forked from SaschaWillems/Vulkan
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathshadowmappingcascade.cpp
814 lines (694 loc) · 32.4 KB
/
shadowmappingcascade.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
/*
Vulkan Example - Cascaded shadow mapping for directional light sources
Copyright by Sascha Willems - www.saschawillems.de
This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
/*
This example implements projective cascaded shadow mapping. This technique splits up the camera frustum into
multiple frustums with each getting its own full-res shadow map, implemented as a layered depth-only image.
The shader then selects the proper shadow map layer depending on what split of the frustum the depth value
to compare fits into.
This results in a better shadow map resolution distribution that can be tweaked even further by increasing
the number of frustum splits.
A further optimization could be done using a geometry shader to do a single-pass render for the depth map
cascades instead of multiple passes (geometry shaders are not supported on all target devices).
*/
#include "vulkanexamplebase.h"
#include "VulkanglTFModel.h"
#if defined(__ANDROID__)
#define SHADOWMAP_DIM 2048
#else
#define SHADOWMAP_DIM 4096
#endif
#define SHADOW_MAP_CASCADE_COUNT 4
class VulkanExample : public VulkanExampleBase
{
public:
bool displayDepthMap = false;
int32_t displayDepthMapCascadeIndex = 0;
bool colorCascades = false;
bool filterPCF = false;
float cascadeSplitLambda = 0.95f;
float zNear = 0.5f;
float zFar = 48.0f;
glm::vec3 lightPos = glm::vec3();
struct Models {
vkglTF::Model terrain;
vkglTF::Model tree;
} models;
struct uniformBuffers {
vks::Buffer VS;
vks::Buffer FS;
} uniformBuffers;
struct UBOVS {
glm::mat4 projection;
glm::mat4 view;
glm::mat4 model;
glm::vec3 lightDir;
} uboVS;
struct UBOFS {
float cascadeSplits[4];
glm::mat4 cascadeViewProjMat[4];
glm::mat4 inverseViewMat;
glm::vec3 lightDir;
float _pad;
int32_t colorCascades;
} uboFS;
VkPipelineLayout pipelineLayout;
struct Pipelines {
VkPipeline debugShadowMap;
VkPipeline sceneShadow;
VkPipeline sceneShadowPCF;
} pipelines;
struct DescriptorSetLayouts {
VkDescriptorSetLayout base;
} descriptorSetLayouts;
VkDescriptorSet descriptorSet;
// For simplicity all pipelines use the same push constant block layout
struct PushConstBlock {
glm::vec4 position;
uint32_t cascadeIndex;
};
// Resources of the depth map generation pass
struct DepthPass {
VkRenderPass renderPass;
VkPipelineLayout pipelineLayout;
VkPipeline pipeline;
vks::Buffer uniformBuffer;
struct UniformBlock {
std::array<glm::mat4, SHADOW_MAP_CASCADE_COUNT> cascadeViewProjMat;
} ubo;
} depthPass;
// Layered depth image containing the shadow cascade depths
struct DepthImage {
VkImage image;
VkDeviceMemory mem;
VkImageView view;
VkSampler sampler;
void destroy(VkDevice device) {
vkDestroyImageView(device, view, nullptr);
vkDestroyImage(device, image, nullptr);
vkFreeMemory(device, mem, nullptr);
vkDestroySampler(device, sampler, nullptr);
}
} depth;
// Contains all resources required for a single shadow map cascade
struct Cascade {
VkFramebuffer frameBuffer;
VkDescriptorSet descriptorSet;
VkImageView view;
float splitDepth;
glm::mat4 viewProjMatrix;
void destroy(VkDevice device) {
vkDestroyImageView(device, view, nullptr);
vkDestroyFramebuffer(device, frameBuffer, nullptr);
}
};
std::array<Cascade, SHADOW_MAP_CASCADE_COUNT> cascades;
VulkanExample() : VulkanExampleBase()
{
title = "Cascaded shadow mapping";
timerSpeed *= 0.025f;
camera.type = Camera::CameraType::firstperson;
camera.movementSpeed = 2.5f;
camera.setPerspective(45.0f, (float)width / (float)height, zNear, zFar);
camera.setPosition(glm::vec3(-0.12f, 1.14f, -2.25f));
camera.setRotation(glm::vec3(-17.0f, 7.0f, 0.0f));
timer = 0.2f;
}
~VulkanExample()
{
for (auto cascade : cascades) {
cascade.destroy(device);
}
depth.destroy(device);
vkDestroyRenderPass(device, depthPass.renderPass, nullptr);
vkDestroyPipeline(device, pipelines.debugShadowMap, nullptr);
