-
Notifications
You must be signed in to change notification settings - Fork 92
/
Copy pathextract.py
638 lines (533 loc) · 25.2 KB
/
extract.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
import logging
import os
import sys
import cv2
import numpy as np
from absl import app
import gin
from internal import configs
from internal import datasets
from internal import models
from internal import utils
from internal import coord
from internal import checkpoints
import torch
import accelerate
from tqdm import tqdm
from torch.utils._pytree import tree_map
import torch.nn.functional as F
from skimage import measure
import trimesh
import pymeshlab as pml
configs.define_common_flags()
@torch.no_grad()
def evaluate_density(model, accelerator: accelerate.Accelerator,
points, config: configs.Config, std_value=0.0):
"""
Evaluate a signed distance function (SDF) for a batch of points.
Args:
sdf: A callable function that takes a tensor of size (N, 3) containing
3D points and returns a tensor of size (N,) with the SDF values.
points: A torch tensor containing 3D points.
Returns:
A torch tensor with the SDF values evaluated at the given points.
"""
z = []
for _, pnts in enumerate(tqdm(torch.split(points, config.render_chunk_size, dim=0),
desc="Evaluating density", leave=False,
disable=not accelerator.is_main_process)):
rays_remaining = pnts.shape[0] % accelerator.num_processes
if rays_remaining != 0:
padding = accelerator.num_processes - rays_remaining
pnts = torch.cat([pnts, torch.zeros_like(pnts[-padding:])], dim=0)
else:
padding = 0
rays_per_host = pnts.shape[0] // accelerator.num_processes
start, stop = accelerator.process_index * rays_per_host, \
(accelerator.process_index + 1) * rays_per_host
chunk_means = pnts[start:stop]
chunk_stds = torch.full_like(chunk_means[..., 0], std_value)
raw_density = model.nerf_mlp.predict_density(chunk_means[:, None], chunk_stds[:, None], no_warp=True)[0]
density = F.softplus(raw_density + model.nerf_mlp.density_bias)
density = accelerator.gather(density)
if padding > 0:
density = density[: -padding]
z.append(density)
z = torch.cat(z, dim=0)
return z
@torch.no_grad()
def evaluate_color(model, accelerator: accelerate.Accelerator,
points, config: configs.Config, std_value=0.0):
"""
Evaluate a signed distance function (SDF) for a batch of points.
Args:
sdf: A callable function that takes a tensor of size (N, 3) containing
3D points and returns a tensor of size (N,) with the SDF values.
points: A torch tensor containing 3D points.
Returns:
A torch tensor with the SDF values evaluated at the given points.
"""
z = []
for _, pnts in enumerate(tqdm(torch.split(points, config.render_chunk_size, dim=0),
desc="Evaluating color",
disable=not accelerator.is_main_process)):
rays_remaining = pnts.shape[0] % accelerator.num_processes
if rays_remaining != 0:
padding = accelerator.num_processes - rays_remaining
pnts = torch.cat([pnts, torch.zeros_like(pnts[-padding:])], dim=0)
else:
padding = 0
rays_per_host = pnts.shape[0] // accelerator.num_processes
start, stop = accelerator.process_index * rays_per_host, \
(accelerator.process_index + 1) * rays_per_host
chunk_means = pnts[start:stop]
chunk_stds = torch.full_like(chunk_means[..., 0], std_value)
chunk_viewdirs = torch.zeros_like(chunk_means)
ray_results = model.nerf_mlp(False, chunk_means[:, None, None], chunk_stds[:, None, None],
chunk_viewdirs)
rgb = ray_results['rgb'][:, 0]
rgb = accelerator.gather(rgb)
if padding > 0:
rgb = rgb[: -padding]
z.append(rgb)
z = torch.cat(z, dim=0)
return z
@torch.no_grad()
def evaluate_color_projection(model, accelerator: accelerate.Accelerator, vertices, faces, config: configs.Config):
normals = auto_normals(vertices, faces.long())
viewdirs = -normals
origins = vertices - 0.005 * viewdirs
vc = []
chunk = config.render_chunk_size
model.num_levels = 1
model.opaque_background = True
for i in tqdm(range(0, origins.shape[0], chunk),
desc="Evaluating color projection",
disable=not accelerator.is_main_process):
cur_chunk = min(chunk, origins.shape[0] - i)
rays_remaining = cur_chunk % accelerator.num_processes
