-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathimage_batch.py
68 lines (57 loc) · 2.45 KB
/
image_batch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
#! /usr/bin/env python
# coding=utf-8
#================================================================
# Copyright (C) 2019 * Ltd. All rights reserved.
#
# Editor : Atom
# File name : image_batch.py
# Author : SQMah
# Created date: 2019-06-25 10:26:03
# Description :
#
#================================================================
import os
import cv2
import numpy as np
import core.utils as utils
import tensorflow as tf
from PIL import Image
return_elements = ["input/input_data:0", "pred_sbbox/concat_2:0", "pred_mbbox/concat_2:0", "pred_lbbox/concat_2:0"]
pb_file = "./yolov3_coco.pb"
image_dir = "./to_crop"
output_dir = "./cropped"
num_classes = 1
input_size = 960 # This HAS to be a multiple of 32
graph = tf.Graph()
images = os.listdir(image_dir)
image_counter = 0
with tf.Session(graph = graph) as sess:
for image_path in images:
image_path = os.path.join(image_dir, image_path)
is_image = False
# Check if it is an image
try:
original_image = cv2.imread(image_path)
original_image = cv2.cvtColor(original_image, cv2.COLOR_BGR2RGB)
is_image = True
except:
pass
if is_image:
original_image_size = original_image.shape[:2]
image_data = utils.image_preporcess(np.copy(original_image), [input_size, input_size])
image_data = image_data[np.newaxis, ...]
return_tensors = utils.read_pb_return_tensors(graph, pb_file, return_elements)
pred_sbbox, pred_mbbox, pred_lbbox = sess.run(
[return_tensors[1], return_tensors[2], return_tensors[3]],
feed_dict={ return_tensors[0]: image_data})
pred_bbox = np.concatenate([np.reshape(pred_sbbox, (-1, 5 + num_classes)),
np.reshape(pred_mbbox, (-1, 5 + num_classes)),
np.reshape(pred_lbbox, (-1, 5 + num_classes))], axis=0)
bboxes = utils.postprocess_boxes(pred_bbox, original_image_size, input_size, 0.3, False)
bboxes = utils.nms(bboxes, 0.45, method='nms')
image = Image.fromarray(original_image)
for bbox in bboxes:
# Add some padding
cropped = image.crop((bbox[0], bbox[1], bbox[2], bbox[3]))
cropped.save(os.path.join(output_dir, str(image_counter) + '.jpg'))
image_counter += 1