-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathpredictable_stl_shocks.py
730 lines (551 loc) · 24.6 KB
/
predictable_stl_shocks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
from gluonts.dataset.util import to_pandas
from gluonts.time_feature import get_seasonality
from tactis.gluon.dataset import get_dataset
from ..base import UnivariateCRPSTask
from ..config import DATA_STORAGE_PATH
from ..utils import get_random_window_univar, datetime_to_str
from statsmodels.tsa.seasonal import STL
from abc import ABC, abstractmethod
class STLNoDescriptionContext:
__version__ = "0.0.1" # Modification will trigger re-caching
def get_background_context():
return None
class STLShortDescriptionContext:
__version__ = "0.0.1" # Modification will trigger re-caching
def get_background_context():
return """This task applies a multiplier to a component of the STL decomposition
of the series."""
class STLMediumDescriptionContext:
__version__ = "0.0.1" # Modification will trigger re-caching
def get_background_context():
return """This task applies a multiplier to a component of the STL decomposition
of the series. The seasonal-trend decomposition with LOESS (STL) is a method for
decomposing a time series into trend, seasonal, and residual components."""
class STLLongDescriptionContext:
__version__ = "0.0.1" # Modification will trigger re-caching
def get_background_context():
return """This task applies a multiplier to a component of the STL decomposition
of the series. The seasonal-trend decomposition with LOESS (STL) is a method for
decomposing a time series into trend, seasonal, and residual components. The
trend component represents the long-term progression of the series, the seasonal
component represents the seasonal variation, and the residual component
represents the noise in the series. """
class STLModifierTask(UnivariateCRPSTask):
"""
A task where the series is first decomposed into trend, seasonality, and residuals
using STL decomposition. One component is then modified and the series is recomposed.
Possible variants include:
- Multiplying the trend or seasonal component (in the pred or the hist)
- Adding a constant value to the trend or seasonal component
- Modifying the slope of the trend component
- Messing with the frequency of the seasonal component (e.g. disregard warping)
Time series: agnostic
Context: synthetic
Parameters:
----------
target_component_name: str
The component of the series that will be modified. Valid options are 'trend' or 'seasonal'.
fixed_config: dict
Fixed configuration for the task
seed: int
Seed for the random number generator
"""
_context_sources = UnivariateCRPSTask._context_sources + ["c_f"]
_skills = UnivariateCRPSTask._skills + ["instruction following", "reasoning: math"]
__version__ = "0.0.1" # Modification will trigger re-caching
def __init__(
self,
target_component_name: str = None,
fixed_config: dict = None,
seed: int = None,
):
assert (
target_component_name is not None
), "The modification parameter must be provided. 'trend' or 'seasonal' are valid options."
self.target_component_name = target_component_name
super().__init__(seed=seed, fixed_config=fixed_config)
def random_instance(self):
pass
def apply_modification(self):
pass
def recompose_series(self, modified_component, prediction_length):
if self.target_component_name == "trend":
return (
modified_component
+ self.stl.fit().seasonal[-prediction_length:]
+ self.stl.fit().resid[-prediction_length:]
)
elif self.target_component_name == "seasonal":
return (
self.stl.fit().trend[-prediction_length:]
+ modified_component
+ self.stl.fit().resid[-prediction_length:]
)
elif self.target_component_name == "residual":
return (
self.stl.fit().trend[-prediction_length:]
+ self.stl.fit().seasonal[-prediction_length:]
+ modified_component
)
else:
raise ValueError(
"The modification parameter must be provided. 'trend' or 'seasonal' are valid options."
)
class STLPredMultiplierTask(STLModifierTask):
"""
A task where the series is first decomposed into trend, seasonality, and residuals
using STL decomposition. One component of the series is then multiplied by a random factor.