vkDestroyPipeline(device, depthPass.pipeline, nullptr);
vkDestroyPipeline(device, pipelines.sceneShadow, nullptr);
vkDestroyPipeline(device, pipelines.sceneShadowPCF, nullptr);
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
vkDestroyPipelineLayout(device, depthPass.pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayouts.base, nullptr);
depthPass.uniformBuffer.destroy();
uniformBuffers.VS.destroy();
uniformBuffers.FS.destroy();
}
virtual void getEnabledFeatures()
{
enabledFeatures.samplerAnisotropy = deviceFeatures.samplerAnisotropy;
// Depth clamp to avoid near plane clipping
enabledFeatures.depthClamp = deviceFeatures.depthClamp;
}
/*
Render the example scene with given command buffer, pipeline layout and descriptor set
Used by the scene rendering and depth pass generation command buffer
*/
void renderScene(VkCommandBuffer commandBuffer, VkPipelineLayout pipelineLayout, VkDescriptorSet descriptorSet, uint32_t cascadeIndex = 0) {
// We use push constants for passing shadow cascade info to the shaders
PushConstBlock pushConstBlock = { glm::vec4(0.0f), cascadeIndex };
// Set 0 contains the vertex and fragment shader uniform buffers, set 1 for images will be set by the glTF model class at draw time
vkCmdBindDescriptorSets(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, nullptr);
// Floor
vkCmdPushConstants(commandBuffer, pipelineLayout, VK_SHADER_STAGE_VERTEX_BIT, 0, sizeof(PushConstBlock), &pushConstBlock);
models.terrain.draw(commandBuffer, vkglTF::RenderFlags::BindImages, pipelineLayout);
// Trees
const std::vector<glm::vec3> positions = {
glm::vec3(0.0f, 0.0f, 0.0f),
glm::vec3(1.25f, 0.25f, 1.25f),
glm::vec3(-1.25f, -0.2f, 1.25f),
glm::vec3(1.25f, 0.1f, -1.25f),
glm::vec3(-1.25f, -0.25f, -1.25f),
};
for (auto position : positions) {
pushConstBlock.position = glm::vec4(position, 0.0f);
vkCmdPushConstants(commandBuffer, pipelineLayout, VK_SHADER_STAGE_VERTEX_BIT, 0, sizeof(PushConstBlock), &pushConstBlock);
vkCmdBindDescriptorSets(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, nullptr);
models.tree.draw(commandBuffer, vkglTF::RenderFlags::BindImages, pipelineLayout);
}
}
/*
Setup resources used by the depth pass
The depth image is layered with each layer storing one shadow map cascade
*/
void prepareDepthPass()
{
VkFormat depthFormat = vulkanDevice->getSupportedDepthFormat(true);
/*
Depth map renderpass
*/
VkAttachmentDescription attachmentDescription{};
attachmentDescription.format = depthFormat;
attachmentDescription.samples = VK_SAMPLE_COUNT_1_BIT;
attachmentDescription.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
attachmentDescription.storeOp = VK_ATTACHMENT_STORE_OP_STORE;
attachmentDescription.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attachmentDescription.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
attachmentDescription.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
attachmentDescription.finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL;
VkAttachmentReference depthReference = {};
depthReference.attachment = 0;
depthReference.layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
VkSubpassDescription subpass = {};
subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
subpass.colorAttachmentCount = 0;
subpass.pDepthStencilAttachment = &depthReference;
// Use subpass dependencies for layout transitions
std::array<VkSubpassDependency, 2> dependencies;
dependencies[0].srcSubpass = VK_SUBPASS_EXTERNAL;
dependencies[0].dstSubpass = 0;
dependencies[0].srcStageMask = VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT;
dependencies[0].dstStageMask = VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT;
dependencies[0].srcAccessMask = VK_ACCESS_SHADER_READ_BIT;
dependencies[0].dstAccessMask = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;
dependencies[0].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT;
dependencies[1].srcSubpass = 0;
dependencies[1].dstSubpass = VK_SUBPASS_EXTERNAL;
