-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathDistributome.xml
4146 lines (3817 loc) · 265 KB
/
Distributome.xml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet href="../images/Distributome_style.css" type="text/css"?>
<distributome version="1.1"
xmlns="http://www.distributome.org"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.distributome.org/distributome.xsd">
<distributions>
<distribution id="arcsine">
<name>arcsine distribution</name>
<name>Levy arcsine distribution</name>
<type>continuous</type>
<model>The arcsine distribution models the proportion of time that Brownian motion is positive</model>
<parameter>\( a \in (-\infty, \infty) \), location</parameter>
<parameter>\( w \in (0, \infty) \), scale</parameter>
<standard>\( a = 0 \), \( w = 1 \)</standard>
<support>\(x \in [a, a + w] \)</support>
<pdf>\(f(x) = \frac{1}{\pi\sqrt{(x - a) (a + w -x)}}\)</pdf>
<mode>\(x \in \{a, a + w\} \)</mode>
<cdf>\(F(x) = \frac{2}{\pi}\arcsin\left(\sqrt \frac{x - a}{w}\right)\)</cdf>
<qf>\(Q(u) = a + w \sin^2\left(\frac{\pi}{2} u\right), \; u \in (0, 1)\)</qf>
<mgf>\( M(t) = e^{a t} \sum_{n=0}^\infty \left(\prod_{j=0}^{n-1} \frac{2 j + 1}{2 j + 2}\right) \frac{w^n t^n}{n!}, \; t \in (-\infty, \infty) \)</mgf>
<mean>\(a + \frac{1}{2} w\)</mean>
<variance>\(\frac{1}{8} w^2\)</variance>
<skew>\(0\)</skew>
<kurt>\(-\frac{3}{2}\)</kurt>
<median>\(a + \frac{1}{2} w\)</median>
<q1>\(a + \frac{2 - \sqrt{2}}{4} w\)</q1>
<q3>\(a + \frac{2 + \sqrt{2}}{4} w\)</q3>
<history>Derived by Paul Levy in 1939 as the distribution of proportion of time that Brownian motion is positive</history>
<cite>arnold1980some</cite>
</distribution>
<distribution id="Bernoulli">
<name>Bernoulli distribution</name>
<type>discrete</type>
<model>The Bernoulli distribution governs an indicator random variable</model>
<parameter>\(p \in [0, 1]\), the probability of the event</parameter>
<standard>\( p = \frac{1}{2} \)</standard>
<support>\(\{0, 1\}\)</support>
<pdf>\(f(x) = p^x (1 - p)^{1 - x}, \; x \in \{0, 1\}\)</pdf>
<mode>\(\lfloor 2 p \rfloor\)</mode>
<cdf>\(F(x) = (1 - p)^{1 - x}, \; x \in \{0, 1\}\)</cdf>
<qf>\(Q(u) = F^{-1}(u), \; u \in [0, 1]\) where \(F\) is the distribution function</qf>
<pgf>\(G(t) = 1 - p + p t, \; t \in (-\infty, \infty)\)</pgf>
<mgf>\(M(t) = 1 - p + p e^t, \; t \in (-\infty, \infty)\)</mgf>
<cf>\(\varphi(t) = 1 - p + p e^{i t}, \; t \in (-\infty, \infty)\)</cf>
<moments type="raw">\(\mu(n) = p, \; n \in \{0, 1, \ldots\}\)</moments>
<mean>\(p\)</mean>
<variance>\(p (1-p)\)</variance>
<skew>\(\frac{1 - 2 p}{\sqrt{p (1 - p)}}\)</skew>
<kurt>\(\frac{1- 6 p + 6 p^2}{p (1 - p)}\)</kurt>
<entropy>\(-(1 - p) \ln(1 - p) - p \ln(p)\)</entropy>
<median>\(Q\left(\frac{1}{2}\right)\) where \(Q\) is the quantile function</median>
<q1>\(Q\left(\frac{1}{4}\right)\) where \(Q\) is the quantile function</q1>
<q3>\(Q\left(\frac{3}{4}\right)\) where \(Q\) is the quantile function</q3>
<family>power series </family>
<family>exponential</family>
<history>Named for Jacob Bernoulli</history>
<cite>marshall1985family</cite>
</distribution>
<distribution id="beta">
<name>beta distribution</name>
<type>continuous</type>
<model>The beta distribution is used to model random proportions and probabilities</model>
<parameter>\(\alpha \in (0, \infty)\), the left shape parameter</parameter>
<parameter>\(\beta \in (0, \infty)\), the right shape parameter</parameter>
<standard>\( \alpha = 1 \), \( \beta = 1 \)</standard>
<support>\((0, 1)\)</support>
<pdf>\(f(x) = \frac{1}{B(\alpha, \beta)} x^{\alpha-1}(1 - x)^{\beta-1}, \; x \in (0, 1)\), where \( B \) is the beta function</pdf>
<mode>\(\frac{\alpha - 1}{\alpha + \beta - 2}; \; \alpha \in (1, \infty), \beta \in (1, \infty)\)</mode>
<cdf>\(F(x) = \frac{B(x; \alpha, \beta)}{B(\alpha, \beta)}, \; x \in (0, 1)\), where \( x \mapsto B(x; \alpha, \beta) \) is the incomplete beta function</cdf>
<qf>\(Q(p) = F^{-1}(p), \; p \in (0, 1)\), where \(F\) is the beta cumulative distribution function.</qf>
<mgf>\(1 +\sum_{k=1}^{\infty} \left( \prod_{r=0}^{k-1} \frac{\alpha+r}{\alpha+\beta+r} \right) \frac{t^k}{k!}\), for all real values \(t\)</mgf>
<mean>\(\frac{\alpha}{\alpha + \beta}\)</mean>
<variance>\(\frac{\alpha \beta}{(\alpha + \beta)^2 (\alpha + \beta + 1)}\)</variance>
<skew>\(\frac{2\,(\beta-\alpha)\sqrt{\alpha+\beta+1}}{(\alpha+\beta+2)\sqrt{\alpha\beta}}\)</skew>
<kurt>\(\frac{6[(\alpha - \beta)^2 (\alpha +\beta + 1) - \alpha \beta (\alpha + \beta + 2)]}{\alpha \beta (\alpha + \beta + 2) (\alpha + \beta + 3)}\)</kurt>
<entropy>\(\ln(B(\alpha, \beta)) - (\alpha - 1) \psi(\alpha) - (\beta - 1) \psi(\beta) + (\alpha + \beta - 2) \psi(\alpha + \beta)\) where \(\psi\) is the digamma function</entropy>
<median>\(Q\left(\frac{1}{2}\right) \)</median>
<q1>\(Q\left(\frac{1}{4}\right)\) where \(Q\) is the quantile function</q1>
<q3>\(Q\left(\frac{3}{4}\right)\) where \(Q\) is the quantile function</q3>
<family>exponential</family>
<cite>mcdonald1995generalization</cite>
</distribution>
<distribution id="general beta">
<name>beta general distribution</name>
<name>beta generalized distribution</name>
<name>generalized beta distribution</name>
<type>continuous</type>
<model>The generalized beta distribution is used to model random proportions and probabilities.
