-
-# annotate
-plt.title('Title')
-plt.xlabel('X Label')
-plt.ylabel('Y Label')
-
-plt.show();
-
-
-
-
-../_images/4fee7c3e0c03a974153f769cc16eea9f3c061f7cb1965363e839abc2803f499d.png -
-
-

Now let’s show some customization options:

-
-
-
# fake data
-x = [0, 1, 2, 3, 4, 5]
-y = [0, 3, 6, 9, 12, 15]
- 
-# plot
-plt.plot(x, y, '--', color='red')
-
-# annotate
-plt.title('Title', fontsize=20)
-plt.xlabel('X Label', fontsize=16)
-plt.ylabel('Y Label', fontsize=16)
-
-plt.show();
-
-
-
-
-../_images/42f87756563b2a14cc19c2615d3043d403b1a62e7f45a0c96a0d5342c0181681.png -
-
-
-

Matplotlib Global Parameters

-

Matplotlib has defaults for fontsizes and all sorts of attributes of a plot. Instead of setting your fontsize in every script, it is possible to set global parameters to change the default values of these attributes.

-

You can veiw the globoal parameters options and their current settings with:

-
-
-
mpl.rcParams.keys
-
-
-
-
-
<bound method Mapping.keys of RcParams({'_internal.classic_mode': False,
-          'agg.path.chunksize': 0,
-          'animation.bitrate': -1,
-          'animation.codec': 'h264',
-          'animation.convert_args': ['-layers', 'OptimizePlus'],
-          'animation.convert_path': 'convert',
-          'animation.embed_limit': 20.0,
-          'animation.ffmpeg_args': [],
-          'animation.ffmpeg_path': 'ffmpeg',
-          'animation.frame_format': 'png',
-          'animation.html': 'none',
-          'animation.writer': 'ffmpeg',
-          'axes.autolimit_mode': 'data',
-          'axes.axisbelow': 'line',
-          'axes.edgecolor': 'black',
-          'axes.facecolor': 'white',
-          'axes.formatter.limits': [-5, 6],
-          'axes.formatter.min_exponent': 0,
-          'axes.formatter.offset_threshold': 4,
-          'axes.formatter.use_locale': False,
-          'axes.formatter.use_mathtext': False,
-          'axes.formatter.useoffset': True,
-          'axes.grid': False,
-          'axes.grid.axis': 'both',
-          'axes.grid.which': 'major',
-          'axes.labelcolor': 'black',
-          'axes.labelpad': 4.0,
-          'axes.labelsize': 'medium',
-          'axes.labelweight': 'normal',
-          'axes.linewidth': 0.8,
-          'axes.prop_cycle': cycler('color', ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf']),
-          'axes.spines.bottom': True,
-          'axes.spines.left': True,
-          'axes.spines.right': True,
-          'axes.spines.top': True,
-          'axes.titlecolor': 'auto',
-          'axes.titlelocation': 'center',
-          'axes.titlepad': 6.0,
-          'axes.titlesize': 'large',
-          'axes.titleweight': 'normal',
-          'axes.titley': None,
-          'axes.unicode_minus': True,
-          'axes.xmargin': 0.05,
-          'axes.ymargin': 0.05,
-          'axes.zmargin': 0.05,
-          'axes3d.grid': True,
-          'axes3d.xaxis.panecolor': (0.95, 0.95, 0.95, 0.5),
-          'axes3d.yaxis.panecolor': (0.9, 0.9, 0.9, 0.5),
-          'axes3d.zaxis.panecolor': (0.925, 0.925, 0.925, 0.5),
-          'backend': 'module://matplotlib_inline.backend_inline',
-          'backend_fallback': True,
-          'boxplot.bootstrap': None,
-          'boxplot.boxprops.color': 'black',
-          'boxplot.boxprops.linestyle': '-',
-          'boxplot.boxprops.linewidth': 1.0,
-          'boxplot.capprops.color': 'black',
-          'boxplot.capprops.linestyle': '-',
-          'boxplot.capprops.linewidth': 1.0,
-          'boxplot.flierprops.color': 'black',
-          'boxplot.flierprops.linestyle': 'none',
-          'boxplot.flierprops.linewidth': 1.0,
-          'boxplot.flierprops.marker': 'o',
-          'boxplot.flierprops.markeredgecolor': 'black',
-          'boxplot.flierprops.markeredgewidth': 1.0,
-          'boxplot.flierprops.markerfacecolor': 'none',
-          'boxplot.flierprops.markersize': 6.0,
-          'boxplot.meanline': False,
-          'boxplot.meanprops.color': 'C2',
-          'boxplot.meanprops.linestyle': '--',
-          'boxplot.meanprops.linewidth': 1.0,
-          'boxplot.meanprops.marker': '^',
-          'boxplot.meanprops.markeredgecolor': 'C2',
-          'boxplot.meanprops.markerfacecolor': 'C2',
-          'boxplot.meanprops.markersize': 6.0,
-          'boxplot.medianprops.color': 'C1',
-          'boxplot.medianprops.linestyle': '-',
-          'boxplot.medianprops.linewidth': 1.0,
-          'boxplot.notch': False,
-          'boxplot.patchartist': False,
-          'boxplot.showbox': True,
-          'boxplot.showcaps': True,
-          'boxplot.showfliers': True,
-          'boxplot.showmeans': False,
-          'boxplot.vertical': True,
-          'boxplot.whiskerprops.color': 'black',
-          'boxplot.whiskerprops.linestyle': '-',
-          'boxplot.whiskerprops.linewidth': 1.0,
-          'boxplot.whiskers': 1.5,
-          'contour.algorithm': 'mpl2014',
-          'contour.corner_mask': True,
-          'contour.linewidth': None,
-          'contour.negative_linestyle': 'dashed',
-          'date.autoformatter.day': '%Y-%m-%d',
-          'date.autoformatter.hour': '%m-%d %H',
-          'date.autoformatter.microsecond': '%M:%S.%f',
-          'date.autoformatter.minute': '%d %H:%M',
-          'date.autoformatter.month': '%Y-%m',
-          'date.autoformatter.second': '%H:%M:%S',
-          'date.autoformatter.year': '%Y',
-          'date.converter': 'auto',
-          'date.epoch': '1970-01-01T00:00:00',
-          'date.interval_multiples': True,
-          'docstring.hardcopy': False,
-          'errorbar.capsize': 0.0,
-          'figure.autolayout': False,
-          'figure.constrained_layout.h_pad': 0.04167,
-          'figure.constrained_layout.hspace': 0.02,
-          'figure.constrained_layout.use': False,
-          'figure.constrained_layout.w_pad': 0.04167,
-          'figure.constrained_layout.wspace': 0.02,
-          'figure.dpi': 100.0,
-          'figure.edgecolor': 'white',
-          'figure.facecolor': 'white',
-          'figure.figsize': [6.4, 4.8],
-          'figure.frameon': True,
-          'figure.hooks': [],
-          'figure.labelsize': 'large',
-          'figure.labelweight': 'normal',
-          'figure.max_open_warning': 20,
-          'figure.raise_window': True,
-          'figure.subplot.bottom': 0.11,
-          'figure.subplot.hspace': 0.2,
-          'figure.subplot.left': 0.125,
-          'figure.subplot.right': 0.9,
-          'figure.subplot.top': 0.88,
-          'figure.subplot.wspace': 0.2,
-          'figure.titlesize': 'large',
-          'figure.titleweight': 'normal',
-          'font.cursive': ['Apple Chancery',
-                           'Textile',
-                           'Zapf Chancery',
-                           'Sand',
-                           'Script MT',
-                           'Felipa',
-                           'Comic Neue',
-                           'Comic Sans MS',
-                           'cursive'],
-          'font.family': ['sans-serif'],
-          'font.fantasy': ['Chicago',
-                           'Charcoal',
-                           'Impact',
-                           'Western',
-                           'xkcd script',
-                           'fantasy'],
-          'font.monospace': ['DejaVu Sans Mono',
-                             'Bitstream Vera Sans Mono',
-                             'Computer Modern Typewriter',
-                             'Andale Mono',
-                             'Nimbus Mono L',
-                             'Courier New',
-                             'Courier',
-                             'Fixed',
-                             'Terminal',
-                             'monospace'],
-          'font.sans-serif': ['DejaVu Sans',
-                              'Bitstream Vera Sans',
-                              'Computer Modern Sans Serif',
-                              'Lucida Grande',
-                              'Verdana',
-                              'Geneva',
-                              'Lucid',
-                              'Arial',
-                              'Helvetica',
-                              'Avant Garde',
-                              'sans-serif'],
-          'font.serif': ['DejaVu Serif',
-                         'Bitstream Vera Serif',
-                         'Computer Modern Roman',
-                         'New Century Schoolbook',
-                         'Century Schoolbook L',
-                         'Utopia',
-                         'ITC Bookman',
-                         'Bookman',
-                         'Nimbus Roman No9 L',
-                         'Times New Roman',
-                         'Times',
-                         'Palatino',
-                         'Charter',
-                         'serif'],
-          'font.size': 10.0,
-          'font.stretch': 'normal',
-          'font.style': 'normal',
-          'font.variant': 'normal',
-          'font.weight': 'normal',
-          'grid.alpha': 1.0,
-          'grid.color': '#b0b0b0',
-          'grid.linestyle': '-',
-          'grid.linewidth': 0.8,
-          'hatch.color': 'black',
-          'hatch.linewidth': 1.0,
-          'hist.bins': 10,
-          'image.aspect': 'equal',
-          'image.cmap': 'viridis',
-          'image.composite_image': True,
-          'image.interpolation': 'antialiased',
-          'image.lut': 256,
-          'image.origin': 'upper',
-          'image.resample': True,
-          'interactive': True,
-          'keymap.back': ['left', 'c', 'backspace', 'MouseButton.BACK'],
-          'keymap.copy': ['ctrl+c', 'cmd+c'],
-          'keymap.forward': ['right', 'v', 'MouseButton.FORWARD'],
-          'keymap.fullscreen': ['f', 'ctrl+f'],
-          'keymap.grid': ['g'],
-          'keymap.grid_minor': ['G'],
-          'keymap.help': ['f1'],
-          'keymap.home': ['h', 'r', 'home'],
-          'keymap.pan': ['p'],
-          'keymap.quit': ['ctrl+w', 'cmd+w', 'q'],
-          'keymap.quit_all': [],
-          'keymap.save': ['s', 'ctrl+s'],
-          'keymap.xscale': ['k', 'L'],
-          'keymap.yscale': ['l'],
-          'keymap.zoom': ['o'],
-          'legend.borderaxespad': 0.5,
-          'legend.borderpad': 0.4,
-          'legend.columnspacing': 2.0,
-          'legend.edgecolor': '0.8',
-          'legend.facecolor': 'inherit',
-          'legend.fancybox': True,
-          'legend.fontsize': 'medium',
-          'legend.framealpha': 0.8,
-          'legend.frameon': True,
-          'legend.handleheight': 0.7,
-          'legend.handlelength': 2.0,
-          'legend.handletextpad': 0.8,
-          'legend.labelcolor': 'None',
-          'legend.labelspacing': 0.5,
-          'legend.loc': 'best',
-          'legend.markerscale': 1.0,
-          'legend.numpoints': 1,
-          'legend.scatterpoints': 1,
-          'legend.shadow': False,
-          'legend.title_fontsize': None,
-          'lines.antialiased': True,
-          'lines.color': 'C0',
-          'lines.dash_capstyle': <CapStyle.butt: 'butt'>,
-          'lines.dash_joinstyle': <JoinStyle.round: 'round'>,
-          'lines.dashdot_pattern': [6.4, 1.6, 1.0, 1.6],
-          'lines.dashed_pattern': [3.7, 1.6],
-          'lines.dotted_pattern': [1.0, 1.65],
-          'lines.linestyle': '-',
-          'lines.linewidth': 1.5,
-          'lines.marker': 'None',
-          'lines.markeredgecolor': 'auto',
-          'lines.markeredgewidth': 1.0,
-          'lines.markerfacecolor': 'auto',
-          'lines.markersize': 6.0,
-          'lines.scale_dashes': True,
-          'lines.solid_capstyle': <CapStyle.projecting: 'projecting'>,
-          'lines.solid_joinstyle': <JoinStyle.round: 'round'>,
-          'macosx.window_mode': 'system',
-          'markers.fillstyle': 'full',
-          'mathtext.bf': 'sans:bold',
-          'mathtext.bfit': 'sans:italic:bold',
-          'mathtext.cal': 'cursive',
-          'mathtext.default': 'it',
-          'mathtext.fallback': 'cm',
-          'mathtext.fontset': 'dejavusans',
-          'mathtext.it': 'sans:italic',
-          'mathtext.rm': 'sans',
-          'mathtext.sf': 'sans',
-          'mathtext.tt': 'monospace',
-          'patch.antialiased': True,
-          'patch.edgecolor': 'black',
-          'patch.facecolor': 'C0',
-          'patch.force_edgecolor': False,
-          'patch.linewidth': 1.0,
-          'path.effects': [],
-          'path.simplify': True,
-          'path.simplify_threshold': 0.111111111111,
-          'path.sketch': None,
-          'path.snap': True,
-          'pcolor.shading': 'auto',
-          'pcolormesh.snap': True,
-          'pdf.compression': 6,
-          'pdf.fonttype': 3,
-          'pdf.inheritcolor': False,
-          'pdf.use14corefonts': False,
-          'pgf.preamble': '',
-          'pgf.rcfonts': True,
-          'pgf.texsystem': 'xelatex',
-          'polaraxes.grid': True,
-          'ps.distiller.res': 6000,
-          'ps.fonttype': 3,
-          'ps.papersize': 'letter',
-          'ps.useafm': False,
-          'ps.usedistiller': None,
-          'savefig.bbox': None,
-          'savefig.directory': '~',
-          'savefig.dpi': 'figure',
-          'savefig.edgecolor': 'auto',
-          'savefig.facecolor': 'auto',
-          'savefig.format': 'png',
-          'savefig.orientation': 'portrait',
-          'savefig.pad_inches': 0.1,
-          'savefig.transparent': False,
-          'scatter.edgecolors': 'face',
-          'scatter.marker': 'o',
-          'svg.fonttype': 'path',
-          'svg.hashsalt': None,
-          'svg.image_inline': True,
-          'text.antialiased': True,
-          'text.color': 'black',
-          'text.hinting': 'force_autohint',
-          'text.hinting_factor': 8,
-          'text.kerning_factor': 0,
-          'text.latex.preamble': '',
-          'text.parse_math': True,
-          'text.usetex': False,
-          'timezone': 'UTC',
-          'tk.window_focus': False,
-          'toolbar': 'toolbar2',
-          'webagg.address': '127.0.0.1',
-          'webagg.open_in_browser': True,
-          'webagg.port': 8988,
-          'webagg.port_retries': 50,
-          'xaxis.labellocation': 'center',
-          'xtick.alignment': 'center',
-          'xtick.bottom': True,
-          'xtick.color': 'black',
-          'xtick.direction': 'out',
-          'xtick.labelbottom': True,
-          'xtick.labelcolor': 'inherit',
-          'xtick.labelsize': 'medium',
-          'xtick.labeltop': False,
-          'xtick.major.bottom': True,
-          'xtick.major.pad': 3.5,
-          'xtick.major.size': 3.5,
-          'xtick.major.top': True,
-          'xtick.major.width': 0.8,
-          'xtick.minor.bottom': True,
-          'xtick.minor.ndivs': 'auto',
-          'xtick.minor.pad': 3.4,
-          'xtick.minor.size': 2.0,
-          'xtick.minor.top': True,
-          'xtick.minor.visible': False,
-          'xtick.minor.width': 0.6,
-          'xtick.top': False,
-          'yaxis.labellocation': 'center',
-          'ytick.alignment': 'center_baseline',
-          'ytick.color': 'black',
-          'ytick.direction': 'out',
-          'ytick.labelcolor': 'inherit',
-          'ytick.labelleft': True,
-          'ytick.labelright': False,
-          'ytick.labelsize': 'medium',
-          'ytick.left': True,
-          'ytick.major.left': True,
-          'ytick.major.pad': 3.5,
-          'ytick.major.right': True,
-          'ytick.major.size': 3.5,
-          'ytick.major.width': 0.8,
-          'ytick.minor.left': True,
-          'ytick.minor.ndivs': 'auto',
-          'ytick.minor.pad': 3.4,
-          'ytick.minor.right': True,
-          'ytick.minor.size': 2.0,
-          'ytick.minor.visible': False,
-          'ytick.minor.width': 0.6,
-          'ytick.right': False})>
-
-
-
-
-

To change any given parameter you would use the following command (replacing your parameter and value, of course):

-
mpl.rcParams['font.family'] = 'Arial'
-
-
-
-
-

Using GeoCAT-Viz

-

The GeoCAT-Viz package also has many utility functions for making your plots looks publication ready in fewer lines of code. The defaults of GeoCAT-viz keword-arguments are set to resemble the style of NCL.

-
-
-
# fake data
-x = [0, 1, 2, 3, 4, 5]
-y = [0, 3, 6, 9, 12, 15]
- 
-# plot
-plt.plot(x, y)
-
-# annotate
-plt.title('Title')
-plt.xlabel('X Label')
-plt.ylabel('Y Label')
-
-gv.set_titles_and_labels(plt.gca())
-
-plt.show();
-
-
-
-
-../_images/4fee7c3e0c03a974153f769cc16eea9f3c061f7cb1965363e839abc2803f499d.png -
-
-
-
-
-

The Problem with Rainbow Colormaps

-

Rainbow colormaps are visually beautiful, but are falling out of favor because

-
    -
  1. They are not colorblind friendly and

  2. -
  3. They do not print out in grayscale in a meaningful way.

  4. -
-

Both of these issues can be addressed by bing careful about you colormaps lightness-values.

