-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain_ISTA.py
77 lines (61 loc) · 3.51 KB
/
main_ISTA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
"""Main file to modify for submissions.
Once renamed or symlinked as `main.py`, it will be used by `petric.py` as follows:
>>> from main import Submission, submission_callbacks
>>> from petric import data, metrics
>>> algorithm = Submission(data)
>>> algorithm.run(np.inf, callbacks=metrics + submission_callbacks)
"""
from cil.optimisation.algorithms import ISTA, Algorithm
from cil.optimisation.functions import IndicatorBox, SGFunction
from cil.optimisation.utilities import ConstantStepSize, Preconditioner, Sampler, callbacks
from petric import Dataset
from sirf.contrib.partitioner import partitioner
assert issubclass(ISTA, Algorithm)
class MaxIteration(callbacks.Callback):
"""
The organisers try to `Submission(data).run(inf)` i.e. for infinite iterations (until timeout).
This callback forces stopping after `max_iteration` instead.
"""
def __init__(self, max_iteration: int, verbose: int = 1):
super().__init__(verbose)
self.max_iteration = max_iteration
def __call__(self, algorithm: Algorithm):
if algorithm.iteration >= self.max_iteration:
raise StopIteration
class MyPreconditioner(Preconditioner):
"""
Example based on the row-sum of the Hessian of the log-likelihood. See: Tsai et al. Fast Quasi-Newton Algorithms
for Penalized Reconstruction in Emission Tomography and Further Improvements via Preconditioning,
IEEE TMI https://doi.org/10.1109/tmi.2017.2786865
"""
def __init__(self, kappa):
# add an epsilon to avoid division by zero (probably should make epsilon dependent on kappa)
self.kappasq = kappa*kappa + 1e-6
def apply(self, algorithm, gradient, out=None):
return gradient.divide(self.kappasq, out=out)
class Submission(ISTA):
"""Stochastic subset version of preconditioned ISTA"""
# note that `issubclass(ISTA, Algorithm) == True`
def __init__(self, data: Dataset, num_subsets: int = 7, step_size: float = 0.1,
update_objective_interval: int = 10):
"""
Initialisation function, setting up data & (hyper)parameters.
NB: in practice, `num_subsets` should likely be determined from the data.
This is just an example. Try to modify and improve it!
"""
data_sub, acq_models, obj_funs = partitioner.data_partition(data.acquired_data, data.additive_term,
data.mult_factors, num_subsets, mode='staggered',
initial_image=data.OSEM_image)
# WARNING: modifies prior strength with 1/num_subsets (as currently needed for ISTA implementations)
data.prior.set_penalisation_factor(data.prior.get_penalisation_factor() / len(obj_funs))
data.prior.set_up(data.OSEM_image)
for f in obj_funs: # add prior evenly to every objective function
f.set_prior(data.prior)
sampler = Sampler.random_without_replacement(len(obj_funs))
f = -SGFunction(obj_funs, sampler=sampler) # negative to turn minimiser into maximiser
step_size_rule = ConstantStepSize(step_size) # ISTA default step_size is 0.99*2.0/F.L
g = IndicatorBox(lower=0, accelerated=False) # non-negativity constraint
preconditioner = MyPreconditioner(data.kappa)
super().__init__(initial=data.OSEM_image, f=f, g=g, step_size=step_size_rule, preconditioner=preconditioner,
update_objective_interval=update_objective_interval)
submission_callbacks = [MaxIteration(1000)]