-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathfilters.h
436 lines (402 loc) · 17 KB
/
filters.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
#include "./common.h"
#ifndef SIGNALSMITH_DSP_FILTERS_H
#define SIGNALSMITH_DSP_FILTERS_H
#include "./perf.h"
#include <cmath>
#include <complex>
namespace signalsmith {
namespace filters {
/** @defgroup Filters Basic filters
@brief Classes for some common filter types
@{
@file
*/
/** Filter design methods.
These differ mostly in how they handle frequency-warping near Nyquist:
\diagram{filters-lowpass.svg}
\diagram{filters-highpass.svg}
\diagram{filters-peak.svg}
\diagram{filters-bandpass.svg}
\diagram{filters-notch.svg}
\diagram{filters-high-shelf.svg}
\diagram{filters-low-shelf.svg}
\diagram{filters-allpass.svg}
*/
enum class BiquadDesign {
bilinear, ///< Bilinear transform, adjusting for centre frequency but not bandwidth
cookbook, ///< RBJ's "Audio EQ Cookbook". Based on `bilinear`, adjusting bandwidth (for peak/notch/bandpass) to preserve the ratio between upper/lower boundaries. This performs oddly near Nyquist.
oneSided, ///< Based on `bilinear`, adjusting bandwidth to preserve the lower boundary (leaving the upper one loose).
vicanek ///< From Martin Vicanek's [Matched Second Order Digital Filters](https://vicanek.de/articles/BiquadFits.pdf). Falls back to `oneSided` for shelf and allpass filters. This takes the poles from the impulse-invariant approach, and then picks the zeros to create a better match. This means that Nyquist is not 0dB for peak/notch (or -Inf for lowpass), but it is a decent match to the analogue prototype.
};
/** A standard biquad.
This is not guaranteed to be stable if modulated at audio rate.
The default highpass/lowpass bandwidth (`defaultBandwidth`) produces a Butterworth filter when bandwidth-compensation is disabled.
Bandwidth compensation defaults to `BiquadDesign::oneSided` (or `BiquadDesign::cookbook` if `cookbookBandwidth` is enabled) for all filter types aside from highpass/lowpass (which use `BiquadDesign::bilinear`).*/
template<typename Sample, bool cookbookBandwidth=false>
class BiquadStatic {
static constexpr BiquadDesign bwDesign = cookbookBandwidth ? BiquadDesign::cookbook : BiquadDesign::oneSided;
Sample a1 = 0, a2 = 0, b0 = 1, b1 = 0, b2 = 0;
Sample x1 = 0, x2 = 0, y1 = 0, y2 = 0;
enum class Type {highpass, lowpass, highShelf, lowShelf, bandpass, notch, peak, allpass};
struct FreqSpec {
double scaledFreq;
double w0, sinW0, cosW0;
double inv2Q;
FreqSpec(double freq, BiquadDesign design) {
scaledFreq = std::max(1e-6, std::min(0.4999, freq));
if (design == BiquadDesign::cookbook) {
scaledFreq = std::min(0.45, scaledFreq);
}
w0 = 2*M_PI*scaledFreq;
cosW0 = std::cos(w0);
sinW0 = std::sin(w0);
}
void oneSidedCompQ() {
// Ratio between our (digital) lower boundary f1 and centre f0
double f1Factor = std::sqrt(inv2Q*inv2Q + 1) - inv2Q;
// Bilinear means discrete-time freq f = continuous-time freq tan(pi*xf/pi)
double ctF1 = std::tan(M_PI*scaledFreq*f1Factor), invCtF0 = (1 + cosW0)/sinW0;
double ctF1Factor = ctF1*invCtF0;
inv2Q = 0.5/ctF1Factor - 0.5*ctF1Factor;
}
};
SIGNALSMITH_INLINE static FreqSpec octaveSpec(double scaledFreq, double octaves, BiquadDesign design) {
FreqSpec spec(scaledFreq, design);
