forked from SaschaWillems/Vulkan
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvertexattributes.cpp
599 lines (533 loc) · 27.6 KB
/
vertexattributes.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
/*
* Vulkan Example - Passing vertex attributes using interleaved and separate buffers
*
* Copyright (C) 2022-2023 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include "vertexattributes.h"
void VulkanExample::loadSceneNode(const tinygltf::Node& inputNode, const tinygltf::Model& input, Node* parent)
{
Node node{};
// Get the local node matrix
// It's either made up from translation, rotation, scale or a 4x4 matrix
node.matrix = glm::mat4(1.0f);
if (inputNode.translation.size() == 3) {
node.matrix = glm::translate(node.matrix, glm::vec3(glm::make_vec3(inputNode.translation.data())));
}
if (inputNode.rotation.size() == 4) {
glm::quat q = glm::make_quat(inputNode.rotation.data());
node.matrix *= glm::mat4(q);
}
if (inputNode.scale.size() == 3) {
node.matrix = glm::scale(node.matrix, glm::vec3(glm::make_vec3(inputNode.scale.data())));
}
if (inputNode.matrix.size() == 16) {
node.matrix = glm::make_mat4x4(inputNode.matrix.data());
};
// Load node's children
if (inputNode.children.size() > 0) {
for (size_t i = 0; i < inputNode.children.size(); i++) {
loadSceneNode(input.nodes[inputNode.children[i]], input, &node);
}
}
// If the node contains mesh data, we load vertices and indices from the buffers
// In glTF this is done via accessors and buffer views
if (inputNode.mesh > -1) {
const tinygltf::Mesh mesh = input.meshes[inputNode.mesh];
// Iterate through all primitives of this node's mesh
for (size_t i = 0; i < mesh.primitives.size(); i++) {
const tinygltf::Primitive& glTFPrimitive = mesh.primitives[i];
uint32_t firstIndex = static_cast<uint32_t>(indexBuffer.size());
uint32_t vertexStart = static_cast<uint32_t>(vertexBuffer.size());
uint32_t indexCount = 0;
// Vertex attributes
const float* positionBuffer = nullptr;
const float* normalsBuffer = nullptr;
const float* texCoordsBuffer = nullptr;
const float* tangentsBuffer = nullptr;
size_t vertexCount = 0;
// Anonymous functions to simplify buffer view access
auto getBuffer = [glTFPrimitive, input, &vertexCount](const std::string attributeName, const float* &bufferTarget) {
if (glTFPrimitive.attributes.find(attributeName) != glTFPrimitive.attributes.end()) {
const tinygltf::Accessor& accessor = input.accessors[glTFPrimitive.attributes.find(attributeName)->second];
const tinygltf::BufferView& view = input.bufferViews[accessor.bufferView];
bufferTarget = reinterpret_cast<const float*>(&(input.buffers[view.buffer].data[accessor.byteOffset + view.byteOffset]));
if (attributeName == "POSITION") {
vertexCount = accessor.count;
}
}
};
// Get buffer pointers to the vertex attributes used in this sample
getBuffer("POSITION", positionBuffer);
getBuffer("NORMAL", normalsBuffer);
getBuffer("TEXCOORD_0", texCoordsBuffer);
getBuffer("TANGENT", tangentsBuffer);
// Append attributes to the vertex buffers
for (size_t v = 0; v < vertexCount; v++) {
// Append interleaved attributes
Vertex vert{};
vert.pos = glm::vec4(glm::make_vec3(&positionBuffer[v * 3]), 1.0f);
vert.normal = glm::normalize(glm::vec3(normalsBuffer ? glm::make_vec3(&normalsBuffer[v * 3]) : glm::vec3(0.0f)));
vert.uv = texCoordsBuffer ? glm::make_vec2(&texCoordsBuffer[v * 2]) : glm::vec3(0.0f);
vert.tangent = tangentsBuffer ? glm::make_vec4(&tangentsBuffer[v * 4]) : glm::vec4(0.0f);
vertexBuffer.push_back(vert);
// Append separate attributes
vertexAttributeBuffers.pos.push_back(glm::make_vec3(&positionBuffer[v * 3]));
