-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
Copy pathdecensor.py
87 lines (76 loc) · 3 KB
/
decensor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import numpy as np
import tensorflow as tf
from PIL import Image
import tqdm
import os
import matplotlib.pyplot as plt
import sys
sys.path.append('..')
from model import Model
from poisson_blend import blend
IMAGE_SIZE = 128
LOCAL_SIZE = 64
HOLE_MIN = 24
HOLE_MAX = 48
BATCH_SIZE = 1
image_folder = 'decensor_input_images/'
mask_color = [0, 255, 0]
poisson_blending_enabled = False
def decensor():
x = tf.placeholder(tf.float32, [BATCH_SIZE, IMAGE_SIZE, IMAGE_SIZE, 3])
mask = tf.placeholder(tf.float32, [BATCH_SIZE, IMAGE_SIZE, IMAGE_SIZE, 1])
local_x = tf.placeholder(tf.float32, [BATCH_SIZE, LOCAL_SIZE, LOCAL_SIZE, 3])
global_completion = tf.placeholder(tf.float32, [BATCH_SIZE, IMAGE_SIZE, IMAGE_SIZE, 3])
local_completion = tf.placeholder(tf.float32, [BATCH_SIZE, LOCAL_SIZE, LOCAL_SIZE, 3])
is_training = tf.placeholder(tf.bool, [])
model = Model(x, mask, local_x, global_completion, local_completion, is_training, batch_size=BATCH_SIZE)
sess = tf.Session()
init_op = tf.global_variables_initializer()
sess.run(init_op)
saver = tf.train.Saver()
saver.restore(sess, './models/latest')
x_decensor = []
mask_decensor = []
for subdir, dirs, files in sorted(os.walk(image_folder)):
for file in sorted(files):
file_path = os.path.join(subdir, file)
if os.path.isfile(file_path) and os.path.splitext(file_path)[1] == ".png":
print(file_path)
image = Image.open(file_path).convert('RGB')
image = np.array(image)
image = np.array(image / 127.5 - 1)
x_decensor.append(image)
x_decensor = np.array(x_decensor)
print(x_decensor.shape)
step_num = int(len(x_decensor) / BATCH_SIZE)
cnt = 0
for i in tqdm.tqdm(range(step_num)):
x_batch = x_decensor[i * BATCH_SIZE:(i + 1) * BATCH_SIZE]
mask_batch = get_mask(x_batch)
completion = sess.run(model.completion, feed_dict={x: x_batch, mask: mask_batch, is_training: False})
for i in range(BATCH_SIZE):
cnt += 1
img = completion[i]
img = np.array((img + 1) * 127.5, dtype=np.uint8)
original = x_batch[i]
original = np.array((original + 1) * 127.5, dtype=np.uint8)
if (poisson_blending_enabled):
img = blend(original, img, mask_batch[0,:,:,0])
output = Image.fromarray(img.astype('uint8'), 'RGB')
dst = './decensor_output_images/{}.png'.format("{0:06d}".format(cnt))
output.save(dst)
def get_mask(x_batch):
points = []
mask = []
for i in range(BATCH_SIZE):
raw = x_batch[i]
raw = np.array((raw + 1) * 127.5, dtype=np.uint8)
m = np.zeros((IMAGE_SIZE, IMAGE_SIZE, 1), dtype=np.uint8)
for x in range(IMAGE_SIZE):
for y in range(IMAGE_SIZE):
if np.array_equal(raw[x][y], [0, 255, 0]):
m[x, y] = 1
mask.append(m)
return np.array(mask)
if __name__ == '__main__':
decensor()