From 5c68ec3e21fc940116295fd65831750bc3a19220 Mon Sep 17 00:00:00 2001 From: RoyalSkye Date: Sat, 15 Oct 2022 16:40:12 +0800 Subject: [PATCH] add distribution code --- POMO/TSP/TSPTrainer_Meta.py | 58 ++- POMO/TSP/TSPTrainer_pomo.py | 53 ++- POMO/TSP/TSP_baseline.py | 485 +++++++++++++++++++++++ POMO/TSP/{baselines.py => TSP_gurobi.py} | 0 POMO/TSP/TSProblemDef.py | 11 +- POMO/TSP/{test_n100.py => test.py} | 0 POMO/TSP/{train_n100.py => train.py} | 38 +- POMO/utils/functions.py | 37 ++ 8 files changed, 633 insertions(+), 49 deletions(-) create mode 100644 POMO/TSP/TSP_baseline.py rename POMO/TSP/{baselines.py => TSP_gurobi.py} (100%) rename POMO/TSP/{test_n100.py => test.py} (100%) rename POMO/TSP/{train_n100.py => train.py} (79%) diff --git a/POMO/TSP/TSPTrainer_Meta.py b/POMO/TSP/TSPTrainer_Meta.py index 392bcf7..f41152d 100644 --- a/POMO/TSP/TSPTrainer_Meta.py +++ b/POMO/TSP/TSPTrainer_Meta.py @@ -95,8 +95,13 @@ def run(self): self.result_log.append('train_loss', epoch, train_loss) # Val dir, no_aug_score_list = "../../data/TSP/", [] - # for val_path in ["tsp50_uniform.pkl", "tsp100_uniform.pkl", "tsp100_diagonal.pkl", "tsp150_uniform.pkl", "tsp200_uniform.pkl"]: - for val_path in ["tsp50_uniform.pkl", "tsp100_uniform.pkl", "tsp150_uniform.pkl", "tsp200_uniform.pkl"]: + if self.meta_params["data_type"] == "size": + paths = ["tsp50_uniform.pkl", "tsp100_uniform.pkl", "tsp200_uniform.pkl"] + elif self.meta_params["data_type"] == "distribution": + paths = ["tsp100_uniform.pkl", "tsp100_gaussian.pkl", "tsp100_cluster.pkl", "tsp100_diagonal.pkl", "tsp100_tsplib.pkl"] + elif self.meta_params["data_type"] == "size_distribution": + pass + for val_path in paths: if self.meta_params['meta_method'] in ['fomaml', 'reptile']: no_aug_score = self._fast_val(copy.deepcopy(self.meta_model), path=os.path.join(dir, val_path), val_episodes=64, mode="eval") else: @@ -155,14 +160,35 @@ def _train_one_epoch(self, epoch): self.meta_optimizer.zero_grad() score_AM = AverageMeter() loss_AM = AverageMeter() - batch_size = self.meta_params['meta_batch_size'] + + """ + Curriculum learning: + for size: gradually increase the problem size + for distribution: gradually increase adversarial budgets (i.e., \epsilon) + """ + if self.meta_params["data_type"] in ["size", "distribution"]: + self.min_n, self.max_n = self.task_set[0][0], self.task_set[-1][0] # [20, 150] / [0, 130] + # start = self.min_n + int(epoch/self.meta_params['epochs'] * (self.max_n - self.min_n)) # linear + start = self.min_n + int(1/2 * (1-math.cos(math.pi * min(epoch/self.meta_params['epochs'], 1))) * (self.max_n - self.min_n)) # cosine + end = min(start + 10, self.max_n) # 10 is the size of the sliding window + if self.meta_params["curriculum"]: print(">> training task {}".format((start, end))) + elif self.meta_params["data_type"] == "size_distribution": + pass self._alpha_scheduler(epoch) fast_weights, val_loss, fomaml_grad = [], 0, [] # sample a batch of tasks for i in range(self.meta_params['B']): - task_params = random.sample(self.task_set, 1)[0] + if self.meta_params["data_type"] == "size": + task_params = random.sample(range(start, end+1), 1) if self.meta_params['curriculum'] else random.sample(self.task_set, 1)[0] + batch_size = self.meta_params['meta_batch_size'] if task_params[0] <= 100 else self.meta_params['meta_batch_size'] // 2 + elif self.meta_params["data_type"] == "distribution": + task_params = random.sample(range(start, end+1), 1) if self.meta_params['curriculum'] else random.sample(self.task_set, 1)[0] + batch_size = self.meta_params['meta_batch_size'] + elif self.meta_params["data_type"] == "size_distribution": + pass + if self.meta_params['meta_method'] in ['fomaml', 'reptile']: task_model = copy.deepcopy(self.meta_model) optimizer = Optimizer(task_model.parameters(), **self.optimizer_params['optimizer']) @@ -179,7 +205,6 @@ def _train_one_epoch(self, epoch): # inner-loop optimization for step in range(self.meta_params['k']): data = self._get_data(batch_size, task_params) - data = self._generate_x_adv(data, eps=random.randint(10, 100)) if self.trainer_params['adv_train'] else data env_params = {'problem_size': data.size(1), 'pomo_size': data.size(1)} self.meta_model.train() if self.meta_params['meta_method'] in ['reptile', 'fomaml']: @@ -189,7 +214,7 @@ def _train_one_epoch(self, epoch): score_AM.update(avg_score.item(), batch_size) loss_AM.update(avg_loss.item(), batch_size) - val_data = self._get_val_data(self.meta_params['val_batch_size'], task_params) + val_data = self._get_val_data(batch_size, task_params) if self.meta_params['meta_method'] == 'maml': val_loss = self._fast_val(fast_weight, data=val_data, mode="maml") val_loss /= self.meta_params['B'] @@ -304,6 +329,7 @@ def _train_one_batch_maml(self, fast_weight, data, env, optimizer=None): # for ((name, param), grad) in zip(fast_weight.items(), gradients) # ) optimizer.zero_grad() + # torch.autograd.grad(loss_mean, fast_weight.values(), create_graph=True) loss_mean.backward(retain_graph=True, create_graph=True) optimizer.step() @@ -418,23 +444,28 @@ def _bootstrap(self, fast_weight, data): def _get_data(self, batch_size, task_params): if self.meta_params['data_type'] == 'distribution': - assert len(task_params) == 2 - data = get_random_problems(batch_size, self.env_params['problem_size'], num_modes=task_params[0], cdist=task_params[-1], distribution='gaussian_mixture') + assert len(task_params) == 1 + data = get_random_problems(batch_size, self.env_params['problem_size'], num_modes=0, cdist=0, distribution='uniform') + data = self._generate_x_adv(data, eps=task_params[0]) elif self.meta_params['data_type'] == 'size': assert len(task_params) == 1 data = get_random_problems(batch_size, task_params[0], num_modes=0, cdist=0, distribution='uniform') elif self.meta_params['data_type'] == "size_distribution": - assert len(task_params) == 3 - data = get_random_problems(batch_size, problem_size=task_params[0], num_modes=task_params[1], cdist=task_params[-1], distribution='gaussian_mixture') + assert len(task_params) == 2 + data = get_random_problems(batch_size, task_params[0], num_modes=0, cdist=0, distribution='uniform') + data = self._generate_x_adv(data, eps=task_params[1]) else: raise NotImplementedError return data def _get_val_data(self, batch_size, task_params): - val_data = self._get_data(batch_size, task_params) - # val_path = "../../data/TSP/tsp150_uniform.pkl" - # val_data = torch.Tensor(load_dataset(val_path)[: batch_size]) + if self.meta_params["data_type"] in ["size", "distribution"]: + start1, end1 = min(task_params[0] + 10, self.max_n), min(task_params[0] + 20, self.max_n) + elif self.meta_params["data_type"] == "size_distribution": + pass + val_size = random.sample(range(start1, end1 + 1), 1)[0] + val_data = self._get_data(batch_size, (val_size,)) return val_data @@ -454,6 +485,7 @@ def minmax(xy_): xy_ = (xy_ - xy_.min(dim=1, keepdims=True)[0]) / (xy_.max(dim=1, keepdims=True)[0] - xy_.min(dim=1, keepdims=True)[0]) return xy_ + if eps == 0: return data # generate x_adv print(">> Warning! Generating x_adv!") self.meta_model.eval() diff --git a/POMO/TSP/TSPTrainer_pomo.py b/POMO/TSP/TSPTrainer_pomo.py index 60bb3da..9c3c970 100644 --- a/POMO/TSP/TSPTrainer_pomo.py +++ b/POMO/TSP/TSPTrainer_pomo.py @@ -86,7 +86,13 @@ def run(self): self.result_log.append('train_loss', epoch, train_loss) # Val dir, no_aug_score_list = "../../data/TSP/", [] - for val_path in ["tsp50_uniform.pkl", "tsp100_uniform.pkl", "tsp100_diagonal.pkl", "tsp150_uniform.pkl", "tsp200_uniform.pkl"]: + if self.meta_params["data_type"] == "size": + paths = ["tsp50_uniform.pkl", "tsp100_uniform.pkl", "tsp200_uniform.pkl"] + elif self.meta_params["data_type"] == "distribution": + paths = ["tsp100_uniform.pkl", "tsp100_gaussian.pkl", "tsp100_cluster.pkl", "tsp100_diagonal.pkl", "tsp100_tsplib.pkl"] + elif self.meta_params["data_type"] == "size_distribution": + pass + for val_path in paths: no_aug_score = self._fast_val(self.meta_model, path=os.path.join(dir, val_path), val_episodes=64) no_aug_score_list.append(round(no_aug_score, 4)) self.result_log.append('val_score', epoch, no_aug_score_list[-1]) @@ -141,25 +147,34 @@ def _train_one_epoch(self, epoch): """ score_AM = AverageMeter() loss_AM = AverageMeter() - batch_size = self.meta_params['meta_batch_size'] + + # Curriculum learning + if self.meta_params["data_type"] in ["size", "distribution"]: + self.min_n, self.max_n = self.task_set[0][0], self.task_set[-1][0] # [20, 150] / [0, 130] + # start = self.min_n + int(epoch/self.meta_params['epochs'] * (self.max_n - self.min_n)) # linear + start = self.min_n + int(1 / 2 * (1 - math.cos(math.pi * min(epoch / self.meta_params['epochs'], 1))) * (self.max_n - self.min_n)) # cosine + end = min(start + 10, self.max_n) # 10 is the size of the sliding window + if self.meta_params["curriculum"]: print(">> training task {}".format((start, end))) + elif