forked from VainF/Torch-Pruning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbenchmark_importance_criteria.py
186 lines (161 loc) · 7.16 KB
/
benchmark_importance_criteria.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import torch
from torchvision.models import resnet50
from torchvision.datasets import ImageFolder
import torchvision.transforms as T
import torch_pruning as tp
import os
from tqdm import tqdm
import matplotlib.pyplot as plt
N_batchs = 10
imagenet_root = '~/Datasets/shared/imagenet/'
print('Parsing dataset...')
train_dst = ImageFolder(os.path.join(imagenet_root, 'train'), transform=T.Compose(
[
T.Resize(256),
T.CenterCrop(224),
T.ToTensor(),
T.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]
),
])
)
val_dst = ImageFolder(os.path.join(imagenet_root, 'val'), transform=T.Compose(
[
T.Resize(256),
T.CenterCrop(224),
T.ToTensor(),
T.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]
),
])
)
train_loader = torch.utils.data.DataLoader(train_dst, batch_size=64, shuffle=True, num_workers=4)
val_loader = torch.utils.data.DataLoader(val_dst, batch_size=128, shuffle=False, num_workers=4)
def validate_model(model, val_loader):
model.eval()
correct = 0
loss = 0
with torch.no_grad():
for images, labels in tqdm(val_loader):
images, labels = images.cuda(), labels.cuda()
outputs = model(images)
loss += torch.nn.functional.cross_entropy(outputs, labels, reduction='sum').item()
_, predicted = torch.max(outputs, 1)
correct += (predicted == labels).sum().item()
return correct / len(val_loader.dataset), loss / len(val_loader.dataset)
# Importance criteria
imp_dict = {
'Group Hessian': tp.importance.HessianImportance(group_reduction='mean'),
'Single-layer Hessian': tp.importance.HessianImportance(group_reduction='first'),
'Group Taylor': tp.importance.TaylorImportance(group_reduction='mean'),
'Single-layer Taylor': tp.importance.TaylorImportance(group_reduction='first'),
'Group L1': tp.importance.MagnitudeImportance(p=1, group_reduction='mean'),
'Single-layer L1': tp.importance.MagnitudeImportance(p=1, group_reduction='first'),
'Group Slimming': tp.importance.BNScaleImportance(group_reduction='mean'),
'Single-layer Slimming': tp.importance.BNScaleImportance(group_reduction='first'),
'Random': tp.importance.RandomImportance(),
}
params_record = {}
loss_record = {}
acc_record = {}
macs_record = {}
model = resnet50(pretrained=True).eval().cuda()
example_inputs = torch.randn(1, 3, 224, 224).cuda()
base_macs, base_nparams = tp.utils.count_ops_and_params(model, example_inputs)
base_val_acc, base_val_loss = validate_model(model, val_loader)
print(f"MACs: {base_macs/base_macs:.2f}, #Params: {base_nparams/base_nparams:.2f}, Acc: {base_val_acc:.4f}, Loss: {base_val_loss:.4f}")
for imp_name, imp in imp_dict.items():
print(imp_name)
if imp_name not in params_record:
loss_record[imp_name] = []
acc_record[imp_name] = []
params_record[imp_name] = []
macs_record[imp_name] = []
model = resnet50(pretrained=True).eval().cuda()
example_inputs = torch.randn(1, 3, 224, 224).cuda()
ignored_layers = []
for m in model.modules():
if isinstance(m, torch.nn.Linear) and m.out_features == 1000:
ignored_layers.append(m) # DO NOT prune the final classifier!
iterative_steps = 5
pruner = tp.pruner.MetaPruner(
model,
example_inputs,
iterative_steps=iterative_steps,
importance=imp,
ch_sparsity=0.3,
ignored_layers=ignored_layers,
)
print(f"MACs: {base_macs/base_macs:.2f}, #Params: {base_nparams/base_nparams:.2f}, Acc: {base_val_acc:.4f}, Loss: {base_val_loss:.4f}")
params_record[imp_name].append(base_nparams)
loss_record[imp_name].append(base_val_loss)
acc_record[imp_name].append(base_val_acc)
macs_record[imp_name].append(base_macs)
for i in range(iterative_steps):
if isinstance(imp, tp.importance.HessianImportance):
# loss = F.cross_entropy(model(images), targets)
for k, (imgs, lbls) in enumerate(train_loader):
if k>=N_batchs: break
imgs = imgs.cuda()
lbls = lbls.cuda()
output = model(imgs)
# compute loss for each sample
loss = torch.nn.functional.cross_entropy(output, lbls, reduction='none')
imp.zero_grad() # clear accumulated gradients
for l in loss:
model.zero_grad() # clear gradients
l.backward(retain_graph=True) # simgle-sample gradient
imp.accumulate_grad(model) # accumulate g^2
elif isinstance(imp, tp.importance.TaylorImportance):
# loss = F.cross_entropy(model(images), targets)
for k, (imgs, lbls) in enumerate(train_loader):
if k>=N_batchs: break
imgs = imgs.cuda()
lbls = lbls.cuda()
output = model(imgs)
loss = torch.nn.functional.cross_entropy(output, lbls)
loss.backward()
pruner.step()
macs, nparams = tp.utils.count_ops_and_params(model, example_inputs)
#continue
val_acc, val_loss = validate_model(model, val_loader)
print(f"MACs: {macs/base_macs:.2f}, #Params: {nparams/base_nparams:.2f}, Acc: {val_acc:.4f}, Loss: {val_loss:.4f}")
params_record[imp_name].append(nparams)
loss_record[imp_name].append(val_loss)
acc_record[imp_name].append(val_acc)
macs_record[imp_name].append(macs)
#continue
# Draw all curves in an image
plt.figure()
for imp_name in params_record.keys():
# use dash if 'single-layer' is in the name, use the same color as the group version
plt.plot(params_record[imp_name], acc_record[imp_name], label=imp_name, linestyle='--' if 'Single-layer' in imp_name else '-', color='C'+str(list(params_record.keys()).index(imp_name)))
plt.xlabel('#Params')
plt.ylabel('Accuracy')
plt.legend()
plt.savefig(f'params_acc_final.png')
plt.figure()
for imp_name in params_record.keys():
plt.plot(params_record[imp_name], loss_record[imp_name], label=imp_name, linestyle='--' if 'Single-layer' in imp_name else '-', color='C'+str(list(params_record.keys()).index(imp_name)))
plt.xlabel('#Params')
plt.ylabel('Loss')
plt.legend()
plt.savefig(f'params_loss_final.png')
plt.figure()
for imp_name in params_record.keys():
# follow the same rule
plt.plot(macs_record[imp_name], acc_record[imp_name], label=imp_name, linestyle='--' if 'Single-layer' in imp_name else '-', color='C'+str(list(params_record.keys()).index(imp_name)))
plt.xlabel('MACs')
plt.ylabel('Accuracy')
plt.legend()
plt.savefig(f'macs_acc_final.png')
plt.figure()
for imp_name in params_record.keys():
plt.plot(macs_record[imp_name], loss_record[imp_name], label=imp_name, linestyle='--' if 'Single-layer' in imp_name else '-', color='C'+str(list(params_record.keys()).index(imp_name)))
plt.xlabel('MACs')
plt.ylabel('Loss')
plt.legend()
plt.savefig(f'macs_loss_final.png')
torch.save([params_record, loss_record, acc_record], 'record.pth')