if (design == BiquadDesign::cookbook) {
// Approximately preserves bandwidth between halfway points
octaves *= spec.w0/spec.sinW0;
}
spec.inv2Q = std::sinh(std::log(2)*0.5*octaves); // 1/(2Q)
if (design == BiquadDesign::oneSided) spec.oneSidedCompQ();
return spec;
}
SIGNALSMITH_INLINE static FreqSpec qSpec(double scaledFreq, double q, BiquadDesign design) {
FreqSpec spec(scaledFreq, design);
spec.inv2Q = 0.5/q;
if (design == BiquadDesign::oneSided) spec.oneSidedCompQ();
return spec;
}
SIGNALSMITH_INLINE double dbToSqrtGain(double db) {
return std::pow(10, db*0.025);
}
SIGNALSMITH_INLINE BiquadStatic & configure(Type type, FreqSpec calc, double sqrtGain, BiquadDesign design) {
double w0 = calc.w0;
if (design == BiquadDesign::vicanek) {
if (type == Type::notch) { // Heuristic for notches near Nyquist
calc.inv2Q *= (1 - calc.scaledFreq*0.5);
}
double Q = (type == Type::peak ? 0.5*sqrtGain : 0.5)/calc.inv2Q;
double q = (type == Type::peak ? 1/sqrtGain : 1)*calc.inv2Q;
double expmqw = std::exp(-q*w0);
double da1, da2;
if (q <= 1) {
a1 = da1 = -2*expmqw*std::cos(std::sqrt(1 - q*q)*w0);
} else {
a1 = da1 = -2*expmqw*std::cosh(std::sqrt(q*q - 1)*w0);
}
a2 = da2 = expmqw*expmqw;
double sinpd2 = std::sin(w0/2);
double p0 = 1 - sinpd2*sinpd2, p1 = sinpd2*sinpd2, p2 = 4*p0*p1;
double A0 = 1 + da1 + da2, A1 = 1 - da1 + da2, A2 = -4*da2;
A0 *= A0;
A1 *= A1;
if (type == Type::lowpass) {
double R1 = (A0*p0 + A1*p1 + A2*p2)*Q*Q;
double B0 = A0, B1 = (R1 - B0*p0)/p1;
b0 = 0.5*(std::sqrt(B0) + std::sqrt(std::max(0.0, B1)));
b1 = std::sqrt(B0) - b0;
b2 = 0;
return *this;
} else if (type == Type::highpass) {
b2 = b0 = std::sqrt(A0*p0 + A1*p1 + A2*p2)*Q/(4*p1);
b1 = -2*b0;
return *this;
} else if (type == Type::bandpass) {
double R1 = A0*p0 + A1*p1 + A2*p2;
double R2 = -A0 + A1 + 4*(p0 - p1)*A2;
double B2 = (R1 - R2*p1)/(4*p1*p1);
double B1 = R2 + 4*(p1 - p0)*B2;
b1 = -0.5*std::sqrt(std::max(0.0, B1));
b0 = 0.5*(std::sqrt(std::max(0.0, B2 + 0.25*B1)) - b1);
b2 = -b0 - b1;
return *this;
} else if (type == Type::notch) {
// The Vicanek paper doesn't cover notches (band-stop), but we know where the zeros should be:
b0 = 1;
double db1 = -2*std::cos(w0); // might be higher precision
b1 = db1;
b2 = 1;
// Scale so that B0 == A0 to get 0dB at f=0
double scale = std::sqrt(A0)/(b0 + db1 + b2);
b0 *= scale;
b1 *= scale;
b2 *= scale;
return *this;
} else if (type == Type::peak) {
double G2 = (sqrtGain*sqrtGain)*(sqrtGain*sqrtGain);
double R1 = (A0*p0 + A1*p1 + A2*p2)*G2;
double R2 = (-A0 + A1 + 4*(p0 - p1)*A2)*G2;
double B0 = A0;
double B2 = (R1 - R2*p1 - B0)/(4*p1*p1);
double B1 = R2 + B0 + 4*(p1 - p0)*B2;
double W = 0.5*(std::sqrt(B0) + std::sqrt(std::max(0.0, B1)));
b0 = 0.5*(W + std::sqrt(std::max(0.0, W*W + B2)));
b1 = 0.5*(std::sqrt(B0) - std::sqrt(std::max(0.0, B1)));
b2 = -B2/(4*b0);
return *this;
}
// All others fall back to `oneSided`
design = BiquadDesign::oneSided;
calc.oneSidedCompQ();
}
double alpha = calc.sinW0*calc.inv2Q;
double A = sqrtGain, sqrtA2alpha = 2*std::sqrt(A)*alpha;
double a0;
if (type == Type::highpass) {
b1 = -1 - calc.cosW0;
b0 = b2 = (1 + calc.cosW0)*0.5;
a0 = 1 + alpha;
a1 = -2*calc.cosW0;
a2 = 1 - alpha;
} else if (type == Type::lowpass) {
b1 = 1 - calc.cosW0;
b0 = b2 = b1*0.5;
a0 = 1 + alpha;
a1 = -2*calc.cosW0;