dependencies[1].srcStageMask = VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT;
dependencies[1].dstStageMask = VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT;
dependencies[1].srcAccessMask = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;
dependencies[1].dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
dependencies[1].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT;
VkRenderPassCreateInfo renderPassCreateInfo = vks::initializers::renderPassCreateInfo();
renderPassCreateInfo.attachmentCount = 1;
renderPassCreateInfo.pAttachments = &attachmentDescription;
renderPassCreateInfo.subpassCount = 1;
renderPassCreateInfo.pSubpasses = &subpass;
renderPassCreateInfo.dependencyCount = static_cast<uint32_t>(dependencies.size());
renderPassCreateInfo.pDependencies = dependencies.data();
VK_CHECK_RESULT(vkCreateRenderPass(device, &renderPassCreateInfo, nullptr, &depthPass.renderPass));
/*
Layered depth image and views
*/
VkImageCreateInfo imageInfo = vks::initializers::imageCreateInfo();
imageInfo.imageType = VK_IMAGE_TYPE_2D;
imageInfo.extent.width = SHADOWMAP_DIM;
imageInfo.extent.height = SHADOWMAP_DIM;
imageInfo.extent.depth = 1;
imageInfo.mipLevels = 1;
imageInfo.arrayLayers = SHADOW_MAP_CASCADE_COUNT;
imageInfo.samples = VK_SAMPLE_COUNT_1_BIT;
imageInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
imageInfo.format = depthFormat;
imageInfo.usage = VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | VK_IMAGE_USAGE_SAMPLED_BIT;
VK_CHECK_RESULT(vkCreateImage(device, &imageInfo, nullptr, &depth.image));
VkMemoryAllocateInfo memAlloc = vks::initializers::memoryAllocateInfo();
VkMemoryRequirements memReqs;
vkGetImageMemoryRequirements(device, depth.image, &memReqs);
memAlloc.allocationSize = memReqs.size;
memAlloc.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &depth.mem));
VK_CHECK_RESULT(vkBindImageMemory(device, depth.image, depth.mem, 0));
// Full depth map view (all layers)
VkImageViewCreateInfo viewInfo = vks::initializers::imageViewCreateInfo();
viewInfo.viewType = VK_IMAGE_VIEW_TYPE_2D_ARRAY;
viewInfo.format = depthFormat;
viewInfo.subresourceRange = {};
viewInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
viewInfo.subresourceRange.baseMipLevel = 0;
viewInfo.subresourceRange.levelCount = 1;
viewInfo.subresourceRange.baseArrayLayer = 0;
viewInfo.subresourceRange.layerCount = SHADOW_MAP_CASCADE_COUNT;
viewInfo.image = depth.image;
VK_CHECK_RESULT(vkCreateImageView(device, &viewInfo, nullptr, &depth.view));
// One image view and framebuffer per cascade
for (uint32_t i = 0; i < SHADOW_MAP_CASCADE_COUNT; i++) {
// Image view for this cascade's layer (inside the depth map)
// This view is used to render to that specific depth image layer
VkImageViewCreateInfo viewInfo = vks::initializers::imageViewCreateInfo();
viewInfo.viewType = VK_IMAGE_VIEW_TYPE_2D_ARRAY;
viewInfo.format = depthFormat;
viewInfo.subresourceRange = {};
viewInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
viewInfo.subresourceRange.baseMipLevel = 0;
viewInfo.subresourceRange.levelCount = 1;
viewInfo.subresourceRange.baseArrayLayer = i;
viewInfo.subresourceRange.layerCount = 1;
viewInfo.image = depth.image;
VK_CHECK_RESULT(vkCreateImageView(device, &viewInfo, nullptr, &cascades[i].view));
// Framebuffer
VkFramebufferCreateInfo framebufferInfo = vks::initializers::framebufferCreateInfo();
framebufferInfo.renderPass = depthPass.renderPass;
framebufferInfo.attachmentCount = 1;
framebufferInfo.pAttachments = &cascades[i].view;
framebufferInfo.width = SHADOWMAP_DIM;
framebufferInfo.height = SHADOWMAP_DIM;
framebufferInfo.layers = 1;
VK_CHECK_RESULT(vkCreateFramebuffer(device, &framebufferInfo, nullptr, &cascades[i].frameBuffer));
}
// Shared sampler for cascade depth reads
VkSamplerCreateInfo sampler = vks::initializers::samplerCreateInfo();
sampler.magFilter = VK_FILTER_LINEAR;
sampler.minFilter = VK_FILTER_LINEAR;
sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
sampler.addressModeV = sampler.addressModeU;