vertexAttributeBuffers.normal.push_back(glm::normalize(glm::vec3(normalsBuffer ? glm::make_vec3(&normalsBuffer[v * 3]) : glm::vec3(0.0f))));
vertexAttributeBuffers.tangent.push_back(tangentsBuffer ? glm::make_vec4(&tangentsBuffer[v * 4]) : glm::vec4(0.0f));
vertexAttributeBuffers.uv.push_back(texCoordsBuffer ? glm::make_vec2(&texCoordsBuffer[v * 2]) : glm::vec3(0.0f));
}
// Indices
const tinygltf::Accessor& accessor = input.accessors[glTFPrimitive.indices];
const tinygltf::BufferView& bufferView = input.bufferViews[accessor.bufferView];
const tinygltf::Buffer& buffer = input.buffers[bufferView.buffer];
indexCount += static_cast<uint32_t>(accessor.count);
// glTF supports different component types of indices
switch (accessor.componentType) {
case TINYGLTF_PARAMETER_TYPE_UNSIGNED_INT: {
const uint32_t* buf = reinterpret_cast<const uint32_t*>(&buffer.data[accessor.byteOffset + bufferView.byteOffset]);
for (size_t index = 0; index < accessor.count; index++) {
indexBuffer.push_back(buf[index] + vertexStart);
}
break;
}
case TINYGLTF_PARAMETER_TYPE_UNSIGNED_SHORT: {
const uint16_t* buf = reinterpret_cast<const uint16_t*>(&buffer.data[accessor.byteOffset + bufferView.byteOffset]);
for (size_t index = 0; index < accessor.count; index++) {
indexBuffer.push_back(buf[index] + vertexStart);
}
break;
}
case TINYGLTF_PARAMETER_TYPE_UNSIGNED_BYTE: {
const uint8_t* buf = reinterpret_cast<const uint8_t*>(&buffer.data[accessor.byteOffset + bufferView.byteOffset]);
for (size_t index = 0; index < accessor.count; index++) {
indexBuffer.push_back(buf[index] + vertexStart);
}
break;
}
default:
std::cerr << "Index component type " << accessor.componentType << " not supported!" << std::endl;
return;
}
Primitive primitive{};
primitive.firstIndex = firstIndex;
primitive.indexCount = indexCount;
primitive.materialIndex = glTFPrimitive.material;
node.mesh.primitives.push_back(primitive);
}
}
if (parent) {
parent->children.push_back(node);
}
else {
nodes.push_back(node);
}
}
VulkanExample::VulkanExample() : VulkanExampleBase()
{
title = "Separate/interleaved vertex attribute buffers";
camera.type = Camera::CameraType::firstperson;
camera.flipY = true;
camera.setPosition(glm::vec3(0.0f, 1.0f, 0.0f));
camera.setRotation(glm::vec3(0.0f, -90.0f, 0.0f));
camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 256.0f);
}
VulkanExample::~VulkanExample()
{
if (device) {
vkDestroyPipeline(device, pipelines.vertexAttributesInterleaved, nullptr);
vkDestroyPipeline(device, pipelines.vertexAttributesSeparate, nullptr);
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayouts.matrices, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayouts.textures, nullptr);
indices.destroy();
shaderData.buffer.destroy();
separateVertexBuffers.normal.destroy();
separateVertexBuffers.pos.destroy();
separateVertexBuffers.tangent.destroy();
separateVertexBuffers.uv.destroy();
interleavedVertexBuffer.destroy();
for (Image image : scene.images) {
vkDestroyImageView(vulkanDevice->logicalDevice, image.texture.view, nullptr);
vkDestroyImage(vulkanDevice->logicalDevice, image.texture.image, nullptr);
vkDestroySampler(vulkanDevice->logicalDevice, image.texture.sampler, nullptr);
vkFreeMemory(vulkanDevice->logicalDevice, image.texture.deviceMemory, nullptr);
}
}
}
void VulkanExample::getEnabledFeatures()
{
enabledFeatures.samplerAnisotropy = deviceFeatures.samplerAnisotropy;
}
void VulkanExample::drawSceneNode(VkCommandBuffer commandBuffer, Node node)
{
if (node.mesh.primitives.size() > 0) {
PushConstBlock pushConstBlock;
glm::mat4 nodeMatrix = node.matrix;