a2 = 1 - alpha;
} else if (type == Type::highShelf) {
b0 = A*((A+1)+(A-1)*calc.cosW0+sqrtA2alpha);
b2 = A*((A+1)+(A-1)*calc.cosW0-sqrtA2alpha);
b1 = -2*A*((A-1)+(A+1)*calc.cosW0);
a0 = (A+1)-(A-1)*calc.cosW0+sqrtA2alpha;
a2 = (A+1)-(A-1)*calc.cosW0-sqrtA2alpha;
a1 = 2*((A-1)-(A+1)*calc.cosW0);
} else if (type == Type::lowShelf) {
b0 = A*((A+1)-(A-1)*calc.cosW0+sqrtA2alpha);
b2 = A*((A+1)-(A-1)*calc.cosW0-sqrtA2alpha);
b1 = 2*A*((A-1)-(A+1)*calc.cosW0);
a0 = (A+1)+(A-1)*calc.cosW0+sqrtA2alpha;
a2 = (A+1)+(A-1)*calc.cosW0-sqrtA2alpha;
a1 = -2*((A-1)+(A+1)*calc.cosW0);
} else if (type == Type::bandpass) {
b0 = alpha;
b1 = 0;
b2 = -alpha;
a0 = 1 + alpha;
a1 = -2*calc.cosW0;
a2 = 1 - alpha;
} else if (type == Type::notch) {
b0 = 1;
b1 = -2*calc.cosW0;
b2 = 1;
a0 = 1 + alpha;
a1 = b1;
a2 = 1 - alpha;
} else if (type == Type::peak) {
b0 = 1 + alpha*A;
b1 = -2*calc.cosW0;
b2 = 1 - alpha*A;
a0 = 1 + alpha/A;
a1 = b1;
a2 = 1 - alpha/A;
} else if (type == Type::allpass) {
a0 = b2 = 1 + alpha;
a1 = b1 = -2*calc.cosW0;
a2 = b0 = 1 - alpha;
} else {
// reset to neutral
a1 = a2 = b1 = b2 = 0;
a0 = b0 = 1;
}
double invA0 = 1/a0;
b0 *= invA0;
b1 *= invA0;
b2 *= invA0;
a1 *= invA0;
a2 *= invA0;
return *this;
}
public:
static constexpr double defaultQ = 0.7071067811865476; // sqrt(0.5)
static constexpr double defaultBandwidth = 1.8999686269529916; // equivalent to above Q
Sample operator ()(Sample x0) {
Sample y0 = x0*b0 + x1*b1 + x2*b2 - y1*a1 - y2*a2;
y2 = y1;
y1 = y0;
x2 = x1;
x1 = x0;
return y0;
}
void reset() {
x1 = x2 = y1 = y2 = 0;
}
std::complex<Sample> response(Sample scaledFreq) const {
Sample w = scaledFreq*Sample(2*M_PI);
std::complex<Sample> invZ = {std::cos(w), -std::sin(w)}, invZ2 = invZ*invZ;
return (b0 + invZ*b1 + invZ2*b2)/(Sample(1) + invZ*a1 + invZ2*a2);
}
Sample responseDb(Sample scaledFreq) const {
Sample w = scaledFreq*Sample(2*M_PI);
std::complex<Sample> invZ = {std::cos(w), -std::sin(w)}, invZ2 = invZ*invZ;
Sample energy = std::norm(b0 + invZ*b1 + invZ2*b2)/std::norm(Sample(1) + invZ*a1 + invZ2*a2);
return 10*std::log10(energy);
}
/// @name Lowpass
/// @{
BiquadStatic & lowpass(double scaledFreq, double octaves=defaultBandwidth, BiquadDesign design=BiquadDesign::bilinear) {
return configure(Type::lowpass, octaveSpec(scaledFreq, octaves, design), 0, design);
}
BiquadStatic & lowpassQ(double scaledFreq, double q, BiquadDesign design=BiquadDesign::bilinear) {
return configure(Type::lowpass, qSpec(scaledFreq, q, design), 0, design);
}
/// @deprecated use `BiquadDesign` instead
void lowpass(double scaledFreq, double octaves, bool correctBandwidth) {
lowpass(scaledFreq, octaves, correctBandwidth ? bwDesign : BiquadDesign::bilinear);
}
/// @deprecated By the time you care about `design`, you should care about the bandwidth
BiquadStatic & lowpass(double scaledFreq, BiquadDesign design) {
return lowpass(scaledFreq, defaultBandwidth, design);
}
/// @}
/// @name Highpass
/// @{
BiquadStatic & highpass(double scaledFreq, double octaves=defaultBandwidth, BiquadDesign design=BiquadDesign::bilinear) {
return configure(Type::highpass, octaveSpec(scaledFreq, octaves, design), 0, design);
}
BiquadStatic & highpassQ(double scaledFreq, double q, BiquadDesign design=BiquadDesign::bilinear) {
return configure(Type::highpass, qSpec(scaledFreq, q, design), 0, design);