sampler.addressModeW = sampler.addressModeU;
sampler.mipLodBias = 0.0f;
sampler.maxAnisotropy = 1.0f;
sampler.minLod = 0.0f;
sampler.maxLod = 1.0f;
sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
VK_CHECK_RESULT(vkCreateSampler(device, &sampler, nullptr, &depth.sampler));
}
void buildCommandBuffers()
{
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
for (int32_t i = 0; i < drawCmdBuffers.size(); i++) {
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
/*
Generate depth map cascades
Uses multiple passes with each pass rendering the scene to the cascade's depth image layer
Could be optimized using a geometry shader (and layered frame buffer) on devices that support geometry shaders
*/
{
VkClearValue clearValues[1];
clearValues[0].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = depthPass.renderPass;
renderPassBeginInfo.renderArea.offset.x = 0;
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.renderArea.extent.width = SHADOWMAP_DIM;
renderPassBeginInfo.renderArea.extent.height = SHADOWMAP_DIM;
renderPassBeginInfo.clearValueCount = 1;
renderPassBeginInfo.pClearValues = clearValues;
VkViewport viewport = vks::initializers::viewport((float)SHADOWMAP_DIM, (float)SHADOWMAP_DIM, 0.0f, 1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
VkRect2D scissor = vks::initializers::rect2D(SHADOWMAP_DIM, SHADOWMAP_DIM, 0, 0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
// One pass per cascade
// The layer that this pass renders to is defined by the cascade's image view (selected via the cascade's descriptor set)
for (uint32_t j = 0; j < SHADOW_MAP_CASCADE_COUNT; j++) {
renderPassBeginInfo.framebuffer = cascades[j].frameBuffer;
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, depthPass.pipeline);
renderScene(drawCmdBuffers[i], depthPass.pipelineLayout, cascades[j].descriptorSet, j);
vkCmdEndRenderPass(drawCmdBuffers[i]);
}
}
/*
Note: Explicit synchronization is not required between the render pass, as this is done implicit via sub pass dependencies
*/
/*
Scene rendering using depth cascades for shadow mapping
*/
{
VkClearValue clearValues[2];
clearValues[0].color = { { 0.0f, 0.0f, 0.2f, 1.0f } };
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.framebuffer = frameBuffers[i];
renderPassBeginInfo.renderArea.offset.x = 0;
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
// Visualize shadow map cascade
if (displayDepthMap) {
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.debugShadowMap);
PushConstBlock pushConstBlock = {};
pushConstBlock.cascadeIndex = displayDepthMapCascadeIndex;
vkCmdPushConstants(drawCmdBuffers[i], pipelineLayout, VK_SHADER_STAGE_VERTEX_BIT, 0, sizeof(PushConstBlock), &pushConstBlock);
vkCmdDraw(drawCmdBuffers[i], 3, 1, 0, 0);
}
// Render shadowed scene
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, (filterPCF) ? pipelines.sceneShadowPCF : pipelines.sceneShadow);
renderScene(drawCmdBuffers[i], pipelineLayout, descriptorSet);
drawUI(drawCmdBuffers[i]);
vkCmdEndRenderPass(drawCmdBuffers[i]);
}
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
}
}
void loadAssets()
{
uint32_t glTFLoadingFlags = vkglTF::FileLoadingFlags::PreTransformVertices | vkglTF::FileLoadingFlags::FlipY;
models.terrain.loadFromFile(getAssetPath() + "models/terrain_gridlines.gltf", vulkanDevice, queue, glTFLoadingFlags);
models.tree.loadFromFile(getAssetPath() + "models/oaktree.gltf", vulkanDevice, queue, glTFLoadingFlags);
}
void setupLayoutsAndDescriptors()
{
/*
Descriptor pool
*/
std::vector<VkDescriptorPoolSize> poolSizes = {
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 32),
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 32)
};
VkDescriptorPoolCreateInfo descriptorPoolInfo =
vks::initializers::descriptorPoolCreateInfo(static_cast<uint32_t>(poolSizes.size()), poolSizes.data(), 4 + SHADOW_MAP_CASCADE_COUNT);
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
/*
Descriptor set layouts
*/
// Shared matrices and samplers
