-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathtrain.py
415 lines (378 loc) · 15.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact [email protected]
#
import os
import os.path as osp
import torch
from random import randint
import sys
from tqdm import tqdm
from argparse import ArgumentParser
import numpy as np
import yaml
sys.path.append("./")
from r2_gaussian.arguments import ModelParams, OptimizationParams, PipelineParams
from r2_gaussian.gaussian import GaussianModel, render, query, initialize_gaussian
from r2_gaussian.utils.general_utils import safe_state
from r2_gaussian.utils.cfg_utils import load_config
from r2_gaussian.utils.log_utils import prepare_output_and_logger
from r2_gaussian.dataset import Scene
from r2_gaussian.utils.loss_utils import l1_loss, ssim, tv_3d_loss
from r2_gaussian.utils.image_utils import metric_vol, metric_proj
from r2_gaussian.utils.plot_utils import show_two_slice
def training(
dataset: ModelParams,
opt: OptimizationParams,
pipe: PipelineParams,
tb_writer,
testing_iterations,
saving_iterations,
checkpoint_iterations,
checkpoint,
):
first_iter = 0
# Set up dataset
scene = Scene(dataset, shuffle=False)
# Set up some parameters
scanner_cfg = scene.scanner_cfg
bbox = scene.bbox
volume_to_world = max(scanner_cfg["sVoxel"])
max_scale = opt.max_scale * volume_to_world if opt.max_scale else None
densify_scale_threshold = (
opt.densify_scale_threshold * volume_to_world
if opt.densify_scale_threshold
else None
)
scale_bound = None
if dataset.scale_min > 0 and dataset.scale_max > 0:
scale_bound = np.array([dataset.scale_min, dataset.scale_max]) * volume_to_world
queryfunc = lambda x: query(
x,
scanner_cfg["offOrigin"],
scanner_cfg["nVoxel"],
scanner_cfg["sVoxel"],
pipe,
)
# Set up Gaussians
gaussians = GaussianModel(scale_bound)
initialize_gaussian(gaussians, dataset, None)
scene.gaussians = gaussians
gaussians.training_setup(opt)
if checkpoint is not None:
(model_params, first_iter) = torch.load(checkpoint)
gaussians.restore(model_params, opt)
print(f"Load checkpoint {osp.basename(checkpoint)}.")
# Set up loss
use_tv = opt.lambda_tv > 0
if use_tv:
print("Use total variation loss")
tv_vol_size = opt.tv_vol_size
tv_vol_nVoxel = torch.tensor([tv_vol_size, tv_vol_size, tv_vol_size])
tv_vol_sVoxel = torch.tensor(scanner_cfg["dVoxel"]) * tv_vol_nVoxel
# Train
iter_start = torch.cuda.Event(enable_timing=True)
iter_end = torch.cuda.Event(enable_timing=True)
ckpt_save_path = osp.join(scene.model_path, "ckpt")
os.makedirs(ckpt_save_path, exist_ok=True)
viewpoint_stack = None
progress_bar = tqdm(range(0, opt.iterations), desc="Train", leave=False)
progress_bar.update(first_iter)
first_iter += 1
for iteration in range(first_iter, opt.iterations + 1):
iter_start.record()
# Update learning rate
gaussians.update_learning_rate(iteration)
# Get one camera for training
if not viewpoint_stack:
viewpoint_stack = scene.getTrainCameras().copy()
viewpoint_cam = viewpoint_stack.pop(randint(0, len(viewpoint_stack) - 1))
# Render X-ray projection
render_pkg = render(viewpoint_cam, gaussians, pipe)
image, viewspace_point_tensor, visibility_filter, radii = (
render_pkg["render"],
render_pkg["viewspace_points"],
render_pkg["visibility_filter"],
render_pkg["radii"],
)
# Compute loss
gt_image = viewpoint_cam.original_image.cuda()
loss = {"total": 0.0}
render_loss = l1_loss(image, gt_image)
loss["render"] = render_loss
loss["total"] += loss["render"]
if opt.lambda_dssim > 0:
loss_dssim = 1.0 - ssim(image, gt_image)
loss["dssim"] = loss_dssim
loss["total"] = loss["total"] + opt.lambda_dssim * loss_dssim
# 3D TV loss
if use_tv:
# Randomly get the tiny volume center
tv_vol_center = (bbox[0] + tv_vol_sVoxel / 2) + (
bbox[1] - tv_vol_sVoxel - bbox[0]
) * torch.rand(3)
vol_pred = query(
gaussians,
tv_vol_center,
tv_vol_nVoxel,
tv_vol_sVoxel,
pipe,
)["vol"]
loss_tv = tv_3d_loss(vol_pred, reduction="mean")
loss["tv"] = loss_tv
loss["total"] = loss["total"] + opt.lambda_tv * loss_tv
loss["total"].backward()
iter_end.record()
torch.cuda.synchronize()
with torch.no_grad():
# Adaptive control
gaussians.max_radii2D[visibility_filter] = torch.max(
gaussians.max_radii2D[visibility_filter], radii[visibility_filter]
)
gaussians.add_densification_stats(viewspace_point_tensor, visibility_filter)
if iteration < opt.densify_until_iter:
if (
iteration > opt.densify_from_iter
and iteration % opt.densification_interval == 0
):
gaussians.densify_and_prune(
opt.densify_grad_threshold,
opt.density_min_threshold,
opt.max_screen_size,
max_scale,
opt.max_num_gaussians,
densify_scale_threshold,
bbox,
)
if gaussians.get_density.shape[0] == 0:
raise ValueError(
"No Gaussian left. Change adaptive control hyperparameters!"
