forked from MarkMoHR/virtual_sketching
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhyper_parameters.py
341 lines (250 loc) · 10.5 KB
/
hyper_parameters.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
import tensorflow as tf
#############################################
# Common parameters
#############################################
FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_string(
'dataset_dir',
'datasets',
'The directory of sketch data of the dataset.')
tf.app.flags.DEFINE_string(
'log_root',
'outputs/log',
'Directory to store tensorboard.')
tf.app.flags.DEFINE_string(
'log_img_root',
'outputs/log_img',
'Directory to store intermediate output images.')
tf.app.flags.DEFINE_string(
'snapshot_root',
'outputs/snapshot',
'Directory to store model checkpoints.')
tf.app.flags.DEFINE_string(
'neural_renderer_path',
'outputs/snapshot/pretrain_neural_renderer/renderer_300000.tfmodel',
'Path to the neural renderer model.')
tf.app.flags.DEFINE_string(
'perceptual_model_root',
'outputs/snapshot/pretrain_perceptual_model',
'Directory to store perceptual model.')
tf.app.flags.DEFINE_string(
'data',
'',
'The dataset type.')
def get_default_hparams_clean():
"""Return default HParams for sketch-rnn."""
hparams = tf.contrib.training.HParams(
program_name='new_train_clean_line_drawings',
data_set='clean_line_drawings', # Our dataset.
input_channel=1,
num_steps=75040, # Total number of steps of training.
save_every=75000,
eval_every=5000,
max_seq_len=48,
batch_size=20,
gpus=[0, 1],
loop_per_gpu=1,
sn_loss_type='increasing', # ['decreasing', 'fixed', 'increasing']
stroke_num_loss_weight=0.02,
stroke_num_loss_weight_end=0.0,
increase_start_steps=25000,
decrease_stop_steps=40000,
perc_loss_layers=['ReLU1_2', 'ReLU2_2', 'ReLU3_3', 'ReLU5_1'],
perc_loss_fuse_type='add', # ['max', 'add', 'raw_add', 'weighted_sum']
init_cursor_on_undrawn_pixel=False,
early_pen_loss_type='move', # ['head', 'tail', 'move']
early_pen_loss_weight=0.1,
early_pen_length=7,
min_width=0.01,
min_window_size=32,
max_scaling=2.0,
encode_cursor_type='value',
image_size_small=128,
image_size_large=278,
cropping_type='v3', # ['v2', 'v3']
pasting_type='v3', # ['v2', 'v3']
pasting_diff=True,
concat_win_size=True,
encoder_type='conv13_c3',
# ['conv10', 'conv10_deep', 'conv13', 'conv10_c3', 'conv10_deep_c3', 'conv13_c3']
# ['conv13_c3_attn']
# ['combine33', 'combine43', 'combine53', 'combineFC']
vary_thickness=False,
outside_loss_weight=10.0,
win_size_outside_loss_weight=10.0,
resize_method='AREA', # ['BILINEAR', 'NEAREST_NEIGHBOR', 'BICUBIC', 'AREA']
concat_cursor=True,
use_softargmax=True,
soft_beta=10, # value for the soft argmax
raster_loss_weight=1.0,
dec_rnn_size=256, # Size of decoder.
dec_model='hyper', # Decoder: lstm, layer_norm or hyper.
# z_size=128, # Size of latent vector z. Recommend 32, 64 or 128.
bin_gt=True,
stop_accu_grad=True,
random_cursor=True,
cursor_type='next',
raster_size=128,
pix_drop_kp=1.0, # Dropout keep rate
add_coordconv=True,
position_format='abs',
raster_loss_base_type='perceptual', # [l1, mse, perceptual]
grad_clip=1.0, # Gradient clipping. Recommend leaving at 1.0.
learning_rate=0.0001, # Learning rate.
decay_rate=0.9999, # Learning rate decay per minibatch.
decay_power=0.9,
min_learning_rate=0.000001, # Minimum learning rate.
use_recurrent_dropout=True, # Dropout with memory loss. Recommended
recurrent_dropout_prob=0.90, # Probability of recurrent dropout keep.
use_input_dropout=False, # Input dropout. Recommend leaving False.
input_dropout_prob=0.90, # Probability of input dropout keep.
use_output_dropout=False, # Output dropout. Recommend leaving False.
output_dropout_prob=0.90, # Probability of output dropout keep.
model_mode='train' # ['train', 'eval', 'sample']
)
return hparams
def get_default_hparams_rough():
"""Return default HParams for sketch-rnn."""
hparams = tf.contrib.training.HParams(
program_name='new_train_rough_sketches',
data_set='rough_sketches', # ['rough_sketches', 'faces']
input_channel=3,
num_steps=90040, # Total number of steps of training.