It extends the (standard) beta distribution, supported on \([0, 1]\) to an arbitrary range
\([L, R]\)</model>
<parameter>\(\alpha \in (0, \infty)\), the left shape parameter</parameter>
<parameter>\(\beta \in (0, \infty)\), the right shape parameter</parameter>
<parameter>\(L \in (-\infty, \infty)\), the left limit of the support range</parameter>
<parameter>\(R \in (L, \infty)\), the right limit of the support range</parameter>
<support>\((L, R)\)</support>
<pdf><![CDATA[
\(\begin{cases}
\frac{\beta}{R - L} & \text{for } x < L \text{ or } X > R \\
\frac{\beta}{R - L} & \text{for } x == L \text{ and } \alpha == 1 \\
\infty & \text{for } x == L \text{ and } \alpha > 1 \\
0 & \text{for } x == L \text{ and } \alpha > 1 \\
\frac{\alpha}{R - L} & \text{for } x == R \text{ and } \beta == 1 \\
\infty & \text{for } x == R \text{ and } \beta < 1 \\
0 & \text{for } x == R \text{ and } \beta > 1 \\
\exp(\log\Gamma(\alpha + \beta) - (\log\Gamma(\alpha) + \log\Gamma(\beta)) - \log(R - L) +
(\alpha-1)*\log(\frac{x-L}{R-L})+(\beta-1)*\log(\frac{R-x}{R-L})) & otherwise
\end{cases}\)
]]>
</pdf>
<mode><![CDATA[
\(\begin{cases}
L & \text{for } \alpha <1 \\
R & \text{for } \beta \leq 1 \\
L + \frac{(R - L) * (\alpha - 1)}{a + b - 2} & otherwise
\end{cases}\)
]]>
</mode>
<cdf>\(I_{\frac{x-L}{R}}(\alpha,\beta)\!\)</cdf>
<mean>\( \frac{\alpha * (R - L)}{\alpha + \beta}\)</mean>
<variance>\( \frac{(R-L)*(R-L)*\alpha*\beta}{(\alpha+\beta)^2*(\alpha+\beta+1)} \)</variance>
<family>exponential</family>
<cite>mcdonald1995generalization</cite>
</distribution>
<distribution id="inverse beta">
<name>inverse beta distribution</name>
<type>continuous</type>
<model>The inverse beta distribution, as the name suggests, is the inverse probability dsitribution of a
Beta-distributed variable</model>
<parameter>\(\alpha \in (0, \infty)\), the left shape parameter</parameter>
<parameter>\(\beta \in (0, \infty)\), the right shape parameter</parameter>
<support>\((0, 1)\)</support>
<pdf>\(f(x) = \frac{x^{\alpha-1} (1+x)^{-\alpha -\beta}}{B(\alpha,\beta)}\), \(B\) is the beta function</pdf>
<mode>\(\frac{\alpha-1}{\beta+1} \text{ if } \alpha\ge 1\text{, 0 otherwise}\)</mode>
<cdf>\(F(x) = B(\frac{x}{1+x}; \alpha,\beta) \), where \(B(x; \alpha,\beta)\) is the incomplete beta function</cdf>
<family>exponential</family>
<cite>mcdonald1995generalization</cite>
</distribution>
<distribution id="binomial">
<name>binomial distribution</name>
<type>discrete</type>
<model>The binomial distribution models the number of successes in a fixed number of independent trials each with the same probability of success</model>
<parameter>\(n \in \{1, 2, \ldots\}\), the number of trials</parameter>
<parameter>\(p \in [0, 1]\), the probability of success</parameter>
<standard>\( n = 1, \; p = \frac{1}{2} \)</standard>
<support>\(\{0, 1, \ldots, n\}\)</support>
<pdf>\(f(x) = {n \choose x} p^x (1 - p)^{n - x}, \; x \in \{0, 1, \ldots, n\}\)</pdf>
<mode>\(\lfloor (n + 1) p \rfloor\)</mode>
<cdf>\(F(x) = B(1 - p; n - x, x + 1), \; x \in \{0, 1, \ldots, n\}\) where \(B\) is the incomplete beta function</cdf>
<qf>\(Q(r) = F^{-1}(r), \; r \in [0, 1]\) where \(F\) is the distribution function</qf>
<pgf>\(G(t) = (1 - p + p t)^n, \; t \in (-\infty, \infty)\)</pgf>
<mgf>\(M(t) = (1 - p + p e^t)^n, \; t \in (-\infty, \infty)\)</mgf>
<cf>\(\varphi(t) = (1 - p + p e^{i t})^n, \; t \in (-\infty, \infty)\)</cf>
<mean>\(n p\)</mean>
<variance>\(n p (1 - p)\)</variance>
<skew>\(\frac{1 - 2 p}{\sqrt{n p (1 - p)}}\)</skew>
<kurt>\(\frac{1 - 6 p (1 - p)}{n p (1 - p)}\)</kurt>
<entropy>\(\frac{1}{2} \log_2[2 \pi e n p (1 - p)] + O\left(\frac{1}{n}\right)\)</entropy>
<median>\(Q\left(\frac{1}{2}\right)\) where \(Q\) is the quantile function</median>
<q1>\(Q\left(\frac{1}{4}\right)\) where \(Q\) is the quantile function</q1>
<q3>\(Q\left(\frac{1}{3}\right)\) where \(Q\) is the quantile function</q3>
<family>power series </family>
<family>exponential</family>
<history>The binomial distribution is attributed to Jacob Bernoulli</history>
<cite>altham1978two</cite>
</distribution>
<distribution id="beta-binomial">
<name>beta-binomial distribution</name>
<type>discrete</type>
<model>The beta-binomial distribution arises when the success parameter in the binomial distribution is randomized and given a beta distribution</model>
<parameter>\(n \in \{1, 2, \ldots\}\), the number of trials</parameter>
<parameter>\(a \in (0, \infty)\), the left beta parameter</parameter>
<parameter>\(b \in (0, \infty)\), the right beta parameter</parameter>
<standard>\( n = 1, \; a = 1, \; b = 1 \)</standard>
<support>\(\{0, 1, \ldots, n\}\)</support>
<pdf>\( f(x) = \binom{n}{x} \frac{a^{[x]} b^{[n - x]}}{(a + b)^{[n]}} \), \( x \in \{0, 1, \ldots, n\} \) where \( m^{[j]} \) denotes the rising power of \( m \) of order \( j \)</pdf>
<cdf>\(F(x) = \sum_0^x f(t), \quad x \in \{0, 1, \ldots, n\}\) where \(f\) is the probability density function</cdf>
<qf>\(Q(p) = F^{-1}(p), \quad p \in (0, 1)\) where \(F\) is the distribution function</qf>
<mgf>\(_{2}F_{1}(-n, a; a + b; 1 - e^t) \)</mgf>
<mean>\(\frac{n a}{a + b} \)</mean>
<variance>\(n \frac{n a b (a + b + n)}{(a + b)^2 (a + b + 1)}\)</variance>
<skew>\(\frac{(a + b + 2 n)(b - a)}{(a + b + 2)} \sqrt{\frac{1 + a + b}{n a b (n + a + b)}}\)</skew>
<kurt>\(\frac{(a + b)^2 ( + 1 + b)}{n a b (a + b + 2)(a + b + 3)(a + b + n)} \left[(a + b)(a + b - 1 + 6 n) + 3 a b (n - 2) + 6 n^2 - \frac{3 a b n (6-n)}{a + b} - \frac{18 a b n^2}{(a + b)^2}\right]\)</kurt>
<median>\(Q\left(\frac{1}{2}\right)\) where \(Q\) is the quantile function</median>
<q1>\(Q\left(\frac{1}{4}\right)\) where \(Q\) is the quantile function</q1>
<q3>\(Q\left(\frac{3}{4}\right)\) where \(Q\) is the quantile function</q3>
<cite>altham1978two</cite>
</distribution>
<distribution id="beta-negative binomial">
<name>beta-negative binomial distribution</name>
<type>discrete</type>
<model>The beta-negative binomial distribution arises when the success parameter in the negative binomial distribution is randomized and given a beta distribution</model>
<parameter>\(k \in \{1, 2, \ldots\}\), the number of trials</parameter>
<parameter>\(a \in (0, \infty)\), the left beta parameter</parameter>
<parameter>\(b \in (0, \infty)\), the right beta parameter</parameter>
<standard>\( k = 1, \; a = 1, \; b = 1 \)</standard>
<support>\(\{k, k + 1, \ldots \}\)</support>
<pdf>\( f(x) = \binom{n - 1}{x - 1} \frac{a^{[x]} b^{[n-x]}}{(a + b)^{[n]}} \), where \( r^{[j]} \) denotes the rising power of order \( j \)</pdf>
<cdf>\(F(x) = \sum_0^x f(t), \quad x \in \{0, 1, \ldots, n\}\) where \(f\) is the probability density function</cdf>
<qf>\(Q(p) = F^{-1}(p), \quad p \in (0, 1)\) where \(F\) is the distribution function</qf>
<mean>\(k \frac{a + b - 1}{a - 1}\) if \( a \gt 1 \)</mean>
<variance>\( k \frac{a + b - 1}{(a - 1)(a - 2)}[b + k (a + b - 2)] - k^2 \left(\frac{a + b - 1}{a - 1}\right)^2 \) if \( a \gt 2 \)</variance>
<median>\(Q\left(\frac{1}{2}\right)\) where \(Q\) is the quantile function</median>
<q1>\(Q\left(\frac{1}{4}\right)\) where \(Q\) is the quantile function</q1>
<q3>\(Q\left(\frac{3}{4}\right)\) where \(Q\) is the quantile function</q3>
<cite>johnson2005univariate</cite>
</distribution>
<distribution id="Cauchy">
<name>Cauchy distribution </name>
<name>Cauchy-Lorentz distribution </name>
<name>Lorentz distribution </name>
<name>Breit-Wigner distribution</name>
<type>continuous</type>
<model>The general Cauchy distribution is the location-scale family associated with the standard Cauchy distribution</model>