self.meta_params["data_type"] == "size_distribution": + pass # sample a batch of tasks for i in range(self.meta_params['B']): - task_params = random.sample(self.task_set, 1)[0] - for step in range(self.meta_params['k']): - # task_params = random.sample(self.task_set, 1)[0] + if self.meta_params["data_type"] == "size": + task_params = random.sample(range(start, end + 1), 1) if self.meta_params['curriculum'] else random.sample(self.task_set, 1)[0] + batch_size = self.meta_params['meta_batch_size'] if task_params[0] <= 100 else self.meta_params['meta_batch_size'] // 2 + elif self.meta_params["data_type"] == "distribution": + task_params = random.sample(range(start, end + 1), 1) if self.meta_params['curriculum'] else random.sample(self.task_set, 1)[0] + batch_size = self.meta_params['meta_batch_size'] + elif self.meta_params["data_type"] == "size_distribution": + pass data = self._get_data(batch_size, task_params) - data = self._generate_x_adv(data, eps=random.randint(10, 100)) if self.trainer_params['adv_train'] else data env_params = {'problem_size': data.size(1), 'pomo_size': data.size(1)} avg_score, avg_loss = self._train_one_batch(data, Env(**env_params)) score_AM.update(avg_score.item(), batch_size) loss_AM.update(avg_loss.item(), batch_size) - val_data = self._get_val_data(self.meta_params['val_batch_size'], task_params) - env_params = {'problem_size': val_data.size(1), 'pomo_size': val_data.size(1)} - self._train_one_batch(val_data, Env(**env_params)) - # Log Once, for each epoch self.logger.info('Meta Iteration {:3d}: Score: {:.4f}, Loss: {:.4f}'.format(epoch, score_AM.avg, loss_AM.avg)) @@ -234,25 +249,21 @@ def _fast_val(self, model, data=None, path=None, val_episodes=32): def _get_data(self, batch_size, task_params): if self.meta_params['data_type'] == 'distribution': - assert len(task_params) == 2 - data = get_random_problems(batch_size, self.env_params['problem_size'], num_modes=task_params[0], cdist=task_params[-1], distribution='gaussian_mixture') + assert len(task_params) == 1 + data = get_random_problems(batch_size, self.env_params['problem_size'], num_modes=0, cdist=0, distribution='uniform') + data = self._generate_x_adv(data, eps=task_params[0]) elif self.meta_params['data_type'] == 'size': assert len(task_params) == 1 data = get_random_problems(batch_size, task_params[0], num_modes=0, cdist=0, distribution='uniform') elif self.meta_params['data_type'] == "size_distribution": - assert len(task_params) == 3 - data = get_random_problems(batch_size, problem_size=task_params[0], num_modes=task_params[1], cdist=task_params[-1], distribution='gaussian_mixture') + assert len(task_params) == 2 + data = get_random_problems(batch_size, task_params[0], num_modes=0, cdist=0, distribution='uniform') + data = self._generate_x_adv(data, eps=task_params[1]) else: raise NotImplementedError return data - def _get_val_data(self, batch_size, task_params): - val_data = self._get_data(batch_size, task_params) - # val_path = "../../data/TSP/tsp100_uniform.pkl" - # val_data = torch.Tensor(load_dataset(val_path)[: batch_size]) - - return val_data def _generate_x_adv(self, data, eps=10.0): """ @@ -264,8 +275,8 @@ def minmax(xy_): xy_ = (xy_ - xy_.min(dim=1, keepdims=True)[0]) / (xy_.max(dim=1, keepdims=True)[0] - xy_.min(dim=1, keepdims=True)[0]) return xy_ + if eps == 0: return data # generate x_adv - print(">> Warning! Generating x_adv!") self.meta_model.eval() aug_factor, batch_size = 1, data.size(0) env = Env(**{'problem_size': data.size(1), 'pomo_size': data.size(1)}) diff --git a/POMO/TSP/TSP_baseline.py b/POMO/TSP/TSP_baseline.py new file mode 100644 index 0000000..a2ae178 --- /dev/null +++ b/POMO/TSP/TSP_baseline.py @@ -0,0 +1,485 @@ +import argparse +import numpy as np +import os, re +import time +from datetime import timedelta +from scipy.spatial import distance_matrix +from subprocess import check_call, check_output, CalledProcessError +import torch +from torch.utils.data import Dataset +from tqdm import tqdm +os.chdir(os.path.dirname(os.path.abspath(__file__))) +sys.path.insert(0, "..") # for utils +from utils.functions import check_extension, load_dataset, save_dataset, run_all_in_pool, move_to + + +class TSPDataset(Dataset): + + def __init__(self, data=None): + super(TSPDataset, self).