-
Notifications
You must be signed in to change notification settings - Fork 302
/
Copy pathmain.py
180 lines (147 loc) · 7.06 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import torch
import numpy as np
import cv2
import time
import win32api
import win32con
import pandas as pd
import gc
from utils.general import (cv2, non_max_suppression, xyxy2xywh)
# Could be do with
# from config import *
# But we are writing it out for clarity for new devs
from config import aaMovementAmp, useMask, maskWidth, maskHeight, aaQuitKey, screenShotHeight, confidence, headshot_mode, cpsDisplay, visuals, centerOfScreen
import gameSelection
def main():
# External Function for running the game selection menu (gameSelection.py)
camera, cWidth, cHeight = gameSelection.gameSelection()
# Used for forcing garbage collection
count = 0
sTime = time.time()
# Loading Yolo5 Small AI Model, for better results use yolov5m or yolov5l
model = torch.hub.load('ultralytics/yolov5', 'yolov5s',
pretrained=True, force_reload=True)
stride, names, pt = model.stride, model.names, model.pt
if torch.cuda.is_available():
model.half()
# Used for colors drawn on bounding boxes
COLORS = np.random.uniform(0, 255, size=(1500, 3))
# Main loop Quit if Q is pressed
last_mid_coord = None
with torch.no_grad():
while win32api.GetAsyncKeyState(ord(aaQuitKey)) == 0:
# Getting Frame
npImg = np.array(camera.get_latest_frame())
from config import maskSide # "temporary" workaround for bad syntax
if useMask:
maskSide = maskSide.lower()
if maskSide == "right":
npImg[-maskHeight:, -maskWidth:, :] = 0
elif maskSide == "left":
npImg[-maskHeight:, :maskWidth, :] = 0
else:
raise Exception('ERROR: Invalid maskSide! Please use "left" or "right"')
# Normalizing Data
im = torch.from_numpy(npImg)
if im.shape[2] == 4:
# If the image has an alpha channel, remove it
im = im[:, :, :3,]
im = torch.movedim(im, 2, 0)
if torch.cuda.is_available():
im = im.half()
im /= 255
if len(im.shape) == 3:
im = im[None]
# Detecting all the objects
results = model(im, size=screenShotHeight)
# Suppressing results that dont meet thresholds
pred = non_max_suppression(
results, confidence, confidence, 0, False, max_det=1000)
# Converting output to usable cords
targets = []
for i, det in enumerate(pred):
s = ""
gn = torch.tensor(im.shape)[[0, 0, 0, 0]]
if len(det):
for c in det[:, -1].unique():
n = (det[:, -1] == c).sum() # detections per class
s += f"{n} {names[int(c)]}, " # add to string
for *xyxy, conf, cls in reversed(det):
targets.append((xyxy2xywh(torch.tensor(xyxy).view(
1, 4)) / gn).view(-1).tolist() + [float(conf)]) # normalized xywh
targets = pd.DataFrame(
targets, columns=['current_mid_x', 'current_mid_y', 'width', "height", "confidence"])
center_screen = [cWidth, cHeight]
# If there are people in the center bounding box
if len(targets) > 0:
if (centerOfScreen):
# Compute the distance from the center
targets["dist_from_center"] = np.sqrt((targets.current_mid_x - center_screen[0])**2 + (targets.current_mid_y - center_screen[1])**2)
# Sort the data frame by distance from center
targets = targets.sort_values("dist_from_center")
# Get the last persons mid coordinate if it exists
if last_mid_coord:
targets['last_mid_x'] = last_mid_coord[0]
targets['last_mid_y'] = last_mid_coord[1]
# Take distance between current person mid coordinate and last person mid coordinate
targets['dist'] = np.linalg.norm(
targets.iloc[:, [0, 1]].values - targets.iloc[:, [4, 5]], axis=1)
targets.sort_values(by="dist", ascending=False)
# Take the first person that shows up in the dataframe (Recall that we sort based on Euclidean distance)
xMid = targets.iloc[0].current_mid_x
yMid = targets.iloc[0].current_mid_y
box_height = targets.iloc[0].height
if headshot_mode:
headshot_offset = box_height * 0.38
else:
headshot_offset = box_height * 0.2
mouseMove = [xMid - cWidth, (yMid - headshot_offset) - cHeight]
# Moving the mouse
if win32api.GetKeyState(0x14):
win32api.mouse_event(win32con.MOUSEEVENTF_MOVE, int(
mouseMove[0] * aaMovementAmp), int(mouseMove[1] * aaMovementAmp), 0, 0)
last_mid_coord = [xMid, yMid]
else:
last_mid_coord = None
# See what the bot sees
if visuals:
# Loops over every item identified and draws a bounding box
for i in range(0, len(targets)):
halfW = round(targets["width"][i] / 2)
halfH = round(targets["height"][i] / 2)
midX = targets['current_mid_x'][i]
midY = targets['current_mid_y'][i]
(startX, startY, endX, endY) = int(
midX + halfW), int(midY + halfH), int(midX - halfW), int(midY - halfH)
idx = 0
# draw the bounding box and label on the frame
label = "{}: {:.2f}%".format(
"Human", targets["confidence"][i] * 100)
cv2.rectangle(npImg, (startX, startY), (endX, endY),
COLORS[idx], 2)
y = startY - 15 if startY - 15 > 15 else startY + 15
cv2.putText(npImg, label, (startX, y),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, COLORS[idx], 2)
# Forced garbage cleanup every second
count += 1
if (time.time() - sTime) > 1:
if cpsDisplay:
print("CPS: {}".format(count))
count = 0
sTime = time.time()
# Uncomment if you keep running into memory issues
# gc.collect(generation=0)
# See visually what the Aimbot sees
if visuals:
cv2.imshow('Live Feed', npImg)
if (cv2.waitKey(1) & 0xFF) == ord('q'):
exit()
camera.stop()
if __name__ == "__main__":
try:
main()
except Exception as e:
import traceback
traceback.print_exception(e)
print("ERROR: " + str(e))
print("Ask @Wonder for help in our Discord in the #ai-aimbot channel ONLY: https://discord.gg/rootkitorg")