rays_per_host = cur_chunk // accelerator.num_processes
if rays_remaining != 0:
padding = accelerator.num_processes - rays_remaining
rays_per_host += 1
else:
padding = 0
start = i + accelerator.process_index * rays_per_host
stop = start + rays_per_host
batch = {
'origins': origins[start:stop],
'directions': viewdirs[start:stop],
'viewdirs': viewdirs[start:stop],
'cam_dirs': viewdirs[start:stop],
'radii': torch.full_like(origins[start:stop, ..., :1], 0.000723),
'near': torch.full_like(origins[start:stop, ..., :1], 0),
'far': torch.full_like(origins[start:stop, ..., :1], 0.01),
}
batch = accelerator.pad_across_processes(batch)
with accelerator.autocast():
renderings, ray_history = model(
False,
batch,
compute_extras=False,
train_frac=1)
rgb = renderings[-1]['rgb']
acc = renderings[-1]['acc']
rgb /= acc.clamp_min(1e-5)[..., None]
rgb = rgb.clamp(0, 1)
rgb = accelerator.gather(rgb)
rgb[torch.isnan(rgb) | torch.isinf(rgb)] = 1
if padding > 0:
rgb = rgb[: -padding]
vc.append(rgb)
vc = torch.cat(vc, dim=0)
return vc
def auto_normals(verts, faces):
i0 = faces[:, 0]
i1 = faces[:, 1]
i2 = faces[:, 2]
v0 = verts[i0, :]
v1 = verts[i1, :]
v2 = verts[i2, :]
face_normals = torch.cross(v1 - v0, v2 - v0)
# Splat face normals to vertices
v_nrm = torch.zeros_like(verts)
v_nrm.scatter_add_(0, i0[:, None].repeat(1, 3), face_normals)
v_nrm.scatter_add_(0, i1[:, None].repeat(1, 3), face_normals)
v_nrm.scatter_add_(0, i2[:, None].repeat(1, 3), face_normals)
# Normalize, replace zero (degenerated) normals with some default value
v_nrm = torch.where((v_nrm ** 2).sum(dim=-1, keepdims=True) > 1e-20, v_nrm,
torch.tensor([0.0, 0.0, 1.0], dtype=torch.float32, device=verts.device))
v_nrm = F.normalize(v_nrm, dim=-1)
return v_nrm
def clean_mesh(verts, faces, v_pct=1, min_f=8, min_d=5, repair=True, remesh=True, remesh_size=0.01, logger=None, main_process=True):
# verts: [N, 3]
# faces: [N, 3]
tbar = tqdm(total=9, desc='Clean mesh', leave=False, disable=not main_process)
_ori_vert_shape = verts.shape
_ori_face_shape = faces.shape
m = pml.Mesh(verts, faces)
ms = pml.MeshSet()
ms.add_mesh(m, 'mesh') # will copy!
# filters
tbar.set_description('Remove unreferenced vertices')
ms.meshing_remove_unreferenced_vertices() # verts not refed by any faces
tbar.update()
if v_pct > 0:
tbar.set_description('Remove unreferenced vertices')
ms.meshing_merge_close_vertices(threshold=pml.Percentage(v_pct)) # 1/10000 of bounding box diagonal
tbar.update()
tbar.set_description('Remove duplicate faces')
ms.meshing_remove_duplicate_faces() # faces defined by the same verts
tbar.update()
tbar.set_description('Remove null faces')
ms.meshing_remove_null_faces() # faces with area == 0
tbar.update()
if min_d > 0:
tbar.set_description('Remove connected component by diameter')
ms.meshing_remove_connected_component_by_diameter(mincomponentdiag=pml.Percentage(min_d))
tbar.update()
if min_f > 0:
tbar.set_description('Remove connected component by face number')
ms.meshing_remove_connected_component_by_face_number(mincomponentsize=min_f)
tbar.update()
if repair:
# tbar.set_description('Remove t vertices')
# ms.meshing_remove_t_vertices(method=0, threshold=40, repeat=True)
tbar.set_description('Repair non manifold edges')
ms.meshing_repair_non_manifold_edges(method=0)
tbar.update()
tbar.set_description('Repair non manifold vertices')
ms.meshing_repair_non_manifold_vertices(vertdispratio=0)
tbar.update()
else:
tbar.update(2)
if remesh:
# tbar.set_description('Coord taubin smoothing')
# ms.apply_coord_taubin_smoothing()
tbar.set_description('Isotropic explicit remeshing')
ms.meshing_isotropic_explicit_remeshing(iterations=3, targetlen=pml.AbsoluteValue(remesh_size))
tbar.update()
# extract mesh
m = ms.current_mesh()
verts = m.vertex_matrix()
faces = m.face_matrix()
if logger is not None:
logger.info(f'Mesh cleaning: {_ori_vert_shape} --> {verts.shape}, {_ori_face_shape} --> {faces.shape}')
return verts, faces
def decimate_mesh(verts, faces, target, backend='pymeshlab', remesh=False, optimalplacement=True, logger=None):