__init__() + + self.data = data + self.size = len(self.data) + + def __len__(self): + return self.size + + def __getitem__(self, idx): + return self.data[idx] + + +def solve_gurobi(directory, name, loc, disable_cache=False, timeout=None, gap=None): + # Lazy import so we do not need to have gurobi installed to run this script + from TSP_gurobi import solve_euclidian_tsp as solve_euclidian_tsp_gurobi + + try: + problem_filename = os.path.join(directory, "{}.gurobi{}{}.pkl".format( + name, "" if timeout is None else "t{}".format(timeout), "" if gap is None else "gap{}".format(gap))) + + if os.path.isfile(problem_filename) and not disable_cache: + (cost, tour, duration) = load_dataset(problem_filename) + else: + # 0 = start, 1 = end so add depot twice + start = time.time() + + cost, tour = solve_euclidian_tsp_gurobi(loc, threads=1, timeout=timeout, gap=gap) + duration = time.time() - start # Measure clock time + save_dataset((cost, tour, duration), problem_filename) + + # First and last node are depot(s), so first node is 2 but should be 1 (as depot is 0) so subtract 1 + total_cost = calc_tsp_length(loc, tour) + assert abs(total_cost - cost) <= 1e-5, "Cost is incorrect" + return total_cost, tour, duration + + except Exception as e: + # For some stupid reason, sometimes OR tools cannot find a feasible solution? + # By letting it fail we do not get total results, but we dcan retry by the caching mechanism + print("Exception occured") + print(e) + return None + + +def solve_concorde_log(executable, directory, name, loc, disable_cache=False): + + problem_filename = os.path.join(directory, "{}.tsp".format(name)) + tour_filename = os.path.join(directory, "{}.tour".format(name)) + output_filename = os.path.join(directory, "{}.concorde.pkl".format(name)) + log_filename = os.path.join(directory, "{}.log".format(name)) + + # if True: + try: + # May have already been run + if os.path.isfile(output_filename) and not disable_cache: + tour, duration = load_dataset(output_filename) + else: + write_tsplib(problem_filename, loc, name=name) + + with open(log_filename, 'w') as f: + start = time.time() + try: + # Concorde is weird, will leave traces of solution in current directory so call from target dir + check_call([executable, '-s', '1234', '-x', '-o', + os.path.abspath(tour_filename), os.path.abspath(problem_filename)], + stdout=f, stderr=f, cwd=directory) + except CalledProcessError as e: + # Somehow Concorde returns 255 + assert e.returncode == 255 + duration = time.time() - start + + tour = read_concorde_tour(tour_filename) + save_dataset((tour, duration), output_filename) + + return calc_tsp_length(loc, tour), tour, duration + + except Exception as e: + print("Exception occured") + print(e) + return None + + +def get_lkh_executable(url="http://www.akira.ruc.dk/~keld/research/LKH-3/LKH-3.0.7.tgz"): + + cwd = os.path.abspath(os.path.join("problems", "vrp", "lkh")) + os.makedirs(cwd, exist_ok=True) + + file = os.path.join(cwd, os.path.split(urlparse(url).path)[-1]) + filedir = os.path.splitext(file)[0] + + if not os.path.isdir(filedir): + print("{} not found, downloading and compiling".format(filedir)) + + check_call(["wget", url], cwd=cwd) + assert os.path.isfile(file), "Download failed, {} does not exist".format(file) + check_call(["tar", "xvfz", file], cwd=cwd) + + assert os.path.isdir(filedir), "Extracting failed, dir {} does not exist".format(filedir) + check_call("make", cwd=filedir) + os.remove(file) + + executable = os.path.join(filedir, "LKH") + assert os.path.isfile(executable) + return os.path.abspath(executable) + + +def solve_lkh_log(executable, directory, name, loc, runs=1, disable_cache=False): + + problem_filename = os.path.join(directory, "{}.lkh{}.vrp".format(name, runs)) + tour_filename = os.path.join(directory, "{}.lkh{}.tour".format(name, runs)) + output_filename = os.path.join(directory, "{}.lkh{}.pkl".format(name, runs)) + param_filename = os.path.join(directory, "{}.lkh{}.par".format(name, runs)) + log_filename = os.path.join(directory, "{}.lkh{}.log".format(name, runs)) + + try: + # May have already been run + if os.path.isfile(output_filename) and not disable_cache: + tour, duration = load_dataset(output_filename) + else: + write_tsplib(problem_filename, loc, name=name) + + params = {"PROBLEM_FILE": problem_filename, "OUTPUT_TOUR_FILE": tour_filename, "RUNS": runs, "SEED": 1234} + write_lkh_par(param_filename, params) + + with open(log_filename, 'w') as f: + start = time.time() + check_call([executable, param_filename], stdout=f, stderr=f) + duration = time.time() - start + + tour = read_tsplib(tour_filename) + save_dataset((tour, duration), output_filename) + + return