-

Some colormaps options are perceptually uniform (the same lightness value), sequentially ordered (goes from lighter to darker), or diverging (lightest or darkest at a set point and uniformly changes lightness going out). A rainbow colormap however is lighter or darker in arbitrary places and it affects how we interpret data (especially if it was printed out in grayscale).

-

For example, from Matplotlib’s Choosing a Colormap documentation here are some “good” colormaps:

-

Matplotlib Logo

-

And here are miscellaneous colormaps:

-

Matplotlib Logo

-

Looking at the colors in grayscale helps to understand why we might prefer a sequentially ordered colormap. Some grayscale values are duplicated and the reader will not know if it is a high or low value.

-

Another consideration that can help those who are visually impaired is to make sure your figure comments are substantial. Use words to paint the picture of what is displayed, not just the conclusions you want the reader to get.

-
-
-

Misleading Visualizations

-

The scales or colors we choose to use for data visualization affect how people interpret figures. You should strive to make your visualizations as accurate and as informative as possible. Here are some examples that demonstrate just how different a figure can look based on these choices you make. Do not intentionally mislead your audience!

-

Perhaps the most common data visualization manipulation is to change the Y-scale. If a plot does not begin at 0, small changes in magnitude can be exhaggerated. Similarly a logarithmic scale will amplify changes. This is not always disingenuous, sometimes these changes are what you want to highlight, the pattern you want to draw attention to. Just make sure it is appropriate for your use case and documented. Alternatively, extending the Y-axis too large has the opposite affect and smooths out the differences in data.

-
-
-
x = [1, 2, 3, 4, 5]
-y = [1101, 1011, 1111, 1070, 1050]
-
-
-fig, (ax1, ax2, ax3, ax4) = plt.subplots(4)
-fig.tight_layout()
-
-ax1.bar(x,y)
-ax1.set_title("Default Y-Scale Starts at 0")
-
-ax2.bar(x,y)
-ax2.set_ylim(1000)
-ax2.set_title("Y-Scale Starts at 1000")
-
-ax3.bar(x,y)
-ax3.set_yscale("log")
-ax3.set_title("Y-Scale is Logarithmic");
-
-ax4.bar(x,y)
-ax4.set_ylim(0, 2000)
-ax4.set_title("Y-Scale is Extended");
-
-
-
-
-../_images/4599f415b04d1af5f7b2d190421e92233f4bb462bd5fd0e6457cb98106afa2cb.png -
-
-

Other examples of data visualization manipulation include improper scaling, cherry picking a small non-representative subset of the data to display, displaying pie charts at a slant (pie charts are hard to interpet accurately as is), and unusing unexpected colormaps.

-
-
-
-

Summary

-

It is important to have accurate, engaging, and representative data visualization to accumpany your research, both for data exploration as part of the scientific process, for communication of results, and education/outreach efforts. Visually we pick up on patterns that statistics alone may not convey. However, an over reliance on data visualization can make science less accessible to those with vision disabilities. It is important to be cognicent of the patterns our minds pick up, be it based on color or y-axis scaling, so that we can avoid misleading our audience and more accurately convey the narrative inherent to the data.

-
-

What’s next?

-

Plot Elements

-
-
- -
- - - - -
- - -
-
-
- -
-
- - - -
-
- - - - - - - - - -
-
- - \ No newline at end of file diff --git a/_preview/21/notebooks/how-to-cite.html b/_preview/21/notebooks/how-to-cite.html deleted file mode 100644 index 4d0c9b4..0000000 --- a/_preview/21/notebooks/how-to-cite.html +++ /dev/null @@ -1,455 +0,0 @@ - - - - - - - - How to Cite This Cookbook — Advanced Visualization Cookbook - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - -
-
- - - - - -
-
- -
- - - - - - - - - - - - - - - - -
- - -
- -
-
-
-
-
- -
- -
-

How to Cite This Cookbook

-

The material in this Project Pythia Cookbook is licensed for free and open consumption and reuse. All code is served under Apache 2.0, while all non-code content is licensed under Creative Commons BY 4.0 (CC BY 4.0). Effectively, this means you are free to share and adapt this material so long as you give appropriate credit to the Cookbook authors and the Project Pythia community.

-

The source code for the book is released on GitHub and archived on Zenodo. This DOI will always resolve to the latest release of the book source:

-

DOI

-
- - - - -
- - -
-
-
- -
-
- - - -
-
- - - - - - - - - -
-
- - \ No newline at end of file diff --git a/_preview/21/notebooks/mpas-datashader.html b/_preview/21/notebooks/mpas-datashader.html deleted file mode 100644 index 8861b1e..0000000 --- a/_preview/21/notebooks/mpas-datashader.html +++ /dev/null @@ -1,1467 +0,0 @@ - - - - - - - - MPAS with Datashader and Geoviews — Advanced Visualization Cookbook - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - -
-
- - - - - -
-
-
- -
- -
-

MPAS with Datashader and Geoviews

-
-

Overview

-

This example of interactively plotting unstructured grid MPAS data with Datashader and Geoviews demonstrates making use of the MPAS file’s connectivity information to render data on the native grid, and also -avoid costly Delaunay triangulation that is required if the MPAS connectivity information is not used, rendering data that is sampled on both the ‘primal’ and ‘dual’ MPAS mesh, using geoviews/holoviews for interactive plotting in a Jupyter Notebook. The plotting is interactive in the sense that you can pan and zoom the data. Doing so will reveal greater and greater data fidelity, and sing Datashader to perform background rendering in place of Matplotlib. Unlike Matplotlib, Datashaderwas designed for performance with large data sets.

-
    -
  1. Utility Functions

  2. -
  3. Loading Data

  4. -
  5. Using MPAS’s cell connectivity array to plot primal mesh data

  6. -
  7. Synthesizing triangles from points using Delaunay triangulation

  8. -
  9. Using MPAS’s cell connectivity array to plot dual mesh data

  10. -
-
-
-

Prerequisites

- - - - - - - - - - - - - -

Concepts

Importance

Notes

Necessary

-
    -
  • Time to learn: X minutes

  • -
-
-
-
-
import cartopy.crs as ccrs
-import numpy as np
-import pandas as pd
-
-import math as math
-
-import geocat.datafiles as gdf  # Only for reading-in datasets
-
-from xarray import open_mfdataset
-
-from numba import jit
-
-import dask.dataframe as dd
-
-import holoviews as hv
-from holoviews import opts
-
-from holoviews.operation.datashader import rasterize as hds_rasterize 
-#import geoviews.feature as gf # only needed for coastlines
-
-hv.extension("bokeh","matplotlib")
-
-opts.defaults(
-    opts.Image(frame_width=600, data_aspect=1),
-    opts.RGB(frame_width=600, data_aspect=1))
-
-
-
-
-
-
-
-
-
- - - - - - - - - - - -
-
-
-
-
-

Utility functions

-
-
-
# This funtion splits a global mesh along longitude
-#
-# Examine the X coordinates of each triangle in 'tris'. Return an array of 'tris' where only those triangles
-# with legs whose length is less than 't' are returned. 
-# 
-def unzipMesh(x,tris,t):
-    return tris[(np.abs((x[tris[:,0]])-(x[tris[:,1]])) < t) & (np.abs((x[tris[:,0]])-(x[tris[:,2]])) < t)]
-
-
-
-
-
-
-
# Compute the signed area of a triangle
-#
-def triArea(x,y,tris):
-    return ((x[tris[:,1]]-x[tris[:,0]]) * (y[tris[:,2]]-y[tris[:,0]])) - ((x[tris[:,2]]-x[tris[:,0]]) * (y[tris[:,1]]-y[tris[:,0]]))
-
-
-
-
-
-
-
# Reorder triangles as necessary so they all have counter clockwise winding order. CCW is what Datashader and MPL
-# require.
-#
-def orderCCW(x,y,tris):
-    tris[triArea(x,y,tris)<0.0,:] = tris[triArea(x,y,tris)<0.0,::-1]
-    return(tris)
-
-
-
-
-
-
-
# Create a Holoviews Triangle Mesh suitable for rendering with Datashader
-#
-# This function returns a Holoviews TriMesh that is created from a list of coordinates, 'x' and 'y',
-# an array of triangle indices that addressess the coordinates in 'x' and 'y', and a data variable 'var'. The
-# data variable's values will annotate the triangle vertices
-#
-
-def createHVTriMesh(x,y,triangle_indices, var,n_workers=1):
-    # Declare verts array
-    verts = np.column_stack([x, y, var])
-
-
-    # Convert to pandas
-    verts_df  = pd.DataFrame(verts,  columns=['x', 'y', 'z'])
-    tris_df   = pd.DataFrame(triangle_indices, columns=['v0', 'v1', 'v2'])
-
-    # Convert to dask
-    verts_ddf = dd.from_pandas(verts_df, npartitions=n_workers)
-    tris_ddf = dd.from_pandas(tris_df, npartitions=n_workers)
-
-    # Declare HoloViews element
-    tri_nodes = hv.Nodes(verts_ddf, ['x', 'y', 'index'], ['z'])
-    trimesh = hv.TriMesh((tris_ddf, tri_nodes))
-    return(trimesh)
-
-
-
-
-
-
-
# Triangulate MPAS primary mesh:
-#
-# Triangulate each polygon in a heterogenous mesh of n-gons by connecting
-# each internal polygon vertex to the first vertex. Uses the MPAS
-# auxilliary variables verticesOnCell, and nEdgesOnCell.
-#
-# The function is decorated with Numba's just-in-time compiler so that it is translated into
-# optimized machine code for better peformance
-#
-
-@jit(nopython=True)
-def triangulatePoly(verticesOnCell, nEdgesOnCell):
-
-    # Calculate the number of triangles. nEdgesOnCell gives the number of vertices for each cell (polygon)
-    # The number of triangles per polygon is the number of vertices minus 2.
-    #
-    nTriangles = np.sum(nEdgesOnCell - 2)
-
-    triangles = np.ones((nTriangles, 3), dtype=np.int64)
-    nCells = verticesOnCell.shape[0]
-    triIndex = 0
-    for j in range(nCells):
-        for i in range(nEdgesOnCell[j]-2):
-            triangles[triIndex][0] = verticesOnCell[j][0]
-            triangles[triIndex][1] = verticesOnCell[j][i+1]
-            triangles[triIndex][2] = verticesOnCell[j][i+2]
-            triIndex += 1
-
-    return triangles
-
-
-
-
-
-
-

Load data and coordinates

-

The global data sets used in this example are from the same experiment, but run at several resolutions from -30km to 3.75km. Due to their size, the higher resolution data sets are only distributed with two variables -in them:

-
    -
  • relhum_200hPa: Relative humidity vertically interpolated to 200 hPa

  • -
  • vorticity_200hPa: Relative vorticity vertically interpolated to 200 hPa

  • -
-

The dyamond_1 data set is available in several resolutions, ranging from 30 km to 3.75 km.

-

Currently, the 30-km resolution dataset used in this example is available at geocat-datafiles. -However, the other resolutions of these data are stored on Glade because of their size.

-

The relhum_200hPa is computed on the MPAS ‘primal’ mesh, while the vorticity_200hPa is computed on the MPAS -‘dual’ mesh. Note that data may also be sampled on the edges of the primal mesh. This example does not -include/cover edge-centered data.

-

These data are courtesy of NCAR’s Falko Judt, and were produced as part of the DYAMOND initiative: -http://dx.doi.org/10.1186/s40645-019-0304-z.

-
-
-

Using MPAS’s cell connectivity array to plot primal mesh data

-

In this example we use the MPAS cellsOnVertex auxilliary variable, which defines mesh connectivity for the MPAS grid. -Specifically, this variable tells us the cell IDs for each cell that contains each vertex.

-

The benefits of this are twofold: 1. We’re using the actual mesh description from the MPAS output file; and 2. -For large grid this is much faster than synthesizing the connectivity information as is done -in the next example

-
-
-

Synthesizing triangles from points using Delaunay triangulation

-

In this second example we do not use the triangle connectivity information stored in the MPAS file. Instead we -use Delaunay triangulation to artifically create a triangle mesh. The benefit of this approach is that we do not -need the MPAS cellsOnVertex variable if it is not available. Also, since the triangulation algorithm is run on the -coordinates after they are projected to meters we do not have to worry about wraparound. The downside is that for -high-resolution data Delaunay triangulation is prohibitively expensive. The highest resolution data set included -in this notebook (3.75km) will not triangulate in a reasonable amount of time, if at all

-
-
-

Using MPAS’s cell connectivity array to plot dual mesh data

-

In this example we use the MPAS verticesOnCell and nEdgesOnCell auxilliary variables, which defines mesh connectivity for the -MPAS dual grid.

-

As with the first example using the MPAS primal grid, data on the dual grid could be plotted by first -triangulating them with, for example, Delaunay triangulation. But using grid’s native connectivity information -is faster.

-
-
-

Summary

-
-

What’s next?

-
-
-
-

Resources and references

-
    -
  • -
-
-
- - - - -
- -
-
-
-
-
- -
-
- - - -
-
- - - - - - - - - -
-
- - \ No newline at end of file diff --git a/_preview/21/notebooks/notebook-template.html b/_preview/21/notebooks/notebook-template.html deleted file mode 100644 index 7e87a93..0000000 --- a/_preview/21/notebooks/notebook-template.html +++ /dev/null @@ -1,719 +0,0 @@ - - - - - - - - Project Pythia Notebook Template — Advanced Visualization Cookbook - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - -
-
- - - - - -
-
-
- -
- -

Let’s start here! If you can directly link to an image relevant to your notebook, such as canonical logos, do so here at the top of your notebook. You can do this with Markdown syntax,

-
-

![<image title>](http://link.com/to/image.png "image alt text")

-
-

or edit this cell to see raw HTML img demonstration. This is preferred if you need to shrink your embedded image. Either way be sure to include alt text for any embedded images to make your content more accessible.

-

Project Pythia Logo

-
-

Project Pythia Notebook Template

-

Next, title your notebook appropriately with a top-level Markdown header, #. Do not use this level header anywhere else in the notebook. Our book build process will use this title in the navbar, table of contents, etc. Keep it short, keep it descriptive. Follow this with a --- cell to visually distinguish the transition to the prerequisites section.

-
-
-

Overview

-

If you have an introductory paragraph, lead with it here! Keep it short and tied to your material, then be sure to continue into the required list of topics below,

-
    -
  1. This is a numbered list of the specific topics

  2. -
  3. These should map approximately to your main sections of content

  4. -
  5. Or each second-level, ##, header in your notebook

  6. -
  7. Keep the size and scope of your notebook in check

  8. -
  9. And be sure to let the reader know up front the important concepts they’ll be leaving with

  10. -
-
-
-

Prerequisites

-

This section was inspired by this template of the wonderful The Turing Way Jupyter Book.

-

Following your overview, tell your reader what concepts, packages, or other background information they’ll need before learning your material. Tie this explicitly with links to other pages here in Foundations or to relevant external resources. Remove this body text, then populate the Markdown table, denoted in this cell with | vertical brackets, below, and fill out the information following. In this table, lay out prerequisite concepts by explicitly linking to other Foundations material or external resources, or describe generally helpful concepts.

-

Label the importance of each concept explicitly as helpful/necessary.

- - - - - - - - - - - - - - - - - - - - - -

Concepts

Importance

Notes

Intro to Cartopy

Necessary

Understanding of NetCDF

Helpful

Familiarity with metadata structure

Project management

Helpful

-
    -
  • Time to learn: estimate in minutes. For a rough idea, use 5 mins per subsection, 10 if longer; add these up for a total. Safer to round up and overestimate.

  • -
  • System requirements:

    -
      -
    • Populate with any system, version, or non-Python software requirements if necessary

    • -
    • Otherwise use the concepts table above and the Imports section below to describe required packages as necessary

    • -
    • If no extra requirements, remove the System requirements point altogether

    • -
    -
  • -
-
-
-
-

Imports

-

Begin your body of content with another --- divider before continuing into this section, then remove this body text and populate the following code cell with all necessary Python imports up-front:

-
-
-
import sys
-
-
-
-
-
-
-

Your first content section

-

This is where you begin your first section of material, loosely tied to your objectives stated up front. Tie together your notebook as a narrative, with interspersed Markdown text, images, and more as necessary,

-
-
-
# as well as any and all of your code cells
-print("Hello world!")
-
-
-
-
-
Hello world!
-
-
-
-
-
-

A content subsection

-

Divide and conquer your objectives with Markdown subsections, which will populate the helpful navbar in Jupyter Lab and here on the Jupyter Book!

-
-
-
# some subsection code
-new = "helpful information"
-
-
-
-
-
-
-

Another content subsection

-

Keep up the good work! A note, try to avoid using code comments as narrative, and instead let them only exist as brief clarifications where necessary.

-
-
-
-

Your second content section

-

Here we can move on to our second objective, and we can demonstrate

-
-

Subsection to the second section

-
-

a quick demonstration

-
-
of further and further
-
-
header levels
-

as well \(m = a * t / h\) text! Similarly, you have access to other \(\LaTeX\) equation functionality via MathJax (demo below from link),

-
-()\[\begin{align} -\dot{x} & = \sigma(y-x) \\ -\dot{y} & = \rho x - y - xz \\ -\dot{z} & = -\beta z + xy -\end{align}\]
-

Check out any number of helpful Markdown resources for further customizing your notebooks and the Jupyter docs for Jupyter-specific formatting information. Don’t hesitate to ask questions if you have problems getting it to look just right.

-
-
-
-
-
-
-

Last Section

-

If you’re comfortable, and as we briefly used for our embedded logo up top, you can embed raw html into Jupyter Markdown cells (edit to see):

-
-

Info

-

Your relevant information here!

-
-

Feel free to copy this around and edit or play around with yourself. Some other admonitions you can put in:

-
-

Success

-

We got this done after all!

-
-
-

Warning

-

Be careful!

-
-
-

Danger

-

Scary stuff be here.