# optimalplacement: default is True, but for flat mesh must turn False to prevent spike artifect.
_ori_vert_shape = verts.shape
_ori_face_shape = faces.shape
if backend == 'pyfqmr':
import pyfqmr
solver = pyfqmr.Simplify()
solver.setMesh(verts, faces)
solver.simplify_mesh(target_count=target, preserve_border=False, verbose=False)
verts, faces, normals = solver.getMesh()
else:
m = pml.Mesh(verts, faces)
ms = pml.MeshSet()
ms.add_mesh(m, 'mesh') # will copy!
# filters
# ms.meshing_decimation_clustering(threshold=pml.Percentage(1))
ms.meshing_decimation_quadric_edge_collapse(targetfacenum=int(target), optimalplacement=optimalplacement)
if remesh:
# ms.apply_coord_taubin_smoothing()
ms.meshing_isotropic_explicit_remeshing(iterations=3, targetlen=pml.Percentage(1))
# extract mesh
m = ms.current_mesh()
verts = m.vertex_matrix()
faces = m.face_matrix()
if logger is not None:
logger.info(f'Mesh decimation: {_ori_vert_shape} --> {verts.shape}, {_ori_face_shape} --> {faces.shape}')
return verts, faces
def main(unused_argv):
config = configs.load_config()
config.compute_visibility = True
config.exp_path = os.path.join("exp", config.exp_name)
config.mesh_path = os.path.join("exp", config.exp_name, "mesh")
config.checkpoint_dir = os.path.join(config.exp_path, 'checkpoints')
os.makedirs(config.mesh_path, exist_ok=True)
# accelerator for DDP
accelerator = accelerate.Accelerator()
device = accelerator.device
# setup logger
logging.basicConfig(
format="%(asctime)s: %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
force=True,
handlers=[logging.StreamHandler(sys.stdout),
logging.FileHandler(os.path.join(config.exp_path, 'log_extract.txt'))],
level=logging.INFO,
)
sys.excepthook = utils.handle_exception
logger = accelerate.logging.get_logger(__name__)
logger.info(config)
logger.info(accelerator.state, main_process_only=False)
config.world_size = accelerator.num_processes
config.global_rank = accelerator.process_index
accelerate.utils.set_seed(config.seed, device_specific=True)
# setup model and optimizer
model = models.Model(config=config)
model = accelerator.prepare(model)
step = checkpoints.restore_checkpoint(config.checkpoint_dir, accelerator, logger)
model.eval()
module = accelerator.unwrap_model(model)
visibility_path = os.path.join(config.mesh_path, 'visibility_mask_{:.1f}.pt'.format(config.mesh_radius))
visibility_resolution = config.visibility_resolution
if not os.path.exists(visibility_path):
logger.info('Generate visibility mask...')
