-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathSampling.py
584 lines (488 loc) · 22.8 KB
/
Sampling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
"""!
@file src/Sampling.py
@package Gnowee
@defgroup Sampling Sampling
@brief Different methods to perform phase space sampling and random walks.
Design of experiment and phase space sampling methods. Includes some
vizualization tools.
Dependencies on pyDOE.
@author James Bevins
@date 23May17
@copyright <a href='../../licensing/COPYRIGHT'>© 2017 UC
Berkeley Copyright and Disclaimer Notice</a>
@license <a href='../../licensing/LICENSE'>GNU GPLv3.0+ </a>
"""
import math
import random
import bisect
import matplotlib.pyplot as plt
import numpy as np
from scipy.special import gamma
from pyDOE import lhs
from numpy.random import rand, randn, choice
from GnoweeUtilities import Switch
#------------------------------------------------------------------------------#
def initial_samples(lb, ub, method, numSamp):
"""!
@ingroup Sampling
Generate a set of samples in a given phase space. The current methods
available are 'random', 'nolh', 'nolh-rp', 'nolh-cdr', 'lhc', or
'rand-wor'.
@param lb: \e array \n
The lower bounds of the design variable(s). \n
@param ub: \e array \n
The upper bounds of the design variable(s). \n
@param method: \e string \n
String representing the chosen sampling method. Valid options are:
'random', 'nolh', 'nolh-rp', 'nolh-cdr', 'lhc', 'random-wor'. \n
@param numSamp: \e integer \n
The number of samples to be generated. Ignored for nolh algorithms. \n
@return \e array: The list of coordinates for the sampled phase space. \n
"""
assert len(lb) == len(ub), ('Lower and upper bounds have different #s '
'of design variables in initial_samples function.')
assert method == 'random' or method == 'nolh' or method == 'nolh-rp' \
or method == 'nolh-cdr' or method == 'lhc' or method == 'rand-wor',\
'An invalid method was specified for the initial_samples.'
if method == 'nolh' or method == 'nolh-rp' or method == 'nolh-cdr':
assert len(ub) >= 2 and len(ub) <= 29, ('The Phase space dimensions '
'are outside of the bounds for initial_samples.')
for case in Switch(method):
if case('random'):
s = np.zeros((numSamp, len(lb)))
for i in range(0, numSamp, 1):
s[i, :] = (lb+(ub-lb)*rand(len(lb)))
break
# Random without replacement - designed for combinatorial variables
if case('rand-wor'):
s = np.zeros((numSamp, len(lb)))
for i in range(0, numSamp, 1):
s[i, :] = choice(len(ub), size=len(ub), replace=False)
break
# Standard nearly-orthoganal latin hypercube call
if case('nolh'):
dim = len(ub)
m, q, r = params(dim)
conf = range(q)
if r != 0:
remove = range(dim - r, dim)
nolh = NOLH(conf, remove)
else:
nolh = NOLH(conf)
s = np.array([list(lb+(ub-lb)*nolh[i, :]) for i in \
range(len(nolh[:, 0]))])
break
# Nearly-orthoganal latin hypercube call with random permutation for
# removed colummns
if case('nolh-rp'):
dim = len(ub)
m, q, r = params(dim)
conf = random.sample(range(q), q)
if r != 0:
remove = random.sample(range(q-1), r)
nolh = NOLH(conf, remove)
else:
nolh = NOLH(conf)
s = np.array([list(lb+(ub-lb)*nolh[i, :]) for i in \
range(len(nolh[:, 0]))])
break
# Nearly-orthoganal latin hypercube call with Cioppa and De Rainville
# permutations
if case('nolh-cdr'):
dim = len(ub)
m, q, r = params(dim)
(conf, remove) = get_cdr_permutations(len(ub))
if remove != []:
nolh = NOLH(conf, remove)
else:
nolh = NOLH(conf)
s = np.array([list(lb+(ub-lb)*nolh[i, :]) for i in \
range(len(nolh[:, 0]))])
break
# Latin hypercube sampling
if case('lhc'):
# Valid criterion are 'corr','center','maximum','centermaximum'
tmp = lhs(len(lb), samples=numSamp, criterion="center")
s = np.array([list(lb+(ub-lb)*tmp[i, :]) for i in \
range(len(tmp[:, 0]))])
break
if case():
print "Somehow you evaded my assert statement - good job!", \
" However, you still need to use a valid method string."
return s
#------------------------------------------------------------------------------#
def plot_samples(s):
"""!