<parameter>\(a \in (-\infty, \infty)\). the location parameter</parameter>
<parameter>\(b \in (0, \infty)\), the scale parameter</parameter>
<support>\(\displaystyle x \in (-\infty, \infty)\!\)</support>
<standard>\( a = 0, \; b = 1 \)</standard>
<pdf>\(\frac{1}{\pi b \, \left[1+\left(\frac{x - a}{b}\right)^2\right]}\!\)</pdf>
<mode>\( a \)</mode>
<cdf>\(\frac{1}{\pi}\arctan\left(\frac{x - a}{b} \right) + \frac{1}{2} \)</cdf>
<qf>\(Q(p) = F^{-1}(p) = a + b \tan \left(\pi (p - \frac{1}{2}) \right), \; p \in (0, 1)\)</qf>
<mgf>Does not exist</mgf>
<cf>\(\varphi(t) = \exp(a i t - b |t|), \; t \in (-\infty, \infty)\)</cf>
<mean>Does not exist</mean>
<variance>Does not exist</variance>
<skew>Does not exist</skew>
<kurt>Does not exist</kurt>
<entropy>\(\ln (4 \pi b ) \)</entropy>
<median>\( a \)</median>
<q1>\(a - b\)</q1>
<q3>\(a + b\)</q3>
<family>location</family>
<family>scale</family>
<history>The distribution was first used by Simeon Poisson in 1824 and was re-introduced by Augustin Cauchy in 1853. It is also named for Hendrick Lorentz</history>
<cite>haas1970inferences</cite>
</distribution>
<distribution id="chi-square">
<name>chi-square distribution </name>
<name>chi-squared distribution</name>
<type>continuous</type>
<model>The chi-square distribution governs the sum of squares of independent standard normal variable</model>
<parameter>\(n \in (0, \infty)\), degrees of freedom</parameter>
<standard>\( n = 1 \)</standard>
<support>\((0, \infty)\)</support>
<pdf>\(\frac{1}{2^{\frac{n}{2}}\Gamma\left(\frac{n}{2}\right)}\; x^{\frac{n}{2}-1} e^{-\frac{x}{2}}\,\), where \(\Gamma\) is the Gamma function</pdf>
<mode>\(n - 2, \; n \in [2, \infty)\)</mode>
<cdf>\(\frac{1}{\Gamma\left(\frac{n}{2}\right)}\;\gamma\left(\frac{n}{2},\,\frac{x}{2}\right)\), where \(\gamma\) is the lower incomplete Gamma function</cdf>
<qf>\(Q(p) = F^{-1}(p), \; p \in [0, 1)\) where \(F\) is the distribution function</qf>
<mgf>\(M(t) = \frac{1}{(1 - 2 t)^{n/2}}, \; t \in (-\infty, \frac{1}{2})\)</mgf>
<cf>\(\frac{1}{(1 - 2 i t^{n/2})}, \; t \in (-\infty, \infty)\)</cf>
<mean>\(n\)</mean>
<variance>\(2 n\)</variance>
<skew>\(\sqrt{8 / n}\,\)</skew>
<kurt>\(12 / n\)</kurt>
<entropy>\(\frac{n}{2} + \ln[2 \Gamma(n / 2)] + (1 - n / 2) \psi(n / 2)\), where \(\psi\) is the Digamma function</entropy>
<median>\(\approx n \left(1 - \frac{2}{9n}\right)^3\)</median>
<q1>\(Q(\frac{1}{4})\) where \(Q\) is the quantile function</q1>
<q3>\(Q(\frac{3}{4})\) where \(Q\) is the quantile function</q3>
<family>exponential</family>
<history>The chi-square distribution was first used by Karl Pearson in 1900</history>
<cite>lancaster2005chi</cite>
</distribution>
<distribution id="non-central chi-square">
<name>non-central chi-square distribution</name>
<name>non-central chi-squared distribution</name>
<type>continuous</type>
<model>The non-central chi-square distribution distribution is a generalization of the chi-squared distribution, which arises in the power analysis of statistical tests where the null distribution is asymptotically a chi-squared distribution; important examples of such tests are the likelihood ratio tests</model>
<parameter>\(k \in (0, \infty)\), degrees of freedom</parameter>
<parameter>\(\lambda \in (0, \infty)\), non-centrality parameter</parameter>
<support>\(x \in [0; +\infty)\,\)</support>
<pdf>\(\frac{1}{2}e^{-(x+\lambda)/2}\left (\frac{x}{\lambda} \right)^{k/4-1/2}
I_{k/2-1}(\sqrt{\lambda x})\)</pdf>
<cdf>\(F(x) = 1 - Q_{\frac{k}{2}} \left( \sqrt{\lambda}, \sqrt{x} \right)\),
where \(Q_M(a,b)\) is the Marcum Q-function</cdf>
<mgf>\(\frac{\exp\left(\frac{ \lambda t}{1-2t }\right)}{(1-2 t)^{k/2}}, \) for \( 2t \lt 1\)</mgf>
<cf>\(\frac{1}{(1 - 2 i t^{n/2}}) \; t \in (-\infty, \infty)\)</cf>
<mean>\(k+\lambda\)</mean>
<variance>\(2(k+2\lambda)\)</variance>
<skew>\(\frac{2^{3/2}(k+3\lambda)}{(k+2\lambda)^{3/2}}\)</skew>
<kurt>\(\frac{12(k+4\lambda)}{(k+2\lambda)^2}\)</kurt>
<family>exponential</family>
<cite>sankaran1959non</cite>
</distribution>
<distribution id="chi">
<name>chi distribution</name>
<type>continuous</type>
<model>The chi distribution governs the square root of a variable with the chi-square distribution</model>
<parameter>\(n \in \{1, 2, \ldots\}\), the degrees of freedom</parameter>
<support>\(x\in[0;\infty)\)</support>
<pdf>\(\frac{2^{1-k/2}x^{k-1}e^{-x^2/2}}{\Gamma(k/2)}\)</pdf>
<mode>\(\sqrt{k-1}\,\)for\(k\ge1\)</mode>
<cdf>\(P(k/2,x^2/2)\,\)</cdf>
<qf>\(Q(p) = F^{-1}(p), \; p \in (0, 1)\) where \(F\) is the distribution function</qf>
<moments>\(\mu(k) = \frac{2^{k/2} \Gamma[(n+k)/2)]}{\Gamma(n/2)}, \; n \in \{1, 2, \ldots\}\) where \(\Gamma\) is the gamma function</moments>
<mean>\(\mu=\sqrt{2}\,\frac{\Gamma((k+1)/2)}{\Gamma(k/2)}\)</mean>
<variance>\(\sigma^2=k-\mu^2\,\)</variance>
<skew>\(\gamma_1=\frac{\mu}{\sigma^3}\,(1-2\sigma^2)\)</skew>
<kurt>\(\frac{2}{\sigma^2}(1-\mu\sigma\gamma_1-\sigma^2)\)</kurt>
<entropy>\(\ln[\Gamma(n/2)] + \frac{1}{2} [n - \ln(2) - (n-1) \psi_0(n/2)]\) where \(\psi_0\) is the polygamma function</entropy>
<q1>\(Q(\frac{1}{4})\) where \(Q\) is the quantile function</q1>
<q3>\(Q(\frac{3}{4})\) where \(Q\) is the quantile function</q3>
<cite>krishnaiah1963note</cite>
</distribution>
<distribution id="continuous-uniform">
<name>continuous uniform distribution </name>
<name>rectangular distribution</name>
<type>continuous</type>
<model>The continuous uniform distribution governs a point chosen at random from an interval. The continuous uniform distribution, aka rectangular distribution, is a family of probability distributions where all intervals of the same length on the distribution's support are equally probable. The support is defined by the two parameters, a and b, which are its minimum and maximum values. It is the maximum entropy probability distribution for a random variate X under no constraint other than that it is contained in the distribution's support</model>
<parameter>\(a \in (-\infty, \infty)\), location, the left endpoint</parameter>
<parameter>\( w \in (0, \infty) \), scale, the width of the interval</parameter>
<parameter>\(b = a + w\), the right endpoint</parameter>
<standard>\( a = 0, \; w = 1 \)</standard>
<support>\([a, b]\)</support>
<pdf>\(f(x) = \frac{1}{b - a}, \; x \in [a, b]\)</pdf>
<mode> all \(x \in [a, b]\)</mode>
<cdf>\(F(x) = \frac{x - a}{b - a}, \; x \in [a, b]\)</cdf>
<qf>\(Q(p) = a + p (b - a). \; p \in [0, 1]\)</qf>
<mgf>\(M(t) = \frac{e^{t b} - e^{t a}}{t (b - a)}, \; t \in (-\infty, \infty)\)</mgf>
<cf>\(\varphi(t) = \frac{e^{i t b} - e^{i t a}}{i t (b - a)}, \; t \in (-\infty, \infty)\)</cf>
<moments type="raw">\(\mu(t) = \frac{b^{t+1} - a^{t+1}}{(t + 1)(b - a)}, \; t \in (0, \infty)\)</moments>
<mean>\(\frac{1}{2}(a + b)\)</mean>
<variance>\(\frac{1}{12} (b - a)^2\)</variance>
<skew>\(0\)</skew>
<kurt>\(-\frac{6}{5}\)</kurt>
<entropy>\(\ln(b - a)\)</entropy>
<median>\(\frac{1}{2}(a + b)\)</median>
<q1>\(\frac{3}{4} a + \frac{1}{4}b\)</q1>
<q3>\(\frac{1}{4} a + \frac{3}{4} b\)</q3>
<family>location </family>
<family>scale</family>
<cite>kuipers2006uniform</cite>
</distribution>
<distribution id="discrete-uniform">
<name>discrete uniform distribution</name>
<type>discrete</type>
<model>The discrete uniform distribution governs a point chosen at random from a discrete interval</model>
<parameter>\(a \in (-\infty, \infty)\), location, the left endpoint</parameter>
<parameter>\( h \in (0, \infty) \), scale, the step size</parameter>
<parameter>\( n \in \{1, 2, \ldots\} \), the number of points</parameter>
<parameter>\(b = a + (n - 1) h\), the right endpoint</parameter>