save_every=90000,
eval_every=5000,
max_seq_len=48,
batch_size=20,
gpus=[0, 1],
loop_per_gpu=1,
sn_loss_type='increasing', # ['decreasing', 'fixed', 'increasing']
stroke_num_loss_weight=0.1,
stroke_num_loss_weight_end=0.0,
increase_start_steps=25000,
decrease_stop_steps=40000,
photo_prob_type='one', # ['increasing', 'zero', 'one']
photo_prob_start_step=35000,
perc_loss_layers=['ReLU2_2', 'ReLU3_3', 'ReLU5_1'],
perc_loss_fuse_type='add', # ['max', 'add', 'raw_add', 'weighted_sum']
early_pen_loss_type='move', # ['head', 'tail', 'move']
early_pen_loss_weight=0.2,
early_pen_length=7,
min_width=0.01,
min_window_size=32,
max_scaling=2.0,
encode_cursor_type='value',
image_size_small=128,
image_size_large=278,
cropping_type='v3', # ['v2', 'v3']
pasting_type='v3', # ['v2', 'v3']
pasting_diff=True,
concat_win_size=True,
encoder_type='conv13_c3',
# ['conv10', 'conv10_deep', 'conv13', 'conv10_c3', 'conv10_deep_c3', 'conv13_c3']
# ['conv13_c3_attn']
# ['combine33', 'combine43', 'combine53', 'combineFC']
outside_loss_weight=10.0,
win_size_outside_loss_weight=10.0,
resize_method='AREA', # ['BILINEAR', 'NEAREST_NEIGHBOR', 'BICUBIC', 'AREA']
concat_cursor=True,
use_softargmax=True,
soft_beta=10, # value for the soft argmax
raster_loss_weight=1.0,
dec_rnn_size=256, # Size of decoder.
dec_model='hyper', # Decoder: lstm, layer_norm or hyper.
# z_size=128, # Size of latent vector z. Recommend 32, 64 or 128.
bin_gt=True,
stop_accu_grad=True,
random_cursor=True,
cursor_type='next',
raster_size=128,
pix_drop_kp=1.0, # Dropout keep rate
add_coordconv=True,
position_format='abs',
raster_loss_base_type='perceptual', # [l1, mse, perceptual]
grad_clip=1.0, # Gradient clipping. Recommend leaving at 1.0.
learning_rate=0.0001, # Learning rate.
decay_rate=0.9999, # Learning rate decay per minibatch.
decay_power=0.9,
min_learning_rate=0.000001, # Minimum learning rate.
use_recurrent_dropout=True, # Dropout with memory loss. Recommended
recurrent_dropout_prob=0.90, # Probability of recurrent dropout keep.
use_input_dropout=False, # Input dropout. Recommend leaving False.
input_dropout_prob=0.90, # Probability of input dropout keep.
use_output_dropout=False, # Output dropout. Recommend leaving False.
output_dropout_prob=0.90, # Probability of output dropout keep.
model_mode='train' # ['train', 'eval', 'sample']
)
return hparams
def get_default_hparams_normal():
"""Return default HParams for sketch-rnn."""
hparams = tf.contrib.training.HParams(
program_name='new_train_faces',
data_set='faces', # ['rough_sketches', 'faces']
input_channel=3,
num_steps=90040, # Total number of steps of training.
save_every=90000,
eval_every=5000,
max_seq_len=48,
batch_size=20,
gpus=[0, 1],
loop_per_gpu=1,
sn_loss_type='fixed', # ['decreasing', 'fixed', 'increasing']
stroke_num_loss_weight=0.0,
stroke_num_loss_weight_end=0.0,
increase_start_steps=0,
decrease_stop_steps=40000,
photo_prob_type='interpolate', # ['increasing', 'zero', 'one', 'interpolate']
photo_prob_start_step=30000,
photo_prob_end_step=60000,
perc_loss_layers=['ReLU2_2', 'ReLU3_3', 'ReLU4_2', 'ReLU5_1'],
perc_loss_fuse_type='add', # ['max', 'add', 'raw_add', 'weighted_sum']
early_pen_loss_type='move', # ['head', 'tail', 'move']
early_pen_loss_weight=0.2,
early_pen_length=7,
min_width=0.01,
min_window_size=32,
max_scaling=2.0,
encode_cursor_type='value',
image_size_small=128,
image_size_large=256,
cropping_type='v3', # ['v2', 'v3']
pasting_type='v3', # ['v2', 'v3']
pasting_diff=True,
concat_win_size=True,
encoder_type='conv13_c3',
# ['conv10', 'conv10_deep', 'conv13', 'conv10_c3', 'conv10_deep_c3', 'conv13_c3']
# ['conv13_c3_attn']
# ['combine33', 'combine43', 'combine53', 'combineFC']
outside_loss_weight=10.0,
win_size_outside_loss_weight=10.0,
resize_method='AREA', # ['BILINEAR', 'NEAREST_NEIGHBOR', 'BICUBIC', 'AREA']
concat_cursor=True,
use_softargmax=True,
soft_beta=10, # value for the soft argmax
raster_loss_weight=1.0,
dec_rnn_size=256, # Size of decoder.
dec_model='hyper', # Decoder: lstm, layer_norm or hyper.
# z_size=128, # Size of latent vector z. Recommend 32, 64 or 128.
bin_gt=True,
stop_accu_grad=True,
random_cursor=True,
cursor_type='next',
raster_size=128,
pix_drop_kp=1.0, # Dropout keep rate
add_coordconv=True,
position_format='abs',
raster_loss_base_type='perceptual', # [l1, mse, perceptual]
grad_clip=1.0, # Gradient clipping. Recommend leaving at 1.0.
learning_rate=0.0001, # Learning rate.
decay_rate=0.9999, # Learning rate decay per minibatch.
decay_power=0.9,
min_learning_rate=0.000001, # Minimum learning rate.
use_recurrent_dropout=True, # Dropout with memory loss. Recommended
recurrent_dropout_prob=0.90, # Probability of recurrent dropout keep.
use_input_dropout=False, # Input dropout. Recommend leaving False.
input_dropout_prob=0.90, # Probability of input dropout keep.
use_output_dropout=False, # Output dropout. Recommend leaving False.
output_dropout_prob=0.90, # Probability of output dropout keep.
model_mode='train' # ['train', 'eval', 'sample']
)
return hparams