# load dataset
dataset = datasets.load_dataset('train', config.data_dir, config)
dataloader = torch.utils.data.DataLoader(np.arange(len(dataset)),
num_workers=4,
shuffle=True,
batch_size=1,
collate_fn=dataset.collate_fn,
persistent_workers=True,
)
visibility_mask = torch.ones(
(1, 1, visibility_resolution, visibility_resolution, visibility_resolution), requires_grad=True
).to(device)
visibility_mask.retain_grad()
tbar = tqdm(dataloader, desc='Generating visibility grid', disable=not accelerator.is_main_process)
for index, batch in enumerate(tbar):
batch = accelerate.utils.send_to_device(batch, accelerator.device)
rendering = models.render_image(model, accelerator,
batch, False, 1, config,
verbose=False, return_weights=True)
coords = rendering['coord'].reshape(-1, 3)
weights = rendering['weights'].reshape(-1)
valid_points = coords[weights > config.valid_weight_thresh]
valid_points /= config.mesh_radius
# update mask based on ray samples
with torch.enable_grad():
out = torch.nn.functional.grid_sample(visibility_mask,
valid_points[None, None, None],
align_corners=True)
out.sum().backward()
tbar.set_postfix({"visibility_mask": (visibility_mask.grad > 0.0001).float().mean().item()})
# if index == 10:
# break
visibility_mask = (visibility_mask.grad > 0.0001).float()
if accelerator.is_main_process:
torch.save(visibility_mask.detach().cpu(), visibility_path)
else:
logger.info('Load visibility mask from {}'.format(visibility_path))
visibility_mask = torch.load(visibility_path, map_location=device)
space = config.mesh_radius * 2 / (config.visibility_resolution - 1)
logger.info("Extract mesh from visibility mask...")
visibility_mask_np = visibility_mask[0, 0].permute(2, 1, 0).detach().cpu().numpy()
verts, faces, normals, values = measure.marching_cubes(
volume=-visibility_mask_np,
level=-0.5,
spacing=(space, space, space))
verts -= config.mesh_radius
if config.extract_visibility:
meshexport = trimesh.Trimesh(verts, faces)
meshexport.export(os.path.join(config.mesh_path, "visibility_mask_{}.ply".format(config.mesh_radius)), "ply")
logger.info("Extract visibility mask done.")
# Initialize variables
crop_n = 512
grid_min = verts.min(axis=0)
grid_max = verts.max(axis=0)
space = ((grid_max - grid_min).prod() / config.mesh_voxels) ** (1 / 3)
world_size = ((grid_max - grid_min) / space).astype(np.int32)
Nx, Ny, Nz = np.maximum(1, world_size // crop_n)
crop_n_x, crop_n_y, crop_n_z = world_size // [Nx, Ny, Nz]
xs = np.linspace(grid_min[0], grid_max[0], Nx + 1)
ys = np.linspace(grid_min[1], grid_max[1], Ny + 1)
zs = np.linspace(grid_min[2], grid_max[2], Nz + 1)
# Initialize meshes list
meshes = []
# Iterate over the grid
for i in range(Nx):
for j in range(Ny):
for k in range(Nz):
logger.info(f"Process grid cell ({i + 1}/{Nx}, {j + 1}/{Ny}, {k + 1}/{Nz})...")
# Calculate grid cell boundaries
x_min, x_max = xs[i], xs[i + 1]
y_min, y_max = ys[j], ys[j + 1]
z_min, z_max = zs[k], zs[k + 1]
# Create point grid
x = np.linspace(x_min, x_max, crop_n_x)
y = np.linspace(y_min, y_max, crop_n_y)
z = np.linspace(z_min, z_max, crop_n_z)
xx, yy, zz = np.meshgrid(x, y, z, indexing="ij")
points = torch.tensor(np.vstack([xx.ravel(), yy.ravel(), zz.ravel()]).T,
dtype=torch.float,
device=device)
# Construct point pyramids
points_tmp = points.reshape(crop_n_x, crop_n_y, crop_n_z, 3)[None]
points_tmp /= config.mesh_radius
current_mask = torch.nn.functional.grid_sample(visibility_mask, points_tmp, align_corners=True)
current_mask = (current_mask > 0.0).cpu().numpy()[0, 0]
pts_density = evaluate_density(module, accelerator, points,
config, std_value=config.std_value)
# bound the vertices
points_world = coord.inv_contract(2 * points)
pts_density[points_world.norm(dim=-1) > config.mesh_max_radius] = 0.0
z = pts_density.detach().cpu().numpy()
# Skip if no surface found
valid_z = z.reshape(crop_n_x, crop_n_y, crop_n_z)[current_mask]
if valid_z.shape[0] <= 0 or (
np.min(valid_z) > config.isosurface_threshold or np.max(
valid_z) < config.isosurface_threshold
):
continue
if not (np.min(z) > config.isosurface_threshold or np.max(z) < config.isosurface_threshold):
# Extract mesh
logger.info('Extract mesh...')
