forked from SaschaWillems/Vulkan
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbufferdeviceaddress.cpp
324 lines (269 loc) · 14.1 KB
/
bufferdeviceaddress.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
/*
* Vulkan Example - Buffer device address
*
* This sample shows how to read data from a buffer device address (aka "reference") instead of using uniforms
* The application passes buffer device addresses to the shader via push constants, and the shader then simply reads the data behind that address
* See cube.vert for the shader side of things
*
* Copyright (C) 2024 by Sascha Willems - www.saschawillems.de
*
*/
#include "vulkanexamplebase.h"
#include "VulkanglTFModel.h"
class VulkanExample : public VulkanExampleBase
{
public:
bool animate = true;
struct Cube {
glm::mat4 modelMatrix;
vks::Buffer buffer;
glm::vec3 rotation;
VkDeviceAddress bufferDeviceAddress{};
};
std::array<Cube, 2> cubes{};
vks::Texture2D texture;
vkglTF::Model model;
// Global matrices
struct Scene {
glm::mat4 mvp;
vks::Buffer buffer;
VkDeviceAddress bufferDeviceAddress{};
} scene;
VkPipeline pipeline{ VK_NULL_HANDLE };
VkPipelineLayout pipelineLayout{ VK_NULL_HANDLE };
VkDescriptorSet descriptorSet{ VK_NULL_HANDLE };
VkDescriptorSetLayout descriptorSetLayout{ VK_NULL_HANDLE };
PFN_vkGetBufferDeviceAddressKHR vkGetBufferDeviceAddressKHR{ VK_NULL_HANDLE };
VkPhysicalDeviceBufferDeviceAddressFeatures enabledBufferDeviceAddresFeatures{};
// This sample passes the buffer references ("pointer") using push constants, the shader then reads data from that buffer address
struct PushConstantBlock {
// Reference to the global matrices
VkDeviceAddress sceneReference;
// Reference to the per model matrices
VkDeviceAddress modelReference;
};
VulkanExample() : VulkanExampleBase()
{
title = "Buffer device address";
camera.type = Camera::CameraType::lookat;
camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 512.0f);
camera.setRotation(glm::vec3(0.0f, 0.0f, 0.0f));
camera.setTranslation(glm::vec3(0.0f, 0.0f, -5.0f));
enabledInstanceExtensions.push_back(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
enabledInstanceExtensions.push_back(VK_KHR_DEVICE_GROUP_CREATION_EXTENSION_NAME);
enabledDeviceExtensions.push_back(VK_KHR_BUFFER_DEVICE_ADDRESS_EXTENSION_NAME);
enabledDeviceExtensions.push_back(VK_KHR_DEVICE_GROUP_EXTENSION_NAME);
enabledBufferDeviceAddresFeatures.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES;
enabledBufferDeviceAddresFeatures.bufferDeviceAddress = VK_TRUE;
deviceCreatepNextChain = &enabledBufferDeviceAddresFeatures;
}
~VulkanExample()
{
if (device) {
vkDestroyPipeline(device, pipeline, nullptr);
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
texture.destroy();
for (auto cube : cubes) {
cube.buffer.destroy();
}
scene.buffer.destroy();
}
}
virtual void getEnabledFeatures()
{
if (deviceFeatures.samplerAnisotropy) {
enabledFeatures.samplerAnisotropy = VK_TRUE;
};
}
void loadAssets()
{
const uint32_t glTFLoadingFlags = vkglTF::FileLoadingFlags::PreTransformVertices | vkglTF::FileLoadingFlags::PreMultiplyVertexColors | vkglTF::FileLoadingFlags::FlipY;
model.loadFromFile(getAssetPath() + "models/cube.gltf", vulkanDevice, queue, glTFLoadingFlags);
texture.loadFromFile(getAssetPath() + "textures/crate01_color_height_rgba.ktx", VK_FORMAT_R8G8B8A8_UNORM, vulkanDevice, queue);
}
// We pass all data via buffer device addresses, so we only allocate descriptors for the images
void setupDescriptors()
{
// Pool
std::vector<VkDescriptorPoolSize> descriptorPoolSizes = {
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1)
};
VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(descriptorPoolSizes, 2);
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
// Layout
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 0)
};
VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout));