-
-

We also suggest checking out Jupyter Book’s brief demonstration on adding cell tags to your cells in Jupyter Notebook, Lab, or manually. Using these cell tags can allow you to customize how your code content is displayed and even demonstrate errors without altogether crashing our loyal army of machines!

-
-
-
-

Summary

-

Add one final --- marking the end of your body of content, and then conclude with a brief single paragraph summarizing at a high level the key pieces that were learned and how they tied to your objectives. Look to reiterate what the most important takeaways were.

-
-

What’s next?

-

Let Jupyter book tie this to the next (sequential) piece of content that people could move on to down below and in the sidebar. However, if this page uniquely enables your reader to tackle other nonsequential concepts throughout this book, or even external content, link to it here!

-
-
-
-

Resources and references

-

Finally, be rigorous in your citations and references as necessary. Give credit where credit is due. Also, feel free to link to relevant external material, further reading, documentation, etc. Then you’re done! Give yourself a quick review, a high five, and send us a pull request. A few final notes:

-
    -
  • Kernel > Restart Kernel and Run All Cells... to confirm that your notebook will cleanly run from start to finish

  • -
  • Kernel > Restart Kernel and Clear All Outputs... before committing your notebook, our machines will do the heavy lifting

  • -
  • Take credit! Provide author contact information if you’d like; if so, consider adding information here at the bottom of your notebook

  • -
  • Give credit! Attribute appropriate authorship for referenced code, information, images, etc.

  • -
  • Only include what you’re legally allowed: no copyright infringement or plagiarism

  • -
-

Thank you for your contribution!

-
-
- - - - -
- -
-
-
-
-
- -
-
- - - -
-
- - - - - - - - - -
-
- - \ No newline at end of file diff --git a/_preview/21/notebooks/plot-elements.html b/_preview/21/notebooks/plot-elements.html deleted file mode 100644 index 1d36920..0000000 --- a/_preview/21/notebooks/plot-elements.html +++ /dev/null @@ -1,1144 +0,0 @@ - - - - - - - - Plot Elements — Advanced Visualization Cookbook - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - -
-
- - - - - -
-
- -
- - - - - - - - - - - - - - - - - - -
- - - -
-
-
-
- -
- -
-

Plot Elements

-
-

Prerequisites

- - - - - - - - - - - - - - - - - -

Concepts

Importance

Notes

Matplotlib

Necessary

Cartopy

Necessary

-
    -
  • Time to learn: 40 minutes

  • -
-
-
-
-
import xarray as xr
-import numpy as np
-import matplotlib.pyplot as plt
-import geocat.viz as gv
-
-
-
-
-
-
-

Data

-

The first piece of data visualization is the data!

-

Let’s generate some dummy data to work with:

-
-
-
x = np.linspace(0, 20, 1000)
-y1 = np.sin(x)
-y2 = np.cos(x)
-
-
-
-
-
-
-

Figure

-

The figure is the object that contains your entire visualization. Creating a figure tends to be the first step in plotting, even if it doesn’t currently show anything:

-
-
-
fig = plt.figure(figsize=(9.5, 8))
-
-
-
-
-
<Figure size 950x800 with 0 Axes>
-
-
-
-
-
-
-

Axis

-

We then add axes to our plot. You can add multiple axes to one plot in order to produce subplots, or just one. Axes will automatically inherit their limits from the data plotted, or can be manually set.

-
-
-
fig = plt.figure(figsize=(9.5, 8))
-ax = plt.axes()
-
-
-
-
-../_images/735794c51ad88bfd2928f35f08230fef70ac649d161831ab6fcd351d6606e184.png -
-
-
-
-

Plot

-

Adding the data to the figure can be done through several different plot types: line, contour, bar, histogram. Here we use two line plots:

-
-
-
fig = plt.figure(figsize=(9.5, 8))
-ax = plt.axes()
-
-ax.plot(x,y1)
-ax.plot(x,y2);
-
-
-
-
-../_images/02644250fa161020899ff583f563b322750147346d694bd5ff31ba7178cc1171.png -
-
-
-
-

Titles and Labels

-

Titles and labels are important for indicating what the figure is plotting. It is a good idea to include relevant units in your axis labels.

-
-
-
fig = plt.figure(figsize=(9.5, 8))
-ax = plt.axes()
-
-ax.plot(x,y1)
-ax.plot(x,y2)
-
-ax.set_title("Dummy Data")
-ax.set_xlabel("X (radians)");
-
-
-
-
-../_images/59e89e678ce1fb5f128791887bd0093e1ca528d21bebfe1a65f3e1c2132d3d26.png -
-
-
-
-

Legends

-

If you’re plotting multiple lines of data, it’s a good idea to include a legend. Here is how you call or point to the legend:

-
-
-
fig = plt.figure(figsize=(9.5, 8))
-ax = plt.axes()
-
-ax.plot(x,y1,label='sine')
-ax.plot(x,y2,label='cosine')
-
-ax.set_title("Dummy Data")
-ax.set_xlabel("X (radians)")
-
-plt.legend(loc="upper left");
-
-
-
-
-../_images/381c1b8a6482cc8a4e21b20740cd36430ae64eb7fa28418dbb399cd3f2b40b44.png -
-
-
-
-

Colorbars

-

While legends are more appropriate for line or bar plots, colorbars are most commonly used for contour plots and sometimes to apply a third level of dimension to a scatter plot.

-

Let’s shift our example to better demonstrate a colorbar by workign with a filled contour plot:

-
-
-
# Generate dummy data
-data = [[1, 4, 5, 6, 8.2],
-        [9, 8.4, 10, 10.6, 9.7],
-        [4.4, 5, 0, 6.6, 1.4],
-        [4.6, 5.2, 1.5, 7.6, 2.4]]
-
-# Convert data into type xarray.DataArray
-data = xr.DataArray(data,
-                    dims=["lat", "lon"],
-                    coords=dict(lat=np.arange(4), lon=np.arange(5)))
-
-data
-
-
-
-
-
- - - - - - - - - - - - - - -
<xarray.DataArray (lat: 4, lon: 5)>
-array([[ 1. ,  4. ,  5. ,  6. ,  8.2],
-       [ 9. ,  8.4, 10. , 10.6,  9.7],
-       [ 4.4,  5. ,  0. ,  6.6,  1.4],
-       [ 4.6,  5.2,  1.5,  7.6,  2.4]])
-Coordinates:
-  * lat      (lat) int64 0 1 2 3
-  * lon      (lon) int64 0 1 2 3 4
-
-
-
-
fig = plt.figure(figsize=(9.5, 8))
-ax = plt.axes()
-
-pcm = ax.contourf(data,cmap='viridis')
-
-ax.set_title("Dummy Data")
-ax.set_xlabel("Longitude (\N{DEGREE SIGN})")
-ax.set_ylabel("Latitude (\N{DEGREE SIGN})")
-
-fig.colorbar(pcm,ax=ax);
-
-
-
-
-../_images/82616574d6cf2730b30b2ec643a15a13477116aacda8131d15a7a1ed8bfade59.png -
-
-
-
-

Annotations

-

Additional annotations allow you to specify some text and a location to indicate almost anything.

-

Here we use GeoCAT-viz to add annotations to the maxima in a contour plot:

-
-
-
fig = plt.figure(figsize=(9.5, 8))
-ax = plt.axes()
-
-pcm = ax.contourf(data,cmap='viridis')
-
-ax.set_title("Dummy Data")
-ax.set_xlabel("Longitude (\N{DEGREE SIGN})")
-ax.set_ylabel("Latitude (\N{DEGREE SIGN})")
-
-fig.colorbar(pcm,ax=ax)
-
-# Find local maximum with GeoCAT-Viz find_local_extrema
-lmax = gv.find_local_extrema(data, eType='High')[0]
-
-# Plot labels for local mins
-max_value = data.data[lmax[1]][lmax[0]]
-ax.text(lmax[0], lmax[1],'Maxima = '+str(max_value))
-
-# Show plot
-plt.show();
-
-
-
-
-../_images/ee122c5994503c201179414476e36609df4498f95f2198a4909d2073ad977477.png -
-
-
-
-
-

Summary

-

There are several key elements to a Python plot and knowing what they are called is instrumental to begin your journey for further customization.

- -
-
-

Resources and references

-
-
- - - - -
- - -
-
-
- -
-
- - - -
-
- - - - - - - - - -
-
- - \ No newline at end of file diff --git a/_preview/21/notebooks/skewt.html b/_preview/21/notebooks/skewt.html deleted file mode 100644 index d40f53e..0000000 --- a/_preview/21/notebooks/skewt.html +++ /dev/null @@ -1,1015 +0,0 @@ - - - - - - - - Skew T Diagrams — Advanced Visualization Cookbook - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - -
-
- - - - - -
-
- -
- - - - - - - - - - - - - - - - - - -
- - - -
-
-
-
- -
- -
-

Skew T Diagrams

-
-

Overview

-

Summary text here

-
    -
  1. -
-
-
-

Prerequisites

- - - - - - - - - - - - - -

Concepts

Importance

Notes

Necessary

-
    -
  • Time to learn: X minutes

  • -
-
-
-
-

What is a Skew-T plot?

-
-
-
import matplotlib.pyplot as plt
-import numpy as np
-import pandas as pd
-
-from metpy.plots import SkewT
-import metpy.calc as mpcalc
-
-
-
-
-

If you want to get your own sounding data, run the following code in a new cell using the date and station of your choice:

-
from datetime import datetime
-from siphon.simplewebservice.wyoming import WyomingUpperAir
-
-date = datetime(2023, 11, 20, 12)
-station = 'GJT'
-df = WyomingUpperAir.request_data(date, station)
-
-
-

We’ve already done this for you and saved the data in a file, notebooks/data/gjt_sounding.csv for you to use. We’ll use that file’s data for the rest of the notebook

-
-
-
df = pd.read_csv('data/gjt_sounding.csv')
-df
-
-
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
pressureheighttemperaturedewpointdirectionspeedu_windv_windstationstation_numbertimelatitudelongitudeelevationpw
0853.014755.22.0305.03.02.457456-1.720729GJT724762023-11-20 12:00:0039.11-108.531475.09.12
1850.015087.21.2280.013.012.802501-2.257426GJT724762023-11-20 12:00:0039.11-108.531475.09.12
2848.015277.41.4287.013.012.431962-3.800832GJT724762023-11-20 12:00:0039.11-108.531475.09.12
3831.016936.4-2.6350.015.02.604723-14.772116GJT724762023-11-20 12:00:0039.11-108.531475.09.12
4820.018025.4-2.810.013.0-2.257426-12.802501GJT724762023-11-20 12:00:0039.11-108.531475.09.12
................................................
14713.428951-55.7-85.753.017.0-13.576804-10.230855GJT724762023-11-20 12:00:0039.11-108.531475.09.12
14813.029144-55.5-85.575.020.0-19.318517-5.176381GJT724762023-11-20 12:00:0039.11-108.531475.09.12
14912.729293-55.3-85.3NaNNaNNaNNaNGJT724762023-11-20 12:00:0039.11-108.531475.09.12
15012.129601-55.5-85.5NaNNaNNaNNaNGJT724762023-11-20 12:00:0039.11-108.531475.09.12
15112.029654-55.7-85.7NaNNaNNaNNaNGJT724762023-11-20 12:00:0039.11-108.531475.09.12
-

152 rows × 15 columns

-
-
-
-
-
p = df['pressure'].values
-T = df['temperature'].values
-Td = df['dewpoint'].values
-u = df['u_wind'].values
-v = df['v_wind'].values
-
-
-
-
-
-
-

Elements of a Skew-T Plot

-

Let’s start out by talking about the structural elements of a Skew-T plot.

-
    -
  1. Temperature Lines are drawn at an angle up from the x-axis and are where the name “Skew-T” comes from.

  2. -
  3. Pressure Lines are horizontal from the y-axis, where pressure is plotted at a logarithmic scale.

  4. -
  5. Dry Adiabats: are lines of constant potential temperature.

  6. -
  7. Moist Adiabats: are lines of constant equivalent potential temperature.

  8. -
  9. Mixing Ratio Lines: represent lines of constant mixing ratio.

  10. -
-

On all those structural elements, Skew-T plots have two lines plotted on them, air temperature and dew point. In this notebook, we’ll be plotting the air temperature in red and the dew point in blue.

-

Additionally, Skew-T plots have wind barbs. These describe the wind speed and direction at different pressure levels and are plotted on the right side of the diagram.

-
-

Tip

-

For a more detailed description and a cool interactive diagram, visit NOAA’s Skew-T page.

-
-
-
-

Making a Skew-T plot in Python (with MetPy!)

-

So, all of that might seem a little abstract without a visual. We’re going to use MetPy’s SkewT module to make an actual Skew-T plot with the sounding data we downloaded earlier.

-

From the MetPy documentation:

-
-

“This class simplifies the process of creating Skew-T log-P plots in using matplotlib. It handles requesting the appropriate skewed projection, and provides simplified wrappers to make it easy to plot data, add wind barbs, and add other lines to the plots (e.g. dry adiabats)”

-
-
-

Just the basics

-

To start with, let’s create a very minimal Skew-T plot with just the pressure and temperature lines under the sounding data.

-
-
-
# make figure and `SkewT` object
-fig = plt.figure(figsize=(9, 9))
-skewt = SkewT(fig=fig, rotation=45)
-
-# plot sounding data
-skewt.plot(p, T, 'r') # air temperature
-skewt.plot(p, Td, 'b') # dew point
-skewt.plot_barbs(p, u, v) # wind barbs
-
-
-
-
-
<matplotlib.quiver.Barbs at 0x7fc78de82560>
-
-
-../_images/bc560ea12d56e0c15ca7e650513440ed72235cc49c197dac5d546afdc57266ed.png -
-
-

Let’s talk break that down a bit.

-
# make figure and `SkewT` object
-fig = plt.figure(figsize=(9, 9))
-skewt = SkewT(fig=fig, rotation=45)
-
-
-

First, we made a new figure and used it to make a new skew-T plot. If you don’t provide a figure to SkewT, one will be created for you, but it’s useful to make the default figure size a bit larger for this tutorial.

-

Additionally, we’ve also set the rotation kwarg to be 45 degrees. This is the angle that the temperature lines will be drawn at. Metpy’s default is 30 degrees, but we’re going to use a more traditional 45 degrees for this tutorial.

-

-```python
-# plot sounding data
-skewt.plot(p, T, 'r') # air temperature
-skewt.plot(p, Td, 'b') # dew point
-
-
-

For air temperature and dew point, we can use the standard plot method. The SkewT object provides a wrapper around matplotlib’s plot method, and can be used in the same way. Note that even though pressure is on the y-axis, we still provide it as the first argument to plot because it is the independent variable.

-
skewt.plot_barbs(p, u, v) # wind barbs
-
-
-

Finally, we use SkewT’s plot_barbs method to add the wind barbs to the right side of the plot. This is a wrapper around matplotlib’s barbs method that applies the appropriate transformation and positions the barbs as expected for a Skew-T plot.

-

In addition to the elements we have added specifically, you can see that the SkewT object also added some of the structural elements we discussed previously. By default, SkewT adds the horizontal pressure and skewed temperature lines.

-
-
-

Adding more structural elements

-

Next, let’s add the rest of the structural elements to the plot.

-
-
-
# make figure and `SkewT` object
-fig = plt.figure(figsize=(9, 9))
-skewt = SkewT(fig=fig, rotation=45)
-
-# plot sounding data
-skewt.plot(p, T, 'r') # air temperature
-skewt.plot(p, Td, 'b') # dew point
-skewt.plot_barbs(p, u, v) # wind barbs
-
-# add dry adiabats, moist adiabats, and mixing ratio lines
-skewt.plot_dry_adiabats()
-skewt.plot_moist_adiabats()
-skewt.plot_mixing_lines()
-
-
-
-
-
<matplotlib.collections.LineCollection at 0x7fc785965f00>
-
-
-../_images/86c3a5f65e42549211a4de1e65558fa5c226666783b2ade1e29573a6a2ac3107.png -
-
-

Similarly to the plot_barbs command, the SkewT object provides convenient methods for adding the remaining structural elements to the plot.

-

The default appearance of these elements is:

-
    -
  • Dry Adiabats: dashed red/pinkish lines with an alpha value of 0.5

  • -
  • Moist Adiabats: dashed blue lines with an alpha value of 0.5

  • -
  • Mixing Ratio Lines: dashed green lines with an alpha value of 0.8

  • -
-

These defaults can be overwritten by providing additional keyword arguments to the methods.

-
-
-

Polishing the plot

-

Now that we have all the structural elements on the plot, let’s make it look a little nicer. The previous plot has all the necessary information, but it’s a little cluttered and hard to read.

-
-
-
# make figure and `SkewT` object
-fig = plt.figure(figsize=(8,12))
-skewt = SkewT(fig=fig)
-skewt.ax.set_ylim(1000, 10)
-
-# plot sounding data
-skewt.plot(p, T, 'r') # air temperature
-skewt.plot(p, Td, 'b') # dew point
-skewt.plot_barbs(p[::5], u[::5], v[::5]) # add a wind barb every fifth level
-
-# add dry adiabats, moist adiabats, and mixing ratio lines
-skewt.plot_dry_adiabats(linewidth=0.5)
-skewt.plot_moist_adiabats(linewidth=0.5)
-skewt.plot_mixing_lines(linewidth=0.5)
-
-# add axis and figure titles
-plt.title(df['station'][0] + ' ' + df['time'][0])
-plt.xlabel('temperature (degC)')
-plt.ylabel('pressure (hPa)')
-
-
-
-
-
Text(0, 0.5, 'pressure (hPa)')
-
-
-../_images/aa441aeeac93c776fb392a3a328fbf8eaeb562aa2efa5ea7ecb81ab2ed5ea5f6.png -
-
-

Here, we’ve made the following changes:

-
    -
  • changed the figsize to figsize=(8,12)

  • -
  • removed the rotation kwarg from the SkewT object to allow the upper air temp and dew point lines to be seen without being cut off or expanding the x-axis limits

  • -
  • skewt.ax.set_ylim(1000, 10): sets the y-axis limits to 1000 hPa at the bottom and 10 hPa at the top to include the entire sounding

  • -
  • skewt.plot_barbs(p[::5], u[::5], v[::5]): plots every fifth wind barb to reduce clutter

  • -
  • reduced the linewidth of the dry adiabats, moist adiabats, and mixing ratio lines to 0.5

  • -
  • added axes labels

  • -
  • added a title including the station name and date of the sounding pulled from the data

  • -
-
-
-
-

Summary

-

Skew-T plots are effective thermodynamic diagrams used in meteorology. MetPy’s SkewT module provides a convenient way to make Skew-T plots in Python.

