-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsim_stochastic_grad.py
399 lines (314 loc) · 10.4 KB
/
sim_stochastic_grad.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
"""script to compare SPDHG, SGD and SVRG for PET reconstruction with quad. and RDP prior"""
# %%
from __future__ import annotations
try:
import array_api_compat.cupy as xp
except ImportError:
import array_api_compat.numpy as xp
import parallelproj
import array_api_compat.numpy as np
import matplotlib.pyplot as plt
from array_api_compat import to_device
from scipy.optimize import fmin_l_bfgs_b
from pathlib import Path
from sim_utils import (
SubsetNegPoissonLogLWithPrior,
split_fwd_model,
OSEM,
SVRG,
ProxSVRG,
ProxRDP,
)
from rdp import RDP
# choose a device (CPU or CUDA GPU)
if "numpy" in xp.__name__:
# using numpy, device must be cpu
dev = "cpu"
elif "cupy" in xp.__name__:
# using cupy, only cuda devices are possible
dev = xp.cuda.Device(0)
# %%
# input parameters
seed = 1
# true counts, reasonable range: 1e6, 1e7 (high counts), 1e5 (low counts)
true_counts = 1e6
# regularization weight, reasonable range: 5e-5 * (true_counts / 1e6) is medium regularization
beta = 5e-5 * (true_counts / 1e6)
# RDP gamma parameter
gamma_rdp = 2.0
# precond version: 1: x / A^T 1, 2: x / (A^T + 2*diag_hess_rdp(x)*x)
precond_version = 2
# number of epochs / subsets for stochastic gradient algorithms
num_epochs = 20
num_subsets = 27
# max number of updates for reference L-BFGS-B solution
num_iter_bfgs_ref = 400
# %%
# number of rings of simulated PET scanner, should be odd in this example
num_rings = 11
# resolution of the simulated PET scanner in mm
fwhm_data_mm = 4.5
# simulated TOF or non-TOF system
tof = False
# mean of contamination sinogram, relative to mean of trues sinogram, reasonable range: 0.5 - 1.0
contam_fraction = 0.5
# show the geometry of the scanner / image volume
show_geometry = False
# verbose output
verbose = False
# track cost function values after every update (slow)
track_cost = False
# number of epochs / subsets for intial OSEM
num_epochs_osem = 1
num_subsets_osem = 27
# %%
# random seed
np.random.seed(seed)
# %%
# Setup of the forward model :math:`\bar{y}(x) = A x + s`
# --------------------------------------------------------
#
# We setup a linear forward operator :math:`A` consisting of an
# image-based resolution model, a non-TOF PET projector and an attenuation model
#
# .. note::
# The OSEM implementation below works with all linear operators that
# subclass :class:`.LinearOperator` (e.g. the high-level projectors).
scanner = parallelproj.RegularPolygonPETScannerGeometry(
xp,
dev,
radius=300.0,
num_sides=36,
num_lor_endpoints_per_side=12,
lor_spacing=4.0,
ring_positions=xp.linspace(
-5 * (num_rings - 1) / 2, 5 * (num_rings - 1) / 2, num_rings
),
symmetry_axis=2,
)
# %%
# setup the LOR descriptor that defines the sinogram
img_shape = (100, 100, 2 * num_rings - 1)
voxel_size = (2.0, 2.0, 2.0)
lor_desc = parallelproj.RegularPolygonPETLORDescriptor(
scanner,
radial_trim=140,
sinogram_order=parallelproj.SinogramSpatialAxisOrder.RVP,
)
if lor_desc.num_views % num_subsets != 0:
raise ValueError(
f"num_subsets_sgd ({num_subsets}) must be a divisor of num_views ({lor_desc.num_views})"
)
if lor_desc.num_views % num_subsets_osem != 0:
raise ValueError(
f"num_subsets_osem ({num_subsets_osem}) must be a divisor of num_views ({lor_desc.num_views})"
)
proj = parallelproj.RegularPolygonPETProjector(
lor_desc, img_shape=img_shape, voxel_size=voxel_size
)
# setup a simple test image containing a few "hot rods"
x_true = xp.ones(proj.in_shape, device=dev, dtype=xp.float32)
c0 = proj.in_shape[0] // 2
c1 = proj.in_shape[1] // 2
x_true[(c0 - 4) : (c0 + 4), (c1 - 4) : (c1 + 4), :] = 3.0
x_true[28:32, c1 : (c1 + 4), :] = 5.0
x_true[c0 : (c0 + 4), 20:24, :] = 5.0
x_true[-32:-28, c1 : (c1 + 4), :] = 0.1
x_true[c0 : (c0 + 4), -24:-20, :] = 0.1
x_true[:25, :, :] = 0
x_true[-25:, :, :] = 0
x_true[:, :10, :] = 0
x_true[:, -10:, :] = 0
# %%
# Attenuation image and sinogram setup
# ------------------------------------
# setup an attenuation image
x_att = 0.01 * xp.astype(x_true > 0, xp.float32)
# calculate the attenuation sinogram
att_sino = xp.exp(-proj(x_att))
