-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLearning_Rate_Distribution.py
34 lines (28 loc) · 1.09 KB
/
Learning_Rate_Distribution.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import matplotlib.pyplot as plt
def learning_rate_distribution(bayesian_roc_auc_scores, hyperopt_roc_auc_scores, default_scores):
plt.figure(figsize=(14, 7))
# Bayesian Optimizer results
plt.subplot(1, 3, 1)
plt.hist(bayesian_roc_auc_scores, bins=10, alpha=0.7, label='Bayesian Optimizer', color='red')
plt.xlabel('ROC AUC Score')
plt.ylabel('Frequency')
plt.title('Bayesian Optimizer Learning Rate Distribution')
plt.legend()
# Hyperopt results
plt.subplot(1, 3, 2)
plt.hist(hyperopt_roc_auc_scores, bins=10, alpha=0.7, label='Hyperopt', color='black')
plt.xlabel('ROC AUC Score')
plt.ylabel('Frequency')
plt.title('Hyperopt Learning Rate Distribution')
plt.legend()
# Default Model results
plt.subplot(1, 3, 3)
plt.hist(default_scores, bins=10, alpha=0.7, label='Default Model')
plt.xlabel('ROC AUC Score')
plt.ylabel('Frequency')
plt.title('Default Model Learning Rate Distribution')
plt.legend()
#Bayesian versus Hyperopt versus Default model learning rate distribution
plt.tight_layout()
plt.show()
return