<standard>\( a = 0, \; h = 1 \)</standard>
<support>\(\{a, a + h, \ldots, a + (n - 1) h\}\)</support>
<pdf>\( f(x) = \frac{1}{n}, \; x \in \{a, a + h, \ldots, a + (n - 1) h\}\)</pdf>
<mode>\(x \in \{a, a + h, \ldots, a + (n - 1) h\}\)</mode>
<cdf>\(F(x) = \frac{1}{n}\left(\left \lfloor\ \frac{x - a}{h} + 1\right \rfloor \right), \; x \in [a, b] \)</cdf>
<qf>\(Q(p) = a + \left(\lceil n p \rceil - 1\right) h, \; p \in (0, 1] \)</qf>
<mgf>\(M(t) = \frac{1}{n} e^{t a} \frac{1 - e^{n t h}}{1 - e^{t h}}, \; t \in (-\infty, \infty)\)</mgf>
<mean>\(\frac{1}{2}(a + b) = a + \frac{1}{2}(n - 1)h\)</mean>
<variance>\(\frac{1}{12}(n^2 - 1) h^2 = \frac{1}{12}(b - a)(b - a + h)\)</variance>
<skew>\(0\)</skew>
<kurt>\(-\frac{6(n^2 + 1)}{5(n^2 - 1)}\,\)</kurt>
<entropy>\(\ln(n)\,\)</entropy>
<median>\(Q\left(\frac{1}{2}\right) \) where \( Q \) is the quantile function</median>
<q1>\(Q\left(\frac{1}{4}\right)\) where \( Q \) is the quantile function</q1>
<q3>\(Q\left(\frac{3}{4}\right)\) where \( Q \) is the quantile function</q3>
<family>location</family>
<family>scale</family>
<cite>freund1967modern</cite>
</distribution>
<distribution id="exponential">
<name>exponential distribution</name>
<name>negative exponential distribution</name>
<type>continuous</type>
<model>The exponential distribution models the time between random points in the Poisson model</model>
<parameter>\(r \in (0, \infty)\), rate</parameter>
<alt-parameter>\( b = 1 / r \), scale</alt-parameter>
<standard>\( r = 1 \)</standard>
<support>\([0, \infty)\)</support>
<pdf>\(f(x) = r e^{-r x}, \; x \in [0, \infty)\)</pdf>
<mode>\(0\)</mode>
<cdf>\(F(x) = 1 - e^{-r x}, \; x \in [0, \infty)\)</cdf>
<qf>\(Q(p) = \frac{- \ln(1 - p)}{r}, \; p \in [0, 1)\)</qf>
<mgf>\(\left(1 - r t\right)^{-1}\,\)</mgf>
<cf>\(\frac{r}{r - i t}, \; t \in (-\infty, \infty)\)</cf>
<mean>\(\frac{1}{r}\)</mean>
<variance>\(\frac{1}{r^2}\)</variance>
<skew>\(2\)</skew>
<kurt>\(6\)</kurt>
<entropy>\(1 - \ln(r)\)</entropy>
<median>\(\frac{\ln(2)}{r}\)</median>
<q1>\(\frac{\ln(4) - \ln(3)}{r}\)</q1>
<q3>\(\frac{\ln(3)}{r}\)</q3>
<family>exponential </family>
<family>scale</family>
<history>The exponential distribution was named by Karl Pearson in 1895</history>
<cite>siegrist2007exponential</cite>
</distribution>
<distribution id="exponential-logarithmic">
<name>exponential-logarithmic distribution</name>
<type>continuous</type>
<model>The exponential-logarithmic distribution models failure times of devices with decreasing failure rate</model>
<parameter>\(p \in (0, 1)\), the shape parameter</parameter>
<parameter>\(b \in (0, \infty)\), the scale parameter</parameter>
<standard>\( p = \frac{1}{2}, \; b = 1 \)</standard>
<support>\([0,\infty)\)</support>
<pdf>\(f(x) = \frac{1}{-\ln p} \frac{b(1 - p) e^{-x/b}}{1 - (1 - p) e^{-x/b}}, \; x \in [0, \infty)\)</pdf>
<mode>\(0\)</mode>
<cdf>\(F(x) = 1 - \frac{\ln(1 - (1 - p) e^{-x/b})}{\ln p}, \; x \in [0, \infty)\)</cdf>
<qf>\(Q(u) = b \ln\left(\frac{1 - p}{1 - p^{1 - u}}\right), \; u \in (0, 1)\)</qf>
<moments type="raw">\(\mu(n) = -n! b^n \frac{L_{n+1}(1 - p)}{\ln(p)}, \; n \in \{0, 1, \ldots\}\) where \(L_{n+1}\) is the polylog function of order \(n + 1\)</moments>
<mean>\(-b \frac{L_2(1 - p)}{\ln(p)}\) where \(L_2\) is the polylog function of order \(2\).</mean>
<variance>\(-b^2 \frac{2 L_3(1 - p)}{ln(p)} - \frac{L_2^2(1 - p)}{b^2 \ln^2(p)}\) where \(L_n\) is the polylog function of order \(n\)</variance>
<median>\(b \ln(1 + \sqrt{p})\)</median>
<q1>\(b \ln\left(\frac{1 - p}{1 - p^{3/4}}\right)\)</q1>
<q3>\(b \ln\left(\frac{1 - p}{1 - p^{1/4}}\right)\)</q3>
<family>scale</family>
<cite>tahmasbi2008two</cite>
</distribution>
<distribution id="exponential-power">
<name>exponential power distribution </name>
<name>generalized error distribution</name>
<type>continuous</type>
<model>The exponential power distribution is a family of symmetric, unimodal distributions that generalizes the normal and Laplace families</model>
<parameter>\(\mu \in (-\infty, \infty)\), the location parameter</parameter>
<parameter>\(\alpha \in (0, \infty)\), the scale parameter</parameter>
<parameter>\(\beta \in (0, \infty)\), the shape parameter</parameter>
<support>\(x \in (-\infty; +\infty)\!\)</support>
<pdf>\(f(x) = \frac{\beta}{2 \alpha \Gamma(1/\beta)} \exp\left[-\left(\frac{|x - \mu|}{\alpha}\right)^\beta\right], \; x \in (-\infty, \infty)\) where \(\Gamma\) is the gamma function</pdf>
<mode>\(\mu\)</mode>
<cdf>\(F(x) = \frac{1}{2} + \frac{\sgn(x - \mu)}{2 \Gamma (1 / \beta)} \gamma\left[\frac{1}{\beta}, \left(\frac{|x - \mu|}{\alpha}\right)^\beta\right], \; x \in (-\infty, \infty)\), where \(\Gamma\) is the gamma function and \(\gamma\) is the lower incomplete gamma function</cdf>
<qf>\(Q(p) = F^{-1}(p), \quad p \in (0, 1)\) where \(F\) is the distribution function</qf>
<mean>\(\mu\)</mean>
<variance>\(\frac{\alpha^2 \Gamma(3/\beta)}{\Gamma(1/\beta)}\) where \(\Gamma\) is the gamma function</variance>
<skew>\(0\)</skew>
<kurt>\(\frac{\Gamma(5/\beta) \Gamma(1/\beta)}{\Gamma^2(3/\beta)} - 3\) where \(\Gamma\) is the gamma function</kurt>
<entropy>\(\frac{1}{\beta} - \log\left[\frac{\beta}{2 \alpha \Gamma(1/\beta)}\right]\) where \(\Gamma\) is the gamma function</entropy>
<median>\(\mu\)</median>
<q1>\(Q(\frac{1}{4})\) where \(Q\) is the quantile function</q1>
<q3>\(Q(\frac{3}{4})\) where \(Q\) is the quantile function</q3>
<family>location </family>
<family>scale</family>
<cite>zhu2009properties</cite>
</distribution>
<distribution id="F">
<name>F-distribution </name>
<name>Snedecor's F-distribution </name>
<name>Fisher-Snedecor distribution</name>
<type>continuous</type>
<model>The F-distribution governs the ratio of independent, scaled chi-square variables</model>
<parameter>\(n \in (0, \infty)\), numerator degrees of freedom</parameter>
<parameter>\(d \in (0, \infty)\), denominator degrees of freedom</parameter>
<standard>\( n = 1, \; d = 1 \)</standard>
<support>\([0, \infty)\)</support>
<pdf>\( f(x) = \frac{\Gamma[(n + d)/2]}{\Gamma(n/2) \Gamma(d/2)} \left(\frac{n}{d}\right)^{n/2} \frac{x^{(n-2)/2}}{[1 + (n/d) x]^{(n+d)/2}}, \; x \in [0, \infty) \)</pdf>
<mode>\(\frac{n - 2}{n} \frac{d}{d + 2} \) for \(n \gt 2\)</mode>
<cdf>\(F(x) = \frac{B[n x / (n x + d), n/2, d/2]}{B(n/2, d/2)}, \; x \in [0, \infty)\), where \( B \) is the beta function</cdf>
<qf>\(Q(p) = F^{-1}(p), \; p \in (0, 1)\) where \(F\) is the distribution function</qf>
<mgf>Does not exist</mgf>
<mean>\(\frac{d}{d - 2}\) for \(d \gt 2\)</mean>
<variance>\(\frac{2 d (n + d - 2)}{n (d - 2)^2 (d - 4)}\) for \(d \gt 4\)</variance>
<skew>\(\frac{(2 n + d - 2) \sqrt{8(d - 4)}}{(d - 6)\sqrt{n (n + d - 2)}}\) for \(d \gt 6 \)</skew>
<kurt>\(\frac{20 d - 8 d^2 + d^3 + 44 n - 32 n d + 5 n d^2 - 22 n^2 - 5 n^2 d - 16}{n (d - 6)(d - 8)(n + d - 2)/12}\) for \( d \gt 8 \)</kurt>
<median> \(Q\left(\frac{1}{2}\right)\) where \(Q\) is the quantile function</median>
<q1>\(Q\left(\frac{1}{4}\right)\) where \(Q\) is the quantile function</q1>
<q3>\(Q\left(\frac{3}{4}\right)\) where \(Q\) is the quantile function</q3>
<history>The \(F\)-distribution was first derived by George Snedecor in 1934. The letter F was chosen as a tribute to Ronald Fisher</history>
<cite>johnson2005univariate</cite>
</distribution>
<distribution id="gamma">
<name>gamma distribution</name>
<type>continuous</type>
<model>The gamma distribution governs the arrival times in the Poisson model, and has many applications in statistics</model>
<parameter>\(k \in (0, \infty)\), the shape parameter</parameter>
