-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathpredict.py
249 lines (199 loc) · 6.97 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import os
clear = lambda: os.system('clear')
clear()
print("\033[31m[*]\033[0m You will be asked to speak for few seconds for the recognition of the speaker.")
import time
import shutil
import numpy as np
import pyaudio
import wave
import tensorflow as tf
from tensorflow import keras
from pathlib import Path
from IPython.display import display, Audio
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
DATASET_ROOT = "/Users/harshitruwali/Desktop/sem3-pro/"
NOISE_SUBFOLDER = "noise"
DATASET_NOISE_PATH = os.path.join(DATASET_ROOT, NOISE_SUBFOLDER)
SAMPLING_RATE = 16000
SHUFFLE_SEED = 43
BATCH_SIZE = 128
SCALE = 0.5
print("\033[31m[*]\033[0m Get Ready!")
time.sleep(5)
""" Taking the voice input """
chunk = 1024 # Record in chunks of 1024 samples
sample_format = pyaudio.paInt16 # 16 bits per sample
channels = 2
fs = 16000 # Record at 16000 samples per second
seconds = 3
filename = "predict.wav"
p = pyaudio.PyAudio() # Create an interface to PortAudio
# print("-------------------------------------------------------------------------------------------")
print("\033[31m[*]\033[0m Recording")
stream = p.open(format=sample_format,
channels=channels,
rate=fs,
frames_per_buffer=chunk,
input=True)
frames = [] # Initialize array to store frames
# Store data in chunks for 1 seconds
for i in range(0, int(fs / chunk * seconds)):
data = stream.read(chunk)
frames.append(data)
# Stop and close the stream
stream.stop_stream()
stream.close()
# Terminate the PortAudio interface
p.terminate()
print("\033[31m[*]\033[0m Finished recording")
# print("-------------------------------------------------------------------------------------------")
# Save the recorded data as a WAV file
wf = wave.open(filename, 'wb')
wf.setnchannels(channels)
wf.setsampwidth(p.get_sample_size(sample_format))
wf.setframerate(fs)
wf.writeframes(b''.join(frames))
wf.close()
print("\033[31m[*]\033[0m Processing")
"""Pre-processing Noise"""
# If folder noise, does not exist, create it, otherwise do nothing
if os.path.exists(DATASET_NOISE_PATH) is False:
os.makedirs(DATASET_NOISE_PATH)
for folder in os.listdir(DATASET_ROOT):
if os.path.isdir(os.path.join(DATASET_ROOT, folder)):
if folder in [NOISE_SUBFOLDER]:
# If folder is audio or noise, do nothing
continue
elif folder in ["other", "_background_noise_"]:
# If folder is one of the folders that contains noise samples move it to the noise folder
shutil.move(
os.path.join(DATASET_ROOT, folder),
os.path.join(DATASET_NOISE_PATH, folder),
)
else:
pass
"""Noise"""
# Get the list of all noise files
noise_paths = []
for subdir in os.listdir(DATASET_NOISE_PATH):
subdir_path = Path(DATASET_NOISE_PATH) / subdir
if os.path.isdir(subdir_path):
noise_paths += [
os.path.join(subdir_path, filepath)
for filepath in os.listdir(subdir_path)
if filepath.endswith(".wav")
]
# print("Found {} files belonging to {} directories".format(len(noise_paths), len(os.listdir(DATASET_NOISE_PATH))))
command = (
"for dir in `ls -1 " + DATASET_NOISE_PATH + "`; do "
"for file in `ls -1 " + DATASET_NOISE_PATH + "/$dir/*.wav`; do "
"sample_rate=`ffprobe -hide_banner -loglevel panic -show_streams "
"$file | grep sample_rate | cut -f2 -d=`; "
"if [ $sample_rate -ne 16000 ]; then "
"ffmpeg -hide_banner -loglevel panic -y "
"-i $file -ar 16000 temp.wav; "
"mv temp.wav $file; "
"fi; done; done"
)
os.system(command)
# Split noise into chunks of 16,000 steps each
def load_noise_sample(path):
sample, sampling_rate = tf.audio.decode_wav(
tf.io.read_file(path), desired_channels=1
)
if sampling_rate == SAMPLING_RATE:
# Number of slices of 16000 each that can be generated from the noise sample
slices = int(sample.shape[0] / SAMPLING_RATE)
sample = tf.split(sample[: slices * SAMPLING_RATE], slices)
return sample
else:
print("Sampling rate for {} is incorrect. Ignoring it".format(path))
return None
noises = []
for path in noise_paths:
sample = load_noise_sample(path)
if sample:
noises.extend(sample)
noises = tf.stack(noises)
# print(
# "{} noise files were split into {} noise samples where each is {} sec. long".format(
# len(noise_paths), noises.shape[0], noises.shape[1] // SAMPLING_RATE
# )
# )
def paths_and_labels_to_dataset(audio_paths, labels):
"""Constructs a dataset of audios and labels."""