@ingroup Sampling
Plot the first 2 and 3 dimensions on the sample distribution. Can't plot
the full hyperspace yet. Produces a very simple plot for visualizing the
difference in the sampling methods.
@param s: \e array \n
The list of coordinates for the sampled phase space. \n
"""
assert len(s[0, :]) >= 2, ('The Phase space dimensions are less than two.',
' Need at least two to plot.')
fig = plt.figure(1)
if len(s[0, :]) >= 3:
ax = fig.add_subplot(111, projection='3d')
ax.scatter(s[:, 0], s[:, 1], s[:, 2])
fig = plt.figure(2)
plt.scatter(s[:, 0], s[:, 1])
plt.show()
return
#------------------------------------------------------------------------------#
def levy(nc, nr=0, alpha=1.5, gam=1, n=1):
"""!
@ingroup Sampling
Sample the Levy distribution given by
\f$ L_{\alpha,\gamma}(z)=\frac{1}{\pi}\int \limits_{0}^{+\infty}
e^{-\gamma q^{\alpha}} \cos(qz) dq \f$
using the Mantegna algoritm outlined in "Fast, Accurate Algorithm for
Numerical Simulation of Levy Stable Stochastic Processes."
@param nc: \e integer \n
The number of columns of Levy values for the return array.
@param nr \e integer \n
The number of rows of Levy values for the return array. \n
@param alpha \e float \n
Levy exponent - defines the index of the distribution and controls
scale properties of the stochastic process. \n
@param gam: \e float \n
Gamma - Scale unit of process for Levy flights. \n
@param n: \e integer \n
Number of independent variables - can be used to reduce Levy
flight sampling variance. \n
@return \e array: Array representing the levy flights for each nest.
"""
assert alpha > 0.3 and alpha < 1.99, 'Valid range for alpha is [0.3:1.99].'
assert gam >= 0, 'Gamma must be positive'
assert n >= 1, 'n Must be positive'
# Calculate Levy distribution via Mantegna Algorithm
invalpha = 1./alpha
sigx = ((gamma(1.+alpha)*np.sin(np.pi*alpha/2.)) /(gamma((1.+alpha)/2) \
*alpha*2.**((alpha-1.)/2.)))**invalpha
if nr != 0:
v = sigx*randn(n, nr, nc) \
/(abs(randn(n, nr, nc))**invalpha)
else:
v = sigx*randn(n, nc) \
/(abs(randn(n, nc))**invalpha)
kappa = (alpha*gamma((alpha+1.)/(2.*alpha)))/gamma(invalpha) \
*((alpha*gamma((alpha+1.)/2.))/(gamma(1.+alpha) \
*np.sin(np.pi*alpha/2.)))**invalpha
p = [-17.7767, 113.3855, -281.5879, 337.5439, -193.5494, 44.8754]
c = np.polyval(p, alpha)
w = ((kappa-1.)*np.exp(-abs(v)/c)+1.)*v
if n > 1:
z = (1/n**invalpha)*sum(w)
else:
z = w
z = gam**invalpha*z
if nr != 0:
z = z.reshape(nr, nc)
else:
z = z.reshape(nc)
return z
#------------------------------------------------------------------------------#
def tlf(numRow=1, numCol=1, alpha=1.5, gam=1., cutPoint=10.):
"""!
@ingroup Sampling
Samples from a truncated Levy flight distribution (TLF) according to
Manegna, "Stochastic Process with Ultraslow Convergence to a Gaussian:
The Truncated Levy Flight" to map a levy distribution onto the interval
[0,1].
@param numRow: \e integer \n
Number of rows of Levy flights to sample. \n
@param numCol: \e integer \n
Number of columns of Levy flights to sample. \n
@param alpha: \e float \n
Levy exponent - defines the index of the distribution and controls
scale properties of the stochastic process. \n
@param gam: \e float \n
Gamma - Scale unit of process for Levy flights. \n
@param cutPoint: \e float \n
Point at which to cut sampled Levy values and resample. \n
@return \e array: Array representing the levy flights on the interval
(0,1). \n
"""
# Draw numRow x numCol samples from the Levy distribution
z = abs(levy(numRow, numCol)/cutPoint).reshape(numRow, numCol)
# Resample values above the range (0,1)
for i in range(len(z)):
for j in range(len(z[i])):
while z[i, j] > 1:
z[i, j] = abs(levy(1, 1, alpha=alpha, gam=gam) \
/cutPoint).reshape(1)
return z
#------------------------------------------------------------------------------#
def NOLH(conf, remove=None):
"""!