// Set
VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayout, 1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet));
std::vector<VkWriteDescriptorSet> writeDescriptorSets = {
vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 0, &texture.descriptor)
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, nullptr);
}
void preparePipelines()
{
// The buffer addresses will be passed to the shader using push constants
// That way it's very easy to do a draw call, change the reference to another buffer (or part of that buffer) and do the next draw call using different data
VkPushConstantRange pushConstantRange{};
pushConstantRange.stageFlags = VK_SHADER_STAGE_VERTEX_BIT;
pushConstantRange.offset = 0;
pushConstantRange.size = sizeof(PushConstantBlock);
VkPipelineLayoutCreateInfo pipelineLayoutCI = vks::initializers::pipelineLayoutCreateInfo();
pipelineLayoutCI.pushConstantRangeCount = 1;
pipelineLayoutCI.pPushConstantRanges = &pushConstantRange;
pipelineLayoutCI.setLayoutCount = 1;
pipelineLayoutCI.pSetLayouts = &descriptorSetLayout;
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCI, nullptr, &pipelineLayout));
const std::vector<VkDynamicState> dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
VkPipelineInputAssemblyStateCreateInfo inputAssemblyStateCI = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationStateCI = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0);
VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendStateCI = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilStateCI = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportStateCI = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleStateCI = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0);
VkPipelineDynamicStateCreateInfo dynamicStateCI = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables.data(), static_cast<uint32_t>(dynamicStateEnables.size()), 0);
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages = {
loadShader(getShadersPath() + "bufferdeviceaddress/cube.vert.spv", VK_SHADER_STAGE_VERTEX_BIT),
loadShader(getShadersPath() + "bufferdeviceaddress/cube.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT)
};
VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelineLayout, renderPass, 0);
pipelineCI.pInputAssemblyState = &inputAssemblyStateCI;
pipelineCI.pRasterizationState = &rasterizationStateCI;
pipelineCI.pColorBlendState = &colorBlendStateCI;
pipelineCI.pMultisampleState = &multisampleStateCI;
pipelineCI.pViewportState = &viewportStateCI;
pipelineCI.pDepthStencilState = &depthStencilStateCI;
pipelineCI.pDynamicState = &dynamicStateCI;
pipelineCI.stageCount = static_cast<uint32_t>(shaderStages.size());
pipelineCI.pStages = shaderStages.data();
pipelineCI.pVertexInputState = vkglTF::Vertex::getPipelineVertexInputState({ vkglTF::VertexComponent::Position, vkglTF::VertexComponent::Normal, vkglTF::VertexComponent::UV, vkglTF::VertexComponent::Color });
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipeline));
}
void prepareBuffers()
{
// Note that we don't use this buffer for uniforms but rather pass it's address as a reference to the shader, so isntead of the uniform buffer usage we use a different flag
VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &scene.buffer, sizeof(glm::mat4)));
VK_CHECK_RESULT(scene.buffer.map());
// Get the device of this buffer that is later on passed to the shader (aka "reference")
VkBufferDeviceAddressInfo bufferDeviceAdressInfo{};
bufferDeviceAdressInfo.sType = VK_STRUCTURE_TYPE_BUFFER_DEVICE_ADDRESS_INFO;
bufferDeviceAdressInfo.buffer = scene.buffer.buffer;
scene.bufferDeviceAddress = vkGetBufferDeviceAddressKHR(device, &bufferDeviceAdressInfo);
for (auto& cube : cubes) {
