-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path1962. Remove Stones to Minimize the Total
84 lines (69 loc) · 2.57 KB
/
1962. Remove Stones to Minimize the Total
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
You are given a 0-indexed integer array piles, where piles[i] represents the number of stones in the ith pile, and an integer k. You should apply the following operation exactly k times:
Choose any piles[i] and remove floor(piles[i] / 2) stones from it.
Notice that you can apply the operation on the same pile more than once.
Return the minimum possible total number of stones remaining after applying the k operations.
floor(x) is the greatest integer that is smaller than or equal to x (i.e., rounds x down).
Example 1:
Input: piles = [5,4,9], k = 2
Output: 12
Explanation: Steps of a possible scenario are:
- Apply the operation on pile 2. The resulting piles are [5,4,5].
- Apply the operation on pile 0. The resulting piles are [3,4,5].
The total number of stones in [3,4,5] is 12.
Example 2:
Input: piles = [4,3,6,7], k = 3
Output: 12
Explanation: Steps of a possible scenario are:
- Apply the operation on pile 2. The resulting piles are [4,3,3,7].
- Apply the operation on pile 3. The resulting piles are [4,3,3,4].
- Apply the operation on pile 0. The resulting piles are [2,3,3,4].
The total number of stones in [2,3,3,4] is 12.
Constraints:
1 <= piles.length <= 105
1 <= piles[i] <= 104
1 <= k <= 105
//approach -1 (use sorting )Brute force method
//time complexity : O(k*nlogn)
//space complexity : O(1)
gives TLE
public static int minStoneSum(int[] piles, int k) {
while(k-->0){
Arrays.sort(piles);
piles[piles.length-1]-=(int)(piles[piles.length-1]/2);
}
int ans=0;
for(int i=0;i< piles.length;i++){
ans+=piles[i];
}
//System.out.println(ans);
return ans;
}
//approach -2 (find max element every time brute force)
//t.c : O(k*n)
//space com. : O(1)
//approach - 3(using min or max heap / priority queue)(optimised)
//t.c : O(n + k*logn)
//space com. : O(n)
class Solution {
public static int minStoneSum(int[] piles, int k) {
//PriorityQueue<Integer> cur=new PriorityQueue<>(Comparator.reverseOrder());
PriorityQueue<Integer> temp=new PriorityQueue<>(Collections.reverseOrder());
for(int i=0;i< piles.length;i++){
//cur.add(piles[i]);
temp.add(piles[i]);
}
// while(cur.size()>0){
// System.out.print(cur.poll());
// }
//System.out.println();
while(k-->0){
int cur=temp.poll();
temp.add(cur-(cur/2));
}
long ans=0;
while (temp.size()>0){
ans+=temp.poll();
}
return (int)ans;
}
}