@ingroup Sampling
This library allows to generate Nearly Orthogonal Latin Hypercubes (NOLH)
according to Cioppa (2007) and De Rainville et al. (2012) and reference
therein.
https://pypi.python.org/pypi/pynolh
Constructs a Nearly Orthogonal Latin Hypercube (NOLH) of order *m* from
a configuration vector *conf*. The configuration vector may contain either
the numbers in $ [0 q-1] $ or $ [1 q] $ where $ q = 2^{m-1} $.
The columns to be *removed* are also in $ [0 d-1] $ or $ [1 d] $
where
$ d = m + \binom{m-1}{2} $
is the NOLH dimensionality.
The whole library is incorporated here with minimal modification for
commonality and consolidation of methods.
@param conf: \e array \n
Configuration vector. \n
@param remove: \e array \n
Array containing the indexes of the colummns to be removed from conf
vector. \n
@return \e array: Array containing nearly orthogonal latin hypercube
sampling. \n
"""
I = np.identity(2, dtype=int)
R = np.array(((0, 1), (1, 0)), dtype=int)
if 0 in conf:
conf = np.array(conf) + 1
if remove is not None:
remove = np.array(remove) + 1
q = len(conf)
m = math.log(q, 2) + 1
s = int(m + (math.factorial(m - 1) / (2 * math.factorial(m - 3))))
# Factorial checks if m is an integer
m = int(m)
A = np.zeros((q, q, m - 1), dtype=int)
for i in range(1, m):
Ai = 1
for j in range(1, m):
if j < m - i:
Ai = np.kron(Ai, I)
else:
Ai = np.kron(Ai, R)
A[:, :, i-1] = Ai
M = np.zeros((q, s), dtype=int)
M[:, 0] = conf
col = 1
for i in range(0, m - 1):
for j in range(i + 1, m):
if i == 0:
M[:, col] = np.dot(A[:, :, j-1], conf)
else:
M[:, col] = np.dot(A[:, :, i-1], np.dot(A[:, :, j-1], conf))
col += 1
S = np.ones((q, s), dtype=int)
v = 1
for i in range(1, m):
for j in range(0, q):
if j % 2**(i-1) == 0:
v *= -1
S[j, i] = v
col = m
for i in range(1, m - 1):
for j in range(i + 1, m):
S[:, col] = S[:, i] * S[:, j]
col += 1
T = M * S
keep = np.ones(s, dtype=bool)
if remove is not None:
keep[np.array(remove) - 1] = [False] * len(remove)
return (np.concatenate((T, np.zeros((1, s)), -T), axis=0)[:, keep] + q) \
/ (2.0 * q)
#------------------------------------------------------------------------------#
def params(dim):
"""!
@ingroup Sampling
Returns the NOLH order $m$, the required configuration length $q$
and the number of columns to remove to obtain the desired dimensionality.
@param dim: \e integer \n
The dimension of the space. \n
"""
m = 3
#Original version has three here, but this failed each time the # of
# samples required switched (ie at dim=3,7,11,etc)
s = 1
q = 2**(m-1)
while s < dim:
m += 1
s = m + math.factorial(m - 1) / (2 * math.factorial(m - 3))
q = 2**(m-1)
return m, q, s - dim
#------------------------------------------------------------------------------#
def get_cdr_permutations(dim):
"""!
@ingroup Sampling
Generate a set of CDR permulations for NOLH.
@param dim: \e integer \n
The dimension of the space. \n
@return \e array: A configuration vector. \n
@return \e array: Array containing the indexes of the colummns to be
removed from conf vector. \n
"""
assert dim >= 2 and dim <= 29, ('The Phase space dimensions are outside ',
'of the bounds for CDR Permutations.')
# Permutation and columns to remove given by Cioppa
C_CONF = {
2 : ([1, 2, 8, 4, 5, 6, 7, 3], [1, 3, 4, 6, 7]),
3 : ([1, 2, 8, 4, 5, 6, 7, 3], [1, 2, 3, 6]),
4 : ([1, 2, 8, 4, 5, 6, 7, 3], [1, 3, 6]),
5 : ([1, 2, 8, 4, 5, 6, 7, 3], [1, 6]),
6 : ([1, 2, 8, 4, 5, 6, 7, 3], [1]),
7 : ([1, 2, 8, 4, 5, 6, 7, 3], [])
