-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathauto_encoder.py
300 lines (242 loc) · 10.9 KB
/
auto_encoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
# from pytorch-beginner/08-AutoEncoder/conv_autoencoder.py by L1aoXingyu
import math
import os
import argparse
import time
import cv2
import numpy as np
import torch
import torchvision
from torch import nn
import torch.optim as optim
from torch.optim.lr_scheduler import ReduceLROnPlateau, StepLR
from torch.utils.data import DataLoader
from torch.utils.data import Dataset
from torchvision import transforms
from torchvision.utils import make_grid
from dataset import MetalDataset
from transform import get_transfrom, test_transfrom
from train import build_argparse, check_argparse
from dataset import EncoderDataset
from torch.utils.tensorboard import SummaryWriter
# from vae import VAE, loss_function
def outSize(img, kernal, stride, padding, transpose = False):
if transpose == False:
outsize = math.floor((img + 2 * padding - kernal)/stride +1)
else:
outsize = (img - 1) * stride - 2 * padding + kernal
return outsize
# class autoencoder(nn.Module):
# def __init__(self):
# super(autoencoder, self).__init__()
# self.encoder = nn.Sequential(
# nn.Conv2d(3, 32, 3, stride=2, padding=1), # b, 32, 128
# nn.ReLU(True),
# nn.MaxPool2d(2), # b, 32, 64
# nn.Conv2d(32, 64, 3, stride=2, padding=1), # b, 64, 32
# nn.ReLU(True),
# nn.MaxPool2d(2), # b, 64, 16
# nn.Conv2d(64, 128, 3, stride=2, padding=1), # b, 128, 8
# nn.ReLU(True),
# nn.MaxPool2d(2), # b, 128, 4, 4
# nn.Conv2d(128, 128, 3, stride=1), # b, 128, 2, 2
# nn.ReLU(True),
# )
# self.fc_en = nn.Linear(128*2*2, 16)
# self.act_1 = nn.ReLU(True)
# self.fc_de = nn.Linear(16, 128*2*2)
# self.act_2 = nn.ReLU(True)
# self.decoder = nn.Sequential(
# nn.Upsample(scale_factor=2, mode='bilinear'), # b, 128, 4
# nn.ReflectionPad2d(1),
# nn.Conv2d(128, 128, 3, stride=1, padding=0), # b, 128, 4
# nn.ReLU(True),
# nn.Upsample(scale_factor=2, mode='bilinear'), # b, 128, 8
# nn.ReflectionPad2d(1),
# nn.Conv2d(128, 64, 3, stride=1, padding=0), # b, 64, 8
# nn.ReLU(True),
# nn.Upsample(scale_factor=2, mode='bilinear'), # b, 64, 16
# nn.ReflectionPad2d(1),
# nn.Conv2d(64, 32, 3, stride=1, padding = 0), # b, 32, 16
# nn.ReLU(True),
# nn.Upsample(scale_factor=2, mode='bilinear'), # b, 32, 32
# nn.ReflectionPad2d(1),
# nn.Conv2d(32, 16, 3, stride=1, padding = 0), # b, 16, 32
# nn.ReLU(True),
# nn.Upsample(scale_factor=2, mode='bilinear'), # b, 16, 64
# nn.ReflectionPad2d(1),
# nn.Conv2d(16, 8, 3, stride=1, padding = 0), # b, 8, 64
# nn.ReLU(True),
# nn.Upsample(scale_factor=2, mode='bilinear'), # b, 8, 128
# nn.ReflectionPad2d(1),
# nn.Conv2d(8, 4, 3, stride=1, padding = 0), # b, 4, 128
# nn.ReLU(True),
# nn.Upsample(scale_factor=2, mode='bilinear'), # b, 4, 256
# nn.ReflectionPad2d(1),
# nn.Conv2d(4, 3, 3, stride=1, padding = 0), # b, 3, 256
# nn.Tanh()
# )
# def forward(self, x):
# x = self.encoder(x)
# x = x.view(-1, 128*2*2)
# x = self.act_1(self.fc_en(x))
# x = self.act_2(self.fc_de(x))
# x = x.view(-1,128,2,2)
# x = self.decoder(x)
# return x
class autoencoder(nn.Module):