Node* currentParent = node.parent;
while (currentParent) {
nodeMatrix = currentParent->matrix * nodeMatrix;
currentParent = currentParent->parent;
}
for (Primitive& primitive : node.mesh.primitives) {
if (primitive.indexCount > 0) {
Material& material = scene.materials[primitive.materialIndex];
pushConstBlock.nodeMatrix = nodeMatrix;
pushConstBlock.alphaMask = (material.alphaMode == "MASK");
pushConstBlock.alphaMaskCutoff = material.alphaCutOff;
vkCmdPushConstants(commandBuffer, pipelineLayout, VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT, 0, sizeof(PushConstBlock), &pushConstBlock);
vkCmdBindDescriptorSets(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 1, 1, &material.descriptorSet, 0, nullptr);
vkCmdDrawIndexed(commandBuffer, primitive.indexCount, 1, primitive.firstIndex, 0, 0);
}
}
}
for (auto& child : node.children) {
drawSceneNode(commandBuffer, child);
}
}
void VulkanExample::buildCommandBuffers()
{
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
VkClearValue clearValues[2];
clearValues[0].color = defaultClearColor;
clearValues[0].color = { { 0.25f, 0.25f, 0.25f, 1.0f } };;
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.renderArea.offset.x = 0;
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
const VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
const VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
renderPassBeginInfo.framebuffer = frameBuffers[i];
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
// Select the separate or interleaved vertex binding pipeline
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, vertexAttributeSettings == VertexAttributeSettings::separate ? pipelines.vertexAttributesSeparate : pipelines.vertexAttributesInterleaved);
// Bind scene matrices descriptor to set 0
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, nullptr);
// Use the same index buffer, no matter how vertex attributes are passed
vkCmdBindIndexBuffer(drawCmdBuffers[i], indices.buffer, 0, VK_INDEX_TYPE_UINT32);
if (vertexAttributeSettings == VertexAttributeSettings::separate) {
// Using separate vertex attribute bindings requires binding multiple attribute buffers
VkDeviceSize offsets[4] = { 0, 0, 0, 0 };
std::array<VkBuffer, 4> buffers = { separateVertexBuffers.pos.buffer, separateVertexBuffers.normal.buffer, separateVertexBuffers.uv.buffer, separateVertexBuffers.tangent.buffer };
vkCmdBindVertexBuffers(drawCmdBuffers[i], 0, static_cast<uint32_t>(buffers.size()), buffers.data(), offsets);
}
else {
// Using interleaved attribute bindings only requires one buffer to be bound
VkDeviceSize offsets[1] = { 0 };
vkCmdBindVertexBuffers(drawCmdBuffers[i], 0, 1, &interleavedVertexBuffer.buffer, offsets);
}
// Render all nodes starting at top-level
for (auto& node : nodes) {
drawSceneNode(drawCmdBuffers[i], node);
}
drawUI(drawCmdBuffers[i]);
vkCmdEndRenderPass(drawCmdBuffers[i]);
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
}
}
void VulkanExample::loadglTFFile(std::string filename)
{
tinygltf::Model glTFInput;
tinygltf::TinyGLTF gltfContext;
std::string error, warning;
this->device = device;
#if defined(__ANDROID__)
// On Android all assets are packed with the apk in a compressed form, so we need to open them using the asset manager
// We let tinygltf handle this, by passing the asset manager of our app
tinygltf::asset_manager = androidApp->activity->assetManager;
#endif
bool fileLoaded = gltfContext.LoadASCIIFromFile(&glTFInput, &error, &warning, filename);
size_t pos = filename.find_last_of('/');
std::string path = filename.substr(0, pos);
if (!fileLoaded) {