}
# Permutation and columns to remove given by De Rainville et al.
EA_CONF = {
8 : ([4, 14, 1, 2, 16, 13, 5, 8, 12, 9, 6, 7, 11, 3, 15, 10],
[1, 3, 10]),
9 : ([4, 14, 1, 2, 16, 13, 5, 8, 12, 9, 6, 7, 11, 3, 15, 10],
[6, 10]),
10 : ([4, 14, 1, 2, 16, 13, 5, 8, 12, 9, 6, 7, 11, 3, 15, 10],
[10]),
11 : ([4, 14, 1, 2, 16, 13, 5, 8, 12, 9, 6, 7, 11, 3, 15, 10],
[]),
12 : ([5, 13, 19, 23, 28, 10, 12, 32, 17, 2, 30, 15, 6, 31, 21, 8,
24, 29, 9, 14, 11, 22, 18, 25, 3, 1, 20, 7, 27, 16, 26, 4],
[2, 4, 5, 11]),
13 : ([5, 13, 19, 23, 28, 10, 12, 32, 17, 2, 30, 15, 6, 31, 21, 8,
24, 29, 9, 14, 11, 22, 18, 25, 3, 1, 20, 7, 27, 16, 26, 4],
[3, 6, 14]),
14 : ([5, 13, 19, 23, 28, 10, 12, 32, 17, 2, 30, 15, 6, 31, 21, 8, 24,
29, 9, 14, 11, 22, 18, 25, 3, 1, 20, 7, 27, 16, 26, 4], [4, 5]),
15 : ([5, 13, 19, 23, 28, 10, 12, 32, 17, 2, 30, 15, 6, 31, 21, 8, 24,
29, 9, 14, 11, 22, 18, 25, 3, 1, 20, 7, 27, 16, 26, 4], [6]),
16 : ([5, 13, 19, 23, 28, 10, 12, 32, 17, 2, 30, 15, 6, 31, 21, 8, 24,
29, 9, 14, 11, 22, 18, 25, 3, 1, 20, 7, 27, 16, 26, 4], []),
17 : ([7, 8, 51, 3, 40, 44, 29, 19, 61, 43, 26, 48, 20, 52, 4, 49, 2,
57, 31, 30, 24, 23, 56, 50, 18, 59, 63, 37, 38, 21, 54, 9, 46,
27, 36, 1, 10, 42, 13, 55, 15, 25, 22, 45, 41, 39, 53, 34, 6, 5,
2, 58, 16, 28, 64, 14, 47, 33, 12, 35, 62, 17, 11, 60],
[8, 11, 12, 14, 17]),
18 : ([7, 8, 51, 3, 40, 44, 29, 19, 61, 43, 26, 48, 20, 52, 4, 49, 2,
57, 31, 30, 24, 23, 56, 50, 18, 59, 63, 37, 38, 21, 54, 9, 46,
27, 36, 1, 10, 42, 13, 55, 15, 25, 22, 45, 41, 39, 53, 34, 6, 5,
2, 58, 16, 28, 64, 14, 47, 33, 12, 35, 62, 17, 11, 60],
[8, 11, 12, 17]),
19 : ([7, 8, 51, 3, 40, 44, 29, 19, 61, 43, 26, 48, 20, 52, 4, 49, 2,
57, 31, 30, 24, 23, 56, 50, 18, 59, 63, 37, 38, 21, 54, 9, 46,
27, 36, 1, 10, 42, 13, 55, 15, 25, 22, 45, 41, 39, 53, 34, 6, 5,
2, 58, 16, 28, 64, 14, 47, 33, 12, 35, 62, 17, 11, 60],
[10, 15, 22]),
20 : ([7, 8, 51, 3, 40, 44, 29, 19, 61, 43, 26, 48, 20, 52, 4, 49, 2,
57, 31, 30, 24, 23, 56, 50, 18, 59, 63, 37, 38, 21, 54, 9, 46,
27, 36, 1, 10, 42, 13, 55, 15, 25, 22, 45, 41, 39, 53, 34, 6, 5,
2, 58, 16, 28, 64, 14, 47, 33, 12, 35, 62, 17, 11, 60],
[8, 12]),
21 : ([7, 8, 51, 3, 40, 44, 29, 19, 61, 43, 26, 48, 20, 52, 4, 49, 2,
57, 31, 30, 24, 23, 56, 50, 18, 59, 63, 37, 38, 21, 54, 9, 46,
27, 36, 1, 10, 42, 13, 55, 15, 25, 22, 45, 41, 39, 53, 34, 6, 5,
2, 58, 16, 28, 64, 14, 47, 33, 12, 35, 62, 17, 11, 60], [15]),
22 : ([7, 8, 51, 3, 40, 44, 29, 19, 61, 43, 26, 48, 20, 52, 4, 49, 2,
57, 31, 30, 24, 23, 56, 50, 18, 59, 63, 37, 38, 21, 54, 9, 46,
27, 36, 1, 10, 42, 13, 55, 15, 25, 22, 45, 41, 39, 53, 34, 6, 5,
2, 58, 16, 28, 64, 14, 47, 33, 12, 35, 62, 17, 11, 60], []),
