-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathgenerate_data.py
41 lines (36 loc) · 2.03 KB
/
generate_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import os, random, math, time
import argparse
import pprint as pp
from utils import *
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Generate datasets")
parser.add_argument('--problem', type=str, default="ALL", choices=["ALL", "CVRP", "OVRP", "VRPB", "VRPL", "VRPTW", "OVRPTW",
"OVRPB", "OVRPL", "VRPBL", "VRPBTW", "VRPLTW",
"OVRPBL", "OVRPBTW", "OVRPLTW", "VRPBLTW", "OVRPBLTW"])
parser.add_argument('--problem_size', type=int, default=50)
parser.add_argument('--pomo_size', type=int, default=50, help="the number of start node, should <= problem size")
parser.add_argument('--num_samples', type=int, default=1000)
parser.add_argument('--seed', type=int, default=2025)
parser.add_argument('--dir', type=str, default="./data")
parser.add_argument('--no_cuda', action='store_true')
parser.add_argument('--gpu_id', type=int, default=0)
args = parser.parse_args()
pp.pprint(vars(args))
env_params = {"problem_size": args.problem_size, "pomo_size": args.pomo_size}
seed_everything(args.seed)
# set log & gpu
if not args.no_cuda and torch.cuda.is_available():
args.device = torch.device('cuda', args.gpu_id)
torch.cuda.set_device(args.gpu_id)
torch.set_default_tensor_type('torch.cuda.FloatTensor')
else:
args.device = torch.device('cpu')
torch.set_default_tensor_type('torch.FloatTensor')
print(">> SEED: {}, USE_CUDA: {}, CUDA_DEVICE_NUM: {}".format(args.seed, not args.no_cuda, args.gpu_id))
envs = get_env(args.problem)
for env in envs:
env = env(**env_params)
dataset_path = os.path.join(args.dir, env.problem, "{}{}_uniform.pkl".format(env.problem.lower(), args.problem_size))
env.generate_dataset(args.num_samples, args.problem_size, dataset_path)
# sanity check
env.load_dataset(dataset_path, num_samples=args.num_samples, disable_print=False)