-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrdp.py
299 lines (218 loc) · 8.07 KB
/
rdp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
import abc
import array_api_compat.numpy as np
from array_api_compat import device
from types import ModuleType
from typing import TypeAlias
Array: TypeAlias = np.ndarray
try:
import array_api_compat.cupy as cp
Array: TypeAlias = Array | cp.ndarray
except:
pass
def neighbor_difference_and_sum(
x: Array, xp: ModuleType, padding: str = "edge"
) -> tuple[Array, Array]:
"""get differences and sums with nearest neighbors for an n-dimensional array x
using padding (by default in edge mode)
a x.ndim*(3,) neighborhood around each element is used
"""
x_padded = xp.pad(x, 1, mode=padding)
# number of nearest neighbors
num_neigh = 3**x.ndim - 1
# array for differences and sums with nearest neighbors
d = xp.zeros((num_neigh,) + x.shape, dtype=x.dtype)
s = xp.zeros((num_neigh,) + x.shape, dtype=x.dtype)
for i, ind in enumerate(xp.ndindex(x.ndim * (3,))):
if i != (num_neigh // 2):
sl = []
for j in ind:
if j - 2 < 0:
sl.append(slice(j, j - 2))
else:
sl.append(slice(j, None))
sl = tuple(sl)
if i < num_neigh // 2:
d[i, ...] = x - x_padded[sl]
s[i, ...] = x + x_padded[sl]
else:
d[i - 1, ...] = x - x_padded[sl]
s[i - 1, ...] = x + x_padded[sl]
return d, s
def neighbor_product(x: Array, xp: ModuleType, padding: str = "edge") -> Array:
"""get backward and forward neighbor products for each dimension of an array x
using padding (by default in edge mode)
"""
x_padded = xp.pad(x, 1, mode=padding)
# number of nearest neighbors
num_neigh = 3**x.ndim - 1
# array for differences and sums with nearest neighbors
p = xp.zeros((num_neigh,) + x.shape, dtype=x.dtype)
for i, ind in enumerate(xp.ndindex(x.ndim * (3,))):
if i != (num_neigh // 2):
sl = []
for j in ind:
if j - 2 < 0:
sl.append(slice(j, j - 2))
else:
sl.append(slice(j, None))
sl = tuple(sl)
if i < num_neigh // 2:
p[i, ...] = x * x_padded[sl]
else:
p[i - 1, ...] = x * x_padded[sl]
return p
class SmoothFunction(abc.ABC):
def __init__(self, in_shape, xp, dev, scale: float = 1.0) -> None:
self._in_shape = in_shape
self._scale = scale
self._xp = xp
self._dev = dev
@property
def scale(self) -> float:
return self._scale
@scale.setter
def scale(self, scale: float) -> None:
self._scale = scale
@property
def in_shape(self) -> tuple[int, ...]:
return self._in_shape
@property
def xp(self):
return self._xp
@property
def dev(self):
return self._dev
@abc.abstractmethod
def _call(self, x: Array) -> float:
raise NotImplementedError
@abc.abstractmethod
def _gradient(self, x: Array) -> Array:
raise NotImplementedError
def __call__(self, x: Array) -> float:
x = self._xp.asarray(x, device=self._dev)
flat_input = x.ndim == 1
if flat_input:
x = self._xp.reshape(x, self._in_shape)
if self._scale == 1.0:
res = self._call(x)
else:
res = self._scale * self._call(x)
return res
def gradient(self, x: Array) -> Array:
dev_input = device(x)
x = self._xp.asarray(x, device=self._dev)
flat_input = x.ndim == 1
if flat_input:
x = self._xp.reshape(x, self._in_shape)
if self._scale == 1.0:
res = self._gradient(x)
else:
res = self._scale * self._gradient(x)
if flat_input:
res = self._xp.reshape(res, (res.size,))
res = self.xp.to_device(res, dev_input)
return res
def prox_function(self, z: Array, x: Array, T: Array) -> float:
"""returns the function h(z) = \sum_i f_i(z) + 0.5 * \sum_i (z_i - x_i)^2 / T_i
which when minimized over z is the proximal operator of the function at x
"""
return self.__call__(z) + 0.5 * float((((z - x) ** 2) / T).sum())
def prox_gradient(self, z: Array, x: Array, T: Array) -> Array:
"""return the gradient of the prox function h(z), needed for numeric evaluation of the proximal operator"""
return self.gradient(z) + (z - x) / T
class SmoothFunctionWithDiagonalHessian(SmoothFunction):
@abc.abstractmethod
def _diag_hessian(self, x: Array) -> Array:
"""(approximation) of the diagonal of the Hessian"""
raise NotImplementedError
def diag_hessian(self, x: Array) -> Array:
dev_input = device(x)
x = self._xp.asarray(x, device=self._dev)
flat_input = x.ndim == 1
if flat_input:
x = self._xp.reshape(x, self._in_shape)
if self._scale == 1.0:
res = self._diag_hessian(x)
else:
res = self._scale * self._diag_hessian(x)
if flat_input:
res = self._xp.reshape(res, (res.size,))
res = self.xp.to_device(res, dev_input)
return res
class RDP(SmoothFunctionWithDiagonalHessian):
def __init__(
self,
in_shape: tuple[int, ...],
xp: ModuleType,
dev: str,
voxel_size: Array,
eps: float | None = None,
gamma: float = 2.0,
padding: str = "edge",
) -> None:
self._gamma = gamma
if eps is None:
self._eps = xp.finfo(xp.float64).eps
else:
self._eps = eps
self._padding = padding
self._ndim = len(in_shape)
super().__init__(in_shape=in_shape, xp=xp, dev=dev)
# number of nearest neighbors
self._num_neigh = 3**self._ndim - 1
self._voxel_size = voxel_size
# array for differences and sums with nearest neighbors
self._voxel_size_weights = xp.zeros(
(self._num_neigh,) + in_shape, dtype=xp.float64
)
for i, ind in enumerate(xp.ndindex(self._ndim * (3,))):
if i != (self._num_neigh // 2):
offset = xp.asarray(ind, device=dev) - 1
vw = voxel_size[2] / xp.linalg.norm(offset * voxel_size)
if i < self._num_neigh // 2:
self._voxel_size_weights[i, ...] = vw
else:
self._voxel_size_weights[i - 1, ...] = vw
self._weights = self._voxel_size_weights
self._kappa = None
@property
def gamma(self) -> float:
return self._gamma
@property
def eps(self) -> float:
return self._eps
@property
def weights(self) -> Array:
return self._weights
@property
def kappa(self) -> Array | None:
return self._kappa
@kappa.setter
def kappa(self, image: Array) -> None:
self._kappa = image
self._weights = (
neighbor_product(self._kappa, self._xp) * self._voxel_size_weights
)
def _call(self, x: Array) -> float:
if float(self.xp.min(x)) < 0:
return self.xp.inf
d, s = neighbor_difference_and_sum(x, self.xp, padding=self._padding)
phi = s + self.gamma * self.xp.abs(d) + self.eps
tmp = (d**2) / phi
if self._weights is not None:
tmp *= self._weights
return 0.5 * float(self.xp.sum(tmp))
def _gradient(self, x: Array) -> Array:
d, s = neighbor_difference_and_sum(x, self.xp, padding=self._padding)
phi = s + self.gamma * self.xp.abs(d) + self.eps
tmp = d * (2 * phi - (d + self.gamma * self.xp.abs(d))) / (phi**2)
if self._weights is not None:
tmp *= self._weights
return tmp.sum(axis=0)
def _diag_hessian(self, x: Array) -> Array:
d, s = neighbor_difference_and_sum(x, self.xp, padding=self._padding)
phi = s + self.gamma * self.xp.abs(d) + self.eps
tmp = ((s - d + self.eps) ** 2) / (phi**3)
if self._weights is not None:
tmp *= self._weights
return 2 * tmp.sum(axis=0)