Time series: agnostic
Context: synthetic
Parameters:
----------
target_component_name: str
The component of the series that will be modified. Valid options are 'trend' or 'seasonal'.
fixed_config: dict
Fixed configuration for the task
seed: int
Seed for the random number generator
"""
__version__ = "0.0.1" # Modification will trigger re-caching
def __init__(
self,
target_component_name: str = None,
fixed_config: dict = None,
seed: int = None,
):
super().__init__(
target_component_name=target_component_name,
fixed_config=fixed_config,
seed=seed,
)
@abstractmethod
def get_background_context(self):
pass
def random_instance(self):
# load dataset
datasets = ["electricity_hourly"]
dataset_name = self.random.choice(datasets)
dataset = get_dataset(dataset_name, regenerate=False, path=DATA_STORAGE_PATH)
assert len(dataset.train) == len(
dataset.test
), "Train and test sets must contain the same number of time series"
# Get the dataset metadata
metadata = dataset.metadata
# Select a random time series
ts_index = self.random.choice(len(dataset.train))
full_series = to_pandas(list(dataset.test)[ts_index])
# Select a random window
window = get_random_window_univar(
full_series,
prediction_length=metadata.prediction_length,
history_factor=self.random.randint(3, 7),
random=self.random,
)
# Extract the history and future series
history_series = window.iloc[: -metadata.prediction_length]
future_series = window.iloc[-metadata.prediction_length :]
start_idx = self.random.randint(0, metadata.prediction_length - 1)
duration = self.random.randint(1, metadata.prediction_length - start_idx)
start_datetime = future_series.index[start_idx]
end_datetime = future_series.index[start_idx + duration]
history_series.index = history_series.index.to_timestamp()
future_series.index = future_series.index.to_timestamp()
window.index = window.index.to_timestamp()
ground_truth = future_series.copy()
# {'B': 5, 'D': 1, 'H': 24, 'M': 12, 'ME': 12, 'Q': 4, 'QE': 4, 'S': 3600, 'T': 1440, 'W': 1, 'h': 24, 'min': 1440, 's': 3600}
seasonality = get_seasonality(metadata.freq)
self.stl = STL(window, period=seasonality)
stl_component = self.get_stl_component(self.target_component_name)
future_series_component = stl_component[-metadata.prediction_length :]
modified_component = self.apply_modification(
start_idx, duration, future_series_component
)
future_series = self.recompose_series(
modified_component, metadata.prediction_length
)
scenario = self.get_scenario_context(start_datetime, end_datetime)
self.past_time = history_series.to_frame()
self.future_time = future_series.to_frame()
self.constraints = self.get_constraints_context()
self.background = self.get_background_context()
self.scenario = scenario
self.ground_truth = ground_truth
self.trend = self.stl.fit().trend
self.seasonal = self.stl.fit().seasonal
self.residual = self.stl.fit().resid
def get_constraints_context(self):
return None
def get_scenario_context(self, start_datetime, end_datetime):
return f"The {self.target_component_name} component of the series will be multiplied by {self.multiplier} between {start_datetime} and {end_datetime}."
def apply_modification(self, start_idx, duration, component_to_modify):
"""
Applies the modification to the STL component.
For now, it's a simple multiplication of the component by a random factor.
It could be expanded to include other modifications, such as:
- adding a constant value
- modifying the slope of the trend
- messing with the frequency of the seasonal component
"""
modified_component = component_to_modify.copy()
self.multiplier = self.sample_multiplier()
modified_component.iloc[start_idx : start_idx + duration] *= self.multiplier
return modified_component
def sample_multiplier(self, multiplier_min=-1, multiplier_max=1):
# pick trend modification from uniform distribution between -1 and 1
multiplier = self.random.uniform(multiplier_min, multiplier_max)
return multiplier
def get_stl_component(self, component):
if component == "trend":
return self.stl.fit().trend
elif component == "seasonal":
return self.stl.fit().seasonal
elif component == "residual":
return self.stl.fit().resid
else:
raise ValueError(
"The modification parameter must be provided. 'trend' or 'seasonal' are valid options."
)
class STLPredTrendMultiplierTask(STLPredMultiplierTask):
"""
A task where the trend component of the series is multiplied by a random factor.
Time series: agnostic
Context: synthetic
"""
__version__ = "0.0.1" # Modification will trigger re-caching
def __init__(self, fixed_config: dict = None, seed: int = None):
super().__init__(
target_component_name="trend", fixed_config=fixed_config, seed=seed
)
class STLPredSeasonalMultiplierTask(STLPredMultiplierTask):
"""
A task where the seasonal component of the series is multiplied by a random factor.
Time series: agnostic
Context: synthetic
"""
__version__ = "0.0.1" # Modification will trigger re-caching
def __init__(self, fixed_config: dict = None, seed: int = None):
super().__init__(
target_component_name="seasonal", fixed_config=fixed_config, seed=seed
)
class STLPredResidualMultiplierTask(STLPredMultiplierTask):
"""
A task where the residual component of the series is multiplied by a random factor.
