-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathserver.py
378 lines (276 loc) · 13.1 KB
/
server.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
## Copyright 2022-3 Tom Brown
## This program is free software; you can redistribute it and/or
## modify it under the terms of the GNU Affero General Public License as
## published by the Free Software Foundation; either version 3 of the
## License, or (at your option) any later version.
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU Affero General Public License for more details.
## License and more information at:
## https://github.com/PyPSA/efuels-server
from flask import Flask, request, jsonify, render_template, Response
from markupsafe import Markup
from solve import export_time_series, generate_overview
from redis import Redis
import rq
from rq.job import Job
from rq import Queue
import json, os, hashlib, yaml
import pandas as pd
import pypsa
import datetime
app = Flask(__name__)
app.jinja_env.filters['json'] = lambda v: Markup(json.dumps(v))
conn = Redis.from_url('redis://')
queue = Queue('efuels', connection=conn)
with open("config.yaml", "r") as f:
config = yaml.safe_load(f)
#na_filter leaves "" as "" rather than doing nan which confuses jinja2
defaults = pd.read_csv("defaults.csv",index_col=[0,1],na_filter=False)
for (n,t) in [("f",float),("i",int)]:
defaults.loc[defaults["type"] == n, "value"] = defaults.loc[defaults["type"] == n,"value"].astype(t)
#work around fact bool("False") returns True
defaults.loc[defaults.type == "b","value"] = (defaults.loc[defaults.type == "b","value"] == "True")
defaults_t = {str(year): defaults.swaplevel().loc[str(year)] for year in config["tech_years"]}
defaults = defaults.swaplevel().loc[""]
defaults = pd.concat((defaults,defaults_t[str(config["tech_years_default"])])).sort_index()
first = ["efuels_load","year","frequency","overland_fraction","pipeline_distance_factor","shipping_distance_factor"]
defaults = defaults.reindex(first + defaults.index.drop(first).to_list())
booleans = defaults.index[defaults.type == "b"].to_list()
floats = defaults.index[defaults.type == "f"].to_list()
ints = defaults.index[defaults.type == "i"].to_list()
strings = defaults.index[defaults.type == "s"].to_list()
def sanitise_assumptions(assumptions):
"""
Fix types of assumptions and check they are in correct
range.
Parameters
----------
assumptions : dict
Assumptions (location, technical and economic parameters)
Returns
-------
error_message : None or string
If there was an error, details of the error
assumptions : dict
If there was no error, the clean type-safe assumptions
"""
for key in strings+ints+booleans+floats:
if key not in assumptions:
return f"{key} missing from assumptions", None
for key in booleans:
try:
assumptions[key] = bool(assumptions[key])
except:
return "{} {} could not be converted to boolean".format(key,assumptions[key]), None
for key in floats:
try:
assumptions[key] = float(assumptions[key])
except:
return "{} {} could not be converted to float".format(key,assumptions[key]), None
if "lat" not in key and "lng" not in key:
if assumptions[key] < 0 or assumptions[key] > config["float_upper_limit"]:
return "{} {} was not in the valid range [0,{}]".format(key,assumptions[key],config["float_upper_limit"]), None
for key in ints:
try:
assumptions[key] = int(assumptions[key])
except:
return "{} {} could not be converted to an integer".format(key,assumptions[key]), None
for key in strings:
assumptions[key] = str(assumptions[key])
if assumptions["frequency"] < 1 or assumptions["frequency"] > 8760:
return "Frequency {} is not in the valid range [1,8760]".format(assumptions["frequency"]), None
if assumptions["year"] not in config["weather_years"]:
return "Year {} not in valid range".format(assumptions["year"]), None
if assumptions["efuels_load"] == 0:
return "No load", None
if assumptions["efuel"] not in config["efuels"]:
return "E-fuel {} is not recognised".format(assumptions["efuel"]), None
return None, assumptions
def compute_results_hash(assumptions):
results_string = ""
for item in strings+ints+booleans+floats:
results_string += "&{}={}".format(item,assumptions[item])
print(results_string)
return hashlib.md5(results_string.encode()).hexdigest()
def find_results(results_hash):
assumptions_json = f'data/results-assumptions-{results_hash}.json'
network_fn = f'networks/{results_hash}.nc'
if not os.path.isfile(assumptions_json):
return "Assumptions file is missing", {}
if not os.path.isfile(network_fn):
return "Network file is missing", {}
print("Using preexisting results files:", assumptions_json, network_fn)
with(open(assumptions_json, 'r')) as f:
assumptions = json.load(f)
n = pypsa.Network(network_fn)
results_overview = generate_overview(n, assumptions)
carrier_series = export_time_series(n).round(1)
#determine nice ordering of components
current_order = results_overview.index[results_overview.index.str[-6:] == " totex"].str[:-6]
preferred_order = pd.Index(config["preferred order"])
new_order = preferred_order.intersection(current_order).append(current_order.difference(preferred_order))
print("old:",current_order)
print("new:",new_order)
results = dict(results_overview)
results["assumptions"] = assumptions
results["order"] = list(new_order)
results["snapshots"] = [str(s) for s in carrier_series.index]
results["carrier_series"] = {}
for carrier in config["balances_to_display"]:
if carrier not in carrier_series:
continue
print("processing series for energy carrier", carrier)
#group technologies
df = carrier_series[carrier]
#sort into positive and negative
separated = {}
separated["positive"] = pd.DataFrame(index=df.index,
dtype=float)