}
/// @deprecated use `BiquadDesign` instead
void highpass(double scaledFreq, double octaves, bool correctBandwidth) {
highpass(scaledFreq, octaves, correctBandwidth ? bwDesign : BiquadDesign::bilinear);
}
/// @deprecated By the time you care about `design`, you should care about the bandwidth
BiquadStatic & highpass(double scaledFreq, BiquadDesign design) {
return highpass(scaledFreq, defaultBandwidth, design);
}
/// @}
/// @name Bandpass
/// @{
BiquadStatic & bandpass(double scaledFreq, double octaves=defaultBandwidth, BiquadDesign design=bwDesign) {
return configure(Type::bandpass, octaveSpec(scaledFreq, octaves, design), 0, design);
}
BiquadStatic & bandpassQ(double scaledFreq, double q, BiquadDesign design=bwDesign) {
return configure(Type::bandpass, qSpec(scaledFreq, q, design), 0, design);
}
/// @deprecated use `BiquadDesign` instead
void bandpass(double scaledFreq, double octaves, bool correctBandwidth) {
bandpass(scaledFreq, octaves, correctBandwidth ? bwDesign : BiquadDesign::bilinear);
}
/// @deprecated By the time you care about `design`, you should care about the bandwidth
BiquadStatic & bandpass(double scaledFreq, BiquadDesign design) {
return bandpass(scaledFreq, defaultBandwidth, design);
}
/// @}
/// @name Notch
/// @{
BiquadStatic & notch(double scaledFreq, double octaves=defaultBandwidth, BiquadDesign design=bwDesign) {
return configure(Type::notch, octaveSpec(scaledFreq, octaves, design), 0, design);
}
BiquadStatic & notchQ(double scaledFreq, double q, BiquadDesign design=bwDesign) {
return configure(Type::notch, qSpec(scaledFreq, q, design), 0, design);
}
/// @deprecated use `BiquadDesign` instead
void notch(double scaledFreq, double octaves, bool correctBandwidth) {
notch(scaledFreq, octaves, correctBandwidth ? bwDesign : BiquadDesign::bilinear);
}
/// @deprecated By the time you care about `design`, you should care about the bandwidth
BiquadStatic & notch(double scaledFreq, BiquadDesign design) {
return notch(scaledFreq, defaultBandwidth, design);
}
/// @deprecated alias for `.notch()`
void bandStop(double scaledFreq, double octaves=1, bool correctBandwidth=true) {
notch(scaledFreq, octaves, correctBandwidth ? bwDesign : BiquadDesign::bilinear);
}
/// @}
/// @name Peak
/// @{
BiquadStatic & peak(double scaledFreq, double gain, double octaves=1, BiquadDesign design=bwDesign) {
return configure(Type::peak, octaveSpec(scaledFreq, octaves, design), std::sqrt(gain), design);
}
BiquadStatic & peakDb(double scaledFreq, double db, double octaves=1, BiquadDesign design=bwDesign) {
return configure(Type::peak, octaveSpec(scaledFreq, octaves, design), dbToSqrtGain(db), design);
}
BiquadStatic & peakQ(double scaledFreq, double gain, double q, BiquadDesign design=bwDesign) {
return configure(Type::peak, qSpec(scaledFreq, q, design), std::sqrt(gain), design);
}
BiquadStatic & peakDbQ(double scaledFreq, double db, double q, BiquadDesign design=bwDesign) {
return configure(Type::peak, qSpec(scaledFreq, q, design), dbToSqrtGain(db), design);
}
/// @deprecated By the time you care about `design`, you should care about the bandwidth
BiquadStatic & peak(double scaledFreq, double gain, BiquadDesign design) {
return peak(scaledFreq, gain, 1, design);
}
/// @}
/// @name High shelf