Time series: agnostic
Context: synthetic
"""
__version__ = "0.0.1" # Modification will trigger re-caching
def __init__(self, fixed_config: dict = None, seed: int = None):
super().__init__(
target_component_name="residual", fixed_config=fixed_config, seed=seed
)
class STLPredTrendMultiplierWithNoDescriptionTask(STLPredTrendMultiplierTask):
"""
A task where the trend component of the series is multiplied by a random factor.
No description of the STL decomposition is provided.
Time series: agnostic
Context: synthetic
"""
__version__ = "0.0.1" # Modification will trigger re-caching
def get_background_context(self):
return STLNoDescriptionContext.get_background_context()
class STLPredTrendMultiplierWithShortDescriptionTask(STLPredTrendMultiplierTask):
"""
A task where the trend component of the series is multiplied by a random factor.
A short description of the STL decomposition is provided.
Time series: agnostic
Context: synthetic
"""
__version__ = "0.0.1" # Modification will trigger re-caching
def get_background_context(self):
return STLShortDescriptionContext.get_background_context()
class STLPredTrendMultiplierWithMediumDescriptionTask(STLPredTrendMultiplierTask):
"""
A task where the trend component of the series is multiplied by a random factor.
A medium description of the STL decomposition is provided.
Time series: agnostic
Context: synthetic
"""
__version__ = "0.0.1" # Modification will trigger re-caching
def get_background_context(self):
return STLMediumDescriptionContext.get_background_context()
class STLPredTrendMultiplierWithLongDescriptionTask(STLPredTrendMultiplierTask):
"""
A task where the trend component of the series is multiplied by a random factor.
A long description of the STL decomposition is provided.
Time series: agnostic
Context: synthetic
"""
__version__ = "0.0.1" # Modification will trigger re-caching
def get_background_context(self):
return STLLongDescriptionContext.get_background_context()
class STLPredSeasonalMultiplierWithNoDescriptionTask(STLPredSeasonalMultiplierTask):
"""
A task where the seasonal component of the series is multiplied by a random factor.
No description of the STL decomposition is provided.
Time series: agnostic
Context: synthetic
"""
__version__ = "0.0.1" # Modification will trigger re-caching
def get_background_context(self):
return STLNoDescriptionContext.get_background_context()
class STLPredSeasonalMultiplierWithShortDescriptionTask(STLPredSeasonalMultiplierTask):
"""
A task where the seasonal component of the series is multiplied by a random factor.
A short description of the STL decomposition is provided.
Time series: agnostic
Context: synthetic
"""
__version__ = "0.0.1" # Modification will trigger re-caching
def get_background_context(self):
return STLShortDescriptionContext.get_background_context()
class STLPredSeasonalMultiplierWithMediumDescriptionTask(STLPredSeasonalMultiplierTask):
"""
A task where the seasonal component of the series is multiplied by a random factor.
A medium description of the STL decomposition is provided.
Time series: agnostic
Context: synthetic
"""
__version__ = "0.0.1" # Modification will trigger re-caching
def get_background_context(self):
return STLMediumDescriptionContext.get_background_context()
class STLPredSeasonalMultiplierWithLongDescriptionTask(STLPredSeasonalMultiplierTask):
"""
A task where the seasonal component of the series is multiplied by a random factor.
A long description of the STL decomposition is provided.
Time series: agnostic
Context: synthetic
"""
__version__ = "0.0.1" # Modification will trigger re-caching
def get_background_context(self):
return STLLongDescriptionContext.get_background_context()
class STLPredResidualMultiplierWithNoDescriptionTask(STLPredResidualMultiplierTask):
"""
A task where the residual component of the series is multiplied by a random factor.
No description of the STL decomposition is provided.
Time series: agnostic
Context: synthetic
"""
__version__ = "0.0.1" # Modification will trigger re-caching
def get_background_context(self):
return STLNoDescriptionContext.get_background_context()
class STLPredResidualMultiplierWithShortDescriptionTask(STLPredResidualMultiplierTask):
"""
A task where the residual component of the series is multiplied by a random factor.
A short description of the STL decomposition is provided.
