-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsentperslib.py
318 lines (276 loc) · 10.9 KB
/
sentperslib.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from math import pi
import re
from nltk.corpus import stopwords
from nltk.stem.wordnet import WordNetLemmatizer
import string
from scipy.spatial import distance
import sys
import codecs
bins = 32
frequency = 3000
trait_name = ["Openness", "Conscentiousness", "Extraversion",
"Agreableness", "Neuroticism"]
gloveFilePath = "../dataset/glove.6B.300d"
schwartzNames = ["selfdirection", "stimulation", "hedonism", "achievement",
"power", "security", "conformity", "tradition",
"benevolence", "universalism"]
schwartzCentroidsFilePath = "bhv_centroids.csv"
def kl_divergence(p, q):
return (p*np.log(p/q)).sum()
def dist_info(trait_arr, trait_name):
print(trait_name)
print("mean, std, var", np.mean(np.asarray(trait_arr)),
np.std(np.asarray(trait_arr)), np.var(np.asarray(trait_arr)))
def read_and_display_distribution(input_csv, title):
X = pd.read_csv(input_csv, header=None)
o = X.iloc[0, :]
c = X.iloc[1, :]
e = X.iloc[2, :]
a = X.iloc[3, :]
n = X.iloc[4, :]
pos = 0
ocean = [o, c, e, a, n]
for trait in ocean:
dist_info(trait, trait_name[pos])
plt.title(title+" "+str(trait_name[pos]))
plt.hist(trait, bins=bins, range=(1, 5))
plt.ylabel("frequency")
plt.xlabel("score")
plt.axis([1, 5, 0, frequency])
plt.grid()
plt.draw()
plt.savefig("./img/"+title+"_"+str(trait_name[pos])+'.png', dpi=100)
plt.close()
pos = pos + 1
return ocean
def mean_big5_768(dataset_path):
'''
Compute and return the mean of O,C,E,A,N of dataset.
Dataset must be a csv with no header and
768 feature from embedding phase +
5 traits in the ocean order.
'''
# original dataset "../train_whole_lines.csv"
dataset = pd.read_csv(dataset_path, header=None)
Y = dataset.iloc[:, 768:] # Big5 scores related to X
o = Y.iloc[:, 0]
c = Y.iloc[:, 1]
e = Y.iloc[:, 2]
a = Y.iloc[:, 3]
n = Y.iloc[:, 4]
return np.mean(o), np.mean(c), np.mean(e), np.mean(a), np.mean(n)
def mean_big5_5lines(dataset_path):
'''
Open a csv dataset made up of 5 lines (o,c,e,a,n)
Return the 5 means
'''
big5_mean = []
fi = open(dataset_path, "r")
for i in range(5):
line = fi.readline()
line = line.rstrip("\n")
elements = line.split(",")
mean = np.array(elements, dtype=float)
mean = np.mean(mean, axis=0)
big5_mean.append(mean)
fi.close()
return big5_mean
def radar_plot(handle, big5, filename, big5_mean):
# Number of variables
categories = ['OPE', 'CON', 'EXT', 'AGR', 'NEU']
N = len(categories)
# What will be the angle of each axis in the plot?
# (we divide the plot / number of variable)
angles = [n / float(N) * 2 * pi for n in range(N)]
angles += angles[:1]
# Initialise the spider plot
ax = plt.subplot(111, polar=True)
# If you want the first axis to be on top:
ax.set_theta_offset(pi / 2)
ax.set_theta_direction(-1)
# Draw one axe per variable + add labels labels yet
plt.xticks(angles[:-1], categories)
# Draw ylabels
ax.set_rlabel_position(0)
plt.yticks([1, 2, 3, 4], ['1', '2', '3', '4'], color="grey", size=7)
plt.ylim(0, 5)
# Ind1
values = big5
values += values[:1]
ax.plot(angles, values, linewidth=1, linestyle='solid')
ax.fill(angles, values, 'b', alpha=0.1)
# Ind2
values = big5_mean
values += values[:1]
ax.plot(angles, values, linewidth=1, linestyle='solid', label="Mean")
ax.fill(angles, values, 'r', alpha=0.1)
# Add title
plt.suptitle("Submitted text Big5", size=16)
plt.subplots_adjust(top=0.83)
# Save file
plt.savefig("flaskr/static/images/"+filename+".jpg")
plt.close()
def compute_centroids(filename):
fout = open(filename, "w")
# file name of the output file created in the same directory
selfdirection = ["creativity", "freedom", "goal-setting", "curious",
"independent", "self-respect", "intelligent", "privacy"]
stimulation = ["excitement", "novelty", "challenge", "variety",
"stimulation", "daring"]
hedonism = ["pleasure", "sensuous", "gratification", "enjoyable",
"self-indulgent"]
achievement = ["ambitious", "successful", "capable", "influential",
"intelligent", "self-respect"]
power = ["authority", "wealth", "power", "reputation", "notoriety"]
security = ["safety", "harmony", "stability", "order", "security", "clean",
"reciprocation", "healthy", "moderate", "belonging"]
conformity = ["obedient", "self-discipline", "politeness", "honoring",
"loyal", "responsible"]
tradition = ["tradition", "humble", "devout", "moderate", "spiritualist"]
benevolence = ["helpful", "honest", "forgiving", "responsible", "loyal",
"friendship", "love", "meaningful"]
universalism = ["broadminded", "justice", "equality", "peace", "beauty",
"environment-friendly", "wisdom", "environmentalist",
"harmony"]
schwartzBasicHumanValues = [selfdirection, stimulation, hedonism,
achievement, power, security, conformity,
tradition, benevolence, universalism]
glove = loadGloveModel(gloveFilePath)
pos = 0
schwartzCentroids = {}
for humanValue in schwartzBasicHumanValues:
count_elements = 0.0
schwartzNCentroid = [0.0]
schwartzNCentroid = schwartzNCentroid*300
schwartzNCentroid = np.asarray(schwartzNCentroid)
for representativeWord in humanValue:
schwartzNCentroid = schwartzNCentroid + \
np.asarray(glove[representativeWord])
count_elements += 1
schwartzCentroids[schwartzNames[pos]] = \
schwartzNCentroid/count_elements
fout.write(','.join(map(str, schwartzCentroids[schwartzNames[pos]])))
fout.write("\n")
pos += 1
fout.close()
def loadGloveModel(gloveFile):
# "Loading Glove Model"
# to make it faster
# https://blog.ekbana.com/loading-glove-pre-trained-word-embedding-model-from-text-file-faster-5d3e8f2b8455
f = open(gloveFile, 'r')
model = {}
for line in f:
splitLine = line.split()
word = splitLine[0]
embedding = np.array([float(val) for val in splitLine[1:]])
model[word] = embedding
f.close()
return model
def convert_to_binary(embedding_path):
"""
Here, it takes path to embedding text file provided by glove.
