-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathapp.R
514 lines (414 loc) · 19.7 KB
/
app.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
####################################### WELCOME TO THE SHINY APP ##################################
####################################### from Sandra K. (2023) #####################################
###################################################################################################
####################################### Load Script and Example-Dataset ###########################
source("zlog.R")
dataset_original <- read.csv("data/CALIPER.csv",na.strings="", fileEncoding="latin1")
####################################### Libraries #################################################
if("DT" %in% rownames(installed.packages())){
library(DT)} else{
install.packages("DT")
library(DT)}
if("shinydashboard" %in% rownames(installed.packages())){
library(shinydashboard)} else{
install.packages("shinydashboard")
library(shinydashboard)}
####################################### User Interface ############################################
ui <- dashboardPage(
dashboardHeader(title = "Zlog_AdRI", titleWidth = 350),
dashboardSidebar(
width = 350,
sidebarMenu(
id = "sidebarid",
div(
style = "text-align:center",
br(),
"Tool for Plausibility Checks of Reference Interval Limits"
),
uiOutput("dataset_file"),
actionButton('reset', 'Reset Input', icon = icon("trash")),
conditionalPanel(condition = "input.tabselected == 'Table'",
selectInput(
"sex",
"Select the sex:",
choices = c("Female (F)" = "F", "Male (M)" = "M")
)),
conditionalPanel(
condition = "input.tabselected == 'Plot'",
selectInput(
"sex_plot",
"Select the sex:",
choices = c("Female (F)" = "F", "Male (M)" = "M")
)
),
conditionalPanel(
condition = "input.tabselected == 'Plot'",
hr(),
selectInput(
"parameter",
"Select the lab parameter:",
choices = dataset_original$CODE,
selected = TRUE
)
),
conditionalPanel(
condition = "input.tabselected == 'Plot'",
selectInput(
"xaxis_scale",
"Select the x-axis scaling:",
choices = c(
"Days" = "days",
"Years" = "years",
"Days/Years" = "days_years"
),
selected = TRUE
)
),
conditionalPanel(
condition = "input.tabselected == 'Plot'",
checkboxInput("xlog", "Logarithmic scale for the x-axis", value = FALSE)
),
hr(),
div(
style = "text-align:center",
"For further information visit our",
a("Website", href = "https://sandrakla.github.io/Zlog_AdRI/"),
"or",
br(),
"read the publication",
a("doi: 10.1515/cclm-2022-0688", href = "https://doi.org/10.1515/cclm-2022-0688"),
"!"
)
)
),
dashboardBody(fluidRow(
tabBox(
title = "Zlog_AdRI",
id = "tabselected",
width = 9,
tabPanel(
"Table",
icon = icon("table"),
p(
"This Shiny App computes the zlog values of the preceding and the subsequent reference
interval (RI) for different lab parameters for each age group. Many medical RI are
not age-dependent and have large jumps between the individual age groups.
This should be prevented by considering the zlog value. The zlog value should be optimally
between -1.96 and 1.96. The further away the values, the more likely the RI jump is implausible."
),
DT::dataTableOutput("table")
),
tabPanel(
"Plot",
icon = icon("calculator"),
p(
"Original RI (top) and zlog values for the selected lab parameter for each age group (bottom).
The direction of the triangles in the lower figure indicates the zlog values of the preceding (left) and the
following age group (right).
Blue color indicates lower, red the upper reference limits.
The dotted green lines represent the common reference interval of -1.96 to +1.96.
The further the traingles are from these lines, the more likely there is an implausible age jump."
