-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathMSFT_Tweets.py
125 lines (84 loc) · 3.56 KB
/
MSFT_Tweets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
from tweepy import API
from tweepy import Cursor
from tweepy.streaming import StreamListener
from tweepy import OAuthHandler
from tweepy import Stream
import twitter_credentials as tc
import numpy as np
import pandas as pd
# Twitter clients
class TwitterClient():
# Constructor
def __init__(self, twitter_user=None):
self.auth = TwitterAuthenticator().authenticate_twitter_app()
self.twitter_client = API(self.auth)
self.twitter_user = twitter_user
def get_twitter_client_api(self):
return self.twitter_client
def get_user_timeline_tweets(self, num_tweets):
tweets = []
for tweet in Cursor(self.twitter_client.user_timeline, id=self.twitter_user).items(num_tweets):
tweets.append(tweet)
return tweets
def get_friend_list(self, num_friends):
friend_list = []
for friend in Cursor(self.twitter_client.friends, id=self.twitter_user).items(num_friends):
friend_list.append(friend)
return friend_list
def get_home_timeline_tweets(self, num_tweets):
home_timeline_tweets = []
for tweet in Cursor(self.twitter_client.home_timeline, id=self.twitter_user).items(num_tweets):
home_timeline_tweets.append(tweet)
return home_timeline_tweets
# Twitter Authenticator
class TwitterAuthenticator():
def authenticate_twitter_app(self):
auth = OAuthHandler(tc.consumer_key, tc.consumer_secret)
auth.set_access_token(tc.access_token, tc.access_token_secret)
return auth
class TwitterStreamer:
# Class for streaming and processing live tweets
# Constructor
def __init__(self):
self.twitter_authenticator = TwitterAuthenticator()
def stream_tweets(self, fetched_tweets_filename, hash_tag_list):
# This handles the Twitter authentication and the connection to the Twitter Streaming API
listener = TwitterListener(fetched_tweets_filename)
auth = self.twitter_authenticator.authenticate_twitter_app()
stream = Stream(auth, listener)
# This line filters the tweets we want
stream.filter(track=hash_tag_list)
class TwitterListener(StreamListener):
# This is the basis listener class that prints received tweets to stdout
def __init__(self, fetched_tweets_filename):
self.fetch_tweets_filename = fetched_tweets_filename
def on_data(self, data):
try:
print(data)
with open(self.fetch_tweets_filename, 'a') as tf:
tf.write(data)
return True
except BaseException as e:
print("Error on data: %s" % str(e))
return True
def on_error(self, status):
if status == 420:
# Returning False if rate limit occurs
return False
print(status)
class TweetAnalyzer():
# Functionality for analyzing and categorizing contents from tweets
def tweets_to_data_frame(self, tweets):
df = pd.DataFrame([tweet.text for tweet in tweets], columns=['Tweets'])
#df['date'] = np.array([tweet.created_at for tweet in tweets])
df['likes'] = np.array([tweet.favorite_count for tweet in tweets])
#df['retweet'] = np.array([tweet.retweet_count for tweet in tweets])
return df
# This is the main function
if __name__ == "__main__":
twitter_client = TwitterClient()
tweet_analyzer = TweetAnalyzer()
api = twitter_client.get_twitter_client_api()
tweets = api.user_timeline(screen_name='Microsoft', count=20)
df = tweet_analyzer.tweets_to_data_frame(tweets)
print(df.head(10))