def __init__(self):
super(autoencoder, self).__init__()
self.encoder = nn.Sequential(
nn.Conv2d(3, 32, 3, stride=3, padding=1), # b, 32, 86
nn.ReLU(True),
nn.BatchNorm2d(32),
nn.MaxPool2d(2, stride=2), # b, 64, 43
nn.Conv2d(32, 64, 3, stride=2, padding=1), # b, 64, 22
nn.ReLU(True),
nn.BatchNorm2d(64),
nn.MaxPool2d(2, stride=1) # b, 32, 21
)
self.decoder = nn.Sequential(
nn.ConvTranspose2d(64, 32, 3, stride=2), # b, 32, 5, 5 #43
nn.ReLU(True),
nn.BatchNorm2d(32),
nn.ConvTranspose2d(32, 16, 5, stride=3, padding=1), # b, 16, 15, 15 #129
nn.ReLU(True),
nn.BatchNorm2d(16),
nn.ConvTranspose2d(16, 3, 2, stride=2, padding=1), # b, 3, 28, 28 #256
nn.Tanh()
)
def forward(self, x):
x = self.encoder(x)
x = self.decoder(x)
return x
def build_scheduler(optimizer, name, freeze):
if name == 'ReduceLROnPlateau':
scheduler = ReduceLROnPlateau(optimizer, mode = 'min', patience=2)
elif name == 'StepLR':
scheduler = StepLR(optimizer, step_size=2, gamma=0.1)
return scheduler
# def build_optim(parameters, loss):
# if args.optim == 'Adam':
# optimizer = optim.Adam(model.parameters())
# elif args.optim == 'SGD':
# optimizer = optim.SGD(model.parameters(), momentum=0.9, lr=args.lr, nesterov=True, weight_decay=0.01)
def main():
device = torch.device('cuda:0' if torch.cuda.is_available() else "cpu")
parser = build_argparse()
args = parser.parse_args()
check_argparse(args)
print('\n-------- Data Preparing --------\n')
traindataset = EncoderDataset(mode='training')
# val_en_dataset = EncoderDataset(mode='val_en')
# threshold_dataset = EncoderDataset(mode='threshold')
# val_an_dataset = EncoderDataset(mode='val_an')
trainloader = DataLoader(traindataset, num_workers=os.cpu_count(), pin_memory=True, batch_size=args.batch_size, shuffle=True)
# val_en_loader = DataLoader(val_en_dataset, num_workers=os.cpu_count(), pin_memory=True, batch_size=args.batch_size, shuffle=True)
# threshold_loader = DataLoader(threshold_dataset, num_workers=os.cpu_count(), pin_memory=True, batch_size=args.batch_size, shuffle=True)
# val_an_loader = DataLoader(val_an_dataset, num_workers=os.cpu_count(), pin_memory=True, batch_size=args.batch_size, shuffle=True)
print('\n-------- Data Preparing Done! --------\n')
print('\n-------- Preparing Model --------\n')
model = autoencoder()
# model = VAE()
model = model.to(device)
print('\n-------- Preparing Model Done! --------\n')
if args.optim == 'Adam':
optimizer = optim.Adam(model.parameters())
elif args.optim == 'SGD':
optimizer = optim.SGD(model.parameters(), momentum=0.9, lr=args.lr, nesterov=True, weight_decay=0.01)
# TODO: maybe add in weight
criterion = nn.MSELoss()
# reconstruction_function = nn.MSELoss(size_average=False)
scheduler = build_scheduler(optimizer, args.lr_name, args.freeze)
writer = SummaryWriter(f'runs/auto_encoder_trial_{args.exp}')
for epoch in range(args.epoch):
train_running_loss = 0.0
print(f'\n---The {epoch+1}-th epoch---\n')
print('[Epoch, Batch] : Loss')
batch_count = 0
for i, data in enumerate(trainloader, start=0):
optimizer.zero_grad()
input = data[0].to(device)
