-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate_costs.py
78 lines (55 loc) · 2.47 KB
/
generate_costs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
## Copyright 2024 Tom Brown
## This program is free software; you can redistribute it and/or
## modify it under the terms of the GNU Affero General Public License as
## published by the Free Software Foundation; either version 3 of the
## License, or (at your option) any later version.
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU Affero General Public License for more details.
## License and more information at:
## https://github.com/PyPSA/nowcast
import urllib.request, pandas as pd, os
techdata_fn = "costs_2030.csv"
commit = "bc9ef42bc1d7b0313eb6cf429070d9a863502891"
if not os.path.isfile(techdata_fn):
print("downloading:")
url = f'https://raw.githubusercontent.com/PyPSA/technology-data/{commit}/outputs/{techdata_fn}'
print(url)
urllib.request.urlretrieve(url,
techdata_fn)
def annuity(lifetime,rate):
if rate == 0.:
return 1/lifetime
else:
return rate/(1. - 1. / (1. + rate)**lifetime)
cost_map = {'onshore': "onwind",
'pv': "solar-utility",
'offshore': "offwind",
'battery': "battery inverter",
'battery_energy': "battery storage",
'hydrogen_electrolyser': "electrolysis",
'hydrogen_turbine': "CCGT",
'hydrogen_ocgt': "OCGT",
'hydrogen_energy': 'hydrogen storage underground',
'hydro': 'ror',
'pumped_hydro': 'PHS'}
fn = "costs.csv"
if not os.path.isfile(fn):
costs = pd.read_csv(techdata_fn,
index_col=[0,1])
df = costs.loc[cost_map.values()].value.unstack().rename({ value: key for key,value in cost_map.items()})
df = df[["FOM","investment","lifetime"]].fillna(0.)
df.rename({"FOM": "FOM [%inv/a]",
"investment" : "investment [€/kW(h)]",
"lifetime" :"lifetime [a]"},
axis=1,
inplace=True)
#use corrected cavern costs
df.at["hydrogen_energy","investment [€/kW(h)]"] *= 0.1
# adjust for inflation
df["investment [€/kW(h)]"] *= 1.02**(2020-2015)
df["discount rate [pu]"] = 0.07
df["fixed [€/MW/a]"] = [1000*(annuity(v["lifetime [a]"],v["discount rate [pu]"])+v["FOM [%inv/a]"]/100.)*v["investment [€/kW(h)]"] for i,v in df.iterrows()]
#df["capacity"] = config["future_capacities"]["DE"]
df.to_csv(fn)