),
plotOutput("plot", height = "700px")
)
),
box(
title = tagList(shiny::icon("info"), "Lab parameters with a value of 0:"),
status = "info",
width = 3,
solidHeader = TRUE,
htmlOutput("caution")
),
box(
title = tagList(shiny::icon("warning"), "High zlog values:"),
status = "danger",
width = 3,
solidHeader = TRUE,
numericInput(
"maxzlog",
"Maximum absolute zlog value:",
10,
min = 0,
max = 50
),
htmlOutput("helptext")
),
box(
title = tagList(shiny::icon("info"), "zlog Calculator"),
status = "primary",
width = 3,
solidHeader = TRUE,
p("Individual zlog values can be calculated here:"),
numericInput("calculator_target_low", "Lower value:", value = NULL),
numericInput("calculator_target_upper", "Upper value:", value = NULL),
numericInput("calculator_x", "Value:", value = NULL),
DT::dataTableOutput("calculator_table")
)
))
)
####################################### Server ####################################################
server <- function(input, output, session) {
options(shiny.plot.res=128)
options(shiny.sanitize.errors = TRUE)
options(warn = -1)
##################################### Reactive Expressions ######################################
values <- reactiveValues(upload_state = NULL)
observeEvent(input$dataset_file, {
values$upload_state <- 'uploaded'
})
observeEvent(input$reset, {
values$upload_state <- 'reset'
})
dataset_input <- reactive({
if (is.null(values$upload_state)) {
return(NULL)
} else if (values$upload_state == 'uploaded') {
return(input$dataset_file)
} else if (values$upload_state == 'reset') {
return(NULL)
}
})
output$dataset_file <- renderUI({
input$reset ## Create a dependency with the reset button
fileInput("dataset_file","Upload CSV File:", accept = c("text/csv", "text/comma-separated-values,text/plain", ".csv"), multiple = FALSE)
})
get_data_file <- reactive({
input$dataset_file
saving <-
if(!is.null(dataset_input())){
dataset_original <- read.csv(dataset_input()[["datapath"]], na.strings="", fileEncoding="latin1")
}else{
dataset_original <- read.csv("data/CALIPER.csv",na.strings="", fileEncoding="latin1")
}
return(dataset_original)
})
data_caution <- reactive({
dat <- get_data_file()
### Check for upper and lower limit == 0
indscri <- subset(1:nrow(dat),dat$LowerLimit==0)
levscriage <- paste0(dat$CODE[indscri], " (", dat$AgeFrom[indscri], "-", dat$AgeUntil[indscri], " ", dat$UNIT[indscri], "s)")
indscri2 <- subset(1:nrow(dat),dat$UpperLimit==0)
levscri2age <- paste0(dat$CODE[indscri2], " (", dat$AgeFrom[indscri2], "-", dat$AgeUntil[indscri2], " ", dat$UNIT[indscri2], "s)")
levscri <- levels(factor(dat$CODE[indscri]))
levscri2 <- levels(factor(dat$CODE[indscri2]))
if(length(levscri) <= 1){
zero_lower <- paste("The Lower Limit (LL) for this lab parameter is zero:", toString(levscriage), ".")
if(length(levscri) == 0){
zero_lower <- ""
}
} else{
zero_lower <- paste("The Lower Limit (LL) for these lab parameters is zero:", toString(levscriage), ".")
}
if(length(levscri2) <= 1){
zero_upper <- paste("The Upper Limit (UL) for this lab parameter is zero:", toString(levscri2age), ".")
if(length(levscri2) == 0){
zero_upper <- ""
}
} else{
zero_upper <- paste("The Upper Limit (UL) for these lab parameters is zero:", toString(levscri2age), ".")
}
text <- HTML(paste("<p>", zero_lower, zero_upper,"</p>"))
if(zero_lower == "" && zero_upper == ""){
text = "";
}
text
})
# Create the table with the zlog values as reactive expression
zlog_data <- reactive({
dat <- get_data_file()
validate(need(ncol(dat) == 8,
"Check if you have used the correct template!"))
# if(input$replacement == TRUE){
#
# # to prevent possible error messages because of the slow typing
# minv <- input$replace_low
# maxv.apc <- input$replace_upper
#
# validate(need(minv > 0, ""))
# validate(need(maxv.apc > 0, ""))
# }
# else{
# minv <- 0.001
# maxv.apc <- 100}
### Store the original data set.
dat.orig <- dat
### Remove cases where both the lower and upper limits are not specified.
dat <- dat[!is.na(dat$LowerLimit) | !is.na(dat$UpperLimit),]
### Remove cases where the upper limit is 0.
dat <- dat[dat$UpperLimit>0,]
### Use only complete cases.
dat <- dat[complete.cases(dat),]
### For replacing missing values. (Not needed if only complete cases are used.)
### Not needed unless the previous line dat <- dat[complete.cases(dat),] is not applied.
#dat$UpperLimit[is.na(dat$UpperLimit) | dat$UpperLimit==0] <- maxv.apc
dat$LowerLimit[is.na(dat$LowerLimit) | dat$LowerLimit==0] <- NA
### Subset for the men. Note that the reference limits for men and for all are needed.
datm <- subset(dat,dat$SEX=="M" | dat$SEX=="MF")
### Subset for the women. Note that the reference limits for men and for all are needed.
datf <- subset(dat,dat$SEX=="F" | dat$SEX=="MF")
### Subset for the men and women. Note that the reference limits for men and for all are needed.
datb <- dat
### Compute the zlog values of the preceding and subsequent reference limits etc. for men.
datme <- compute.jumps(datm)
### Compute the zlog values of the preceding and subsequent reference limits etc. for women.
datfe <- compute.jumps(datf)
