-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathcompile_roi_results.py
181 lines (153 loc) · 5.37 KB
/
compile_roi_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import argparse
import logging
import pandas as pd
import numpy as np
from pathlib import Path
from cik_benchmark import ALL_TASKS
TASKS_STR_TO_TASK = {x.__name__: x for x in ALL_TASKS}
logging.basicConfig(level=logging.INFO)
CAP = 5
METRIC_NAMES = {
"standard_crps": "unweighted_CRPS",
"crps": "RCRPS",
"roi_crps": "RoI_only_CRPS",
"non_roi_crps": "nonRoI_only_CRPS",
"violation_crps": "violation_CRPS",
}
def get_df(input_folder) -> pd.DataFrame:
entries = []
for f in input_folder.glob("*/*/*/*/evaluation"):
instance = f.parts[-2]
task = f.parts[-3]
model = f.parts[-4]
model_family = f.parts[-5]
if task not in TASKS_STR_TO_TASK.keys():
continue
s = open(f, "r").read().replace("nan", "10000000")
try:
entry = eval(s)
entry["model_family"] = model_family
entry["model"] = model
entry["Task"] = task
entry["instance"] = instance
for key, value in entry.items():
if type(value) != str and value < 0:
entry[key] = 10000000
entries.append(entry)
except:
logging.info(f"Cannot read file for: {model}, {task}, {instance}")
return pd.DataFrame(entries)
def get_pivot_table(df: pd.DataFrame, metric) -> pd.DataFrame:
def aggfunc(x):
x = list(x)
for idx, value in enumerate(x):
if value > CAP or np.isnan(value):
x[idx] = CAP
if len(x) < 5:
x.extend([CAP for _ in range(CAP - len(x))])
mean = np.mean(x)
std = np.std(x, ddof=1)
stderr = std / np.sqrt(len(x))
return f"{mean:.3f} ± {stderr:.3f}"
def missing_count(x):
x = list(x)
return 5 - len(x)
def count_nans(x):
x = pd.Series(x)
return x.isna().sum()
def get_capped_counts(x):
x = list(x)
return len([value for value in x if value > CAP])
capped_counts = pd.pivot_table(
df,
values=metric,
index=["Task"],
columns=["model_family"],
aggfunc=get_capped_counts,
)
missing_counts = pd.pivot_table(
df,
values=metric,
index=["Task"],
columns=["model_family"],
aggfunc=missing_count,
)
nan_counts = pd.pivot_table(
df, values=metric, index=["Task"], columns=["model_family"], aggfunc=count_nans
)
pivot_df = pd.pivot_table(
df, values=metric, index=["Task"], columns=["model_family"], aggfunc=aggfunc
)
return pivot_df, capped_counts, missing_counts, nan_counts
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--resultsdir",
type=str,
default="/starcaster/data/benchmark/results_24_sep_with_transform",
help="Input folder containing experiment results",
)
args = parser.parse_args()
input_folder = Path(args.resultsdir)
output_folder = Path(args.resultsdir)
df = get_df(input_folder)
significant_failures_count = {}
missing_failures_count = {}
nan_failures_count = {}
# Add the violation_crps to the various CRPS versions
for metric in METRIC_NAMES.keys():
df[metric] = df[metric] + df.violation_crps
for (
metric,
output_name,
) in METRIC_NAMES.items():
(
pivot_df,
significant_failures_count[metric],
missing_failures_count[metric],
nan_failures_count[metric],
) = get_pivot_table(df, metric)
# Get task-level views
significant_failures_count[metric].to_csv(
output_folder / f"significant_failures_count_{metric}_df_CAP_{CAP}.csv"
)
missing_failures_count[metric].to_csv(
output_folder / f"missing_failures_count_{metric}_df_CAP_{CAP}.csv"
)
nan_failures_count[metric].to_csv(
output_folder / f"nan_failures_count_{metric}_df_CAP_{CAP}.csv"
)
# Aggregate view: sum values from all tasks
significant_failures_count[metric] = (
significant_failures_count[metric].sum().to_dict()
)
missing_failures_count[metric] = missing_failures_count[metric].sum().to_dict()
nan_failures_count[metric] = nan_failures_count[metric].sum().to_dict()
pivot_df = pivot_df.sort_index()
pivot_df.to_csv(output_folder / f"results_{output_name}_CAP_{CAP}_oct16.csv")
significant_failures_count_df = pd.DataFrame.from_dict(
significant_failures_count, orient="index"
).astype(int)
missing_failures_count_df = pd.DataFrame.from_dict(
missing_failures_count, orient="index"
).astype(int)
nan_failures_count_df = pd.DataFrame.from_dict(
nan_failures_count, orient="index"
).astype(int)
total_failures_count_df = (
significant_failures_count_df.add(missing_failures_count_df)
.add(nan_failures_count_df)
.astype(int)
)
significant_failures_count_df.to_csv(
output_folder / f"significant_failures_count_df_CAP_{CAP}.csv"
)
missing_failures_count_df.to_csv(
output_folder / f"missing_failures_count_df_CAP_{CAP}.csv"
)
nan_failures_count_df.to_csv(output_folder / f"nan_failures_count_df_CAP_{CAP}.csv")
total_failures_count_df.to_csv(
output_folder / f"total_failures_count_df_CAP_{CAP}.csv"
)
if __name__ == "__main__":
main()