-
-

What’s next?

-
-
- -
- - - - -
- - -
-
-
- -
-
- - - -
-
- - - - - - - - - -
-
- - \ No newline at end of file diff --git a/_preview/21/notebooks/spagetti.html b/_preview/21/notebooks/spagetti.html deleted file mode 100644 index 1a48df0..0000000 --- a/_preview/21/notebooks/spagetti.html +++ /dev/null @@ -1,2155 +0,0 @@ - - - - - - - - Spagetti Plots — Advanced Visualization Cookbook - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - -
-
- - - - - -
-
-
- -
- -
-

Spagetti Plots

-
-

Overview

-

Spagetti Plots are a tool typically used to visualize movement. Essentially they are many line plots displayed on the same axes. By drawing the same path at different times or from different forecasts, we can see the patterns and chaos associated with the plotted variable.

-
    -
  1. Spagetti Hurricane Plot

  2. -
  3. Spagetti Contour Plot

  4. -
-
-
-

Prerequisites

- - - - - - - - - - - - - - - - - -

Concepts

Importance

Notes

Matplotlib

Necessary

Cartopy

Necessary

-
    -
  • Time to learn: 50 minutes

  • -
-
-
-
-
import numpy as np
-import xarray as xr
-import datetime
-
-import matplotlib as mpl
-import matplotlib.pyplot as plt
-import matplotlib.ticker as mticker
-import matplotlib.pylab as pl
-
-import cartopy.crs as ccrs
-import cartopy.feature as cfeature
-
-import geocat.viz as gv
-import geocat.datafiles as gdf
-
-import tropycal.tracks as tracks
-
-import warnings
-warnings.filterwarnings('ignore')
-
-
-
-
-
-
-

Spagetti Hurricane Plot

-

Visualizing the predicted path of an incoming hurricane is both complicated and important. There are many plots that meteorologists are trained to read, but when shared with the public can be confusing or alarming. There are strengths and weaknesses to each hurricane visualization approach. The cone of uncertainty, for example, is often misinterpreted to suggest the hurricane growth in time rather than widening of path possibilities. Spagetti plots on the other hand, clearly show hurricane paths but show them as equal to each other.

-

In this example we will plot some forecasted paths from the 2012 North-Atlantic storm Hurricane Sandy. Each forecast is from the Global Ensemble Forecast System (GEFS) provided by the National Centers for Environmental Prediction at NOAA.

-

We’ll use the package tropycal to easily access HURDAT2 and IBTrACS reanalysis data and operational National Hurricane Center (NHC) Best Track data. tropycal has a lot of great features for real time hurricane visualization, but since this Cookbook is comparatively static we’re using a past hurricane and only using this package to access the data. Our plotting will be done with matplotlib and cartopy.

-
-

Read in Data

-

First, to grab our hurricane data from tropycal we need to specify a basin:

-
-
-
basin = tracks.TrackDataset(basin='north_atlantic')
-
-
-
-
-
--> Starting to read in HURDAT2 data
-
-
-
--> Completed reading in HURDAT2 data (1.67 seconds)
-
-
-
-
-

Find your storm by name and year:

-
-
-
storm = basin.get_storm(('sandy',2012))
-
-sandy_ds = storm.to_xarray()
-sandy_ds
-
-
-
-
-
- - - - - - - - - - - - - - -
<xarray.Dataset>
-Dimensions:    (time: 45)
-Coordinates:
-  * time       (time) datetime64[ns] 2012-10-21T18:00:00 ... 2012-10-31T12:00:00
-Data variables:
-    extra_obs  (time) int64 0 0 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 1 1 0 0 0 0 0 0 0
-    special    (time) <U1 '' '' '' '' '' '' '' '' ... 'L' '' '' '' '' '' '' ''
-    type       (time) <U2 'LO' 'LO' 'LO' 'TD' 'TS' ... 'EX' 'EX' 'EX' 'EX' 'EX'
-    lat        (time) float64 14.3 13.9 13.5 13.1 12.7 ... 40.4 40.7 41.1 41.5
-    lon        (time) float64 -77.4 -77.8 -78.2 -78.6 ... -79.8 -80.3 -80.7
-    vmax       (time) int64 25 25 25 30 35 40 40 40 ... 70 70 55 50 40 35 35 30
-    mslp       (time) int64 1006 1005 1003 1002 1000 998 ... 978 986 992 993 995
-    wmo_basin  (time) <U14 'north_atlantic' ... 'north_atlantic'
-Attributes:
-    id:              AL182012
-    operational_id:  AL182012
-    name:            SANDY
-    year:            2012
-    season:          2012
-    basin:           north_atlantic
-    source_info:     NHC Hurricane Database
-    source:          hurdat
-    ace:             13.6675
-
-

And we can grab any of a number of forecasts:

-
-
-
forecasts = storm.get_operational_forecasts()
-print(forecasts.keys())
-
-
-
-
-
dict_keys(['CARQ', 'CMC', 'NAM', 'NGX', 'UKX', 'AC00', 'AEM2', 'AEMN', 'AP01', 'AP02', 'AP03', 'AP04', 'AP05', 'AP06', 'AP07', 'AP08', 'AP09', 'AP10', 'AP12', 'AP13', 'AP14', 'AP15', 'AP16', 'AP17', 'AP18', 'AP20', 'AVN2', 'AVNO', 'BAMD', 'BAMM', 'BAMS', 'CEMN', 'CLIP', 'CLP5', 'CMC2', 'COT2', 'COTC', 'DSHP', 'FIM9', 'FM92', 'G012', 'GFD2', 'GFDE', 'GFDL', 'GFDT', 'GFT2', 'GHM2', 'GP01', 'GPM2', 'GPMN', 'HWE2', 'HWF2', 'HWFE', 'HWRF', 'ICON', 'IV15', 'IVCN', 'IVCR', 'LBAR', 'LGEM', 'NAM2', 'NGX2', 'OFCP', 'OFP2', 'SHF5', 'SHFR', 'SHIP', 'TCLP', 'TV15', 'TVCA', 'TVCC', 'TVCE', 'TVCN', 'UWN2', 'UWN8', 'XTRP', 'ZGFS', 'AEMI', 'AP11', 'AP19', 'AVNI', 'CMCI', 'COTI', 'FM9I', 'GFDI', 'GFTI', 'GHMI', 'GPMI', 'HWFI', 'NAMI', 'NGXI', 'OFPI', 'RI25', 'SPC3', 'UKXI', 'DRCL', 'GFE2', 'MRCL', 'MRFO', 'UKX2', 'UKM', 'AHW4', 'G01I', 'OFCL', 'OCD5', 'BCD5', 'OCS5', 'BCS5', 'OFCI', 'UKMI', 'AHW2', 'EGRR', 'FSSE', 'RI30', 'RI35', 'RYOC', 'UKM2', 'AHWI', 'EGRI', 'TCOA', 'EGR2', 'UWNI', 'HWEI', 'APSU', 'APSI', 'APS2', 'OFC2'])
-
-
-
-
-

Each key represents a forecast model, we’ll select the GFS AP01 forecast which has many initializations. These initializations are named by time in YYYYMMDDHH format:

-
-
-
forecasts_AP01 = forecasts['AP01']
-print(forecasts_AP01.keys())
-
-
-
-
-
dict_keys(['2012102112', '2012102118', '2012102200', '2012102206', '2012102212', '2012102218', '2012102300', '2012102306', '2012102312', '2012102318', '2012102400', '2012102406', '2012102412', '2012102418', '2012102500', '2012102506', '2012102512', '2012102518', '2012102600', '2012102606', '2012102612', '2012102618', '2012102700', '2012102706', '2012102712', '2012102718', '2012102800', '2012102806', '2012102812', '2012102818', '2012102900', '2012102906', '2012102912', '2012102918', '2012103000', '2012103006', '2012103012', '2012103018', '2012103100'])
-
-
-
-
-
-
-

Spagetti Plot of One Esemble Member

-

Looking at GFS Ensemble Member Forecast AP01, we can make a spagetti plot of each of these initializations. The crux of the plot is that we need a for loop through each initialization:

-
-
-
# Set up Cartopy Projection with land features
-ax = plt.axes(projection=ccrs.PlateCarree())
-ax.add_feature(cfeature.LAND, facecolor='lightgray')
-
-# Add Gridlines to right and bottom
-gl = ax.gridlines(crs=ccrs.PlateCarree(), draw_labels=True,
-                  linewidth=.25, color='gray', alpha=0.5, linestyle='--')
-gl.xlabels_top = False
-gl.ylabels_left = False
-gl.xlabel_style = {'size': 8,}
-gl.ylabel_style = {'size': 8,}
-
-# Spagetti Plot of AP01 forecasts
-forecasts_AP01 = forecasts['AP01']
-for i in forecasts_AP01:
-    # We're naming this line even though it is over-written each loop,
-    # so that we can reference the last line in the legend
-    # (as they all share the same formatting)
-    forecast_path = plt.plot(forecasts_AP01[i]['lon'],
-        forecasts_AP01[i]['lat'],
-        color='cornflowerblue',
-        linewidth=0.5)
-
-# Plot the real storm path in a thicker black line
-true_path = plt.plot(sandy_ds.lon,
-    sandy_ds.lat,
-    color='k',
-    linewidth=1) # Make it thicker than the ensemble paths
-
-# Add a legend with only one forecast_path and the true_path
-plt.legend([true_path[0], forecast_path[0]], ['True Path', 'GFS AP01 Forecasts'])
-
-plt.title('Hurricane Sandy (2012)');
-
-
-
-
-../_images/8f75a2cfe44648efbd4ab8de68816be34f387e77f339b13a7f13517cbf1d9f51.png -
-
-

This plot is a great example of a spagetti plot, but is it super useful? Is it confusing? Each line looks like it carries the same weight, when some of these possible paths are from hours before Sandy hit the NorthEast and others are from days before.

-

Maybe it is better to show the user some indication of how the forecast for this ensemble converged on the true path with later and later initialization times.

-
-
-

Spagetti Plot of One Esemble Member with Temporal Colormapping

-
-
-
# Set up Cartopy Projection with land features
-ax = plt.axes(projection=ccrs.PlateCarree())
-ax.add_feature(cfeature.LAND, facecolor='lightgray')
-
-# Add Gridlines to right and bottom
-gl = ax.gridlines(crs=ccrs.PlateCarree(), draw_labels=True,
-                  linewidth=.25, color='gray', alpha=0.5, linestyle='--')
-gl.xlabels_top = False
-gl.ylabels_left = False
-gl.xlabel_style = {'size': 8,}
-gl.ylabel_style = {'size': 8,}
-
-# Spagetti Plot of AP01 forecasts
-forecasts_AP01 = forecasts['AP01']
-
-# Get time information from initialization name
-format = '%Y%m%d%H'
-times = [datetime.datetime.strptime(i, format) for i in list(forecasts_AP01.keys())]
-normalized_times = [(i - times[0]) / (times[-1] - times[0]) for i in times]
-
-# Create a color list for forecast iteration
-cmap = mpl.colors.ListedColormap(plt.cm.autumn_r(normalized_times))
-
-c = 0
-for i in forecasts_AP01:
-    plt.plot(forecasts_AP01[i]['lon'],
-        forecasts_AP01[i]['lat'],
-        color=cmap(c),
-        linewidth=0.5)
-    c += 1
-
-# Plot the real storm path
-true_path = plt.plot(sandy_ds.lon,
-    sandy_ds.lat,
-    color='red', # Selecting a color matching one of the cmap extremes
-    linewidth=1,
-    label='True Path') # The easiest way to add a plot to the legend is with the label kwarg
-
-# Add a legend with only one the true_path
-# Forecasted paths will be shown in a colorbar
-plt.legend()
-
-plt.title('Hurricane Sandy')
-
-# Add colorbar
-cbar = plt.colorbar(plt.cm.ScalarMappable(cmap=cmap), ax=ax, orientation='horizontal', shrink=0.8, pad=0.075)
-cbar.set_label('GFS AP01 Forecasts', labelpad=6)
-
-# Set tick locations and labels for every 4th tick
-# i.e. once a day (a new initialiation every 6 hours)
-tick_indices = range(0, len(times), 4)
-cbar.set_ticks([normalized_times[i] for i in tick_indices])
-cbar.set_ticklabels([times[i].strftime('%d') for i in tick_indices], fontsize=8)
-cbar.ax.text(1.02, 0.5, 'OCT-2012', va='top', ha='left', transform=cbar.ax.transAxes);
-
-
-
-
-../_images/aff8248aaf9a3c9d9f7141986022d58ba3c1e3a414d0fe3dee9cc3bceee2cd49.png -
-
-

Now we can see that as the storm progressed, the AP01 GFS Forecast Ensemble Member converges on Sandy’s true path as the storm progresses through October, 2012.

-

Alternatively, we may want to plot the possible hurricane paths from multiple GFS Forecast Ensemble members from the same iteration timestamp as a spagetti plot.

-
-
-

Spagetti Plot of All Esemble Members at One Point in Time

-

First, we need to grab all of the relevant forecast keys to GFS models (the ones that are titled AP## from 0 to 20):

-
-
-
# List of valid AP## keys from 0 to 20
-GFS_keys = ['AP' + str(i).zfill(2) for i in range(1, 21)]
-
-# Arbitrarily selected midnight on October 27, 2012 to plot all forecasts at
-time = '2012102700'
-
-# Set up Cartopy Projection with land features
-ax = plt.axes(projection=ccrs.PlateCarree())
-ax.add_feature(cfeature.LAND, facecolor='lightgray')
-
-# Add Gridlines to right and bottom
-gl = ax.gridlines(crs=ccrs.PlateCarree(), draw_labels=True,
-                  linewidth=.25, color='gray', alpha=0.5, linestyle='--')
-gl.xlabels_top = False
-gl.ylabels_left = False
-gl.xlabel_style = {'size': 8,}
-gl.ylabel_style = {'size': 8,}
-
-# Spagetti Plot of forecasts
-for i in range(20):
-    ap = forecasts[GFS_keys[i]]
-    forecast_path = plt.plot(ap[time]['lon'],
-        ap[time]['lat'],
-        color='cornflowerblue',
-        linewidth=0.5)
-
-# Plot the real storm path in a thicker black line
-true_path = plt.plot(sandy_ds.lon, sandy_ds.lat, color='k', linewidth=1)
-
-# Add a legend with only one forecast_path and the true_path
-plt.legend([true_path[0], forecast_path[0]],
-    ['True Path', 'AP01 - AP20'],
-    loc='lower right')
-
-plt.title('Hurricane Sandy - GFS Forecasts from Oct-27-2012');
-
-
-
-
-../_images/0b0a78930c416817bd0f84619dd4d0d624f65427fb8550d280e3644eddb118fd.png -
-
-

Hurricane Sandy hit the NorthEast on October 29, 2012. From this spagetti plot we can see that by the 27th most ensemble members of the GFS forecast predicted a similar behavior for the storm.

-

There is more analysis that could be done on hurriane trajectories. We have covered some plotting customization that might be useful for your analysis and data visualization.

-
-
-
-

Spagetti Contour Plot

-

In this example we will read in the geopotential height datafile HGT500_MON_1958-1997.nc from using geocat-datafiles. Then we will look at different timesteps of the HGT geopotential height variable at the 5500 gpm level, plotting this contour’s locations through time. This example is adapted from GeoCAT’s NCL_conOncon_5 script.

-
-

Read in data:

-
-
-
ds = xr.open_dataset(gdf.get("netcdf_files/HGT500_MON_1958-1997.nc"),
-                     decode_times=False)
-
-ds
-
-
-
-
-
Downloading file 'netcdf_files/HGT500_MON_1958-1997.nc' from 'https://github.com/NCAR/GeoCAT-datafiles/raw/main/netcdf_files/HGT500_MON_1958-1997.nc' to '/home/runner/.cache/geocat'.
-
-
-
- - - - - - - - - - - - - - -
<xarray.Dataset>
-Dimensions:  (time: 480, lat: 73, lon: 144)
-Coordinates:
-  * time     (time) int64 0 1 2 3 4 5 6 7 8 ... 472 473 474 475 476 477 478 479
-  * lat      (lat) float32 -90.0 -87.5 -85.0 -82.5 -80.0 ... 82.5 85.0 87.5 90.0
-  * lon      (lon) float32 0.0 2.5 5.0 7.5 10.0 ... 350.0 352.5 355.0 357.5
-Data variables:
-    yrmon    (time) float64 ...
-    HGT      (time, lat, lon) float32 ...
-Attributes:
-    conventions:    None
-    history:        NCEP/NCAR REANALYSIS MONTHLY MEAN SUBSETS\nftp://ncardata...
-    source:         NCEP Reanalysis; ds090.2
-    title:          500mb Geopotential Height: 1958-1997
-    source_mss:     /SHEA/HVL/HGT_1958-1997.nc:  500 mb extracted
-    creation_date:  creation date: Tue Aug  7 16:31:48 MDT 2001
-
-
-
-

Initial Spagetti Plot on North Polar Stereographic Projection

-
-
-
# Set up Cartopy Map Projection
-fig = plt.figure(figsize=(8, 8))
-ax = plt.axes(projection=ccrs.NorthPolarStereo())
-
-gv.set_map_boundary(ax, [-180, 180], [0, 40], south_pad=1)
-ax.add_feature(cfeature.LAND, facecolor='lightgray')
-
-# Set draw_labels to False so that we can manually manipulate it
-gl = ax.gridlines(ccrs.PlateCarree(),
-                  draw_labels=False,
-                  linestyle="--",
-                  linewidth=1,
-                  color='darkgray',
-                  zorder=2)
-
-# Iterate through the 19 timesteps, plotting the data
-n = 19
-for x in range(n):
-
-    # Get a slice of data at the 12*x timestep
-    p = ds.HGT.isel(time=12*x)
-
-    # Use geocat-viz utility function to handle the no-shown-data artifact
-    # of 0 and 360-degree longitudes
-    slon = gv.xr_add_cyclic_longitudes(p, "lon")
-
-    # Plot contour data at pressure level 5500 for the 12*x timestep
-    p = slon.plot.contour(ax=ax,
-                          transform=ccrs.PlateCarree(),
-                          linewidths=0.5,
-                          levels=[5500],
-                          colors='blue',
-                          add_labels=False)
-
-
-
-
-../_images/72e49b6ea417f0b974401d0908dd153d5c181c2a65fb5acc523fee90352e3c2a.png -
-
-
-
-

Adding Directional Labels to Polar Stereographic Projection

-

Adding labels to a map projection that aren’t lat/lon coordinates is less than intuitive. In this example we manually add labels and select their locations so that you can see NESW labels.