# ===================forward=====================
# input = input.view(input.size(0),-1)
# recon_batch, mu, logvar = model(input)
# loss = loss_function(recon_batch, input, mu, logvar)
output = model(input)
loss = criterion(output, input)
# ===================backward====================
loss.backward()
train_running_loss += loss.item()
optimizer.step()
# ===================batch log========================
print( f"[{epoch+1}, {int(i+1)}]: %.3f" % (loss.item()) )
writer.add_scalar('Batch-Averaloss', loss.item(), batch_count*epoch + i)
batch_count = i
# ===================epoch log========================
lr = [group['lr'] for group in optimizer.param_groups]
print('Epoch:', epoch+1,'LR:', lr[0])
writer.add_scalar('Learning Rate', lr[0], epoch)
print('epoch [{}/{}], averaged loss:{:.3f}'
.format(epoch+1, args.epoch, train_running_loss/batch_count))
if args.lr_name == 'ReduceLROnPlateau':
scheduler.step(train_running_loss/batch_count)
elif args.lr_name == 'StepLR':
scheduler.step()
with torch.no_grad():
# number of images to show
n = 6
origi_img = input[:n,...].clone().detach() #(n, C, H, W)
decor_img = model(origi_img) #(n, C, H, W)
img = torch.cat((origi_img, decor_img), dim=0) #(n, C, H, W)
mean =[0.3835, 0.3737, 0.3698]
std= [1.0265, 1.0440, 1.0499]
for i in range(3):
img[:,i,...] = 255 - ((img[:,i,...] * std[i] + mean[i])*255)
img = img.type(torch.int8)
img = make_grid(img, nrow=n)
writer.add_image(f"Original-Up, decor-Down in epoch: {epoch+1}", img, dataformats='CHW')
writer.close()
print('\n-------- Saving Model --------\n')
savepath = f'/home/rico-li/Job/Metal/model_save/{str(args.exp)}_autoencoder.pth'
torch.save(model.state_dict(), savepath)
print('-------- Saved --------')
print(f'\n======auto_encoder_trial_{args.exp}======\n')
if __name__ == '__main__':
start_time = time.time()
main()
print(f'\n--- %.1f sec ---\n' % (time.time() - start_time))
# loss inspectation
import matplotlib.pyplot as plt
def dataLoop(model,loader,criterion):
losses = []
for i, data in enumerate(loader, start=0):
input = data[0]
output = model(input)
loss = criterion(output, input)
print(f'loss: %.3f' % (loss.item()))
losses += [loss.item()]
# if i >= 25:
# break
return losses
with torch.no_grad():
model = autoencoder()
model.load_state_dict(torch.load(f'/home/rico-li/Job/Metal/model_save/17_autoencoder.pth'))
criterion = nn.MSELoss()
modes = ['threshold','val_en']
all_loss = []
for mode in modes:
dataset = EncoderDataset(mode=mode)
loader = DataLoader(dataset, shuffle=True)
losses = dataLoop(model, loader, criterion)
all_loss += [losses]
weight_thres = np.ones_like(all_loss[0])/float(len(all_loss[0]))
weight_valen = np.ones_like(all_loss[1])/float(len(all_loss[1]))
plt.hist(all_loss[0], bins=20, histtype='step', alpha=0.75, fill=True, label=modes[0], weights = weight_thres)
plt.hist(all_loss[1], bins=20, histtype='step', alpha=0.75, fill=True, label=modes[1], weights = weight_valen)
plt.legend()
plt.xlabel('loss')
plt.ylabel('Frequency')
plt.title(f'combined_loss')
plt.savefig(f'/home/rico-li/Job/Metal/auto_encoder_loss_histogram/combined_loss_batchnormadd')
plt.show()