23 : ([9, 108, 39, 107, 62, 86, 110, 119, 46, 43, 103, 71, 123, 91, 10,
13, 126, 63, 83, 47, 100, 54, 23, 16, 124, 45, 27, 4, 93, 74, 76,
90, 30, 81, 77, 53, 116, 49, 104, 6, 70, 82, 26, 118, 55, 79, 32,
109, 57, 31, 22, 101, 44, 87, 121, 7, 37, 56, 89, 115, 25, 92,
85, 20, 58, 52, 3, 11, 106, 17, 117, 38, 78, 28, 59, 96, 18, 97,
50, 114, 112, 60, 84, 1, 12, 61, 98, 128, 14, 42, 64, 105, 68,
75, 111, 34, 141, 65, 99, 2, 19, 33, 35, 94, 51, 122, 127, 36,
125, 80, 73, 8, 24, 21, 88, 48, 69, 66, 40, 15, 29, 113, 72, 5,
95, 120, 6, 102], [18, 20, 21, 24, 27, 29]),
24 : ([9, 108, 39, 107, 62, 86, 110, 119, 46, 43, 103, 71, 123, 91, 10,
13, 126, 63, 83, 47, 100, 54, 23, 16, 124, 45, 27, 4, 93, 74, 76,
90, 30, 81, 77, 53, 116, 49, 104, 6, 70, 82, 26, 118, 55, 79, 32,
109, 57, 31, 22, 101, 44, 87, 121, 7, 37, 56, 89, 115, 25, 92,
85, 20, 58, 52, 3, 11, 106, 17, 117, 38, 78, 28, 59, 96, 18, 97,
50, 114, 112, 60, 84, 1, 12, 61, 98, 128, 14, 42, 64, 105, 68,
75, 111, 34, 141, 65, 99, 2, 19, 33, 35, 94, 51, 122, 127, 36,
125, 80, 73, 8, 24, 21, 88, 48, 69, 66, 40, 15, 29, 113, 72, 5,
95, 120, 6, 102], [4, 15, 18, 24, 27]),
25 : ([9, 108, 39, 107, 62, 86, 110, 119, 46, 43, 103, 71, 123, 91, 10,
13, 126, 63, 83, 47, 100, 54, 23, 16, 124, 45, 27, 4, 93, 74, 76,
90, 30, 81, 77, 53, 116, 49, 104, 6, 70, 82, 26, 118, 55, 79, 32,
109, 57, 31, 22, 101, 44, 87, 121, 7, 37, 56, 89, 115, 25, 92,
85, 20, 58, 52, 3, 11, 106, 17, 117, 38, 78, 28, 59, 96, 18, 97,
50, 114, 112, 60, 84, 1, 12, 61, 98, 128, 14, 42, 64, 105, 68,
75, 111, 34, 141, 65, 99, 2, 19, 33, 35, 94, 51, 122, 127, 36,
125, 80, 73, 8, 24, 21, 88, 48, 69, 66, 40, 15, 29, 113, 72, 5,
95, 120, 6, 102], [21, 26, 27, 29]),
26 : ([9, 108, 39, 107, 62, 86, 110, 119, 46, 43, 103, 71, 123, 91, 10,
13, 126, 63, 83, 47, 100, 54, 23, 16, 124, 45, 27, 4, 93, 74, 76,
90, 30, 81, 77, 53, 116, 49, 104, 6, 70, 82, 26, 118, 55, 79, 32,
109, 57, 31, 22, 101, 44, 87, 121, 7, 37, 56, 89, 115, 25, 92,
85, 20, 58, 52, 3, 11, 106, 17, 117, 38, 78, 28, 59, 96, 18, 97,
50, 114, 112, 60, 84, 1, 12, 61, 98, 128, 14, 42, 64, 105, 68,
75, 111, 34, 141, 65, 99, 2, 19, 33, 35, 94, 51, 122, 127, 36,
125, 80, 73, 8, 24, 21, 88, 48, 69, 66, 40, 15, 29, 113, 72, 5,
95, 120, 6, 102], [26, 27, 29]),
27 : ([9, 108, 39, 107, 62, 86, 110, 119, 46, 43, 103, 71, 123, 91, 10,
13, 126, 63, 83, 47, 100, 54, 23, 16, 124, 45, 27, 4, 93, 74, 76,
90, 30, 81, 77, 53, 116, 49, 104, 6, 70, 82, 26, 118, 55, 79, 32,
109, 57, 31, 22, 101, 44, 87, 121, 7, 37, 56, 89, 115, 25, 92,
85, 20, 58, 52, 3, 11, 106, 17, 117, 38, 78, 28, 59, 96, 18, 97,