calc_tsp_length(loc, tour), tour, duration + + except Exception as e: + print("Exception occured") + print(e) + return None + + +def write_lkh_par(filename, parameters): + default_parameters = { # Use none to include as flag instead of kv + "MAX_TRIALS": 10000, + "RUNS": 10, + "TRACE_LEVEL": 1, + "SEED": 0 + } + with open(filename, 'w') as f: + for k, v in {**default_parameters, **parameters}.items(): + if v is None: + f.write("{}\n".format(k)) + else: + f.write("{} = {}\n".format(k, v)) + + +def write_tsplib(filename, loc, name="problem"): + + with open(filename, 'w') as f: + f.write("\n".join([ + "{} : {}".format(k, v) + for k, v in ( + ("NAME", name), + ("TYPE", "TSP"), + ("DIMENSION", len(loc)), + ("EDGE_WEIGHT_TYPE", "EUC_2D"), + ) + ])) + f.write("\n") + f.write("NODE_COORD_SECTION\n") + f.write("\n".join([ + "{}\t{}\t{}".format(i + 1, int(x * 10000000 + 0.5), int(y * 10000000 + 0.5)) # tsplib does not take floats + for i, (x, y) in enumerate(loc) + ])) + f.write("\n") + f.write("EOF\n") + + +def read_concorde_tour(filename): + with open(filename, 'r') as f: + n = None + tour = [] + for line in f: + if n is None: + n = int(line) + else: + tour.extend([int(node) for node in line.rstrip().split(" ")]) + assert len(tour) == n, "Unexpected tour length" + return tour + + +def read_tsplib(filename): + with open(filename, 'r') as f: + tour = [] + dimension = 0 + started = False + for line in f: + if started: + loc = int(line) + if loc == -1: + break + tour.append(loc) + if line.startswith("DIMENSION"): + dimension = int(line.split(" ")[-1]) + + if line.startswith("TOUR_SECTION"): + started = True + + assert len(tour) == dimension + tour = np.array(tour).astype(int) - 1 # Subtract 1 as depot is 1 and should be 0 + return tour.tolist() + + +def calc_tsp_length(loc, tour): + assert len(np.unique(tour)) == len(tour), "Tour cannot contain duplicates" + assert len(tour) == len(loc) + sorted_locs = np.array(loc)[np.concatenate((tour, [tour[0]]))] + return np.linalg.norm(sorted_locs[1:] - sorted_locs[:-1], axis=-1).sum() + + +def _calc_insert_cost(D, prv, nxt, ins): + """ + Calculates insertion costs of inserting ins between prv and nxt + :param D: distance matrix + :param prv: node before inserted node, can be vector + :param nxt: node after inserted node, can be vector + :param ins: node to insert + :return: + """ + return ( + D[prv, ins] + + D[ins, nxt] + - D[prv, nxt] + ) + + +def run_insertion(loc, method): + n = len(loc) + D = distance_matrix(loc, loc) + + mask = np.zeros(n, dtype=bool) + tour = [] # np.empty((0, ), dtype=int) + for i in range(n): + feas = mask == 0 + feas_ind = np.flatnonzero(mask == 0) + if method == 'random': + # Order of instance is random so do in order for deterministic results + a = i + elif method == 'nearest': + if i == 0: + a = 0 # order does not matter so first is random + else: + a = feas_ind[D[np.ix_(feas, ~feas)].min(1).argmin()] # node nearest to any in tour + elif method == 'cheapest': + assert False, "Not yet implemented" # try all and find cheapest insertion cost + + elif method == 'farthest': + if i == 0: + a = D.max(1).argmax() # Node with farthest distance to any other node + else: + a = feas_ind[D[np.ix_(feas, ~feas)].min(1).argmax()] # node which has closest node in tour farthest + mask[a] = True + + if len(tour) == 0: + tour = [a] + else: + # Find index with least insert cost + ind_insert = np.argmin( + _calc_insert_cost( + D, + tour, + np.roll(tour, -1), + a + ) + ) + tour.insert(ind_insert + 1, a) + + cost = D[tour, np.roll(tour, -1)].sum() + return cost, tour + + +def solve_insertion(directory, name, loc, method='random'): + start = time.time() + cost, tour = run_insertion(loc, method) + duration = time.time() - start + return cost, tour, duration + + +def calc_batch_pdist(dataset): + diff = (dataset[:, :, None, :] - dataset[:, None, :, :]) + return torch.matmul(diff[:, :, :, None, :], diff[:, :, :, :, None]).squeeze(-1).squeeze(-1).sqrt() + + +def nearest_neighbour(dataset, start='first'): + dist = calc_batch_pdist(dataset) + + batch_size, graph_size, _ = dataset.size() + + total_dist = dataset.new(batch_size).zero_() + + if not isinstance(start, torch.Tensor): + if start == 'random': + start = dataset.new().long().new(batch_size).zero_().random_(0, graph_size) + elif start == 'first': + start = dataset.new().long().new(batch_size).zero_() + elif start == 'center': + _, start = dist.mean(2).min(1) # Minimum total distance