vks::tools::exitFatal("Could not open the glTF file.\n\nMake sure the assets submodule has been checked out and is up-to-date.", -1);
return;
}
// Load images
scene.images.resize(glTFInput.images.size());
for (size_t i = 0; i < glTFInput.images.size(); i++) {
tinygltf::Image& glTFImage = glTFInput.images[i];
scene.images[i].texture.loadFromFile(path + "/" + glTFImage.uri, VK_FORMAT_R8G8B8A8_UNORM, vulkanDevice, queue);
}
// Load textures
scene.textures.resize(glTFInput.textures.size());
for (size_t i = 0; i < glTFInput.textures.size(); i++) {
scene.textures[i].imageIndex = glTFInput.textures[i].source;
}
// Load materials
scene.materials.resize(glTFInput.materials.size());
for (size_t i = 0; i < glTFInput.materials.size(); i++) {
// We only read the most basic properties required for our sample
tinygltf::Material glTFMaterial = glTFInput.materials[i];
// Get the base color factor
if (glTFMaterial.values.find("baseColorFactor") != glTFMaterial.values.end()) {
scene.materials[i].baseColorFactor = glm::make_vec4(glTFMaterial.values["baseColorFactor"].ColorFactor().data());
}
// Get base color texture index
if (glTFMaterial.values.find("baseColorTexture") != glTFMaterial.values.end()) {
scene.materials[i].baseColorTextureIndex = glTFMaterial.values["baseColorTexture"].TextureIndex();
}
// Get the normal map texture index
if (glTFMaterial.additionalValues.find("normalTexture") != glTFMaterial.additionalValues.end()) {
scene.materials[i].normalTextureIndex = glTFMaterial.additionalValues["normalTexture"].TextureIndex();
}
// Get some additional material parameters that are used in this sample
scene.materials[i].alphaMode = glTFMaterial.alphaMode;
scene.materials[i].alphaCutOff = (float)glTFMaterial.alphaCutoff;
}
// Load nodes
const tinygltf::Scene& scene = glTFInput.scenes[0];
for (size_t i = 0; i < scene.nodes.size(); i++) {
const tinygltf::Node node = glTFInput.nodes[scene.nodes[i]];
loadSceneNode(node, glTFInput, nullptr);
}
uploadVertexData();
}
void VulkanExample::uploadVertexData()
{
// Upload vertex and index buffers
// Anonymous functions to simplify buffer creation
// Create a staging buffer used as a source for copies
auto createStagingBuffer = [this](vks::Buffer& buffer, void* data, VkDeviceSize size) {
VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &buffer, size, data));
};
// Create a device local buffer used as a target for copies
auto createDeviceBuffer = [this](vks::Buffer& buffer, VkDeviceSize size, VkBufferUsageFlags usageFlags = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT) {
VK_CHECK_RESULT(vulkanDevice->createBuffer(usageFlags | VK_BUFFER_USAGE_TRANSFER_DST_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &buffer, size));
};
VkCommandBuffer copyCmd;
VkBufferCopy copyRegion{};
/*
Interleaved vertex attributes
We create one single buffer containing the interleaved vertex attributes
*/
size_t vertexBufferSize = vertexBuffer.size() * sizeof(Vertex);
vks::Buffer vertexStaging;
createStagingBuffer(vertexStaging, vertexBuffer.data(), vertexBufferSize);
createDeviceBuffer(interleavedVertexBuffer, vertexStaging.size);
// Copy data from staging buffer (host) do device local buffer (gpu)
copyCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
copyRegion.size = vertexBufferSize;
vkCmdCopyBuffer(copyCmd, vertexStaging.buffer, interleavedVertexBuffer.buffer, 1, ©Region);
vulkanDevice->flushCommandBuffer(copyCmd, queue, true);
vertexStaging.destroy();
/*
Separate vertex attributes
We create multiple separate buffers for each of the vertex attributes (position, normals, etc.)