// Note that we don't use this buffer for uniforms but rather pass it's address as a reference to the shader, so isntead of the uniform buffer usage we use a different flag
VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &cube.buffer, sizeof(glm::mat4)));
VK_CHECK_RESULT(cube.buffer.map());
// Get the device of this buffer that is later on passed to the shader (aka "reference")
bufferDeviceAdressInfo.buffer = cube.buffer.buffer;
cube.bufferDeviceAddress = vkGetBufferDeviceAddressKHR(device, &bufferDeviceAdressInfo);
}
updateBuffers();
}
void updateBuffers()
{
scene.mvp = camera.matrices.perspective * camera.matrices.view;
memcpy(scene.buffer.mapped, &scene, sizeof(glm::mat4));
cubes[0].modelMatrix = glm::translate(glm::mat4(1.0f), glm::vec3(-2.0f, 0.0f, 0.0f));
cubes[1].modelMatrix = glm::translate(glm::mat4(1.0f), glm::vec3(1.5f, 0.5f, 0.0f));
for (auto& cube : cubes) {
cube.modelMatrix = glm::rotate(cube.modelMatrix, glm::radians(cube.rotation.x), glm::vec3(1.0f, 0.0f, 0.0f));
cube.modelMatrix = glm::rotate(cube.modelMatrix, glm::radians(cube.rotation.y), glm::vec3(0.0f, 1.0f, 0.0f));
cube.modelMatrix = glm::rotate(cube.modelMatrix, glm::radians(cube.rotation.z), glm::vec3(0.0f, 0.0f, 1.0f));
cube.modelMatrix = glm::scale(cube.modelMatrix, glm::vec3(0.25f));
memcpy(cube.buffer.mapped, &cube.modelMatrix, sizeof(glm::mat4));
}
}
void prepare()
{
VulkanExampleBase::prepare();
// We need this extension function to get the address of a buffer so we can pass it to the shader
vkGetBufferDeviceAddressKHR = reinterpret_cast<PFN_vkGetBufferDeviceAddressKHR>(vkGetDeviceProcAddr(device, "vkGetBufferDeviceAddressKHR"));
loadAssets();
prepareBuffers();
setupDescriptors();
preparePipelines();
buildCommandBuffers();
prepared = true;
}
void buildCommandBuffers()
{
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
VkClearValue clearValues[2];
clearValues[0].color = defaultClearColor;
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.renderArea.offset.x = 0;
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i) {
renderPassBeginInfo.framebuffer = frameBuffers[i];
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, nullptr);
model.bindBuffers(drawCmdBuffers[i]);
// Instead of using descriptors to pass global and per-model matrices to the shader, we can now simply pass buffer references via push constants
// The shader then simply reads data from the address of that reference
PushConstantBlock references{};
// Pass pointer to the global matrix via a buffer device address
references.sceneReference = scene.bufferDeviceAddress;
for (auto& cube : cubes) {
// Pass pointer to this cube's data buffer via a buffer device address
// So instead of having to bind different descriptors, we only pass a different device address
// This doesn't have to be an address from a different buffer, but could very well be just another address in the same buffer
references.modelReference = cube.bufferDeviceAddress;
vkCmdPushConstants(drawCmdBuffers[i], pipelineLayout, VK_SHADER_STAGE_VERTEX_BIT, 0, sizeof(PushConstantBlock), &references);
model.draw(drawCmdBuffers[i]);
}
drawUI(drawCmdBuffers[i]);
vkCmdEndRenderPass(drawCmdBuffers[i]);
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
}
}
void draw()
{
VulkanExampleBase::prepareFrame();
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
VulkanExampleBase::submitFrame();
}
virtual void render()
{
if (!prepared)
return;
draw();
if (animate && !paused) {
cubes[0].rotation.x += 2.5f * frameTimer;
if (cubes[0].rotation.x > 360.0f)
cubes[0].rotation.x -= 360.0f;
cubes[1].rotation.y += 2.0f * frameTimer;
if (cubes[1].rotation.x > 360.0f)
cubes[1].rotation.x -= 360.0f;
}
if ((camera.updated) || (animate && !paused)) {
updateBuffers();
}
}
virtual void OnUpdateUIOverlay(vks::UIOverlay* overlay)
{
if (overlay->header("Settings")) {
overlay->checkBox("Animate", &animate);
}
}
};
VULKAN_EXAMPLE_MAIN()