forked from giuseppec/iml
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDESCRIPTION
54 lines (54 loc) · 1.76 KB
/
DESCRIPTION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Package: iml
Type: Package
Title: Interpretable Machine Learning
Version: 0.9.0
Date: 2019-02-01
Authors@R: c(person(given = "Christoph", family = "Molnar",
role = c("aut", "cre"), email = "[email protected]"))
Maintainer: Christoph Molnar <[email protected]>
Description: Interpretability methods to analyze the behavior and predictions of
any machine learning model.
Implemented methods are:
Feature importance described by Fisher et al. (2018) <arXiv:1801.01489>,
accumulated local effects plots described by Apley (2018) <arXiv:1612.08468>,
partial dependence plots described by Friedman (2001) <http://www.jstor.org/stable/2699986>,
individual conditional expectation ('ice') plots described by Goldstein et al. (2013) <doi:10.1080/10618600.2014.907095>,
local models (variant of 'lime') described by Ribeiro et. al (2016) <arXiv:1602.04938>,
the Shapley Value described by Strumbelj et. al (2014) <doi:10.1007/s10115-013-0679-x>,
feature interactions described by Friedman et. al <doi:10.1214/07-AOAS148> and
tree surrogate models.
URL: https://github.com/christophM/iml
BugReports: https://github.com/christophM/iml/issues
Imports: R6,
checkmate,
ggplot2,
partykit,
glmnet,
Metrics,
data.table,
foreach,
yaImpute,
prediction,
Formula,
gridExtra
Suggests: randomForest,
gower,
testthat,
rpart,
MASS,
caret,
e1071,
knitr,
mlr,
covr,
rmarkdown,
devtools,
doParallel,
ALEPlot,
ranger,
keras,
h2o
License: MIT + file LICENSE
Encoding: UTF-8
RoxygenNote: 6.1.1
VignetteBuilder: knitr