<parameter>\(b \in (0, \infty)\), the scale parameter</parameter>
<standard>\( k = 1, \; b = 1 \)</standard>
<support>\((0,\,\infty) \)</support>
<pdf>\(f(x) = \frac{1}{\Gamma(k) b^k} x^{k - 1}e^{-x / b}, \; x \in (0, \infty) \) where \( \Gamma \) is the gamma function</pdf>
<mode>\((k - 1) b \) for \( k \gt 1 \)</mode>
<cdf>\( F(x) = \frac{1}{\Gamma(k)} \gamma\left(k, \frac{x}{b}\right) \) where \( \gamma \) is the incomplete gamma function</cdf>
<qf>\(Q(p) = F^{-1}(p)\) where \(F\) is the distribution function</qf>
<mgf>\(M(t) = \frac{1}{(1 - b t)^k}, \; t \in (-\infty, 1 / b)\)</mgf>
<cf>\(\varphi(t) = \frac{1}{(1 - i b t)^k}, \; t \in (-\infty, \infty)\)</cf>
<mean>\( k b\)</mean>
<variance>\( k b^2 \)</variance>
<skew>\( \frac{2}{\sqrt{k}} \)</skew>
<kurt>\( \frac{6}{k} \)</kurt>
<entropy>\(\ln (4 \pi b)\)</entropy>
<median>\(Q\left(\frac{1}{2}\right)\) where \(Q\) is the quantile function</median>
<q1> \(Q\left(\frac{1}{4}\right)\) where \(Q\) is the quantile function</q1>
<q3>\(Q\left(\frac{3}{4}\right)\) where \(Q\) is the quantile function</q3>
<family>scale </family>
<family>exponential</family>
<cite>siegrist2007exponential</cite>
</distribution>
<distribution id="geometric">
<name>geometric distribution</name>
<type>discrete</type>
<model>The geometric distribution models the trial number of the first success in a sequence of Bernoulli trials</model>
<parameter>\(p \in (0, 1]\), the success parameter</parameter>
<standard>\( p = \frac{1}{2} \)</standard>
<support>\(\{1, 2, 3, \ldots\}\)</support>
<pdf>\(f(k) = p (1 - p)^{k - 1}, \; k \in \{1, 2, \ldots\}\)</pdf>
<mode>\(1\)</mode>
<cdf>\( F(k) = 1 - (1 - p)^k \)</cdf>
<qf>\(Q(u) = \left\lceil \frac{\ln(1 - u)}{\ln(1 - p)} \right\rceil, \; u \in [0, 1)\)</qf>
<pgf>\(P(t) = \frac{p t}{1 - (1 - p)t}, \; t \in \left(-\frac{1}{1 - p}, \frac{1}{1 - p}\right)\)</pgf>
<mgf>\(M(t) = \frac{p e^t}{1 - (1 - p) e^t}, \; t \in (-\infty, -\ln(1 - p))\)</mgf>
<cf>\(\varphi(t) = \frac{p e^{i t}}{1 - (1 - p) e^{i t}}, \; t \in (-\infty, \infty)\)</cf>
<mean>\(\frac{1}{p}\)</mean>
<variance>\(\frac{1 - p}{p^2}\)</variance>
<skew>\(\frac{2 - p}{\sqrt{1 - p}}\!\)</skew>
<kurt>\(6 + \frac{p^2}{1 - p}\)</kurt>
<entropy>\(\frac{-(1 - p) \log_2 (1 - p) - p \log_2 p}{p} \)</entropy>
<median>\(\left\lceil \frac{-\ln(2)}{\ln(1 - p)} \right\rceil\)</median>
<q1>\(\left\lceil \frac{\ln(3) - \ln(4)}{\ln(1 - p)} \right\rceil\)</q1>
<q3>\(\left\lceil \frac{-\ln(4)}{\ln(1 - p)} \right\rceil\)</q3>
<family>power series </family>
<family>exponential</family>
<history>The geometric distribution was used very early in the history of probability, but the name has been attributed to William Feller in 1950</history>
<cite>philippou1983generalized</cite>
</distribution>
<distribution id="hypergeometric">
<name>hypergeometric distribution</name>
<type>discrete</type>
<model>The hypergeometric distribution governs the number of objects of a given type when sampling without replacement from a multi-type population</model>
<parameter>\(N\), the population size</parameter>
<parameter>\(m\), the number of type 1 objects in the population</parameter>
<parameter>\(n\), the sample size</parameter>
<support>\( \left\{\max{(0,\, n+m-N)},\, \dots,\, \min{(m,\, n )}\right\}\)</support>
<pdf>\( f(x) = \frac{\binom{m}{x} \binom{N - m}{n - x}}{\binom{N}{n}}, \; x \in \left\{\max{(0,\, n+m-N)},\, \dots,\, \min{(m,\, n )}\right\} \)</pdf>
<mode>\(\left \lfloor \frac{(n + 1)(m + 1)}{N + 2} \right \rfloor\)</mode>
<cdf>\(1-{{{n \choose {k+1}}{{N-n} \choose {m-k-1}}}\over {N \choose m}} \,_3F_2\!\!\left[\begin{array}{c}1,\ k+1-m,\ k+1-n \\ k+2,\ N+k+2-m-n\end{array};1\right]\),
where \(_pF_q(a,b;c;z)\) is the generalized hypergeometric function. </cdf>
<mgf>\(\frac{{N-m \choose n} \scriptstyle{\,_2F_1(-n, -m; N - m - n + 1; e^{t}) } }
{{N \choose n}} \,\!\)</mgf>
<mean>\(n \frac{m}{N}\)</mean>
<variance>\( n \frac{m}{N} \frac{N - m}{N} \frac{N - n}{N - 1} \)</variance>
<skew>\(\frac{(N - 2 m)\sqrt{N - 1}(N - 2 n)}{\sqrt{n m(N - m)(N - n)}(N - 2)}\)</skew>
<kurt>\(\left[ \frac{N^2 (N-1)}{n(N - 2)(N - 3)(N - n)}\right] \left[ \frac{N(N+1) - 6 N(N - n)}{m (N - m)} + \frac{3 n (N - n)(N + 6)}{N^2} - 6 \right]\)</kurt>
<history>The hypergeometric distribution is very old, and was used by Jacob Bernoulli, Abraham DeMoivre, and others. The named was coined by H.T. Gonin in 1936</history>
<cite>harkness1965properties</cite>
</distribution>
<distribution id="hyperbolic-secant">
<name>hyperbolic secant distribution</name>
<type>continuous</type>
<model>The hyperbolic secant distribution is a symmetric, unimodal distribution but with larger kurtosis than the normal distribution</model>
<parameter>\( \mu \in (-\infty, \infty) \), the location parameter</parameter>
<parameter>\( \sigma \in (0, \infty) \), the scale parameter</parameter>
<standard>\( \mu = 0, \; \sigma = 1 \)</standard>
<support>\((-\infty, \infty)\)</support>
<pdf>\( f(x) = \frac{1}{2 \sigma} \sech\left[\frac{\pi}{2}\left(\frac{x - \mu}{\sigma}\right)\right], \; x \in (-\infty, \infty) \)</pdf>
<mode>\(\mu\)</mode>
<cdf>\( F(x) = \frac{2}{\pi} \arctan\left\{\exp\left[\frac{\pi}{2} \left(\frac{x - \mu}{\sigma} \right) \right]\right\}, \; x \in (-\infty, \infty) \)</cdf>
<qf>\(Q(p) = \mu + \sigma \frac{2}{\pi} \ln[\tan(\frac{\pi}{2} p)], \; p \in (0, 1)\)</qf>
<mgf>\(M(t) = e^{\mu t} \sec(\sigma t), \; t \in (-\frac{\pi}{1}, \frac{\pi}{2 \sigma})\)</mgf>
<mean>\(\mu\)</mean>
<variance>\(\sigma^2\)</variance>
<skew>\(0\)</skew>
<kurt>\(2\)</kurt>
<median>\(\mu\)</median>
<q1>\( \mu + \sigma \frac{2}{\pi} \ln(\sqrt{2} - 1)\)</q1>
<q3>\( \mu + \sigma \frac{2}{\pi} \ln(\sqrt{2} + 1)\)</q3>
<family>location</family>
<family>scale</family>
<cite>harkness1968generalized</cite>
</distribution>
<distribution id="Irwin-Hall">
<name>Irwin-Hall distribution</name>
<type>continuous</type>
<model>The Irwin-Hall distribution governs the sum of \(n\) independent variables, each uniformly distributed on \([0, 1]\)</model>
<parameter>\(n \in \{1, 2, \ldots\}\), the number of terms</parameter>
<standard>\( n = 1 \)</standard>
<support>\([0, n]\)</support>
<pdf>\(f(x) = \frac{1}{2 (n - 1)!} \sum_{k=0}^n (-1)^k \binom{n}{k}\sgn(x - k)(x - k)^{n-1}, \; x \in [0, n]\)</pdf>
<mode>\( n/2 \) for \( n \ge 2 \)</mode>
<cdf>\( F(x) = \frac{1}{2} + \frac{1}{2 n!} \sum_{k=0}^n (-1)^k \binom{n}{k} \sgn(x - k) (x - k)^n, \; x \in [0, n]\)</cdf>
<mgf>\(M(t) = \left(\frac{e^t - 1}{t}\right)^n, \; t \in (-\infty, \infty)\)</mgf>
<mean>\(\frac{n}{2}\)</mean>
<variance>\(\frac{n}{12}\)</variance>
<median>\(\frac{n}{2}\)</median>
<history>The Irwin-Hall distribution is named for Joseph Irwin and Phillip Hall who independently analyzed the distribution in 1927</history>
<cite>hall1927distribution</cite>
</distribution>
<distribution id="inverted-beta">
<name>inverted beta distribution </name>
<name>beta prime distribution </name>
<name>beta distribution of the second kind</name>
<type>continuous</type>
<model>The inverted beta distribution is conjugate for the odds in the Bernoulli distribution</model>
<parameter>\(\alpha \in (0, \infty)\), the first shape parameter</parameter>
<parameter>\(\beta \in (0, \infty)\), the second shape parameter</parameter>
<standard>\( \alpha = 1, \; \beta = 1 \)</standard>
<support>\(x > 0\!\)</support>
<pdf>\(f(x) = \frac{x^{\alpha-1} (1+x)^{-\alpha -\beta}}{B(\alpha,\beta)}\!\), \(B\) is the beta function</pdf>
<mode>\(\frac{\alpha - 1}{\beta + 1}\) if \(\alpha \in [1, \infty)\)</mode>
<cdf>\(F(x) = \int_0^x f(t) dt, \; x \in (0, \infty)\), where \(f\) is the probability density function.