-
-
-
# Generate a figure
-fig = plt.figure(figsize=(8, 8))
-
-# Create an axis with a polar stereographic projection
-ax = plt.axes(projection=ccrs.NorthPolarStereo())
-
-# Add land feature to map
-ax.add_feature(cfeature.LAND, facecolor='lightgray')
-
-# Set map boundary to include latitudes between 0 and 40 and longitudes
-# between -180 and 180 only
-gv.set_map_boundary(ax, [-180, 180], [0, 40], south_pad=1)
-
-# Set draw_labels to False so that you can manually manipulate it later
-gl = ax.gridlines(ccrs.PlateCarree(),
-                  draw_labels=False,
-                  linestyle="--",
-                  linewidth=1,
-                  color='darkgray',
-                  zorder=2)
-
-# Manipulate latitude and longitude gridline numbers and spacing
-gl.ylocator = mticker.FixedLocator(np.arange(0, 90, 15))
-gl.xlocator = mticker.FixedLocator(np.arange(-180, 180, 30))
-
-# Manipulate longitude labels (0, 30 E, 60 E, ..., 30 W, etc.)
-ticks = np.arange(0, 210, 30)
-etick = ['0'] + [
-    r'%dE' % tick for tick in ticks if (tick != 0) & (tick != 180)
-] + ['180']
-wtick = [r'%dW' % tick for tick in ticks if (tick != 0) & (tick != 180)]
-labels = etick + wtick
-xticks = np.arange(0, 360, 30)
-yticks = np.full_like(xticks, -5)  # Latitude where the labels will be drawn
-for xtick, ytick, label in zip(xticks, yticks, labels):
-    if label == '180':
-        ax.text(xtick,
-                ytick,
-                label,
-                fontsize=12,
-                horizontalalignment='center',
-                verticalalignment='top',
-                transform=ccrs.Geodetic())
-    elif label == '0':
-        ax.text(xtick,
-                ytick,
-                label,
-                fontsize=12,
-                horizontalalignment='center',
-                verticalalignment='bottom',
-                transform=ccrs.Geodetic())
-    else:
-        ax.text(xtick,
-                ytick,
-                label,
-                fontsize=12,
-                horizontalalignment='center',
-                verticalalignment='center',
-                transform=ccrs.Geodetic())
-
-# Iterate through 18 different timesteps
-for x in range(19):
-
-    # Get a slice of data at the 12*x+1 timestep
-    p = ds.HGT.isel(time=12 * x + 1)
-
-    # Use geocat-viz utility function to handle the no-shown-data artifact
-    # of 0 and 360-degree longitudes
-    slon = gv.xr_add_cyclic_longitudes(p, "lon")
-
-    # Plot contour data at pressure level 5500 for the 12*x+1 timestep
-    p = slon.plot.contour(ax=ax,
-                          transform=ccrs.PlateCarree(),
-                          linewidths=0.5,
-                          levels=[5500],
-                          colors='blue',
-                          add_labels=False)
-
-# Use geocat.viz.util convenience function to add titles
-gv.set_titles_and_labels(ax,
-                         maintitle=r"$\bf{Spaghetti}$" + " " + r"$\bf{Plot}$",
-                         lefttitle=slon.long_name,
-                         righttitle='5500 '+slon.units)
-
-# Make tight layout
-plt.tight_layout()
-
-
-
-
-../_images/2bb3df9d8f98e1c6df0f7cd73491e1251ffe9e4eadbfd4669bce0b5c59594324.png -
-
-

Now in this example, there isn’t necessarily a temporal progression of geopotential height, but to be sure let’s add a colormap component to each of our loops.

-

This is also useful because for your data visualization application there might be, and the commands are slightly different for a contour plot as for a line plot in the above example.

-
-
-

Contour Spagetti Plot Temporal Colorbar Manipulation

-

Let’s update add a discrete colorbar that has yearly ticklabels. One challenge addressed in this example is setting the ticklabels to be in the center of each discrete color box.

-
-
-
# Set up Cartopy Map Projection
-fig = plt.figure(figsize=(8, 8))
-ax = plt.axes(projection=ccrs.NorthPolarStereo())
-
-gv.set_map_boundary(ax, [-180, 180], [0, 40], south_pad=1)
-ax.add_feature(cfeature.LAND, facecolor='lightgray')
-
-# Set draw_labels to False so that we can manually manipulate it
-gl = ax.gridlines(ccrs.PlateCarree(),
-                  draw_labels=False,
-                  linestyle="--",
-                  linewidth=1,
-                  color='darkgray',
-                  zorder=2)
-
-# Manipulate latitude and longitude gridline numbers and spacing
-gl.ylocator = mticker.FixedLocator(np.arange(0, 90, 15))
-gl.xlocator = mticker.FixedLocator(np.arange(-180, 180, 30))
-
-# Manipulate longitude labels (0, 30 E, 60 E, ..., 30 W, etc.)
-ticks = np.arange(0, 210, 30)
-etick = ['0'] + [
-    r'%dE' % tick for tick in ticks if (tick != 0) & (tick != 180)
-] + ['180']
-wtick = [r'%dW' % tick for tick in ticks if (tick != 0) & (tick != 180)]
-labels = etick + wtick
-xticks = np.arange(0, 360, 30)
-yticks = np.full_like(xticks, -5)  # Latitude where the labels will be drawn
-for xtick, ytick, label in zip(xticks, yticks, labels):
-    if label == '180':
-        ax.text(xtick,
-                ytick,
-                label,
-                fontsize=12,
-                horizontalalignment='center',
-                verticalalignment='top',
-                transform=ccrs.Geodetic())
-    elif label == '0':
-        ax.text(xtick,
-                ytick,
-                label,
-                fontsize=12,
-                horizontalalignment='center',
-                verticalalignment='bottom',
-                transform=ccrs.Geodetic())
-    else:
-        ax.text(xtick,
-                ytick,
-                label,
-                fontsize=12,
-                horizontalalignment='center',
-                verticalalignment='center',
-                transform=ccrs.Geodetic())
-
-# Create a color list for each of the 19 contours
-n = 19
-cmap = plt.get_cmap('winter_r', n) # the `, n` makes the colormap display discretized
-bounds = np.linspace(0, 1, n)
-
-# Iterate through the timesteps
-for x in range(n):
-
-    # Get a slice of data at the 12*x timestep
-    p = ds.HGT.isel(time=12*x)
-
-    # Handle wrapping artifacts
-    slon = gv.xr_add_cyclic_longitudes(p, "lon")
-
-    # Plot contour data at pressure level 5500 for the 12*x timestep
-    p = slon.plot.contour(ax=ax,
-                          transform=ccrs.PlateCarree(),
-                          linewidths=0.5,
-                          levels=[5500],
-                          colors=[cmap(bounds)[x]], # set colors to use our new cmap
-                          add_labels=False)
-
-# Add a colorbar
-# The default time unit is in months since 1958, years is more intuitive
-year_0 = 1958
-year_n = (ds.time.isel(time=12*n) / 12).astype(int) + year_0
-
-norm = plt.Normalize(vmin=year_0, vmax=year_n)
-cbar = plt.colorbar(plt.cm.ScalarMappable(cmap=cmap, norm=norm),
-    ax=ax,
-    orientation='vertical',
-    shrink=0.8, # Shrink to the approximate size of the map
-    pad = 0.1) # Pad so colorbar doesn't overlap with directional label
-
-cbar.set_ticks(np.arange(year_0+0.5, year_n)) # Set tick locations to be at color midpoints
-cbar.set_ticklabels(np.arange(year_0, year_n)) # Set tick labels to be years (despite their location value being year + 0.5)
-cbar.set_label('Time (years)')
-
-# Use geocat.viz.util convenience function to add titles
-gv.set_titles_and_labels(ax,
-                         maintitle=r"$\bf{Spaghetti}$" + " " + r"$\bf{Plot}$",
-                         lefttitle=slon.long_name,
-                         righttitle='5500 '+slon.units)
-
-# Make tight layout
-plt.tight_layout();
-
-
-
-
-../_images/06ea4b431cbb8620d94d462fdb281865df97af499506d091ded3ab839bc978bc.png -
-
-
-
-

Contour Spagetti Plot with Hand-Picked Colors

-

If you want your plot to be visually appealing it might be worth selecting different colors for each contour plot in the for-loop, however these do not have to be sequentially ordered or time-aware. It is actually simplest to hand-pick colors for each loop. In this iteration of the plot we hand pick colors and plot the first time step on its own to demonstrate plotting one loop unlike the others.

-
-
-
# Generate a figure
-fig = plt.figure(figsize=(8, 8))
-
-# Create an axis with a polar stereographic projection
-ax = plt.axes(projection=ccrs.NorthPolarStereo())
-
-# Add land feature to map
-ax.add_feature(cfeature.LAND, facecolor='lightgray')
-
-# Set map boundary to include latitudes between 0 and 40 and longitudes
-# between -180 and 180 only
-gv.set_map_boundary(ax, [-180, 180], [0, 40], south_pad=1)
-
-# Set draw_labels to False so that you can manually manipulate it later
-gl = ax.gridlines(ccrs.PlateCarree(),
-                  draw_labels=False,
-                  linestyle="--",
-                  linewidth=1,
-                  color='darkgray',
-                  zorder=2)
-
-# Manipulate latitude and longitude gridline numbers and spacing
-gl.ylocator = mticker.FixedLocator(np.arange(0, 90, 15))
-gl.xlocator = mticker.FixedLocator(np.arange(-180, 180, 30))
-
-# Manipulate longitude labels (0, 30 E, 60 E, ..., 30 W, etc.)
-ticks = np.arange(0, 210, 30)
-etick = ['0'] + [
-    r'%dE' % tick for tick in ticks if (tick != 0) & (tick != 180)
-] + ['180']
-wtick = [r'%dW' % tick for tick in ticks if (tick != 0) & (tick != 180)]
-labels = etick + wtick
-xticks = np.arange(0, 360, 30)
-yticks = np.full_like(xticks, -5)  # Latitude where the labels will be drawn
-for xtick, ytick, label in zip(xticks, yticks, labels):
-    if label == '180':
-        ax.text(xtick,
-                ytick,
-                label,
-                fontsize=12,
-                horizontalalignment='center',
-                verticalalignment='top',
-                transform=ccrs.Geodetic())
-    elif label == '0':
-        ax.text(xtick,
-                ytick,
-                label,
-                fontsize=12,
-                horizontalalignment='center',
-                verticalalignment='bottom',
-                transform=ccrs.Geodetic())
-    else:
-        ax.text(xtick,
-                ytick,
-                label,
-                fontsize=12,
-                horizontalalignment='center',
-                verticalalignment='center',
-                transform=ccrs.Geodetic())
-
-# Get slice of data at the 0th timestep - plot this contour line separately
-# because it will be thicker than the other contour lines
-p = ds.HGT.isel(time=0)
-
-# Use geocat-viz utility function to handle the no-shown-data
-# artifact of 0 and 360-degree longitudes
-slon = gv.xr_add_cyclic_longitudes(p, "lon")
-
-# Plot contour data at pressure level 5500 at the first timestep
-p = slon.plot.contour(ax=ax,
-                      transform=ccrs.PlateCarree(),
-                      linewidths=1.5,
-                      levels=[5500],
-                      colors='black',
-                      add_labels=False)
-
-# Create a color list for each of the next 18 contours
-colorlist = [
-    "crimson", "green", "blue", "yellow", "cyan", "hotpink", "crimson",
-    "skyblue", "navy", "lightyellow", "mediumorchid", "orange", "slateblue",
-    "palegreen", "magenta", "springgreen", "pink", "forestgreen", "violet"
-]
-
-# Iterate through 18 different timesteps
-for x in range(18):
-
-    # Get a slice of data at the 12*x+1 timestep
-    p = ds.HGT.isel(time=12 * x + 1)
-
-    # Use geocat-viz utility function to handle the no-shown-data artifact
-    # of 0 and 360-degree longitudes
-    slon = gv.xr_add_cyclic_longitudes(p, "lon")
-
-    # Plot contour data at pressure level 5500 for the 12*x+1 timestep
-    p = slon.plot.contour(ax=ax,
-                          transform=ccrs.PlateCarree(),
-                          linewidths=0.5,
-                          levels=[5500],
-                          colors=colorlist[x],
-                          add_labels=False)
-
-# Use geocat.viz.util convenience function to add titles
-gv.set_titles_and_labels(ax,
-                         maintitle=r"$\bf{Spaghetti}$" + " " + r"$\bf{Plot}$",
-                         lefttitle=slon.long_name,
-                         righttitle='5500 '+slon.units)
-
-# Make tight layout
-plt.tight_layout()
-
-
-
-
-../_images/e5a381d3131348ac48520f82ca1a50faa1f06c9acdf6678993eeb4231148a6dc.png -
-
-
-
-
-
-

Summary

-

Spagetti Plots are many lines drawn on the same figure. They have pros and cons. They are visually stunning but can be confusing, so it is important to make sure your data visualization conveys accurate information either by manipulating color or linewidth. Since the manipulation of spagetti plots have their own considerations, this chapter shows several design choices that you can use to jumpstart your visualization needs.

-
-

What’s next?

-

Next up let’s discuss elements of Visualization of Unstructured Grids.

-
-
- -
- - - - -
- - -
-
-
- -
-
- - - -
-
- - - - - - - - - -
-
- - \ No newline at end of file diff --git a/_preview/21/notebooks/taylor-diagrams.html b/_preview/21/notebooks/taylor-diagrams.html deleted file mode 100644 index bb06cdd..0000000 --- a/_preview/21/notebooks/taylor-diagrams.html +++ /dev/null @@ -1,716 +0,0 @@ - - - - - - - - Taylor Diagrams — Advanced Visualization Cookbook - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - -
-
- - - - - -
-
- -
- - - - - - - - - - - - - - - - - - -
- - - -
-
-
-
- -
- -
-

Taylor Diagrams

-
-

Overview

-

Taylor diagrams are a “concise statistical summary of how well patterns match each other in terms of their correlation, their root-mean-square difference and the ratio of their variances”. Taylor diagrams plot the weighted centered pattern correlations, the ratios of the normalized root-mean-squared differences between the test and reference data sets, and optionally a bias statistic. This notebook explores how to create and customize Taylor diagrams using geocat-viz.

-
    -
  1. Creating a Simple Taylor Diagram

  2. -
  3. Displaying Distinct Datasets

  4. -
  5. Finishing Touches

  6. -
-
-
-

Prerequisites

- - - - - - - - - - - - - -

Concepts

Importance

Notes

Matplotlib

Necessary

-
    -
  • Time to learn: 50 minutes

  • -
-
-
-
-
import matplotlib.pyplot as plt
-import numpy as np
-
-import geocat.viz as gv
-
-
-
-
-

“Generally, the plotted values are derived from climatological monthly, seasonal or annual means. Because the different variables (eg: precipitation, temperature) may have widely varying numerical values, the results are normalized by the reference variables. The ratio of the normalized variances indicates the relative amplitude of the model and observed variations.” - from NCL

-
-
-

Creating a Simple Taylor Diagram

-
-
-
# Create figure and Taylor Diagram instance
-fig = plt.figure(figsize=(6, 6))
-taylor = gv.TaylorDiagram(fig=fig, label='REF')
-
-# Draw diagonal dashed lines from origin to correlation values
-# Also enforces proper X-Y ratio
-taylor.add_xgrid(np.array([0.6, 0.9]))
-
-# Add a model dataset of one point
-taylor.add_model_set(stddev=[.6], corrcoef=[.24]);
-
-
-
-
-../_images/46c23052e74dfa8b2dfd2728d82aa1f8f9565b32dc6d39fd6fc30fd46b6d5fb7.png -
-
-
-
-

Displaying Distinct Datasets

-

When working with data, you’ll want to make two datasets distinct by providing different kwargs for how to draw them.

