-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathconvert_weight.py
91 lines (82 loc) · 3.33 KB
/
convert_weight.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
#! /usr/bin/env python
# coding=utf-8
#================================================================
# Copyright (C) 2019 * Ltd. All rights reserved.
#
# Editor : VIM
# File name : convert_weight.py
# Author : YunYang1994
# Created date: 2019-02-28 13:51:31
# Description :
#
#================================================================
import argparse
import tensorflow as tf
from core.yolov3 import YOLOV3
from core.config import cfg
parser = argparse.ArgumentParser()
parser.add_argument("--train_from_coco", action='store_true')
flag = parser.parse_args()
org_weights_path = cfg.YOLO.ORIGINAL_WEIGHT
cur_weights_path = cfg.YOLO.DEMO_WEIGHT
preserve_cur_names = ['conv_sbbox', 'conv_mbbox', 'conv_lbbox']
preserve_org_names = ['Conv_6', 'Conv_14', 'Conv_22']
org_weights_mess = []
tf.Graph().as_default()
load = tf.compat.v1.train.import_meta_graph(org_weights_path + '.meta')
with tf.compat.v1.Session() as sess:
load.restore(sess, org_weights_path)
for var in tf.global_variables():
var_name = var.op.name
var_name_mess = str(var_name).split('/')
var_shape = var.shape
if flag.train_from_coco:
if (var_name_mess[-1] not in ['weights', 'gamma', 'beta', 'moving_mean', 'moving_variance']) or \
(var_name_mess[1] == 'yolo-v3' and (var_name_mess[-2] in preserve_org_names)): continue
org_weights_mess.append([var_name, var_shape])
print("=> " + str(var_name).ljust(50), var_shape)
print()
tf.reset_default_graph()
cur_weights_mess = []
tf.Graph().as_default()
with tf.name_scope('input'):
input_data = tf.placeholder(dtype=tf.float32, shape=(1, 416, 416, 3), name='input_data')
training = tf.placeholder(dtype=tf.bool, name='trainable')
model = YOLOV3(input_data, training)
for var in tf.global_variables():
var_name = var.op.name
var_name_mess = str(var_name).split('/')
var_shape = var.shape
print(var_name_mess[0])
if flag.train_from_coco:
if var_name_mess[0] in preserve_cur_names: continue
cur_weights_mess.append([var_name, var_shape])
print("=> " + str(var_name).ljust(50), var_shape)
org_weights_num = len(org_weights_mess)
cur_weights_num = len(cur_weights_mess)
if cur_weights_num != org_weights_num:
raise RuntimeError
print('=> Number of weights that will rename:\t%d' % cur_weights_num)
cur_to_org_dict = {}
for index in range(org_weights_num):
org_name, org_shape = org_weights_mess[index]
cur_name, cur_shape = cur_weights_mess[index]
if cur_shape != org_shape:
print(org_weights_mess[index])
print(cur_weights_mess[index])
raise RuntimeError
cur_to_org_dict[cur_name] = org_name
print("=> " + str(cur_name).ljust(50) + ' : ' + org_name)
with tf.name_scope('load_save'):
name_to_var_dict = {var.op.name: var for var in tf.global_variables()}
restore_dict = {cur_to_org_dict[cur_name]: name_to_var_dict[cur_name] for cur_name in cur_to_org_dict}
load = tf.train.Saver(restore_dict)
save = tf.train.Saver(tf.global_variables())
for var in tf.global_variables():
print("=> " + var.op.name)
with tf.compat.v1.Session() as sess:
sess.run(tf.global_variables_initializer())
print('=> Restoring weights from:\t %s' % org_weights_path)
load.restore(sess, org_weights_path)
save.save(sess, cur_weights_path)
tf.reset_default_graph()