/// @{
BiquadStatic & highShelf(double scaledFreq, double gain, double octaves=defaultBandwidth, BiquadDesign design=bwDesign) {
return configure(Type::highShelf, octaveSpec(scaledFreq, octaves, design), std::sqrt(gain), design);
}
BiquadStatic & highShelfDb(double scaledFreq, double db, double octaves=defaultBandwidth, BiquadDesign design=bwDesign) {
return configure(Type::highShelf, octaveSpec(scaledFreq, octaves, design), dbToSqrtGain(db), design);
}
BiquadStatic & highShelfQ(double scaledFreq, double gain, double q, BiquadDesign design=bwDesign) {
return configure(Type::highShelf, qSpec(scaledFreq, q, design), std::sqrt(gain), design);
}
BiquadStatic & highShelfDbQ(double scaledFreq, double db, double q, BiquadDesign design=bwDesign) {
return configure(Type::highShelf, qSpec(scaledFreq, q, design), dbToSqrtGain(db), design);
}
/// @deprecated use `BiquadDesign` instead
BiquadStatic & highShelf(double scaledFreq, double gain, double octaves, bool correctBandwidth) {
return highShelf(scaledFreq, gain, octaves, correctBandwidth ? bwDesign : BiquadDesign::bilinear);
}
/// @deprecated use `BiquadDesign` instead
BiquadStatic & highShelfDb(double scaledFreq, double db, double octaves, bool correctBandwidth) {
return highShelfDb(scaledFreq, db, octaves, correctBandwidth ? bwDesign : BiquadDesign::bilinear);
}
/// @}
/// @name Low shelf
/// @{
BiquadStatic & lowShelf(double scaledFreq, double gain, double octaves=2, BiquadDesign design=bwDesign) {
return configure(Type::lowShelf, octaveSpec(scaledFreq, octaves, design), std::sqrt(gain), design);
}
BiquadStatic & lowShelfDb(double scaledFreq, double db, double octaves=2, BiquadDesign design=bwDesign) {
return configure(Type::lowShelf, octaveSpec(scaledFreq, octaves, design), dbToSqrtGain(db), design);
}
BiquadStatic & lowShelfQ(double scaledFreq, double gain, double q, BiquadDesign design=bwDesign) {
return configure(Type::lowShelf, qSpec(scaledFreq, q, design), std::sqrt(gain), design);
}
BiquadStatic & lowShelfDbQ(double scaledFreq, double db, double q, BiquadDesign design=bwDesign) {
return configure(Type::lowShelf, qSpec(scaledFreq, q, design), dbToSqrtGain(db), design);
}
/// @deprecated use `BiquadDesign` instead
BiquadStatic & lowShelf(double scaledFreq, double gain, double octaves, bool correctBandwidth) {
return lowShelf(scaledFreq, gain, octaves, correctBandwidth ? bwDesign : BiquadDesign::bilinear);
}
/// @deprecated use `BiquadDesign` instead
BiquadStatic & lowShelfDb(double scaledFreq, double db, double octaves, bool correctBandwidth) {
return lowShelfDb(scaledFreq, db, octaves, correctBandwidth ? bwDesign : BiquadDesign::bilinear);
}
/// @}
/// @name Allpass
/// @{
BiquadStatic & allpass(double scaledFreq, double octaves=1, BiquadDesign design=bwDesign) {
return configure(Type::allpass, octaveSpec(scaledFreq, octaves, design), 0, design);
}
BiquadStatic & allpassQ(double scaledFreq, double q, BiquadDesign design=bwDesign) {
return configure(Type::allpass, qSpec(scaledFreq, q, design), 0, design);
}
/// @}
BiquadStatic & addGain(double factor) {
b0 *= factor;
b1 *= factor;
b2 *= factor;
return *this;
}
BiquadStatic & addGainDb(double db) {
return addGain(std::pow(10, db*0.05));
}
};
/** @} */
}} // signalsmith::filters::
#endif // include guard