z = z.astype(np.float32)
verts, faces, _, _ = measure.marching_cubes(
volume=-z.reshape(crop_n_x, crop_n_y, crop_n_z),
level=-config.isosurface_threshold,
spacing=(
(x_max - x_min) / (crop_n_x - 1),
(y_max - y_min) / (crop_n_y - 1),
(z_max - z_min) / (crop_n_z - 1),
),
mask=current_mask,
)
verts = verts + np.array([x_min, y_min, z_min])
meshcrop = trimesh.Trimesh(verts, faces)
logger.info('Extract vertices: {}, faces: {}'.format(meshcrop.vertices.shape[0],
meshcrop.faces.shape[0]))
meshes.append(meshcrop)
# Save mesh
logger.info('Concatenate mesh...')
combined_mesh = trimesh.util.concatenate(meshes)
# from https://github.com/ashawkey/stable-dreamfusion/blob/main/nerf/renderer.py
# clean
logger.info('Clean mesh...')
vertices = combined_mesh.vertices.astype(np.float32)
faces = combined_mesh.faces.astype(np.int32)
vertices, faces = clean_mesh(vertices, faces,
remesh=False, remesh_size=0.01,
logger=logger, main_process=accelerator.is_main_process)
v = torch.from_numpy(vertices).contiguous().float().to(device)
v = coord.inv_contract(2 * v)
vertices = v.detach().cpu().numpy()
f = torch.from_numpy(faces).contiguous().int().to(device)
# decimation
if config.decimate_target > 0 and faces.shape[0] > config.decimate_target:
logger.info('Decimate mesh...')
vertices, triangles = decimate_mesh(vertices, faces, config.decimate_target, logger=logger)
# import ipdb; ipdb.set_trace()
if config.vertex_color:
# batched inference to avoid OOM
logger.info('Evaluate mesh vertex color...')
if config.vertex_projection:
rgbs = evaluate_color_projection(module, accelerator, v, f, config)
else:
rgbs = evaluate_color(module, accelerator, v,
config, std_value=config.std_value)
rgbs = (rgbs * 255).detach().cpu().numpy().astype(np.uint8)
if accelerator.is_main_process:
logger.info('Export mesh (vertex color)...')
mesh = trimesh.Trimesh(vertices, faces,
vertex_colors=rgbs,
process=False) # important, process=True leads to seg fault...
mesh.export(os.path.join(config.mesh_path, 'mesh_{}.ply'.format(config.mesh_radius)))
logger.info('Finish extracting mesh.')
return
def _export(v, f, h0=2048, w0=2048, ssaa=1, name=''):
logger.info('Export mesh (atlas)...')
# v, f: torch Tensor
device = v.device
v_np = v.cpu().numpy() # [N, 3]
f_np = f.cpu().numpy() # [M, 3]
# unwrap uvs
import xatlas
import nvdiffrast.torch as dr
from sklearn.neighbors import NearestNeighbors
from scipy.ndimage import binary_dilation, binary_erosion
logger.info(f'Running xatlas to unwrap UVs for mesh: v={v_np.shape} f={f_np.shape}')
atlas = xatlas.Atlas()
atlas.add_mesh(v_np, f_np)
chart_options = xatlas.ChartOptions()
chart_options.max_iterations = 4 # for faster unwrap...
