forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 1.2k
/
Copy pathlsun_formatting.py
105 lines (86 loc) · 3.4 KB
/
lsun_formatting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
# Copyright 2016 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
r"""LSUN dataset formatting.
Download and format the LSUN dataset as follow:
git clone https://github.com/fyu/lsun.git
cd lsun
python2.7 download.py -c [CATEGORY]
Then unzip the downloaded .zip files before executing:
python2.7 data.py export [IMAGE_DB_PATH] --out_dir [LSUN_FOLDER] --flat
Then use the script as follow:
python lsun_formatting.py \
--file_out [OUTPUT_FILE_PATH_PREFIX] \
--fn_root [LSUN_FOLDER]
"""
from __future__ import print_function
import os
import os.path
import numpy
import skimage.transform
from PIL import Image
import tensorflow as tf
tf.flags.DEFINE_string("file_out", "",
"Filename of the output .tfrecords file.")
tf.flags.DEFINE_string("fn_root", "", "Name of root file path.")
FLAGS = tf.flags.FLAGS
def _int64_feature(value):
return tf.train.Feature(int64_list=tf.train.Int64List(value=[value]))
def _bytes_feature(value):
return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))
def main():
"""Main converter function."""
fn_root = FLAGS.fn_root
img_fn_list = os.listdir(fn_root)
img_fn_list = [img_fn for img_fn in img_fn_list
if img_fn.endswith('.webp')]
num_examples = len(img_fn_list)
n_examples_per_file = 10000
for example_idx, img_fn in enumerate(img_fn_list):
if example_idx % n_examples_per_file == 0:
file_out = "%s_%05d.tfrecords"
file_out = file_out % (FLAGS.file_out,
example_idx // n_examples_per_file)
print("Writing on:", file_out)
writer = tf.python_io.TFRecordWriter(file_out)
if example_idx % 1000 == 0:
print(example_idx, "/", num_examples)
image_raw = numpy.array(Image.open(os.path.join(fn_root, img_fn)))
rows = image_raw.shape[0]
cols = image_raw.shape[1]
depth = image_raw.shape[2]
downscale = min(rows / 96., cols / 96.)
image_raw = skimage.transform.pyramid_reduce(image_raw, downscale)
image_raw *= 255.
image_raw = image_raw.astype("uint8")
rows = image_raw.shape[0]
cols = image_raw.shape[1]
depth = image_raw.shape[2]
image_raw = image_raw.tostring()
example = tf.train.Example(
features=tf.train.Features(
feature={
"height": _int64_feature(rows),
"width": _int64_feature(cols),
"depth": _int64_feature(depth),
"image_raw": _bytes_feature(image_raw)
}
)
)
writer.write(example.SerializeToString())
if example_idx % n_examples_per_file == (n_examples_per_file - 1):
writer.close()
writer.close()
if __name__ == "__main__":
main()