-

First let’s creat two sets of dummy data:

-
-
-
# Case A
-a_std = [1.230, 0.988, 1.092, 1.172, 1.064, 0.966, 1.079, 0.781]  # standard deviation
-a_cc = [0.958, 0.973, 0.740, 0.743, 0.922, 0.982, 0.952, 0.433]  # correlation coefficient
-
-# Case B
-b_std = [1.129, 0.996, 1.016, 1.134, 1.023, 0.962, 1.048, 0.852]  # standard deviation
-b_cc = [0.963, 0.975, 0.801, 0.814, 0.946, 0.984, 0.968, 0.647]  # correlation coefficient
-
-
-
-
-

And let’s plot it:

-
-
-
# Create figure and Taylor Diagram instance
-fig = plt.figure(figsize=(12, 12))
-taylor = gv.TaylorDiagram(fig=fig, label='REF')
-ax = plt.gca()
-
-# Draw diagonal dashed lines from origin to correlation values
-# Also enforces proper X-Y ratio
-taylor.add_xgrid(np.array([0.6, 0.9]))
-
-# Add model sets for p and t datasets
-taylor.add_model_set(
-    a_std,
-    a_cc,
-    fontsize=20,
-    xytext=(-5, 10),  # marker label location, in pixels
-    color='red',
-    marker='o',
-    facecolors='none',
-    s=100)  # marker size
-taylor.add_model_set(
-    b_std,
-    b_cc,
-    fontsize=20,
-    xytext=(-5, 10),  # marker label location, in pixels
-    color='blue',
-    marker='D',
-    facecolors='none',
-    s=100)
-
-# Add figure title
-plt.title("Example", size=26, pad=45);
-
-
-
-
-../_images/1a2a12da79065dd531ea089264276d2fe4dd4a0fc20e9f1a46d0dc431ac911c8.png -
-
-
-
-

Finishing touches

-
-
-
# Create figure and Taylor Diagram instance
-fig = plt.figure(figsize=(12, 12))
-taylor = gv.TaylorDiagram(fig=fig, label='REF')
-ax = plt.gca()
-
-# Draw diagonal dashed lines from origin to correlation values
-# Also enforces proper X-Y ratio
-taylor.add_xgrid(np.array([0.6, 0.9]))
-
-# Add model sets for p and t datasets
-taylor.add_model_set(
-    a_std,
-    a_cc,
-    fontsize=20,
-    xytext=(-5, 10),  # marker label location, in pixels
-    color='red',
-    marker='o',
-    facecolors='none',
-    label='Case A',
-    s=100)  # marker size
-taylor.add_model_set(
-    b_std,
-    b_cc,
-    fontsize=20,
-    xytext=(-5, 10),  # marker label location, in pixels
-    color='blue',
-    marker='D',
-    facecolors='none',
-    label='Case B',
-    s=100)
-
-# Add Add constant centered RMS difference contours.
-taylor.add_contours(levels=np.arange(0, 1.1, 0.25),
-                 colors='lightgrey',
-                 linewidths=0.5)
-
-# Add more standard deviation grid lines
-taylor.add_ygrid(np.array([0.5, 1.5]), color='grey')
-
-# Add figure title
-plt.title("Example", size=26, pad=45);
-
-# Add model name
-namearr = ['SLP', 'Tsfc', 'Prc', 'Prc 30S-30N', 'LW', 'SW', 'U300', 'Guess']
-taylor.add_model_name(namearr, fontsize=16)
-
-# Add figure legend
-taylor.add_legend(fontsize=16);
-
-
-
-
-../_images/8584cd1e4096ee795add995f6fc4f740ce1f2e2a2739ed8a4273c934afc4a490.png -
-
-
-
-
-

Summary

-
-

What’s next?

-
-
- -
- - - - -
- - -
-
-
- -
-
- - - -
-
- - - - - - - - - -
-
- - \ No newline at end of file diff --git a/_preview/21/objects.inv b/_preview/21/objects.inv deleted file mode 100644 index 6c8a8df..0000000 --- a/_preview/21/objects.inv +++ /dev/null @@ -1,7 +0,0 @@ -# Sphinx inventory version 2 -# Project: Python -# Version: -# The remainder of this file is compressed using zlib. -xڅN0 { -@@\iPMcְ2IttP)?>;7vN - - - - - - Search — Advanced Visualization Cookbook - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - -
-
- - - - - -
-
- -
- - - - - - - - - - - - - - -
- - -
- -
-
-
-
-
- -
- -