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0),
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1),
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_FRAGMENT_BIT, 2),
};
VkDescriptorSetLayoutCreateInfo descriptorLayout =
vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayouts.base));
/*
Descriptor sets
*/
std::vector<VkWriteDescriptorSet> writeDescriptorSets;
VkDescriptorImageInfo depthMapDescriptor =
vks::initializers::descriptorImageInfo(depth.sampler, depth.view, VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL);
VkDescriptorSetAllocateInfo allocInfo =
vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayouts.base, 1);
// Scene rendering / debug display
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet));
writeDescriptorSets = {
vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffers.VS.descriptor),
vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &depthMapDescriptor),
vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 2, &uniformBuffers.FS.descriptor),
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, NULL);
// Per-cascade descriptor sets
// Each descriptor set represents a single layer of the array texture
for (uint32_t i = 0; i < SHADOW_MAP_CASCADE_COUNT; i++) {
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &cascades[i].descriptorSet));
VkDescriptorImageInfo cascadeImageInfo = vks::initializers::descriptorImageInfo(depth.sampler, depth.view, VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL);
writeDescriptorSets = {
vks::initializers::writeDescriptorSet(cascades[i].descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &depthPass.uniformBuffer.descriptor),
vks::initializers::writeDescriptorSet(cascades[i].descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &cascadeImageInfo)
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, NULL);
}
/*
Pipeline layouts
*/
// Shared pipeline layout (scene and depth map debug display)
{
VkPushConstantRange pushConstantRange = vks::initializers::pushConstantRange(VK_SHADER_STAGE_VERTEX_BIT, sizeof(PushConstBlock), 0);
std::array<VkDescriptorSetLayout, 2> setLayouts = { descriptorSetLayouts.base, vkglTF::descriptorSetLayoutImage };
VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo(setLayouts.data(), static_cast<uint32_t>(setLayouts.size()));
pipelineLayoutCreateInfo.pushConstantRangeCount = 1;
pipelineLayoutCreateInfo.pPushConstantRanges = &pushConstantRange;
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCreateInfo, nullptr, &pipelineLayout));
}
// Depth pass pipeline layout
{
VkPushConstantRange pushConstantRange = vks::initializers::pushConstantRange(VK_SHADER_STAGE_VERTEX_BIT, sizeof(PushConstBlock), 0);
std::array<VkDescriptorSetLayout, 2> setLayouts = { descriptorSetLayouts.base, vkglTF::descriptorSetLayoutImage };
VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo(setLayouts.data(), static_cast<uint32_t>(setLayouts.size()));
pipelineLayoutCreateInfo.pushConstantRangeCount = 1;
pipelineLayoutCreateInfo.pPushConstantRanges = &pushConstantRange;
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCreateInfo, nullptr, &depthPass.pipelineLayout));
}
}
void preparePipelines()
{
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_CLOCKWISE, 0);
VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0);
std::vector<VkDynamicState> dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables);
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelineLayout, renderPass, 0);
pipelineCI.pInputAssemblyState = &inputAssemblyState;
pipelineCI.pRasterizationState = &rasterizationState;
pipelineCI.pColorBlendState = &colorBlendState;
pipelineCI.pMultisampleState = &multisampleState;
pipelineCI.pViewportState = &viewportState;
pipelineCI.pDepthStencilState = &depthStencilState;
pipelineCI.pDynamicState = &dynamicState;
pipelineCI.stageCount = static_cast<uint32_t>(shaderStages.size());
pipelineCI.pStages = shaderStages.data();
// Shadow map cascade debug quad display