to others + else: + assert False, "Unknown start: {}".format(start) + + current = start + dist_to_startnode = torch.gather(dist, 2, current.view(-1, 1, 1).expand(batch_size, graph_size, 1)).squeeze(2) + tour = [current] + + for i in range(graph_size - 1): + # Mark out current node as option + dist.scatter_(2, current.view(-1, 1, 1).expand(batch_size, graph_size, 1), np.inf) + nn_dist = torch.gather(dist, 1, current.view(-1, 1, 1).expand(batch_size, 1, graph_size)).squeeze(1) + + min_nn_dist, current = nn_dist.min(1) + total_dist += min_nn_dist + tour.append(current) + + total_dist += torch.gather(dist_to_startnode, 1, current.view(-1, 1)).squeeze(1) + + return total_dist, torch.stack(tour, dim=1) + + +def solve_all_nn(dataset_path, eval_batch_size=1024, no_cuda=False, dataset_n=None, progress_bar_mininterval=0.1): + import torch + from torch.utils.data import DataLoader + from TSProblemDef import get_random_problems + + num_samples = dataset_n if dataset_n is not None else 1000000 + data = get_random_problems(batch_size=num_samples, path=dataset_path) + dataloader = DataLoader(TSPDataset(data=data), batch_size=eval_batch_size) + device = torch.device("cuda:0" if torch.cuda.is_available() and not no_cuda else "cpu") + results = [] + for batch in tqdm(dataloader, mininterval=progress_bar_mininterval): + start = time.time() + batch = move_to(batch, device) + + lengths, tours = nearest_neighbour(batch) + lengths_check, _ = TSP.get_costs(batch, tours) + + assert (torch.abs(lengths - lengths_check.data) < 1e-5).all() + + duration = time.time() - start + results.extend( + [(cost.item(), np.trim_zeros(pi.cpu().numpy(), 'b'), duration) for cost, pi in zip(lengths, tours)]) + + return results, eval_batch_size + + +if __name__ == "__main__": + + parser = argparse.ArgumentParser() + parser.add_argument("method", type=str, default='concorde', choices=['nn', "gurobi", "gurobigap", "gurobit", "concorde", "lkh", "random_insertion", "nearest_insertion", "farthest_insertion"]) + parser.add_argument("datasets", nargs='+', help="Filename of the dataset(s) to evaluate") + parser.add_argument("-f", action='store_true', help="Set true to overwrite") + parser.add_argument("-o", default=None, help="Name of the results file to write") + parser.add_argument("--cpus", type=int, help="Number of CPUs to use, defaults to all cores") + parser.add_argument('--no_cuda', action='store_true', help='Disable CUDA (only for Tsiligirides)') + parser.add_argument('--disable_cache', action='store_true', help='Disable caching') + parser.add_argument('--max_calc_batch_size', type=int, default=1000, help='Size for subbatches') + parser.add_argument('--progress_bar_mininterval', type=float, default=0.1, help='Minimum interval') + parser.add_argument('-n', type=int, help="Number of instances to process") + parser.add_argument('--offset', type=int, help="Offset where to start processing") + parser.add_argument('--results_dir', default='results', help="Name of results directory") + + opts = parser.parse_args() + + assert opts.o is None or len(opts.datasets) == 1, "Cannot specify result filename with more than one dataset" + + for dataset_path in opts.datasets: + + assert os.path.isfile(check_extension(dataset_path)), "File does not exist!" + + dataset_basename, ext = os.path.splitext(os.path.split(dataset_path)[-1]) + + if opts.o is None: + results_dir = os.path.join(opts.results_dir, "tsp", dataset_basename) + os.makedirs(results_dir, exist_ok=True) + + out_file = os.path.join(results_dir, "{}{}{}-{}{}".format( + dataset_basename, + "offs{}".format(opts.offset) if opts.offset is not None else "", + "n{}".format(opts.n) if opts.n is not None else "", + opts.method, ext + )) + else: + out_file = opts.o + + assert opts.f or not os.path.isfile( + out_file), "File already exists! Try running with -f option to overwrite." + + match = re.match(r'^([a-z_]+)(\d*)$', opts.method) + assert match + method = match[1] + runs = 1 if match[2] == '' else int(match[2]) + + if method == "nn": + assert opts.offset is None, "Offset not supported for nearest neighbor" + + eval_batch_size = opts.max_calc_batch_size + + results, parallelism = solve_all_nn( + dataset_path, eval_batch_size, opts.no_cuda, opts.n, + opts.progress_bar_mininterval + ) + elif method in ("gurobi", "gurobigap", "gurobit", "concorde", "lkh") or method[-9:] == 'insertion': + + target_dir = os.path.join(results_dir, "{}-{}".format( + dataset_basename, + opts.method + )) + assert opts.f or not os.path.isdir(target_dir), \ + "Target dir already exists! Try running with -f option to overwrite." + + if not os.path.isdir(target_dir): + os.makedirs(target_dir) + + # TSP contains single loc array rather than tuple + dataset = [(instance, ) for instance in load_dataset(dataset_path)] + + if method == "concorde": + use_multiprocessing = False + executable = os.path.abspath(os.path.join('problems', 'tsp', 'concorde', 'concorde', 'TSP', 'concorde')) + + def run_func(args): + return solve_concorde_log(executable, *args, disable_cache=opts.disable_cache) + + elif method == "lkh": + use_multiprocessing = False + executable = get_lkh_executable() + + def run_func(args): + return solve_lkh_log(executable, *args, runs=runs, disable_cache=opts.disable_cache) + + elif method[:6] == "gurobi": + use_multiprocessing = True # We run one thread per instance + + def run_func(args): + return solve_gurobi(*args, disable_cache=opts.disable_cache, + timeout=runs if method[6:] == "t" else None, + gap=float(runs) if method[6:] == "gap" else None) + else: + assert method[-9:] == "insertion" + use_multiprocessing = True + + def run_func(args): + return solve_insertion(*args, opts.method.split("_")[0]) + + results, parallelism = run_all_in_pool( + run_func, + target_dir, dataset, opts, use_multiprocessing=use_multiprocessing + ) + + else: + assert False, "Unknown method: {}".format(opts.method) + + costs, tours, durations = zip(*results) # Not really costs since they should be negative + print("Average cost: {} +- {}".format(np.mean(costs), 2 * np.std(costs) / np.sqrt(len(costs)))) + print("Average serial duration: {} +- {}".format( + np.mean(durations), 2 * np.std(durations) / np.sqrt(len(durations)))) + print("Average parallel duration: {}".format(np.mean(durations) / parallelism)) + print("Calculated total duration: {}".format(timedelta(seconds=int(np.sum(durations) / parallelism)))) + + save_dataset((results, parallelism), out_file) diff --git a/POMO/TSP/baselines.py b/POMO/TSP/TSP_gurobi.py similarity index 100% rename from POMO/TSP/baselines.py rename to POMO/TSP/TSP_gurobi.py diff --git a/POMO/TSP/TSProblemDef.py b/POMO/TSP/TSProblemDef.py index 5e00b68..1c17d5a 100644 --- a/POMO/TSP/TSProblemDef.py +++ b/POMO/TSP/TSProblemDef.py @@ -10,12 +10,14 @@ def generate_task_set(meta_params): if meta_params['data_type'] == "distribution": # focus on the TSP100 with different distributions - task_set = [(m, l) for l in [1, 10, 20, 30, 50] for m in range(1, 1 + meta_params['num_task'] // 5)] + [(0, 0)] + # task_set = [(m, l) for l in [1, 10, 20, 30, 50] for m in range(1, 1 + meta_params['num_task'] // 5)] + [(0, 0)] + task_set = [(eps,) for eps in range(0, 0 + meta_params['num_task'] + 1)] elif meta_params['data_type'] == "size": # focus on uniform distribution with different sizes - task_set = [(n,) for n in range(10, 10 + 10 * meta_params['num_task'], 10)] + task_set = [(n,) for n in range(20, 20 + meta_params['num_task'] + 1)] elif meta_params['data_type'] == "size_distribution": - task_set = [(m, l) for l in [1, 10, 20, 30, 50] for m in range(1, 11)] + [(0, 0)] - task_set = [(n, m, l) for n in [25, 50, 75, 100, 125, 150] for (m, l) in task_set] + # task_set = [(m, l) for l in [1, 10, 20, 30, 50] for m in range(1, 11)] + [(0, 0)] + # task_set = [(n, m, l) for n in [25, 50, 75, 100, 125, 150] for (m, l) in task_set] + task_set = [(n, eps) for n in range(20, 20 + meta_params['num_task'] + 1) for eps in range(0, 0 + meta_params['num_task'] + 1, 10)] else: raise NotImplementedError print(">> Generating training task set: {} tasks with type {}".format(len(task_set), meta_params['data_type'])) @@ -43,6 +45,7 @@ def get_random_problems(batch_size, problem_size, num_modes=0, cdist=0, distribu if path is not None: with open(os.path.join(path, "tsp{}_{}.pkl".format(problem_size, distribution)), "wb") as f: pickle.dump(problems, f, pickle.HIGHEST_PROTOCOL) + problems = problems[: batch_size] # return tensor if not torch.is_tensor(problems): diff --git a/POMO/TSP/test_n100.py b/POMO/TSP/test.py similarity index 100% rename from POMO/TSP/test_n100.py rename to POMO/TSP/test.py diff --git a/POMO/TSP/train_n100.py b/POMO/TSP/train.py similarity index 79% rename from POMO/TSP/train_n100.py rename to POMO/TSP/train.py index a7c0eaf..3fd1786 100644 --- a/POMO/TSP/train_n100.py +++ b/POMO/TSP/train.py @@ -17,8 +17,8 @@ # parameters env_params = { - 'problem_size': 50, - 'pomo_size': 50, + 'problem_size': 100, + 'pomo_size': 100, } model_params = { @@ -57,7 +57,6 @@ 'stop_criterion': 'epochs', # epochs or time 'train_episodes': 100000, # number of instances per epoch 'train_batch_size': 64, - 'adv_train': False, 'logging': { 'model_save_interval': 5000, 'img_save_interval': 5000, @@ -76,19 +75,17 @@ # 'epoch': 510, # epoch version of pre-trained model to laod. }, - # For fomaml, k needs to be small (1 or 2), but the performance is still inferior. - # For reptile, performance is quite well, however, after several iteration, the improvement in inner-loop is trivial. 