)
# Optimization
if iteration < opt.iterations:
gaussians.optimizer.step()
gaussians.optimizer.zero_grad(set_to_none=True)
# Save gaussians
if iteration in saving_iterations or iteration == opt.iterations:
tqdm.write(f"[ITER {iteration}] Saving Gaussians")
scene.save(iteration, queryfunc)
# Save checkpoints
if iteration in checkpoint_iterations:
tqdm.write(f"[ITER {iteration}] Saving Checkpoint")
torch.save(
(gaussians.capture(), iteration),
ckpt_save_path + "/chkpnt" + str(iteration) + ".pth",
)
# Progress bar
if iteration % 10 == 0:
progress_bar.set_postfix(
{
"loss": f"{loss['total'].item():.1e}",
"pts": f"{gaussians.get_density.shape[0]:2.1e}",
}
)
progress_bar.update(10)
if iteration == opt.iterations:
progress_bar.close()
# Logging
metrics = {}
for l in loss:
metrics["loss_" + l] = loss[l].item()
for param_group in gaussians.optimizer.param_groups:
metrics[f"lr_{param_group['name']}"] = param_group["lr"]
training_report(
tb_writer,
iteration,
metrics,
iter_start.elapsed_time(iter_end),
testing_iterations,
scene,
lambda x, y: render(x, y, pipe),
queryfunc,
)
def training_report(
tb_writer,
iteration,
metrics_train,
elapsed,
testing_iterations,
scene: Scene,
renderFunc,
queryFunc,
):
# Add training statistics
if tb_writer:
for key in list(metrics_train.keys()):
tb_writer.add_scalar(f"train/{key}", metrics_train[key], iteration)
tb_writer.add_scalar("train/iter_time", elapsed, iteration)
tb_writer.add_scalar(
"train/total_points", scene.gaussians.get_xyz.shape[0], iteration
)
if iteration in testing_iterations:
# Evaluate 2D rendering performance
eval_save_path = osp.join(scene.model_path, "eval", f"iter_{iteration:06d}")
os.makedirs(eval_save_path, exist_ok=True)
torch.cuda.empty_cache()
validation_configs = [
{"name": "render_train", "cameras": scene.getTrainCameras()},
{"name": "render_test", "cameras": scene.getTestCameras()},
]
psnr_2d, ssim_2d = None, None
for config in validation_configs:
if config["cameras"] and len(config["cameras"]) > 0:
images = []
gt_images = []
image_show_2d = []
# Render projections
show_idx = np.linspace(0, len(config["cameras"]), 7).astype(int)[1:-1]
for idx, viewpoint in enumerate(config["cameras"]):
image = renderFunc(
viewpoint,
scene.gaussians,
)["render"]
gt_image = viewpoint.original_image.to("cuda")
images.append(image)
gt_images.append(gt_image)
if tb_writer and idx in show_idx:
image_show_2d.append(
torch.from_numpy(
show_two_slice(
gt_image[0],
image[0],
f"{viewpoint.image_name} gt",
f"{viewpoint.image_name} render",
vmin=gt_image[0].min() if iteration != 1 else None,
vmax=gt_image[0].max() if iteration != 1 else None,
save=True,
)
)
)
images = torch.concat(images, 0).permute(1, 2, 0)
gt_images = torch.concat(gt_images, 0).permute(1, 2, 0)
psnr_2d, psnr_2d_projs = metric_proj(gt_images, images, "psnr")
ssim_2d, ssim_2d_projs = metric_proj(gt_images, images, "ssim")
eval_dict_2d = {
"psnr_2d": psnr_2d,
"ssim_2d": ssim_2d,
"psnr_2d_projs": psnr_2d_projs,
"ssim_2d_projs": ssim_2d_projs,
}
with open(
osp.join(eval_save_path, f"eval2d_{config['name']}.yml"),
"w",
) as f:
yaml.dump(
eval_dict_2d, f, default_flow_style=False, sort_keys=False
)
if tb_writer:
image_show_2d = torch.from_numpy(
np.concatenate(image_show_2d, axis=0)