### Compute the zlog values of the preceding and subsequent reference limits etc. for women and men.
datbe <- compute.jumps(datb)
### Check the men or women and use the right dataset for datse
if(input$tabselected == "Table"){
if(input$sex == "M"){datse <- datme}
if(input$sex == "F"){datse <- datfe}
if(input$sex == "MF"){datse <- datbe}
}
if(input$tabselected == "Plot"){
if(input$sex_plot == "M"){datse <- datme}
if(input$sex_plot == "F"){datse <- datfe}
}
datse
})
##################################### Observe Events ############################################
observeEvent(input$dataset_file, {
updateSelectInput(session, "parameter", choices = zlog_data()[,1])
})
##################################### Output ####################################################
helptext <- reactive({
datse <- zlog_data()
### Check how many and where the absolute zlog value exceeds the given threshold.
abslim <- input$maxzlog
### Indices of occurrences of large zlog values.
indscri <- subset(1:nrow(datse),datse$max.abs.zlog>abslim)
### Names of the lab parameters where large zlog values occur.
levscri <- levels(factor(datse$CODE[indscri]))
### No. of occurrences of large zlog values.
if(length(levscri) == 1){
text <- HTML(paste("<p>", sum(datse$max.abs.zlog>abslim, na.rm = TRUE), "zlog values above", abslim,
"from this lab parameter:", toString(levscri), "</p>"))}
else{
text <- HTML(paste("<p>", sum(datse$max.abs.zlog>abslim, na.rm = TRUE), "zlog values above", abslim,
"from these lab parameters:", toString(levscri), "</p>"))
}
if(length(levscri) == 0){
text <- HTML(paste("<p> No zlog value is above", abslim),".</p>")
}
text
})
output$caution <- renderUI({ data_caution() })
output$helptext <- renderUI({ helptext() })
output$plot <- renderPlot({
datme <- zlog_data()
#cairo_ps(file = "Figure1.eps", onefile = FALSE, fallback_resolution = 1200)
### Draw the graphs for zlog and original reference limits in one figure.
par(mfrow=c(2,1), mai=c(0.95,0.95,0.15,0.15))
### Draw the graphs for the given lab parameter
lab.param <- input$parameter
# to prevent possible error messages because of the slow typing
validate(need(length(subset(1:nrow(datme),datme$CODE==input$parameter)) > 0, ""))
# check for log for the xaxis
xlog_ <- input$xlog
xaxis_scale_ <- input$xaxis_scale
if(xaxis_scale_ == "days_years"){
par(mfrow=c(2,1), mai=c(1.5,0.95,0.15,0.15))
}
# Draw the plots
draw.time.dependent.lims(datme,lab.param, use.zlog=F,lwd.reflims=2,xlog=xlog_, xaxis_scale = xaxis_scale_)
draw.time.dependent.lims(datme,lab.param, lwd.reflims=2,xlog=xlog_, xaxis_scale = xaxis_scale_)
#dev.off()
})
output$table <- DT::renderDataTable({
datme <- zlog_data()
datme <- data.frame(CODE = datme$CODE, SEX = datme$SEX, AGE =
paste0(datme$AgeFrom, "-", datme$AgeUntil, " (", datme$UNIT, "s)"),
round_df(datme[,seq(7,length(datme))],3))
datme$start.time.d <- NULL
colnames(datme) <- c("Code", "Sex", "Age", "Lower Limit", "Upper Limit", "Prev.lower zlog",
"Prev.upper zlog", "Next.lower zlog", "Next.upper zlog", "Max.abs.zlog")
options(htmlwidgets.TOJSON_ARGS = list(na = 'string'))
# if(input$replacement == TRUE){
# DT::datatable(datme, rownames= FALSE, extensions = 'Buttons',
# options = list(dom = 'Blfrtip', pageLength = 15, buttons = c('copy', 'csv', 'pdf', 'print')),
# caption = htmltools::tags$caption(style = 'caption-side: bottom; text-align: center;',
# 'Table: Dataset with the zlog values')) %>%
# DT:: formatStyle(columns = "Prev.lower zlog", color = styleEqual(datme[,5], highzlogvalues(c(datme[,5]))),
# backgroundColor = styleEqual(datme[,5], zlogcolor(c(datme[,5])))) %>%
# DT:: formatStyle(columns = "Prev.upper zlog", color = styleEqual(datme[,6], highzlogvalues(c(datme[,6]))),
# backgroundColor = styleEqual(datme[,6], zlogcolor(c(datme[,6])))) %>%
# DT:: formatStyle(columns = "Next.lower zlog", color = styleEqual(datme[,7], highzlogvalues(c(datme[,7]))),
# backgroundColor = styleEqual(datme[,7], zlogcolor(c(datme[,7])))) %>%
# DT:: formatStyle(columns = "Next.upper zlog", color = styleEqual(datme[,8], highzlogvalues(c(datme[,8]))),
# backgroundColor = styleEqual(datme[,8], zlogcolor(c(datme[,8])))) %>%
# DT:: formatStyle(columns = "Max.abs.zlog", color = styleEqual(datme[,9], highzlogvalues(c(datme[,9]))),
# backgroundColor = styleEqual(datme[,9], zlogcolor(c(datme[,9]))))
#
# }
# else{
# DT::datatable(datme, rownames= FALSE, extensions = 'Buttons',
# options = list(dom = 'Blfrtip', pageLength = 15, buttons = c('copy', 'csv', 'pdf', 'print')),
# caption = htmltools::tags$caption(style = 'caption-side: bottom; text-align: center;',
# 'Table: Dataset with the zlog values')) %>%
# DT:: formatStyle(columns = "Prev.lower zlog", color = styleEqual(datme[,5], highzlogvalues(c(datme[,5]))),
# backgroundColor = styleEqual(datme[,5], zlogcolor(c(datme[,5])))) %>%
# DT:: formatStyle(columns = "Prev.upper zlog", color = styleEqual(datme[,6], highzlogvalues(c(datme[,6]))),
# backgroundColor = styleEqual(datme[,6], zlogcolor(c(datme[,6])))) %>%
# DT:: formatStyle(columns = "Next.lower zlog", color = styleEqual(datme[,7], highzlogvalues(c(datme[,7]))),
# backgroundColor = styleEqual(datme[,7], zlogcolor(c(datme[,7])))) %>%
# DT:: formatStyle(columns = "Next.upper zlog", color = styleEqual(datme[,8], highzlogvalues(c(datme[,8]))),
# backgroundColor = styleEqual(datme[,8], zlogcolor(c(datme[,8])))) %>%
# DT:: formatStyle(columns = "Max.abs.zlog",color = styleEqual(datme[,9], highzlogvalues(c(datme[,9]))),
# backgroundColor = styleEqual(datme[,9], zlogcolor(c(datme[,9]))))
# }
# if(input$replacement == TRUE){
# DT::datatable(datme, rownames= FALSE, extensions = 'Buttons',
# options = list(dom = 'Blfrtip', pageLength = 15, buttons = c('copy', 'csv', 'pdf', 'print')),
# caption = htmltools::tags$caption(style = 'caption-side: bottom; text-align: center;',
# 'Table: Dataset with the zlog values')) %>%
# DT:: formatStyle(columns = "Max.abs.zlog", color = styleEqual(datme[,10], highzlogvalues(c(datme[,10]))),
# backgroundColor = styleEqual(datme[,10], zlogcolor(c(datme[,10]))))
#}
#else{
DT::datatable(datme, rownames= FALSE, extensions = 'Buttons',
options = list(dom = 'Blfrtip', pageLength = 15, buttons = c('copy', 'csv', 'pdf', 'print')),
caption = htmltools::tags$caption(style = 'caption-side: bottom; text-align: center;',
'Table: Dataset with the zlog values')) %>%
DT:: formatStyle(columns = "Max.abs.zlog",color = styleEqual(datme[,9], highzlogvalues(c(datme[,10]))),
backgroundColor = styleEqual(datme[,10], zlogcolor(c(datme[,10]))))
#}
})
output$calculator_table <- DT::renderDataTable({
zlog_value <- zlog(as.numeric(input$calculator_x),
as.numeric(input$calculator_target_low),
as.numeric(input$calculator_target_upper))
datme <- data.frame("Lower value" = input$calculator_target_low,
"Upper value" = input$calculator_target_upper, Value = input$calculator_x,
"zlog" = round_df(zlog_value, 3), check.names = FALSE)
options(htmlwidgets.TOJSON_ARGS = list(na = 'string'))
DT::datatable(datme, rownames= FALSE, options = list(dom = 't')) %>%
DT:: formatStyle(columns = "zlog",color = styleEqual(datme[,4], highzlogvalues(c(datme[,4]))),
backgroundColor = styleEqual(datme[,4], zlogcolor(c(datme[,4]))))
})
# output$download_data <- downloadHandler(
# filename = function(){
# paste0("Table_Zlog.csv")
# },
# content = function(file) {
#
# datme <- zlog_data()
# datme <- data.frame(CODE = datme$CODE, SEX = datme$SEX, UNIT = datme$UNIT,
# round_df(datme[,seq(7,length(datme))],3))
#
# colnames(datme) <- c("Code", "Sex", "Unit", "Lower Limit", "Upper Limit", "Age", "Prev.lower zlog",
# "Prev.upper zlog", "Next.lower zlog", "Next.upper zlog", "Max zlog")
#
# write.csv(datme, file, row.names = FALSE)
# })
# output$download_data_example <- downloadHandler(
# filename = function(){
# paste0("Table_CALIPER.csv")
# },
# content = function(file) {
#
# dataset_original <- read.csv("data/CALIPER.csv",na.strings="")
# write.csv(datme, file, row.names = FALSE)
# })
}
####################################### Run the application #######################################
shinyApp(ui = ui, server = server)