rasterizationState.cullMode = VK_CULL_MODE_BACK_BIT;
shaderStages[0] = loadShader(getShadersPath() + "shadowmappingcascade/debugshadowmap.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getShadersPath() + "shadowmappingcascade/debugshadowmap.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
// Empty vertex input state
VkPipelineVertexInputStateCreateInfo emptyInputState = vks::initializers::pipelineVertexInputStateCreateInfo();
pipelineCI.pVertexInputState = &emptyInputState;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.debugShadowMap));
pipelineCI.pVertexInputState = vkglTF::Vertex::getPipelineVertexInputState({ vkglTF::VertexComponent::Position, vkglTF::VertexComponent::UV, vkglTF::VertexComponent::Color, vkglTF::VertexComponent::Normal });
/*
Shadow mapped scene rendering
*/
rasterizationState.cullMode = VK_CULL_MODE_NONE;
shaderStages[0] = loadShader(getShadersPath() + "shadowmappingcascade/scene.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getShadersPath() + "shadowmappingcascade/scene.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
// Use specialization constants to select between horizontal and vertical blur
uint32_t enablePCF = 0;
VkSpecializationMapEntry specializationMapEntry = vks::initializers::specializationMapEntry(0, 0, sizeof(uint32_t));
VkSpecializationInfo specializationInfo = vks::initializers::specializationInfo(1, &specializationMapEntry, sizeof(uint32_t), &enablePCF);
shaderStages[1].pSpecializationInfo = &specializationInfo;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.sceneShadow));
enablePCF = 1;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.sceneShadowPCF));
/*
Depth map generation
*/
shaderStages[0] = loadShader(getShadersPath() + "shadowmappingcascade/depthpass.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getShadersPath() + "shadowmappingcascade/depthpass.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
// No blend attachment states (no color attachments used)
colorBlendState.attachmentCount = 0;
depthStencilState.depthCompareOp = VK_COMPARE_OP_LESS_OR_EQUAL;
// Enable depth clamp (if available)
rasterizationState.depthClampEnable = deviceFeatures.depthClamp;
pipelineCI.layout = depthPass.pipelineLayout;
pipelineCI.renderPass = depthPass.renderPass;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &depthPass.pipeline));
}
void prepareUniformBuffers()
{
// Shadow map generation buffer blocks
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&depthPass.uniformBuffer,
sizeof(depthPass.ubo)));
// Scene uniform buffer blocks
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&uniformBuffers.VS,
sizeof(uboVS)));
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&uniformBuffers.FS,
sizeof(uboFS)));
// Map persistent
VK_CHECK_RESULT(depthPass.uniformBuffer.map());
VK_CHECK_RESULT(uniformBuffers.VS.map());
VK_CHECK_RESULT(uniformBuffers.FS.map());
updateLight();
updateUniformBuffers();
}
/*
Calculate frustum split depths and matrices for the shadow map cascades
Based on https://johanmedestrom.wordpress.com/2016/03/18/opengl-cascaded-shadow-maps/
*/
void updateCascades()
{
float cascadeSplits[SHADOW_MAP_CASCADE_COUNT];
float nearClip = camera.getNearClip();
float farClip = camera.getFarClip();
float clipRange = farClip - nearClip;
float minZ = nearClip;
float maxZ = nearClip + clipRange;
float range = maxZ - minZ;
float ratio = maxZ / minZ;
// Calculate split depths based on view camera frustum
// Based on method presented in https://developer.nvidia.com/gpugems/GPUGems3/gpugems3_ch10.html
for (uint32_t i = 0; i < SHADOW_MAP_CASCADE_COUNT; i++) {
float p = (i + 1) / static_cast<float>(SHADOW_MAP_CASCADE_COUNT);
float log = minZ * std::pow(ratio, p);
float uniform = minZ + range * p;
float d = cascadeSplitLambda * (log - uniform) + uniform;
cascadeSplits[i] = (d - nearClip) / clipRange;
}
// Calculate orthographic projection matrix for each cascade
float lastSplitDist = 0.0;
for (uint32_t i = 0; i < SHADOW_MAP_CASCADE_COUNT; i++) {