*/
std::array<vks::Buffer, 4> stagingBuffers;
createStagingBuffer(stagingBuffers[0], vertexAttributeBuffers.pos.data(), vertexAttributeBuffers.pos.size() * sizeof(vertexAttributeBuffers.pos[0]));
createStagingBuffer(stagingBuffers[1], vertexAttributeBuffers.normal.data(), vertexAttributeBuffers.normal.size() * sizeof(vertexAttributeBuffers.normal[0]));
createStagingBuffer(stagingBuffers[2], vertexAttributeBuffers.uv.data(), vertexAttributeBuffers.uv.size() * sizeof(vertexAttributeBuffers.uv[0]));
createStagingBuffer(stagingBuffers[3], vertexAttributeBuffers.tangent.data(), vertexAttributeBuffers.tangent.size() * sizeof(vertexAttributeBuffers.tangent[0]));
createDeviceBuffer(separateVertexBuffers.pos, stagingBuffers[0].size);
createDeviceBuffer(separateVertexBuffers.normal, stagingBuffers[1].size);
createDeviceBuffer(separateVertexBuffers.uv, stagingBuffers[2].size);
createDeviceBuffer(separateVertexBuffers.tangent, stagingBuffers[3].size);
// Stage
std::vector<vks::Buffer> attributeBuffers = {
separateVertexBuffers.pos,
separateVertexBuffers.normal,
separateVertexBuffers.uv,
separateVertexBuffers.tangent,
};
// Copy data from staging buffer (host) do device local buffer (gpu)
copyCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
for (size_t i = 0; i < attributeBuffers.size(); i++) {
copyRegion.size = attributeBuffers[i].size;
vkCmdCopyBuffer(copyCmd, stagingBuffers[i].buffer, attributeBuffers[i].buffer, 1, ©Region);
}
vulkanDevice->flushCommandBuffer(copyCmd, queue, true);
for (size_t i = 0; i < 4; i++) {
stagingBuffers[i].destroy();
}
/*
Index buffer
The index buffer is always the same, no matter how we pass the vertex attributes
*/
size_t indexBufferSize = indexBuffer.size() * sizeof(uint32_t);
vks::Buffer indexStaging;
createStagingBuffer(indexStaging, indexBuffer.data(), indexBufferSize);
createDeviceBuffer(indices, indexStaging.size, VK_BUFFER_USAGE_INDEX_BUFFER_BIT);
// Copy data from staging buffer (host) do device local buffer (gpu)
copyCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
copyRegion.size = indexBufferSize;
vkCmdCopyBuffer(copyCmd, indexStaging.buffer, indices.buffer, 1, ©Region);
vulkanDevice->flushCommandBuffer(copyCmd, queue, true);
// Free staging resources
indexStaging.destroy();
}
void VulkanExample::loadAssets()
{
loadglTFFile(getAssetPath() + "models/sponza/sponza.gltf");
}
void VulkanExample::setupDescriptors()
{
// One ubo to pass dynamic data to the shader
// Two combined image samplers per material as each material uses color and normal maps
std::vector<VkDescriptorPoolSize> poolSizes = {
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1),
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, static_cast<uint32_t>(scene.materials.size()) * 2),
};
// One set for matrices and one per model image/texture
const uint32_t maxSetCount = static_cast<uint32_t>(scene.images.size()) + 1;
VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, maxSetCount);
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
// Descriptor set layout for passing matrices
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0)
};
VkDescriptorSetLayoutCreateInfo descriptorSetLayoutCI = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings.data(), static_cast<uint32_t>(setLayoutBindings.size()));
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorSetLayoutCI, nullptr, &descriptorSetLayouts.matrices));
// Descriptor set layout for passing material textures
setLayoutBindings = {
// Color map
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 0),
// Normal map