# %%
# Complete PET forward model setup
# --------------------------------
#
# We combine an image-based resolution model,
# a non-TOF or TOF PET projector and an attenuation model
# into a single linear operator.
# enable TOF - comment if you want to run non-TOF
if tof is True:
proj.tof_parameters = parallelproj.TOFParameters(
num_tofbins=13, tofbin_width=12.0, sigma_tof=12.0
)
# setup the attenuation multiplication operator which is different
# for TOF and non-TOF since the attenuation sinogram is always non-TOF
if proj.tof:
att_op = parallelproj.TOFNonTOFElementwiseMultiplicationOperator(
proj.out_shape, att_sino
)
else:
att_op = parallelproj.ElementwiseMultiplicationOperator(att_sino)
res_model = parallelproj.GaussianFilterOperator(
proj.in_shape, sigma=fwhm_data_mm / (2.35 * proj.voxel_size)
)
# compose all 3 operators into a single linear operator
pet_lin_op = parallelproj.CompositeLinearOperator((att_op, proj, res_model))
# %%
if show_geometry:
fig = plt.figure(figsize=(8, 8), tight_layout=True)
ax = fig.add_subplot(111, projection="3d")
proj.show_geometry(ax)
lor_desc.show_views(ax, xp.asarray([lor_desc.num_views // 4]), xp.asarray([1]))
fig.show()
# %%
# Simulation of projection data
# -----------------------------
#
# We setup an arbitrary ground truth :math:`x_{true}` and simulate
# noise-free and noisy data :math:`y` by adding Poisson noise.
# simulated noise-free data
noise_free_data = pet_lin_op(x_true)
if true_counts > 0:
scale_fac = true_counts / float(xp.sum(noise_free_data))
noise_free_data *= scale_fac
x_true *= scale_fac
# generate a contant contamination sinogram
contamination = xp.full(
noise_free_data.shape,
contam_fraction * float(xp.mean(noise_free_data)),
device=dev,
dtype=xp.float32,
)
noise_free_data += contamination
# add Poisson noise
data = xp.asarray(
np.random.poisson(parallelproj.to_numpy_array(noise_free_data)),
device=dev,
dtype=xp.float32,
)
# %%
# run quick OSEM with one iteration
pet_subset_lin_op_seq_osem, subset_slices_osem = split_fwd_model(
pet_lin_op, num_subsets_osem
)
data_fidelity = SubsetNegPoissonLogLWithPrior(
data, pet_subset_lin_op_seq_osem, contamination, subset_slices_osem
)
x0 = xp.ones(pet_lin_op.in_shape, device=dev, dtype=xp.float32)
osem_alg = OSEM(data_fidelity)
x_osem = osem_alg.run(x0, num_epochs_osem)
x_init = x_osem.copy()
# %%
# setup of the cost function
fwd_ones = pet_lin_op(xp.ones(pet_lin_op.in_shape, device=dev, dtype=xp.float32))
fwd_osem = pet_lin_op(x_osem) + contamination
kappa_img = xp.sqrt(pet_lin_op.adjoint((data * fwd_ones) / (fwd_osem**2)))
prior = RDP(
img_shape,
xp=xp,
dev=dev,
voxel_size=xp.asarray(voxel_size, device=dev),
eps=float(xp.max(x_osem)) / 100,
gamma=gamma_rdp,
)
prior.kappa = kappa_img
prior.scale = beta
adjoint_ones = pet_lin_op.adjoint(
xp.ones(pet_lin_op.out_shape, device=dev, dtype=xp.float32)
)
## %%
# x = x_init.copy()
# h = prior.diag_hessian(x)
# d_data = to_device(adjoint_ones, "cpu")
# d_prior = to_device(h * x, "cpu")
#
## %%
# import pymirc.viewer as pv
# vi = pv.ThreeAxisViewer([d_data, d_prior, d_data > d_prior])
# %%
pet_subset_lin_op_seq, subset_slices = split_fwd_model(pet_lin_op, num_subsets)
