-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
Copy pathtrain.py
148 lines (116 loc) · 5.72 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import numpy as np
import tensorflow as tf
from PIL import Image
import tqdm
from model import Model
import load
import scipy.ndimage
IMAGE_SIZE = 128
LOCAL_SIZE = 64
HOLE_MIN = 24
HOLE_MAX = 48
LEARNING_RATE = 1e-3
BATCH_SIZE = 16
PRETRAIN_EPOCH = 100
#the chance the rectangle crop will be rotated
ROTATE_CHANCE = 0.5
def train():
x = tf.placeholder(tf.float32, [BATCH_SIZE, IMAGE_SIZE, IMAGE_SIZE, 3])
mask = tf.placeholder(tf.float32, [BATCH_SIZE, IMAGE_SIZE, IMAGE_SIZE, 1])
local_x = tf.placeholder(tf.float32, [BATCH_SIZE, LOCAL_SIZE, LOCAL_SIZE, 3])
global_completion = tf.placeholder(tf.float32, [BATCH_SIZE, IMAGE_SIZE, IMAGE_SIZE, 3])
local_completion = tf.placeholder(tf.float32, [BATCH_SIZE, LOCAL_SIZE, LOCAL_SIZE, 3])
is_training = tf.placeholder(tf.bool, [])
model = Model(x, mask, local_x, global_completion, local_completion, is_training, batch_size=BATCH_SIZE)
sess = tf.Session()
global_step = tf.Variable(0, name='global_step', trainable=False)
epoch = tf.Variable(0, name='epoch', trainable=False)
opt = tf.train.AdamOptimizer(learning_rate=LEARNING_RATE)
g_train_op = opt.minimize(model.g_loss, global_step=global_step, var_list=model.g_variables)
d_train_op = opt.minimize(model.d_loss, global_step=global_step, var_list=model.d_variables)
init_op = tf.global_variables_initializer()
sess.run(init_op)
if tf.train.get_checkpoint_state('./models'):
saver = tf.train.Saver()
saver.restore(sess, './models/latest')
x_train, x_test = load.load()
x_train = np.array([a / 127.5 - 1 for a in x_train])
x_test = np.array([a / 127.5 - 1 for a in x_test])
step_num = int(len(x_train) / BATCH_SIZE)
while True:
sess.run(tf.assign(epoch, tf.add(epoch, 1)))
print('epoch: {}'.format(sess.run(epoch)))
np.random.shuffle(x_train)
# Completion
if sess.run(epoch) <= PRETRAIN_EPOCH:
g_loss_value = 0
for i in tqdm.tqdm(range(step_num)):
x_batch = x_train[i * BATCH_SIZE:(i + 1) * BATCH_SIZE]
points_batch, mask_batch = get_points()
_, g_loss = sess.run([g_train_op, model.g_loss], feed_dict={x: x_batch, mask: mask_batch, is_training: True})
g_loss_value += g_loss
print('Completion loss: {}'.format(g_loss_value))
np.random.shuffle(x_test)
x_batch = x_test[:BATCH_SIZE]
completion = sess.run(model.completion, feed_dict={x: x_batch, mask: mask_batch, is_training: False})
sample = np.array((completion[0] + 1) * 127.5, dtype=np.uint8)
result = Image.fromarray(sample)
result.save('./training_output_images/{}.jpg'.format("{0:06d}".format(sess.run(epoch))))
saver = tf.train.Saver()
saver.save(sess, './models/latest', write_meta_graph=False)
if sess.run(epoch) == PRETRAIN_EPOCH:
saver.save(sess, './models/pretrained', write_meta_graph=False)
# Discrimitation
else:
g_loss_value = 0
d_loss_value = 0
for i in tqdm.tqdm(range(step_num)):
x_batch = x_train[i * BATCH_SIZE:(i + 1) * BATCH_SIZE]
points_batch, mask_batch = get_points()
_, g_loss, completion = sess.run([g_train_op, model.g_loss, model.completion], feed_dict={x: x_batch, mask: mask_batch, is_training: True})
g_loss_value += g_loss
local_x_batch = []
local_completion_batch = []
for i in range(BATCH_SIZE):
x1, y1, x2, y2 = points_batch[i]
local_x_batch.append(x_batch[i][y1:y2, x1:x2, :])
local_completion_batch.append(completion[i][y1:y2, x1:x2, :])
local_x_batch = np.array(local_x_batch)
local_completion_batch = np.array(local_completion_batch)
_, d_loss = sess.run(
[d_train_op, model.d_loss],
feed_dict={x: x_batch, mask: mask_batch, local_x: local_x_batch, global_completion: completion, local_completion: local_completion_batch, is_training: True})
d_loss_value += d_loss
print('Completion loss: {}'.format(g_loss_value))
print('Discriminator loss: {}'.format(d_loss_value))
np.random.shuffle(x_test)
x_batch = x_test[:BATCH_SIZE]
completion = sess.run(model.completion, feed_dict={x: x_batch, mask: mask_batch, is_training: False})
sample = np.array((completion[0] + 1) * 127.5, dtype=np.uint8)
result = Image.fromarray(sample)
result.save('./training_output_images/{}.jpg'.format("{0:06d}".format(sess.run(epoch))))
saver = tf.train.Saver()
saver.save(sess, './models/latest', write_meta_graph=False)
def get_points():
points = []
mask = []
for i in range(BATCH_SIZE):
x1, y1 = np.random.randint(0, IMAGE_SIZE - LOCAL_SIZE + 1, 2)
x2, y2 = np.array([x1, y1]) + LOCAL_SIZE
points.append([x1, y1, x2, y2])
w, h = np.random.randint(HOLE_MIN, HOLE_MAX + 1, 2)
p1 = x1 + np.random.randint(0, LOCAL_SIZE - w)
q1 = y1 + np.random.randint(0, LOCAL_SIZE - h)
p2 = p1 + w
q2 = q1 + h
m = np.zeros((IMAGE_SIZE, IMAGE_SIZE, 1), dtype=np.uint8)
m[q1:q2 + 1, p1:p2 + 1] = 1
if (np.random.random() < ROTATE_CHANCE):
#rotate random amount between 0 and 90 degrees
m = scipy.ndimage.rotate(m, np.random.random()*90, reshape = False)
#set all elements greater than 0 to 1
m[m > 0] = 1
mask.append(m)
return np.array(points), np.array(mask)
if __name__ == '__main__':
train()