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1),
};
descriptorSetLayoutCI.pBindings = setLayoutBindings.data();
descriptorSetLayoutCI.bindingCount = 2;
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorSetLayoutCI, nullptr, &descriptorSetLayouts.textures));
// Pipeline layout using both descriptor sets (set 0 = matrices, set 1 = material)
std::array<VkDescriptorSetLayout, 2> setLayouts = { descriptorSetLayouts.matrices, descriptorSetLayouts.textures };
VkPipelineLayoutCreateInfo pipelineLayoutCI = vks::initializers::pipelineLayoutCreateInfo(setLayouts.data(), static_cast<uint32_t>(setLayouts.size()));
// We will use push constants to push the local matrices of a primitive to the vertex shader
VkPushConstantRange pushConstantRange = vks::initializers::pushConstantRange(VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT, sizeof(PushConstBlock), 0);
// Push constant ranges are part of the pipeline layout
pipelineLayoutCI.pushConstantRangeCount = 1;
pipelineLayoutCI.pPushConstantRanges = &pushConstantRange;
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCI, nullptr, &pipelineLayout));
// Descriptor set for scene matrices
VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayouts.matrices, 1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet));
VkWriteDescriptorSet writeDescriptorSet = vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &shaderData.buffer.descriptor);
vkUpdateDescriptorSets(device, 1, &writeDescriptorSet, 0, nullptr);
// Descriptor sets for the materials
for (auto& material : scene.materials) {
const VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayouts.textures, 1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &material.descriptorSet));
VkDescriptorImageInfo colorMap = scene.images[material.baseColorTextureIndex].texture.descriptor;
VkDescriptorImageInfo normalMap = scene.images[material.normalTextureIndex].texture.descriptor;
std::vector<VkWriteDescriptorSet> writeDescriptorSets = {
vks::initializers::writeDescriptorSet(material.descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 0, &colorMap),
vks::initializers::writeDescriptorSet(material.descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &normalMap),
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, nullptr);
}
}
void VulkanExample::preparePipelines()
{
VkPipelineInputAssemblyStateCreateInfo inputAssemblyStateCI = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationStateCI = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0);
VkPipelineColorBlendAttachmentState blendAttachmentStateCI = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendStateCI = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentStateCI);
VkPipelineDepthStencilStateCreateInfo depthStencilStateCI = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportStateCI = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleStateCI = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0);
const std::vector<VkDynamicState> dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
VkPipelineDynamicStateCreateInfo dynamicStateCI = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables.data(), static_cast<uint32_t>(dynamicStateEnables.size()), 0);
VkPipelineVertexInputStateCreateInfo vertexInputStateCI = vks::initializers::pipelineVertexInputStateCreateInfo();
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelineLayout, renderPass, 0);
pipelineCI.pVertexInputState = &vertexInputStateCI;
pipelineCI.pInputAssemblyState = &inputAssemblyStateCI;
pipelineCI.pRasterizationState = &rasterizationStateCI;