cost_function = SubsetNegPoissonLogLWithPrior(
data, pet_subset_lin_op_seq, contamination, subset_slices, prior=prior
)
# %%
# run L-BFGS-B without subsets as reference
x0_bfgs = to_device(x_init.ravel(), "cpu")
bounds = x0.size * [(0, None)]
sim_path = Path("sim_results")
sim_path.mkdir(exist_ok=True)
ref_file = (
sim_path
/ f"rdp_t_{true_counts:.2E}_b_{beta:.2E}_g_{gamma_rdp:.2E}_n_{num_iter_bfgs_ref}_nr_{num_rings}_tof_{tof}_cf_{contam_fraction}_s_{seed}.npy"
)
if ref_file.exists():
x_ref = xp.asarray(np.load(ref_file), device=dev)
else:
res = fmin_l_bfgs_b(
cost_function,
x0_bfgs,
cost_function.gradient,
disp=True,
maxiter=num_iter_bfgs_ref,
bounds=bounds,
m=10,
factr=10.0,
)
x_ref = xp.asarray(res[0].reshape(img_shape), device=dev)
xp.save(ref_file, x_ref)
cost_ref = cost_function(x_ref)
x_osem_scale = float(xp.mean(x_init))
# %%
cost_osem = cost_function(x_osem)
nrmse_osem = xp.sqrt(xp.mean((x_ref - x_osem) ** 2)) / scale_fac
nrmse_init = xp.sqrt(xp.mean((x_ref - x_init) ** 2)) / scale_fac
# %%
def nrmse(vec_x, vec_y):
return float(xp.sqrt(xp.mean((vec_x - vec_y) ** 2))) / scale_fac
nmrse_callback = lambda x: nrmse(x, x_ref)
# %%
# run SVRG
# setup subset negative Poisson log-likelihood without prior
subset_neglogL = SubsetNegPoissonLogLWithPrior(
data, pet_subset_lin_op_seq, contamination, subset_slices, prior=None
)
svrg_alg = SVRG(
subset_neglogL, prior, x_init, verbose=False, precond_version=precond_version
)
nrmse_svrg = svrg_alg.run(num_epochs * num_subsets, callback=nmrse_callback)
# %%
prior_prox = ProxRDP(prior, niter=4, init_step=1.0, adaptive_step_size=False)
proxsvrg_alg = ProxSVRG(
subset_neglogL, prior_prox, x_init, verbose=False, precond_version=precond_version
)
nrmse_proxsvrg = proxsvrg_alg.run(num_epochs * num_subsets, callback=nmrse_callback)
# %%
fig, ax = plt.subplots(2, 4, figsize=(12, 6), tight_layout=True)
sl0 = 0
sl1 = x_true.shape[2] // 2
ims = dict(cmap="Greys", vmin=0, vmax=1.1 * float(xp.max(x_ref)))
ax[0, 0].imshow(to_device(x_ref[..., sl0], "cpu"), **ims)
ax[1, 0].imshow(to_device(x_ref[..., sl1], "cpu"), **ims)
ax[0, 0].set_title(f"ref slice {sl0}")
ax[1, 0].set_title(f"ref slice {sl1}")
ax[0, 1].imshow(to_device(svrg_alg.x[..., sl0], "cpu"), **ims)
ax[1, 1].imshow(to_device(svrg_alg.x[..., sl1], "cpu"), **ims)
ax[0, 1].set_title(f"SVRG slice {sl0}")
ax[1, 1].set_title(f"SVRG slice {sl1}")
ax[0, 2].imshow(to_device(proxsvrg_alg.x[..., sl0], "cpu"), **ims)
ax[1, 2].imshow(to_device(proxsvrg_alg.x[..., sl1], "cpu"), **ims)
ax[0, 2].set_title(f"ProxSVRG slice {sl0}")
ax[1, 2].set_title(f"ProxSVRG slice {sl1}")
ax[0, -1].semilogy(
np.arange(num_subsets * num_epochs) / num_subsets, nrmse_svrg, label="SVRG"
)
ax[0, -1].semilogy(
np.arange(num_subsets * num_epochs) / num_subsets,
nrmse_proxsvrg,
"--",
label="ProxSVRG",
)
ax[0, -1].axhline(0.01, color="black", ls="--")
ax[0, -1].set_xlabel("epoch")
ax[0, -1].set_title("whole image NRMSE")
ax[0, -1].grid(ls=":")
ax[0, -1].legend()
ax[-1, -1].set_axis_off()
fig.show()