-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathdata_processing_Nov9.py
94 lines (74 loc) · 2.91 KB
/
data_processing_Nov9.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import numpy as np
import os
def save_data(filepath, binary, augment):
from keras.utils import np_utils, plot_model
csv_data = np.genfromtxt(filepath, delimiter=",")
eeg_data = csv_data[1:]
labels = []
cleaned_eeg_data = []
if binary:
for i in range(len(eeg_data)):
#seizure vs non-seizure only
labels.append(0 if (eeg_data[i][-1] == 1) else 1)
cleaned_eeg_data.append((eeg_data[i][:-1])[1:])
else:
for i in range(len(eeg_data)):
labels.append(eeg_data[i][-1]-1)
cleaned_eeg_data.append((eeg_data[i][:-1])[1:])
if augment:
labels, cleaned_eeg_data = augment_data(labels, cleaned_eeg_data)
labels = np.array(labels)
labels = np_utils.to_categorical(labels)
np.save("dataset/y_test", labels)
cleaned_eeg_data = np.array(cleaned_eeg_data)
cleaned_eeg_data = np.reshape(cleaned_eeg_data, (cleaned_eeg_data.shape[0], cleaned_eeg_data.shape[1], 1, 1))
np.save("dataset/x_test", cleaned_eeg_data)
#needed for SNNtoolbox
np.savez_compressed("dataset/y_test.npz", labels)
np.savez_compressed("dataset/x_test.npz", cleaned_eeg_data)
np.savez_compressed("dataset/x_norm.npz", cleaned_eeg_data)
def save_data_to_3d(filepath, binary, augment):
from keras.utils import np_utils, plot_model
csv_data = np.genfromtxt(filepath, delimiter=",")
eeg_data = csv_data[1:]
labels = []
cleaned_eeg_data = []
if binary:
for i in range(len(eeg_data)):
#seizure vs non-seizure only
labels.append(0 if (eeg_data[i][-1] == 1) else 1)
cleaned_eeg_data.append((eeg_data[i][:-1])[1:])
else:
for i in range(len(eeg_data)):
labels.append(eeg_data[i][-1]-1)
cleaned_eeg_data.append((eeg_data[i][:-1])[1:])
if augment:
labels, cleaned_eeg_data = augment_data(labels, cleaned_eeg_data)
labels = np.array(labels)
labels = np_utils.to_categorical(labels)
np.save("dataset/y_test", labels)
cleaned_eeg_data = np.array(cleaned_eeg_data)
cleaned_eeg_data = np.reshape(cleaned_eeg_data, (cleaned_eeg_data.shape[0], cleaned_eeg_data.shape[1], 1))
np.save("dataset/x_test", cleaned_eeg_data)
#needed for SNNtoolbox
np.savez_compressed("dataset/y_test.npz", labels)
np.savez_compressed("dataset/x_test.npz", cleaned_eeg_data)
np.savez_compressed("dataset/x_norm.npz", cleaned_eeg_data)
def load_data():
exists = os.path.isfile('./dataset/x_test.npy') and os.path.isfile('./dataset/y_test.npy')
if not exists:
raise Exception("Save the data to .npy first! Call save_data(filepath).")
eeg_data = np.load('./dataset/x_test.npy')
labels = np.load('./dataset/y_test.npy')
return eeg_data, labels
def augment_data(labels, eeg_data):
import random
# data_augmentation using white gaussian noise + shuffling
for i in range(len(eeg_data)):
noise = np.random.normal(0, 0.1, len(eeg_data[0]))
eeg_data.append([x + y for x, y in zip(eeg_data[i], noise)])
labels.append(labels[i])
combined = list(zip(labels, eeg_data))
random.shuffle(combined)
labels[:], eeg_data[:] = zip(*combined)
return labels, eeg_data