pipelineCI.pColorBlendState = &colorBlendStateCI;
pipelineCI.pMultisampleState = &multisampleStateCI;
pipelineCI.pViewportState = &viewportStateCI;
pipelineCI.pDepthStencilState = &depthStencilStateCI;
pipelineCI.pDynamicState = &dynamicStateCI;
pipelineCI.stageCount = static_cast<uint32_t>(shaderStages.size());
pipelineCI.pStages = shaderStages.data();
shaderStages[0] = loadShader(getShadersPath() + "vertexattributes/scene.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getShadersPath() + "vertexattributes/scene.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
// Interleaved vertex attributes
// One Binding (one buffer) and multiple attributes
const std::vector<VkVertexInputBindingDescription> vertexInputBindingsInterleaved = {
{ 0, sizeof(Vertex), VK_VERTEX_INPUT_RATE_VERTEX },
};
const std::vector<VkVertexInputAttributeDescription> vertexInputAttributesInterleaved = {
{ 0, 0, VK_FORMAT_R32G32B32_SFLOAT, offsetof(Vertex, pos) },
{ 1, 0, VK_FORMAT_R32G32B32_SFLOAT, offsetof(Vertex, normal) },
{ 2, 0, VK_FORMAT_R32G32_SFLOAT, offsetof(Vertex, uv) },
{ 3, 0, VK_FORMAT_R32G32B32A32_SFLOAT, offsetof(Vertex, tangent) },
};
vertexInputStateCI = vks::initializers::pipelineVertexInputStateCreateInfo(vertexInputBindingsInterleaved, vertexInputAttributesInterleaved);
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.vertexAttributesInterleaved));
// Separate vertex attribute
// Multiple bindings (for each attribute buffer) and multiple attribues
const std::vector<VkVertexInputBindingDescription> vertexInputBindingsSeparate = {
{ 0, sizeof(glm::vec3), VK_VERTEX_INPUT_RATE_VERTEX },
{ 1, sizeof(glm::vec3), VK_VERTEX_INPUT_RATE_VERTEX },
{ 2, sizeof(glm::vec2), VK_VERTEX_INPUT_RATE_VERTEX },
{ 3, sizeof(glm::vec4), VK_VERTEX_INPUT_RATE_VERTEX },
};
const std::vector<VkVertexInputAttributeDescription> vertexInputAttributesSeparate = {
{ 0, 0, VK_FORMAT_R32G32B32_SFLOAT, 0 },
{ 1, 1, VK_FORMAT_R32G32B32_SFLOAT, 0 },
{ 2, 2, VK_FORMAT_R32G32_SFLOAT, 0 },
{ 3, 3, VK_FORMAT_R32G32B32A32_SFLOAT, 0 },
};
vertexInputStateCI = vks::initializers::pipelineVertexInputStateCreateInfo(vertexInputBindingsSeparate, vertexInputAttributesSeparate);
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.vertexAttributesSeparate));
}
void VulkanExample::prepareUniformBuffers()
{
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&shaderData.buffer,
sizeof(shaderData.values)));
VK_CHECK_RESULT(shaderData.buffer.map());
updateUniformBuffers();
}
void VulkanExample::updateUniformBuffers()
{
shaderData.values.projection = camera.matrices.perspective;
shaderData.values.view = camera.matrices.view;
shaderData.values.viewPos = camera.viewPos;
memcpy(shaderData.buffer.mapped, &shaderData.values, sizeof(shaderData.values));
}
void VulkanExample::prepare()
{
VulkanExampleBase::prepare();
loadAssets();
prepareUniformBuffers();
setupDescriptors();
preparePipelines();
buildCommandBuffers();
prepared = true;
}
void VulkanExample::render()
{
updateUniformBuffers();
renderFrame();
}
void VulkanExample::OnUpdateUIOverlay(vks::UIOverlay* overlay)
{
if (overlay->header("Vertex buffer attributes")) {
bool interleaved = (vertexAttributeSettings == VertexAttributeSettings::interleaved);
bool separate = (vertexAttributeSettings == VertexAttributeSettings::separate);
if (overlay->radioButton("Interleaved", interleaved)) {
vertexAttributeSettings = VertexAttributeSettings::interleaved;
buildCommandBuffers();
}
if (overlay->radioButton("Separate", separate)) {
vertexAttributeSettings = VertexAttributeSettings::separate;
buildCommandBuffers();
}
}
}
VULKAN_EXAMPLE_MAIN()