separated["negative"] = pd.DataFrame(index=df.index,
dtype=float)
for col in df.columns:
if df[col].min() > -1:
separated["positive"][col] = df[col]
separated["positive"][col][separated["positive"][col] < 0] = 0
elif df[col].max() < 1:
separated["negative"][col] = df[col]
separated["negative"][col][separated["negative"][col] > 0] = 0
else:
separated["positive"][col] = df[col]
separated["positive"][col][separated["positive"][col] < 0] = 0
separated["negative"][col] = df[col]
separated["negative"][col][separated["negative"][col] > 0] = 0
separated["negative"] *= -1
results["carrier_series"][carrier] = {}
results["carrier_series"][carrier]["label"] = "power"
results["carrier_series"][carrier]["units"] = "MW"
for sign in ["positive","negative"]:
results["carrier_series"][carrier][sign] = {}
results["carrier_series"][carrier][sign]["columns"] = separated[sign].columns.tolist()
results["carrier_series"][carrier][sign]["data"] = (separated[sign].values).tolist()
print(sign,separated[sign].columns)
results["carrier_series"][carrier][sign]["color"] = [config["colors"][i] for i in separated[sign].columns]
return None, results
#defaults to only listen to GET and HEAD
@app.route('/')
def root():
print("requests:",request.args)
if "results" in request.args:
results_hash = request.args.get("results",type=str)
error_message, results = find_results(results_hash)
if error_message is not None:
print("error:",error_message)
results = {}
else:
results = {}
return render_template('index.html',
defaults=defaults.T.to_dict(),
defaults_t={year: defaults_t[year].T.to_dict() for year in defaults_t},
config=config,
results=results)
@app.route('/jobs', methods=['GET','POST'])
def jobs_api():
if request.method == "POST":
if request.headers.get('Content-Type','missing') != 'application/json':
return jsonify({"status" : "Error", "error" : "No JSON assumptions sent."})
print(request.json)
error_message, assumptions = sanitise_assumptions(request.json)
if error_message is not None:
return jsonify({"status" : "Error", "error" : error_message})
assumptions["results_hex"] = compute_results_hash(assumptions)
error_message, results = find_results(assumptions["results_hex"])
if error_message is None:
assumptions["timestamp"] = str(datetime.datetime.now())
assumptions["jobid"] = hashlib.md5(assumptions["timestamp"].encode()).hexdigest()
assumptions["queue_length"] = 0
with open('assumptions/assumptions-{}.json'.format(assumptions["jobid"]), 'w') as fp:
json.dump(assumptions, fp)
mini_results = {"jobid" : assumptions["jobid"], "status" : "Finished",
"error" : None, "average_cost" : results["average_cost"]}
with open('results/results-{}.json'.format(assumptions["jobid"]), 'w') as fp:
json.dump(mini_results, fp)
return jsonify(results)
job = queue.enqueue("solve.solve", args=(assumptions,), job_timeout=300)
result = {"jobid" : job.get_id()}
assumptions.update({"jobid" : result["jobid"],
"timestamp" : str(datetime.datetime.now()),
"queue_length" : len(queue.jobs)})
with open('assumptions/assumptions-{}.json'.format(assumptions["jobid"]), 'w') as fp:
json.dump(assumptions, fp)
print("jobid {} request:".format(result["jobid"]))
print(assumptions)
return jsonify(result)
elif request.method == "GET":
return "jobs in queue: {}".format(len(queue.jobs))
@app.route('/jobs/<jobid>')
def jobid_api(jobid):
try:
job = Job.fetch(jobid, connection=conn)
except:
return jsonify({"status" : "Error", "error" : "Failed to find job!"})
if job.is_failed:
return jsonify({"status" : "Error", "error" : "Job failed."})
try:
status = job.meta['status']
except:
status = "Waiting for job to run (jobs in queue: {})".format(len(queue.jobs))
result = {"status" : status}
if job.is_finished:
if "error" in job.result:
result["status"] = "Error"
result["error"] = job.result["error"]
else:
result["status"] = "Finished"
if job.result["job_type"] == "weather":
error_message, results = find_weather(job.result["weather_hex"])
if error_message is not None:
result["status"] = "Error"
result["error"] = error_message
elif job.result["job_type"] == "solve":
error_message, results = find_results(job.result["results_hex"])
if error_message is not None:
result["status"] = "Error"
result["error"] = error_message
if result["status"] == "Finished":
results.update(result)
result = results
mini_results = {"jobid" : jobid,
"status" : result["status"],
"error" : result.get("error",None),
"average_cost" : result.get("average_cost",None)}
print("jobid {} results:".format(jobid))
print(mini_results)
with open('results/results-{}.json'.format(jobid), 'w') as fp:
json.dump(mini_results, fp)
return jsonify(result)
@app.route('/csvs/overview-<resultshex>.csv')
def overview_api(resultshex):
fn = f'networks/{resultshex}.nc'
try:
n = pypsa.Network(fn)
except:
return Response(f"network {resultshex} not found")
assumptions_json = f'data/results-assumptions-{resultshex}.json'
if not os.path.isfile(assumptions_json):
return Response(f"assumptions file {resultshex} not found")
with(open(assumptions_json, 'r')) as f:
assumptions = json.load(f)
csv = generate_overview(n,assumptions).to_csv(header=False)
response = Response(csv, content_type='text/csv')
response.headers['Content-Disposition'] = f'attachment; filename=overview-{resultshex}.csv'
return response
@app.route('/csvs/series-<resultshex>.csv')
def series_api(resultshex):
fn = f'networks/{resultshex}.nc'
try:
n = pypsa.Network(fn)
except:
return Response(f"network {resultshex} not found")
csv = export_time_series(n).round(1).to_csv()
response = Response(csv, content_type='text/csv')
response.headers['Content-Disposition'] = f'attachment; filename=series-{resultshex}.csv'
return response
if __name__ == '__main__':
app.run(port='5002')