path_ds = tf.data.Dataset.from_tensor_slices(audio_paths)
audio_ds = path_ds.map(lambda x: path_to_audio(x))
label_ds = tf.data.Dataset.from_tensor_slices(labels)
return tf.data.Dataset.zip((audio_ds, label_ds))
def path_to_audio(path):
"""Reads and decodes an audio file."""
audio = tf.io.read_file(path)
audio, _ = tf.audio.decode_wav(audio, 1, SAMPLING_RATE)
return audio
def add_noise(audio, noises=None, scale=0.5):
if noises is not None:
# Create a random tensor of the same size as audio ranging from
# 0 to the number of noise stream samples that we have.
tf_rnd = tf.random.uniform(
(tf.shape(audio)[0],), 0, noises.shape[0], dtype=tf.int32
)
noise = tf.gather(noises, tf_rnd, axis=0)
# Get the amplitude proportion between the audio and the noise
prop = tf.math.reduce_max(audio, axis=1) / tf.math.reduce_max(noise, axis=1)
prop = tf.repeat(tf.expand_dims(prop, axis=1), tf.shape(audio)[1], axis=1)
# Adding the rescaled noise to audio
audio = audio + noise * prop * scale
return audio
def audio_to_fft(audio):
# Since tf.signal.fft applies FFT on the innermost dimension,
# we need to squeeze the dimensions and then expand them again
# after FFT
audio = tf.squeeze(audio, axis=-1)
fft = tf.signal.fft(
tf.cast(tf.complex(real=audio, imag=tf.zeros_like(audio)), tf.complex64)
)
fft = tf.expand_dims(fft, axis=-1)
# Return the absolute value of the first half of the FFT
# which represents the positive frequencies
return tf.math.abs(fft[:, : (audio.shape[1] // 2), :])
def predict(path, labels):
test = paths_and_labels_to_dataset(path, labels)
test = test.shuffle(buffer_size=BATCH_SIZE * 8, seed=SHUFFLE_SEED).batch(
BATCH_SIZE
)
test = test.prefetch(tf.data.experimental.AUTOTUNE)
test = test.map(lambda x, y: (add_noise(x, noises, scale=SCALE), y))
for audios, labels in test.take(1):
# Get the signal FFT
ffts = audio_to_fft(audios)
# Predict
y_pred = model.predict(ffts)
# Take random samples
rnd = np.random.randint(0, 1, 1)
audios = audios.numpy()[rnd, :]
labels = labels.numpy()[rnd]
y_pred = np.argmax(y_pred, axis=-1)[rnd]
print("\033[31m[*]\033[0m Prediction")
for index in range(1):
print(
"\033[31m[*]\033[0m Predicted:\33{} {}\33[0m".format(
"[92m",y_pred[index]
)
)
if y_pred[index] == 0:
print("\033[31m[*]\033[0m Welcome user 0")
elif y_pred[index] == 1:
print("\033[31m[*]\033[0m Welcome user 1")
elif y_pred[index] == 2:
print("\033[31m[*]\033[0m Welcome user 2")
elif y_pred[index] == 3:
print("\033[31m[*]\033[0m Welcome user 3")
else:
print("\033[31m[*]\033[0m Welcome new user")
""" Predict """
path = ["predict.wav"]
labels = ["unknown"]
model = tf.keras.models.load_model('model.h5')
predict(path, labels)