Time series: agnostic
Context: synthetic
"""
__version__ = "0.0.1" # Modification will trigger re-caching
def get_background_context(self):
return STLShortDescriptionContext.get_background_context()
class STLPredResidualMultiplierWithMediumDescriptionTask(STLPredResidualMultiplierTask):
"""
A task where the residual component of the series is multiplied by a random factor.
A medium description of the STL decomposition is provided.
Time series: agnostic
Context: synthetic
"""
__version__ = "0.0.1" # Modification will trigger re-caching
def get_background_context(self):
return STLMediumDescriptionContext.get_background_context()
class STLPredResidualMultiplierWithLongDescriptionTask(STLPredResidualMultiplierTask):
"""
A task where the residual component of the series is multiplied by a random factor.
A long description of the STL decomposition is provided.
Time series: agnostic
Context: synthetic
"""
__version__ = "0.0.1" # Modification will trigger re-caching
def get_background_context(self):
return STLLongDescriptionContext.get_background_context()
class STLPredTrendRemovedTask(STLPredTrendMultiplierTask):
"""
A task where the trend component of the series is removed.
Time series: agnostic
Context: synthetic
"""
__version__ = "0.0.1" # Modification will trigger re-caching
def sample_multiplier(self, multiplier_min=-1, multiplier_max=1):
return 0
def get_scenario_context(self, start_datetime, end_datetime):
return (
super()
.get_scenario_context(start_datetime, end_datetime)
.replace("multiplied by 0", "removed")
)
class STLPredSeasonalRemovedTask(STLPredSeasonalMultiplierTask):
"""
A task where the seasonal component of the series is removed.
Time series: agnostic
Context: synthetic
"""
__version__ = "0.0.1" # Modification will trigger re-caching
def sample_multiplier(self, multiplier_min=-1, multiplier_max=1):
return 0
def get_scenario_context(self, start_datetime, end_datetime):
return (
super()
.get_scenario_context(start_datetime, end_datetime)
.replace("multiplied by 0", "removed")
)
class STLPredResidualRemovedTask(STLPredResidualMultiplierTask):
"""
A task where the residual component of the series is removed.
Time series: agnostic
Context: synthetic
"""
__version__ = "0.0.1" # Modification will trigger re-caching
def sample_multiplier(self, multiplier_min=-1, multiplier_max=1):
return 0
def get_scenario_context(self, start_datetime, end_datetime):
return (
super()
.get_scenario_context(start_datetime, end_datetime)
.replace("multiplied by 0", "removed")
)
class STLPredTrendRemovedWithNoDescriptionTask(STLPredTrendRemovedTask):
"""
A task where the trend component of the series is removed.
No description of the STL decomposition is provided.
Time series: agnostic
Context: synthetic
"""
__version__ = "0.0.1" # Modification will trigger re-caching
def get_background_context(self):
return STLNoDescriptionContext.get_background_context()
class STLPredTrendRemovedWithShortDescriptionTask(STLPredTrendRemovedTask):
"""
A task where the trend component of the series is removed.
A short description of the STL decomposition is provided.
Time series: agnostic
Context: synthetic
"""
__version__ = "0.0.1" # Modification will trigger re-caching
def get_background_context(self):
return STLShortDescriptionContext.get_background_context()
class STLPredTrendRemovedWithMediumDescriptionTask(STLPredTrendRemovedTask):
"""
A task where the trend component of the series is removed.
A medium description of the STL decomposition is provided.
Time series: agnostic
Context: synthetic
"""
__version__ = "0.0.1" # Modification will trigger re-caching
def get_background_context(self):
return STLMediumDescriptionContext.get_background_context()
class STLPredTrendRemovedWithLongDescriptionTask(STLPredTrendRemovedTask):
"""
A task where the trend component of the series is removed.
A long description of the STL decomposition is provided.
Time series: agnostic
Context: synthetic
"""
__version__ = "0.0.1" # Modification will trigger re-caching
def get_background_context(self):
return STLLongDescriptionContext.get_background_context()
class STLPredSeasonalRemovedWithNoDescriptionTask(STLPredSeasonalRemovedTask):
"""
A task where the seasonal component of the series is removed.
No description of the STL decomposition is provided.