'meta_params': { 'enable': True, # whether use meta-learning or not + 'curriculum': True, 'meta_method': 'maml', # choose from ['maml', 'fomaml', 'reptile'] 'bootstrap_steps': 0, - 'data_type': 'size', # choose from ["size", "distribution", "size_distribution"] + 'data_type': 'distribution', # choose from ["size", "distribution", "size_distribution"] 'epochs': 50000, # the number of meta-model updates: (250*100000) / (1*5*64) 'B': 1, # the number of tasks in a mini-batch - 'k': 3, # gradient decent steps in the inner-loop optimization of meta-learning method - 'meta_batch_size': 64, # the batch size of the inner-loop optimization - 'val_batch_size': 64, - 'num_task': 5, # the number of tasks in the training task set + 'k': 1, # gradient decent steps in the inner-loop optimization of meta-learning method + 'meta_batch_size': 64, # will be divided by 2 if problem_size >= 100 + 'num_task': 130, # the number of tasks in the training task set: e.g., [20, 150] / [0, 130] 'alpha': 0.99, # params for the outer-loop optimization of reptile 'alpha_decay': 0.999, # params for the outer-loop optimization of reptile } @@ -96,7 +93,7 @@ logger_params = { 'log_file': { - 'desc': 'train_tsp_n50', + 'desc': 'train_tsp', 'filename': 'log.txt' } } @@ -140,5 +137,24 @@ def _print_config(): [logger.info(g_key + "{}".format(globals()[g_key])) for g_key in globals().keys() if g_key.endswith('params')] +def check_mem(cuda_device): + devices_info = os.popen('"/usr/bin/nvidia-smi" --query-gpu=memory.total,memory.used --format=csv,nounits,noheader').read().strip().split("\n") + total, used = devices_info[int(cuda_device)].split(',') + return total, used + + +def occumpy_mem(cuda_device): + torch.cuda.set_device(cuda_device) + total, used = check_mem(cuda_device) + total = int(total) + used = int(used) + max_mem = int(total * 0.85) + block_mem = max_mem - used + x = torch.cuda.FloatTensor(256, 1024, block_mem) + del x + + if __name__ == "__main__": + if trainer_params["meta_params"]["data_type"] in ["size", "size_distribution"]: + occumpy_mem(CUDA_DEVICE_NUM) main() diff --git a/POMO/utils/functions.py b/POMO/utils/functions.py index bbc55f0..aa928c7 100644 --- a/POMO/utils/functions.py +++ b/POMO/utils/functions.py @@ -48,6 +48,12 @@ def display_num_param(net): print('There are {} ({:.2f} million) parameters in this neural network'.format(nb_param, nb_param/1e6)) +def move_to(var, device): + if isinstance(var, dict): + return {k: move_to(v, device) for k, v in var.items()} + return var.to(device) + + def clip_grad_norms(param_groups, max_norm=math.inf): """ Clips the norms for all param groups to max_norm and returns gradient norms before clipping @@ -64,6 +70,37 @@ def clip_grad_norms(param_groups, max_norm=math.inf): return grad_norms, grad_norms_clipped +def run_all_in_pool(func, directory, dataset, opts, use_multiprocessing=True): + # # Test + # res = func((directory, 'test', *dataset[0])) + # return [res] + + num_cpus = os.cpu_count() if opts.cpus is None else opts.cpus + + w = len(str(len(dataset) - 1)) + offset = getattr(opts, 'offset', None) + if offset is None: + offset = 0 + ds = dataset[offset:(offset + opts.n if opts.n is not None else len(dataset))] + pool_cls = (Pool if use_multiprocessing and num_cpus > 1 else ThreadPool) + with pool_cls(num_cpus) as pool: + results = list(tqdm(pool.imap( + func, + [ + ( + directory, + str(i + offset).zfill(w), + *problem + ) + for i, problem in enumerate(ds) + ] + ), total=len(ds), mininterval=opts.progress_bar_mininterval)) + + failed = [str(i + offset) for i, res in enumerate(results) if res is None] + assert len(failed) == 0, "Some instances failed: {}".format(" ".join(failed)) + return results, num_cpus + + def show(x, y, label, title, xdes, ydes, path, x_scale="linear", dpi=300): plt.style.use('fast') # bmh, fivethirtyeight, Solarize_Light2 plt.figure(figsize=(8, 8))