Search

- - - - -

- Searching for multiple words only shows matches that contain - all words. -

- - -
- - - -
- - - -
- -
- - -
- -
-
-
-
-
- -
-
- - - - - - \ No newline at end of file diff --git a/_preview/21/searchindex.js b/_preview/21/searchindex.js deleted file mode 100644 index 5c78df1..0000000 --- a/_preview/21/searchindex.js +++ /dev/null @@ -1 +0,0 @@ -Search.setIndex({docnames:["README","notebooks/animation","notebooks/comparison","notebooks/good-viz","notebooks/how-to-cite","notebooks/mpas-datashader","notebooks/notebook-template","notebooks/plot-elements","notebooks/skewt","notebooks/spagetti","notebooks/taylor-diagrams"],envversion:{"sphinx.domains.c":2,"sphinx.domains.changeset":1,"sphinx.domains.citation":1,"sphinx.domains.cpp":5,"sphinx.domains.index":1,"sphinx.domains.javascript":2,"sphinx.domains.math":2,"sphinx.domains.python":3,"sphinx.domains.rst":2,"sphinx.domains.std":2,"sphinx.ext.intersphinx":1,sphinx:56},filenames:["README.md","notebooks/animation.ipynb","notebooks/comparison.ipynb","notebooks/good-viz.ipynb","notebooks/how-to-cite.md","notebooks/mpas-datashader.ipynb","notebooks/notebook-template.ipynb","notebooks/plot-elements.ipynb","notebooks/skewt.ipynb","notebooks/spagetti.ipynb","notebooks/taylor-diagrams.ipynb"],objects:{},objnames:{},objtypes:{},terms:{"0":[1,2,3,4,5,7,8,9,10],"00":[3,8,9],"000000000":9,"00arrai":9,"01":[2,3],"016":10,"019":5,"01t00":3,"02":[3,9],"023":10,"0304":5,"04167":3,"048":10,"05":[3,9],"06":9,"064":10,"075":9,"079":10,"09":9,"092":10,"0arrai":9,"0short_nam":9,"0th":9,"0x7fc785965f00":8,"0x7fc78de82560":8,"1":[1,2,3,5,7,8,9,10],"10":[1,2,3,5,6,7,8,9,10],"100":[1,2,3,9,10],"1000":[1,2,3,7,8,9],"1002":9,"1003":9,"1005":9,"1006":9,"1011":3,"102":9,"105":9,"1050":3,"106":2,"107":9,"1070":3,"108":8,"11":[2,3,8],"110":9,"1101":3,"110m_physic":1,"1111":3,"111111111111":3,"112":9,"115":9,"117":9,"1186":5,"12":[1,3,8,9,10],"120":9,"122":9,"125":[3,9],"127":[3,9],"129":10,"13":[8,9],"130":9,"132":9,"134":10,"135":9,"137":9,"14":[2,8,9],"140":9,"142":9,"144":[2,9],"144coordin":9,"145":9,"147":[8,9],"1475":8,"148":8,"149":8,"15":[2,3,8,9],"150":[2,8,9],"1508":8,"151":8,"152":[8,9],"1527":8,"155":9,"157":9,"16":[2,3,9,10],"160":9,"162":9,"165":9,"167":9,"1693":8,"17":[8,9],"170":9,"172":[9,10],"175":9,"176381":8,"177":9,"17becf":3,"18":[2,9],"180":9,"1802":8,"182":[2,9],"185":9,"187":9,"19":[1,8,9],"190":9,"192":9,"195":9,"1958":9,"197":9,"1970":3,"1997":9,"1997source_mss":9,"1f77b4":3,"2":[2,3,4,5,7,8,9],"20":[2,3,7,8,9,10],"200":[1,5,9],"2000":[2,3],"2001":[9,10],"2001xarrai":9,"2012":9,"2012102112":9,"2012102118":9,"2012102200":9,"2012102206":9,"2012102212":9,"2012102218":9,"2012102300":9,"2012102306":9,"2012102312":9,"2012102318":9,"2012102400":9,"2012102406":9,"2012102412":9,"2012102418":9,"2012102500":9,"2012102506":9,"2012102512":9,"2012102518":9,"2012102600":9,"2012102606":9,"2012102612":9,"2012102618":9,"2012102700":9,"2012102706":9,"2012102712":9,"2012102718":9,"2012102800":9,"2012102806":9,"2012102812":9,"2012102818":9,"2012102900":9,"2012102906":9,"2012102912":9,"2012102918":9,"2012103000":9,"2012103006":9,"2012103012":9,"2012103018":9,"2012103100":9,"2012basin":9,"2012season":9,"202":9,"2023":8,"205":9,"207":9,"21":[2,9],"210":9,"212":9,"215":9,"217":9,"21t18":9,"22":[2,9],"220":[2,9],"222":9,"225":9,"227":9,"22t00":9,"22t06":9,"22t12":9,"22t18":9,"23":[2,9],"230":[9,10],"230855":8,"232":9,"235":9,"237":9,"23t00":9,"23t06":9,"23t12":9,"23t18":9,"24":[9,10],"240":9,"241":1,"242":9,"245":9,"247":9,"24t00":9,"24t06":9,"24t12":9,"24t18":9,"24t19":9,"25":[2,9,10],"250":9,"252":9,"255":9,"256":3,"257":9,"257426":8,"258":2,"25t00":9,"25t05":9,"25t06":9,"25t09":9,"25t12":9,"25t18":9,"26":[9,10],"260":9,"262":9,"265":9,"267":9,"26t00":9,"26t06":9,"26t12":9,"26t18":9,"27":[2,9],"270":9,"272":9,"275":9,"277":9,"27t00":9,"27t06":9,"27t12":9,"27t18":9,"27th":9,"28":[2,9],"280":[8,9],"282":9,"285":9,"287":[8,9],"28951":8,"28t00":9,"28t06":9,"28t12":9,"28t18":9,"29":9,"290":9,"29144":8,"292":9,"29293":8,"295":[2,9],"29601":8,"29654":8,"297":9,"29t00":9,"29t06":9,"29t12":9,"29t18":9,"29t21":9,"29t23":9,"2ca02c":3,"2titl":9,"3":[0,2,3,5,7,8,9],"30":[1,2,5,8,9,10],"300":9,"302":9,"305":[8,9],"307":9,"30arrai":9,"30km":5,"30n":10,"30t00":9,"30t06":9,"30t12":9,"30t18":9,"31":[2,9],"310":9,"312":9,"315":9,"317":9,"318517":8,"31t00":9,"31t06":9,"31t12":9,"32":[2,9],"320":9,"322":9,"325":9,"327":9,"33":9,"330":9,"331":2,"332":9,"335":9,"337":9,"34":2,"340":9,"342":9,"345":9,"347":9,"35":[1,9],"350":[8,9],"352":9,"355":9,"357":9,"36":[2,9],"360":[1,9],"366":2,"37":[2,9],"38":[2,9],"39":[8,9],"3arrai":7,"3d":2,"4":[2,3,4,7,8,9],"40":[7,9],"4000":2,"401":2,"41":9,"42":[2,9],"43":2,"431962":8,"433":10,"435":2,"44":2,"45":[8,9,10],"457456":8,"45coordin":9,"46":2,"468":2,"47":[2,9],"470":9,"471":9,"472":9,"473":9,"474":9,"475":9,"476":9,"477":9,"478":9,"479":9,"479long_nam":9,"48":[2,9],"480":9,"480lat":9,"49":2,"4arrai":7,"4lon":7,"4th":9,"4xarrai":7,"5":[1,2,3,6,7,8,9,10],"50":[2,3,9,10],"500":9,"500mb":9,"501":2,"5045760":9,"51":7,"52":9,"53":8,"533":2,"54":2,"55":[2,8,9],"5500":9,"56":2,"565":2,"57":[2,9],"576804":8,"58":2,"597":2,"5arrai":9,"5short_nam":9,"6":[2,3,7,8,9,10],"60":[2,9],"600":5,"6000":3,"604723":8,"62":9,"629":2,"63":2,"647":10,"65":[3,9],"656":2,"6675":9,"6675xarrai":9,"67":9,"680":2,"7":[2,3,7,8,9],"70":9,"704":2,"71":9,"72":[2,9],"720729":8,"72476":8,"727":2,"73":9,"73lon":9,"74":9,"740":10,"743":10,"75":[5,8,9],"751":2,"75km":5,"76":9,"77":9,"772116":8,"776":2,"78":9,"781":10,"79":9,"796":2,"7arrai":9,"7f7f7f":3,"8":[1,2,3,7,8,9],"80":[1,9],"800832":8,"801":10,"802501":8,"812":2,"814":10,"82":9,"820":8,"824":2,"831":8,"833":2,"841":2,"848":8,"849":2,"85":[8,9],"850":8,"852":10,"853":8,"857":2,"866":2,"87":9,"874":2,"88":[2,3],"883":2,"889":2,"893":2,"897":2,"8988":3,"8c564b":3,"9":[2,3,7,8,9,10],"90":9,"902":2,"92":[2,9],"922":10,"925":3,"93":2,"940":9,"943":9,"945":9,"946":[9,10],"9467bd":3,"947":9,"95":[3,9],"950":9,"950x800":7,"952":[9,10],"954":9,"956":9,"958":10,"959":9,"960":9,"962":10,"963":[9,10],"964":9,"965":9,"966":[9,10],"968":[9,10],"969":9,"97":9,"970":9,"971":9,"972":9,"973":10,"975":10,"978":9,"981":9,"982":10,"984":10,"986":9,"987":9,"988":10,"990":9,"992":9,"993":9,"995":9,"995arrai":9,"996":10,"998":9,"abstract":8,"break":8,"case":[3,10],"catch":3,"class":[1,8],"default":[3,5,8,9],"do":[2,3,5,6,9],"final":[6,8],"function":[0,2,3,6,9],"import":[0,1,2,5,7,8,9,10],"int":9,"long":[2,4],"new":[1,3,6,8,9],"public":[2,9],"return":5,"short":6,"static":[2,9],"super":9,"true":[1,2,3,5,9],"try":6,"var":5,"while":[2,4,5,7],A:[0,3,10],And:[3,6,9,10],As:5,BY:4,Be:[2,6],But:5,By:[8,9],For:[1,3,5,6,8],If:[0,3,6,7,8,9],In:[0,3,5,6,8,9],Is:9,It:[2,3,7,8,9],Not:1,OR:2,On:8,Or:6,The:[0,1,2,4,5,6,7,8,9,10],Then:[6,9],There:[0,1,2,7,9],These:[5,6,8,9],To:[2,3,8],With:3,__init__:1,_intern:3,a_cc:10,a_std:10,ab:5,abcd:2,abl:0,about:[2,3,5,8],abov:[6,9],ac00:9,ac:9,access:[3,6,9],accumpani:3,accur:[3,9],achiev:0,across:2,activ:0,actual:[5,8,9],ad:[2,6,7],adapt:[4,9],add:[2,6,7,8,9,10],add_ax:1,add_colorbar:1,add_contour:10,add_featur:9,add_label:9,add_legend:10,add_model_nam:10,add_model_set:10,add_xgrid:10,add_ygrid:10,addit:[0,7,8],addition:8,address:[3,9],addressess:5,adiabat:8,admonit:6,aem2:9,aemi:9,aemn:9,affect:3,after:[0,5,6],agg:3,agu:10,ahw2:9,ahw4:9,ahwi:9,aid:2,aim:2,air:8,al182012:9,al182012nam:9,al182012operational_id:9,alarm:9,alberto:3,algorithm:[3,5],align:[3,6],all:[0,1,2,3,4,5,6,8],allow:[0,2,6,7,8],almost:[0,7],alon:3,along:5,alpha:[3,8,9],alreadi:[0,8],also:[0,3,5,6,8,9,10],alt:6,altern:[3,9],altogeth:6,alwai:[3,4],amazonaw:1,amount:5,amplifi:3,amplitud:10,an:[1,2,3,5,6,8,9],analysi:[2,3,9],andal:3,angl:[0,8],ani:[0,1,3,6,9],anim:[2,3],anneal:3,annot:[2,3,5],annual:10,anoth:[2,3],antialias:3,anyon:2,anyth:7,anywher:6,ap01:9,ap02:9,ap03:9,ap04:9,ap05:9,ap06:9,ap07:9,ap08:9,ap09:9,ap10:9,ap11:9,ap12:9,ap13:9,ap14:9,ap15:9,ap16:9,ap17:9,ap18:9,ap19:9,ap20:9,ap:9,apach:4,appeal:9,appear:[3,8],appl:3,appli:[7,8],applic:[0,9],approach:[5,9],appropri:[3,4,6,7,8],approxim:[6,9],aps2:9,apsi:9,apsu:9,ar:[0,1,2,3,4,5,7,8,9,10],arang:[2,7,9,10],arbitrari:3,arbitrarili:9,archiv:4,area:5,aren:9,argument:[3,8],arial:3,armi:6,around:[2,6,8],arrai:[2,7,9,10],artif:5,artifact:9,artistanim:1,ask:[2,6],aspect:[3,10],associ:9,astyp:9,atlant:9,atmospher:[0,2],attent:3,attribut:[3,6,7,9],audienc:3,aug:9,author:[2,4,6],authorship:6,auto:3,autodesk:3,autoformatt:3,autolayout:3,autolimit_mod:3,automat:7,autumn_r:9,auxilliari:5,avail:[0,5],avant:3,avn2:9,avni:9,avno:9,avoid:[3,5,6],awar:9,ax1:3,ax2:3,ax3:3,ax4:3,ax:[1,2,3,7,8,9,10],axes3d:3,axi:[3,8,9],axisbelow:3,b0b0b0:3,b:[8,10],b_cc:10,b_std:10,back:3,backend:[2,3],backend_fallback:3,backend_inlin:3,background:[5,6],backspac:3,bam:9,bamd:9,bamm:9,bar:[3,7],barb:8,base:3,basemap:2,basic:1,basin:9,bbox:3,bcbd22:3,bcd5:9,bcs5:9,beauti:3,becaus:[3,5,8,9,10],befor:[1,6,9],begin:[3,6,7],behavior:9,behind:0,being:[8,9],below:[0,6],benefit:5,best:[2,3,9],beta:6,better:[2,5,7,9],between:[0,9,10],beyond:3,bf:[3,9],bfit:3,bia:10,bin:3,bing:3,bit:8,bitrat:3,bitstream:3,black:[3,9],blit:1,blue:[8,9,10],bodi:6,bokeh:5,bold:3,book:[0,4,6],bookman:3,bootstrap:3,borderaxespad:3,borderpad:3,both:[2,3,5,9],bottom:[1,3,6,8,9],bound:[3,9],boundari:9,box:9,box_select:2,box_zoom:2,boxplot:3,boxprop:3,bracket:6,brief:6,briefli:6,broken:0,browser:2,build:[0,6],built:2,buit:2,bundl:2,butt:3,c0:3,c1:3,c2:3,c:[3,9],cach:[1,9],cairo:3,cal:3,calc:[2,8],calcul:[1,2,5],call:7,can:[0,1,2,3,5,6,7,8,9],canon:6,capac:2,capprop:3,capsiz:3,capstyl:3,care:[3,6],carq:9,carri:9,cartopi:[0,1,3,5,6,7,9],cbar:9,cc:4,ccr:[1,2,5,9],ccw:5,cd:0,cdf:1,cell:[0,2,6,8],cellsonvertex:5,cemn:9,center:[1,2,3,5,9,10],center_baselin:3,center_longitud:1,centuri:3,certain:0,cfeatur:9,challeng:9,chanceri:3,chang:[0,3,8],chao:9,chapter:[0,2,3,9],charcoal:3,chart:3,charter:3,check:[2,6],cherri:3,chicago:3,choic:[2,3,8,9],choos:3,chunksiz:3,citat:6,clarif:6,classic_mod:3,cleanli:6,clear:[1,6],clearli:9,click:0,climatolog:10,clip:9,clockwis:5,clone:0,cloud:0,clp5:9,clutter:8,clyne:0,cm:[3,9],cmap:[1,3,7,9],cmc2:9,cmc:9,cmci:9,cmd:3,co:7,coastlin:[1,2,5],code:[0,3,4,5,6,8],codec:3,coeffici:10,cognic:3,collect:[2,8],color:[2,3,10],colorblind:3,colorlist:9,column:[2,5,8],column_stack:5,columnspac:3,com:[0,1,6,9],combin:0,come:[0,2,8],comfort:[2,6],comic:3,command:[3,8,9],comment:[3,6],commit:6,common:[3,4],commonli:7,commun:[0,3,4],compar:[0,9],comparison:0,compel:0,compil:5,complet:[0,9],complic:9,compon:[2,9],composite_imag:3,comprehens:2,compress:3,comput:[3,5],con:9,concentr:3,concept:[1,2,3,5,6,7,8,9,10],concis:10,conclud:6,conclus:3,conda:0,cone:9,confirm:6,confus:9,conquer:6,consid:6,consider:[0,3,9],constant:[0,8,10],constrained_layout:3,consumpt:4,contact:6,contain:[2,5,7],content:4,continu:6,contour:[3,7,10],contourf:[1,7],contribut:6,convei:[3,9],conveni:[2,8,9],convent:[2,9],converg:9,convert:[2,3,5,7],convert_arg:3,convert_path:3,cookbook:[1,2,9],cool:8,coord:7,coordin:[7,9],copi:[3,6],copyright:6,corner:0,corner_mask:3,cornflowerblu:9,corrcoef:10,correl:10,cosin:7,costli:5,cot2:9,cotc:9,coti:9,could:[3,5,6,9],counter:5,courier:3,cours:3,courtesi:5,cover:[0,2,5,9],cr:[1,2,5,9],crash:6,creat:[0,1,2,5,7,8,9],createhvtrimesh:5,creation:[0,9],creation_d:9,creativ:4,credit:[4,6],crimson:9,crosshair:2,crux:9,csv:8,ctrl:3,cumsum:2,current:[3,5,7,9],cursiv:3,custom:[0,3,6,7,9,10],cut:8,cyan:9,cycler:3,d62728:3,d:[2,3,6,9,10],dai:[3,9],darker:3,darkest:3,darkgrai:9,dash:[3,8,10],dash_capstyl:3,dash_joinstyl:3,dashdot_pattern:3,dashed_pattern:3,dask:5,data:[0,1,2,8,10],data_aspect:5,dataarrai:7,dataarraylat:7,databas:9,databasesourc:9,datafil:[1,5,9],datafram:[2,5],datasauru:3,dataset:[2,3,5,9],datasetdimens:9,datashad:[0,2],datashaderwa:5,date:[3,8,9],date_rang:2,datetim:[8,9],datetime64:9,datetimeindex:9,dd:5,de:9,deal:[0,2],declar:5,declarit:2,decode_tim:9,decor:5,def:[1,5],defin:5,degc:[2,8],degre:[1,7,8,9],degrees_eastarrai:9,degrees_northarrai:9,dejavu:3,dejavusan:3,demo:6,demonstr:[0,2,3,5,7,9],denot:6,deprec:2,deriv:10,describ:[0,6,8],descript:[5,6,8],design:[0,5,9],despit:9,detail:[0,2,8],detect:3,dev:1,deviat:[3,10],dew:8,dewpoint:[2,8],df:[2,8],diagon:10,diagram:[0,2,7],dict:7,dict_kei:9,differ:[0,1,2,3,7,8,9,10],digit:9,dim:7,dimens:[7,9],dimension:0,dinosaur:3,direct:[3,8],directli:6,directori:[0,1,3],disabl:3,disciplin:3,discret:9,discuss:[0,2,3,8,9],disingenu:3,displai:[1,3,6,9],distil:3,distinct:0,distinguish:[2,6],distribut:5,diverg:3,divid:6,doc:6,docstr:3,document:[1,2,3,6,8,9],doe:[2,3,5],doesn:[7,9],doi:[4,5],don:[6,8],done:[5,6,7,8,9],dot:6,dotted_pattern:3,down:[6,8],download:[1,8,9],downloadwarn:1,downsid:5,dpi:[1,3],draw:[1,2,3,9,10],draw_label:9,drawn:[8,9],drcl:9,dry:8,ds090:9,ds:[1,9],dshp:9,dtype:[2,5,7,9],due:[5,6],dummi:[7,10],duplic:3,dw:9,dx:5,dyamond:5,dyamond_1:5,e377c2:3,e:[0,8,9,10],each:[1,2,5,6,9,10],earlier:8,easi:8,easiest:9,easili:9,ecosystem:2,edg:5,edgecolor:3,edit:6,edu:9,educ:3,effect:[3,4,8],effort:3,eg:10,egr2:9,egri:9,egrr:9,either:[0,2,6,9],elaps:9,element:[0,1,2,3,5,9],elev:8,elif:9,els:[6,9],emb:6,embed:6,embed_limit:3,enabl:[0,2,6],end:6,endless:[0,2],endswith:1,enforc:10,engag:[2,3],enough:2,ensembl:9,enter:0,entir:[7,8],env:[0,1],environ:[0,2],environment:9,epoch:3,equal:[3,9],equat:6,equip:2,equival:8,error:6,errorbar:3,especi:3,essenti:9,estim:6,etc:[3,6,9],etick:9,etyp:7,even:[0,6,7,8,9],everi:[2,3,8,9],ex:9,examin:[2,3,5],exampl:[0,1,2,3,5,7,9,10],execut:[0,1],exhagger:3,exist:[1,2,6],expand:8,expect:8,expens:5,experi:[3,5],explicitli:6,explor:[3,10],express:2,extend:3,extens:[2,5],extern:6,extra:6,extra_ob:9,extract:9,extractedcreation_d:9,extrem:9,ey:3,f1:3,f:[0,1,2,3],face:3,facecolor:[3,9,10],fake:3,falko:5,fall:3,fallback:3,fals:[1,3,9],famili:3,familiar:[2,6],fancybox:3,fantasi:3,faster:5,favor:[2,3],featur:[2,5,9],feel:[2,6],felipa:3,few:[0,6],fewer:3,ff7f0e:3,ffmpeg:3,ffmpeg_arg:3,ffmpeg_path:3,fidel:5,fifth:8,fig:[1,2,3,7,8,9,10],figsiz:[1,2,3,7,8,9,10],figur:[0,1,2,8,9,10],file:[0,1,5,8,9],fill:[6,7],fill_alpha:2,fill_color:2,fillstyl:3,filterwarn:9,fim9:9,find:[7,9],find_local_extrema:7,finish:6,first:[0,1,2,5,7,8,9,10],five:6,fix:3,fixedloc:9,flierprop:3,flight:2,flights_long:2,float320:9,float32:9,float6414:9,float64:9,fm92:9,fm9i:9,fmt:2,folk:2,follow:[3,6,8],font:3,fontset:3,fontsiz:[3,9,10],fonttyp:3,force_autohint:3,force_edgecolor:3,forecast:9,forecast_path:9,forecasts_ap01:9,forestgreen:9,form:2,format:[3,6,9],formatt:3,formerli:2,forward:3,foundat:[2,6],frame:1,frame_format:3,frame_width:5,framealpha:3,frameon:3,free:[4,6],freq:9,friendli:3,from:[0,1,2,3,6,7,8,9,10],from_panda:5,front:[3,6],fsse:9,ftp:9,full:3,full_lik:9,fullscreen:3,funcanim:1,funtion:5,further:[0,7],g012:9,g01i:9,g:[2,3,8],galleri:[2,3,9],gard:3,gca:[3,10],gdf:[1,5,9],ge:1,gef:9,gener:[1,3,6,7,9,10],geneva:3,geocat:[0,1,5,7,9,10],geodet:9,geopotenti:9,geoscienc:[2,3],get:[0,2,3,6,8,9],get_cmap:9,get_operational_forecast:9,get_storm:9,gf:[5,9],gfd2:9,gfde:9,gfdi:9,gfdl:9,gfdt:9,gfe2:9,gfs_kei:9,gft2:9,gfti:9,ghm2:9,ghmi:9,gif:[0,1],git:0,github:[0,1,4,9],give:[2,4,5,6],given:3,gjt:8,gjt_sound:8,gl:9,glade:5,global:[5,9],globe:2,globoal:3,go:[0,1,2,3,8],goe:3,goes16:1,goes16_hr:1,gon:5,good:[2,6,7],got:6,gp01:9,gpm2:9,gpm:9,gpmi:9,gpmn:9,gpu:2,grab:9,grai:9,grand:3,graph:3,graphic:[2,3,10],grayscal:3,great:[0,2,9],greater:5,green:[8,9],grei:10,grid:[2,3,5,9,10],grid_minor:3,gridlin:9,growth:9,gt:[7,9],guess:10,guid:2,guidanc:2,gv:[1,3,7,9,10],h264:3,h:[3,6,9],h_pad:3,ha:[0,2,3,8,9],handl:[8,9],handleheight:3,handlelength:3,handletextpad:3,hard:[2,3,8],hardcopi:3,hashsalt:3,hatch:3,have:[0,1,2,3,5,6,8,9,10],hds_raster:5,heard:2,heatmap:2,heavi:6,height:[8,9],heightunit:9,hello:6,help:[2,3,6],helvetica:3,here:[0,1,2,3,6,7,8],hesit:6,heterogen:5,hgt500_mon_1958:9,hgt:9,hgt_1958:9,hgtlong_nam:9,high:[2,3,5,6,7],higher:[2,5],highest:5,highlight:[0,3],hint:3,hinting_factor:3,hist:3,histogram:7,histori:9,hit:9,holoview:[2,5],holoviz:2,home:[1,3,9],hook:3,hopefulli:2,horizont:[8,9],horizontalalign:9,hotpink:9,hour:[3,9],hous:0,hover:2,how:[0,1,2,3,6,7,9,10],howev:[3,5,6,9],hpa:[2,5,8],hspace:3,html:[1,3,6],http:[0,1,5,6,9],hu:9,humid:5,hurdat2:9,hurdat:9,hurdatac:9,hurrian:9,hv:5,hvl:9,hwe2:9,hwei:9,hwf2:9,hwfe:9,hwfi:9,hwrf:9,i:[0,1,5,9],ibtrac:9,icon:[0,9],id:[5,9],idea:[6,7],ident:3,ignor:9,im:1,im_dir:1,im_path:1,imag:[3,5,6],image_inlin:3,imagin:2,img:6,immedi:3,impact:3,impair:3,improp:3,imshow:1,includ:[3,5,6,7,8,9],incom:9,independ:8,index:[2,5,7,9],indic:[5,7,9,10],inferno:1,inform:[2,3,5,6,8,9],infring:6,inher:3,inherit:[3,7],inheritcolor:3,initi:[1,5],initiali:9,inspir:6,instanc:10,instead:[3,5,6],instrument:7,int640:[7,9],int641006:9,int6425:9,int64:[5,7,9],integ:9,intention:3,interact:[2,3,5,8],interest:0,interfac:2,intern:5,interpet:3,interpol:[3,5],interpret:3,interspers:6,interv:1,interval_multipl:3,intro:[0,6],introduc:0,introductori:6,intuit:[2,9],io:1,isel:9,isn:9,issu:3,ital:3,itc:3,iter:[1,9],iteract:0,its:9,iv15:9,ivcn:9,ivcr:9,j:5,javascript:2,jetstream:8,jit:5,john:0,joinstyl:3,journei:7,jpg:1,jshtml:1,judt:5,julia:0,jumpstart:9,jupyt:[0,5,6],jupyterlab:0,just:[3,5,6,7],k:[2,3,9],karl:10,keep:6,kei:[3,6,7,9],kent:0,kernel:6,kerning_factor:3,keword:3,keymap:3,keyword:8,km:5,knot:2,know:[0,1,2,3,6,7],kwarg:[8,9,10],l:[3,9],lab:[0,6],label:[3,6,8,10],labelbottom:3,labelcolor:3,labelleft:3,labelloc:3,labelpad:[3,9],labelright:3,labels:3,labelspac:3,labeltop:3,labelweight:3,lai:[2,6],land:9,languag:2,larg:[3,5],larger:8,lasso_select:2,last:9,lat:[7,9],later:9,latest:4,latex:[3,6],latitud:[7,8,9],latitudeunit:9,latlong_nam:9,latpandasindexpandasindex:[7,9],launch:0,layer:3,layout:[3,9],lbar:9,lead:6,learn:[1,2,3,5,6,7,8,9,10],leav:6,left:[3,7,9],lefttitl:9,leg:5,legal:6,legend:[3,9,10],len:[2,9],length:[5,9],less:[3,5,9],let:[1,2,3,6,7,8,9,10],letter:3,lev:9,level:[1,2,7,8,9,10],lgem:9,lib:1,librari:2,licens:4,lie:3,life:0,lift:6,light:3,lighter:3,lightest:3,lightgrai:9,lightgrei:10,lightyellow:9,like:[2,6,9],limit:[3,7,8],line:[1,2,3,7,8,9,10],line_color:2,linecollect:8,linestyl:[3,9],linewidth:[1,2,3,8,9,10],link:[2,6],linspac:[2,7,9],list:[2,5,6,9],listdir:1,listedcolormap:9,littl:8,live:0,ll:[0,3,6,8,9,10],lmax:7,lo:9,load:2,load_dataset:2,loc:[3,7,9],local:[0,7],locat:[7,9,10],log:[3,8],logarithm:[3,8],logo:6,lon:[7,9],long_nam:9,longer:6,longitud:[1,5,7,8,9],longitudeunit:9,lonlong_nam:9,lonpandasindexpandasindex:[7,9],look:[2,3,6,8,9],loop:[1,9],loos:6,lost:3,lot:[0,2,9],low:3,lower:9,loyal:6,lt:[7,9],lucid:3,lucida:3,lut:3,lw:10,m:[3,6,9],machin:[5,6],macosx:3,made:8,magenta:9,magnitud:3,mai:[2,3,5,9,10],main:[1,6,9],maintitl:9,major:3,make:[0,2,5,6,9,10],manag:6,mani:[0,2,3,9],manipul:3,manual:[6,7,9],map:[2,3,6,9],mark:6,markdown:6,marker:[3,10],markeredgecolor:3,markeredgewidth:3,markerfacecolor:3,markers:3,markerscal:3,match:[9,10],materi:[0,4,6],math:5,mathjax:6,mathtext:3,matlab:2,matplotlib:[0,5,7,8,9,10],matplotlib_inlin:3,max:1,max_open_warn:3,max_valu:7,maxima:7,maximum:7,mayb:9,mb:9,mdt:9,mean:[3,4,9,10],meaning:3,meanlin:3,meanprop:3,measur:0,meccatemp:1,medianprop:3,medium:3,mediumorchid:9,mention:2,metadata:[2,6],meteorolog:8,meteorologist:9,meter:5,method:[1,3,8],metpi:0,microsecond:3,midnight:9,midpoint:9,might:[2,3,8,9],min:[1,6,7],min_expon:3,mind:3,mini:2,miniconda3:1,minim:8,minor:3,minu:5,minut:[1,2,3,5,6,7,8,9,10],miscellan:3,misinterpret:9,miss:2,mix:8,model:[0,9,10],modern:[2,3],modifi:1,modul:[3,8],moist:8,moment:0,mono:3,monospac:3,month:[2,3,9],monthli:[9,10],monthunit:9,more:[2,3,6,7,9,10],most:[3,6,7,9],mous:0,mousebutton:3,move:[0,6],movement:9,mpcalc:[2,8],mpl2014:3,mpl:[3,5,9],mrcl:9,mrfo:9,ms:3,mslp:9,mt:3,mticker:9,much:5,multidimension:0,multipl:[7,9,10],mv:2,n:[2,5,7,9],n_worker:5,nam2:9,nam:9,name:[7,8,9,10],namearr:10,nami:9,nan:8,narr:[3,6],nation:[2,9],nativ:5,naturalearth:1,navbar:6,navi:9,navig:0,nc:9,ncar:[1,2,5,9],ncardata:9,ncell:5,ncep:9,ncl:[2,3,10],ncl_animate_1:1,ncl_cononcon_5:9,ndiv:3,ne_110m_coastlin:1,nearli:2,necessari:[1,2,3,5,6,7,8,9,10],necessarili:9,nedgesoncel:5,need:[0,1,2,5,6,9],negative_linestyl:3,nesw:9,netcdf:6,netcdf_fil:[1,9],neue:3,nftp:9,ngx2:9,ngx:9,ngxi:9,nhc:9,nicer:8,nich:2,nimbu:3,no9:3,noaa:[8,9],node:5,non:[3,4,6],none:[2,3,9,10],nonehistori:9,nonsequenti:6,nopython:5,norm:9,normal:[3,9,10],normalized_tim:9,north_atla:9,north_atlant:9,north_atlanticsource_info:9,northeast:9,northpolarstereo:9,notch:3,note:[1,3,5,6,7,8,9,10],noteabl:0,notebook:[1,5,8,10],now:[0,3,8,9],np:[1,2,3,5,7,8,9,10],npartit:5,ns:9,ntriangl:5,numba:5,number:[5,6,9],numer:[2,10],numpi:[1,2,3,5,7,8,9,10],numpoint:3,nwsc:3,o:[3,10],object:[1,6,7,8],observ:10,ocd5:9,ocean:2,ocs5:9,oct:9,octob:9,ofc2:9,ofci:9,ofcl:9,ofcp:9,off:8,offer:[0,2],offset_threshold:3,ofp2:9,ofpi:9,often:9,onc:[1,9],one:[6,7,8,9,10],ones:[2,5,9],onli:[1,5,6,9],open:[1,4],open_dataset:[1,9],open_in_brows:3,open_mfdataset:5,oper:[5,9],operational_id:9,opposit:3,opt:5,optim:5,optimizeplu:3,option:[0,1,2,3,10],orang:9,order:[3,5,7,9],orderccw:5,org:5,orient:[3,9],origin:[3,10],orthograph:1,os:1,other:[2,3,5,6,8,9,10],otherwis:6,our:[3,6,7,9],out:[2,3,6,8],outcom:0,output:[0,5,6],outreach:[0,3],oval:3,over:[0,1,3,9],overestim:6,overlap:9,overwhelm:2,overwritten:8,own:[8,9],p:[1,2,3,8,9,10],packag:[0,1,3,6,9],pad:[3,9,10],pad_inch:3,page:[2,6,8],paint:3,palatino:3,palegreen:9,pan:[2,3,5],panda:[2,5,8],panecolor:3,papers:3,paragraph:6,parcel:2,parcel_profil:2,parse_math:3,part:[3,5],passeng:2,past:9,patch:3,patchartist:3,path:[1,3,9],pattern:[3,9,10],pcm:7,pcolor:3,pcolormesh:3,pd:[2,5,8],pdf:3,peform:5,peopl:[3,6],per:[1,5,6],perceptu:3,perform:[5,10],perhap:3,period:2,pgf:3,pi:2,pick:3,pictur:3,pie:3,piec:[6,7],pil:1,pink:9,pinkish:8,pipelin:2,pivot:2,pixel:10,pl:9,place:[2,3,5],plagiar:6,plai:[2,6],platecarre:[1,2,9],platform:2,pleas:1,plot:[1,2,3,10],plot_barb:[2,8],plot_dry_adiabat:[2,8],plot_mixing_lin:[2,8],plot_moist_adiabat:[2,8],plt:[1,2,3,7,8,9,10],png:[3,6],point:[0,3,6,7,8,10],polarax:3,poly_select:2,polygon:5,popul:6,popular:2,port:3,port_retri:3,portrait:3,posit:8,possibl:[0,2,3,9],potenti:8,power:2,prc:10,pre:1,preambl:3,precipit:10,predict:9,prefer:[3,6],presa:9,present:0,press:0,pressur:[2,8,9],previou:[1,8],previous:[1,8],primari:5,print:[3,6,9],pro:9,probabl:3,problem:6,process:[3,6,8],produc:[1,5,7],prof:2,profession:3,profil:2,program:0,programm:0,progress:9,prohibit:5,proj:2,project:[0,1,2,3,4,5,8],projectpythia:0,prop_cycl:3,proper:10,provid:[2,6,8,9,10],ps:3,pub:9,pull:[1,6,8],put:6,pw:8,px:2,py:1,pylab:9,pyplot:[1,2,3,7,8,9,10],pythia:[0,2,4],python3:1,python:[0,2,6,7],q:3,qualiti:3,question:6,quit:3,quit_al:3,quiver:8,r:[2,3,8,9],radi:3,radian:7,radii:2,radiu:2,raise_window:3,randn:2,random:2,rang:[5,9],raster:5,rather:9,ratio:[8,10],raw:[1,6,9],rcfont:3,rcparam:[1,3],re:[3,5,6,7,8,9],read:[2,5,6,8],read_csv:8,reader:[3,6],readi:2,real:9,reanalysi:9,reason:[0,5],red:[3,8,9,10],redo:2,reduc:8,ref:10,refer:0,referenc:6,reflect:1,registri:1,reiter:6,rel:[5,10],releas:4,relev:[2,3,6,7,9],relhum_200hpa:5,relianc:3,remain:8,remov:[6,8],render:5,reorder:5,repeat_delai:1,replac:3,repositori:[0,1],repres:[3,8,9],request:[6,8],request_data:8,requir:[5,6],resampl:3,research:[2,3],resembl:3,reset:2,resolut:5,resolv:4,rest:8,restart:6,result:[3,10],reus:4,reveal:5,review:6,rgb:5,rho:6,ri25:9,ri30:9,ri35:9,right:[0,2,3,6,8,9],righttitl:9,rigor:6,rm:[3,10],rocket:0,roman:3,root:10,rotat:[1,8],rough:6,round:[3,6],row:8,run:[2,5,6,8],runner:[1,9],ryoc:9,s3:1,s40645:5,safer:6,sai:1,same:[1,3,5,8,9],sampl:5,san:3,sand:3,sandi:9,sandy_d:9,sandyyear:9,save:[1,2,3,8],savefig:3,scalarmapp:9,scale:[3,8],scale_dash:3,scari:6,scatter:[2,3,7],scatterpoint:3,schoolbook:3,scienc:[0,3],scientif:[0,2,3],scientist:2,scope:6,script:[1,3,9],seaborn:0,season:[9,10],second:[3,5,9],section:[0,8],see:[0,2,3,6,8,9],seem:8,seen:8,select:[0,3,9],send:6,sens:5,separ:9,sequenti:[3,6,9],seri:3,serif:3,serv:4,set:[1,2,3,5,7,8,9,10],set_axis_off:1,set_label:9,set_map_boundari:9,set_them:2,set_tick:9,set_ticklabel:9,set_titl:[3,7],set_titles_and_label:[3,9],set_xlabel:7,set_xlim:2,set_ylabel:7,set_ylim:[2,3,8],set_yscal:3,sever:[2,5,7,9],sf:3,shade:3,shadow:3,shape:[2,5],share:[0,1,3,4,9],shea:9,shf5:9,shfr:9,shift:[0,7],ship:[0,9],short_nam:9,should:[0,2,3,6],show:[2,3,7,9],showbox:3,showcap:3,showflier:3,showmean:3,shown:9,shrink:[6,9],side:8,sidebar:6,sigma:6,sign:[5,7],similar:9,similarli:[3,6,8],simpl:2,simplest:[0,9],simplewebservic:8,simpli:0,simplifi:[3,8],simplify_threshold:3,simul:3,sin:[2,7],sinc:[5,9],sine:7,sing:5,singl:[6,10],siphon:8,site:1,size:[1,2,3,5,6,7,8,9,10],sketch:3,skew:[0,2],skewt:[2,8],skyblu:9,slant:3,slateblu:9,slice:9,slightli:[2,9],slon:9,slp:10,small:3,smarter:3,smooth:3,sn:2,snap:3,so:[1,2,3,4,5,6,8,9],softwar:6,solar:2,solid_capstyl:3,solid_joinstyl:3,some:[0,1,2,3,6,7,8,9],sometim:[3,7],sort:[1,3],sound:8,sourc:[4,9],source_info:9,source_mss:9,south_pad:9,space:9,spaghetti:9,span:1,spc3:9,special:[2,9],specialti:7,specif:[0,3,5,6,8],specifi:[7,9],speed:8,spine:3,split:5,springgreen:9,squar:10,stabl:0,stamp:1,stand:2,standard:[3,8,10],star:3,start:[0,2,3,6,8,9],stat:3,state:6,station:8,station_numb:8,statist:[2,3,10],stddev:10,step:[1,7,9],still:8,store:5,stori:3,storm:9,str:[7,9],strength:9,stretch:3,strftime:9,strive:3,strptime:9,structur:6,stuff:[1,6],stun:9,style:3,subdivid:0,subplot:[2,3,7],subset:[3,9],substanti:3,suggest:[6,9],suitabl:5,sum:5,summar:[6,10],sure:[0,2,3,6,9],surfac:2,svg:3,sw:10,sy:6,syntax:[0,2,6],system:[3,6,9],t:[0,1,2,5,6,7,9,10],ta:1,tabl:6,tackl:6,tag:6,take:6,takeawai:6,talk:8,tap:2,taylor:[0,7],taylordiagram:10,tclp:9,tcoa:9,td:[2,8,9],team:2,techniqu:0,tell:[3,5,6],temp:8,temperatur:[2,8,10],tend:7,term:10,termin:3,test:10,texsystem:3,text:[1,3,6,7,8,9],textil:3,than:[5,9],thank:6,thei:[3,5,6,7,9],them:[0,5,6,8,9,10],thermodynam:8,thi:[0,1,2,3,5,6,8,9,10],thicker:9,third:7,those:[1,3,5,8],though:[8,9],through:[0,3,7,9],throughout:6,ti:6,tick:9,tick_indic:9,ticker:9,ticklabel:9,tie:6,tight:9,tight_layout:[3,9],time:[1,2,3,5,6,7,8,10],timepandasindexpandasindex:9,timestamp:9,timestep:9,timeunit:9,timezon:3,titl:[2,3,6,8,9,10],title_fonts:3,titlecolor:3,titlei:3,titleloc:3,titlepad:3,titles:3,titleweight:3,tk:3,to_xarrai:9,togeth:6,toggl:0,ton:2,too:3,tool:[0,2,9],toolbar2:3,toolbar:3,toolbox:0,top:[0,2,3,6,8,9],topic:6,total:6,track:9,trackdataset:9,tradit:8,train:9,trajectori:9,transax:9,transform:[1,8,9],transit:[2,6],translat:5,transpar:3,tri:5,tri_nod:5,triangle_indic:5,triangulatepoli:5,triarea:5,triindex:5,trimesh:5,tris_ddf:5,tris_df:5,tropyc:9,true_path:9,ts:9,tsfc:10,tt:3,tue:9,tupl:1,ture:6,tutori:[2,8,10],tv15:9,tvca:9,tvcc:9,tvce:9,tvcn:9,two:[1,2,5,7,8,10],twofold:5,txt:1,type:[0,7,9],typewrit:3,typic:9,u14:9,u1:9,u2:9,u300:10,u:[2,8],u_wind:8,ucar:9,ugrid:2,uint8:2,ukm2:9,ukm:9,ukmi:9,ukx2:9,ukx:9,ukxi:9,uncertainti:9,uncom:1,under:[4,8],understand:[3,6],undo:2,unexpect:3,unicode_minu:3,uniform:3,uniformli:3,uniqu:[0,2,6],unit:[2,7,9],unlik:[5,9],unstructur:[2,5,9],until:0,unus:3,unzipmesh:5,up:[0,1,2,3,6,8,9],updat:[1,9],upon:0,upper:[3,7,8],url:1,us:[0,1,2,6,7,8,9,10],use14corefont:3,use_local:3,use_mathtext:3,useafm:3,usedistil:3,useoffset:3,user:[0,2,9],usetex:3,usr:1,utc:3,util:[0,3,9],utopia:3,uwn2:9,uwn8:9,uwni:9,uxarrai:0,v0:5,v1:5,v2:5,v:[2,3,8],v_wind:8,va:9,valid:9,valu:[2,3,5,8,9,10],vapor:0,vaporrequir:2,vari:[3,10],variabl:[5,8,9,10],varianc:10,variant:3,variat:10,variou:0,ve:8,veiw:3,vera:3,verdana:3,veri:[3,8],version:6,vert:5,vertex:5,vertic:[3,5,6,9],verticalalign:9,verticesoncel:5,verts_ddf:5,verts_df:5,via:[0,6],video:0,view:0,violet:9,viridi:[3,7],visibl:3,vision:3,visit:8,visual:[1,6,7,8,9],visualiz:0,viz:[0,1,7,9,10],vmax:[1,9],vmin:[1,9],voltag:2,vortic:5,vorticity_200hpa:5,w:[3,9],w_pad:3,wa:[2,3,6],wai:[0,3,6,8,9],want:[1,2,3,8,9,10],warn:[1,9],we:[0,1,2,3,5,6,7,8,9],weak:9,weather:[2,3],web:2,webagg:3,websit:2,weight:[3,9,10],well:[2,6,10],were:[5,6],western:3,wheel_zoom:2,when:[0,2,9,10],where:[5,6,8,9],which:[0,2,3,5,6,9],whisker:3,whiskerprop:3,white:3,who:[2,3],whole:1,whose:5,why:3,wide:10,widen:9,width:3,wind:[2,5,8],window_focu:3,window_mod:3,winter_r:9,without:[2,6,8],wmo_basin:9,wonder:6,word:3,work:[0,1,6,7,10],workflow:0,workhors:[0,2],workign:7,world:[2,6],worri:5,worth:9,would:3,wrap:[2,9],wraparound:5,wrapper:8,writer:3,written:9,wspace:3,wtick:9,wyom:8,wyomingupperair:8,x27:[7,9],x:[1,2,3,5,6,7,8,9,10],xarrai:[1,2,5,7,9],xaxi:3,xelatex:3,xkcd:3,xlabel:[2,3,8],xlabel_styl:9,xlabels_top:9,xlocat:9,xmargin:3,xr:[1,7,9],xr_add_cyclic_longitud:9,xscale:3,xtick:[3,9],xtrp:9,xy:6,xytext:10,xz:6,y1:7,y2:7,y:[2,3,5,6,8,9,10],yaxi:3,year:[2,3,9],year_0:9,year_n:9,yearli:9,yellow:9,ylabel:[2,3,8],ylabel_styl:9,ylabels_left:9,ylocat:9,ymargin:3,yml:0,you:[0,1,2,3,4,5,6,7,8,9,10],your:[2,3,7,8,9],yourself:6,yrmon:9,yscale:3,ytick:[3,9],yyyymm:9,yyyymmddhh:9,yyyymmlong_nam:9,z:[5,6],zapf:3,zaxi:3,zenodo:4,zfill:9,zgf:9,zip:[1,2,9],zmargin:3,zoom:[3,5],zoom_in:2,zoom_out:2,zorder:9},titles:["Advanced Visualization Cookbook","Animation","Comparison of Visualization Packages","What Makes for Good Data Visualization?","How to Cite This Cookbook","MPAS with Datashader and Geoviews","Project Pythia Notebook Template","Plot Elements","Skew T Diagrams","Spagetti Plots","Taylor Diagrams"],titleterms:{"3d":0,"function":[1,5],"import":[3,6],"public":3,A:6,One:9,The:3,ad:[8,9],advanc:0,all:9,anim:[0,1],annot:7,anoth:6,arrai:5,artist:1,author:0,axi:7,basic:[0,8],binder:0,bokeh:2,cartopi:2,cell:5,cite:4,color:9,colorbar:[7,9],colormap:[3,9],comparison:2,connect:5,content:6,contour:9,contributor:0,cookbook:[0,4],coordin:5,creat:10,danger:6,data:[3,5,7,9],dataset:10,datashad:5,delaunai:5,demonstr:6,diagram:[8,10],direct:9,displai:10,distinct:10,dual:5,element:[7,8],esembl:9,figur:[3,7],finish:10,first:6,from:5,fundament:1,further:6,geocat:[2,3],geoscienc:0,geoview:5,get:1,global:3,good:3,grid:0,hand:9,header:6,how:4,hurrican:9,hvplot:2,imag:1,info:6,initi:9,interact:0,just:8,label:[7,9],last:6,legend:7,level:6,list:1,load:5,machin:0,make:[3,8],manipul:9,matplotlib:[1,2,3],member:9,mesh:5,metpi:[2,8],mislead:3,more:8,motiv:0,mpa:5,next:[1,2,3,5,6,7,8,9,10],north:9,note:2,notebook:[0,6],overview:[1,2,3,5,6,8,9,10],own:0,packag:2,paramet:3,pick:9,plot:[0,5,7,8,9],plotli:2,point:[5,9],polar:9,polish:8,prerequisit:[1,2,3,5,6,7,8,9,10],primal:5,problem:3,project:[6,9],pythia:6,python:8,quick:6,rainbow:3,read:9,readi:3,refer:[1,2,3,5,6,7,8,9,10],resourc:[1,2,3,5,6,7,8,9,10],run:0,s:[1,2,3,5,6,7,8,9,10],seaborn:2,second:6,section:6,simpl:10,skew:8,spagetti:9,specialti:0,stereograph:9,structur:[0,8],subsect:6,success:6,summari:[1,2,3,5,6,7,8,9,10],synthes:5,t:8,taylor:10,templat:6,tempor:9,thi:4,time:9,titl:7,touch:10,triangl:5,triangul:5,unstructur:0,us:[3,5],util:5,uxarrai:2,vapor:2,visual:[0,2,3],viz:[2,3],warn:6,what:[1,2,3,5,6,7,8,9,10],your:[0,6]}}) \ No newline at end of file