Time series: agnostic
Context: synthetic
"""
__version__ = "0.0.1" # Modification will trigger re-caching
def get_background_context(self):
return STLNoDescriptionContext.get_background_context()
class STLPredSeasonalRemovedWithShortDescriptionTask(STLPredSeasonalRemovedTask):
"""
A task where the seasonal component of the series is removed.
A short description of the STL decomposition is provided.
Time series: agnostic
Context: synthetic
"""
__version__ = "0.0.1" # Modification will trigger re-caching
def get_background_context(self):
return STLShortDescriptionContext.get_background_context()
class STLPredSeasonalRemovedWithMediumDescriptionTask(STLPredSeasonalRemovedTask):
"""
A task where the seasonal component of the series is removed.
A medium description of the STL decomposition is provided.
Time series: agnostic
Context: synthetic
"""
__version__ = "0.0.1" # Modification will trigger re-caching
def get_background_context(self):
return STLMediumDescriptionContext.get_background_context()
class STLPredSeasonalRemovedWithLongDescriptionTask(STLPredSeasonalRemovedTask):
"""
A task where the seasonal component of the series is removed.
A long description of the STL decomposition is provided.
Time series: agnostic
Context: synthetic
"""
__version__ = "0.0.1" # Modification will trigger re-caching
def get_background_context(self):
return STLLongDescriptionContext.get_background_context()
class STLPredResidualRemovedWithNoDescriptionTask(STLPredResidualRemovedTask):
"""
A task where the residual component of the series is removed.
No description of the STL decomposition is provided.
Time series: agnostic
Context: synthetic
"""
__version__ = "0.0.1" # Modification will trigger re-caching
def get_background_context(self):
return STLNoDescriptionContext.get_background_context()
class STLPredResidualRemovedWithShortDescriptionTask(STLPredResidualRemovedTask):
"""
A task where the residual component of the series is removed.
A short description of the STL decomposition is provided.
Time series: agnostic
Context: synthetic
"""
__version__ = "0.0.1" # Modification will trigger re-caching
def get_background_context(self):
return STLShortDescriptionContext.get_background_context()
class STLPredResidualRemovedWithMediumDescriptionTask(STLPredResidualRemovedTask):
"""
A task where the residual component of the series is removed.
A medium description of the STL decomposition is provided.
Time series: agnostic
Context: synthetic
"""
__version__ = "0.0.1" # Modification will trigger re-caching
def get_background_context(self):
return STLMediumDescriptionContext.get_background_context()
class STLPredResidualRemovedWithLongDescriptionTask(STLPredResidualRemovedTask):
"""
A task where the residual component of the series is removed.
A long description of the STL decomposition is provided.
Time series: agnostic
Context: synthetic
"""
__version__ = "0.0.1" # Modification will trigger re-caching
def get_background_context(self):
return STLLongDescriptionContext.get_background_context()
__TASKS__ = [
STLPredTrendMultiplierWithNoDescriptionTask,
STLPredTrendMultiplierWithShortDescriptionTask,
STLPredTrendMultiplierWithMediumDescriptionTask,
STLPredTrendMultiplierWithLongDescriptionTask,
STLPredSeasonalMultiplierWithNoDescriptionTask,
STLPredSeasonalMultiplierWithShortDescriptionTask,
STLPredSeasonalMultiplierWithMediumDescriptionTask,
STLPredSeasonalMultiplierWithLongDescriptionTask,
# STLPredResidualMultiplierWithNoDescriptionTask,
# STLPredResidualMultiplierWithShortDescriptionTask,
# STLPredResidualMultiplierWithMediumDescriptionTask,
# STLPredResidualMultiplierWithLongDescriptionTask,
STLPredTrendRemovedWithNoDescriptionTask,
STLPredTrendRemovedWithShortDescriptionTask,
STLPredTrendRemovedWithMediumDescriptionTask,
STLPredTrendRemovedWithLongDescriptionTask,
STLPredSeasonalRemovedWithNoDescriptionTask,
STLPredSeasonalRemovedWithShortDescriptionTask,
STLPredSeasonalRemovedWithMediumDescriptionTask,
STLPredSeasonalRemovedWithLongDescriptionTask,
# STLPredResidualRemovedWithNoDescriptionTask,
# STLPredResidualRemovedWithShortDescriptionTask,
# STLPredResidualRemovedWithMediumDescriptionTask,
# STLPredResidualRemovedWithLongDescriptionTask,
]