:param embedding_path: takes path of the embedding which is in
text format or any format other than binary.
:return: a binary file of the given embeddings which takes a lot
less time to load.
"""
f = codecs.open(embedding_path + ".txt", 'r', encoding='utf-8')
wv = []
with codecs.open(embedding_path + ".vocab", "w", encoding='utf-8') \
as vocab_write:
count = 0
for line in f:
if count == 0:
pass
else:
splitlines = line.split()
vocab_write.write(splitlines[0].strip())
vocab_write.write("\n")
wv.append([float(val) for val in splitlines[1:]])
count += 1
np.save(embedding_path + ".npy", np.array(wv))
def load_embeddings_binary(embeddings_path):
"""
It loads embedding provided by glove which is saved as binary file.
Loading of this model is
about second faster than that of loading of txt glove file as model.
:param embeddings_path: path of glove file.
:return: glove model
"""
with codecs.open(embeddings_path + '.vocab', 'r', 'utf-8') as f_in:
index2word = [line.strip() for line in f_in]
wv = np.load(embeddings_path + '.npy')
model = {}
for i, w in enumerate(index2word):
model[w] = wv[i]
return model
def get_w2v(sentence, model):
"""
:param sentence: inputs a single sentences whose
word embedding is to be extracted.
:param model: inputs glove model.
:return: returns numpy array containing word embedding
of all words in input sentence.
"""
return np.array([model.get(val, np.zeros(100))
for val in sentence.split()], dtype=np.float64)
def clean(doc):
stop = set(stopwords.words('english'))
exclude = set(string.punctuation)
lemma = WordNetLemmatizer()
stop_free = " ".join([i for i in doc.lower().split() if i not in stop])
punc_free = ''.join(ch for ch in stop_free if ch not in exclude)
normalized = " ".join(lemma.lemmatize(word) for word in punc_free.split())
return normalized
def compute_bhv(text):
final_bhv = []
# localModel = loadGloveModel(gloveFilePath)
localModel = load_embeddings_binary(gloveFilePath)
total_words = {}
cumulative_vectors = {}
schwartzCentroids = {}
fileCentroids = open(schwartzCentroidsFilePath, "r")
NON_BMP_RE = re.compile(u"[^\U00000000-\U0000d7ff\U0000e000-\U0000ffff]",
flags=re.UNICODE)
for category in schwartzNames:
total_words[category] = 0
cumulative_vectors[category] = np.asarray([0.0]*300)
line = fileCentroids.readline()
line = line.rstrip("\n")
elem = line.split(",")
schwartzCentroids[category] = np.asarray(elem, dtype=float)
doc_complete = text.split('\n')
doc_cleaned = [clean(doc).split() for doc in doc_complete]
for line in doc_cleaned:
for word in line:
if word.startswith('@') or word.isdigit() or ("http" in word):
continue
else:
word = NON_BMP_RE.sub('', word)
if len(word) > 0:
if word in localModel:
min_distance = sys.float_info.max
which_schwartz = ""
for pos in schwartzNames:
now_distance = \
distance.euclidean(np.asarray(localModel.get(word, np.zeros(100)), dtype=float), schwartzCentroids[pos])
if now_distance < min_distance:
min_distance = now_distance
which_schwartz = pos
total_words[which_schwartz] += 1
cumulative_vectors[which_schwartz] += \
np.asarray(localModel[word])
for category in schwartzNames:
if total_words[category] != 0:
now_centroid = cumulative_vectors[category]/total_words[category]
dist = distance.euclidean(now_centroid, schwartzCentroids[pos])
if dist != 0:
final_bhv.append(str(round(total_words[category]*(1/dist), 3)))
else:
final_bhv.append("max")
else:
final_bhv.append(0)
return final_bhv