Alternatively, \(F(x)=B(\frac{x}{1+x}; \alpha,\beta) \), where \( B(x; \alpha,\beta)\) is the incomplete beta function</cdf>
<qf>\(Q(p) = F^{-1}(p), \; p \in (0, 1)\) where \(F\) is the distribution function</qf>
<mean>\(\frac{\alpha}{\beta - 1}\) if \(\beta \in (1, \infty)\)</mean>
<variance>\(\frac{\alpha (\alpha + \beta - 1)}{(\beta - 2)(\beta - 1)^2}\) if \(\beta \in (2, \infty)\)</variance>
<median>\(Q\left(\frac{1}{2}\right)\) where \(Q\) is the quantile function</median>
<q1>\(Q\left(\frac{1}{4}\right)\) where \(Q\) is the quantile function</q1>
<q3>\(Q\left(\frac{3}{4}\right)\) where \(Q\) is the quantile function</q3>
<cite>mcdonald1995generalization</cite>
</distribution>
<distribution id="Laplace">
<name>Laplace distribution </name>
<name>double exponential distribution</name>
<type>continuous</type>
<model>The Laplace distribution is a symmetric, unimodal distribution with tails that are fatter than those of the normal distribution</model>
<parameter>\(a \in (-\infty, \infty)\), location</parameter>
<parameter>\(b \in (0, \infty)\), scale</parameter>
<standard>\( a = 0, \; b = 1 \)</standard>
<support>\( (-\infty, \infty) \)</support>
<pdf>\(f(x) = \frac{1}{2 b} \exp \left(-\frac{\left|x - a\right|}{b} \right), \; x \in (-\infty, \infty) \)</pdf>
<mode>\( a \)</mode>
<cdf>\( F(x) = \begin{cases} \frac{1}{2} \exp\left(\frac{x - a}{b}\right), & x \in (-\infty, a] \\ 1 - \frac{1}{2} \exp\left(-\frac{x - a}{b}\right), & x \in [a, \infty) \end{cases} \)</cdf>
<qf>\(Q(p) = a + b \ln(2 \min\{p, 1 - p\}), \; p \in (0, 1)\)</qf>
<mgf>\(M(t) = \frac{e^{a t}}{1 - b^2 t}, \; t \in (-\frac{1}{b}, \frac{1}{b})\)</mgf>
<cf>\(\varphi(t) = \frac{e^{a i t}}{1 + b^2 t}, \; t \in (-\infty, \infty)\)</cf>
<mean>\( a \)</mean>
<variance>\(2 b^2\)</variance>
<skew>\( 0 \)</skew>
<kurt>\( 3 \)</kurt>
<entropy>\(\log(2 e b)\)</entropy>
<median>\( a \)</median>
<q1>\(a - b \ln(2)\)</q1>
<q3>\(a + b \ln(2)\)</q3>
<family>location</family>
<history>The Laplace distribution is named for Pierre Simon Laplace</history>
<cite>kotz2001laplace</cite>
</distribution>
<distribution id="Levy">
<name>Levy distribution </name>
<name>van der Waals profile</name>
<name>stable distribution</name>
<type>continuous</type>
<model>The Levy distribution is a stable distribution that has applications in spectroscopy</model>
<parameter>\(a \in (-\infty, \infty)\), the location parameter</parameter>
<parameter>\(b \in (0, \infty)\), the scale parameter</parameter>
<standard>\( a = 0, \; b = 1 \)</standard>
<support>\((a, \infty)\)</support>
<pdf>\( f(x) = \sqrt{\frac{b}{2 \pi}} \frac{1}{(x - a)^{3/2}} \exp\left[-\frac{b}{2 (x - a)}\right], \; x \in (a, \infty)\)</pdf>
<mode>\( a + \frac{1}{3} b\)</mode>
<cdf>\( F(x) = 2 \left[1 - \Phi\left(\sqrt{\frac{b}{x - a}}\right)\right], \; x \in (a, \infty) \) where \( \Phi \) is the standard normal distribution function</cdf>
<qf>\( F^{-1}(p) = a + \frac{b}{\left[\Phi^{-1}(1 - p / 2)\right]^2}, \; p \in [0, 1) \) where \( \Phi^{-1} \) is the standard normal quantile function</qf>
<cf>\(\varphi(t) = \exp\left(i a t - \sqrt{-2 i b t}\right), \; t \in (-\infty, \infty)\)</cf>
<mean>\(\infty\)</mean>
<variance>\(\infty\)</variance>
<skew>undefined</skew>
<kurt>undefined</kurt>
<entropy>\(\frac{1}{2}[1 + 3 \gamma + \ln(16 \pi b^2)]\) where \(\gamma\) is Euler's constant</entropy>
<median>\( a + b \left[\Phi^{-1}\left(\frac{3}{4}\right)\right]^{-2}\) where \(\Phi^{-1}\) is the standard normal quantile function</median>
<q1>\( a + b \left[\Phi^{-1}\left(\frac{7}{8}\right)\right]^{-2}\) where \(\Phi^{-1}\) is the standard normal quantile function</q1>
<q3>\( a + b \left[\Phi^{-1}\left(\frac{5}{8}\right)\right]^{-2}\) where \(\Phi^{-1}\) is the standard normal quantile function</q3>
<family>location </family>
<family>scale </family>
<family>stable</family>
<history>The Levy distribution is named for Paul Pierre Levy</history>
<cite>barndorff2001levy</cite>
</distribution>
<distribution id="Landau">
<name>Landau distribution </name>
<type>continuous</type>
<model>The Landau distribution is used in physics to describe the fluctuations in the energy
loss of a charged particle passing through a thin layer of matter. This distribution is a
special case of the stable Levy distribution with parameters (1, 1)</model>
<parameter>\(\mu \in (-\infty, \infty)\), the location parameter</parameter>
<parameter>\(c \in (0, \infty)\), the scale parameter</parameter>
<support>\(1, \infty)\)</support>
<pdf>\(f(x) = \sqrt{\frac{1}{2 \pi}} \frac{e^{-1/2(x - 1)}}{(x - 1)^{3/2}}, \;
x \in (1, \infty)\)</pdf>
<mode>\(1 + \frac{1}{3}\)</mode>
<cdf>\(F(x) = \int_1^x f(t) dt, \; x \in \) where \(f\) is the probability density function</cdf>
<cite>landau1944energy</cite>
</distribution>
<distribution id="logarithmic">
<name>logarithmic distribution </name>
<name>logarithmic series distribution </name>
<name>log-series distribution</name>
<type>discrete</type>
<model>The logarithmic distribution is sometimes used to model relative species abundance</model>
<parameter>\(p \in (0, 1)\), the shape parameter</parameter>
<standard>\( p = \frac{1}{2} \)</standard>
<support>\(\{1, 2, 3, \ldots\}\)</support>
<pdf>\(f(k) = \frac{-1}{\ln(1 - p)} \frac{p^k}{k}, \; k \in \{1, 2, \ldots\}\)</pdf>
<mode>\(1\)</mode>
<cdf>\(F(k) = 1 + \frac{B(p; k + 1, 0)}{\ln(1 - p)}, \; k \in \{1, 2, \ldots\} \) where \( B \) is the incomplete beta function</cdf>
<pgf>\(G(t) = \frac{\ln(1 - p t)}{\ln(1 - p)}, \; t \in (-\frac{1}{p}, \frac{1}{p})\)</pgf>
<mgf>\(M(t) = \frac{\ln(1 - p e^t)}{\ln(1 - p)}, \; t \in (-\infty, -\ln(p))\)</mgf>
<cf>\(\varphi(t) = \frac{\ln(1 - p e^{i t})}{\ln(1 - p)}, \; t \in (-\infty, \infty)\)</cf>
<mean>\(\frac{-1}{\ln(1 - p)} \frac{p}{1 - p}\!\)</mean>
<variance>\(-p \frac{p + \ln(1 - p)}{(1 - p)^2 \ln^2(1 - p)}\!\)</variance>
<family>power series</family>
<history>The logarithmic distribution was first derived by Ronald Fisher in 1943</history>
<cite>fisher1943relation</cite>
</distribution>
<distribution id="logistic">
<name>logistic distribution</name>
<type>continuous</type>
<model>The logistic distribution occurs in logistic regression</model>
<parameter>\(a \in (-\infty, \infty)\), the location parameter</parameter>
<parameter>\(b \in (0, \infty)\), the scale parameter</parameter>
<standard>\( a = 0, \; b = 1 \)</standard>
<support>\((-\infty, \infty)\)</support>
<pdf>\(f(x) = \frac{e^{-(x - a)/b}}{b \left(1 + e^{-(x - a)/b}\right)^2}, \; x \in (-\infty, \infty)\)</pdf>
<mode>\( a \)</mode>
<cdf>\(F(x) = \frac{1}{1 + e^{-(x - a)/b}}, \; x \in (-\infty, \infty)\)</cdf>
<qf>\(Q(p) = a + b \ln\left(\frac{p}{1 - p}\right), \; p \in (0, 1)\)</qf>
<mgf>\(M(t) = e^{a t} B(1 - b t, 1 + b t)\) where \(B\) is the beta function</mgf>
<mean>\( a \)</mean>
<variance>\( \frac{\pi^2}{3} b^2 \)</variance>
<skew>\( 0 \)</skew>
<kurt>\( 6/5 \)</kurt>
<entropy>\(\ln(b) + 2\)</entropy>
<median>\( a \)</median>
<q1>\(a - \ln(3) b\)</q1>
<q3>\(a + \ln(3) b\)</q3>
<family>location</family>
<family>scale</family>
<history>Logistic regression was first used by D.R. Cox in 1958</history>
<cite>balakrishnan1992handbook</cite>
</distribution>
<distribution id="generalized logistic">
<name>generalized logistic distribution</name>
<name>skew logistic distribution</name>
<type>continuous</type>
<model>The generalized logistic distribution represents several different families of
probability distributions. One family is called the skew-logistic distribution.