atlas.generate(chart_options=chart_options)
vmapping, ft_np, vt_np = atlas[0] # [N], [M, 3], [N, 2]
# vmapping, ft_np, vt_np = xatlas.parametrize(v_np, f_np) # [N], [M, 3], [N, 2]
vt = torch.from_numpy(vt_np.astype(np.float32)).float().to(device)
ft = torch.from_numpy(ft_np.astype(np.int64)).int().to(device)
# render uv maps
uv = vt * 2.0 - 1.0 # uvs to range [-1, 1]
uv = torch.cat((uv, torch.zeros_like(uv[..., :1]), torch.ones_like(uv[..., :1])), dim=-1) # [N, 4]
if ssaa > 1:
h = int(h0 * ssaa)
w = int(w0 * ssaa)
else:
h, w = h0, w0
if h <= 2048 and w <= 2048:
glctx = dr.RasterizeCudaContext()
else:
glctx = dr.RasterizeGLContext()
rast, _ = dr.rasterize(glctx, uv.unsqueeze(0), ft, (h, w)) # [1, h, w, 4]
xyzs, _ = dr.interpolate(v.unsqueeze(0), rast, f) # [1, h, w, 3]
mask, _ = dr.interpolate(torch.ones_like(v[:, :1]).unsqueeze(0), rast, f) # [1, h, w, 1]
# masked query
xyzs = xyzs.view(-1, 3)
mask = (mask > 0).view(-1)
feats = torch.zeros(h * w, 3, device=device, dtype=torch.float32)
if mask.any():
xyzs = xyzs[mask] # [M, 3]
# batched inference to avoid OOM
all_feats = evaluate_color(module, accelerator, xyzs,
config, std_value=config.std_value)
feats[mask] = all_feats
feats = feats.view(h, w, -1)
mask = mask.view(h, w)
# quantize [0.0, 1.0] to [0, 255]
feats = feats.cpu().numpy()
feats = (feats * 255).astype(np.uint8)
### NN search as an antialiasing ...
mask = mask.cpu().numpy()
inpaint_region = binary_dilation(mask, iterations=3)
inpaint_region[mask] = 0
search_region = mask.copy()
not_search_region = binary_erosion(search_region, iterations=2)
search_region[not_search_region] = 0
search_coords = np.stack(np.nonzero(search_region), axis=-1)
inpaint_coords = np.stack(np.nonzero(inpaint_region), axis=-1)
knn = NearestNeighbors(n_neighbors=1, algorithm='kd_tree').fit(search_coords)
_, indices = knn.kneighbors(inpaint_coords)
feats[tuple(inpaint_coords.T)] = feats[tuple(search_coords[indices[:, 0]].T)]
feats = cv2.cvtColor(feats, cv2.COLOR_RGB2BGR)
# do ssaa after the NN search, in numpy
if ssaa > 1:
feats = cv2.resize(feats, (w0, h0), interpolation=cv2.INTER_LINEAR)
cv2.imwrite(os.path.join(config.mesh_path, f'{name}albedo.png'), feats)
# save obj (v, vt, f /)
obj_file = os.path.join(config.mesh_path, f'{name}mesh.obj')
mtl_file = os.path.join(config.mesh_path, f'{name}mesh.mtl')
logger.info(f'writing obj mesh to {obj_file}')
with open(obj_file, "w") as fp:
fp.write(f'mtllib {name}mesh.mtl \n')
logger.info(f'writing vertices {v_np.shape}')
for v in v_np:
fp.write(f'v {v[0]} {v[1]} {v[2]} \n')
logger.info(f'writing vertices texture coords {vt_np.shape}')
for v in vt_np:
fp.write(f'vt {v[0]} {1 - v[1]} \n')
logger.info(f'writing faces {f_np.shape}')
fp.write(f'usemtl mat0 \n')
for i in range(len(f_np)):
fp.write(
f"f {f_np[i, 0] + 1}/{ft_np[i, 0] + 1} {f_np[i, 1] + 1}/{ft_np[i, 1] + 1} {f_np[i, 2] + 1}/{ft_np[i, 2] + 1} \n")
with open(mtl_file, "w") as fp:
fp.write(f'newmtl mat0 \n')
fp.write(f'Ka 1.000000 1.000000 1.000000 \n')
fp.write(f'Kd 1.000000 1.000000 1.000000 \n')
fp.write(f'Ks 0.000000 0.000000 0.000000 \n')
fp.write(f'Tr 1.000000 \n')
fp.write(f'illum 1 \n')
fp.write(f'Ns 0.000000 \n')
fp.write(f'map_Kd {name}albedo.png \n')
# could be extremely slow
_export(v, f)
logger.info('Finish extracting mesh.')
if __name__ == '__main__':
with gin.config_scope('bake'):
app.run(main)