-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGetTfidf.py
109 lines (93 loc) · 3.26 KB
/
GetTfidf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
"""vectorize text"""
import pandas as pd
import sklearn
from nltk.stem import PorterStemmer
from nltk.tokenize import TreebankWordTokenizer
import re
from nltk.corpus import stopwords
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfTransformer
from nltk.corpus import words
from sklearn.model_selection import train_test_split
from sklearn.cluster import MiniBatchKMeans
from gensim.summarization.summarizer import summarize
tokenizer = TreebankWordTokenizer()
stemmer = PorterStemmer()
spell = Speller(lang='en')
stopWords = set(stopwords.words('english'))
def summarizeText(text):
"""summarize text if needed"""
text_summarized = []
for txt in tqdm(text):
try:
if (summarize(txt) == ''):
text_summarized.append(txt)
else:
text_summarized.append(summarize(txt))
except:
text_summarized.append(txt)
return text_summarized
def Preprocess(text):
"""preprocess given text"""
tokens = []
# tokenize
for txt in text:
tokens.append(tokenizer.tokenize(txt))
# stemmer the text
stemmed_texts = []
for token in tokens:
stemmed_words = []
for word in token:
word = re.sub('[^A-z\.]', '', word)
if word:
word = stemmed_words.append(stemmer.stem(word))
stemmed_texts.append(' '.join(stemmed_words))
return stemmed_texts
def vectorize(filename, summary):
"""vectorize the given text"""
clean_texts = pd.read_csv(filename)
new_texts = []
label = clean_texts['label']
text = clean_texts['text']
# summarize text if needed
if summary:
text = summarizeText(text)
# get word vector
corpus = Preprocess(text)
vectorizer = CountVectorizer()
X = vectorizer.fit_transform(corpus)
df_words = pd.DataFrame(X.toarray(), columns = vectorizer.get_feature_names())
# filter out non-english word
selected = []
for i in df_words:
if i in words.words():
selected.append(i)
# get selected word vecs
df_selected = df_words[selected]
# get tfidf
transformer = TfidfTransformer()
tf = transformer.fit_transform(df_selected.to_numpy())
df_reduced = pd.DataFrame(tf.toarray(), columns = selected)
df_reduced['event_orig'] = label
# get training set for mini-batch
X_train, X_test, y_train, y_test = train_test_split(df_reduced, label, test_size=0.3, random_state=42, stratify = label)
X_train = X_train.drop(columns=['event_orig'])
# clustering
kmeans = MiniBatchKMeans(n_clusters=5,
random_state=42).fit(X_train.to_numpy())
df_reduced = df_reduced.drop(columns=['event_orig'])
# get clustered labels
label_pre = kmeans.predict(df_reduced.to_numpy())
clean_texts['label_pre'] = label_pre
clean_texts['label'] = label
if summary:
clean_texts['summary'] = text_summarized
data_wrap = pd.DataFrame()
data_wrap = df_reduced
data_wrap['label_pre'] = list(clean_texts['label_pre'])
data_wrap['event_true'] = label
if summary:
data_wrap['text_summary'] = text_summarized
data_wrap['text_raw'] = list(clean_texts['text'])
# return preproccessed dataframe
return data_wrap