Other families of distributions that have also been called generalized
ogistic distributions include the shifted log-logistic distribution,
which is a generalization of the log-logistic distribution</model>
<parameter>\(\alpha >0\), the location parameter</parameter>
<parameter>\(\beta >0\), the scale parameter</parameter>
<support>\((-\infty, \infty)\)</support>
<pdf>\(f(x;\alpha,\beta)=\frac{1}{B(\alpha,\beta)}\frac{\exp(-\beta x)}
{(1+\exp(-x))^{\alpha+\beta}}\), where \(B\) is the beta function.</pdf>
<cite>balakrishnan2009continuous</cite>
</distribution>
<distribution id="log-normal">
<name>log-normal distribution </name>
<name>log normal distribution </name>
<name>lognormal distribution </name>
<name>Galton distribution</name>
<type>continuous</type>
<model>The log-normal distribution models certain skewed variables</model>
<parameter>\(\mu \in (-\infty, \infty)\), the normal mean</parameter>
<parameter>\(\sigma \in (0, \infty)\), the normal standard deviation</parameter>
<standard>\( \mu = 0, \; \sigma = 1 \)</standard>
<support>\((0, \infty)\)</support>
<pdf>\(f(x) = \frac{1}{\sigma x \sqrt{2 \pi}}\, \exp\left(-\frac{\left[\ln(x) - \mu\right]^2}{2 \sigma^2}\right), \; x \in (0, \infty) \)</pdf>
<mode>\(e^{\mu - \sigma^2}\)</mode>
<cdf>\( F(x) = \Phi\left[\frac{\ln(x) - \mu}{\sigma}\right], \; x \in (0, \infty)\) where \( \Phi \) is the standard normal distribution function</cdf>
<qf>\(F^{-1}(p) = \exp\left[\mu + \sigma \Phi^{-1}(p)\right]\), where \(\Phi\) is the standard normal distribution function</qf>
<moments type="raw">\(\mu(n) = \exp(\mu n + \frac{1}{2} \sigma^2 n^2), \; n \in \{0, 1, \ldots\}\)</moments>
<mean>\(e^{\mu + \sigma^2/2}\)</mean>
<median>\( e^\mu \)</median>
<variance>\((e^{\sigma^2} - 1) e^{2 \mu + \sigma^2}\)</variance>
<skew>\((e^{\sigma^2} + 2) \sqrt{e^{\sigma^2} - 1}\)</skew>
<kurt>\(e^{4 \sigma^2} + 2 e^{3 \sigma^2} + 3e^{2 \sigma^2} - 6\)</kurt>
<entropy>\(\frac12 + \frac12 \ln(2 \pi \sigma^2) + \mu\)</entropy>
<median>\(e^{\mu}\,\)</median>
<q1>\(\exp\left[\mu + \sigma \Phi^{-1}\left(\frac{1}{4}\right)\right]\), where \(\Phi\) is the standard normal distribution function</q1>
<q3>\(\exp\left[\mu + \sigma \Phi^{-1}\left(\frac{3}{4}\right)\right]\), where \(\Phi\) is the standard normal distribution function</q3>
<family>scale </family>
<family>exponential</family>
<history>The lognormal distribution was first studied by Donald McAlister in 1879, in response to a problem posed by Francis Galton. This historical origin is the reason for the alternative name Galton distribution. The term lognormal distribution was first used by J.H. Gaddum in 1945</history>
<cite>famoye1995continuous</cite>
</distribution>
<distribution id="log-logistic">
<name>log-logistic distribution </name>
<name>Fisk distribution</name>
<type>continuous</type>
<model>The log-logistic distribution models lifetimes of devices whose failure rates at first increase and then decrease</model>
<parameter>\(k \in (0, \infty)\), the shape parameter</parameter>
<parameter>\(b \in (0, \infty)\), the scale parameter</parameter>
<support>\([0, \infty)\)</support>
<standard>\( k = 1, \; b = 1 \)</standard>
<pdf>\( f(x) = \frac{b^k k x^{k - 1}}{(b^k + x^k)^2}, \; x \in [0, \infty)\)</pdf>
<mode>\( b \left(\frac{k - 1}{k + 1}\right)^{1/k} \) if \( a \gt 1 \)</mode>
<cdf>\(F(x) = \frac{x^k}{b^k + x^k}, \; x \in [0, \infty)\)</cdf>
<qf>\(F^{-1}(p) = b \left(\frac{p}{1 - p}\right)^{1/k}, \; p \in [0, 1)\)</qf>
<moments type="raw">\(\mu(n) = b^n \frac{\pi n / k}{\sin(\pi n / k)}, \; n \lt k\)</moments>
<mean>\( \infty \) if \( 0 \lt k \le 1 \); \(b \frac{\pi / k}{\sin(\pi / k)}\) if \( k \gt 1 \)</mean>
<variance>does not exist if \( 0 \lt k \le 1 \); \( \infty \) if \( 1 \lt k \le 2 \); \( b^2 \left[\frac{2 \pi / k}{\sin(2 \pi / k)} - \frac{\pi^2 / k^2}{\sin^2(\pi / k)}\right] \) if \( k \gt 2 \)</variance>
<median>\( b\)</median>
<q1>\( b (1/3)^{1/k} \)</q1>
<q3>\(b 3^{1/k} \)</q3>
<family>scale</family>
<history>The log-logistic distribution is known as the Fisk distribution by economists. P.R. Fisk used the distribution to model income in 1961</history>
<cite>shoukri1988sampling</cite>
</distribution>
<distribution id="Maxwell-Boltzman">
<name>Maxwell-Boltzmann distribution</name>
<name>Maxwell distribution</name>
<type>continuous</type>
<model>The Maxwell-Boltzmann Distribution arises in the kinetic theory of gases</model>
<parameter>\(b \in (0, \infty)\), the scale parameter</parameter>
<standard>\( b = 1 \)</standard>
<support>\([0, \infty)\)</support>
<pdf>\(f(x) = \frac{1}{b^3} \sqrt{\frac{2}{\pi}} x^2 \exp\left(-\frac{x^2}{2 b^2}\right), \; x \in [0, \infty)\)</pdf>
<mode>\(\sqrt{2} b\)</mode>
<cdf>\(F(x) = 2 \Phi\left(\frac{x}{b}\right) - \frac{1}{b} \sqrt{\frac{2}{\pi}} x \exp\left(-\frac{x^2}{2 b^2}\right) - 1\) where \( \Phi \) is the standard normal distribution function</cdf>
<qf>\(Q(p) = F^{-1}(p), \; p \in (0, 1)\) where \(F\) is the distribution function</qf>
<mean>\(2 b \sqrt{\frac{2}{\pi}}\)</mean>
<variance>\(\frac{b^2 (3 \pi - 8)}{\pi}\)</variance>
<skew>\(\frac{2 \sqrt{2}(16 - 5 \pi)}{(3 \pi - 8)^{3/2}}\)</skew>
<kurt>\(4 \frac{(-96 + 40 \pi - 3 \pi^2)}{(3 \pi - 8)^2}\)</kurt>
<q1>\(Q(\frac{1}{4})\) where \(Q\) is the quantile function</q1>
<q3>\(Q(\frac{3}{4})\) where \(Q\) is the quantile function</q3>
<family>scale</family>
<history>The Maxwell-Boltzman distribution is named for James Clerk Maxwell and Ludwig Boltzmann for their use of the distribution is modeling the energy of molecules in a gas</history>
<cite>laurendeau2005statistical</cite>
</distribution>
<distribution id="negative-binomial">
<name>negative binomial distribution </name>
<name>Pascal distribution</name>
<type>discrete</type>
<model>The negative binomial distribution governs the number of trials (x) needed for a specified number of successes (k) in the Bernoulli trials model</model>
<parameter>\(k \in \{1, 2, \ldots\}\), the number of successes</parameter>
<parameter>\(p \in (0, 1]\), the success parameter</parameter>
<standard>\( k = 1, \; p = \frac{1}{2} \)</standard>
<support>\(\{k, k+1, \ldots\}\)</support>
<pdf>\(f(x) = \binom{x - 1}{k - 1} p^x (1 - p)^{x-k}, \; x \in \{k, k+1, \ldots\}\)</pdf>
<mode>\(\lfloor 1 + \frac{k-1}{p}\rfloor\)</mode>
<cdf>\(F(x) = \sum_{j=k}^x f(j) , \; x \in \{k, k+1, \ldots\}\) where \(f\) is the probability density function. It can
also be expressed as \(1-I_p(x-r+1,\,k) \), where \(I_p\) is the regularized incomplete beta function</cdf>
<qf>\(Q(p) = F^{-1}(p), \; p \in (0, 1)\) where \(F\) is the distribution function</qf>
<pgf>\(G(t) = \left[\frac{p t}{1 - (1-p) t}\right]^k, \; t \in (-\frac{1}{1-p}, \frac{1}{1-p})\)</pgf>
<mgf>\(M(t) = \left[\frac{p e^t}{1 - (1-p) e^t}\right]^k, \; t \in (-\infty, -\ln(1 - p))\)</mgf>
<cf>\(\varphi(t) = \left[\frac{p e^{i t}}{1 - (1-p) e^{i t}}\right]^k, \; t\in (-\infty, \infty)\)</cf>
<mean>\(k \frac{1}{p}\)</mean>
<variance>\(k \frac{1-p}{p^2}\)</variance>
<skew>\(\frac{2-p}{\sqrt{k (1-p)}}\)</skew>
<kurt>\(\frac{1}{k} \left[6 + \frac{p^2}{1 - p}\right]\)</kurt>
<median>\(Q\left(\frac{1}{2}\right)\) where \(Q\) is the quantile function</median>
<q1>\(Q\left(\frac{1}{4}\right)\) where \(Q\) is the quantile function</q1>
<q3>\(Q\left(\frac{3}{4}\right)\) where \(Q\) is the quantile function</q3>
<history>The alternative name Pascal distribution is in honor of Blaise Pascal who used the distribution in his solution to the Problem of Points</history>
<cite>el2006negative</cite>
</distribution>
<distribution id="normal">
<name>normal distribution </name>
<name>Gaussian distribution </name>
<name>error distribution</name>
<type>continuous</type>
<model>The normal distribution is used to model physical quantities that are subject to numerous small, random errors</model>
<parameter>\(\mu \in (-\infty, \infty)\), the location parameter</parameter>
<parameter>\(\sigma \in (0, \infty)\), the scale parameter</parameter>
<standard>\( \mu = 0, \; \sigma = 1 \)</standard>
<support>\((-\infty, \infty)\)</support>
<pdf>\(f(x) = \frac{1}{\sqrt{2 \pi} \sigma} \exp \left[-\frac{1}{2}\left(\frac{x - \mu}{\sigma}\right)^2 \right], \; x \in (-\infty, \infty)\)</pdf>
<mode>\(\mu\)</mode>