)[None].permute([0, 3, 1, 2])
tb_writer.add_images(
config["name"] + f"/{viewpoint.image_name}",
image_show_2d,
global_step=iteration,
)
tb_writer.add_scalar(
config["name"] + "/psnr_2d", psnr_2d, iteration
)
tb_writer.add_scalar(
config["name"] + "/ssim_2d", ssim_2d, iteration
)
# Evaluate 3D reconstruction performance
vol_pred = queryFunc(scene.gaussians)["vol"]
vol_gt = scene.vol_gt
psnr_3d, _ = metric_vol(vol_gt, vol_pred, "psnr")
ssim_3d, ssim_3d_axis = metric_vol(vol_gt, vol_pred, "ssim")
eval_dict = {
"psnr_3d": psnr_3d,
"ssim_3d": ssim_3d,
"ssim_3d_x": ssim_3d_axis[0],
"ssim_3d_y": ssim_3d_axis[1],
"ssim_3d_z": ssim_3d_axis[2],
}
with open(osp.join(eval_save_path, "eval3d.yml"), "w") as f:
yaml.dump(eval_dict, f, default_flow_style=False, sort_keys=False)
if tb_writer:
image_show_3d = np.concatenate(
[
show_two_slice(
vol_gt[..., i],
vol_pred[..., i],
f"slice {i} gt",
f"slice {i} pred",
vmin=vol_gt[..., i].min(),
vmax=vol_gt[..., i].max(),
save=True,
)
for i in np.linspace(0, vol_gt.shape[2], 7).astype(int)[1:-1]
],
axis=0,
)
image_show_3d = torch.from_numpy(image_show_3d)[None].permute([0, 3, 1, 2])
tb_writer.add_images(
"reconstruction/slice-gt_pred_diff",
image_show_3d,
global_step=iteration,
)
tb_writer.add_scalar("reconstruction/psnr_3d", psnr_3d, iteration)
tb_writer.add_scalar("reconstruction/ssim_3d", ssim_3d, iteration)
tqdm.write(
f"[ITER {iteration}] Evaluating: psnr3d {psnr_3d:.3f}, ssim3d {ssim_3d:.3f}, psnr2d {psnr_2d:.3f}, ssim2d {ssim_2d:.3f}"
)
# Record other metrics
if tb_writer:
tb_writer.add_histogram(
"scene/density_histogram", scene.gaussians.get_density, iteration
)
torch.cuda.empty_cache()
if __name__ == "__main__":
# fmt: off
# Set up command line argument parser
parser = ArgumentParser(description="Training script parameters")
lp = ModelParams(parser)
op = OptimizationParams(parser)
pp = PipelineParams(parser)
parser.add_argument("--detect_anomaly", action="store_true", default=False)
parser.add_argument("--test_iterations", nargs="+", type=int, default=[5_000, 10_000, 20_000])
parser.add_argument("--save_iterations", nargs="+", type=int, default=[])
parser.add_argument("--quiet", action="store_true")
parser.add_argument("--checkpoint_iterations", nargs="+", type=int, default=[])
parser.add_argument("--start_checkpoint", type=str, default=None)
parser.add_argument("--config", type=str, default=None)
args = parser.parse_args(sys.argv[1:])
args.save_iterations.append(args.iterations)
args.test_iterations.append(args.iterations)
args.test_iterations.append(1)
# fmt: on
# Initialize system state (RNG)
safe_state(args.quiet)
# Load configuration files
args_dict = vars(args)
if args.config is not None:
print(f"Loading configuration file from {args.config}")
cfg = load_config(args.config)
for key in list(cfg.keys()):
args_dict[key] = cfg[key]
# Set up logging writer
tb_writer = prepare_output_and_logger(args)
print("Optimizing " + args.model_path)
torch.autograd.set_detect_anomaly(args.detect_anomaly)
training(
lp.extract(args),
op.extract(args),
pp.extract(args),
tb_writer,
args.test_iterations,
args.save_iterations,
args.checkpoint_iterations,
args.start_checkpoint,
)
# All done
print("Training complete.")