50, 114, 112, 60, 84, 1, 12, 61, 98, 128, 14, 42, 64, 105, 68,
75, 111, 34, 141, 65, 99, 2, 19, 33, 35, 94, 51, 122, 127, 36,
125, 80, 73, 8, 24, 21, 88, 48, 69, 66, 40, 15, 29, 113, 72, 5,
95, 120, 6, 102], [27, 29]),
28 : ([9, 108, 39, 107, 62, 86, 110, 119, 46, 43, 103, 71, 123, 91, 10,
13, 126, 63, 83, 47, 100, 54, 23, 16, 124, 45, 27, 4, 93, 74, 76,
90, 30, 81, 77, 53, 116, 49, 104, 6, 70, 82, 26, 118, 55, 79, 32,
109, 57, 31, 22, 101, 44, 87, 121, 7, 37, 56, 89, 115, 25, 92,
85, 20, 58, 52, 3, 11, 106, 17, 117, 38, 78, 28, 59, 96, 18, 97,
50, 114, 112, 60, 84, 1, 12, 61, 98, 128, 14, 42, 64, 105, 68,
75, 111, 34, 141, 65, 99, 2, 19, 33, 35, 94, 51, 122, 127, 36,
125, 80, 73, 8, 24, 21, 88, 48, 69, 66, 40, 15, 29, 113, 72, 5,
95, 120, 6, 102], [20]),
29 : ([9, 108, 39, 107, 62, 86, 110, 119, 46, 43, 103, 71, 123, 91, 10,
13, 126, 63, 83, 47, 100, 54, 23, 16, 124, 45, 27, 4, 93, 74, 76,
90, 30, 81, 77, 53, 116, 49, 104, 6, 70, 82, 26, 118, 55, 79, 32,
109, 57, 31, 22, 101, 44, 87, 121, 7, 37, 56, 89, 115, 25, 92,
85, 20, 58, 52, 3, 11, 106, 17, 117, 38, 78, 28, 59, 96, 18, 97,
50, 114, 112, 60, 84, 1, 12, 61, 98, 128, 14, 42, 64, 105, 68,
75, 111, 34, 141, 65, 99, 2, 19, 33, 35, 94, 51, 122, 127, 36,
125, 80, 73, 8, 24, 21, 88, 48, 69, 66, 40, 15, 29, 113, 72, 5,
95, 120, 6, 102], [])
}
# Create dictionary
CONF = dict()
CONF.update(C_CONF)
CONF.update(EA_CONF)
return CONF[dim][0], CONF[dim][1]
#------------------------------------------------------------------------------#
class WeightedRandomGenerator(object):
"""!
@ingroup Sampling
Defines a class of weights to be used to select based on linear weighting.
This can be on index or some form of ordinal ranking.
"""
def __init__(self, weights):
"""!
WeightedRandomGenerator class constructor.
@param self: <em> pointer </em> \n
The WeightedRandomGenerator pointer. \n
@param weights: \e array \n
The array of weights (Higher = more likely to be selected) \n
"""
## @var totals
# <em> list or numpy array: </em> The ordinal ranking
# or data that is used to generate tehe weights.
self.totals = []
running_total = 0
for w in weights:
running_total += w
self.totals.append(running_total)
def next(self):
"""!
Gets the next weight.
@param self: <em> pointer </em> \n
The WeightedRandomGenerator pointer. \n
@return \e integer: The randomly selected index of the weights array. \n
"""
rnd = rand() * self.totals[-1]
return bisect.bisect_right(self.totals, rnd)
def __call__(self):
"""!
Gets the next weight.
@param self: <em> pointer </em> \n
The WeightedRandomGenerator pointer. \n
@return \e integer: The randomly selected index of the weights array. \n
"""
return self.next()