<cdf>\(F(x) = \Phi\left(\frac{x - \mu}{\sigma}\right), \; x \in (-\infty, \infty)\) where \(\Phi\) is the standard normal distribution function</cdf>
<qf>\(Q(p) = \mu + \sigma \Phi^{-1}(p), \; p \in (0, 1)\) </qf>
<mgf>\(M(t) = \exp\left(\mu t + \frac{1}{2} \sigma^2 t^2\right), \; t \in (-\infty, \infty)\)</mgf>
<cf>\(\varphi(t) = \exp\left(i \mu t - \frac{1}{2} \sigma^2 t^2\right), \; t \in (-\infty, \infty)\)</cf>
<mean>\(\mu\)</mean>
<variance>\(\sigma^2\)</variance>
<skew>\(0\)</skew>
<kurt>\(0\)</kurt>
<entropy>\(\frac{1}{2} \ln(2 \pi e \sigma^2)\)</entropy>
<median>\(\mu\)</median>
<q1>\(\mu - \Phi^{-1}\left(\frac{1}{4}\right) \sigma\) </q1>
<q3>\(\mu + \Phi^{-1}\left(\frac{1}{4}\right) \sigma\) </q3>
<family>location </family>
<family>scale </family>
<family>exponential </family>
<family>stable</family>
<cite>dinov2008central</cite>
<history>The normal distribution was first derived by Carl Friedrich Gauss in 1809 (hence the alternative name Gaussian distribution). The normalizing constant and the first version of the Central Limit Theorem were contributions by Pierre Simon Laplace. The term normalizing constant was popularized by Karl Pearson around the turn of the 20th century</history>
</distribution>
<distribution id="students-t">
<name>students t distribution </name>
<name>Student's t distribution </name>
<name>t distribution</name>
<type>continuous</type>
<model>The t distribution arises when estimating the mean of a normally distributed population when the sample size is small and population standard deviation is unknown. It comes into play in various statistical analyses like Students t-test for assessing the between-group statistical significant differences of two sample means, construction of confidence intervals for difference between two population means, linear regression analyses, etc. Like the normal distribution, the t-distribution is symmetric, bell-shaped and unimodal. However it has heavier tails, meaning that it is more prone to producing values that fall far from its mean. The Students t-distribution is a special case of the generalized hyperbolic distribution</model>
<parameter>\(n \in (0, \infty)\), degrees of freedom</parameter>
<standard>\( n = 1 \)</standard>
<support>\((-\infty, \infty)\)</support>
<pdf>\(f(x) = \frac{\Gamma \left(\frac{n + 1}{2} \right)} {\sqrt{n \pi} \Gamma \left(\frac{n}{2} \right)} \left(1 + \frac{x^2}{n} \right)^{-\frac{n + 1}{2}}, \; x \in (-\infty, \infty)\) where \( \Gamma \) is the gamma function</pdf>
<mode>\(0\)</mode>
<cdf>\(F(x) = \frac{1}{2} + x \Gamma \left( \frac{n + 1}{2} \right) \frac{\,_2F_1 \left ( \frac{1}{2},\frac{n + 1}{2};\frac{3}{2}; - \frac{x^2}{n} \right)} {\sqrt{\pi n}\,\Gamma \left(\frac{n}{2}\right)}, \; x \in (-\infty, \infty)\), where \({ }_2F_1\) is the hypergeometric function</cdf>
<mean>0 for \( n \gt 1 \)</mean>
<variance>\(\frac{n}{n - 2}, \) for \( n \gt 2 \)</variance>
<skew>0 for \( n \gt 3 \)</skew>
<kurt>\(\frac{6}{n - 4}, \) for \( n \gt 4\)</kurt>
<entropy>\(\frac{n + 1}{2}\left[\psi \left(\frac{1 + n}{2} \right) - \psi \left(\frac{n}{2} \right) \right] + \log{\left[\sqrt{n}
B \left(\frac{n}{2}, \frac{1}{2} \right)\right]} \), where \(\psi\) is the digamma function and \(B\) is the beta function</entropy>
<median>0</median>
<family>exponential </family>
<cite>li1957student</cite>
</distribution>
<distribution id="truncated-normal">
<name>truncated normal distribution </name>
<type>continuous</type>
<model>The truncated normal distribution is the probability distribution of a normally
distributed random variable (\(X \sim N(\mu, \sigma^2) \)) whose value is either bounded below, above or on both sides.
The truncated normal distribution has wide applications in statistics and econometrics</model>
<parameter>\(\mu \in (-\infty, \infty)\), the location parameter</parameter>
<parameter>\(\sigma \in (0, \infty)\), the scale parameter</parameter>
<parameter>\(a \in (-\infty, \infty)\), left limit</parameter>
<parameter>\(b \in (a, \infty)\), right limit ( \(a \lt b\) )</parameter>
<support>\([a, b]\)</support>
<pdf>\(f(x;\mu,\sigma,a,b)=\frac{1}{\sigma Z}\phi(\xi)\)</pdf>
<mode><![CDATA[
\(\left\{\begin{array}{ll}a,&\mathrm{if}\\mu<a\\\mu,&\mathrm{if}\a\le\mu\leb\\b,&\mathrm{if}\\mu>b\end{array}\right.\)
]]></mode>
<cdf>\(F(x;\mu,\sigma,a,b)=\frac{\Phi(\xi)-\Phi(\alpha)}{Z}\), where
\( \phi(\xi) = \frac{1}{\sqrt{2 \pi}} \exp{(-\frac{1}{2}\xi^2)} \) is the probability density function of
the standard normal distribution, \( \Phi(\cdot) \) is the standard normal
cumulative distribution function, \( Z=\Phi(\beta)-\Phi(\alpha) \),
\( \xi=\frac{x-\mu}{\sigma}\), \(\alpha=\frac{a-\mu}{\sigma}\), \(\beta=\frac{b-\mu}{\sigma}\).</cdf>
<mean>\(\mu+\frac{\phi(\alpha)-\phi(\beta)}{Z}\sigma\)</mean>
<variance>\(\sigma^2\left[1+\frac{\alpha\phi(\alpha)-\beta\phi(\beta)}{Z}-\left(\frac{\phi(\alpha)-\phi(\beta)}{Z}\right)^2\right]\)</variance>
<cite>kotz2000continuous</cite>
</distribution>
<distribution id="Pareto">
<name>Pareto distribution </name>
<name>Bradford distribution</name>
<type>continuous</type>
<model>The Pareto distribution models highly skewed variables that sometimes arise in economics</model>
<parameter>\(a \in (0, \infty)\), the shape parameter</parameter>
<parameter>\(b \in (0, \infty)\), the scale parameter</parameter>
<standard>\( a = 1, \; b = 1 \)</standard>
<support>\([b, \infty)\)</support>
<pdf>\(f(x) = \frac{a b^a}{x^{a+1}}, \; x \in [b, \infty)\)</pdf>
<mode>\(b\)</mode>
<cdf>\(F(x) = 1 - \left(\frac{b}{x}\right)^a, \; x \in [b, \infty)\)</cdf>
<qf>\(F^{-1}(p) = \frac{b}{(1 - p)^{1/a}}, \; p \in [0, 1)\)</qf>
<cf>\(\varphi(t) = a (-i b t)^a \gamma(-a, -i b t)\) where \(\gamma\) is the lower incomplete gamma function</cf>
<moments type="raw">\(\mu(n) = b^n \frac{a}{a - n}, \; n \in (0, k)\)</moments>
<mean>\( b \frac{a}{a - 1} \) for \( a \gt 1 \)</mean>
<variance>\( b^2 \frac{a}{(a - 1)^2 (a - 2)} \) for \( a \gt 2 \)</variance>
<skew>\(\frac{2(1 + a)}{a - 3} \sqrt{\frac{a - 2}{a}}\) for \(a \gt 3\)</skew>
<kurt>\(\frac{6(a^3 + a^2 - 6 a - 2)}{a(a - 3)(a - 4)}\) for \(a \gt 4 s\)</kurt>
<entropy>\(\ln\left(\frac{b}{a}\right) + \frac{1}{a} + 1\)</entropy>
<median>\(b 2^{1/a}\)</median>
<q1>\(b \left(\frac{4}{3}\right)^{1/a}\)</q1>
<q3>\(b 4 ^{1/a}\)</q3>
<family>scale </family>
<history>The Pareto distributin is named for the Italian economist Vilfredo Pareto, who used the distribution to model wealth, income and other economic variables.</history>
<cite>arnold1985pareto</cite>
</distribution>
<distribution id="Poisson">
<name>Poisson distribution</name>
<type>discrete</type>
<model>The Poisson distribution models the number of random points in a region of time or space under certain ideal conditions</model>
<parameter>\(\lambda \in (0, \infty)\), the (shape, mean, or rate) parameter</parameter>
<standard>\( \lambda = 1 \)</standard>
<support>\(\{0, 1, 2, \ldots\}\)</support>
<pdf>\(f(k) = e^{-\lambda} \frac{\lambda^k}{k!}, \; k \in \{0, 1, \ldots\} \)</pdf>
<mode>\(\lfloor\lambda\rfloor\) if \( \lambda \) is not an integer; \( \lambda \) and \( \lambda - 1 \) if \( \lambda \) is a positive integer</mode>
<cdf>\(F(x) = \frac{1}{x!} \gamma(x + 1, \lambda), \; x \in \{0, 1, 2, \ldots\}\) where \(\gamma\) is the lower incomplete gamma function</cdf>
<qf>\(Q(p) = F^{-1}(p), \; p \in (0, 1)\) where \(F\) is the distribution function</qf>
<pgf>\(G(t) = e^{\lambda (t - 1)}, \; t \in (-\infty, \infty)\)</pgf>
<mgf>\(M(t) = \exp\left(\lambda(e^t - 1)\right), \; t \in (-\infty, \infty)\)</mgf>
<cf>\(\varphi(t) = \exp\left(\lambda(e^{i t} - 1)\right), \; t \in (-\infty, \infty)\)</cf>
<moments type="factorial">\(m(k) = \lambda^k, \; k \in \{0, 1, 2, \ldots\}\)</moments>
<mean>\(\lambda\)</mean>
<variance>\(\lambda\)</variance>
<skew>\(\sqrt{\lambda}\)</skew>
<kurt>\(\frac{1}{\lambda}\)</kurt>
<entropy>\(\lambda [1 - \log(\lambda)] + e^{-\lambda} \sum_{k=0}^\infty \frac{\lambda^k \log(k!)}{k!}\)</entropy>
<median>\(Q\left(\frac12\right) \approx \lfloor\lambda + 1/3 - 0.02/\lambda\rfloor\)</median>
<q1>\(Q\left(\frac14)\right)\) where \(Q\) is the quantile function</q1>
<q3>\(Q\left(\frac34\right)\) where \(Q\) is the quantile function</q3>
<family>exponential</family>