float splitDist = cascadeSplits[i];
glm::vec3 frustumCorners[8] = {
glm::vec3(-1.0f, 1.0f, 0.0f),
glm::vec3( 1.0f, 1.0f, 0.0f),
glm::vec3( 1.0f, -1.0f, 0.0f),
glm::vec3(-1.0f, -1.0f, 0.0f),
glm::vec3(-1.0f, 1.0f, 1.0f),
glm::vec3( 1.0f, 1.0f, 1.0f),
glm::vec3( 1.0f, -1.0f, 1.0f),
glm::vec3(-1.0f, -1.0f, 1.0f),
};
// Project frustum corners into world space
glm::mat4 invCam = glm::inverse(camera.matrices.perspective * camera.matrices.view);
for (uint32_t j = 0; j < 8; j++) {
glm::vec4 invCorner = invCam * glm::vec4(frustumCorners[j], 1.0f);
frustumCorners[j] = invCorner / invCorner.w;
}
for (uint32_t j = 0; j < 4; j++) {
glm::vec3 dist = frustumCorners[j + 4] - frustumCorners[j];
frustumCorners[j + 4] = frustumCorners[j] + (dist * splitDist);
frustumCorners[j] = frustumCorners[j] + (dist * lastSplitDist);
}
// Get frustum center
glm::vec3 frustumCenter = glm::vec3(0.0f);
for (uint32_t j = 0; j < 8; j++) {
frustumCenter += frustumCorners[j];
}
frustumCenter /= 8.0f;
float radius = 0.0f;
for (uint32_t j = 0; j < 8; j++) {
float distance = glm::length(frustumCorners[j] - frustumCenter);
radius = glm::max(radius, distance);
}
radius = std::ceil(radius * 16.0f) / 16.0f;
glm::vec3 maxExtents = glm::vec3(radius);
glm::vec3 minExtents = -maxExtents;
glm::vec3 lightDir = normalize(-lightPos);
glm::mat4 lightViewMatrix = glm::lookAt(frustumCenter - lightDir * -minExtents.z, frustumCenter, glm::vec3(0.0f, 1.0f, 0.0f));
glm::mat4 lightOrthoMatrix = glm::ortho(minExtents.x, maxExtents.x, minExtents.y, maxExtents.y, 0.0f, maxExtents.z - minExtents.z);
// Store split distance and matrix in cascade
cascades[i].splitDepth = (camera.getNearClip() + splitDist * clipRange) * -1.0f;
cascades[i].viewProjMatrix = lightOrthoMatrix * lightViewMatrix;
lastSplitDist = cascadeSplits[i];
}
}
void updateLight()
{
float angle = glm::radians(timer * 360.0f);
float radius = 20.0f;
lightPos = glm::vec3(cos(angle) * radius, -radius, sin(angle) * radius);
}
void updateUniformBuffers()
{
/*
Depth rendering
*/
for (uint32_t i = 0; i < SHADOW_MAP_CASCADE_COUNT; i++) {
depthPass.ubo.cascadeViewProjMat[i] = cascades[i].viewProjMatrix;
}
memcpy(depthPass.uniformBuffer.mapped, &depthPass.ubo, sizeof(depthPass.ubo));
/*
Scene rendering
*/
uboVS.projection = camera.matrices.perspective;
uboVS.view = camera.matrices.view;
uboVS.model = glm::mat4(1.0f);
uboVS.lightDir = normalize(-lightPos);
memcpy(uniformBuffers.VS.mapped, &uboVS, sizeof(uboVS));
for (uint32_t i = 0; i < SHADOW_MAP_CASCADE_COUNT; i++) {
uboFS.cascadeSplits[i] = cascades[i].splitDepth;
uboFS.cascadeViewProjMat[i] = cascades[i].viewProjMatrix;
}
uboFS.inverseViewMat = glm::inverse(camera.matrices.view);
uboFS.lightDir = normalize(-lightPos);
uboFS.colorCascades = colorCascades;
memcpy(uniformBuffers.FS.mapped, &uboFS, sizeof(uboFS));
}
void draw()
{
VulkanExampleBase::prepareFrame();
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
VulkanExampleBase::submitFrame();
}
void prepare()
{
VulkanExampleBase::prepare();
loadAssets();
updateLight();
updateCascades();
prepareDepthPass();
prepareUniformBuffers();
setupLayoutsAndDescriptors();
preparePipelines();
buildCommandBuffers();
prepared = true;
}
virtual void render()
{
if (!prepared)
return;
draw();
if (!paused || camera.updated) {
updateLight();
updateCascades();
updateUniformBuffers();
}
}
virtual void OnUpdateUIOverlay(vks::UIOverlay *overlay)
{
if (overlay->header("Settings")) {
if (overlay->sliderFloat("Split lambda", &cascadeSplitLambda, 0.1f, 1.0f)) {
updateCascades();
updateUniformBuffers();
}
if (overlay->checkBox("Color cascades", &colorCascades)) {
updateUniformBuffers();
}
if (overlay->checkBox("Display depth map", &displayDepthMap)) {
buildCommandBuffers();
}
if (displayDepthMap) {
if (overlay->sliderInt("Cascade", &displayDepthMapCascadeIndex, 0, SHADOW_MAP_CASCADE_COUNT - 1)) {
buildCommandBuffers();
}
}
if (overlay->checkBox("PCF filtering", &filterPCF)) {
buildCommandBuffers();
}
}
}
};
VULKAN_EXAMPLE_MAIN()